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Deutsche Zusammenfassung

Diffeomorphismengruppen von kompakten Mannigfaltigkeiten und deren Untergruppen bilden eine
wichtige Beispielklasse fiir unendlich dimensionale Liegruppen. Die Liegruppen-Struktur dieser
Gruppen ist wohl bekannt: Nach einem klassischen Resultat ist die Diffeomorphismengruppe einer
kompakten Mannigfaltigkeit eine unendlich dimensionale reguldre Liegruppe (vgl. [49]). Die alge-
braische Struktur dieser Gruppen wird in [5] beschrieben. Allgemeiner werden in [48] Liegruppen
Strukturen auf Diffeomorphismengruppen von parakompakten Mannigfaltigkeiten (sogar auf Man-
nigfaltigkeiten mit Ecken) konstruiert (siche auch [27] fiir den Spezialfall der Gruppe Diff (R™)).
Dariiber hinaus werden in |44] die Diffeomorphismengruppen von Mannigfaltigkeiten mit der Struk-
tur einer reguldren Liegruppe im Sinne des “covenient setting of analysis” versehen. An dieser
Stelle ist anzumerken, dass der “convenient setting of analysis” (siche [44]) nicht dquivalent zu
der in dieser Arbeit verwendeten Differentialrechnung in lokal konvexen Raumen ist. Die Unter-
suchung der vorliegenden Dissertation basiert auf einem Konzept von C"-Abbildungen zwischen
lokal konvexen Réumen, welches als Kellers C7-Konzept bekannt ist [40] (vgl. [49], [23] und [32]
fiir einfiihrende Darstellungen und siehe auch [6]). Das Ziel der vorliegenden Dissertation ist es, die
Resultate beziiglich der Liegruppen Struktur von Diffeomorphismengruppen von Mannigfaltigkeiten
auf Diffeomorphismengruppen von reduzierten parakompakten Orbifaltigkeiten zu verallgemeinern.

Orbifaltigkeiten wurden zuerst von Satake in [57] unter dem Namen V-Mannigfaltigkeit einge-
fiihrt um Mannigfaltigkeiten zu verallgemeinern. Spéter wurden sie von Thurston in verschiedenen
Arbeiten verwandt (vgl. [58]). Thurston und seine Schiiler pragten und verbreiteten den Ausdruck
“orbifold” (“Orbifaltigkeit”) fiir Objekte dieser Art. Eine Orbifaltigkeit sollte man sich konzep-
tionell als Mannigfaltigkeit mit “milden Singulariiten” vorstellen. Objekte mit der Struktur von
Orbifaltigkeiten entstehen in natiirlicher Weise zum Beispiel in der symplektischen Geometrie, der
Physik und der algebraischen Geometrie (vgl. dazu den Uberblick in [1]).

Es ist allgemein bekannt, dass Orbifaltigkeiten auf mindestens drei verschiedene Weisen definiert
werden konnen: Sie kénnen iiber Atlanten von lokalen Karten, dhnlich einer Mannigfaltigkeit
beschrieben werden (siehe [1,[34L/51]). Auferdem korrespondieren Orbifaltigkeiten zu gewissen
Klassen von Liegruppoiden (siehe |51] oder den Uberblicksartikel [50]). Schlieklich kénnen Orb-
ifaltigkeiten als Deligne-Mumford stacks aufgefasst werden (vgl. [46]). Nach Meinung des Autors
dieser Dissertation ist der erste Ansatz am besten geeignet um Methoden der Differentialgeome-
trie auf Orbifaltigkeiten anwenden zu konnen. Daher werden in dieser Arbeit Orbifaltigkeiten in
lokalen Karten beschrieben. Ungliicklicherweise ist es von diesem Standpunkt her schwierig, Mor-
phismen von Orbifaltigkeiten zu definieren. In der Literatur existiert eine Vielzahl von Vorschldgen
zur Definition dieser Morphismen, als da wéren die Chen-Ruan good map [15], die Moerdijk-Pronk
strong map [52], oder die Abbildungen welche in [7] definiert werden. Wie bereits bemerkt wurde,
sind Orbifaltigkeiten in lokalen Karten dquivalent zu gewissen Liegruppoiden. In der Kategorie
der Liegruppoide sind Morphismen jedoch wohl bekannt und gut verstanden. Daher sollten die
Morphismen von Orbifaltigkeiten den Morphismen in der Kategorie der Liegruppoide entsprechen,
jedoch in lokalen Karten definiert werden kénnen. Die Orbifaltigkeitsabbildungen, welche von Pohl
in [56] eingefiihrt werden, erfiillen diese Forderungen genau, da sie modelliert wurden um Gruppoid-
Morphismen zu entsprechen.! Dariiber hinaus kénnen diese Abbildungen in lokalen Karten in einer

1Von anderen Konzepten von Orbifaltigkeitsabbildungen wird in der Literatur ebenfalls behauptet, dass sie diese



Weise definiert werden, welche dem Autor besonders geeignet fiir Methoden der Differentialgeome-
trie und Lie-Theorie erscheint. Aus diesen Griinden verstehen wir unter Abbildungen von Orb-
ifaltigkeiten in der vorliegenden Arbeit Abbildungen im Sinne von Pohl [56] (siehe Anhang [E] fiir
eine kompakte Einfiilhrung zu diesen Abbildungen).

Um die Liegruppen-Struktur fiir die Diffeomorphismengruppe einer Orbifaltigkeit zu konstruieren
werden einige Hilfsmittel aus der Riemannschen Geometrie auf Orbifaltigkeiten bendétigt. Die
benétigten Resultate sind bereits fiir sich interessant und beinhalten die folgenden Ergebnisse:
Wir betrachten Geodétische auf Riemannschen Orbifaltigkeiten und werden sehen, dass Diese ein-
deutig durch ihre Startwerte festgelegt werden. Diese Beobachtung ermdoglicht die Konstruktion
einer Riemannschen Orbifaltigkeits-Exponentialabbildung [expeo,y]. Diese Abbildung ist eine Abbil-
dung von Orbifaltigkeiten im Sinne von Pohl [56], welche das Konzept einer Riemannschen Expo-
nentialabbildung auf Riemannsche Orbifaltigkeiten verallgemeinert (vgl. [34] beziehungsweise [15]
fiir eine Darstellung von Riemannschen Exponentialabbildungen auf geodétisch vollstdndigen Orb-
ifaltigkeiten).

Die Riemannsche Exponentialabbildung auf einer Mannigfaltigkeit ist ein wichtiges Werkzeug
zur Konstruktion der Liegruppen-Struktur auf der Diffeomorphismengruppe einer Mannigfaltigkeit
(vgl. [49]). Analog erlaubt die Riemannsche Orbifaltigkeits-Exponentialabbildung diesen Ansatz
fortzufithren: Wir versehen die Diffeomorphismengruppe einer parakompakten reduzierten Orb-
ifaltigkeit mit der Struktur einer unendlich dimensionalen lokal konvexen Liegruppe im Sinne von
[55]. Préziser gefasst umfassen die Ergebnisse dieser Arbeit den folgenden Satz (sieche Theorem
5.2.4)):

Satz A Die Diffeomorphismengruppe Diff 0.1, (Q,U) einer parakompakten reduzierten Orbifaltigkeit
(Q,U) kann in eindeutiger Weise zu einer Liegruppe gemacht werden, so dass das Folgende gilt:
Seien p eine Riemannsche Orbifaltigkeits-Metrik auf (Q,U) und [expo,] die zugehdrige Riemannsche
Orbifaltigkeits- Exponentialabbildung. Dann existiert eine offene Nullumgebung H, im Raum der
kompakt getragenen Schnitte in das Tangentialorbibiindel, so dass

E: H, — Diffo,, (Q,U), [6] — [expoum) © [6]

einen C*°-Diffeomorphismus auf eine offene Untermannigfaltigkeit von Diffou, (Q,U) induziert.
Diese Eigenschaft wird dann von jeder Riemannschen Orbifaltigkeits-Metrik auf (Q,U) erfillt. Ist
(Q,U) eine kompakte Orbifaltigkeit, dann ist die Liegruppe Diff o, (Q,U) eine Fréchet-Liegruppe.

Dieses Ergebnis verallgemeinert die klassische Konstruktion der Liegruppen-Struktur fiir die Dif-
feomorphismengruppe Diff (M) einer parakompakten Mannigfaltigkeit. Fiir eine solche Mannig-
faltigkeit werden Untergruppen der Liegruppe Diff (M) betrachtet, deren Elemente aufierhalb einer
gegebenen kompakten Teilmenge mit der Identitat iibereinstimmen. Es ist bekannt, dass diese Un-
tergruppen Lie-Untergruppen von Diff (M) sind (vgl. |26, Section 14]). In Kapitel beweisen wir
ein dhnliches Resultat fiir Diffeomorphismen von Orbifaltigkeiten, welches aus Theorem A folgt:

Eigenschaften teilen, vgl. |1, Section 2.4|. Ein Gegenbeispiel zu dieser Behauptung befindet sich jedoch in [56].



Satz B Sei (Q,U) eine parakompakte reduzierte Orbifaltigkeit. Fir jede kompakte Teilmenge K
von Q definieren wir die Gruppe Diffo., (Q,U) ;; aller Diffeomorphismen der Orbifaltigkeit, welche
auferhalb von K mit der Identitit der Orbifaltigkeit ibereinstimmen. Sei Diffo., (Q,U), die Gruppe
aller Diffeomorphismen der Orbifaltigkeit, welche auferhalb irgend einer kompakten Teilmenge mit
der Identitdt der Orbifaltigkeit ibereinstimmen. Dann gilt das Folgende:

(a) Die Gruppe Diffo,, (Q,U), ist eine offene normale Lie-Untergruppe von Diffo., (Q,U).

(b) Fir jede kompakte Teilmenge K wvon @ existiert eine kompakte Menge L O K, so dass
Diffor, (Q,U), eine abgeschlossene Lie-Untergruppe von Diffo, (Q,U) ist. Der Modellraum
der abgeschlossenen Lie Untergruppe Diffow, (Q,U), ist der Raum der Schnitte in das Tan-
gentialorbibiindel, welche auferhalb von L verschwinden.

Ist (Q,U) eine triviale Orbifaltigkeit (d.h. eine Mannigfaltigkeit), so kann man in (b) immer K = L
wdhlen.

An dieser Stelle ist anzumerken, dass Liegruppen-Strukturen auf der Diffeomorphismengruppe einer
Orbifaltigkeit bereits von Borzellino und Brunsden untersucht wurden. In |7] und der nachfolgenden
Arbeit [8] wurde die Diffeomorphismengruppe einer kompakten Orbifaltigkeit mit der Struktur einer
Fréchet-Liegruppe im “convenient setting” versehen. Dem Autor ist nicht bekannt, ob die Abbildun-
gen von Orbifaltigkeiten welche in |7] betrachtet werden, dquivalent zu der Klasse von Abbildungen
ist, welche in der vorliegenden Arbeit betrachtet werden. Falls beide Klassen dquivalent wéren, so
folgen die Ergebnisse betreffend der Liegruppen-Struktur der Diffeomorphismengruppe aus [7,8] di-
rekt aus Satz A. Dies folgt aus der bekannten Tatsache, dass in Fréchet-R&umen beide Begriffe von
“glatten Abbildungen” iibereinstimmen (vgl. [40] und [44, Theorem 4.11 (a)]). Fréchet-Liegruppen
im Sinne von [55] sind also “convenient Fréchet-Liegruppen” . Allerdings ist zu bemerken, dass die
Darstellung in |7] einige ernstzunehmende Fehler enthilt (siehe Bemerkung fiir weitere Details
zu diesem Thema).

Wir merken an, dass in der Gruppoid-Formulierung von Orbifaltigkeiten, Topologien fiir R&ume von
Abbildungen von Orbifaltigkeiten bereits untersucht wurden. Chen konstruiert in [14] eine Topolo-
gie auf dem Raum der Abbildungen von Orbifaltigkeiten, deren Definitionsbereich eine kompakte
Orbifaltigkeit ist. Mit der dort betrachteten Topologie wird dieser Raum eine Banach-Orbifaltigkeit
(vergleiche aufierdem &hnliche Resultate in [35]). Die Darstellung in der vorliegenden Arbeit ist
jedoch unabhéngig von diesen Ergebnissen.

Nach der Konstruktion der Liegruppe Diffo,p (Q,U) charakterisieren wir die zu dieser Gruppe
gehorige Liealgebra. In diesem Zusammenhang ist es erhellend, sich zunéchst an den Spezialfall der
Diffeomorphismengruppe Diff (M) einer kompakten Mannigfaltigkeit M zu erinnern. In [49] beweist
Milnor, dass die Liealgebra zu Diff (M) der Raum der Vektorfelder X (M) auf M ist, wobei die
Lie Klammer durch den negativen Kommutator von Vektorfeldern gegeben ist. Es zeigt sich, dass
ein analoges Ergebnis ebenfalls fiir die Liealgebra zu der Liegruppe Diffo,1, (Q,U) gilt. Um dieses
Ergebnis zu verstehen, bendtigen wir die folgenden Fakten:

Eine Abbildung von Orbifaltigkeiten [6], welche ein Schnitt in das Tangentialorbibiindel ist, nen-
nen wir Orbisection. Beziiglich einer Karte der Orbifaltigkeit (Q,U) induziert jede Orbisection
ein eindeutig bestimmtes Vektorfeld, den so genannten kanonischen Lift. Spezieller korrespondiert
jede Orbisection zu einer eindeutig bestimmten Familie von Vektorfeldern (vgl. Kapitel |3 fir weit-
ere Details). Der Modellraum der Liegruppe Diffo,1, (Q,U) ist der Raum der kompakt getragenen



Orbisections Xo,b (Q),.. Wir kénnen nun das folgende Ergebnis beziiglich der zu der Diffeomorphis-
mengruppe Diff o, (Q,U) assoziierten Liealgebra formulieren (Theorem [5.3.1)):

Satz C Die Liealgebra zu Diffo,, (Q,U) ist (Xomw (Q),., [, ]). Hierbei ist die Lie-Klammer [-, -]
wie folgt definiert:

Fiir beliebige [6],[7] € Xow (Q), ist die Lie-Klammer [[6],[7]] die eindeutig bestimmte kompakt
getragene Orbisection, deren kanonischer Lift auf der Orbifaltigkeitskarte (U, G, ) der negative
Kommutator in X (U) der kanonischen Lifte oy und Ty ist.

Schliefslich werden Regularitits-Eigenschaften der Liegruppe Diffo,p (Q,U) diskutiert. Zu diesem
Zweck sei an die Definition einer reguléren Liegruppe erinnert:

Es sei G eine Liegruppe, welche auf einem lokal konvexen Raum modelliert ist und » € Ny U {o0}.
Bezeichne mit 1 das Einselement von G. Mit Hilfe der Tangentialabbildung der Rechtsmultiplikation
pg: G — G, v+ xg mit g € G definieren wir v.g := Thpy(v) € T,G fir v € T1(G) =: L(G). Die
Liegruppe G heifst nach [17], [31] und [32] C"-reguldr, falls das Anfangswertproblem

fiir jede C"-Kurve v: [0,1] — L(G) eine (notwendigerweise eindeutige) C"*1-Losung Evol(vy) :=
n: [0,1] — G besitzt und die Abbildung

evol: C"([0,1], L(G)) — G, ~+ Evol(y)(1)

glatt ist. Ist G eine C"-regulére Liegruppe und r < s, so ist G auch C®-reguldr. Eine C'*°-regulére
Liegruppe G wird auch reguldr (im Sinne von Milnor) genannt — die Eigenschaft wurde zuerst in [49)
definiert. Jede endlich dimensionale Liegruppe ist C-reguliir (vgl. [55]). Verschiedene wichtige
Ergebnisse der unendlich dimensionalen Lie Theorie sind nur fiir reguldre Liegruppen verfiigbar
(siehe [49], [55], |31], vgl. auch [44] und die Verweise in diesen Arbeiten). Wir beweisen das folgende

Resultat (Theorem [5.4.11]):

Satz D Ist (Q,U) eine Orbifaltigkeit, die dem zweiten Abzdihlbarkeitsaxiom geniigt, so ist die
Liegruppe Diffom, (Q,U) eine CF-regulire Liegruppe fiir jedes k € Ng U {oo}. Insbesondere ist diese
Liegruppe dann reguldr im Sinne von Milnor.

Man beachte, dass im Allgemeinen Orbifaltigkeiten in der vorliegenden Arbeit nicht dem zweiten
Abzéhlbarkeitsaxiom geniigen miissen. Allerdings wird die Zweitabzéhlbarkeit der Orbifaltigkeit
benétigt, um zu zeigen, dass die Evolutions-Abbildung evol glatt ist. Es ist bekannt, dass die
Argumente, die dieses Ergebnis in der vorliegenden Arbeit sicherstellen nicht auf Orbifaltigkeiten
verallgemeinert werden konnen, welche nicht das zweite Abzahlbarkeitsaxiom erfiillen. Aus diesem
Grund ergibt sich folgende Frage:



Offenes Problem: Sei (Q,U) eine parakompakte reduzierte Orbifaltigkeit, welche nicht das
zweite Abzéhlbarkeitsaxiom erfiillt. Ist die Liegruppe Diff o1 (Q,U) eine C"-reguldre Liegruppe fiir
ein r € Ng U {o0}?

Die vorliegende Arbeit beginnt mit einer kurzen Einfiihrung in unendlich dimensionale Analy-
sis, Orbifaltigkeiten und deren Eigenschaften (Kapitel . Unser Ziel ist es eine moglichst in sich
geschlossene Darstellung von Orbifaltigkeiten und Abbildungen von Orbifaltigkeiten zu geben. Da-
her stellt Anhang E die wichtigsten Informationen zu den Abbildungen von Orbifaltigkeiten im Sinne
von [56] zusammen. Die Darstellung vermeidet jedoch die Beziehung zu Abbildungen von Grup-
poiden, welche die Definitionen urspriinglich motiviert hat. Die iibrigen Kapitel der vorliegenden
Arbeit sind wie folgt organisiert:

In den Kapiteln [2] und [3] werden spezielle Klassen von Abbildungen von Orbifaltigkeiten im Rah-
men der Abbildungen aus [56] diskutiert. Unter anderem werden Diffeomorphismen von Orb-
ifaltigkeiten, Zerlegungen der Eins und Schnitte in das Tangentialorbibiindel betrachtet. Danach
werden Werkzeuge aus der Riemannschen Geometrie auf Orbifaltigkeiten entwickelt um den Be-
weis der zentralen Aussagen der Arbeit vorzubereiten. Die bereits vorgestellten Resultate wer-
den schlieflich in Kapitel [f] behandelt. Abschliefend betrachten wir Gruppen von dquivarianten
Diffeomorphismen DiffG(R"), welche zu gewissen “good orbifolds®, d.h. Orbifaltigkeiten mit einer
globalen Karte, gehtren. Die in diesen Beispielen konstruierten Liegruppen korrespondieren zu
abgeschlossenen Lie Untergruppen von Diff (R™), wobei wir diese Gruppe mit der in [27] konstru-
ierten Liegruppen-Struktur versehen.

Einige Anhénge enthalten weniger einfiihrendes Material. Die in diesen Anhéngen erzielten Ergeb-
nisse sollten bei einem ersten Lesen der Arbeit zunéchst ohne Beweis studiert werden. Ihre Darstel-
lung im Hauptteil der Arbeit hétte von der eigentlichen Argumentationslinie abgelenkt.

Die vorliegende Fassung entspricht, bis auf die von den Gutachtern gewiinschten Anderungen, der
zur Begutachtung eingereichten Fassung.






Introduction and Statement of Results

Diffeomorphism groups of compact manifolds and their subgroups are prime examples of infinite
dimensional Lie groups. There are many well known results concerning the Lie group structure of
these groups; e.g., a classical result states that the diffeomorphism group of a compact manifold is an
infinite dimensional regular Lie group (see |49]). For the algebraic structure of these groups, see [5].
More generally, Lie group structures on diffeomorphism groups of paracompact manifolds (even with
corners) were constructed in [48] (also cf. [27] for the special case Diff(R™)). Furthermore, in [44]
the diffeomorphism groups of manifolds were endowed with the structure of a regular Lie group in
the “convenient setting of analysis”. We remark that the “convenient setting of analysis” (see [44]) is
inequivalent to the setting of analysis adopted in this paper. Our studies are based on a concept of
C"-maps between locally convex spaces known as Keller’s C-theory [40] (see [49], |23] and [32] for
streamlined expositions, cf. also [6]). The present paper generalizes the results on diffeomorphism
groups of manifolds to diffeomorphism groups of reduced paracompact orbifolds.

Orbifolds were first introduced by Satake in [57] as V-manifolds to generalize the concept of a
manifold. Later on they appear in the works of Thurston (cf. [58]), who popularized the term
“orbifold”. One might think of an orbifold as a manifold with “mild singularities”. Objects with
orbifold structure arise naturally, for example in symplectic geometry, physics and algebraic geom-
etry (cf. the survey in [1]). It is well known that there are at least three different ways to define an
orbifold: Orbifolds may be described by atlases of local charts akin to a manifold (see [1,[341/51]).
Furthermore, orbifolds correspond to special classes of Lie groupoids (see [51] or the survey [50]).
Finally one might think of them as Deligne-Mumford stacks (cf. |[46]). The author thinks that the
first approach is suited best to apply methods from differential geometry to orbifolds. Hence in
the present paper we define orbifolds in local charts. Unfortunately, this point of view makes it
difficult to define morphisms of orbifolds. The literature proposes a variety of notions for these
morphisms, e.g. the Chen-Ruan good map |[15], the Moerdijk-Pronk strong map [52], or the maps
in |7]. However, orbifolds in local charts are equivalent to certain Lie groupoids, whose morphisms
are well understood objects. Thus orbifold morphisms should correspond to a class of Lie groupoid
morphisms. The orbifold maps introduced by Pohl in [56] satisfy these requirements, since they
were modeled to be equivalent to groupoid morphisms.? Furthermore these maps allow a charac-
terization in local charts, which is amenable to methods of differential geometry and Lie theory.
Therefore in the present paper, maps of orbifolds will be orbifold maps in the sense of Pohl [56] (for
a comprehensive introduction to these maps see Appendix [E)).

To construct the Lie group structure on the diffeomorphism group of an orbifold we have to develop
several tools from Riemannian geometry on orbifolds. These results are of interest in their own right
and include the following:

We discuss geodesics on Riemannian orbifolds and prove that they are uniquely determined by their
initial values. Then a detailed construction for a Riemannian orbifold exponential map [expe,y,] is
provided. This map is an orbifold morphism in the sense of Pohl 56|, which generalizes the con-
cept of a Riemannian exponential map to Riemannian orbifolds (cf. [34] and [15], respectively for
Riemannian exponential maps on geodesically complete orbifolds).

20ther concepts of orbifold maps are also widely believed to satisfy similar properties, cf. |1, Section 2.4]. However
in [56] a counterexample to these claims may be found.



The Riemannian exponential map on a manifold may be used to construct the Lie group structure
on the diffeomorphism group of the manifold (cf. [49]). The Riemannian orbifold exponential map
allows us to follow this line of thought: We endow the diffeomorphism group of a paracompact
reduced orbifold with the structure of an infinite dimensional locally convex Lie group in the sense
of [55]. More precisely the main results subsume the following theorem (cf. Theorem [5.2.4)):

Theorem A The diffeomorphism group Diff o, (Q,U) of a paracompact reduced orbifold (Q,U) can
be made into a Lie group in a unique way such that the following is satisfied:

For some Riemannian orbifold metric p on (Q,U), let [expo,p,] be the Riemannian orbifold exponen-
tial map. There exists an open zero-neighborhood H, in the space of compactly supported sections
of the tangent orbibundle such that

E: H, — Diffon, (Q,U) , [6] = [expoy,] © [0]

induces a well defined C*°-diffeomorphism onto an open submanifold of Diff o, (Q,U). This condi-
tion is then satisfied for every Riemannian orbifold metric on (Q,U). If (Q,U) is a compact orbifold,
then the Lie group Diffo,, (Q,U) is a Fréchet-Lie group.

This result generalizes the classical construction of a Lie group structure on the diffeomorphism
group Diff (M) of a paracompact manifold. For such a manifold, we may consider subgroups of
Diff (M), whose elements coincide outside of a given compact set with the identity. It is known that
these subgroups are Lie subgroups of Diff (M) (cf. [26, Section 14]). Section contains a similar
result for diffeomorphisms of orbifolds, which is a consequence of Theorem A:

Theorem B Let (Q,U) be a paracompact reduced orbifold. For each compact subset K of @Q we
define the group Diff o, (Q,U) ;¢ of all orbifold diffeomorphisms which coincide off K with the iden-
tity morphism of the orbifold. Let Diff o1, (Q,U), be the group of all orbifold diffeomorphisms which
coincide off some compact set with the identity morphism of the orbifold. Then the following holds:

(a) The group Diffo., (Q,U), is an open normal Lie subgroup of Diffo., (Q,U).

(b) For each compact subset K of Q, there is a compact set L O K such that Diffo,y, (Q,U), is a
closed Lie subgroup of Diff o, (Q,U). The closed Lie subgroup Diffow, (Q,U); is modeled on
the space of sections in the tangent orbibundle which vanish off L.

If (Q,U) is a trivial orbifold (i.e. a manifold), one may always choose K = L in (b).

We remark that Lie group structures for diffeomorphism groups of orbifolds were already considered
by Borzellino and Brunsden. In [7] and the follow up [8], the diffeomorphism group of a compact
orbifold has been turned into a convenient Fréchet-Lie group. The author does not know whether
the orbifold morphisms introduced in [7] are equivalent to the class of orbifold maps considered in
the present paper. If both notions were equivalent, the results of |7,|8] concerning the Lie group
structure of the diffeomorphism group are subsumed in Theorem A. This follows from the fact that
in the Fréchet setting both notions of “smooth maps” coincide (cf. [40] and |44, Theorem 4.11 (a)]).



Hence Fréchet Lie groups in the sense of [55] and “convenient Fréchet Lie groups” coincide. However,
we have to point out that the exposition in |7 contains several major errors (see Remark for
further information on this topic).

We also mention that in the groupoid setting, topologies for spaces of orbifold maps have been
considered. Chen constructs in [14] a topology on the space of orbifold morphisms whose domain is
a compact orbifold, turning the space into a Banach orbifold (also cf. similar results in [35]). The
exposition of the present paper is independent of these results.

After constructing the Lie group Diffo,p (Q,U), we determine the Lie algebra associated to this
group. It is instructive to recall the special case of the diffeomorphism group Diff (M) of a compact
manifold M. Milnor proves in [49] that the Lie algebra associated to Diff (M) is the space of vector
fields X (M) on M, whose Lie bracket is the negative of the bracket product of vector fields. It
turns out that an analogous result holds for the Lie algebra of the Lie group Diffo,p (Q,U). To
understand the result we need the following facts:

A map of orbifolds [6], which is a section of the tangent orbibundle is called an orbisection. With
respect to an orbifold chart of @), each orbisection induces a unique vector field on the chart domain,
called its canonical lift. In particular, each orbisection corresponds to a unique family of vector
fields (cf. Section [3] for details). By construction, the local model for the Lie group Diffo,, (Q,U)
is the space of compactly supported orbisections Xo.1, (Q),.. We are now in a position to formulate
the following result on the Lie algebra of the diffeomorphism group Diff o1, (Q,U) (Theorem :

Theorem C The Lie algebra of Diffor, (Q,U) is given by (Xow (Q),,[+,-]). Here the Lie bracket
[-,-] is defined as follows:

For arbitrary [6],[7] € Xow (Q),, their Lie bracket [[6],[7]] is the unique compactly supported
orbisection whose canonical lift on an orbifold chart (U, G, ) is the negative of the Lie bracket in
X (U) of their canonical lifts oy and 1.

Finally we discuss regularity properties of the Lie group Diff o,1, (@,U). To this end, recall the notion
of regularity for Lie groups:

Let G be a Lie group modeled on a locally convex space, with identity element 1, and r € Ny U {oo}.
We use the tangent map of the right translation p,: G = G, z — zg by g € G to define v.g :=
Thpg(v) € TyG for v € T1(G) =: L(G). Following [17], [31] and [32]|, G is called C”-regular if the
initial value problem

n(0) =1
has a (necessarily unique) C"*1-solution Evol(y) := n: [0,1] — G for each C"-curve y: [0,1] — L(G),
and the map

{n’(t) = ~(t).(t)

evol: C"([0,1], L(G)) = G, ~+ Evol(vy)(1)
is smooth. If G is C"-regular and r < s, then G is also C*-regular. A C'*°-regular Lie group G is
called regular (in the sense of Milnor) — a property first defined in [49]. Every finite dimensional Lie
group is C%-regular (cf. |55]). Several important results in infinite-dimensional Lie theory are only

available for regular Lie groups (see [49], [55], [31], cf. also |[44] and the references in these works).
We prove the following result (Theorem [5.4.11)):



Theorem D  For a second countable orbifold, the Lie group Diffo., (Q,U) is C*-regular for each
k € NgU {oo}. In particular this Lie group is reqular in the sense of Milnor.

Notice that in general the orbifolds in the present paper are not assumed to be second countable.
However our methods require second countability of the orbifold to prove that the evolution map
evol is smooth. It is known that the approach outlined in the present paper may not be adapted to
orbifolds which are not second countable. Hence we pose the following question:

Open Problem: Let (Q,U) be a paracompact reduced orbifold which is not second countable. Is
the Lie group Diffo,p (Q,U) a C"-regular Lie group for some r € Ny U {oco}?

The present article commences with a brief introduction to infinite dimensional calculus, orbifolds
and their properties (Section. Our goal is to present a mostly self contained exposition of orbifolds
and their morphisms. In particular, Appendix E contains all necessary information about orbifold
maps in the sense of [56]. However, the exposition avoids references to the groupoid morphisms
after which these maps are modeled. The thesis is organized as follows:

In Sections [2] and 3| classes of orbifold maps are discussed in the setting of [56]. These include
orbifold diffeomorphisms, partitions of unity and sections of the tangent orbibundle. Afterwards,
we consider Riemannian geometry on orbifolds and develop important tools employed in the proof
of the central results of this work. The main results of the thesis are contained in Section[Bl As an
application we consider groups of equivariant diffeomorphisms Diff¢ (R™) associated to certain good
orbifolds (i.e. orbifolds with a global chart). The Lie group structures obtained in these examples
correspond to certain closed Lie subgroups of Diff(R™) (considered as the Lie group constructed
in [27]).

The less introductory material contained in the appendices should be taken on faith on a first
reading. The presentation of this material in the text would have distracted from the main line of
thought.

This version of the thesis is, up to corrections required by the reviewers, identical to the version of
the thesis submitted for reviewing.



1. Preliminaries and Notation

1.0.1 Conventions In this thesis, we work exclusively over the field R of real numbers. All topo-
logical spaces will be assumed to be Hausdorff. We write N:= {1,2,...} and Ny := NU {0}.

1.1. Differential calculus in infinite dimensional spaces

Basic references for differential calculus in locally convex spaces are [6,23}124}/29,/40]. Basic facts
on infinite dimensional manifolds are compiled in Appendix [C.I] For the reader’s convenience, we
recall various definitions and results:

1.1.1 Definition Let E,F be locally convex spaces, U C E be an open subset, f: U — F a
map and r € Ny U {oo}. If it exists, we define for (z,h) € U x E the directional derivative
df (z,h) := Dy f(x) = limy_ot~1(f(x +th) — f(x)). We say that f is C" if the iterated directional
derivatives

d(k)f(zvylv s 7y/€) = (Dylelk-—l e Dylf)('r)
exist for all £k € Ny such that £ < r, z € U and y,...,yr € E and define continuous maps
d®) f: U x EF — F. If f is C* it is also called smooth. We abbreviate df := d(*) f.

1.1.2 Remark If F;, Fs, F are locally convex spaces and U C F;,V C FE5 open subsets together
with a Cl-map f: U x V — F, then one may compute the partial derivative d; f with respect to E;.
It is defined as dy f: U x V x By — F,dy f(x,y;2) := limy_,ot " (f(z+tz,y) — f(z,y)). Analogously
one defines the partial derivative dyf with respect to F5. The linearity of df (x,y,-) implies the
so-called Rule on Partial Differentials for (z,y) € U x V, (hy, ha) € Ey X Es:

df (z,y, h1, he) = di f(2,y; h1) + da f (2, y; o). (1.1.1)
By |23, Lemma 1.10], f: U x V — F is C* if and only if d; f and dyf exist and are continuous.

1.1.3 Definition (Differentials on non-open sets)

(a) The set U C E is called locally convex if every x € U has a convex neighborhood V in U.

(b) Let U C F be a locally convex subset with dense interior. A continuous mapping f: U — F
is called C" if f|yo: U° — F is C" and each of the maps d*)(f|y): U° x E¥ — F admits
a (unique) continuous extension d*)f: U x E¥ — F. If U C R and f is C', we obtain a
continuous map f': U — E, f'(x) := df (z)(1). We shall write %f(x) = f'(z). In particular
if f is of class C", we define recursively %f(x) = (%f)'(m) for k € Ny such that k < r,
where () := f.

Using these definitions one may define infinite dimensional manifolds as usual. We refer to Ap-
pendix [C]] for definitions and comments on the notation used. To discuss regularity properties of
Lie groups, the notion of C"*-mappings is useful.
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1.1.4 Definition (C™*-mappings) Let Eq, E5 and F be locally convex spaces, U and V open subsets
of Fy and Es, respectively, and 7, s € Ny U {oc}. A mapping f: U x V — F is called a C™*-map if
for all 7, j € Ny such that i < r,j < s, the iterated directional derivative

d(iJ)f(x»vala s, Wiy U1, . ';Uj) = (D(wi,O) : "D(wl,O)D(O,vj) : "D(o,ul)f)(x,y)
exists for all x € U,y € V,wy,...,w; € Eq,v1,...,v; € E and yields continuous mappings

d9)f.UxV x El x E} - F,
(T, y, w1, s wi, v, 05) = (D, 0y Diws 0) D0,y -+ Dio,won) ) (2, 9).

Again this concept may be extended to maps on non-open domains with dense interior:

1.1.5 Definition Let E;, Fs and F be locally convex spaces. Consider locally convex subsets
with dense interior U of Ey and V' of Es, and r,s € Ny U {co}. We say that a continuous map
f:UXxV = FisaCr%map, if flyoxye: U°xV® — F is a C™*-map and for all i,j € Ny such
that ¢ <r,j <'s, the map

A9 (flexye): U x VO x Ei x B} - F

admits a continuous extension d“/) f: U x V x Ei x E} — F.

For further results and details on the calculus of C"™*-maps we refer to [2].

1.1.6 Definition Let U,V be locally convex subsets with dense interior of locally convex spaces F;
and Es, respectively, and let F be a locally convex space. For r, s € Ng U {oo}, we define the spaces

C"(U,F):={f: U — F| f is a mapping of class C"}
C™(U XV, F):={f: UxV — F|f is a mapping of class C"°}.

Furthermore, we define C'(U,F) := C°(U, F) and endow C"(U,F) with the compact-open C"-
topology (see Section |C.2))

In the following, we let Diff" (M) be the group of C"-diffeomorphisms from a C"-manifold M to
itself for r € Ny U {oo}. To shorten the notation, we write Diff (M) := Diff > (M) if M is a smooth
manifold.
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1.2. Orbifolds I: Moerdijk’s definition

In this section, we introduce orbifolds as in the works of Moerdijk et al. Our exposition follows [51],
but we slightly change the definition of orbifold charts (see Remark [1.2.4)).

1.2.1 Definition (Orbifold charts) Let @ be a topological space. An orbifold chart of dimension
n > 0 is a triple (U, G, ¢), where U is a connected smooth paracompact n-dimensional manifold
without boundary, G is a finite subgroup of Diff(U) and ¢: U — @ is an open map which factors
to a homeomorphism on the orbit space U/G — ¢(U).

If (U,G, ) is an orbifold chart on @ and S an open G-stable subset of U, then {g|s: g € Gs}
is a group isomorphic to Gg by Newman’s Theorem [B:2.1] Thus by abuse of notation the triple
(S,Gs, d|s) is again an orbifold chart called the restriction of (U, G, ¢) on S.

Let (V, H,1) be another orbifold chart on Q. An embedding \: (V,H,¢) — (U,G, ) of orbifold
charts is a topological embedding A: V' — U which is an étale map® that satisfies ¢ o A = ).

We say that two orbifold charts (U, G, ¢) and (V, H,v) of dimension n on @ are compatible if for
any z € ¢(U) N(V), there exist an orbifold chart (W, K,0) on @ with z € (W) and embeddings
between orbifold charts A: (W, K,6) — (U,G, ¢) and pu: (W, K,0) — (V, H,v).

1.2.2 Proposition (|51, Proposition 2.12]) Let Q be a topological space.

(a) For any embedding \: (V,H,¢¥) — (U, G, ¢) between orbifold charts on Q, the image \(V') is
a G-stable open subset of U, and there is a unique isomorphism \: H — Gy < G for which
A(hz) = M(h)A(z).

(b) The composition of two embeddings between orbifold charts is an embedding between orbifold
charts.

(¢) For any orbifold chart (U,G,¢), any diffeomorphism g € G is an embedding of (U, G, @) into
itself, and g(g') = 99’9~ ".

(d) If \,p: (V,H,¢) = (U, G, ¢) are two embeddings between the same orbifold charts, there exists
a unique g € G with A = g o p.

Proof. The proof for |51, Proposition 2.12| carries over verbatim to finite dimensional connected
manifolds without boundary. O

1.2.3 Definition (Orbifolds I) An orbifold atlas of dimension n for a topological space @ is a set
of pairwise compatible orbifold charts
U := {(U“GZ,(;SZ) |’L S I}

of dimension n on @ such that (J;.; ¢:(Us) = Q. Two orbifold atlases of @ are equivalent if their
union is an orbifold atlas. An orbifold of dimension n is a pair (Q,U), where @ is a paracompact
Hausdorff topological space and U is an equivalence class of orbifold atlases of dimension n on Q.

3i.e. for each p in the domain of ), the tangent map T, is an isomorphism. On occasion these maps will also be
called local diffeomorphisms.
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1.2.4 Remark The definition of an orbifold does not exactly follow the exposition in [51]. We have
to mention two changes:

(a) For an orbifold chart (U, G, 7) as defined in this section, the chart domain U is a finite di-
mensional connected and paracompact manifold. In |[51] one is only allowed to choose U as an
open subset of R". However, every orbifold in our sense uniquely determines one in the sense
of [51]. This fact follows from Lemma Let (U,G, ) be an orbifold chart as in Defi-
nition [1.2.1] Then Lemma allows the construction of an orbifold chart (V,, Gy, ,7|v,)
for z € U, where V,, is diffeomorphic to an open subset of R"™. Hence the orbifolds defined in
Definition admit an orbifold atlas whose chart domains are open subsets of R™.

(b) Contrary to the treatment in [51], we do not require the topological space @ to be second
countable. We do not need second countability of @) for most of this work, whence we chose
to omit it here (also compare Remark .

1.3. Orbifolds Il: Haefliger’s definition

We recall an equivalent definition of orbifolds as outlined in [34]:

1.3.1 Definition (Orbifolds II, [34]) Let @ be a paracompact Hausdorff topological space.

(a) Let n be in Ng. A (reduced) orbifold chart of dimension n on @ is a triple (V, G, ¢) where V
is a connected paracompact n-dimensional manifold without boundary, G is a finite subgroup
of Diff(V'), and ¢: V — @ is a map with open image ¢(V) that induces a homeomorphism
from V/G to ¢(V). In this case, (V, G, ¢) is said to uniformize o(V).

(b) Two reduced orbifold charts (V, G, ), (W, H,) on @ are called compatible if for each pair
(z,y) € V x W with ¢(x) = ¢(y) there are open connected neighborhoods V, of z and W,
of y and a C*°-diffeomorphism h: V, — W, such that ¢ o h = ¢|y,. The map h is called a
change of charts.

(¢) A reduced orbifold atlas of dimension n on @ is a set of pairwise compatible reduced orbifold
charts

V:={(V;,Gi,pi)|i € I}
of dimension n on @ such that (J,.; ¢:(Vi) = Q.

(d) Two reduced orbifold atlases are equivalent if their union is a reduced orbifold atlas.

(e) A reduced orbifold structure of dimension n on @ is an equivalence class of reduced orbifold
atlases of dimension n on Q.

(f) A reduced orbifold of dimension n is a pair (Q,U) where U is a reduced orbifold structure of
dimension n on Q.

The Definition is equivalent to the Definition i.e. they yield the same equivalence
classes of orbifold atlases. The compatibility conditions of both definitions coincide by [51, Propo-
sition 2.13]. The proof outlined in |51] carries over without any changes to our setting.
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1.3.2 Remark (a) The term “reduced” refers to the requirement that for each reduced orbifold
chart (V,G,¢) in U the group G is a subgroup of Diff (V). Hence the action of G on V is
effective. We will only consider reduced orbifolds (and maps between them). Thus to shorten
our notation, we will drop the term “reduced” in the remainder of the paper. A “reduced”
orbifold will thus simply be called an orbifold.

(b) We will occasionally refer to the dimension of an orbifold as defined in as the orbifold
dimension. We shall prove later that, as in the case of a manifold, the orbifold dimension is
an invariant of the orbifold. More explicitly two orbifolds can only be diffeomorphic to each
other if they have the same orbifold dimension. We postpone these considerations until we are
ready to define morphisms of orbifolds.

(¢) In general, maps of orbifolds (see Appendix only admit local lifts in certain orbifold at-
lases contained in the equivalence class U of the orbifold (Q,U). Therefore we introduce the
convention: An atlas )V contained in U will be called a representative of U.

(d) Notice that U is only an equivalence class of orbifold atlases. We have not defined a maximal
atlas, since the definition of orbifold charts would force the maximal atlas to be a proper
class (and not a set). We avoid the set theoretic problems incurred by such a construction.
However, by abuse of notation we will sometimes write (U, G,7) € U to denote an orbifold
chart compatible with the given orbifold structure U.

For the rest of this paper we shall always assume that the orbifolds considered are defined as
in Definition [[.3.I] As we have already remarked, the definition of orbifolds given in the previous
section is equivalent to our working definition of an orbifold. In particular the changes of orbifold
charts restrict locally to open embeddings in the sense of Proposition[I.2.:2} On occasion it will turn
out to be advantageous to work with embeddings of orbifold charts, as Proposition [[.2.2] is then
available.

1.4. The topology of the base space of an orbifold

In this section, we compile several facts about orbifolds which are well known in the literature
(cf. [1h[7,/15,/51]). We give proofs for the reader’s convenience.

1.4.1 Lemma For any orbifold (Q,U), the family of open subsets {V =7(V) ’ (V,G,n) € L{} is
a base for the topology on Q.

Proof. Let p € Q and U C @ an open neighborhood of p. Choose an orbifold chart (V,G, ) € U
such that p € V= m(V). The map 7 is given by the composition of the quotient map onto the orbit
space with a homeomorphism onto an open set. Hence Lemma shows that 7 is continuous
and open. The set 7~1(U) is an open subset of V containing some element p € 7=1(p). By Lemma
we can choose a Gp-invariant open set S such that p € S C 7= 1(U) and (S, Gp,7|s) is an
orbifold chart. By construction, p € 7(S) C U, proving the lemma. O
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To analyse the structure of the base space we need a well known fact from topology:

1.4.2 Proposition If X is a Hausdorff space that is locally compact and paracompact, then each
component of X is o-compact. If, in addition, X is locally metrizable, then X is metrizable and
every component has a countable basis of the topology.

Proof. By |20, XI. Theorem 7.3| each component is o-compact. The space X is paracompact, locally
metrizable and Hausdorff, hence we may choose a locally finite closed cover consisting of metrizable
subspaces. Then X is metrizable by |21, Theorem 4.4.19]). Each connected component C is Lindel6f
by [20, XI. Theorem 7.2]. We deduce from |21} Corollary 4.1.16] that C' is second countable. O

1.4.3 Proposition If (Q,U) is an orbifold, then the topological space Q has the following properties:
Q is a locally compact Hausdorff space.

(a)
(b) Q is connected if and only if Q is path connected.
(¢) @ is metrizable.

(d) Every connected component C' of Q is open, o-compact and second countable.

We remark that Q is not necessarily second countable.

Proof. (a) The space @ is Hausdorff by definition of an orbifold. Clearly being a locally compact
space is a local condition, i.e. may be checked within 7(U), where (U, G, ) € U is an arbitrary
orbifold chart. Lemmashows that 7(U) is a locally compact Hausdorff space, since every
finite dimensional Hausdorff manifold U is such a space.

(b) The quotient map onto the orbit space is continuous and open (Lemma and manifolds
are locally path-connected. Thus @ is locally path connected, whence the assertion follows
from general topology [20, V. Theorem 5.5].

(c¢) For every chart (U,G,n) € U the group G C Diff(U) is finite. The manifold U is locally
metrizable (since every chart is a homeomorphism) and a paracompact locally compact Haus-
dorff space. By Proposition [1.4.2] U is metrizable. The quotient map onto an orbit space is a
closed-and-open map by Lemma Since metrizability is an invariant of closed-and-open
maps by [21, Theorem 4.2.13], the space @ is locally metrizable. Summing up, @ is a locally
metrizable, locally compact and paracompact Hausdorff space. Again by Proposition [I.4.2] the
metrizability of @Q follows.

(d) The space @ is locally path-connected, which implies the openness of C' by |20, V. 5.4]. We
already know that @ is a Hausdorff space which is paracompact and locally compact. Every
component of @ is then o-compact and second countable by Proposition

To prove the last remark, consider the following counterexample: Let (Q,U) be an arbitrary
orbifold modeled on a topological space Q # () and I be a set with cardinality at least X;. Construct
the orbifold (Qr,Ur) by defining the topological space Qr := [[;c; @ as the disjoint union of copies
of @ and the orbifold charts on every copy of @) as copies of charts in /. Then (Q,Ur) is not second
countable, even if @ is. O
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1.5. Local groups and the singular locus

Let (Q,U) be an orbifold of dimension n, (U, G,7) € U an orbifold chart of Q and z € U. Let z :=
m(x). We deduce from |51, Lemma 2.10] that the differential at 2 induces a faithful representation
G, — T,U,g — T,g and hence a faithful representation of G, in Gl(n,R) (cf. also Lemma .
The corresponding finite subgroup of Gl(n,R) is unique up to conjugation in Gl(n,R) (induced by
the change of chart maps). This conjugacy class will be called TG,. Since Gy, = gG,g~" for any
g € G, we have TG, = TGyy. Let X: (V, H,v) — (U,G,m) be an embedding of orbifold charts and
y € V with A(y) =z and Ao h = A(h) o A for h € H, entailing that A(H,) = G, by Proposition
22 and
TG, = T, \TH,(T,\) "

Thus the conjugacy class of TG, depends only on the point z and not on the choice of the orbifold
chart (U,G,7) on Q or on x. Hence the following definition is justified.

1.5.1 Definition (local group) Let (Q,U) be an orbifold. For every z € @, by the above there is
a group I',(Q) C Gl(n,R) which is unique up to conjugation in Gl(n,R). We call I",(Q) the local
group of z. In the literature I',(Q) is also called the isotropy group of z. We avoid this and reserve
“isotropy group” for the subgroup of a group acting on a manifold, which fixes a given point.

The singularities, i.e. points with non-trivial local group, generate a structure which distinguishes
a non-trivial orbifold from a manifold. We claimed that orbifolds are manifolds with “mild singulari-
ties”. To emphasize this point we shall investigate the singular locus (i.e. the set of all singularities).
As a consequence of Newman’s Theorem [B:2.1] the singular locus is a nowhere dense closed subset
of the base space of an orbifold. In other words, the topological base space of an orbifold contains
an open and dense manifold. A proof for this result is given in the rest of this section:

1.5.2 Definition (Singular locus) Let (Q,U) be an orbifold. The singular locus of Q is the subset

Yo ={zeQ|I(Q) # {1}}.

In a chart (U, G, ), one has Xg N7 (U) = n(X¢), where X is the set of points in U with non trivial
isotropy subgroup with respect to the action of G. An element x € @ is called a singular point if
x € Y and z is called non-singular if z & Xq.

Since there are different orbifold structures on the same topological space, occasionally we have to
indicate which one is meant. In these cases we shall write I', (Q,U) resp. ¥ (g, to avoid confusion.

1.5.3 Proposition (Newman, Thurston) The singular locus 3¢ of an orbifold (Q,U) is a closed
set with empty interior.

Proof. Let (U, G, m) be any chart at some point p € (). By definition o N7(U) is the image of X¢.
As G C Diff(U) is finite, we deduce from Newman’s Theorem that the set Ay of non-singular



20 1 PRELIMINARIES AND NOTATION

points in U is open and dense. Lemma[B.1.4] shows that the quotient map 7 onto the orbit space is

open, whence
So=0\ U =)
(UG m)eu
is a closed set. Since Ny is dense in U, m(Ny) is dense in 7(U). Then (Q \ o) N7(U) is dense in

7 (U) and since the open sets w(U) cover @ (for some atlas), @ \ X¢ is dense in Q. In particular
(X¢g)° = 0 holds. O

1.6. Orbifold atlases with special properties

In this section, we construct special orbifold atlases. These atlases are needed later on, to construct
charts for the diffeomorphism group of an orbifold.

1.6.1 Definition Let (Q,U) be an orbifold and V a representative of #. We say that another
representative W of U refines V (or is a refinement of the atlas V) if for every chart (W, G, ) € W,
there is a chart (V, H,7) € V and an open embedding of orbifold charts Aw v : (W, G,¢) — (V, H, 7).
Given another representative V' of U, we say that W is a common refinement of V and V', if W
refines ¥V and W refines V'.

1.6.2 Lemma For an orbifold (Q,U) and two arbitrary representatives V, V' of U, there exists a
common refinement W of V and V'.

Proof. Since the union W := YV UV’ is an orbifold atlas for (Q,U), i.e. all charts are pairwise
compatible, we may choose for each x € @ an orbifold chart whose image contains = which and
embedds into a chart in V and a chart in V' (cf. Deﬁnition. The collection of all charts chosen
this way is an atlas, which is a common refinement of V and V. O

1.6.3 Lemma Let (Q,U) be an orbifold. For any representative V of U, consider the classes of
orbifold charts

UeV:={UH,¢)eU|INyv: (UH,¢) — (V,G,1) embedding, for some (V,G, ) € V}
Ucy:= {(U7H7¢) eUEV | v (U)CVis compact}.

Then the sets {¢(U) | (U, H,¢p) e U € V} and {¢p(U) | (U, H,p) € U T V} of open sets are bases for
the topology on Q.
Note that the compactness of Ay,v(U) in V implies that ¢(U) C (V).

Proof. Consider an arbitrary open set 2 C ) and some point x € 2. The set )V is an atlas and thus,
there is some chart (V, G, ) € V with € Im ), say x = ¢(y). Because V is locally compact, y has
a compact neighborhood K in V, contained in the open set ¢~1(Q). By Lemma K contains
an G-stable open neighborhood W of y in V. Then (W, Gw,¢|w) € U C V (because A,y can be
chosen as the inclusion map and Im¥|y C €. O
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1.6.4 Definition Let (Q,U) be an orbifold. An orbifold atlas V := {(V;, G;,m;) |i € I} of (Q,U) is
called locally finite orbifold atlas if the family (m;(V;)):er is a locally finite family of open sets.*

1.6.5 Lemma Let (Q,U) be an orbifold. Then the following holds:

(a) There is a locally finite representative V of U.
(b) For each representative W of U, there is a locally finite representative W' which refines W.
(¢) The refinement W' in (b) may be chosen with the following property: For each (U,G,v) € W/,

there are (V, H, ) € W and an open embedding \y,yv of orbifold charts such that A\y,v(U) CV
is a compact set, whence U C V. (using notation as in Lemma

Taking identifications, without loss of generality Ay v is just the canonical inclusion (of sets) and G
is a subgroup of H.

Proof. (a) The topological space @ is a locally compact Hausdorff space. For each ¢ € @Q pick a
compact neighborhood U, of q. Then (qu )geq is an open cover of (). By paracompactness
of @, there is a locally finite open refinement (W;);cs of (Ug)qeq- Note that every W is
compact. By [21, Lemma 5.1.6], there exists a shrinking (O;);es of (W;);jes that is an open
cover of @ such that O; C W; for each j € J. The uniformized subsets of @ form a basis of the
topology by Lemma Thus for each j € J, the compact set @ is covered by finitely many
uniformized sets which are contained in Wj, say O; C UZ]: 1 Bj k. Since the family (W;), e is
locally finite,

{Bj7k |] el k= 1,...,nj}
is a locally finite open covering of @ by uniformized subsets. The corresponding atlas V is
thus locally finite.

(b) and (c) We may argue as in (a), but replace the set of all uniformized subsets of @ by the set
of all uniformized subsets, which are images of i € W (resp. images of U T W for (c)). Since
Lemma [1.6.3| assures that these sets of images are bases of the topology, no further changes in
the proof are needed. For the last statement identify U and Ay (U) resp. G with A(G). U

1.6.6 Lemma Let (Q,U) be an orbifold and W a locally finite orbifold atlas such that for each
(V,H,p) € W the uniformized subset o(V') is relatively compact. Consider a refinement W' as in
Lemma (c) indexed by a set I. There exists a map o: I — W, which associates to each i a
chart (Va(iy, Ha(i), Pagiy) into which (Us, Gy,1;) embeds (as an orbifold chart) via an inclusion of
sets Uy — Vi) Furthermore, Iy := a~ YV, H, ) C I is finite for each (V,H,p) € W.

Proof. Lemma m (c) ensures that for each ¢ € I, there is at least one chart in W such that
(Ui, Gi,v;) embeds into this chart via the inclusion of sets. Choose a chart (V,(;), Ha(i), @ai)) such
that U; C V) is compact, G; C Hy ;) and 1; = @q(i)|u, holds. We obtain a map a: I — W with
the desired properties. For each (V, H,p) € W, the uniformized subset p(V) is relatively compact.
Since W' is locally finite, there is only a finite subset of I such that ¥;(U;) N (V) # 0. Therefore
Iy = a=Y(V, H, ¢) is finite for each (V, H, ) € W. O

4We assume here that the atlas is “indexed by I” in the sense that the map I — V), — (Vi, Gi, ;) is injective.
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Later on an orbifold atlas will be needed which is adapted to a certain closed and discrete set. To
construct such an atlas we need to deal with some technical difficulties in the following Lemma:

1.6.7 Lemma Let X be a paracompact topological space, D C X be a closed discrete subset (i.e. X
induces the discrete topology on D) Then there exist disjoint open neighborhoods 2, C X for x € D
such that (Qz)zep is locally finite.

Proof. For x € D let V, be an open neighborhood of x such that V, N D = {z}. Then V :=
{Va|z € D} U {X \ D} is an open cover of X and there is a locally finite open cover (W;);cs
subordinate to V. Let J' := {j € J|DNW; # 0}. Then (W;);ec; is an open cover of D and for
each j € J', there is x; € D with W; C V,.. Since V;; N D = {z;}, x; is uniquely determined.
Since D C ;e Wy, the map J' — D,j +— z; is surjective. For x € D choose j(z) € J' with
Tjpy = x. Then (Wj,))zep is a locally finite open cover of D. Since every paracompact space
is normal by [21, Theorem 5.1.5.], the space X is a regular topological space. Hence there is a
neighborhood C; C Wj(,) which is closed in X. The locally finite union A, := UyeD\{w} Cy of
closed sets is closed and = ¢ A, since z ¢ V,, O C,. Define Q, := CJ \ A,. Then (Q;).ep has the
desired properties. [

1.6.8 Proposition Let (Q,U) be an orbifold, V € U an orbifold atlas and D a closed discrete subset
of Q. There exist locally finite atlases A = {(U;, G, ;)i € I} and B={(W,;,Hj,p;)|j€J} €U
such that all of the following conditions are satisfied:

(a) the charts in A, B are relatively compact, i.e. if (U, G,v) is such a chart, then the set 1 (U) is

a compact subset of Q,

(b) the atlas A refines B and B refines V as in Lemma[1.6.5 (c),

(c) For z € D, there are unique i, € I and j, € J with z € ¢;(V;) and z € ¢;(U;), respectively,

(d) If Q is o-compact, then the sets I and J are countable.

Proof. It suffices to construct B with the asserted properties (to get A, we apply the same con-
struction with B instead of V). The space @ is a metrizable locally compact space by Proposition
Using Lemma we may choose disjoint open neighborhoods 2, C @ for z € D such
that (2,).ep is locally finite.As @ is locally compact, we may choose for each z € D a compact
neighborhood L; , C Q,. By Lemma [I.6.3] for each z there is a relatively compact orbifold chart
(Uz,G=p2) € U TV such that z € . (U.) C ¢.(U,) € LS ,. Furthermore, the inclusion of sets
induces an embedding of orbifold charts. Again by local compactness, we may choose for each z a
compact neighborhoods z € La , C ¢, (U,).

The set Ly, is contained in L; ,. Since each L; . is contained in 2, and these sets form a lo-
cally finite family, the family (Lo ).ep is locally finite. The set L := UZGD Lo . is thus closed
by |21}, Corollary 1.1.12] and we may consider the open subset Q' := Q \ L. Now Q' is locally com-
pact and as @ is metrizable by Proposition the subspace Q' is paracompact. The images of the
class R:={(V,H,m) eU C V|#(V) C Q'} form a basis for the topology on Q’. Using an argument
analogous to Lemmal[1.6.5] (c), there is a locally finite orbifold atlas B’ = {(W;, H;,¢;) |j € J'} C R
for @’ such that each chart (W, H, @) € B’ is relatively compact and embeds into some member of V
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as in Lemma m (c). Notice that by construction none of the charts in B’ contain elements of D.
For each z € D, theset L, :==L; ,NQ \ v,(U,) C Q' is compact. The atlas B’ is locally finite and
thus there are finite subsets J, C J’ such that ¢;(W;) N L, # 0 iff j € J.. Assume that P is the
image of an orbifold chart in B’ which is contained in

0=Q\J L= (U ¢Z<Uz>>u<Q\ U Ll,z>.

zeD zeD zeD

As each Ly , is a closed set and the family (L1 ,).ep is locally finite, the union of the sets Lq , is
closed by |21, Corollary 1.1.12]. Therefore O is an open set and by construction

P = (U soz(Uz)mP> U (Pﬂ (Q\ U Ll,z>>

is a disjoint union of two open sets. As orbifold charts are connected, we deduce that their images
are located as follows:

Either the image is contained in Q \ J,cp L1,z, or it intersects at least one of the L.,z € D, or it
is contained in | J, ., ¥.(U.). Discarding the charts whose image is contained in (J, . . (U.), we
obtain the subset

J" = UJ;u{jeJ’

zeD

(pj(Wj) n U Ll’z = @}

z€D

of J' such that the family B” := {(W;, Hj,¢;)|j € J"} covers Q\ U,cp ¥=(Uz).

Set J := J” ][ D. The set indexes the atlas B := B” U{(W,, H,,¢.) |z € D}. By construction, B is
a refinement of V with the properties of Lemma [1.6.5] (c).

It remains to prove that B is locally finite: As B”’ is a locally finite atlas, it suffices to check
the following condition: For each z € D, only finitely many charts in B” intersect the image of
(U;, Gz, ). For each z € D, the charts indexed by z are contained in L; , and by construction
only a finite number of charts in B” intersect L, ,. Thus at most finitely many images of charts in
B intersect a given L7 ,,z € D, whence A and B are locally finite.

If Q is o-compact, then @ is a countable union of compact sets, each of which meets Im ¢; for only
finitely many j € J (as B is locally finite). Hence J is countable. Likewise the index set I of A is
countable. O

The following lemma will allow us to control the local behavior of sections in the tangent orbifold.

1.6.9 Lemma Let (Q,U) be an orbifold and W = {(V;, H;, ;) |i € I} be a locally finite orbifold
atlas. For each i € I, let K; C V; be a compact subset. Then, for each i € I, there is an open cover
{Zf}1<k<n/ of K; CV; such that

(a) the sets Zf are H;-stable fori e I, 1<k <mn;,
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(b) for each j € I with ZF N K; N gai_lcpj(Kj) % 0 there is an embedding of orbifold charts
Afj: Zf —Vj
(¢) The cover {Zf}1<k<n‘ may be chosen such that for each i € 1,1 < k < N; there is a H;-stable

set open set Zf such that ?f s a compact set, contained in Zf and each embedding )\fj is the

restriction of an embedding on Zf

Proof. The set K; := ¢;(K; ) is compact and since W is locally finite, there is a finite subset F; of
W such that K; N (V) # 0 if and only if (V, H,¢) € F;. In particular, there is a finite set J; such
that KZ] = K; N ©;(K;) # 0 if and only if j € J;. The compact sets KZJ are contained in V;. The
set

Ky =K N, (Ky) = KN o (K5) = (i) (05 (K5)). (1.6.1)

is closed in K; and hence compact. For each j € J;, the set K;; is contained in ¢; '¢;(V;). Thus
each K;; may be covered with open H;-stable subsets AZ’J of V; such that there is an open embedding
of orbifold charts Aij A, — V;. Since K;; is compact, for each j there is a finite family (Agj)lggmj
which covers K;;. As J; is finite, we obtain for each x € K; an open neighborhood

N AN (v U Ky

z€AY jeSadK,;

Choose an H;-stable connected open neighborhood z € Z* C N,. Each y € Z* is contained in Kj;
only if x is contained in K;; as well. For each j € J; such that € K;;, the open embeddings defined
on AJ; restrict to an open embedding of orbifold charts on Z*. Since K; is compact we may select a
finite open cover {Z* |z, € K;, 1 <k < n} of K;. Observe that Z** ﬂKiﬂcp;1¢j(Kj) = Z"NK;j;
holds by . If this intersection is non-empty, we derive z;, € K;;. By construction, there is an
embedding of orbifold charts on Z** which satisfies (b). Hence the family (Z7*)i<k<, satisfies all
properties of assertion (b).

(c) follows directly from (b) and local compactness of each V;: Before selecting a finite cover by some
of the Z%, we set Z% := Z® and choose for each z a compact neighborhood z € C, C Z*. The H;-
stable sets form a base of the topology and we may select a new H;-stable subset z € Z, C Cy C AR

By compactness of K;, we may select a finite covering from the family (Z,).cx, which satisfies
(c). O
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1.7. Examples of orbifolds

This section collects well known simple examples from the literature to illustrate the definition of
an orbifold. We also fix some terminology for later use.

1.7.1 Example Every paracompact smooth finite dimensional manifold M without boundary is an
orbifold. An orbifold atlas for M is given by the following set of charts:

{(C,{id¢},id¢) | C € M a connected component}
where by abuse of notation idg: C' — M is the inclusion map. We call this orbifold structure

induced on the manifold M the trivial orbifold structure.

1.7.2 Example (A mirror in R? [58, 13.1.1]) Consider R? together with the action of the linear
diffeomorphism v: R? — R?, (x,y) — (—x,y). The map  fixes the points (0,%),y € R.
An orbifold structure is induced on the quotient R?/(y) ~ H := {(z,y) € R? | z>0}:

Figure 1: A mirror in R%2. The boundary of the half plane contains the singular points, while points
outside the boundary are non-singular points.

This example can be generalized in the following way to manifold with boundary (cf. |58} 13.2.2]):

Let M be a (smooth) manifold with boundary M. Glue together two copies of M along OM to
obtain the double dM of M. Recall that by using a collar around the boundary (cf. [38, Chapter 4,
6.]) the double may be endowed with the unique structure of a smooth manifold without boundary
(see [54, Definition 5.10 and Theorem 6.3] for a full account on the construction). Again the diffeo-
morphism which interchanges both halves of the double generates a finite group I'. By construction
the orbifold dM /T is isomorphic to M. Hence every manifold with boundary is in a natural way an
orbifold, whose singular locus is the boundary of the manifold.

1.7.3 Example (Good orbifolds) Let M be a smooth finite dimensional paracompact manifold and
I’ C Diff(M) be a subgroup. Assume that the canonical action of I on M is proper, i.e. there exists
a metric d on M such that I' acts by diffeomorphisms and for each x € M there exists r > 0 such
that

{7 €T |7.Blx) N B(x) # 0}
is finite. Then the orbit space M/T" may be endowed with an orbifold structure induced by the
group action of I' on M (cf. |13} II1.G1.3] for details). An orbifold which arises in this way is called
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developable or good orbifold.

A particularly attractive situation arises if M is a connected, paracompact manifold and I" is finite.
Then the good orbifold obtained from these data possesses an atlas with one chart, i.e. (M,T,),
where m: M — M /T is the canonical quotient map. In Examplewe compute orbifold structures
for M = S?. Several of these structures will be good orbifolds.

1.7.4 Example (Symmetric products |1, Example 1.13]) Suppose that M is a smooth finite di-
mensional, paracompact manifold. Consider the symmetric product X,, := M™/S,,, where M™ is
the n—fold Cartesian product of M and S, the symmetric group of n letters which acts on M"™
by permutation of coordinates. Tuples of points have non trivial isotropy groups if they contain a
number of repetitions in their coordinates. The diagonal of M™ is fixed by each element of the finite
group S,.

In the next example we consider two orbifold charts on the same topological space which induce
non-diffeomorphic orbifolds.

1.7.5 Example (|56, Example 2.2]) Let @ := [0,1[ be the topological space with the induced
topology of R. The map f: Q — Q,z + x? is a homeomorphism. Let p: R — R be the reflection
in 0. Consider the map p: | —1,1[— @,z — |z|. Then p induces a homeomorphism | —1,1[/{p) and
we derive orbifold charts V; := (] — 1,1[, (p),p) and V5 := (] — 1, 1[, {p), f o p).

However, these orbifold charts are not compatible. Assume to the contrary that they are compatible.
Since f o p(0) = 0 = p(0) there exist open connected neighborhoods Uy, Uz of 0 in | — 1,1] and a
diffeomorphism h: Uy — Us such that f o p = po h. This equation leads to h(z) € {i |a:|} By

continuity we have the following choices for h:

>
—_
8
~

|
%
>
no
—~
=

Il

|
B

Since none of the above is a differentiable, the two charts are not compatible.

1.7.6 Example (Orbifold structures on the 2-sphere) The following examples are all modeled on
the 2-sphere S?, i.e. the topological space of each of the orbifolds is the 2-sphere with the topology
turning it into a smooth manifold. Examples of this type first appeared in [58]. We give a detailed
construction based on the exposition in [34]:

Let N be the north pole and S the south pole of S?. Endow the sphere with the usual topology
turning S? into a smooth manifold. Define charts around N and S, respectively, as follows:

Let X; = Bﬂ§jr(0), 1 = 1,2 be the open disc of radius %w centered at 0 in R?. We describe points
4

in polar coordinates (r,6),0 < r < %ﬂ', 0 < 0 < 27. Recall that the geodesics connecting N and
S on S? are the great circles connecting N and S. To construct the charts pick a great circle C
connecting N and S. Every great circle connecting N and S can uniquely be identified by an angle of
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rotation 0 < § < 27. Furthermore, each z on S?\ {S} is uniquely determined by a set of coordinates
(r,0), 0 <r <m0 <6 < 2xr. Here r is the length of the geodesic segment between = and N.
Analogously we may identify each point x in §?\ {N} by a pair (7 —7,0),0 <r < 7,0 < 0 < 2,
where ™ — r is the length of the geodesic segment between x and N. We obtain (inverses of ) charts

cos) —sinf O sinr
P1: X, = 8% (r,0)— [ sinf cosf 0 0 ,
0 0 1 cosT
cos) —sinf O sinr
Po: Xo — S, (r,0) — | sinf cosf 0 0
0 0 1 —cosr

for the manifold S?. These charts turn S? into a smooth compact manifold in the usual way.

We construct an orbifold structure on S?: Let n;, € N for 4 = 1,2. Consider the subgroup
G; C Diff(X;) which corresponds to a rotation o; of order n; on X; and X5. The map p;: X; —
X, (rcos@,rsinf) — (rcos(n;0),rsin(n,;0)) identifies two points if and only if they are in the same
G, orbit.

Consider the quotient map X; — X;/G; and canonically identify the orbit space with the “cone”

0<9<27T}

U

C; = {(r, 0) € X;

endowed with the quotient topology with respect to ¢;: X; — Cj, (r,6) — (r,6 mod 2X). A
computation shows that ¢;: C; — X;,(r,0) — (r,n;0) is a homeomorphism of the topollogical
spaces C; and X;. Moreover, p; factors through the quotient X;/G; ~ C;. We obtain orbifold
charts (X;,Gi,q:), @ € {1,2} with ¢; := ¢; o p;. A computation shows that A4;; := qi_l(Imqj) =
{(r,0) € Xi| 5 <r <27} is an open annulus. Furthermore, we obtain for each (r,6) € A;; a neigh-
borhood €2, ¢ such that the mapping

Tij|Q7‘g = (Qi|qj(QT’6))71 ©4qj: QT,9 - Xi; (rﬂe) = (71— -7 & : 0) ) 17&] € {172}
, n;

T

makes sense. The maps 7;;|q, , are local diffeomorphisms, which commute with the orbifold charts,
i.e. ¢iTij = qjldomr,, @ # J € {1,2} holds. Locally the restrictions of the maps 7;; thus yield change
of chart morphisms. Since we obtain change of charts for each x € A;;, the orbifold charts are
compatible and induce the structure

R

S? = (S {(Xi,Gi,q5) | i = 1,2})

(n1.m2) "=

2

(n1.my) coincides with S?

of a compact orbifold on S?. As a topological space, the base space of S
with the usual topology. We distinguish the following cases:

niy,ne = 1 In this case we have ¢; = v¢;, i = 1,2 and thus S%1 1 is just the C°°-manifold S2. As a
connected trivial orbifold, S? is a good orbifold.
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n1 > 1,no = 1: We obtain a cone-shaped singularity of order n; in N, while S is a regular point.
The orbifold S%nl 1 is called Z,, -teardrop. It is an example of a non developable orbifold. Indeed

the orbifold S%nh ) is developable (good) if and only if n; = ng holds (see [13, Ch. III.G, Example
1.4 (1)]).

ngo

ni # ng, ni,ng > 11 We obtain an orbifold with two cone-shaped singularities of order n; respec-
tively na. An orbifold of this kind is called Z,,;Z,,-football. As already mentioned, this orbifold is
non-developable.

ni,ny =n > 1:  Consider an action of a finite group of diffeomorphisms I' C Diff (S?) generated by
a rotation of order n on S? which fixes north and south pole. The group I' acts smoothly, effectively
and almost free on S2. Hence the orbit space S?/I" is an orbifold using the global orbifold chart
7: S? — S?/T. By construction the orbifold structure of this orbifold agrees with S%n_n). It is an
example of a good orbifold.

On the level of topological spaces all of these orbifolds coincide. However the additional structure
of cone-shaped singularities on the space is illustrated in the following picture:

Figure 2: Orbifold structures on S?: (a) the trivial orbifold 8?1,1)7
(b) the teardrop S? and (c) the football S?

(n1,1) (n1,m2)"

i.e. the manifold S?,



2. Maps of Orbifolds

In this thesis, we use maps of orbifolds as defined in [56]. For the reader’s convenience, we repeat
the definitions and constructions of |56 in Appendix In this section, we obtain a characterization
of orbifold diffeomorphisms. Then several tools and constructions for later chapters (such as open
suborbifolds and orbifold partitions of unity) are provided.

2.1. Orbifold diffeomorphisms

Throughout this section, let (Q;,U;), ¢ € {1,2} be arbitrary orbifolds. By definition, diffeomor-
phisms of orbifolds are the isomorphisms in the category of reduced orbifolds:

2.1.1 Definition A morphism of orbifolds [f] € Orb ((Q1,U1), (Q2,Us)) is called an orbifold dif-
feomorphism if there is [§] € Orb((Q2,Uz), (Q1,U1)) such that

id(Ql,inl) = [g] © [f] and id(QQ,Z/lQ) = [f] © [g}

In this case, we also write [f]~ := [§]. Let Diffom, ((Q1,U), (Q2,Us)) be the set of orbifold diffeo-
morphisms contained in Orb((Q1,U1), (Q2,Us)).

To shorten our notation, the orbifold diffeomorphism group Diff o, ((Q,U), (Q,U)) will be denoted
by Diffor, (Q,U).

We will now characterize the lifts of orbifold diffeomorphisms. It will turn out that an orbifold
diffeomorphism is completely determined by properties of its lifts.

2.1.2 Proposition Let [f] € Orb((Q1,U1), (Q2,Us)) be a diffeomorphism of orbifolds. Fach rep-
resentative f = (f,{fi},cr, [Py, vs]) satisfies the following properties:

(a) the map f is a homeomorphism and
(b) every local lift f; of f is a local diffeomorphism.

Proof. We first notice that since [f] o [f]* and [f]~! o [f] are the respective identity morphisms,
the maps f: Q1 — Q2 and f~1: Q2 — Q1 (where f~! is the underlying continuous map of [f]~1)
are homeomorphisms since composition yields the identity on Q2 and Q1, respectively. Hence (a) is
true.

Two representatives of the class | f} are related via lifts of the identity. Lifts of such mappings

are local diffeomorphisms, whence locally lifts of different representatives of [f] are related via

diffeomorphisms to each other. Thus the definition of [f] shows that it suffices to prove assertion
(b) for any representative f of [f].
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Choose and fix representatives V = {(V;,G;,m;)|i € I} of Uy, U = {(U;,Hj,¥;)|j € J} of Us
and W = {(Wy, L, ¢x) | k € K} of Uy such that the maps [f] and [f]~! possess representatives
f € Orb(V,U) and § € Orb(U, W), respectively. Let a: I — J and 8: J — K be the maps such
that the mappings f;: Vi — U,y and g;: U; — Wy are local lifts of f and g, respectively, with
respect to orbifold charts (Vi, Gy, m;) and (Ua(s), Ga(i), Ya(i))s (Uj, Gj,v5) and (W), Gaiys @8, )-
To shorten the notation, set V; := 7;(V) and derive for every ¢ € I a commutative diagram:

fi Ja(i)

Vi Ua(i) Wa(a(iy)
Jm J('«/}am J%a(i)
v flv, ~ fﬁl‘(}a(i) ~

Vi Uai) Wai)

Composition in the lower row induces the identity idg, |y,. We conclude that for each i € I, the
map ga(i) © fi is a local lift of the identity and thus a local diffeomorphism by Proposition W
In particular, each f; is an immersion and hence dim @Q; < dim Q3. An analogous argument shows
dim @2 < dim @7, whence dim @ = dimQ,. Since the orbifold dimensions coincide, dimV; =
dim U, ;) holds. The inverse mapping theorem (see [45, I, §5 Theorem 5.2]) now implies that the
immersion f; is a local diffeomorphism. O

2.1.3 Corollary Two orbifolds (Q;,U;), i € {1,2} which are isomorphic have the same orbifold
dimension.

2.1.4 Definition Consider an orbifold map [f] € Orb ((Q1,l), (Q2,Us)) together with a cor-
responding representative of orbifold maps f = (f,{f:}, [Pr,vy]). We say that [f] preserves lo-
cal groups if f: Q1 — Q2 maps every element p of QQ; onto some element f(p) of Q2 such that
Lp(Q1) = L) (Q2)-

This property may be interpreted as preservation of the local structure of an orbifold. In particular,
one would expect that this is a natural property of orbifold diffeomorphisms. Indeed this is true, as
the following proposition shows:

2.1.5 Proposition Let [f] (Q1,Ur) — (Q2,Uz) be a map of orbifolds, with a representative f=
(fiAfi}icr> (Pg,vy)) such that f is a homeomorphism and each f; is a local diffeomorphism. Then

[f] preserves local groups. In particular, every orbifold diffeomorphism preserves local groups.

Proof. Let p be in Q1. There are orbifold charts (V,G,7) € Uy and (U, H, ) € Us together with a
local lift fy: V — U of f such that p € V, ¢ := f(p) € U and fy is a local diffeomorphism. Fix
some preimage p € 7~ !(p) and denote its image by § := fy(p).

Since G is finite, there is an open connected neighborhood €2 of p in V' such that for every v € Gj,
there is some p, € Py with v|o = f14|n. Thus one obtains

fv(va) = vi(py) fv(z) Vo € Qv €Ty (2.1.1)
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Shrinking € if necessary, we may assume that 2 to be a G-stable open connected subset with
Go = Gp and fy|q is a diffeomorphism onto an open subset of U. By , 1 o fy factors over
/Gy and it is an open map. Hence (Q, Gy, ¢ o f/) is an orbifold chart for Q2. By construction fy
is an embedding of orbifold charts from (2, Gp,% 0 fy) to (U, H, ). Hence (2, Gy, 0 fy) € Us and
thus I'), = Gy = T'; (the groups are even conjugate in Gl(n,R)). O

2.1.6 Remark The proof of Proposition [2.1.5| provides information about an orbifold map: Con-
sider an orbifold map which satisfies the prerequisites of Proposition Let f;: V; — W; be
its local lift with respect to the charts (V;, G;, ;) and (W, H;,4;) and « € V;. Then there is an
arbitrarily small open neighborhood €2, of z in V; with the following properties:

(a) filo, is a diffeomorphism onto an open set Qy, ,y 1= fi (),
(b) the set Q; is G;-stable with G; o, = G 4,

)
)
(c) for each v € G; ;, the restriction 7|, is an element of Py,
(d) the set in(z) is H;-stable with Hi7Qf/_(I) = Hi,f.;(x)-

In particular, (2, Gi.z, Tila,) and (Q, @y, H; f,(2), ’L/)Z"Qf‘(x)) are orbifold charts contained in U; and
in Us,respectively. Locally, we may therefore always construct lifts which are diffeomorphisms.

It is possible to construct a charted orbifold map from a family of local lifts as in the last remark:

2.1.7 Proposition Let (Q;,U;),i € {1,2} be orbifolds, f: Q1 — Q2 a homeomorphism and {f;},c;
be a family of local lifts of f with respect toV € Uy and W € Uy such that each f; is a local diffeomor-
phism. Assume that V satisfies (R2) from Definition . Then there exists a pair (P,v) such that
(f A fiticr > [Pv]) € Orb(V, W) is a representative of an orbifold map in Orb ((Q1,U1), (Q2,Uz)).
The pair (P,v) is unique up to equivalence.

Proof. Let V = {(V;,G;,m;)|i € I} be the representative of U; such that every lift f; is a map
fi: Vi = W; for some (W;, H;, ;) € Us. As f is a homeomorphism, W := {(W;, H;, ;) |i € I} is
an orbifold atlas. Define F':= [[,.; fi. Consider the set

P:={h e ¥(V)|h is a change of charts and F|qomn, F|coar are étale embeddings} .

Clearly P is a quasi-pseudogroup which generates ¥ (V). Construct a map v: P — ¥ (W) as follows:
For A € P there are 4, j € I such that dom A C V; and cod A C V;. The map Fldomx = fildom x 1S @
diffeomorphism onto an open set Uy C W;. We may now define

v(A) == fjAfilg s U — fi(cod \)

The set fj(cod ) is open since f; is a local diffeomorphism. Following the definition of P, v(\)
is a diffeomorphism. We compute ¢;v(\) = 1 fiA(filaomr) ™" = fmiA(fildoma) ™t = fmfi\ai
Ff~Yilu, = vilu,, which shows v(X) € ¥(W). In addition, FoX = fjoX = v(\)o fildoma = v(N) o
Flgom - Thus we have constructed a quasi-pseudogroup P and a well-defined map v: P — ¥(W
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satisfying property (R4a) of Definition Reviewing (R4b)-(R4d) of the same definition, clearly
these properties are satisfied by v. In conclusion, (f,{fi},c;,P,v) is a representative of an orbifold
map.

To prove the uniqueness, assume that there is another pair (P’,v’) turning (f, {fi};c;, (P',v')) into
a charted map. Consider A € P and p € P’ with germ, A = germ, p for some z in their domeins.
Then the mappings f; oA = v(X) o fi|ldom » and f; o = /() fildom n coincide in some neighborhood
of z. Since f; is a local diffeomorphism, the mappings v(\) and v/(u) coincide in some neighborhood
of F(x). O

Combining Remark and Proposition we obtain the following corollary:

2.1.8 Corollary Let f: Q1 — Q2 be a homeomorphism and {g;},c; a family of local lifts of f with
respect to atlases V' and W' such that each g; is a local diffeomorphism. Assume that V' satisfies
(R2). Then there exist an orbifold atlas V which refines V' indexed by some J and an orbifold atlas W
which refines W' and a family of lifts f; with respect to (V;,Gj,%5) € V, (Wa(), Hai), vs()) € W
such that each f; is a diffeomorphism. In addition there is a unique equivalence class [P,v] with
P = ChV/ and V(A) = fk)\(fj|dom>\)71|fj(d0m)\) fOT A€ Cth,Vk’ (V;’aGrawr) € V/ fOT T e {]ak}
such that f = (f, {fi}jes . [Pv]) € Orb(V', W').

2.1.9 Lemma Let V = {(V;,Gi, ;) |i € I} and W = {(W,,Hj,p;)|j € J} be atlases for orbifolds
(Q1,Uy) and (Qa,Us), respectively. Consider a charted map of orbifolds f = (f, {fiticr  [PV]) €
Orb(V, W) with the same properties as the map f in Corollary . Then the following holds:

(a) For each G;-stable subset Q2 C V;, the set fi(Q) is an Hg;)-stable subset of Wy with isotropy
group Hgi),f,(0) = Gig-

(b) After possibly shrinking V and W, we may assume that the map® 3: I — J is bijective.

(c) If B is bijective, then v: Chy — Chyy is a bijection.

Proof. (a) Let Q C V; be a G;-stable subset with isotropy subgroup G; o and z € Q. Because
P = Chy, the proof of Proposition [2.1.5| applies and we can take 2, = €2 in Remark
(b) If there are i,5 € I with 8(i) = B(j), we obtain a diffeomorphism fjflfi: Vi—= V. A
quick computation shows that wjfj_lfi = f_lgog(j)fi = 1); and thus fj_lfi is an embedding
of orbifold charts. Reversing the roles of ¢ and j, also fi_1 f; is an embedding of orbifold
charts. Therefore we may omit one index of the pair i,7 with 8(i) = 5(j) and the set of
orbifold charts indexed by the reduced set will again be an orbifold atlas. The axiom of choice
allows us to shrink V to obtain an orbifold atlas (which by abuse of notation will also be
called V) such that § is injective. Clearly since f is a homeomorphism, the set of charts
{(W;,Hj,¢;) € W|j=p(i) for some i € I} is an orbifold atlas. Thus by replacing J with
B(I), we may assume that g is surjective, hence bijective.

(c¢) It is obvious that v is injective. Let A € Chyw, w, be any change of charts morphism with
Wy, Hy, o) € W, 1 = k,l. There are unique 4,5 € I with 8(i) = k and $(j) = [ and

Swhich assigns to each index i an index B(3) € J such that g;: V; — Wpg(s) holds.
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we obtain a diffeomorphism p(A) := fj_l)\fi\f;l(dom NE £ (dom \) — fj_l(cod A). A quick

computation leads to ¥;u(\) = f_lgol/\fi|f;1(dom,\) = f7 1 fildoma = Yildom x Which proves
that p()\) € Chy, v,. By construction v(u(A)) = A holds and thus v is a bijection.

O

The next proposition is the converse of Proposition [2.1.2] i.e. we shall prove that the properties
of orbifold diffeomorphisms in Proposition [2.1.2] actually characterizes those, and are equivalent to
the categorical definition. The leading idea is to use the local properties of the lifts (i.e. that every
lift may locally be inverted) to construct a family of lifts for f~1. In general a given lift may not
be inverted globally. Nevertheless it is possible to construct smaller charts and induced lifts, which
may be inverted globally.

2.1.10 Proposition Let (Q;,U;),i € {1,2} be orbifolds and V € U1, W € Us. Consider an charted
map [ = (f,{fitic; [Pyv]) € Orb(V,W). If f is a homeomorphism and f;: Vi — Wy is a local

diffeomorphism for each i € I, then the orbifold map [f] € Orb ((Q1,U1), (Q2,Us)) is a diffeomor-
phism of orbifolds.

Proof. Combining Corollary and Lemma there are orbifold atlases V' indexed by J and
W' indexed by K together with a representative g := (f,{g; }jeJ [P, vV']) € Orb(V', W) of [f] such
that each lift g;: V; — Wy ) is a diffeomorphism and the map #: J — K is a bijection. We use the
computation from the proof of Lemma The inverse gj_lz Wy — W; of g; is a local lift of
S~ with respect to (Wg(j), Ha(j)» ¢a(;)) and (V;,Gj,1b;). Since f is a homeomorphism, the family
W' is an atlas for Q2 indexed by K. As each g;l is a diffeomorphism, by Proposition there is
a pair Q C (W) and p: P — ®(V') such that h:= (1, {g;l}jeK ,[Q, 1)) € Orb(W, V).
Consider the compositions ho gand go h: The local lift for every j € J of § has been constructed
as inverse maps of the local lift of g with respect to (V}, Gj,1;) and (W), Ha(j), ¥s(;))- Thus the
composition of both representatives gives a lift of the identity and we derive

[flo(g] =[hod] =id(g,u) and [glo[f]l=[goh] =id,)-
O

Observe that the proof of the last proposition yields the following fact: Assume that each member
of the family of local lifts for an orbifold map is a diffeomorphism. Then this family uniquely
determines the orbifold map. In particular, each orbifold diffeomorphism is uniquely determined by
its family of local lifts:

2.1.11 Corollary An orbifold diffeomorphism [f] € Orb ((Q1,U1), (Q2,Us)) is uniquely determined
by the family of local lifts { fi};c; where (f,{fi}icr,[P,v]) € [f] is an arbitrary representative.
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2.1.12 Proposition An orbifold diffeomorphism [f] € Orb ((Q1,U1), (Q2,Us)) is uniquely deter-
mined by its underlying continuous map, i.e. for f = (f, {fj}jEJ [Py v]) the map f uniquely deter-

mines [f].

Proof. Let [g] € Orb ((Q1,U1), (Qg,b{g)) be another orbifold diffeomorphism Wlth underlying map
f. Then the underlying map of [§] ™! is f~!. Hence each representative h of [9] o] f] is given by h =
(idg,{hi};cr [P, v']). Recall from Constructlon 1| that the lifts h;,7 € I arise as composition
of suitable lifts of representatives of [f] and [A}_l. Since all lifts of orbifold diffeomorphism are
local diffeomorphisms by Proposition [2:1:2] we deduce that each h; is a local diffeomorphism. Now
Proposition implies id(g_ 2/_ )[h] [9]7Y o [f]. Thus [§] = [f] follows and proves the assertion.

O

Summarizing the preceding results, one obtains:

2.1.13 Corollary For an orbifold map [f] € Orb ((Q1,U1), (Q2,Us)) the following are equivalent:

(a) [f] s an orbifold diffeomorphism,

(b) each representative (f,{f:} [P,v]) € [f] satisfies: f is a homeomorphism and each f; is a
local diffeomorphism,

(c) there is a representative f = (f,{f;}
each f; is a local diffeomorphism

(d) there is a representative f = (fAfi}jes  [Pv]) € Orb(V, W) of [f] such that f is a home-
omorphism and each f; is a diffeomorphism. Furthermore, the assignment o: V — W such
that f; is a local lift with respect to the pair (V;, G, ¢;), (Wa(s), Gag)s Yags)) can be chosen
bijective.

el

iers [Pyv]) of [f] such that f is a homeomorphism and

If f is as in (d), then a representative of [f]~ is given by (f! {f 1} ),0]) € Orb(W, V).

Here 0: v(P) — W(V) assigns to X\ € v(P) with domA C W, and cod/\ C WQ(J) the map
() == fj_lAf,L"f;I(dom)\)-

In particular, an orbifold diffeomorphism is uniquely determined by its underlying map and we obtain
a natural inclusion of the orbifold diffeomorphisms into the set of homeomorphisms:

Diffou, ((Q1,U1), (Q2,Uz)) — Homeo((Q1, ), (Q2, Uz))
[(fa {fi}ie[ ) [Pv V])] = f

We remark that the characterization of orbifold diffeomorphisms via any family of lifts will be
crucial for the rest of this work. It enables us avoid the technical details of the definition of orbifold
maps. Instead we may think of an orbifold diffeomorphism as a family of compatible smooth lifts.
In particular, these results enable an efficient investigation of orbifold diffeomorpismgroup.
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2.2. Open suborbifolds and restrictions of orbifold maps

We define the notion of an open suborbifold to introduce the restriction of an orbifold map to an
open subset. Any subset of a metrizable space with the induced topology is again a metrizable space.
Every metrizable space is paracompact and Hausdorff by |21, Theorem 5.1.3]. Since the base space
Q of the orbifold (Q,U) is metrizable by Proposition each of the subspaces in the following
constructions will be a paracompact Hausdorff space.

2.2.1 Definition (open suborbifold) Let (Q,U) be an orbifold. An orbifold (X, X) is called an
open suborbifold of (Q,U) if there is a map [i] = [(¢, {tx}cr, [P V])] € Orb ((X, &), (Q,U)) such
that

(a) ¢ is a topological embedding with open image,
(b) every ¢ is a local diffeomorphism.

A map [i] with the properties (a) and (b) is called an open embedding of orbifolds.

Since it will not be needed, we shall not define the general notion of a (possibly non-open)
suborbifold. The reader is refered to |1, Definition 2.3| for further information on this topic.

2.2.2 Definition (Restriction of an orbifold map to an open subset) Let (Q,U) be an orbifold and
Q C @ be an open subset. Choose an atlas A € U such that the images of (V, G, ) € A which satisfy
(V) C Q cover Q. Then A|g :={(V,G,9) € A| (V) C Q} is an orbifold atlas for Q. Notice that
the equivalence class U of A|Q does not depend on the choice of A and defines an unique orbifold
structure on 2. The inclusion tq: Q — @ of sets induces an open embedding of orbifolds, which we
denote by [ia]: (Q,Uq) — (Q,U). Define the restriction [f]lq of [f] € Orb ((Q,U), (Q2,Us)) to Q

via

2.2.3 Definition (Corestriction of an orbifold map) Let (X, X’) be an open suborbifold of (Q,U)
together with an open embedding of orbifolds [;]. Consider another orbifold (Q’,V) and a map
[f] € Orb ((Q', V), (Q,U)) with representative f = (f, {fi}per [PV]) € [f] such that Im f C Im .

For k € I, let the lifts be given as fr: Vi — Uy), where (Uy i), Ga(k), Ya(k)) is an orbifold chart.
Then Im f;, C 1/’;(11@ (Im¢) holds. As Im fj, is connected, it is contained in a connected component of

the invariant set ¢;(1k) (Im ). The connected components of an invariant set are Gq(x)-stable subsets
of Uy (r)- Hence these connected components can be made into orbifold charts for the subset Im¢.

Using these charts, Lemma shows that there is a representative § € Orb(V',U’) of [f] such

that each lift g: V! — U], of g satisfies p(U},) C Im¢. Define the corestriction of [f]:

A1 = [ {gi by [P, ¥'])] € Orb (@, V), (lm e, Una )

Here (P',v') is the pair obtained via Lemma for g. In particular, we obtain a unique map
([e]'me)y =L o [f]|"™* € Orb ((Q', V), (X, X)) into the open suborbifold. By definition of the equiv-
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alence relation (Definition [E.4.3), the class [f]|™* does not depend on any choices made in the
construction.

2.2.4 Remark

(a)
(b)

An orbifold (X, X) is an open suborbifold of (Q,U) if and only if there is an orbifold diffeo-
morphism from (X, X’) to an orbifold which arises as the restriction of & to an open subset.
Consider an open subset @ C @Q and the representative f = (f, {fi}per [Piv]) of [f] €
Orb ((Q,U), (Q’,W')) such that there is J C I with the following properties:

Vo :={(V},Gj,mj)};c; € Ua and Q =, ; m;(V;) hold.

Define P; := PNChy,, and set v; := v|p,. The composition in Orb is induced by composition
of suitable representatives. A computation with the representative above yields [f]|q = [h],
where h = (flo, {f;};c; . [Pr,vs])-

Let (X,X) be an open suborbifold with open embedding of orbifolds [i]. By construction
[flltm: = [f] o [i] o [i]|™ )~ holds.

In Section |3| tangent spaces of orbifolds and the tangent orbifold are defined. As these objects
are defined via an arbitrary orbifold chart, analogous to the manifold case, for each open
suborbifold (X, X) of (Q,U) the tangent spaces 7;X X and 7:12’]0)@ are canonically isomorphic.°
If the open suborbifold is an open subset, we shall identify the tangent spaces later on.

SHere the symbol 7;“Q denotes the tangent space of the orbifold (Q,U). The notation was chosen to emphasize the
dependence on the orbifold structures X and U.
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2.3. Partitions of unity for orbifolds

2.3.1 Definition Let (Q,U) be an orbifold, V = {(V;,G;,m;)|i € I} a representative of U and
endow R with the trivial orbifold structure (i.e. the one induced by its manifold structure).

A family {(Xi7 {xi, }jeJ s [ Pis 1/1])} , in Orb(V, {idgr}) is called a smooth orbifold partition of unity
ie

subordinate to V if the family of continuous maps {x;},; is a partition of unity subordinate to the

open covering {m;(Vi)},.;, i.e.

(a) supp x; C m;(V;) for all i € I,
(b) the family (supp x;):cs is locally finite,
c¢) x; >0,forallieland ) _;x;(x) =1 for each z € Q.
iel

2.3.2 Proposition (Partition of Unity) Let (Q,U) be an orbifold. For each representative V of U
there exists a smooth orbifold partition of unity subordinate to V.

Proof. Each representative of U allows a locally finite refinement by Lemma m (b), thus the
assertion will be true if the existence of a smooth orbifold partition of unity for an arbitrary locally
finite representative of U can be verified.

Let V := {(Uy, Gq, 7o) | @ € T} be alocally finite representative and V := {ma(Ua)}oe; be the family

of open images of the charts in V. Since @ is a paracompact Hausdorff space, applying |21, Lemma
5.1.6] twice, there are locally finite families of open sets W! C W1 C W2 C W2 C 7,(U,) such
that {VNVOll a € I} covers @ (here the closure means closure in Q). Let W/ = 71 (W2), i € {1,2}.

—1 i
Observe that since W, C Imm,, it is closed in the subspace topology. On Im!,, we identify

T with the quotient map onto the orbit space of the G,-action on U,. This map is surjective
continuous, open and closed by Lemma Hence for ¢ = 1,2 |20, III. Theorem 8.3 (5) and

Theorem 11.4] imply 7, (Wi) = V~V7g and Wi C W(;l(Wé). Vice versa |20, ITI. Theorem 11.2 (2)]

yields Wi = 71 (VNVOQ) By construction, every set W7 is G,-invariant.

The manifold U, is a smooth connected paracompact (hence second countable by Proposition |1.4.2))
and finite dimensional manifold. By the smooth Urysohn Lemma (cf. |16, Corollary 3.5.5]) for
manifolds, there is a smooth map f*: U, — [0,1] such that f*[;zx = 1 and supp f* € W2. Define

an equivariant smooth map 6, : U, — R with values in [0, 1] by averaging over G:

(1) = 5 2 170

YEGa

Notice that W} C supp f, C W2 still holds by G,-invariance of these sets. In particular, the map
vanishes outside of W2. For every 3 € I, define a map as follows:

Oaly) ms(r) =
0 ot

a(y) f U,
Oap:Us—[0,1], z— { ;T (y) for some y €

=0
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The G,-equivariance of 0, implies that 0, 5 is well-defined, and it is Gg-equivariant. We claim
that 6., is smooth: To see this, note that for each = € 7T[;1(Im Tw), there is an open neighborhood
Vz C Us of  and a smooth change of charts A: V; — U,. On the open set V,, the map 0,3 is a
composition of smooth maps: 6, s|v, = 0, © A\. Hence on wgl(lm 7o) the map 6, s is smooth.

By construction supp 6, C W2 C U, holds, i.e. we obtain ma(supp Oa,5) C Wg C Imm,. The above
shows that 0, g is a smooth map on the open neighborhood 71'5_1(1111 ) of its support. On the open
set Ug \ supp 0,5 the map vanishes and in conclusion 6, g is smooth.

Notice that 6, o = 0, holds by construction. Since the family V is locally finite, for z € Q there are
only finitely many « € I such that 7w !(x) # 0. Define another Gg-equivariant smooth map on Ug:

0a,8
Uz — [0,1 = B
Xa,5: Us = [0,1], Xa,8 S, 005

The map xq o satisfies xq,ql ULN\WE = 0. Since m, is an open map and 7, (W2) is closed, the map
Xa,o descends to a continuous map on Q:

x =7 (y) with y € U,

. Xa,a (SL’)
Xa.Q—)[O,l],x»—){O reQ\U,
By construction supp xo C 7 (Uy). For every o € I, the smooth map x,. is a lift of x, in the
chart (U,,G,,7m,) € V. The family V covers Q and we have constructed a family of continuous
maps with smooth lifts in every orbifold chart of V. As R is a trivial orbifold, the following data
completes the construction of an orbifold map: Choose the quasi-pseudogroup P := Chy which
generates W (V) and take v: Chy — W({(R,{idgr},idr)}), f + idg. These choices induce a map
(Xa» {Xa.o}+ [P, v]) which clearly satisfies the requirements of Definition (cf. Remark
and (Yo = (Xas {Xa,0} 5 [P ¥])) ey © Orb(V, {idr}) is a family of charted orbifold maps.

The construction of x, shows W{* C supp x» C To(Us) and the sets Wé cover ). Thus the family
{SUPP Xa }oey covers @ and since V is locally finite, this family is locally finite. A quick computation
now shows for z € Q:

-1 _ ea,a 7T_1.Z‘
doxe@ = Y Xewm @)= > Te]@a,a(“())

aecl acl,xeny (Uy) acl,xena(Uqs)

- fama ' (2) ~1.

—1
aclzena(Ud) ZéEI,xETrg(Ug) Osms ()

The family (xa)acr therefore is a partition of unity subordinate to V. In conclusion, (Xa)acr is a
smooth orbifold partition of unity subordinate to V. O

2.3.3 Notation Let (Q,U) be an orbifold with a locally finite representative V of U indexed by I.
Consider an orbifold partition of unity {Xa},c; subordinate to V as in Proposition For any
pair (o, 8) € I x I, the lift of x, on U will be abbreviated as x4, s-



3. Tangent Orbibundles and their Sections

In this section, we construct an analogue to tangent manifolds and tangent maps for an orbifold.
Tangent orbifolds are well known objects (cf. |1, Proposition 1.21]). We emphasize that the bundle
map associated to a tangent orbifold is a map of orbifolds. This allows us to define orbisections,
i.e. maps of orbifolds which are sections of the bundle map. In Chapter [5.1], suitable spaces of
orbisections will serve as model space for the diffeomorphism group of an orbifold. Furthermore,
it is possible to construct a tangent endofunctor for the category of reduced (smooth) orbifolds.
Throughout this section, let (Q,U) be an orbifold. We begin with the construction of tangent
orbifolds:

3.1. The tangent orbifold and the tangent endofunctor

3.1.1 Construction (Tangent space of an orbifold) Let p € Q and (V;,G;,m;) € U, i € {1,2}
be arbitrary orbifold charts with p € m;(V;). Consider pairs (m;,v;), ¢ = 1,2 where v; € T,,V;
with z; € m;” 1(p). Notice that by compatibility of orbifold charts, there exist open neighborhoods
x; € U; CV; and a change of charts A: Uy — Us such that A\(x1) = z2. Identify the tangent spaces
T,,V; with the corresponding tangent spaces of the open submanifolds U; C V;. Since every change
of charts is a diffeomorphism, the tangent spaces T, V1 and T;,Vs are isomorphic.

Introduce an equivalence relation on the set of all possible pairs of this kind: We declare two
pairs to be equivalent, (m1,v1) ~ (m2,v2), if there are open subsets x; € U; C V; and a change of
charts A\: Uy — Uy such that TA(vy) = ve. Here TA: TU; — TU, is the tangent map of A. Since
T: Man — Man is a functor (Man being the category of smooth manifolds), the relation ~ is an
equivalence relation. The equivalence class [r,v] of (7, v) is called a formal orbifold tangent vector
and define the set 7,Q of all formal orbifold tangent vectors at p.

Consider z; € 7~ !(p), (U,G,7) € U. The isotropy subgroup G, acts on T, U via the linear
diffeomorphisms v.v := T, v.v. Every v € G is a self-embedding of orbifold charts, whence

(m,v) ~ (m, Ty.v) VyeQG. (3.1.1)
Let © € T,,U/G,, be the equivalence class of v € T}, U for x; € 7~!(p). We obtain a bijective map
k2 Ty, U/Gyy — TpQ, k2 (D) := T'w(v) == [, ).

To see that this map is indeed injective, consider elements kX' (0) = kZ* (w). Thus there is a change
of charts A with TA(v) = w. By [51, Lemma 2.11] A|o = g|o holds for suitable g € G, on an open
neighborhood O of x; . By definition of T}, U/G,, this implies 0 = .

Endow 7,Q with the unique topology making the bijection k%' a homeomorphism. The space 7,Q,
is called tangent space of @ at p. We claim that the topology on 7,Q neither depends on the choice
of charts nor on the preimage z7 in a given chart. Choose some chart (U, G, 7). As a first step, we
prove that the topology does not depend on the choice of the preimage in this chart:

Step 1: Choose another x5 € 7~ 1(p). There is some v € G with 4.1 = x5. The isotropy groups of
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x1 and xo are thus conjugate 7.G,, 7! = G,,. The derived actions of G, on T,,,U, i € {1,2} are
conjugate via the linear isomorphism Ty, 7, i.e. g.v = Ty, (Y "togoy)(v) for all g € G,,. This induces
a homeomorphism 1/1;'/)/: T, U/Gy, = Ty, U/Gy,. For v € T, U, let ¥ be its image in T, U/G,
and compute

(k22) ™ o k) () = (k22) " [m, o] B2 (k22) U m, Ty y0] = Ty (9).

Since 7/}\5 is a homeomorphism, so is (k¥2)~! o k%: T,,U/G,, — Ts,/G4,. In conclusion the
topology on 7,@Q does not depend on the choice of z; € 7=!(p), whence the index z; of kZ can now
be omitted.

Step 2: Consider another chart (W, H, 1) with p € ¢(W) and pick y € ¥y~ 1(p). By compatibility
of charts, there are open subsets x € Viy C U, y € Viy C W and a change of charts homomorphism
A: Vi — Vi with A(z) = y. Shrinking the open sets Vi, Viy, we may assume that (Vir, G, 7|y, )
is an orbifold chart and A an open embedding of orbifold charts. This map conjugates (in the
sense of Proposition [[.2.2] (a)) the G,-action on T,U to the Hy-action on T,W again inducing a
homeomorphism T3 \: T,V /Gy — T,V /H,. As in Step 1, a well-defined homeomorphism is given
by

ky okt T,U/Gy — T,/ Hy, T — TA(D).

Therefore the topology on 7,() is independent of the choice of charts.

3.1.2 Remark Let (U,G,7) be an orbifold chart with p € Im7. The homeomorphism 7,Q =
T, U/G, for x € 7=1(p) allows us to think of 7,Q as an orbifold. In particular, the tangent space
T,@ may be identified with a convex cone. In contrast to tangent spaces of manifolds, the tangent
spaces of an orbifold will not be vector spaces. Nevertheless, each orbifold tangent space contains a
zero element 0, := [m,0,], where (U, G, ) is a chart with p = 7(z) and 0, € T,U the zero element.
In the manifold case, our definition boils down to: The tangent space of a manifold (considered as
a trivial orbifold) at p is the tangent space of the manifold at p.

3.1.3 Definition (Tangent orbifold) Consider the set TQ := UpeQ TpQ. Since the tangent spaces
are mutually disjoint, we derive a well-defined map

Tro: TQ — Q, [¢,v] = ¢¥(z), where v € T, dom .

If (U,G,¢) € U is an arbitrary chart, then G acts on TU via the derived action v.X := Ty(X).
Define II: TU — TU/G to be the quotient map to the orbit space with respect to this action. Using
the notation of Construction we obtain a map for (U, G, ) € U:

TY: TU = TQ,v — [, ]
In particular, each v € T, U is mapped to some [¢),v] € Ty ;)Q. Choose an atlas A € U. We equip

TQ with the final topology with respect to the family (T%)w,c,¢)cA-
This topology induces a canonical orbifold structure on 7. An atlas for this orbifold is given by
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the family (TU, G, T+),” where (U, G, 1) runs through A. The G-action of the chart (TU, G, T%) is
the derived action of G, i.e. y.v := Ty(v). With respect to this structure m7¢ induces an orbifold
map. Its lifts are given by the bundle projections TU — U, for (U,G,w) € U.

We define the tangent orbifold T(Q,U) of (Q,U). Tt is the orbifold (TQ,TU), where TU is the
orbifold structure induced by T.A. A proof for the details of this construction will be given in the
next lemma.

3.1.4 Lemma Let (Q,U) be an n-dimensional orbifold. Using the notation of Deﬁm’tion the

following statements hold:

(a) Let (U,G,v),(V,H,p) €U and \: U DO W — W' CV be a change of charts. Its tangent map
TX: TW — TW' is a diffeomorphism with TeT\ = TY|Tw .

(b) For any chart (U,G,v) € U we set U := p(U) and TU :=ImT). Then TU is an open set in
TQ and T is an open map.

(¢) The topology on TQ does not depend on the choice of the atlas A € U in Definition .

(d) For each A €U, the set TA:={(TU,G,TY)|(U,G,v) € A} is an orbifold atlas for TQ. The
orbifold charts in this atlas are compatible via the changes of charts computed in (a).

(e) The map mrq: TQ — Q,[¥,v] = ¥(z), v € T,U is continuous and TQ is a Hausdorff
paracompact space. In conclusion, T(Q,U) is an orbifold.

(f) mrq induces a morphism of orbifolds w1y € Orb (T(Q,U), (Q,U)).

(g) The topology on TQ induces on each T,(Q) the topology obtained in Construction .

Proof.  (a) For the change of charts A, the tangent map TA: TW — TW’ is a diffeomorphism. It
suffices to prove the commutativity for each element of T,.W, where r € W is arbitrary. Since
A is a change of charts, A\ = 9[qom A holds. The definition of 7y, @ yields [, v] = [p, TA(v)].
We obtain for v € T,,W the identity

TSOT)‘(U) = [L,O,T)\(’U)] = [’L/),’U] = Tw(v)

(b) The space TQ is endowed with the final topology with respect to the mappings T'w, where
(V, H, ) runs through A. To prove the assertion we need to show that (T'w)~1 (T (V)) is an
open set for every (W, H,7) € A and open set V' C TU. Define the set of changes of charts
from U to W:

Chyw = {A: U D domA — cod A C W |\ is a change of charts} .
Then one computes its preimage as
(Tm) " (TY(V)) = {w € TW | [m,w] € TH(V)}
={weTW |3\ € Chyw,w = TA(v) for some v € V}

= |J TAdomTAanV)cCTW.
AeChy,w

"Notice that we should have written {Tg|g € G} instead of G in the definition of (TU,G,T%). Definition m
requires the acting group to be a subgroup of Diff(TU) which is only satisfied by {T'g|g € G}. However, we use
the canonical identification G 2 {T'g| g € G} to justify the shorter (but in fact incorrect) notation (T'U, G, Tv).
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Each T\ is a diffeomorphism onto its (open) image, whose domain is an open set. Thus every
TA(domTXANV) is an open subset in TW. This proves (T'r)~(T4(V)) to be an open set,
whence T4 is an open map with open image TU in TQ.

To see that the topology does not depend on the choice of A, we consider the final topology
O’ on TQ with respect to the mappings T4, where (U, G, ) runs through an atlas A’ € U. Tt
suffices to prove that the topologies coincide if A C A’ holds. Thus without loss of generality
the final topology O with respect to A is finer than the topology O’. However, the computation
in (b) shows that O’ is also finer than O, whence O = O’ follows and the topology does not
depend on the choice of A.

If (UG,$) € A is an arbitrary chart, then T¢ has an open image by (b). Consider the
map Té: TU/G — ImTé,v +— [¢,v]. Combining Proposition with the definition of the
equivalence relation in Construction [3.I.1] this map is a well-defined bijective map. We may
factor T'¢ as T'¢p = T¢ o II, where II is the quotient map to the orbit space associated to
the G action on TU. Since II is a quotient map and T'¢ is continuous, T'¢ is continuous. If
V C TU/G is an open set, then II7*(V) is an open set. Since T'¢ is open by (b) the set
TH(V) =TIl 1 (V) is an open set. Thus T¢ is an open map and in conclusion T'¢ may be
factored as the quotient map to the orbit space associated to the group action composed with
a homeomorphism. In particular, the set of orbifold charts

TA={(TU,G,Tn)|(U,G,x) € A}

covers TQ. In (a), we have constructed a family of maps which are change of chart maps for
T A. Using this family of changes of charts, the definition of the chart maps and tangent spaces
TpQ shows that each pair of orbifold charts in 7 A is compatible. Thus 7 A is an orbifold atlas
inducing a unique orbifold structure 7(Q,U) of dimension 2 - dim(Q,U) on TQ.

The definitions of m7¢g and 7@ together with the compatibility of orbifold charts yield
W;—é(ﬂ)(U)) = TY(TU), for every (U,G,9) € U. Hence the preimages of a basis of the
topology under mr¢ are open (cf. Lemma and thus m7¢ is continuous by [21, Proposi-
tion 1.4.1.].

The space TQ is a Hausdorff space: Let z,y € TQ be distinct points.

First case: mrq(z) # mrq(y). There are orbifold charts (Uy, Gz, v¥s), (Uy, Gy, 1y) € U such
that mrg(x) € ¥, (Us), mrq(y) € ¢y (Uy) and ¥, (Uy) N1y (U,) = 0 hold. As the images of
these charts do not intersect, the set Chy, v, is empty. By construction of the equivalence
relation, T4, (TU,) N Ty (TU,) = 0. Hence z € w7, (12(Us)) and y € w7 (1, (Uy)) are
contained in disjoint open sets.

Second case: myrq(x) = mrq(y). Choose any orbifold chart (U, G,v) with mrq(z) € ¥(U).
Then z,y € W;—é(iﬂ(U)) =Ty (TU). Both z and y are contained in T4 (TU), which is home-
omorphic to the orbit space TU/G. This space is Hausdorff by Lemma and there are
disjoint open subsets z € V,,y € V,, of TY(TU). As T(TU) is open, both points are con-
tained in disjoint open subsets of 7. In conclusion the space T(Q is a Hausdorff space.

The space TQ is paracompact: Connected components of 7(@Q are open and closed, there-
fore |21, Theorem 5.1.35] implies that @ will be paracompact if each connected component of
TQ is paracompact. We claim that each connected component C of T@Q is second countable.
If this is true, paracompactness of a component is assured by the following observations: The
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quotient map to an orbit space preserves locally compact spaces by Lemma [B:1.4] Thus 7Q
is locally compact, hence a regular space. Combining |21, Theorem 3.8.1] and |21, Theorem
5.1.2] second countability of a component implies paracompactness of that component.
Proof of the claim: Every component C’ C @ is second countable (cf. Proposition [1.4.3]).
The continuous map mr¢ maps C' into some component C’ C . Since C” is second countable,
there is a countable base B of the topology on C’. The images of orbifold charts in C’ also
form a base of the topology by Lemma [[.4.1] Thus without loss of generality B contains only
(open) images of a set of orbifold charts R = {(U;, G;, ;) |é € I} in U. By construction of
77Q, the countable family of open sets 7B := (T'm;(TU;))wv,,c,,x)er covers C. Observe that
TU; = TU,; /G; and TU; is the tangent manifold of a connected paracompact manifold, thus
connected paracompact and second countable by Proposition The quotient map to the
orbit space is continuous and open by Lemma |B.1.4] which implies that TU; is also second
countable. As a countable union of open and second countable spaces, C' is second countable.
The map 7 is continuous by (e) and we have to construct lifts for m7¢: Consider an arbitrary
orbifold chart (TU,G,T%) € TU. Let mpy: TU — U be the bundle projection of the tangent
bundle. This map is smooth, and we obtain a commutative diagram:

T N
U ——7TU

lﬂTU l"'TQ
P

U———0

Choose a representative A € U and define Pr., := Uy weaxa {TAIA € Chuw}. We have
to show that the quasi-pseudogroup Py, generates W(T.A). Let ¢ € ¥(TA) and pick
an arbitrary v € dom. Then there are (TU,G,Tn),(TV,H,Ty) € TA and an open set
v € Q C TU such that ¢|qg is a diffeomorphism onto an open set Q' C TV which contains
w = @(v). Since Ty (w) = T'w(v) holds, the equivalence relation shows that there are open sets
xeW CU,ye W CV and a change of charts A\: W — W’ such that v € T,W, w € T,W’
and TA(v) = w. Shrinking W and W’ we may assume that TA\: TW — TW’ is an embedding
of orbifold charts. Thus on TW, the maps TA and ¢|rw are embeddings of orbifold charts.
By Proposition there is an h € H,, such that h.TA = @|rw. The definition of the
group action on charts in 7 A yields ¢|pw = h.TA = T(ho X). Now ho X € ¥(A) implies
T(h.\) € P, In conclusion, Py, generates W(7.A). Define the map

TTQ.uU)"

Pr o — W(A),TA— A

Vnro:

By construction, this map satisfies (R4a)-(R4d) of Definition and therefore
TT(QU) ‘= (7T7’Q7 {7TTU ‘ (U, G, 7T) S .A} s [P‘ﬂ'”rcwl/ﬂ'TQ]) S OI’b(T.A7 .A)

is a representative of an orbifold map. We call w1 (g the bundle projection. By abuse
of notation, we let m7(gu) also be the equivalence class of the charted map 77 (gu) in
Orb(7(Q,U),(Q,U)). Clearly any choice of A in the above construction yields the same
class Tr(qu). In particular, for each chart (TU,G,T%) in TU there is a representative of
Tr(Qu) such that the bundle projection mry: TU — U is a local lift of w7 (g ). The triple
(T(Q,U),(Q,U), 71 (Qu)) is an orbibundle, the tangent orbibundle (cf. |1, p.14]).
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(g) Choose some orbifold chart (U, G,v) € U such that p € ¢(U). Shrinking the chart, we may
assume {z} = ¢1(p), i.e. G 2 I',. By construction, 7,Q C T (TU) holds. Recall from
(c) that T4 = T4 o II, where II is the quotient map to the orbit space with respect to the
G-action on TU and T% is a homeomorphism. Observe (T9)~(7,Q) = I(T.U). Notice
that for manifolds the subspace topology of T, U C TU coincides with the usual topology of
T.U. As the quotient map to an orbit space is open, |20, VI. Theorem 2.1] proves that the
subspace topology of (T¢)~1(7,Q) and the quotient topology on II(T,U) = T,U/G coincide.
In Construction TpQ has been endowed with precisely the same topology. Hence the
induced topology on 7,Q coincides with the one from Construction 0

Notice that for any trivial orbifold (i.e. for a manifold), the tangent orbibundle coincides with the
tangent bundle of the manifold. For a non-trivial orbifold, an explicit example of a tangent orbifold
will be computed in Example [3.3.9]

Mappings to the tangent orbifold admit representatives which are charted maps whose range atlas
is T A for some A € U. Thus orbifold maps to the tangent orbifold always posses representatives
which may be computed in the canonical orbifold charts of the tangent orbifold.

3.1.5 Lemma Let [f] € Orb ((Q,U), T(Q,U)) be an arbitrary orbifold map. There is a represen-
tative f € [f] such that the range atlas of f is contained in TW for some W € U. In other words,
f s a charted orbifold map with f € Orb(V, TW), where V and W are some representatives of U.

Proof. Let [f] be as above. Consider the composition w7(g ) o [f] of [f] with the bundle projection
TrQu) (Lemma . Reviewing [56, Lemma 5.17] (cf. Section , the composition in Orb
is induced by the composition of representatives of the equivalence classes. Fix a representative
TrQu) € Orb(TW, W) for some W € U. Then there are representatives V,V" of U respectively
a representative V' of TU together with the following charted orbifold maps: § € Orb(V,V’) with
g € [f] and h € Orb(V', V") with h € T (Qu) such that these maps induce the composition, i.e.
TrQu) © | f] = VL o g]. Furthermore, these charted maps can be chosen such that the following
diagram is commutative:

TT(Q,U)

TV —W

AN

y Ly : %

Here the charted maps €1 and €9 are lifts of the identity (cf. Definition [E.5.1)) and composition in
the diagram is composition of charted orbifold maps. By definition of the composition in Orb we
obtain [f] = [e1 o §] with a representative €1 o § € Orb(V, TW). O

The rest of this section will be devoted to construct a tangent functor for the category Orb. To
achieve this goal, we have to construct tangent orbifold maps. We record several observations, which
will allows us to introduce tangent orbifold maps.
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3.1.6 Remark

(a) Let V be a representative of U for an orbifold (Q,U). The G-action in a chart in V acts on the
tangent chart via the derived action. Since the tangent functor 7': Man — Man (where Man is
the category of smooth (not necessarily finite dimensional) manifolds) is functorial, Proposition
1.2.2| (e) and the definition of the tangent manifold imply that T¥ (V) := {TA| X € ®(V)} is
a quasi-pseudogroup which generates ¥(7V). Furthermore, if P is some quasi-pseudogroup
which generates ¥ (), then the quasi-pseudogroup 7P := {TA| X € P} generates ¥ (TV).

(b) Let A\,u € Chy,w be change of charts and X € domTA N domTy such that germy T'A =
germy Ty holds. Choose an open X-neighborhood Ux C TV with TA|y, = Tulu,. This
implies )\‘WTV(UX) = M|7rTv(Ux)- Since 7y is an open map, mry (Ux) is open and contains
mry (X). Thus germ, (x) A = germ,, . (x)# holds.

3.1.7 Definition Let (Q;,U;), i = 1,2 be orbifolds and [f] € Orb ((Q1,U1), (Q2,U2)) be a mor-
phism with representative f = (f, {fiticr»[Piv]) € Orb(V, W).

Furthermore, consider orbifold atlases V = {(V;, Gi,¢;) |i € I} and W = {(W}, Hj, ¢;) | j € J}. For
two changes of charts T\ = T'u is satisfied if and only if A = u, whence Tv: TP — ¥(TW), TA —
Tv(X) is a well defined map. Here 7P is the quasi-pseudogroup of some (P,v) in the class [P, V]
as in Remark (a). The class [T P, Tv] does not depend on the choice of (P,v) in [P, v] by the
definition of equivalence (cf. Definition [E.2.5).

Combining Remark [3.1.6] (b) and the properties (R4a)-(RA4d) of Definition for the map v with
respect to F' := [],.; fi, we see that Tv satisfies properties (R4a)-(R4d) with respect to F’ :=
[L;c; Tfi. In particular, we derive Twq )T fi(TA.x) = Too;T fi(x) for each A € Chy, y,. Thus
there is a well-defined continuous map 7 f: TQ1 — TQo, T f(x) := T@a(i)TfiTwi_l(x), z € Im T;.
In conclusion, a charted map of orbifolds is given by

TF = (T AT fi}icr , [TP,TV]) € Orb(TV, TW).

The map 7/'?7" is a representative of the orbifold tangent map ['7/'}] of | f] We have to check that the
construction of this map is functorial.

3.1.8 Lemma The assignment T: Orb — Orb, (Q,U) — T(Q,U), [f] — [7/'}] is a functor, i.e.

(a) Ifé = (idg, {fi},cr, [P v]) € Orb(V, W) is a lift of the identity id(q v, then Te is a lift of the
ident}'ty idT(Q,Z/I) .

(b) Let f = (fv {fi}ie[ y [vayf]) € OI‘b(V,W) and g = (97 {gj}jej ) [ngygD € OI‘b(W,A) Then
Tgof=TgoeTf. R

(¢) Two representatives f1, fa of [f] € Orb ((Q1,U1), (Q2,Us)) induce equivalent charted orbifold
mﬂos\,i,e. [7/'\]“1] :/[\ng], A

(d) [Tgo f]=[Tglo[Tf] holds for [f] € Orb ((Q1,U1),(Q2,U2)), [g] € Orb ((Q2,Us), (Q3,Us)).

Proof. (a) Foreachi € I let the lifts f;: V; — W, ;) be given with respect to the charts (V;, G, ;)
and (Wa(i), He iy, cpa(i)). Here o: I — J is the map which assigns to f; the chart Wiy Each
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fi is a local diffeomorphism by Definition Using functoriality of T', again T'f; is a
local diffeomorphism. By Proposition the assertion will be true if 7idg = id7¢ holds.
Consider z € TQ with z € ImT%; for some i € I. Choose z, € TV, with T¢;(z,) = =
and observe that by Proposition we may choose orbifold charts (S, Gy, .|s,) and
(8%, Gy be| sy ) with Ty, (z) € S, such that f; induces the identity on S, with respect to idsg,
and (f;|s,)”". Hence f;|s, is a change of charts, which implies T idg(z) = T idg(T%i(24)) =
TooawyT fi(ze) = ToamT(fils.)(z2) = 2.

Define h; := gq ()0 fi and h = go f. Then go fis given by h = (h,{h;|i € I}, [Py, v4]). From
Definition we infer T(go f) = (Th,{Th;|i € I},[T Py, Tvy)).

-y —~

By construction, one has 7f € Orb(TV,TW) and Tg € Orb(TW,TA). These charted
orbifold maps may therefore be composed as in Construction|[E-4.1} The charted orbifold map

TfoTyis given as hy := (Tgo T, {Tgag o Tfi}ief 2 [Phys Vny])- By functoriality of T', we

have h; = T(ga@) © fi) = T9a(i)T f; for i € I. Hence the lifts of ’T(/go\f) and hy coincide for
each i € I. We conclude Th=TgoTf.

If (T Py, Tvy) ~ (Ph, i) holds, then both maps will be equivalent as charted orbifold maps.
By construction of the quasi-pseudogroups this indeed follows directly from the functoriality
of T and property (R4b) of Definition However, since quasi-pseudogroups work with
the germs of maps, the computation has to be carried out on the germ level. Here are the
technical details:

Let \,u € Chrv, rv,,1,j € I, X € TPy, pp € Py and X € dom A N dom p with germy A =
germy i. To establish the equivalence, we have to prove the identity

germyy,, (x) Tvn(A) = germyy,, (x) Vnr (1) (3.1.2)

Set x := mry, (X). By definition of the quasi-pseudogroups of f and § (combine Remark
and Construction [E.4.1), we obtain the following data:
L. n,p € Py, x € Uya,Up,, open and 1|y, ., plu,, € Pn with A\ = Tn|y, . and germy p =
germy 1T'p,
2. &nay€px € Py with va(nlu, ) = v4(§y,2) and germy, ) €y e = germy, ) v¢(n), respec-
tively for vi(plu,..) = v4(p,z) and germy ) §p 0 = germy, o) vf(p)
3. §ux € TPy with vy, (p) = Tvg(§u,x) and germyy, x) §ux = germyy, x) Tvy(Tp).
For ¢,¢ € Py and z € dom ¢ Ndom ¢ Remark (b) implies germ, ¢ = germ, v if and only
if germy T'¢ = germy T% for some X € T.V;. Exploiting property (R4b) for vy we obtain
germy, ;) Vf(¢) = germy, ) v5(¢), whence germypy, x) Tv(T'¢) = germpy, (x) Tvg (1)) holds.
Analogously the same holds for v, and v, by 1. and 2.:

eIy, (X) Tvp(A) = eIy, (X) T’/h(77|Un,z) = geTMry, (X) Tvy(§n,e)-
We already know germy Tn = germy A = germy p = germy 1'p and by Remark (b)
germ, n = germ,, p follows. Using property (R4b) for v; and 2. one obtains germ i) Snz =

germy, ) V(1) = germy, ., vf(p)-
Together with 3. this yields germyy, x) 1€y = germypy, x) Tve(Tp) = germp r, (x) §u, X -
Again by 3. and property (R4b) for Tv, we derive:

eIy, (X) Tvp(A) = eIy, (X) Tvy(T&y ) = eIy, (X) Tvg(€ux) = gerMpp,, (X) Vhr (10)-
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Since X, A, u were arbitrary, (T Py, Tvy) ~ (Ph,,vh,) holds and we conclude T(/go\f) =
FoolF

(¢) In view of of (a) and (b), we can apply T to the diagram which defines the equivalence
of charted orbifold maps (cf. Definition and the assertion follows.

(d) This is just the combination of (b) and (c).

O

3.1.9 Remark Let (Q;,U;),4 € {1,2} be orbifolds and [f] € Orb ((Q1,U1), (Q2,Us)). The definition
of the tangent orbifold map implies that the following diagramm is commutative

T(Quih) — I T (o ttr)

”T(Q1,U1)J/ J{”T(Q2,U2)

(Qhul)T(Q%Z/ﬁ)

In other words, the family (77 u))(@u)corb defines a natural transformation relating the endo-
functors 7 and idoyb.
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3.2. Orbisections

We now study sections of an orbifold into its tangent orbibundle. These maps will be called “orbi-
sections” and may be thought of as an analogue of vector fields on manifolds. In this section, (Q,U)
is an orbifold.

3.2.1 Definition A map of orbifolds [6] € Orb ((Q,U),T(Q,U)) is called an orbisection if it
satisfies

WT(Q,Z/{) o [(3’] = id(Q,M) .
Its support supp[d] is the closure of {z € Q|o(z) # 0,}, where 0, € T,Q is the zero-element. We
define the set of all orbisections Xo,p (Q) of the orbifold (Q,U).
An orbisection [6] € Xom, (Q) with supp[6] C K for some compact subset K C @ is called compactly
supported (in K ).
For K C @ compact define the set Xou, (Q); = {[6] € Xow (Q) | supp[d] € K} of orbisections
supported in K. Let Xor, (@), be the set of all compactly supported orbisections in Xo.h, (Q).

If M is a trivial orbifold (i.e. a manifold), then orbisections are vector fields on the manifold. It
is well known that vector fields for a manifold form a vector space. In Section [3.3| we will prove
that the set Xo., (Q) (and the subspaces Xom (Q).., Xor (@) ¢ are topological vector spaces over
R for any orbifold. This fact is quite surprising for a non-trivial orbifold. Indeed, recall that at a
singular point, the orbifold tangent space does not support a vector space structure. However, lifts
of a special kind for orbisections, we may obtain a vector space structure: For vector fields, it is
often advantageous to consider the representative of a vector field X: M — TM in charts. For a
manifold chart ¥, this representative is defined to be Xg := d¥ o X o ¥~1. Tt is possible to obtain
lifts of a similar kind for orbisections on arbitrary orbifolds.

3.2.2 Definition Consider [6] € Xow (Q) With 6 = (0, {0}, [Ps, Vs]) € Orb(V, TV). If for each
1 € I, the lift is a vector field o; € X (V;), then (0;):cr is called < family of canonical lifts for the
orbisection [6] with respect to V. If there is no risk of confusing which orbifold atlas is meant, we
will also say that {o;},.; is a canonical family for [].

Representatives of orbisections with canonical lifts with respect to a given atlas are unique:

3.2.3 Lemma Let [f] € X0 (Q) and V € U be an arbitrary orbifold atlas such that there exists

a representative h = (f, {fiticr > [Pnsvn]) € Orb(V, TV) whose lifts form a canonical family for [f]

Then h is unique, i.e. if there is another representative of [f] whose lifts form a canonical family
with respect to V, then the members of this family must coincide with {fi}, ;-
Proof. Let g = (f,{9i}icr > [Py, vg]) € Orb(V, TV) be another representative of [f] whose lifts form a
canonical family with respect to V. For each chart (V;, G;, ), @ € I we have mpy, f; = idy, = v, gi.



3.2 Orbisections 49

On the other hand, g; and f; are lifts of f, thus for every point x € V;, there is 7, € G; such that
Tvs fi(z) = vz fi(x) = gi(x). Combining these observations, we obtain

x =y, fi(x) = mrv,gi(2) = 7oy, Ty fi(2) = Yo (3:2.1)

Thus for each z € V; \ ¥¢, (i.e. x is non-singular), we derive v, = idy, and f;(x) = g¢;(z). The
continuous maps f; and g; coincide on the dense set V; \ X¢,, whence f; = g;. O

It turns out that analogous to vector fields on manifolds, one is able to construct a canonical
family for each orbisection with respect to any given orbifold atlas. At first we have to assure that
there is at least some representative with a family of canonical lifts for a given orbisection:

3.2.4 Lemma For every orbisection [f] € X o (Q), there is a representative V of U indexed by
some I and a representative of an orbifold map g = (f,{fi},c;,[Ps,v5]) € Orb(V, TV) such that

(@) g€ f), A
(b) {fi};er is a canonical family for [f] with respect to V.

Proof. Following Lemma we choose orbifold atlases A € U and W € U indexed by I such
that there is a representative h = (f,{hi},c;,[P;,v;]) € OrbOW,TA) of [f]. For i € I let
hi: Vi — TUq be the lift with respect to (Vi, Gi,¢;) € W and (TUqq), Gag) Ta) € TA.
By Lemma the composition h} = 7wy, © hi: Vi — Uy is a local lift of idg, since
TT(Q.u) © [ﬁ] = id(gu). For each v € V; there is an open G;-stable set V' by Proposition such
that hﬂVi” is an open embedding of orbifold charts.

Thus V; can be covered by open Gj;-stable subsets {Vﬂ j e Ji} such that h%lv‘j is an embed-

ding of the orbifold chart (VZJ Gy ilys) into Wo;y. Define an orbifold atlas V € U via V :=

{(V;j, Gy, Yilyi) ‘Z el,je J,-}. Since h} is invertible on each Vij7 for j € J;, one can construct a
family of lifts for f as follows: Set

F = T(hilys) ™" o hilys: Vi = TV
A computation proves the identity Ty © ff = idVij, ie. ff ex (VZJ) Since h}|vij is an embedding
of orbifold charts, the same holds for T'(h}|,s) ™" = (Thjlyyi)~" (cf. Lemma . By construction

the mooth maps ff are induced by the lifts h; of h with respect to the inclusion of Vij and the open
embedding ThHTv?" Hence Lemma implies that there is a representative § € [f] whose local

lifts are given by the family (f})iecr jes,. Therefore, § € Orb(V, TV) is a representative of [f] whose
lifts form a canonical family with respect to the atlas V. O

We now have canonical lifts for an orbisection at our disposal. With this tool, it is possible to
deduce a surprising properties of orbisections:
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3.2.5 Proposition Orbisections preserve local groups.

Proof. Consider [f] € Xom (Q) together with a representative f = (f, {fi}icr [Py, vs]) such that
{fi}ics is a canonical family with respect to some orbifold atlas V. Consider x € @ together with
an orbifold chart (V;, G, ;) such that « € ¢;(V;). Abbreviate G := G;. Recall f; € X (V}), i.e. it is
a vector field on V;. Choose z € V; with ¢;(2) = 2. We have to prove that G coincides with G, ..
To this end consider v € Gy, (.). By definition, v acts on T'V; via the derived action v.v := Ty(v).
One computes

z = mrv, fi(2) = 7rv (7-fi(2)) = mrv, Ty (fi(2)) = vmry, fi(z) = v.2.

Thus every v € Gy,() is an element of G.. Hence 0: Gy,(;y — G.,7v + 7 is an injective group
homomorphism. We claim that 6 is surjective. To prove this, consider § € GG,. Observe that every
d € G, is a change of charts (even an embedding of orbifold charts) and there is g € Py together
with an open (connected) neighborhood 2, C V; of z such that d|o, = g|q. holds. The map v,(g) is
a change of charts of T'V; into itself. Restricting to the open connected component C' of domv(g)
which contains f;(2), [51, Lemma 2.11] implies that there is a unique v € G such that v¢(g)|c = 7lc.
On the open set Q. N ffl(C), the identity

fio 5|anf;1(c) = Vf(9)fi|anf;1(c) = ’Y-fi‘szflfl(c) (32.2)

holds. The set Q. N f;*(C) is a non-empty open set and by Newman’s Theorem there is a
non-singular y € Q. N f;*(C). Specializing to y, equation (3.2.2) yields:

[i(0.y) =~.fily) =Tvfily) = by =mrv, fi(dy) = mrv, Ty fi(y) = vy

Then 6~ 'v.y = y and y being non-singular forces v = 6. Applying this to (3.2.2) we obtain:

In other words, ¢ fixes fi(z) and thus ¢ is an element of the isotropy subgroup Gy, (). Thus 6 is
surjective. We conclude that 6: G, — Gy,(z),y + 7 is an isomorphism of groups and that the local
groups I'; and T'f(,y are isomorphic. O

The property to preserve local groups limits the choice of images an orbisection may take on a
given singular point. In particular, there are elements in the tangent space at a singular point which
are not in the image of any orbisection. We refer to Example [3.3.9] for such a case.

3.2.6 Proposition Let [f] be an orbisection and V € U be an orbifold atlas. Furthermore, let
f= (f Afiticr > [Pr,vye]) € Orb(V, TV) be a representative of [f] such that {fi}icr is a family of
canonical lifts. For each element ¢ of the set of changes of charts Chy of V (c¢f. Notation
with dom ¢ CV; and cod ¢ C V;, (Vo,Ga,%a) €V, a € {i,j}, the identity

fj¢ = T¢fi|dom¢ (323)
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holds. The pair (Chy,v) with
v: Chy = ®(TV), ¢ — T,

is a representative of [Py,vys]. Here Chy is the quasi-pseudogroup of all changes of charts for the

atlas V (cf. Notation .

Proof. Pick an arbitrary change of charts ¢ as above and choose a representative (Py,vy) of [Py, vy].
It suffices to prove the identity on small neighborhoods of arbitrary points in dom ¢. Let
zo € dom¢ be such a point. Since P; generates W(V), there is an open z¢-neighborhood U,, C
dom ¢ C V; together with v2 € Py such that 75, lu,, = ¢lu,, holds. By definition, we obtain a local
lift of f:

Filuay = vl = V(180 il g - (3.2.4)

On the other hand, the composition T'¢f;|v, is defined, since f;|v, € X (Us,). By Lemma
(a), T'¢ is a change of charts of TV and thus T¢fi|y,, is a local lift of f on Uy,. For every y € Uy,
we obtain

T (ve) fily) = T Tofi(y).

Thus there is a unique group element g, € G; such that gy.uf(vfo) fily) = Tofi(y) holds. In
Proposition we have seen that orbisections preserve local groups, whence they preserve non-
singular points. Therefore lifts of orbisections map non-singular points to non-singular points. The
set Uy, is a non-empty open subset of V; and by Newman’s Theorem @, the non-singular points
of the Gj;-action on V; are dense in U,. Using for non-singular y € U,, we obtain the
identities

Tofi(y) = gy-vi(Vo) i) = gy-Fi0(y) = Tgy(f;90(y)), whence
o(y) = mrv, Tofi(y) = v, Tgy(fi0(y)) = 94-0(y)-

As changes of charts preserve non-singular points and y is non-singular, g, = idy, follows. The
maps vy (%fo) fi and T'¢f; therefore coincide on the non-singular points of Uy,. As these points form
a dense subset in Uy, the continuous maps must coincide on Uy, whence T'¢f;|u, = vf (*yg’o) filu.,
holds and indeed T'¢ fi|v,, = fidlu,, follows.

The quasi-pseudogroup Chy generates W (V) and our previous considerations show that v (as defined
above) satisfies property (R4a) of Definition The functoriality of T implies properties (R4b)-
(R4d) of Definition for (Chy,v). Notice that we did not change the family of lifts {f;}, ;.

Thus h = (f, {fiticr »[Ch,v]) € Orb(V, TV) is a charted map such that [f] = [h). O

3.2.7 Remark Let M, N be smooth manifolds and f: M — N be a smooth map. Recall that
o€ X(M)and T € X(N) are called f-related if Tfoo = 7o f holds. Hence Proposition [3.2.6|shows
that canonical families of an orbisection are families of pairs of f-related vector fields, where f runs
through the changes of charts of the domains of the pair.

3.2.8 Lemma Let [f] be an orbisection and V be an arbitrary representative of U. There is a
refinement V' of V and a representative h = (f,{hi},c;,[P,v]) € Orb(V',TV') of [f] such that

{hi},cr s a family of canonical lifts for [f].
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Proof. By Lemma [3.2.4] we may choose a representative W of U indexed by I and a representative
g = (f{9i}ier - [P v]) € OrbW, TW) of [f] such that {gi},cr is a canonical family. Choose a
common refinement V' of W and V. The refinement V' induces a common refinement 7V’ of TV
and TW, since embeddings of orbifold charts are mapped to embeddings of orbifold charts by the
tangential functor T. Let V' be indexed by J and a: J — I be a map such that for j € J there
is an embedding of orbifold charts \;: (V}, G}, ) = (W), Ha(j), Ya(s))- The family {g;};c; is a
canonical family, therefore

9o N (V]) = ga(j)(ImA;) € TTm A;.

Define the maps Ahj = (TAj) ' ga(yAj: V] = TV]. Then Lemn}a assures that there is a pair
(P,v) such that h:= (f,{h;},c;, [P, v]) is a representative of [f]. A computation yields

mrv;hy = 1ov, (TA) " gay A = A) Trwa g, 9ay A = idy,

for each j € J. In conclusion, {h; }j ¢ is a canonical family and the domain atlas of h is a refinement
of V. O

The results obtained so far show that each orbisection possesses representatives whose lifts form
canonical families for suitable refinements of V. We will now prove a converse: For each orbisection
and an arbitrary orbifold atlas, there is a representative whose lifts form a canonical family with
respect to the given atlas. This result is quite surprising since in general maps of orbifolds need not
have lifts on an orbifold chart chosen in advance.

3.2.9 Proposition Let [f] € Xor (Q) and W be an arbitrary representative of U indexed by J.
There exists a representative g = (f,{g;} [P,v]) € OrbOW, TW) such that {g;}._; is a canonical

/ / jeJ jeJ
family with respect to W .

Proof. Lemma allows us to choose a refinement V of W indexed by I and a representative
b= (f,{fv, Viers [Pyv]) € Orb(V, TV) of [f] such that {fy, }ier is a family of canonical lifts for
[ f] Let (W;,G;,%¢;) € W be an arbitrary orbifold chart. We have to construct a local lift of f
on (W;,Gj,v;). To achieve this, consider z € W;. Since ¢;(x) € Q and V is an atlas, there is a
chart (V;, Gy, ;) € V together with a change of charts A, € Chv, w, (cf. Notation such that
z € Im \,. Then we define

fw, (2) =T fu, \; ' (2) € T-W (3.2.5)

for all z € ImX\. The definition of fy;, neither depends on the choice of A, nor on (V;, Gy, ;). To
see this, consider another chart (V;,Gj,¢;) € V and a change of charts morphism yu, € Chy, w,
with x € Imu,. Denote the intersection Im A\, N Im p, as 2,. We will show that for each z in
the open z-neighborhood §2,, equation yields the same fiy, (2) if u, is used instead of ..
Observe that h, := A;lum\ugl(m) is a change of charts in Chy, y,. Using that the family {fv,}
is a canonical family of lifts with respect to V, we compute for z € Q,

TAufv Ay ' (2) = TAg fvihapiy ' (2) = TATha fv, iz (2) = Tha fv, 13 (2).

icl
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Hence, on Q, the assignment ([3.2.5) does not depend on any of the above choices. Thus it makes
sense to define a map as follows

fw,: Wy = TWj,z — TAfy, A" (2) if there is (V;, Gi, ;) € V and A € Chy, w, with 2 € Im .

For each x € W; there is a change of charts such that the identity holds in an open x-
neighborhood. Hence, the map fy, is a smooth and by construction, a smooth vector field. Repeat-
ing the construction for each chart in W, we obtain a family of vector fields { Jw; }j ¢, Which lift f.
We claim that the family of vector fields is a canonical family of lifts. It suffices to prove identity
for each ¢ € Chw, w, and j,k € J. To this end fix ¢ € Chw, w, and consider z € dom ¢
together with a change of charts A, € Chy, w, such that z € Im A, C dom ¢. Then ¢po A, € Chy, w,
implies

fwn 0 6(2) BED T(oA) fr. (6 0 \)716(2) = ToTAfix7 1 (2) BED To v (2).

Since z € dom ¢ was arbitrary, this proves identity (3.2.3). Hence by Proposition we may choose
v, such that the map g := (f, { Iw, }j oy [Chw, v]) is a representative of an orbisection with canonical
lifts. The atlas V is a refinement of W, thus for every i € I, there is an embedding of orbifold charts
it (Vi, Giymi) = (Wagiy, Gagiys Yagiy)- By construction, we obtain fy, = T)\Z-_lfwa(i) A; and therefore
every lift fy, is induced by a suitable lift of §. Following Definition , we have § ~ h and the

classes [j] and [f] coincide. Thus the lifts are a canonical family of [f] with respect to W. O

Proposition [3.2.9shows that every orbisection may be identified in every given atlas with a unique
family of canonical representatives. In particular, orbisections satisfy analogous properties as C'*°-
sections in the tangent bundle in the sense of |15, below Remark 4.1.8].

3.2.10 Remark

(a) A family F of vector fields on an orbifold atlas V which satisfies Equation induces a
continuous map F': Q — TQ (cf. the proof of Proposition for the explicit construction)
such that

- (F,F,[Chy,v]) € Orb(V,TV) with v: Chy — ¥(TV),A— T,

- F is a canonical family.
Vice versa, if (f,{fi};c;,[Ps,vy]) is a representative of an orbisection whose lifts form a
canonical family with respect to an atlas V), then the above construction for {f;},.; yields
the map f. Lemma [3.2.3] implies that an orbisection is uniquely determined by its family of
canonical lifts with respect to any atlas V. This induces a one to one correspondence between
the set of orbisections and families of vector fields for some orbifold atlas V which satisfy
B23).

(b) Notice that (a) implies: For [f] € Xom (Q) and (U, G, ) € U, there is a unique vector field
fu € X (U) such that for f = (f,{fi},c;[P,v]) the identity T4 fyy = f holds.

(¢) The canonical lift of the zero orbisection 0oy, with respect to some orbifold chart (U, G, ) is
the zero-section in X (U). If [f] € Xom (Q) is an orbisection and (U, G,1) € U is some chart

such that ¢(U) Nsupp[f] = 0, then the canonical lift of [f] on U is the zero-section in X (U).
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(d)

Proposition implies that orbisections in Xo,p, () take their values in
TQM™ = {[m,v] | (U,G,¢) eU,v e TU with gv=wvforall g € Grppy(v)} -

Notice that T,U™ := {v e T,U|g.v = for all g € G,} is a subvectorspace of T,U and
TU™ = Useov ToU v g invariant with respect to the derived G-action on TU. Since
the chart mapping T is an open map, |20, VI. Theorem 2.1] implies that the restriction

inv 1 T . . 7— invaﬂ X
TW|;rU;nvm ™A s a quotient map. Furthermore, the map TTr\TIQUm @@

ﬂ(x)Qi“V = T'w(T,U™) is in a natural way a vector space, whence the fibres of TQ™ are
vector spaces. Notice that this vector space structure induces a vector space structure on
Xom (@) by pointwise operations on canonical lifts. The details are recorded in the next
section.

The underlying continuous map o of an orbisection [6] € X0, (@) uniquely determines the
orbisection. To see this, we choose a family of canonical lifts (0;);e; with respect to some atlas
{(Us, Gi,vi)} ;e € U for [6]. From part (d) we derive for z € U; the identity

is bijective. Thus

T “”07’7,93 _
0i(2) = (Thil] e " ?) " 0 0 0 4hi(2).

Hence, the underlying map o uniquely determines the canonical lifts o;. By part (a), the
canonical family {0;},.; uniquely determines [6], whence the assertion follows. In particular,
we obtain a canonical embedding

xOrb (Q) — C(QvTQ)a [6—] =0
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3.3. Spaces of orbisections

We now study spaces of orbisections. For these spaces we will obtain the structure of a real topo-
logical vector space. The construction of the vector space structure is inspired by arguments first
given in [7].

3.3.1 Proposition The set Xoq (Q) of orbisections is a real vector space with pointwise vector
space operations on canonical lifts. The zero element 0o € Xor (Q) of Xom (Q) is called the zero
orbisection. Endowing Xor (Q) with this vector space structure, the sets X o (Q) x € Xor (@), C
Xory (Q) become linear subspaces.

Proof. Let [f],[g] € Xow (@) and choose an arbitrary representative V of the orbifold structure
U, indexed by some set I. By Proposition [3:2:9 we may choose unque representatives of orbifold
maps f = (. {fi}ie; + [Py vs]) € Orb(V, TV) of [f] and § = (9, {g:}ses + [Pys v)) € Orb(V, TV) of
[g] such that the families of lifts are canonical families. Without loss of generality Py = Py = Chy
and vf(A) = v4(A) = TA hold, by Proposition By construction, for each ¢ € I the lifts
are vector fields f;,g; € X(V;). Recall from |16, 2.7] that the vector space structure on X (V) is
induced by pointwise operations. We define the vector space operations on Xo,1, (@) via the following
construction:

For z € R consider f; + zg;: V; — TV; € X(V;). Remember that tangent maps act as linear maps
on each tangent space. For every change of charts A\ € ¥(V) with dom A C V; and cod A C V; we
obtain:

(£ + 29)Ap) = f;(Mp)) + 29;(A(p)) = v (M) fi(p) + 2v4(N)gi(p)
= TpA(fi(p) + 2TpA(29i(p)) = TpA(fi(p) + 29i(p)) (3.3.1)
= Viy2g(N)(fi(p) + 29i(p))-
Define the quasi-pseudogroup Pyy.4 := Chy together with viy.q: Pri.g — ®(TV), A= TA. The
pair (Pfq.g,Vf+29) and the family (f; + zg;)icr satisfy properties (R4a)-(R4d) of Definition

Notice that by Identity (3.3.1)) for a chart (V;, Gy, ;) € V the map T;(f; + zg;) is constant on each
fibre ¢, Y(y). As 4); is a quotient map, the map

f 290y, vy ©(Vi) = T (TV;), @ = Taps o (fi + z9:)¢ ™ ()

is continuous, by [20, VI. Theorem 3.2| Furthermore, the map f;+zg; is a smooth lift for f+zg|y, (v,)-
We claim that for every pair (i,j) € I x I, the maps f + zgly,(v;) and f + zgly,(v;) coincide on
(V) Nap(Vi). If this is true, then f + 29: Q@ = TQ,z — [+ zg|y,(v;)(x), for z € ¥;(V;) is a
well-defined continuous map. We obtain a charted orbifold map

Ft2g=(f+29.{fi + 29} ser+ [Prizgs Viszg)) € Orb(V, TV)

such that each lift f; 4 zg; is a vector field. Hence {f; + zg;},.; is a canonical family with respect
to the atlas V and []ﬁ—\zg] € Xorb (@) holds. Proof of the claim: Consider « € v¥;(V;) N, (V;). For
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every pair y, € ¥, (z), o € {i,j}, there is a change of charts A\ € Chy, ,v; such that A(y;) = y;.
Again by (3.3.1] -, the claim follows as

f 4 29ly, vy (@) = T (fi + 295)(y;) = T (f5 +tg;) (N wi))
= TY;TA(fi + 29:)(yi) = TYi(fi + 29:)(p) = ()

It remains to show that the construction does not depend on the atlas V. Let V' be another repre-
sentative of U and f’ and ¢, respectively, be representatives of [ f] resp. [g], whose families of lifts
form canonical families with respect to V'. By Lemma we may choose a common refinement of
V and V’'. The definition of equivalence of orbifold maps implies that the classes will be equal if the
induced lifts on this refinement coincide. Without loss of generality we may assume that V'’ refines
V: Let V' = {(Wg, Hg, ¢x) |k € K} and a: K — J be the map which assigns to k € K an element
of I such that there is an embedding of orbifold charts Ap: (Wi, Hy, ox) = (Vawk), Gak)s Yak))-
The atlas TV’ for TQ is a refinement of TV. In particular, T\ is an embedding of (TWy, Hy, T¢x)
into (TVa(k)zHa(k)vT'(/)a(k))~ Let f/ = (fv {fllg}keK ) [P]/‘a V}]) and g/ = (ga {g;g}keK ) [qu Vq])' The
families {fi},.; and {g;};c; are families of vector fields and we obtain induced vector fields on each
chart (Wy, Hy, ¢ since this chart embeds into a chart (Vo ), Ga(k)s Pa(k))- Combine Lemma
and the uniqueness assertion for canonical lifts (Lemma to obtain the following identity for
the induced vector fields

F=TN fatMes 9k = TAL Gae) b
Constructing fi?g’ € Orb(V', TV') as above, we deduce from the last identity that f/+-?g ~
f+ zg'. A vector space structure on Xo,, (@) is thus defined via the assignment:

1+ 2[9) == [F + 2g].
Clearly Oo:b € Xor (@) € Xorb (Q),. holds, whence these subsets are not empty. The last claim
follows from the definitions: For [f],[d] € Xow (Q), with supp[f] € K and supplg] C L with

.
K, L C Q compact, one obtains supp([f] + z[j]) € supp[f] Usupp[j] C K U L. Therefore X0, Q)
and Xo.b, (@), are linear subspaces. O

Our goal for the remainder of this section is to topologize the vector spaces Xou, (@) and
Xom (Q),. If Q is a compact topological space, then Xo,1, (Q) will be a Fréchet space.

3.3.2 Lemma Let (Q,U) be an orbifold and V = {(U;, G;, ;) |i € I} an arbitrary representative
ofu indexed by I. There is a bijection identifying each [f] € Xor (Q) with a unique representative
fy whose lifts { fu,},c; form a canonical family for [f] with respect to V.

(a) The map
Av: Xom (Q) = [[X W), fv = (fu,)ier

el
is a linear injection into a direct product of topological vector spaces (cf. Section for
information on X (U;)), whose image is the closed vector subspace

{fz ZEIGH%

el

)| VA € Chy,dom A C Uy, cod A C U, fj)\:T)\fi|domA}
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(b)

If V is a locally finite atlas such that each chart in'V is relatively compact, then the map
Av: Xom (Q). = P X)), /v = (fu.)ier
il
is a linear injection into the direct sum of topological vector spaces (cf. |39, 4.3]). Making

identifications, its image is the closed vector subspace H NP, ; X (Uy).

Proof. (a) For [f] € Xom (Q), we let (fu,)ies be the family of canonical lifts with respect to V.

Proposition shows that Im Ay, is contained in H. Remark (a) implies that Ay
is injective and Im Ay, = H holds. The vector space operations of Xo,1, (@) are defined via
pointwise operations for families of vector fields. Hence by definition, Ay, is a linear map.
We have to show that H is a closed vector subspace. Consider A € Chy, y, and arbitrary
y € dom \. Each element in H must satisfy f;(A(y)) = TAfi(y), i.e. we observe evy(,(f;j) =
(T'Aoevy)(fi). Here ev, and evy(,) are point evaluation maps defined on X (U;) and X (Uj),
respectively. The choice of the topology on X (U;) (cf. Definition implies that point
evaluation maps are continuous mappings on these spaces. To see this, note that for a manifold
chart (k,V,) the restriction map res% is continuous (cf. Notation . By |2, Proposition
3.20], point evaluation maps are continuous for all spaces C*°(Vi, Tx(y)V;), whence the claim.
Since the projections pry: [[;,c; X (U;) — X (Uyk), (fi)ier + frx are continuous for all k, we
derive a continuous mapping

hag: [[XU) = Ta Uy, (fidier = (TAoevy)(fi) — evagy) (fi)-
el

We may now write the space H as the intersection

H= ﬂ ﬂ hy(0).

AECh 4 yedom A

Since each hy , is continuous, the space H is a closed subspace of Hie ; X (U;) as an intersection
of such spaces.

The atlas V is locally finite and thus only finitely many charts intersect a given compact
set. In particular, Ay makes sense. The canonical injection I: €,.; X (U;) — [[;c; X (Us) is
continuous by [39, 4.3.1] and thus I~'(H) = HN@P,; X (U;) is a closed subset of P, ; X (U;).
Again by Propositionlm Ay is contained in =1 (H) and by Remark Ay is injective
and ImAy = I"Y(H) = HN@,; X (U)).

O

3.3.3 Definition

(a)

Let V be a representative of U for an orbifold (Q,U). Endow Xo,p (Q) with the locally convex
vector topology making the linear map

AXow (@ = JI x@), [fl (f)wewer

(U,G)ev
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a topological embedding. Here we have used the unique lifts fi; constructed in Remark
We call this topology the orbisection topology and note that it is the initial topology with
respect to the family of maps 7¢: Xom (Q) — X (U), [f] = fu, (U,G,%) € V.

Let V := {(V;,H;,¢;)|j € J} € U be alocally finite orbifold atlas such that each chart in V
is relatively compact. Endow X (Q), with the locally convex vector topology making the

map

(&)

Av: Xow (@) = DX (V). [f1 = (Fv)jes
jEJ
from Lemmam (b) a topological embedding. We call this topology the compactly supported
orbisection topology (or c.s. orbisection topology).
With respect to this topology, the linear maps 7y, : Xow (@), — X (V}), [f] ~ fy, are contin-
uous for each (V;,Gj,1;) € V.

A priori, the topologies defined on the spaces of orbisections might depend on the choice of orbifold
atlas. However, as in the manifold case, we will see that neither the orbisection topology nor the c.s.
orbisection topology depend on this choice. To prove the independence of the compactly supported
orbisection topology of the choice of the orbifold atlas, relatively compact orbifold charts are needed.
This explains the additional requirement in Definition [3.3.3]

3.3.4 Lemma Let W = {(W;,G;,¢;) |i € I} € U be an arbitrary orbifold atlas for Q.

(a)
(b)

The orbisection topology with respect to V) is initial with respect to the family (Tw,)(w,,H,,6:)ew -
Let W be locally finite such that each chart in W is relatively compact. The c.s. orbisection
topology Oy with respect to V and the c.s. orbisection topology Oy with respect to W coincide.

Proof. (a) Consider the atlas W UV obtained by joining the atlases V and W. Clearly the orbi-

section topology induced by V (respectively by W) is coarser than the orbisection topology
induced by W UYV. We claim that the orbisection topology induced by V is finer than the one
induced by YV U W. If this is true then both orbisection topologies coincide. An analogous
argument applies to the topology induced by W. Hence it suffices to prove that the orbisection
topology induced by V coincides with the one induced by W U V. Without loss of generality
we may assume that V is contained in W, i.e. W =W UV holds.

Let 7 be the initial topology on Xo1, (Q) with respect to (Tw, ) (w;,c;,6:)ev- Fix (U, H,1p) € W,
we have to show that 7 : (X0, (Q),7T) — X (U) is a continuous map.

The open sets {‘71 =UnNW, ‘ i € I} form an open cover of U. Define V; := w_l(f/i) to derive
an open cover of U. By [26, Lemma F.16], the topology on X (U) is initial with respect to the
family (res%)ie 1. Since every V; satisfies ¥(V;) C ¢;(W;) by compatibility of orbifold charts,
there is a family of changes of charts (Mik)kek,; in Chy, v such that UkeKi cod N\, = V;.
Another application of |26, Lemma F.16] implies that the topology of X (V;) is initial with
respect to (resz/gd A, Jkek;- Using transitivity of initial topologies, 7y will be continuous with
respect to 7 if we can show that every

fir :=rest 4 A OT0 = Xorb (Q) — X (cod Ai,)
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is continuous for ¢ € I,k € K;. But |26, Lemma F.15 (a)] implies that the mapping
resgg"mA: X (W;) — X (dom A;p) is continuous. Now we use that

gr,: X (dom i) — X (ImAg), X = ThoX oAt

is continuous. To see this, observe that in charts (using Lemma , the mapping reduces
to a pullback by a smooth map which is continuous, by |24, Lemma 3.7]. We conclude from
fik = gx resg‘g"mA Tw, that 7y is continuous with respect to T for every (U,G,v) € V. Thus
the orbisection topology with respect to V is finer than 7, whence both topologies coincide.
Consider V = {(V;,H;,v¢;)|j € J}. Notice that V U W still is a locally finite atlas with
relatively compact charts. After replacing W = {(W;,G;, ;) |i € I} with W UV, we may
assume without loss of generality that V C W holds. Let Oy be the c.s. orbisection topology
with respect to W and Oy be the c.s. orbisection topology with respect to V. Since V is
contained in W the definition of the c.s. topology implies Oy, C O,W, i.e. the topology
Oy is finer than O,,.Conversely we have to prove that Oy, is finer than Oy,. To see this,
it suffices to prove that idx,, (@), (Xor (Q).,Ov) = (Xom (@), Oy) is continuous, which
follows from |11, I. §1 6. Proposition 5] if every zero-neighborhood in Oy, contains a zero-
neighborhood in Oy. We proceed in three steps:

Step 1: Zero-neighborhoods in X (IV,.) induce zero-neighborhoods in (Xo.1, (Q),,Ov)
Consider an orbifold chart (W,,G,,¢,) € W. The projection pr,.: [[,.; X (W;) — X (W)
and the canonical inclusion Iy : @lel (Wi) = Ilie; X (W;) are continuous (cf. [11, II. §4
5. Proposition 7]). Furthermore, since ¥ C W holds, we identify each chart (V;, H;,v;) in V
with a chart (W, (), Gagj), @a(j)) in W. Then the canonical inclusion

0 for i # a(y) for all j

Iy @% %@x L (f; ]EJH(fZ)ZEIWlthf'L~—{fj ifi=aj) forjeJ

jed 1€l

is continuous. Then Ay, := pr.olyolyw: @,c;(Vi, Hi, ;) — X (W;) is a continuous map.
Now each zero-neighborhood €2 in X (W,.) induces a zero-neighborhood (A, o Ay,)~1(Q) in
Oy.

Consider [6] € Xorm (@), and denote its canonical lifts on (W;, G;,1;) € W by ow,. By
Proposition the canonical lift oy, is uniquely determined by the canonical lifts

{av (Vi, H; ;) € V with o, (W, )mmw];«é@}

Recall that all charts in W are relatively compact and V is a locally finite atlas. Thus for each
r € I, there is only a finite subset J,. C J such that Im; N p,.(W,.) # ( holds if and only if
J € I.. Denote the canonical inclusion B ; X (Vi) = @D;c; X (V;) by ¢vg.. By |11, IL. §4
5. Proposition 8 (i)], the map ¢, is continuous for each J, C J. The maps Iy and Iy
respectively, are (up to identification) just inclusions of subsets and pr,. is a projection. Since
the lift ow, of an orbisection [6] € Xou, (@), is uniquely determined by the family of lifts
indexed by J,., we obtain for each open set 2 € X (WW,.) the following;:

The lift oy, is contained in  if and only if [6] € (Aw, o Ay)H(Q),
if and only if (ov; )res, € (Aw, 017,.) 1 (Q).

(3.3.2)
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Step 2: The countable case We shall assume for this step only that the atlases V, W are
indexed by countable sets I, J.

Consider the vector spaces (B,c; X (Wi))box and (B¢ ; X (V;))box respectively, endowed with
the box-topology. Since I, J are countable, the box topology coincides with the locally convex
direct sum topology by [39, Proposition 4.1.4]. A typical zero-neighborhood in @, ; X (W) is
given by U := ®;c;U;, where U; C X (W;) is an open set. For each i € I choose by Step 1 an
open box neighborhoods B := Doc, B! such that B* C (Aw, otz,)"Y(U;). Reformulating
Condition this yields: If oy, € B, holds for all a € J;, then oy, € U; follows. Using the
boxes defined above, we construct sets €2; := [, I, B; Recall that V contains only relatively
compact charts and W is locally finite. Thus for fixed j € J the set I; := {j € J;|i € I} is
finite, whence the set €2; is an open zero-neighborhood of X (V;). Now B := P, ; 2; is a box
zero-neighborhood in @, ; X (V;). The open box-neighborhood B contains only elements of
@D, X (V) which are mapped by the projection B, ; X (V;) = @Dy, X (Vi) into @®res;, B
for each ¢ € I. We obtain the following condition for an orbisection [6] € Xow (Q), with
families of canonical lifts (ov;);jcs with respect to V and (ow, )icr with respect to V:

[6] € AN (B) & (0v,)jes € B= (Vi € I)(ov,)jes € €D B
keJ;

= (Viel) ow, €U; = [6] € Ay (U)

In other words, the typical zero-neighborhood A;\}(U ) in Oyy contains the zero-neighborhood
ALY (B) € Oy. As sets of the form A, (B, Us) form a base of zero-neighborhoods in Oy, we
deduce Oy C Oy and thus Oy, = Oy. Furthermore, the map p := Ay [ AW o (A [ImAv)—1)
is an isomorphism of topological vector spaces.

Step 4: The general case In general neither V nor W need to be countable (since the
orbifolds we consider need not be o-compact). Orbifold charts are connected, whence each
chart is contained in exactly one connected component. Let C be the family of connected
components of @ and for C' € C and an atlas A define A¢ := {(V,H,¢) € A|y(V) C C}.
The subset A¢ is an atlas of orbifold charts for the component C. We may split the atlases
V, W into disjoint unions V = | | Vo resp. W = | |oce We. By construction, Ve is still
contained in W¢ Decompose the direct sums

Pxw) =P b xw Pxv=p| p xwv

iel ceC \(W,G,¢)eEWc Jje€J ceC \(V,H,9)eVe

and observe that the maps Ay and Ay, decompose as Ay = (A, )cec and Ay = (A, )cec.
Every connected component C' C @ is o-compact by Proposition m (d). Since W¢ and
Ve are locally finite, both atlases have to be countable. Step 3 yields for each connected
component C an isomorphism pc = Ay, |™Awe A;é|ImAVc: ImAy, — ImAyy,. Taking
direct sums in the category of topological vector spaces is functorial. Therefore the map
©coecpc: DeoceImAve — Deoce Im Ay, is an isomorphism of locally convex topologi-
cal vector spaces. Observe that the families of canonical inclusions (of vector subspaces)
we: ImAyy = @Dy g yyeve X (V) respectively vo: ImAywe = D w.g.p)eme X (W) induce
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continuous linear maps ¢ := Gcecte and V' := Boecty, respectively. By [11, I1.6, Proposition
8], the subspace topology on Im ¢ turns ¢ into an isomorphism of topological vector spaces and
the same holds for +/ and the subspace topology on Im . We deduce that

AWIImAW ° (AV|ImAv)_1 _ LI o @ (AWCllmch ° (AVc|ImAvc)_1) o L_l
cecC

is an isomorphism of topological vector spaces. Thus Oy = Oy holds.

To illustrate the construction of the orbisection topologies, we consider the special case of orbi-
sections on an orbifold with a global chart. It turns out that we may then identify the orbisections
with subspaces of vector fields on the global chart.

3.3.5 Example Let d € N. Consider a finite subgroup G C Diff(R?). We define an orbifold
structure on @ := R"/G via the atlas V := {(R% G,7)}, where m: R? — R?/G is the quotient
mapping.

(a)

By Proposition each orbisection [6] € Xy (@) can be identified with a unique vector
field in X (Rd). Since the group elements are changes of charts, for the canonical lift of an
orbisection on the global chart g.X = T'go X = X og holds for each ¢ € G. Thus the canonical
lifts are G-equivariant vector fields. Hence by Lemma the map Ay: Xow (Q) = X (Rd)
(cf. Lemma establishes an isomorphism of topological vector spaces between Xoy, (Q)
and the space of all G-equivariant vector fields X% (R9).

Observe that X“(R?) is a closed subspace of X (R?). To prove this, recall that for each p € R?
the point evaluation ev,: C°°(R% R?) — R? is continuous by [2, Proposition 3.20]. Hence
for each pair (p,g) € R? x G, the map E,,: C®°(R%L,RY) — R f — dg(p,-) o evp(f) —
evy(p) (f) is continuous. We may then identify X% (R?) with the closed vector subspace
ﬂpE]Rd ﬂgeG Ep_,;(o)

We identify the compactly supported orbisections Xo,p (@), with the set of equivariant com-
pactly supported vector fields of R?. To this end, consider

XERY) :={X e X(RY) Vg€ G, Tgo X =X og}

as a subspace of X.(R%) (cf. Definition . We claim that Xo (Q), and X&(R?) are
isomorphic as topological vector spaces. To this end, choose a locally finite orbifold atlas
W = {(U;, Gy, m;) |i € I} for Q with I countable. By Lemma we can choose W such
that for each i € I the set U; C R? is a relatively compact open subset such that the inclusion
of sets induces an embedding of orbifold charts. Then R? = Uicr G-U; holds, as W is an
orbifold atlas for Q = R?/G. Since G is a finite group we may assume that for each i € I and
g € G there is j € J with U; = g.U; and G; = ¢g.G;.g7". Thus (U;);e; is a locally finite cover
of R? by relatively compact open subsets such that the cover is countable. Recall from the
definition of the topologies that the rows in the following commutative diagram are topological
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embeddings with closed image (cf. Lemma and Definition [C.3.4))

Ay

xOrbr(Q)c Dicr X (Ui)
]
XO(RY) —= X, (R — 2 @, O (U, RY)

Here the isomorphism 6 is defined via (f;);er — (pryofi)icr. As canonical lifts of an orbisection
are unique by Lemma [3.2.3] Proposition [3.2.9] and a trivial computation yield Im6Ay, C
Im Ryy. Furthermore, the image Im R;\}HAW coincides with X&(R?). Denote by oga the
canonical lift of [6] € X0, (@), With respect to the global chart. Then R, Ay induces the
isomorphism of topological vector spaces

Xow (Q), = X (R?),[6] — oga.

Observe that X&(R?) is a closed vector subspace of X.(R?). This follows from part (a) and the
following facts: The inclusion v: @,.; C(U;,RY) — [],c; C*°(U;, RY) is continuous by |11}
I1. §4, Proposition 7]. By definition of the topology on X (R?), we may identify X“(R?) with a
closed vector subspace A of [];.; C>°(U;,R?) such that :7*(A) = Ry (X5 (R?)) holds. Hence
the assertion follows by continuity, since Im Ry, is a closed subspace.

We conclude that for the orbifold @ = R?/G, the space Xom (Q) corresponds to X% (R9). Also
Xor (Q), corresponds to X&' (R?).

We remark that a similar result holds for arbitrary orbifolds with a global chart, by essentially the
same argument.

3.3.6 Theorem Let (Q,U) be a second countable orbifold, i.e. Q is a second countable space (or
equivalently Q is a o-compact space). The topological vector space X o, (Q) is then a Fréchet space.

Proof. As @ is second countable, there is a countable orbifold atlas {(U;, G;,1;)|i € N} for Q. By
Lemma [3:3:4] the orbisection topology is initial with respect to the maps

v, Xow (Q) = X (Us), [f] = fu.
In particular, Lemma, yields a linear topological embedding

A Xom (Q) = [[X W) [f] = (fv.)iex
€N
onto a closed subspace. The manifolds U; are finite-dimensional, connected and paracompact man-
ifolds. Thus by Proposition [I.4.2] every U; is o-compact and second countable. The space R™ is a
Fréchet space over the locally compact field R. Combining these observations with Lemma
and |26 Proposition 4.19], X (U;) with the topology defined in Definition is a Fréchet space
for each ¢ € I. The countable product of Fréchet spaces is a Fréchet space (combine [11, I. §3
2.] with [39, Proposition 3.3.6]) and thus [[,.; X (U;) is a Fréchet space. From Lemma and
Lemma we deduce that X0, (Q) is isomorphic to a closed vector subspace of the Fréchet
space [[;c; X (U;). Thus Xoum (Q) is a Fréchet space. O
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3.3.7 Corollary

(a) The spaces Xor (Q) with the orbisection topology and Xor, (Q), with the c.s. orbisection
topology are Hausdorff and complete topological vector spaces.

(b) If (Q,U) is a compact orbifold, then the locally convex vector spaces Xom (Q) and Xor, (Q),
coincide. If Q) is compact, then both spaces are Fréchet spaces.

(c) Let V be a locally finite orbifold atlas for Q which consists of relatively compact charts. The
family (1v)v,aup)ev as in Definition (b) forms a patchwork for Xowm (Q),, turning it
into a patched locally convex space. The topological embedding is given by Ay (cf. Definition

3.

Proof. (a) We endow the space of vector fields on a finite-dimensional manifold with the topology

introduced in Definition Recall that direct products and direct sums of Hausdorff
and complete locally convex vector spaces are again such spaces by [39, Proposition 4.3.3,
Proposition 4.3.6 and Proposition 4.4.3]. The assertion follows from [26, Remark F.8], since
the spaces Xop (Q) and Xoy, (@), with the topology of Definition are isomorphic to
closed subspaces of complete and Hausdorff spaces.

(b) For finite index sets products and direct sums are canonically isomorphic. As locally finite
covers of compact spaces are finite, together with Theorem [3.3.6] this proves the claim.

(c) Follows directly from the definition of the c.s. orbisection topology (Definition .

O

3.3.8 Lemma Let K C Q be a compact subset and endow X o, (Q) x € Xorb (Q), with the subspace
topology. The space Xory (Q) i s a closed subspace of Xow, (Q),.-

Proof. Choose an arbitrary locally finite orbifold atlas V := {(V;,G;,¢;)|i € I} for (Q,U). By
Lemma m (b), there is a topological embedding Ay : Xom, (Q), — D,c; X (Vi) whose image is
closed. For each i € I, we obtain a (possibly empty) subset U; := ; (Q\ K). If U; = () holds, define
A; = X (V;). Otherwise, consider x € U; and a manifold chart (Wy, ) for V; such that x € W,,.
The evaluation map evy: C(W,,RY) — R ¢ — £(x) is continuous by |26, Proposition 11.1]. As
the topology on X (V;) is initial with respect to the maps : X (Vi) — C®°(Wy,RY), X — Xy,
the point evaluation ev,: X (V;) — R% o > ev¥ o 0,(c) is continuous. Hence we obtain a closed
set A; = [y, evy '(0). From [11) TI. §4 5. Corollary 1], we conclude that A := ®ierA; =
[Lic; AinED,;c; X (Vi) is closed. By construction, each orbisection in A, (A) vanishes off K, whence
its support must be contained in K. We deduce A},'(A) = X0 (Q) ¢, whence Xoy, (Q)  is a closed
set. O

The results in this section suggest that orbisections behave in many ways as vector fields for finite
dimensional manifolds. Before we end this section, we point out that in some ways orbisections do
not behave like vector fields. There may be formal orbifold tangent vectors which are not contained
in the image of any orbisection. In the manifold case, this may never occur. The following example
was first considered by Borzellino et al. (see |7, Example 43|) in the context of their notion of orbifold
maps:
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3.3.9 Example Consider R, with an action induced by the linear diffeomorphism v: R — R, z —
—z. Set G := () and let »: R — R/G be the quotient map to the orbit space. The quotient is
homeomorphic to @ := [0, o] (as a subspace of R). By abuse of notation we obtain an orbifold atlas
U = {(R,G,¢)} for Q. Now (Q,U) is an orbifold and the local groups are trivial for every point
except 0 (where it is isomorphic to G). We may thus compute the tangent spaces of @ at z € @ in
the following way:

For  # 0 we have 7T,Q = R and ToQ = [0, 0o[. An atlas for the tangent orbibundle is induced by the
orbifold chart (TR, G,T%), where G acts on TR via the derived action. Taking identifications we
obtain TR = R%. The group G acts via elements of O(1) on R. Hence its action on TR is induced
by the linear map Tv: R? — R?, (z,y) — (—x,—y). The topological base space of the tangent
orbibundle is thus 7Q = R?/G. The zero vector is the only fixed point of the derived action of
G. Since orbisections preserve local groups by Proposition [3:2.5] every orbisection maps 0 € @ to
0 € R?/G = TQ. Thus all orbisections in X0, (@) must vanish in 0 € Q and

Q = U Imf CTQ
(f»{f(R,Zz,w)}vpvy)exOrh(Q)

Is the topological subspace Q) at least an orbifold? We shall prove that the answer to this question
is negative. Indeed it will turn out that @’ is not locally compact.
Following Remark (d), the set @’ is homeomorphic to TR™ /G, i.e. it is homeomorphic to
(T(R\ {0}) U {0 € TyR})/G. Since T(R\ {0}) U{0 € ToR} ~ R\ {0} x RU{(0,0)} is not locally
compact, Lemma (e) implies that @’ is not locally compact.



4. Riemannian Geometry on Orbifolds

In this section, the notion of a Riemannian orbifold metric is recalled. Our approach follows the con-
struction of Riemannian metrics on manifolds (cf. [18, Ch. 1.2, Proposition 2.10]). The corresponding
construction of such an object for an orbifold is well known (see for example |51, Proposition 2.20];
we also recommend the survey in |15 Appendix 4.2]). Nevertheless, the results are repeated here
for the readers convenience, and to fix some notation.

4.0.1 Definition (Riemannian orbifold metric) Let (Q,U) be an orbifold and consider some orbifold
atlas V = {(V;,Gi, ;) | i € I} for (Q,U). A Riemannian orbifold metric on @Q is a collection p =
(pi)ier, where p; is a Riemannian metric on the manifold V; such that the following holds:

(Compatibility) For each (i,7) € I x I and each open G;-stable subset S C V;, every embedding of
orbifold charts X: (S, (Gi)s,¥ils) = (Uj, Gj,v;) is a Riemannian embedding, i.e.

p;i(TpA(), TuMw)) = pi(v,w) Yo,w e T,V;, x€S.

Let (Q,U) be an orbifold endowed with a Riemannian orbifold metric p. The triple (Q,U, p) is
called a Riemannian orbifold.

4.0.2 Remark Consider a Riemannian orbifold metric p on some orbifold (Q,U), associated tp an
atlas V as above. For a chart (V,G,) € V, the group G acts by self-embeddings of orbifold charts.
If V is endowed with a member p; of p, each element of G thus acts as a Riemannian isometry with
respect to p;.

4.0.3 Proposition (|51, Proposition 2.20]) Any orbifold (Q,U) admits a Riemannian orbifold
metric p.

Proof. Let V = {(V;,Gy,v;)|i € I} be any representative of U, and {X;},.; be a smooth orbifold

partition of unity subordinate to V, which exists due to Proposition 2.3:2] Recall from [2:3.3] that

for every pair (i,7) € I >< I, there is a smooth lift x; ; of x; to (V;,G;,%;). For i € I, choose some

Riemannian metric m® on V; (cf. [45, VIL., §1, Proposition 1.1]). As G; acts by diffeomorphisms,

we obtain pullback metrics on V. Averaglng over (G;, on every tangent space there is a positive

definite bilinear form:
(vw(z). Zm To9v,Tpgw), Yv,weT,V;, peV;

|G | &2,

such that the family (—, =)@ := ({(—, —>z(7i))pevi defines a Riemannian metric on V;. By construction,

each element of G is a Riemannian isometry with respect to (—, —)().

Define a Riemannian metric p; on V; as follows: Because (supp x;)ics is locally finite, ¢;(p) with

p € V; is contained in supp x; for only finitely many ¢ € I. Therefore there is an open G;-stable

subset p € S, C V; such that for y € S,, 9¥;(y) € supp xx can hold only if ¥;(p) € supp xx for k € I.
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Shrinking .S,,, without loss of generality for each k € I with ¢;(p) € supp xx there is an embedding of
orbifold charts A} : (Sp, (Gi)s,,%ils,) = Vi- If ¥i(p) & supp xx simply let A} : S, — V,, be constant
(whence T} = 0) and define for v, w € T),V;:

(pi)p(v.w) =3~ x5a(p) - (TN (0), TN (W)

jer

Since the x;, are the lifts of an orbifold partition of unity, only finitely many terms are non-zero
and (p;)p is a positive definite bilinear map on 7, V; x T,,V;. The definition of (p;), neither depends
on S, nor on the choice of \}:

To prove this, consider another G;-stable set p € 51/? with embeddings y}. Since we are only inter-
ested in the tangent map at p (which may be computed in an arbitrarily small open subset), we
restrict 41, and A} to an open and Gj-stable subset S C S, NS, which contains p. If ¢;(p) & supp xx,
the contribution to (p;), (v, w) is zero. Otherwise, Propositionm (d) implies that there is a group
element g € Gy, such that u}|s = go A|s. By construction, every g € Gy, is a Riemannian isometry
with respect to (—, —>(k). Thus every choice induces the same map.

The maps A? , Xk.i are smooth and (—, —)*) is a Riemannian metric for each k € I, thus the family
pi = ((pi)p)pev; defines a smooth map on each open set T'S, & T'S, C TV, & TV,. By construction
the map does not depend on the set S, and thus p; is smooth on T'V;®&T'V;. Hence it is a Riemannian
metric on V.

We claim that the family (p;);c; satisfies the compatibility condition of Definition Con-
sider arbitrary i,j € I together with an open G;-stable subset S C V; and an embedding of orb-
ifold charts p: (S, (Gi)s, ¥ils) — (V;,G;4,%;). For p € S and v,w € T,,V;, we have to show that

(P) u(w) (Tpplv), Tpu( )) coincides with (p;) (v, w).
Since p is an embedding of orbifold charts and by construction one has xx,; = xr o ¥j, we derive

Xk,j © = Xk,i|dom - We compute:

k
(P) i) (Tpa(v), =3 Xk (1(0)) - (T MV Toav), T NP Typa(w )>ig)<p>ﬂ(p)
kel
=" xwi(0) AT P ) (0), T, ) (w)) ),
verl \/—/ —— )\k #(P)
0%:= =07
= Xwap) - (T (0), To7 (w)ge, -
kel

Restrict every non-constant map 67 to a small open G;-stable neighborhood of p such that the
restriction of 6} yields an embedding of orbifold charts (cf. [51, Proposition 2.13]). As the definition
of the metric does not depend on the choice of embedding, indeed we obtain

(£5) uip) (Tpp (), Tpp(w)) = (pi)p(v, w).

The family p is compatible as in Definition [£.0.I] whence it is a Riemannian orbifold metric. O

A Riemannian orbifold metric (uniquely) extends to each representative of the orbifold structure:
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4.0.4 Proposition Let (Q,U) be an orbifold and V = {(V;, G;, ;) | i € I} some representative of
U for which there is a Riemannian orbifold metric p = (p;)ic;. For each representative A of U,
there exists a unique Riemannian orbifold metric p which extends p to V U A.

Proof. We construct a Riemannian metric on (U, H,$) € V U A as follows: For ¢ € U choose an
H-stable subset ¢ € S; C U together with an embedding 7/': (Sy, Hs,, ¢|s,) = (Vi, Gi,¢;) for some
i € I. Define for v,w € T,U

(v )q (v, w) := pi(TyT (v), Ty (W)

Repeating this construction for each ¢ € U, arguments as in the proof of Propostion [£.0.3|show that
pu is a well-defined Riemannian metric on U. In particular, the gy does not depend on the choices
involved in its construction. Since in the above construction, we may always choose the inclusion
Sq C U for a chart (U,G, H) € V, one obtains py = py for (U, H,$) € V.

Finally, the family (pv)w,q,¢)evua satisfies the compatibility condition of Definition To see
this, consider a change of charts A € Chy4. It suffices to check the compatibility condition for each
q € dom A C U separately. By construction, there are embeddings of orbifold charts 7';: Sq = Vi and

Ti(q)I Sx(q) = Vj into charts (V;, Gy, ), (Vj, Gy, 15) € V. Then we compute for v, w € T, dom A:

R j j ) i i N
(Peoa e ToA©) TAW)) = 3 (Tyrd  A0), Tyrd M) 2 pu(Tyri(w), Tyri(w)) = (50 )glv,w).
Here the identity (x) follows from the compatibility of the Riemannian orbifold metric (p;);e; and
the fact that on a neighborhood 2 of 7'; (¢) the mapping (T)]\(q) o)\OTé\Q)*l is a embedding of orbifold
charts. O

Instead of defining a Riemannian orbifold metric as in Definition [£.0.1] Proposition [£.0.4] yields an
equivalent definition of a Riemannian orbifold metric: It may be defined as a family of Riemannian
metrics on the class of all compatible (with respect to the orbifold structure) orbifold charts, which
satisfies the compatibility condition (cf. [51, p.41]). From this point of view, a Riemannian orbifold
metric on any representative of U induces a uniquely determined Riemannian orbifold metric on the
equivalence class U. We shall adopt this point of view in Lemma [£.0.8] below.

Either way, a Riemannian orbifold metric was defined using embeddings of orbifold charts. The
reader may have noticed that our working definition of orbifolds (cf. Definition uses change
of charts (but is equivalent to the approach using embeddings of orbifold charts). The definitions in
this chapter are slightly easier to formulate using open embeddings of orbifold charts, whereas we
chose this approach. Nevertheless, changes of orbifold charts are Riemannian isometries:

4.0.5 Lemma Let (Q,U, p) be a Riemannian orbifold and consider for some (U, H, ¢), (V,G,¢¥) e U
a change of charts A\: U 2 dom X — cod A C V' . Furthermore, let pgom » be the pullback metric of
pu with respect to the inclusion dom A C U. Then \: (dom A, pgom ) — (V,pv) is a Riemannian
embedding.

Proof. Let p € dom \ be arbitrary and choose an open connected H-stable subset p € S C dom .
Then (S, Hs, ¢|s) is an orbifold chart and A|g is an embedding of orbifold charts. Since py and
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pv are members of p, the map A|g is a Riemannian embedding. In particular, (pdoma)p = (A pv)p
holds. Since p € dom A was arbitrary, A is a Riemannian embedding. O

4.0.6 Definition Let (Q;,U;, p;),i = 1,2 be Riemannian orbifolds and consider a map of orbifolds

[f] € Orb ((Q1,Us), (Q2,Us)). The map [f] is called orbifold isometric, if there is a representative

[ = (fAfi}icr,P,v) € Orb(V, W) such that each lift f;: V; — W, ;) is an isometric immersion of
the Riemannian manifold (V;, p1;) to the Riemannian manifold (Wo;y, p2,a())-

If [f] is a diffeomorphism of orbifolds which is orbifold isometric, [f] is called an orbifold isometry.

4.0.7 Remark The condition to be an isometric immersion of Riemannian manifolds may be
checked locally. Lemma i.e. the compatibility conditions of Riemannian orbifold metrics)
combined with Propositio that a map | f] will be orbifold isometric if and only if each rep-
resentative f := (f, {f; }jeJ ,[P,v]) shares this property that the family of lifts {fj}jeJ consists of
isometric immersions.

As an obvious first example, we mention that for a Riemannian orbifold (Q,U, p) the identity mor-
phism idq i) is an orbifold isometry.

4.0.8 Lemma Let (Q,U,p) be a Riemannian orbifold and (Q1,U1) be an orbifold together with

an orbifold diffeomorphism [f] € Orb ((Q1,U1), (Q,U)). There exists a unique Riemannian orbifold

metric [f]*p on (Q1,U1) such that [f] becomes an orbifold isometry with respect to (Q1,U1, [f]*p)

and (Q,U, p). The Riemannian orbifold metric [f]*p is called pullback metric induced by [f].

Proof. Following Corollary (d), we choose orbifold atlases V = {(V;,G;,;)|i € I} € Uy and
W = {(W;,Hj,¢;)|j € J} €U such that there is a representative g = (f, {fi},c;, [P v]) of [f] with
the following properties:

(a) fi: Vi = Wg is a diffeomorphism for each i € I,

(b) the map S: I — J is bijective,

(¢) P =Chy holds and for A € Chy, v, one has v(\) = f;\f; !

fi(dom ») (see Corollary [2.1.8]).

Proposition yields a unique family of compatible Riemannian metrics (p;);cs induced by p
such that each chart (W}, H;, ¢;) turns into a Riemannian manifold (W}, p;). Endow each manifold
Vi with the pullback metric fpg(;), turning f; into a Riemannian isometry.

Claim: The family (f;pg())icr turns each A € Chy, v,, i,j € I into a Riemannian embedding.

An argument analogous to the proof of Lemma (c) shows that p := fj)\ffl fi(domA) €
ChWﬁ(,;),Wﬁ(j) and fjA = f1fi|dom » holds. Consider p € dom X and compute for v,w € T),V;:

(f5Psi)aw) (TpA), TyA(w)) = (ps()) i) (Tpf5A(0), Tp f5M(w))
= (8()) s (o) (Tppefi(v), Tppfi(w))
= (fi ps(i))p(v, w).

The last identity is due to the compatibility condition of p, since p is a change of orbifold charts
(cf. Lemma 4.0.5). In view of Proposition m the compatible family (f;*pg())icr yields a unique



4.1 Geodesics on orbifolds 69

Riemannian orbifold metric [f]*

p.
We have to assure that [ f]* p does not depend on the choice of §. To this end, consider another
representative h = (f, {hi} ek > [Chyr,V']) € Orb(V', W) of [f] with the same properties as §. Write
([f]*p)’ for the Riemannian orbifold metric induced by h. Reviewing Proposition both metrics
will coincide if the family (f;ps())ier [1(7h}pp(j))jes of Riemannian metrics is compatible in the
sense of Lemma To check this choose i € I, j € J and some change of charts A € Chviyj/.
Then h;Af;

compatibility of the metrics pg(;) and pg(;) yields that A is a Riemannian embedding. Thus | f]* P

fi(dom ») 18 a change of charts. An analogous computation as above together with the
and ([f]*p)’ coincide, proving the uniqueness of the pullback orbifold metric. O

4.0.9 Remark In Lemma [4.0.8] special representatives of an orbifold diffeomorphism were used
in the construction. Their lifts were given by a family of diffeomorphisms. The proof of Lemma
may be adapted to work with an arbitrary family of lifts of the orbifold diffeomorphism. In
general, these families will be families of local diffeomorphisms by Corollary In this case,
the identities computed in the proof will only hold locally. Hence the same arguments require
cumbersome notation, which may be avoided in the construction if representatives are used whose
lifts are diffeomorphisms.

Our goal in introducing Riemannian orbifold metrics on orbifolds is to obtain an analogue of the
Riemannian exponential map on a manifold for a Riemannian orbifold. To this end, we need to
introduce the notion of a geodesic on a Riemannian orbifold.

4.1. Geodesics on orbifolds

In this section let (Q,U, p) be a Riemannian orbifold. Notice that by Proposition the Rieman-
nian orbifold metric p induces a family of compatible Riemannian metrics for each representative
of U. As we introduced Riemannian orbifold metrics, the question arises how geodesics for a Rie-
mannian orbifold may be defined. Furthermore, one would like these geodesics to share at least
some properties of geodesics on a Riemannian manifold. Geodesics on Riemannian orbifolds have
been considered in the literature (cf. Haefliger and collaborators [13]34], Chen et al. [15]) in the
context of different frameworks (i.e. étale groupoids, respectively Chen-Ruan good maps). For the
setting considered in this work, we shall give a definition of an orbifold godesic which shares the
properties developed for geodesics on Orbifolds in the literature. In fact, the restriction of a geodesic
to a compact interval corresponds to a unique G-geodesic in the sense of Haefliger. However, since
geodesics should be maps of orbifolds, our proofs are independent of this equivalence.

Throughout this section, Z :=]a,b[C R will always be an open interval with a < b. Endow Z with
the canonical structure of an open submanifold of R (i.e. a trivial orbifold structure) and denote its
orbifold structure by Uz. As a first step, we define smooth paths in orbifolds:

4.1.1 Definition An orbifold map [¢] € Orb(Z, (Q,U)) is called a smooth orbifold path.
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4.1.2 Example (a) If (Q,U) is a trivial orbifold (i.e. a manifold), a smooth orbifold path is just
a smooth curve Z — Q.

(b) Reconsider Example The map 7: R? — R?, (z,y) — (—x,y) is a reflection of R? and H
is the right half plane. Let ¢: R?> — H be the quotient map to the orbit space with respect
to the (y)-action. Then H is an orbifold with global chart (R?, (), q). As the orbifold atlas
contains only one chart, the changes of charts are generated by v and idgs. Define I :=]0, %[

and I ::]%, 1[ which cover ]0,1[= I; U Is. Let X\: Iy O I N Iy — I be the inclusion. Then
the quasi-pseudogroup P := {idI1 ,idr,, A, )\_1} generates the change of charts of {I1, I5}.
Consider the smooth maps ¢1: I — R% ¢t — (1—2¢t,1—2t) and co: Io — R% t — (2t—1,1-2¢).
We obtain a continuous map c: |0, 1[— H,t — g o ¢;(t), for t € I;. Set v(\) := ~, to uniquely
determine v: P — ¥ (U), which satisfies (R4) of Definition Then ¢ := (¢,{c1,¢c2}, P, v)
is a smooth path in H. We sketch the images of the lifts and the smooth path in H:

Notice that there is the weaker notion of a continuous path. It was introduced in |13 Chapter
ITI, 3] to obtain a fundamental group of an étale groupoid. The map ¢ induces a continuous
path into H in the sense of Haefliger (cf. [13, III. Example 3.3 (2)]). Define amap v': P — ¥(U)
via v/(A) = idgz. The tuple (¢, {c1,c2}, P,v') does not define a charted orbifold map, but it
induces a continuous path in the sense of Haefliger (cf. |13, III. Example 3.3 (2)]).

In the last example, an orbifold path has been constructed with respect to a special orbifold atlas:
Define the set of all orbifold charts Az = {(V,, {idv, }, 7o) | € A} € Uz such that an orbifold chart
(Va, {idv, },ma) € Uz is contained in Az if and only if: V,, =]l(a),r(«)[C Z is an open interval with
a <l(a) < r(a) < band the map 7, : Ji(a), r(a)[— T is the inclusion (of sets). By construction each
change of orbifold charts in Chy,, v, for two orbifold charts (Va, {idv, },ma), (Vs, {idv, } ,ms) € Az
is an inclusion of open sets.

Consider a smooth orbifold path [¢] € Orb (Z, (Q,U)) with representative ¢ = (¢, {cr} e, [P v])
whose lifts are defined on charts (dom cg, {iddgom ¢, } , 7x). The chart maps of orbifold charts on Z are
diffeomorphisms, since they are also manifold charts of the smooth manifold Z. Define an orbifold
atlas Vp := {mg(domey) |k € I} of Z, where mp(domey) C 7 is a connected open interval. Hence
V: C Az holds. Apply Lemma together with this set of charts to obtain a representative
h € Orb(Vs, W) of [¢], where W is the range atlas of ¢. In conclusion, for each smooth orbifold path,
there is a representative whose domain atlas is contained in Az.

4.1.3 Lemma Let [¢] € Orb(Z, (Q,U)) be a smooth orbifold path and P be some point in Z.
Identifying the tangent orbifold TT with the tangent manifold I x R, the element Tc(P,1) € Topy@Q
is called the initial vector of [¢] at P. For each representative ¢ = (c,{ck}c;, [Pyv]) € Orb(V, W)
of [¢] with YV C Az and P € domcy, the initial vector is induced by Tpcy(1) = ¢ (a).
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Proof. Consider the lift ¢;: dom ¢, — Vi, where (dom ¢, {iddom e, } , 7)) € Az and (Vi, G, ) € U.
As T is a trivial orbifold, the tangent manifold T7Z = 7 x R coincides with the tangent orbifold.
We suppress the identification T'idz in the formulas: By Definition of the tangent orbifold
map, Tc(P,1) = TypTe,T(mp) " (P,1) is well-defined. Hence it suffices to prove T'r; *(P,1) =
(P,1) € domT¢;, = domey, x R, As (dom ek, {iddome, } , Tk) € Az, so 7y is the inclusion of sets
dom ¢, < Z, my is the restriction of a linear continuous map. A computation in the identification
proves T'm; ' (P, 1) = (P, 1), whence from Tpey(1) = T'cx (P, 1) the assertion follows. O

4.1.4 Lemma Let [¢] € Orb (Z,(Q,U)) be an orbifold path and [a,b] C I some compact subset.
There ezists § = (cljzy[» {9k b1<p<n » [Py vg]) with x <a <b<y and N € N such that

L [é”]w,y[ = [g]:
2. dom gy, =|l(k),r(k)[ for each 1 <k < N such that

r=11)<i2)<r(l)<IB)<r2)<---<IN)<r(N-1)<r(N)=y
8. Py = {idyvyr v} Y {idue). e L (gt |1 <k <N -1}, where (F T s the canonical
inclusion |l(k + 1), r(k)[—=]l(k+ 1),r(k + 1)[.

Proof. Construct a refinement of the domain atlas of ¢. A full proof is given in Appendix [F} O

In a neighborhood of a compact set, we may think of an orbifold path as a family of smooth paths,
which are compatible in the following way: On each intersection of their domains, the inclusion of
sets induces a change of orbifold charts in the range atlas which maps one lift to the other. The
situation is sketched in the following figure for a smooth path in an orbifold (Q,U):

Figure 3: Image of a smooth orbifold path together with lifts on a special range atlas.
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We remark that representatives with the special properties discussed in Lemma [£.1.4] do not only
exist around a given compact set (cf. Lemma [F.3)).

4.1.5 Definition (Orbifold geodesic) Let [¢] € Orb(Z, (Q,U)) be a smooth path in a Rieman-
nian orbifold. The map [¢] is an orbifold geodesic if there is a representative (c,{c;},c;,[P,V]) €
Orb(V, {(V},Gj,¥j},c;) with V C Az such that for each i € I the lift ¢;: JI(d),r(i)[= Vaq) is a
geodesic. Here (Vi (), pv, ;) is the Riemannian manifold, where py, , is the member of the Rie-
mannian orbifold metric. If [¢] is a geodesic, then the map ¢: T — @ is called a (geodesic) arc.
Sometimes we will by abuse of notation also call the image of ¢ a (geodesic) arc.

4.1.6 Example Return to Example Consider v: R? — R?, (z,y) — (—x,y) and the orbifold
R?/(v) = H (where H is the right half plane in R?). Endow the global chart (R?, (), ) with the flat
Riemannian metric. As () C O(2), this Riemannian metric is (y)-invariant. Non-trivial geodesics in
this metric are straight lines, which induce geodesics of orbifolds. Geodesics contained either in the
right or left half plane are mapped to straight lines in the quotient. Standard Riemannian geometry
shows that a connected component of the set of points fixed jointly by a set of Riemannian isometries
is a closed totally geodesic submanifold (cf. [42, II. Theorem 5.1]). Since () acts by Riemannian
isometries, geodesics which contain singular points either pass through the singular locus in one
point or are contained in it. Furthermore, geodesics which pass through the singular locus, are
reflected (as befits an example called mirror in R?). The following figure depicts an arc of this type:

geodesic (lift)

Figure 4: Orbifold geodesic in R?/(v): Reflected line

In particular, orbifold geodesics behave differently from geodesics in Riemannian manifolds. It is well
known that the arc of an orbifold geodesic may be not even locally length minimizing (cf. |34} 2.4.2]).
The following picture (which is slightly wrong to show the reflection) illustrates this behavior:

N U T
| R2 | L /y | | | | H |
geodesic (lift) i : : '~ quotient (——= === Arc in R2/{~)
| | | e | | |
| | | | map | | |
I I I I %\

Figure 5: Orbifold geodesic in R?/(7): Not length minimizing in any neighborhood of the singularity.
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For further examples of orbifold geodesics (in particular, closed geodesics on orbifolds) we refer
to |34, 2.4.5].

4.1.7 Proposition Let [¢] € Orb(Z, (Q,U)) be an orbifold geodesic together with a representative
g = (c, {gj}jeJ,[P, v]) of [€]. If the domain atlas of § is contained in Az, then each lift g; is a
geodesic.

Proof. As [¢] is an orbifold geodesic, there is a representative ¢ = (¢, {¢;},c;, [P, V']) € Orb(V, V')
such that every ¢; is a geodesic in (V;, p;). Furthermore, the domain atlas of ¢ is contained in Az,
(Vi, Gy ;) € V' and p; is the member of the Riemannian orbifold metric on this chart. Consider
the lifts g;: domg; — W; of § with respect to the charts (W;, H;,m;) in the range atlas of §. Since
¢ ~ g, the definition of equivalence for orbifold maps yields the following data: There are lifts € and
&' of the identity on Z, respectively ¢’ and ¢ on (Q,U) together with a charted map of orbifolds
such that

¢oc=¢oh and goe”"=¢"oh.

We consider for j € J some ¢ € domg;. Ast € Z, there is an index ¢ € I with ¢ € domc¢;. Recall
from Definition that the lifts of ,&’,&”, and &’ are local diffeomorphism. In particular, they
restrict to embeddings of orbifold charts on open sets by Proposition Together with Lemma
we obtain open neighborhoods U C dome; of ¢ and V' C V; of g;(¢) such that: There are
changes of charts A\: dome¢; 2 U — domg; and p: V; 2V — W; with

gioA=pocgly. (4.1.1)

The domain atlases are contained in Az, whence dome;,domg; € Z and their chart maps are
induced by the inclusions of sets. Hence the change of charts A\: U — dom g; is the inclusion of an
open subset. Thus g;|y = poc;|uy. As (Q,U, p) is a Riemannian orbifold, i is a Riemannian isometry.
Since isometries preserve geodesics (cf. [43] IV. Proposition 2.6]), the identity shows that in
a neighborhood of ¢, the map g, is a geodesic in (W}, p;). The construction did neither depend on
j € J nor on t, whence g; is a geodesic for each j € J. O

Two orbifold geodesics coincide on a joint interval Z if and only if their initial vectors coincide (cf.
LemmalF.3). On a Riemannian manifold, geodesics are uniquely determined by their initial data in
one point. The same holds for orbifold geodesics:

4.1.8 Proposition Consider p € Q, £ € T,Q.

(a) There is an € > 0 such that there exists an orbifold geodesic és € Orb(] — 2¢, 2¢[, (Q,U)) with
initial vector & in 0.

(b) Let [¢] € Orb(Z,(Q,U)) and [¢] € Orb(Z',(Q,U)) be orbifold geodesics. If there exists
a € INT such that the initial vectors of ¢ and é in a coincide, then the initial vectors of [¢]
and [¢'] coincide at each point in TNT', whence [¢']|znz = [€]|znz holds.
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Proof. (a) Choose some representative (m, X) € &, where (V,G,n) € U and X € T,V such that
Tr(X) =& Set z = mpy(X). Let py be the member of the Riemannian orbifold metric
on V, ie. (V,py) is a Riemannian manifold. Standard Riemannian geometry (cf. |43] III.
Theorem 6.4.]) shows that there is an ¢ > 0 and a geodesic cg: | — 2¢,2¢[— V with initial
condition (z, X), i.e. ¢(0) = = and Toco(1) = X. Let ¢ := mo ¢y, P := {idj_s. o} and
v: P — ¥(U) be the map which sends the element of P to idy. We obtain an orbifold
geodesic ¢ := (¢, {co}, P,v). By construction the initial vector of ¢ in 0 is €.

(b) Since Z N7’ is an open submanifold of Z,Z’ the orbifold maps restrict to orbifold maps

in Orb(ZNZ',(Q,U)). To shorten our notation we may therefore assume that Z = 7’
and a = 0 holds. Choose representatives ¢ = (c,{cx},c;,[Pv]) € Orb(V,W) and ¢ =
(c {er}yes [P V']) € Orb(V', W) whose domain atlases are subsets of Az. We will check
the condition of Lemma (b), which is equivalent to the assertion:
As a first step, show that there is £ > 0 such that for each ¢ €]—¢, €[ the condition of Lemmal[F.3|
(b) holds. Let ¢q be a lift of é and ¢}, be a lift of ¢ with 0 € dom ¢y Ndom ¢fy. Set cod ¢y = Vo
and codcjy = V{ for orbifold charts (Vo, {idv,},mo) and (Vy, {idyy},7(), respectively. The
geodesics pass through ¢(0) = ¢/(0) with initial vector £ € Ty (Q,U). The construction of
¢ € Te(0)(Q,U) yields a change of charts A\g: Vo 2 U — V' C Vj such that ToAoco(1) = Tocp(1).
The lifts ¢o and ¢f are geodesics and A is an isometry. Uniqueness of geodesics on Riemannian
manifolds now assures that there is an € > 0 such that TyA\gco(1) = Ty (1) for all ¢ €] — ¢, ¢].
We claim that the subset of Z where the condition of Lemma[F.3| (b) holds contains ZN [0, oo|.
Assume that this was not the case and consider

to:=inf{t € Z|t >0, A\ € Chyyuw :t € domc, Ndomc,. and Ty (1) = Ticl (1)} .

Let ¢, be the local lift of ¢ and ¢ be the local lift of ¢’ such that ¢y € dom ¢, Ndom¢.. Their
images are contained in (Vj, G, m) and (V;, G, ), respectively. The first step assures that
to > 0 and by construction, the condition of Lemma (b) holds for all smaller ¢. This
forces ¢ and ¢’ to coincide on [0, to[ and by continuity of these maps, we obtain ¢(tg) = ¢/ (¢o).
Thus there is a change of charts A\: Vj; D U — V C V, with Acg(to) = ¢.(to). Choose
some t < to with cx([t,to]) € dom A. Since t < #y holds, there is a change of charts p with
Tipcr(l) = Tyep(1). Shrinking the domain of p, we may assume that p is an embedding
of orbifold charts and domp C dom A is satisfied. Now A|gom , is an embedding of orbifold
charts mapping dom y into V,.. By Proposition [1.2.2] (d) there is an element h € G, such
that h o Algompu = p. The change of charts Ay, := h o X is a Riemannian isometry which
satisfies Ty cx(1) = Trucr(l) = Tyeh(1). We deduce that on its domain, A, maps the
geodesic ¢ to ¢.. There is some § > 0 such that ci(Jtg — 0,%9 + §[) C dom ), holds. Hence
Tshiocr(1) = Tscl.(1) holds for each s €]ty — d,t9 + §[. This contradicts our choice of ¢ty and
thus there may be no such point in Z N [0, 00[. An analogous argument for ¢t < 0 shows that
the condition of Lemma (b) holds for all of Z, whence both orbifold geodesics coincide.

O

Since orbifold geodesics are uniquely determined by their initial vectors in some point, we may
construct a join for two suitable geodesics:
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4.1.9 Lemma Let [¢] € Orb(Z,(Q,U)) and [¢/] € Orb (Z',(Q,U)) be orbifold geodesics such
that for some xg € T NI, their initial vectors coincide. Then there is a unique orbifold geodesic
[¢VE]€Orb(ZUTL,(Q,U)) such that [éV &)l = [¢] and [eV &]|z = [¢].

Proof. Tt is possible to “glue” two orbifold geodesics whose initial vector coincides in one point. This
procedure, together with a full proof, can be found as Lemma [F.4] in Appendix [F] O

Standard Riemannian geometry shows that the maximal domain Z has to be an open subset of
R (since the lifts of an orbifold geodesic are geodesics in suitable charts, whose maximal domain is
always an open subset of R). Naturally we have to ask whether the orbifold geodesic constructed
in Proposition (a) may uniquely (up to equivalence of orbifold morphisms) be extended to
a maximal domain. In fact each geodesic with this initial vector in 0 may then be derived as a
restriction of the maximal geodesic. The next lemma is inspired by a lemma due to Chen and Ruan
(cf. |15, Lemma 4.2.6]):

4.1.10 Lemma Let p € Q be any point and £ € T,Q).

(a) There is a unique maximal interval Zg such that an orbifold geodesic [¢¢] € Orb (Z¢, (Q,U))
with initial vector £ in 0 exists on L.
(b) If Q is compact, then Ze = R holds, for each & € TQ.

Proof. (a) Let S¢ be the set of all orbifold geodesics whose initial vector at 0 is {. Orbifold
geodesics with initial vector £ at 0 exist by Proposition (a), whence S¢ is non-empty. For
two elements [¢], [¢'] € S, there is a join [¢V &] by Lemma which is again an element of
Se. Any finite number of elements in S¢ may be joined in this way. For [¢] € S¢, we let Z; be
the interval such that [¢] € Orb (Zz, (Q,U)).

Construct recursively an element [é¢] € S¢ on the open subset Z¢ := Ujge sc Ze- The set ¢
is an open connected subset of R as a union of connected open subspaces with non-empty
intersection (cf. |21, Corollary 6.1.10]). Define ¢: Ir — Q via c(t) := ¢/(t) if t € dom ¢’ with
¢ = (d,{c};er:[Pv]) € Se. This map is well-defined by Proposition There exist
numbers

e <a 9<a1<a=0<a1<ay<---

such that I¢ = |J,czlar, ars1] and such that, for each k& € Z a lift ¢, of some ¢ € S¢ is
defined on an open interval I containing [ag, ar+1], with image in (Vj, G, ;) and ¢ is a
geodesic. Choose [(k) so large and r(k — 1) so small that ap < r(k—1) < l(k+ 1) < a1
and I(k), r(k)[C Ir hold and there exists a change of charts Ay 11 with cx([[(k + 1), r(k)]) C
dom Ag g1 With Mg xr1 0 crlpr+1),rk)) = Cht1lie+1),r(k)- Let W be an atlas containing
all (Vi, Gg, 7). Define P := {id]l(k)7r(k)[,L£+1,Lz+1 |k € Z} where gk + 1), (k) [—
Ji(k + 1),r(k + 1)[ and o, : Ji(k + 1),7(k)[=]l(k), (k)] are inclusions of sets. Now define
v: P — W(W) via v(idjg),rm)) = idy,, v(ef ™) = Aggy1 and v(if,,) = )‘l;}c+1' Then
¢ = (c, {Ckhl(k),r(k)[}kez ,[P,v]) is a geodesic and é € Sg because TmpT'cy(0,1) also is the
initial vector of some ¢ € Sg, and hence equal to .
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(b) Following (a), it is sufficient to prove that an orbifold geodesic [¢] € Orb (Z,(Q,U)) with

initial vector ¢ at 0 and Z =|a, b may be extended in the following sense: If there is a sequence
(tn)nen €la, b] such that ¢, — b with b < co and lim ¢(t,,) exists in @), then there is an orbifold
geodesic [¢'] defined on ]a,b'[, b > b, whose initial vector at 0 is £&. Set ¢ := limpen c(ty)
and choose an orbifold chart (V,G,,v) with ¢ = ¢(z) for x € V and G = G,. Notice that
¥~ Y(q) = {x} holds. Choose a compact neighborhood U, of x and observe that G,.U, is
again a compact set. A compactness argument together with |18] 3.2 Proposition 2.5| proves
that there are 6 > 0 and € > 0 such that for each p € U, and v € B, (04,¢), there is a
unique geodesic 7, : | — §,6[— V with initial value Tpy(1) = v. Here py is the member of
the Riemannian orbifold metric on V. For N large enough one obtains ¢(t,) € ¥(U,), Vn >
N. The definition of an orbifold geodesic implies that for each ¢, there is some local lift
¢n: dome, — V,, of ¢ with ¢, € dome,, and (V,,, H,, p,) € U. By compatibility of orbifold
charts, c(t,) € Im ¢, NY(U,) for n > N implies that there is some change of orbifold charts A,
with Apcp(tn) € Gz.Uy. As each A, is a Riemannian embedding, the definition of an orbifold
geodesic yields [|Tt, Anen (1), = K = ||Tt,, Amem(1)],,, for all n,m > N. Using homogeneity
of geodesics on Riemannian manifolds (|18 3.2 Lemma 2.6]),for each ¢ € G,.U,, there is some
0’ > 0 such that for each v € B,, (04, K + 1) the geodesic with initial value v exists on
]—¢",0'[. Let vx be the geodesic in (V, py) with initial vector X. Choose ng > N so large that
b—t,, < ¢’ holds. The geodesic gny: |tng — 9, tn, +0'[— V,t — VL4 Ang eng (1) (t—tn,) induces an

orbifold geodesic § := (¥ 0 gng, {gno } {id]tno,g/’tnoﬁ/[} ,v) where v(idy,, s 1, +é) = idv.
By construction, the initial vector of ¢ in ¢, coincides with the initial vector of ¢ in ¢,,,. Thus
Lemma[4.1.9 yields an orbifold geodesic ¢V § which is defined on ]a, t,,, 4 ¢'[. The initial vector
of ¢V g in 0 is & and its domain strictly contains ]a, b].

O

4.1.11 Remark The maximal geodesics [¢¢] on Z¢ constructed in Lemma [4.1.10| (a) do not extend,

i.e. if [g] € Orb (Z, (Q,U)) is a geodesic whose initial vector at a € Z NZ¢ coincides with the initial
vector of [é] in a, then Z C Z and [é]|z = [g] hold.

4.1.12 Theorem Let (Q,U,p) be a Riemannian orbifold and £ € TQ.

(a) There exist 0,6" > 0, an open neighborhood O C TQ of £ and a continuous map og: | —

0,0' xO¢ = Q and for &' € O¢ the path ag(-,§'): ] — 96,0’ = Q,t — «(t,&') is the geodesic
arc of an orbifold geodesic [ée/] with initial vector & in 0. We call ae a orbifold geodesic flow,

(b) If (6,¢) € TQ x TQ with O N O¢ # 0, then ae and a¢ coincide on the intersection of their

respective domains.

(c) If the mazimal orbifold geodesic [é¢] with initial vector & in O satisfies [c,d] C Z¢, then the set

O¢ in (a) may be constructed such that for ¢ € O¢, the map [éc] is defined on [c,d].

Proof. (a) By Proposition m (a), there is some ¢ > 0 together with the representative of an

orbifold geodesic ¢ = (¢,{g;|1 <i < N}, P,v) defined on | — 2¢, 2¢[ with initial vector £ in 0.
After shrinking the domain, without loss of generality ¢ is defined on an open neighborhood
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of [—¢, ] with properties as in Lemma We show that there is an open neighborhood of
¢ such that each orbifold geodesic with initial vector in this set exists at least on [0, ¢].
To shorten the notation, relabel the charts as {—t,—t+1,...,0,1,..., s} for certain s,t € Ny
such that 0 € dom gg. Let g;: |I(i),r(i)[— U;, —t < i < s be the lifts, where the (U;, G;, ;)
are charts in U. By construction, for —t < i < s there is a change of charts )\ZH satisfying
)‘Z:+1gi|]l(i+1),r(i)[ = gi+1|]l(i+1),7'(i)[' Choose for 1 S ) S S a point Z3 E]l(l),’l"(l — 1)[ with
20 :=0< z < zj for i < j. Define X; :=T,9,(1) for 0 < ¢ < s and observe that g; is uniquely
determined by X;. By construction [¢)g, Xo] = £ holds. Finally choose z;41 € dom gs; with
Zs+1 > € and 2zg41 > 2.
Standard Riemannian geometry on manifolds shows that the geodesic flow depends smoothly
on the initial data (cf. |18 3.2 Proposition 2.5] and [45, IV, §3 and VII, §7], respectively).
On the Riemannian manifold (U, p;), there is a geodesic flow ¢;: D; — TU;, defined on an
open set D; C R x TU; (cf. [45], IV, §4 Remark before Corollary 4.3]). The map ¢; is smooth
by an application of |45, IV, §2 Theorem 2.6]. Since gs is a geodesic defined on [z, z541] C
1(s),r(s)[ with T, gs(1) = X, the compact set [0, 2541 — z5] x {Xs} is contained in the
open set Ds. An application of Wallace Theorem |21, 3.2.10] provides an open neighborhood
[0, zg41 — 2] X {Xs} C] — s, 241 — 25 + 05[x V5 C Ds. For each element (¢ of this neighborhood
in TUs, the geodesic with initial data ¢ exists on the interval |z5 — s, 25 + ds].
Shrinking Vs and ds;, we may assume that V; C 7@55 (codA:_y) and zs — 65 > r(s — 2)
hold. Identify T'cod A\i_; and T'dom Aj_; with open subsets of TUy respectively TUs_; and
set V! := (TXs_)"Y(Vi) C TU,s_;. The geodesic gs_1 is determined by X,_; and its domain
Jl(s—1),7(s—1)[ contains [zs_1, zs] with T,_gs—1(1) € V.. As the geodesic flow ¢,_; is smooth,
arguments as above applied to ps_1 yield an open set Vs_y C TU,_; with V1 C T cod )\:%
and

- [O,ZS - Zsfl] X {Xsfl} g] - 637172:3 —Zs—1+ 6871[XV971 c Dsfly

- @s—l(zs — Rs—1, Vvs—l) c Vg/7

- 251 —0s—1 > 1(s—3).
Again one obtains an open set V/_| := (TA*"3)"*(Vi_1) C TU,_5. Repeating the argument
for each 0 < i < s — 2, we arrive at an open neighborhood V; C TUy of Xy. For each
¢ € Vp, there is a unique family of geodesics (Cé)ogigs such that cz is defined at least on
|2i — 6, zix1 + 6;[. In addition these families satisfy T, \! c;_1(1) = Ty, c;(1).
Repeating the argument for [—e,0], we obtain an open set V~ such that the geodesics are
defined on [—¢,0]. Set V:=VyNV, and 6 := z_4_1 —0_; and ¢’ := 2441 +J,. Foreach ( € V
and —t < i < s+ 1, the geodesics cé are defined on [z;_1 — d;, z; + ;). By construction one may
restrict their domains such that )\iﬂcé|]zi+1_5i+17zi+1+5i[ = C’é‘+1‘]zi+1_5i+172i+1+5i[ holds. For
each ¢ € V, the family (Cé)—tgigs induces an orbifold geodesic. The continuity of the geodesic
flows yields a well-defined continuous map

a:]—6,8[xV = Q,(tC) — wz(CZ(t)) for each t €]z; — 0;, zi41 + .

Consider the orbifold chart (TUy, Go,Tvo) € TU for the tangent orbifold 7(Q,U). Chart
maps of orbifold charts are open maps and thus O¢ := T%y(V) is open in TQ. It contains
&€ = Tyy(Xo) and the subspace topology on O, with respect to @) coincides with the quotient
topology induced on O¢ by T (since Ty factors via a homeomorphism with open image).

The restriction ¢ := T, is an open, continuous and surjective map. For each ¢ € O,
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choose a preimage ¢ € ¢~ *({¢}) € V. Notice that each choice of preimage for ¢ induces
an orbifold geodesic with initial vector ¢ at 0. Following Proposition m (b) the geodesic
arcs obtained from a choice of ¢7*(¢) coincide with the arc of [¢;] on the intersection of their
domains. Hence each choice defines the same continuous path in @). As ¢é; is defined at least
on 0, ¢'[ the maximal geodesic with initial vector ¢ is defined on this interval. We derive a
well-defined map ~

Q: ] - 5’ 5/[XOP - Qv (ta C) = d(tvé-)

The map idj_s 5[ xq is the product of open continuous surjective maps, whence it is itself
open, continuous and surjective. In particular, this mapping is a quotient map such that
& = ao (idj_s 4 xq) holds. As & is continuous, [20, VI. Theorem 3.1] implies that « is a
continuous map.

(b) By Proposition (b), the arcs of two orbifold geodesics with the same initial data coincide.
Hence for each w € O¢ N O, the arcs of the geodesics coincide, therefore a¢ (-, w) and ¢ (-, w)
coincide on the intersection of their respective domains. This proves the assertion.

(c) Repeat the proof of (a) verbatim with [¢,d] C Z¢ instead of [—¢, €].

O

4.1.13 Corollary For every p € @, there is an open neighborhood W, C TQ of 0 € T,Q and a
continuous map «: | — 2,2[xW, = Q such that | — 2,2[— Q,t — «(t,&) is the unique geodesic arc
with ingtial vector € in 0 defined on | — 2,2], for each & € W,.

Proof. Choose an arbitrary orbifold chart (U, G, 1) such that p = ¥(z) for some x € U. By definition
T¥(0;) = 0, € T,Q holds, where 0, € T,,U is the zero element. Standard Riemannian geometry
(see |18| 3.2 Proposition 2.7]) assures that there is a smooth mapping v: | — 2,2[xV — U, defined
on some open set V' C TU such that each x € V induces a geodesic in U defined at least on
] —2,2[. Arguing as in the proof of Theorem we choose W), :=T9(V) and a: | —2,2[xW,, —
Q, (t,8) — Y(y(t,x¢)), where z¢ is an arbitrary preimage of £ under 7% in V. O

4.1.14 Lemma An orbifold geodesic [¢] € Orb (Z, (Q,U)) is uniquely determined by its underlying
map.

Proof. Let [¢] and [¢'] be orbifold geodesics whose underlying map ¢: Z — @ coincides. Shrinking
the domains of definition of the lifts and composing with change of charts as necessary, we can
achieve the following: There are representatives ¢ of [¢] and ¢ of [¢'], respectively such that their
families of local lifts contain lifts cg,c}: | — &,e[— V for some orbifold chart (V,G,1)). Since both
¢ and ¢ lift ¢, we have v,.co(x) = ¢j(z) for every x €] —¢,¢[ and 7, € G. Define for v € G the set

U, == {2 €] — &,¢[ | v.cole) = (@)} -

Notice that U, is a closed set for v € G and | —¢,e[= |, ¢ U,. Since G is finite, Baires theorem
asserts that at least some U, must have non-empty interior. Hence the geodesics ¢o, ¢, coincide, up
to composition by a group element in G, on an open subset of | —¢, ¢[. Let x be a point in the interior
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of U,. Since the geodesics v.co, ¢, coincide on an open neighborhood of z, their derivatives must
coincide. By Lemma the initial vectors of both geodesics at x coincide. Hence the assertion
follows from Proposition O

Albeit the quite similar behavior of orbifold geodesics to geodesics on Riemannian manifolds,
not all properties of geodesics may be preserved in the orbifold case. For example, as is noted
in 34, 2.4.2], orbifold geodesics may not even be locally length minimizing in the natural length
metric on @ (induced by piecewise differentiable paths). However, as we are only interested in
geodesics as a tool to obtain an exponential map, we shall not investigate this behavior.

4.2. The Riemannian orbifold exponential map

In this section, our main tool derived via Riemannian geometry on orbifolds, the Riemannian orbifold
exponential map, is introduced. As before the triple (Q,U, p) will be a Riemannian orbifold. By
Lemma (a), for each £ € TQ, there is a maximal orbifold geodesic [é¢] with initial vector £
in 0. The geodesic arc of a maximal orbifold geodesic is unique by Proposition Hence the
continuous map of the base spaces c¢: Zg — @ is uniquely determined.

4.2.1 Definition (Riemannian orbifold exponential map) Let 2 be the set of all £ € TQ such that
the orbifold geodesic [¢¢] with underlying map c¢: Ze — Q satisfies [0, 1] C Z¢. The map

eXpoy,: 1 = Q, & ce(1)

is called Riemannian orbifold exponential map. The set € is an open neighborhood of the zero
section, by Theorem [4.1.12| (¢) and Corollary 4.1.13] We call Q the domain of the Riemannian
orbifold exponential map.

4.2.2 Lemma The Riemannian orbifold exponential map is continuous and for 0, € T,Q the
identity expo,,(0p) = p holds.

Proof. Let £ € Q be arbitrary. The geodesic [¢] is defined on an open interval Z; such that
[0,1] € Z¢ holds. By Theorem (c), there is an open neighborhood & € O¢f C TQ such
that each orbifold geodesic [é,] for w € Og¢ is defined on [0,1] C] — 6,0’[. Furthermore, O C Q
holds. There is a continuous map a¢: | —§,0'[ xO¢f = Q, (t,w) — é,(t) such that by construction
expoy, (W) = ag(l,w), Yw € O is satisfied. Hence expg,y, restricts to a continuous map on the open
set O¢. Theorem (b) assures that for any ( € Q the maps «a¢(1,-) and ag(1,-) coincide on
O¢ N O¢. From [20, IV. Theorem 9.4] we deduce that expg,, is continuous.

Choose an arbitrary orbifold chart (U, G, ) € U such that p € ¢(x) for some x € U. The chart T
maps 0, € T, U to 0, € 7T,Q. Standard Riemannian geometry assures that the geodesic 7 starting
in x with velocity 0 is constant and hence defined on all of R. Setting c: R — @, ¢ — p, we obtain
a representative of an orbifold geodesic ¢ := (¢,v, {idg},v), where v(idg) := idy. The orbifold
geodesic [¢] has initial vector 0, in 0 and its arc is uniquely determined by Proposition m This
proves expo,,(0p) = P-



80 4 RIEMANNIAN GEOMETRY ON ORBIFOLDS

4.2.3 Proposition Consider the open suborbifold (Q,Uqa). The map expo,, induces a map of
orbifolds [expo,p] € Orb ((Q,Uq), (Q,U)) also called Riemannian orbifold exponential map.

Proof. The subset Q2 C 7@ is open. Hence the orbifold structure 7/ induces a unique orbifold
structure (€, TUg) (cf. Definition [2.2.2)), turning this orbifold into an open suborbifold of (7Q, TU).
We claim that there is a representative V of TUq together with a family of lifts, turning expg,y,
into a charted orbifold map in Orb(V, W) for some W € U. By Lemma the map expg,y, is
continuous. Construct smooth lifts of expg,;,: To this end, consider arbitrary £ € 2. By Theorem
and its proof, there is an open neighborhood & € O¢ C 2 together with the following data:

- (TU,G1,TY) € TU, with Og = T1 (V') € T91(TUq ) for some open V C TUq,

- a family of orbifold charts {(U;, G, ¥s)} <,y €U,

- a continuous map 0: V — @, X — &(1, X) such that 0 = expg,p, ©T91|y holds. The map 6
is the composition of the geodesic flows ¢; on (U, p;),1 < i < N, changes of charts A4, for
1 <7 < N, the bundle projection of TUy and the orbifold chart .

Recall from the proof of Theorem that there is a partition 0 = tg < t; < --- <ty < 1 such
that a smooth map Exp,: TU; 2 V — Un may be defined via

Eng(X) = WTUN(PN(l — tN, ) o] T)\Nle o @Nfl(tN — thh ) ©---0 T)\lg o (Pl(th )(X) (421)

Reviewing Theorem [4.1.12) we see that 6 = ¢y o Exp,.
Choose an open G-stable subset W of V' which contains some preimage z¢ of §. Restricting Exp, to

W, we obtain a smooth map Expy, on an orbifold chart (W, Gw,T41|w ). By construction, Expy,
is a smooth lift of expg,, on W.

We show that any local lift Exp}; of expg,;, obtained via with respect to (W, Gy, T¢1|w)
and (Un,Gn,¥n) but taking other choices for the intermediary charts, geodesic flows and changes
of charts, coincides with v.Expy, for some v € Gy.

The lifts Expy,, and Expy, are defined as restriction of a composition of geodesic flows ¢;, changes
of charts Agr41 and the bundle projection 7y, (cf. ) Notice that the flows, changes of
charts and the number N may differ for Expj,,. However, we fixed the chart ¢ := oy = ¢/y,. Each
i(t; —t;—1,-) is defined on an open subset of TU;. It is a diffeomorphism from this subset onto its
(open) image in TU; (this follows from |45, IV, § 2, Theorem 2.9.]). The change of chart TAgg+1
are étale embeddings. In addition, the bundle projection w7y, is an open map, whence Expy is an
open map as a composition of such maps. The same holds for Exp};, whose image is contained in
(Un,GnN,¥n). The construction of the lifts Expy,, and Expyy, shows that there are diffeomorphisms
ow: W — O, ¢l W — O onto open sets O, 0" C TUn with Expy, = mryy, 0 on(1 —tn,-) o ow
and Expy, = mruy o on(1 — thy,:) o ¢f,. Without loss of generality, taking the maximum of
tn,thy, we may assume ty = th. Observe that we obtain a diffeomorpism ¢y o ¢3;': O' — O.
For each X € O’, there are unique geodesics v (t) = mruyen(t,X): [0,1 — tn] — Uy and
vx (t) = Truyen(t, ¢w o i (X)) [0,1 — tn] — Un. The geodesics vx, v lift the same orbifold
geodesic arc, since Expy, and Expy;, are restrictions of orbifold geodesic flows. By Lemma for
X € O, there is some gx € Gy with Th_+, (9x.7x) = Th—ty7Vx-

The element gx acts as a Riemannian isometry, mapping geodesics to geodesics, which implies
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gx.vx(t) =% (t), for all t € [0,1 — ty]. For any non-singular X € O’, the isometry gx is uniquely
determined: To prove this, let g% € G be another isometry with g% .yx = v . Then,

Tgx(X) =Tgx-on(0,¢w o ¢y, (X)) = on (0, X) = Tg'x.on(0, dw o ¢y, (X)) = Tg’ (X).

Since X is non singular, Ty, - (x)9x = Trpy,, 9 and by [51, Lemma 2.10], gx = g’y follows. The set
O’ C TUy is an open, connected set. Hence Lemmaimplies that C':= O’'\ Xrq, is connected.
As we have seen, for each X € C, there is a unique gx with gx.vx(0) = v5(0). The set Hy, :=
{c € Clgx7(0) = 7.(0)} = {c € Clgx-mruy (1 = tn,¢) = Truy o (1 — tn, dw o ¢yt (c) } is a
closed set by |21, Theorem 1.5.4]. Uniqueness of gx proves that two such sets H, and H}, are disjoint
if and only if g # h holds. Since Gy is finite, the set H,, is open and closed. By connectedness of
O’ \ 21y, there is a unique v € G with

’Y.WTUNQDN(l — t]\[7 .)|O,\ETGN = WTUNQON(]. — tNy ) o ¢W¢;/;1|O/\ETGN . (422)

The set O’ \ ¢, is dense in O’ by Newman’s Theorem Hence, by continuity, (4.2.2) holds
on all of O'. As (¢};,)71(O") = W by construction, we finally derive v.Expy, = Expjy .

The construction of lifts did not depend on &, thus we may cover €2 with a set of orbifold

charts V := {(W;, Gy, ;) |i € I} such that on each (W;, G;, ;) there exists a local lift Expyy, of
expo,p, With respect to (W;, G;, ;) and a suitable chart (U;, G4, ;). Eliminating charts which occur
severalfold, we may assume (W;,G;,m;) # (W;,G;,m;) and (Us, Gi,¢;) # (U, G, ;) for i # j
(by replacing charts U; with U; x {i} if necessary). The charts in V are compatible since they
are contained in TU, their images cover 2 and we have V € TUg. Define the atlas W =
{(V,G,¢) e U |V = cod W; for some i € I}.
We show that it is possible to construct a quasi-pseudogroup P and a map v such that the lifts
commute with the changes of charts as in Definition [E:2:3] To this end, consider arbitrary local
lifts Expy, and Expjy, of expg,;, with respect to the charts (W, G,n), (U, H,v) and (W' ,G', 7'),
(U', H',9"), respectively. Furthermore, let h € Chy be a change of charts which induces a commu-
tative diagram:

inc Ex
dom A w o ' U
\ %
. Qo (4.2.3)
7\ ’Y
cod h e w’ Expw! U'.

Cover Expyy(dom h) with the domains of suitable changes of charts. Our goal is to restrict h to
open subsets such that there are changes of charts which complement the right hand side of
to a commuting triangle. By commutativity of , for each X € dom h there is an embedding of
orbifold charts Ax € Ch(U,U’) such that Ax (Expy, (X)) = Expy (R(X)). Again let ¢w, ¢y denote
the diffeomorphisms with Expy, = mrueu (1 — tn, ) o ¢w and Exply, = mrurel (1 — thy, ) o pwr.
Since o (t, pw (X)) is defined for all t € [0,1 — tx], we deduce from the continuity of the flow
that there is some € > tx,t) such that mrpey (1 — ¢, ou(e — tn, pw (X)) € dom Ax holds for all



82 4 RIEMANNIAN GEOMETRY ON ORBIFOLDS

t € [0,1 —€]. Define for Y € W the element Y := @y (e — tn,¢w(Y)) € TU. Now the open set
¢y (T dom \x) contains [0,1 — €] x {X} The Wallace Theorem |21} 3.2.10] assures that there is

an open neighborhood X € V C TU such that [0,1 —¢] x V C o' (T dom Ax). By continuity of
dw, we can choose an open G-stable X-neighborhood V C (¢ (e —ty,-) o ¢w )~ (V) Ndom h with
Gy = Gx. For each Y with Y € V, the geodesic vy (t) := mryou(t,Y),t € [0,1 — €] is contained in
dom A x. We obtain two local lifts Exp@v|h(v) and Ax o Expy, o h’1|h(v) with respect to the charts
(M(V), G,y 7' [n(vy) and (U’, H,4'). The map Ax is a Riemannian embedding into U’ and thus
commutes with parallel displacement (see [43, IV. Proposition 2.6]) of the open set dom A x. Hence
we derive TAx oy (1 —&,Y) = @p:(1 — e, TAx(Y)) for Y € V. In particular, the following holds:

Ax o Expy o b7 vy = mru TAxeu (1 — €, You (e — tn, ) o dw o b
= WTU’LPU’(I — &, ')T)\)U,OU(E — tN, ) 9] ¢W o h_llh(V)~ (424)

The local lifts Ax Expy,h ™5, (v) and Expyy|n(vy are therefore compositions of the bundle projection
mrys, the geodesic flow on U’ and some diffeomorphism. As we have already seen, there is some
~v € H' such that 'y.)\XEXpWh’1|h(V) = Expé,v|h(v) holds. Replacing Ax with the embedding of
orbifold charts v.Ax, we derive

Ax o Expy |v = Expyy o h|y. (4.2.5)

We may thus cover dom h by open G-stable subsets {Wx, |4 € I} such that for each h; := hlw,_,
there is a change of charts )\f which satisfies )\? o Expy |v = Expy o h|y. Repeating this construc-
tion for every change of charts in Chy, we obtain P := {h;|i € I, h € Chy}. By construction P is
a quasi-pseudogroup which generates ¥ (V). For each element f of P choose and fix some h € Chy,
with f = h; and define the map v: P — ¥ (W), f = h; — A\

By construction, éxpoy, = (expoy, {Expy | (W, G, ) € V}, P,v) satisfies conditions (R1)-(R4a)
of Definition We check condition (R4b), i.e. if g,h € P and z € domh N domg with
domg,domh C U and germ, h = germ, g, then germpy,, (,)¥(h) = germegy, (1) v(9)-

Let domv(h) C V and codv(h) C V', where (V,H,v),(V',H' ¢') are suitable orbifold charts.
By construction we already know v(h)(Expy(x)) = v(g)(Expy(z)). Restricting to an open and
Hgyp,, (z)-stable subset Exp;(z) € S, of domwv(g) Ndomuv(h), the changes of charts v(g) and v(h)
restrict to embeddings of orbifold charts. By Proposition there is a unique v € H’ such
that v.v(g)ls, = v(h)|s,. Now v.v(q)(Expy(z)) = v(h)(Expy(x)) = v(g)(Expy(x)) implies that
v E Hllj(g)(Sw) and from Proposition |1.2.2| we obtain some § € H with v(g)(d) = .

As Expy; is an open map, the intersection S, N Im Exp;;(dom g Ndom h) is a non-empty open set.
It contains at least one non-singular point y by Newman’s theorem [B:2.1] Both maps coincide on
Expyy (dom g N dom k), whence

v(9)(0.y) = v-v(9)(y) = v(h)(y) = v(9)(y),

which implies §.y = y. Since y is non-singular, § = idy follows. The mapping @ is a group
homomorphism, from which we deduce v = idy-. In conclusion, v(g)|s, = v(h)|s, holds, whence
their germs agree, proving property (R4b). The above shows that there is locally only one choice
for v(g). From this observation, one deduces that properties (R4c)-(R4d) are also valid for éxpg,y,-
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We have thus constructed a charted map

EXPorb = (€XPoybs {EXPW}(W,Gm)ev ,[P,v]) € Orb(V, W)

for the range family W € U as defined above. To finish the proof, we need to check that every other
choice of lifts yields a charted orbifold map which is equivalent to expg,y,.-

Let expoy, = (expo,, {Ew: | (W', G',4') € V'},[P',v]) be another charted orbifold map whose
lifts are constructed as above. Arguing as before, for each lift Expy;,, we may cover Im Expy;, with
the domains of embeddings ui, i € I of orbifold charts such that:

(a) dom ply, # dom p{l,v for each 7 # j, _
(b) for each i, there is a lift Ey/ of expg,, and an embedding of orbifold charts Ay, such that
Expyy (dom Afy) € dom py and iy Expyy |aom i, = Ew: Ay -

Repeating this argument for each chart in V, we obtain an orbifold atlas A of charts for 2 and a
family F of orbifold charts for Q). In particular, for each chart A € A, there is a chart in F together
with two pairs of embeddings of orbifold charts: The first pair (.}, ¢%) being the canonical inclusion
into dom Expyy, respectively cod Expy;, for a suitable lift of expg,y,, while the second pair is given by
the embeddings (A4, p4) constructed above. It is now easy to check that the data (A, F, (¢}, %) ac4)
and (A, F, (A, pa) aca) satisfy the hypothesis of Lemma[E.4.2] By construction, the induced lifts
of 6xpgyy, and e?p\o/rb coincide. In particular, the induced lifts satisfy an identity as in , ie.
by construction they are given as the composition of geodesic flows, changes of charts and bundle
projection of manifolds. An argument as above shows that locally there is just one choice for the
change of charts in the image of v. Local uniqueness of the changes of charts relating the lifts thus
forces 6Xpoyy, ~ €xpoy, (cf. Definition . Hence [6Xpoy,] = [€xpoy,] follows and we abbreviate
this unique map of orbifolds as [expg,y]- O

The above proof reveals several useful properties of the lifts for expg,;,, which we collect in the
following

4.2.4 Remark

(a) The proof of Proposition shows that arbitrary sets of lifts (which are given as lifts of
orbifold geodesic flows evaluated at 1) for expg,,, where no two are defined on the same chart,
may be complemented to a family of local lifts which satisfy (R2) of Definition m Each of
these families then induces a representative of [expg,y]-

(b) The families of lifts we constructed in Proposition have the additional property that
for each Expy, : (W,Gw,7) = (Uw,Guy,,¥), there is an orbifold chart (V, H,p) such that
W C TV is an H-stable subset which is Gy -invariant.
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5. Lie Group Structure on the Orbifold Diffeomorphism Group

Throughout this section, we assume that (Q,U, p) is a smooth Riemannian orbifold. We construct
a Lie group structure on Diffo,p, (Q,U) by an application of the construction principle outlined in
Proposition [C.4.3] To this end, the subgroup of all compactly supported orbifold diffeomorphisms
will be turned into a Lie group.

5.1. Lie group structure on Diffo,, (Q,U),

It turns out that our approach needs a framework, i.e. an orbifold atlas together with a collection
of local data, which we fix now. Based on this preliminary work, we construct a locally convex
Lie group structure modeled on Xo,, (Q), for the subgroup Diffo., (Q,U), € Diffo,y, (Q,U). This
group is generated by elements in Diffo,, (Q,U) suitably close to the identity. In Section this
Lie group becomes the identity component for the Lie group Diff o1, (Q,U).

5.1.1 Construction

I. Choose for each connected component C' C @ some z¢ € C. As @ is locally path connected,
each component of ) is open. Hence {z¢ |C C @, connected component} is a discrete and
closed subset. Combining Proposition [I.6.8| with Lemma[I.6.6] we may choose orbifold atlases
A, B € U with the following properties:

(a) the atlases A = {(U;,G;,¢;)|i € I} and B = {(W;, Hj, ;) |j € J} are locally finite,
(b) each chart in A, B is relatively compact (i.e. its image in @ is relatively compact),
(¢) For each connected component C' C @, there are unique ic € I,jc € J with z¢ €
'l/)ic (Ul ) (resp. ZC € Pje (ch))v
(d) Ais a refinement of B and there is a map a: I — J such that each i € I satisfies:
i) U; C W (i) and the canonical inclusion of sets is an embedding of orbifold charts,
implying G; € Ho) and 1; = @qae v,
ii) a(ic) = jc,
iii) a~1(4) is finite for each j € J.

II. For each i € I, the set U; C W) is compact and connected. By local compactness and
local connectedness, there is a relatively compact connected open set U; C O; C Weiy- The
set Hy(;).O; is open, H,(;-invariant and U; is a connected subset of O; C H,y-0;. Thus
U, is contained in a connected component of Hy()-O;. Replacing O; with this component,
without loss of generality O; is an open, relatively compact, H,;)-stable subset. Notice that
Gi € Hu(),0, holds by construction.

III. For each j € J, define a compact, Hj-invariant subset IC; := H;. Uieoﬁl(j) O;. Apply Lemma
With respect to the family of compact sets (K;);cs and the atlas B. There is a cover for
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Iv.

each K; by a finite set Z; := {ij | 1<k< Nj} of open Hj-stable sets such that: for each
member of Z;, there is a finite family of embeddings ()\;?h: ZJ’»C — Wh)hez (k) With properties
as in Lemma m By Part (c) of Lemma , each ZJ’»C is relatively compact and the

embedding )\?h is the restriction of an embedding th whose domain contains Zij’f
Consider the open submanifold K7, which is o-compact as an open subset of the second
countable locally compact manifold W; (cf. the proof of Proposition m (d)). By Lemma

E we may cover each K7, j € J with a countable family {(V5kj7 /@fc)} ch<l’ l; € NoU {00}
' 1<k<l,
of manifold charts such that the cover is locally finite and subordinate to the open cover
{Z,Z NKS|I1<k< Nj} of K. Furthermore, these charts satisfy %(V})kj) = B5(0) and the
families V¥, := ( I)=Y(B,(0)), 1 < k < j; cover K5 for each r € [1,5].
Since H,(;) is finite, the set Ha(i).ﬁi - ICZ(i) is compact. The atlas {(Vrk ni)} is
1<k<l;

9,77

locally finite, whence there is a finite subset F5(Hq(;).U;) such that V5’fa(i) N Howy.Ui # 0 if

and only if the chart (VE)ka(i)’ ni) belongs to F5 (Ha(i).ﬁi). We define open sets

QT,i = U V’r‘?{x(l)? re [1, 5]

Vo o) EFs (Hagy Us)

and compact sets K5 ; := Q5 ;. There is a finite subset F5 (K5 ;) such that a chart belongs to
F5(Ks,;) if and only if V5ka(i) N Ho)-Ks,i # 0 holds. Observe that H,;).U; C Q1 is satisfied.
Let p; be the Riemannian metric on W; and expy, : D; — W; the associated Riemannian
exponential map. By compactness of K; and Lemma@, there are constants s; > 0 for j € J
such that: The closure of O; = UwElCJO- B,;(0z,85) € TWj is contained in D; and expyy,
restricts to a diffeomorphism on T W; N O; for each z € k7. Moreover, Qs j . is compact
for i € I and a~'(j) is finite for j € J. Shrinking the constants s;, we can achieve that for
eachie I'and z € Qs g, the identity expy, (Bpogy (0, 5a(i))) € Qa1 , is satisfied. Since
)\?h(Z]’-“) is compact, Lemma yields a constant 0 < S, < min{s; |h € Z(j,k)} such that
expyy, restricts to a diffeomorphism on

TS, (By, (02, Sjk)) € Tie, (o) Wy @ € zk.
Furthermore, since changes of charts are Riemannian embeddings, by choice of S},

TN (Bp, (02, Sjk)) € By, (Oxr, (a5 50)

J

holds for z € dom)\;’?h. For each j € J, we define S; := min{S;; |1 <k < N,}. The set
F5(Ks.;) is finite and for each chart (V,* i) ng(i)) € F5(Ks5,;) the set UfGVg’fam By, iy 0z, Sagiy)

5,0
is a neighborhood of the zero-section on the compact set VQka(i). Hence the Wallace Lemma |21}
3.2.10] yields a constant R; > 0 with

B(0) x Br,(0) CTry ™ | | Bpuy (0. 8ai) | V(Viaiiy we”) € Fo(Ks,0).

sa(i
TEVY o i)
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For the rest of this section, we fix the data constructed in[5.1.1]and use the symbols without further
explanation. The next lemma is a rather technical statement. It is the first step in constructing
orbifold diffeomorphisms using the Riemannian orbifold exponential map.

5.1.2 Lemma Consider (U;, G;,1;) € A and for an orbisection [6] € Xo, (Q) denote by o4 ;) its
canonical lift on W) and by o its underlying continuous map. There exists an open neighborhood

Ni € X (Waw) of the form N; = (resg/”( ) (.A/ZQ5) of Oa(s) such that ooy € N implies the
following:

i (U;) Co~ L(Q), where Q is the domain of expoyy,,
i [E7)|y, v,y = [expom] © [0 Hg ) mduces a diffeomorphism of orbifolds onto its image,

) -
i 0o () (Q22,6) C Oa( y holds for Oa(z as in C’onstructzon 1V

for some zero-neighborhood /\/IQ” CX(s,).

Proof. The set O; C ICZ(Z.) is open and H,;)-stable, whence an H,;)-stable open subset is given by

TO; N Ogiy € Dy(s)- We obtain an orbifold chart (T0; N Oa(t)vHaA(i),TOm()a(i)’T‘pa(i)|ToimOa(i))
A (_)5 TO; N Oa(i) — Wa(i) of €XPorb- By
Remark (a), there is a representative éxpgy, € Orb(V, W) of expg,;, such that Expro, MO
is contained in the family of local lifts of éxpg;,. Notice that 1;(U;) C Q is an open subset, whose
inclusion ¢, (¢7,) induces an open suborbifold structure (see Deﬁmtlon. Consider an orbisection

[6] with Im oy, ;) € Q. Definitions and together with Proposition imply that there
is a well-defined map of orbifolds [EC’M(U” = [expoy] © [&]\fgi(m). Now, we proceed in several

together with the lift Expro.no o = XPw,

steps:

Step 1: Apply Lemmato the family F5(Hq () .U;) to obtain an open zero-neighborhood NZ-Q‘F”" -
X (25,;) (playing the role of Es5  in the lemma). Define N; : (reSSV)V‘f: )~ (NZQE”) cx (Wa(i)) and
observe that 0,(;) € IN; and the following conditions hold: For each X € N;, the map eXPw, ;) oX|a,,
is an étale embedding into Wy;). The set p; C Q5; C ICZ() is compact, which allows the
construction of a C%-neighborhood of the zero section Py; C X(Qs5,) such that X € P;; implies
X(Qa,) C Oa(i). Set MQ5 = NZ-Q“ NPy ,; and N; == (resg/"‘( - (NQS ‘N Py;). Each vector field
in \V; satisfies iii. and N is a preimage as required. By construction, 1;(U;) = Ca(i)(Us) C a@@)(05)
holds and EXpTOmOa(,-) is a lift of expg,,, whence i. follows from property iii. In addition, if
Ta(i) € N then the map eXpw,, ;) oaa(i)|HQ(i)_Ui is an étale embedding. Specializing to U;, the map
€%t 1= EXpTOimOa(i) °ooaiylu, = EXpTOiﬂéa(i) o g; is a étale embedding, where o; is the canonical
lift of [6] on (U;, Gi,%;). From now on, consider [6] € Xoub (Q) such that o,;) € N;.

Step 2: The map e’ is equivariant with respect to the inclusion v: G; < H,;): Consider an
H;)-invariant subset R C Qy,;. We claim that eXPw,, ) aa(i)\R is equivariant with respect to
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Hiy. If this is correct, then e?" commutes with any 6 € Hyiyu, = Gi, as Hy).U; © Qg is
invariant. To prove the claim, let § € H,(;) be arbitrary and € R. As d.x € R C Qs ; holds,
Oq(i) is a canonical lift and H, ;) acts by Riemannian isometries, we compute: eXpw,, ., aa(i)(é.x) =
expyy, ,, 1000 ;) (x) = d.expy, , a(i)(x), thus proving the claim. The map e is a local lift of
E |y, sy = (€xPorb 00 |y, (0 )™ 0.

Step 3: The set Ime” is Hy;y-stable with Hy;). Ime? C €y, Consider § € H,(;) such that
5. Ime’ NIme # (). For z,y € U; with €% (z) = §.e”i(y), one obtains

CXPw,, (4) 00 (i)(x) = €7 (x) = 6.7 (y) = expyy, () Ta(i)(0-Y)-

From Step 1, we conclude z = 4.y, since on H,;).U; C €2; the map eXPy,, ;) ©Tal(i) is a étale
embedding. By H,;-stability of U;, § € G; holds, whence 6.Ime?" = Ime?". This proves the
H (;)-stability of Ime” and Gy s = Gi.

The canonical lift o, ;) is contained in NV;. By construction of € ; (cf. Lemma(D.§|), the equivariance
of this map implies:

Step 4: L\, (v, is injective and a homeomorphism onto its open image: Consider z,y € ;(U;)
with E7]y, w,)(z) = E7|y,w,)(y) and choose preimages z, € Vi (x), 2, € U7 H(y) of a respectively
y in U;. Since e is a lift of E7]y, (v,), there exists 0 € H,(;) such that e (z;) = d.e7*(2,). By Step
3, we must have § € G;. Since e?* is an embedding, equivariance of this map yields 4.z, = z,. Both
points are in the same orbit, which forces x and y to coincide. Hence E7| 7, Is injective.

The local lift e?* is a étale embedding and the maps of orbifold charts are continuous and open.
For any open subset S C v;(U;), E7|y,w,)(S) = @a@) 0 e o wi_l(S) is an open set. In conclusion,
E?|y, (v, is an open map, whose image is open in Q. In particular, Im E7|y, v, is an open suborb-
ifold of Q. An atlas for Im E7|y, (1, is given by {(Im e, Gi, @a(i)|tmes:) }

Since composition in Orb is well-defined, a representative of [expg,y] © [&HEZ@-(UW corestricted to
Im ‘Pa(i) is given by E° P (Uy) = (EU i (Us)s e‘”,Gi, I/) S OI‘b({(UZ, Gi, wz)} s {(Wa(i); Ha(i)7 @a(i))}).
The map E?|y, v, is @ homeomorphism mapping the open suborbifold ;(U;) of @ onto an open sub-
orbifold such that the local lift of E7|y, v, is a diffeomorphism onto its (open) image. Proposition
assures that [EA"’|¢,1.(U1,)] is a diffeomorphism of orbifolds. O

5.1.3 Later on, we shall apply patched mapping techniques (cf. Section to prove the smoothness
of several maps. To do so, we have to define an orbifold atlas, where charts may occur repeatedly:
Let C = {(Wa(i),Ha(,'),goa(,»)) |z € I} be the orbifold atlas which arises from B by collecting a
different copy of (W;, H;, ;) € B for each i € a~!(j). Observe that this atlas is locally finite and
each chart is relatively compact, as a~1(j) is finite and B is locally finite with relatively compact
charts.
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5.1.4 Proposition There are open zero-neighborhoods N; C X (Wa(i)), t € I which generate an
open zero-neighborhood N C Xou, (Q),, such that each [6] € N induces an orbifold diffeomorphism

[E7] := [expoy) © 6] € Diffon, (Q,U).

Proof. For each i € I, construct via Lemmaa neighborhood N; C X (Wa(i)). The construction
shows that for each [6] with o,(;) € NV;, the map E7|y, ;) is an embedding of the open suborbifold
¥;(U;). By definition of the direct sum topology, the box @,c; Ni = ([T;c; Ni) N PBicr X Wae)
is an open subset of @, ; X (Wa(i)) (cf. [39} 4.3] respectively |25, Proposition 7.1] for a proof).
Using the atlas C introduced above, we define the set

N = Ag? (@N) : (5.1.1)

iel
which is open in the c.s. orbisection topology by Lemma A combination of Definition [2.2.3]
and Remark (a) shows that each [6] contained in N induces a well-defined map of orbifolds
[E7] := [expo,p) 0 [6]| such that E7 := expo,y, 00 : Q — Q is a local homeomorphism. In particular,
E?|y,(u,) is an open embedding for each i € I. Let €Xpo,p, be the representative of the Riemannian

orbifold exponential map obtained from the family (EXpTOmOQ(i) )icr by Remark (a). Then the

domain atlas £ of éxpg,;, contains the family {(TOi n Oa(l’)?Ha(i),Toiméa<i)vT@a(i)|T0iméa(l))}ieI
and for each [6] € N, the canonical lifts ¢; satisfy Imo; C TO; N Oa(i) for i« € 1. Hence there
is a representative | € Orb(A, &) of [6]|® whose lift on (U;, Gy,1;),i € I is just o;|TO:"Cat,
As composition in Orb is well-defined, we obtain [expoy, © 6% = [expo.] © [6]|¢. Thus the
lifts constructed in Lemma yield a representative E7 := eXpo, © 0 = (E7, {7 }ier, Pov) €
Orb(A,C). Here each lift e is an étale embedding and (P,v) is obtained by an application of
Construction The image of such a lift is an orbifold chart (Ime”?, Gy, @ (i) |tm e )-

We have to check that E° is surjective and injective for every [6] € N to prove the assertion.
Reviewing the construction of NV, the map E7 maps 1;(U;) into @q;y(Wa)). Every orbifold chart
is a connected set, whence its image is contained in a connected component of (). Thus E° maps
every connected component of () into itself. In conclusion, it suffices to prove that the restriction
of E7 to each component is bijective, whence we can assume that @ is connected.

As a first step, we show that for every orbisection [6] € A the map E? is a proper map. To this
end consider an arbitrary compact subset L C . The atlas B is locally finite and thus L meets
only finitely many of the sets ¢;(W;),j € J, say L C |J'_, ¢;,(W;,.) and L N @;(W;) = 0 for all
j€JI\{j1,--.jn} For [6] € N, we have E7(¢;(U;)) C pa(iy(Wa)). The closed set (E7)~(L) is
thus contained in

ey meld U ‘ Vi(Ui). (5.1.2)

By construction each a~1(j,) is a finite set. Hence (E7)~!(L) is compact as a closed subset
of a union of finitely many compact sets. Since L was arbitrary, E“ is a proper map (cf. |9, §10 3.
Proposition 7]). Combining the facts that @ is locally compact by Proposition and E7 is a
proper map, E? is a closed map (cf. |9, §10 1. Theorem 1]|). The image of E? is an open and closed
set, since images of local homeomorphisms are open. But @ is connected and thus E? is surjective.
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The map E? is a proper, surjective local homeomorphism of connected and path-connected lo-

cally compact spaces. Summing up, E? is a covering of @ onto Q by [22], Theorem 4.22|. Recall

I. (c): There is some zg € @ such that zg is contained in a unique pair of orbifold charts
(

Uz G, 20), (WZQ,HZQ,L,@ZQ)) € A x B. Since E7(1;(U;)) € ©a)(Wa@)) and zq is not con-
tained in any ¢;(W;) except for j = jg by we derive from : |(E?)~Y(2q)| = 1. The
number of sheets of a covering is an invariant for the connected space @ (cf. |22, Theorem 4.16]),
whence E? is injective.

In conclusion we have constructed a charted orbifold map E7 such that E° is a continuous, closed
bijective map (i.e. a homeomorphism by |20} III. Theorem 12.2]) and each lift e, (V;, G;,4;) € V is
a étale embedding. Each lift is a local diffeomorphism, whence Proposition implies that E7
is a representative of an orbifold diffeomorphism [E?] = [expo,] o [6]]%. O

The mapping taking an orbisection from the zero-neighborhoods N (see Proposition [5.1.4) to
an orbifold diffeomorphism will in general not be injective. However, on a sufficiently small zero-
neighborhood one can always achieve this.

5.1.5 Proposition Consider the family (N;)icr as in Proposition[5.1.4 For each i € I, there is
an open neighborhood Pa; C X (Q5;) of the zero-section and sets M, ™" = ./\/'f25 NPy, M; =
(resg‘/z:“fi))_l(./\/l?“) such that on the zero-neighborhood M := AZ" (D;c; M), the map

E: M — Diffor, (Q.U), E([6]) := [E°] = [expoy) © [6]|%,

is injective with E(Oor,) = id(q u)-

Proof. Following Proposition each [6] € N = AZ" (D, NV;) induces an orbifold diffeomor-

phism [E"] Shrink AN to obtain an open C'-neighborhood M; of the zero-section in X (Wa NE
Choose for each ¢ € I a non-singular point z; € U; (which exists due to Newman’s Theorem [B.2.1
since U; is an open set) and an H,;)-stable z;-neighborhood U, € W,y with Hy ), = {idwa(i) }
This is possible since z; is non singular. The family F5(H,(;).U;) constructed in covers
U; and we may choose a chart (V:,)ka(i),fig(z)) such that z; € nga(i). Consider the open set
Uzi = TVSIT(X(i) N OAa(i) N exp{vla(i)(Uzi) C TWy)- The intersection T,, Wy N Uzi is an open
zero-neighborhood. We obtain another open zero-neighborhood

0D (z0), pro(Tre O (O, 0 (55D (2:) x RY)))| € 0(B5(0),RY)

where pry: Bs(0) x R? — R? is the projection. Define P»; C X (Q5;) to be the open zero-
neighborhood induced by Lﬁg(z)(zi), proy (Tli:(z)(f]zi N (H:(z)(zi) x R%)))|. By construction, the map

eXPw, ;) ©Ta(i) Maps z; into U, if 0,(;) is contained in Py ;. The intersection M;™" 1= N;™" N Py

7

is a non-empty open zero-neighborhood in X (€25 ;). Define M, := (resgs‘ffi))’l(/\/l?s’i) C N;. Then

M = Agl (®ieI /\/ll) contains 0oy, and is an open subset of A in Xou, (@),
We show that the map E (as in the statement of the proposition) is injective on M. Assume that
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there are [4],[7] € M such that E([5]) = E([7]). For E([6]) = [E“], there is a representative
E? in Orb(A,C), by Proposition By assumption, the orbifold maps induced by E° and ET
coincide, whence E7 = E° follows. We will prove that for each i € I, the lifts e’ and e™ coincide.
Fix i € I and observe that E7 = E7 implies that for each 2z € U;, there is some v, € H, ;) with
€% (z) = v,.€7(z). Consider a component C of U; \ ¥¢,. The set {c € C|~v.e”(c) =€Ti(c)} is an
open and closed subset of C. As C' is connected, there is a unique yo € Hy () with €7 |z = yoe™ |5
For x € C N (', this yields the identity Ty (yce™) = Tpe’ = T,(ycre™). Since e is a diffeo-
morphism, we derive Teri(m)fyg,l'yc = Teri(a) idw,,,, and va,lfyc € Hu()emi(z)- By [51, Lemma
2.10], y¢ = 7o follows. Then ¢ = ¢ follows for each component such that there is a chain
C =C,Co,...,C, = C" of components with Cj, N Cry1 # ). Observe that by a combination of
Lemma and Lemma“eaeh r € Yg, is contained in some C and U.co C is a neighborhood
of . Hence there is a unique -y with v.e™ = e%. Specializing, we obtain 7.e™(z;) = e%i(z;). The
lifts 04 (), Ta(;) are elements of M;, whence by definition of M;, e”(z;),e" (2;) € U, holds. The
H,;)-stability of U, forces v to be in the isotropy subgroup of U;,. Hence v = idw,,, holds and

we obtain eXPw, ;) oaz = eXpy, ) OTi- Lemma iii. implies that Im o; and Im 7; are contained

in Oa(i). As eXPw,, ;) is injective on TwWa(i) N Oq ) for x € U;, we must have 7; = 0;. Repeating

the argument for i € I, the families {7;},.; and {o;},.; coincide. As those lifts are canonical lifts,
Remark [3.2.10] (a) implies [6] = [#] and E: M — Diffo,1, (Q,U) is injective. O

We now apply the results of Section [D]| to construct a neighborhood H of the zero-orbisection:

5.1.6 Construction Using the local data obtained in Construction IV., we define open sets

QT7K5,1' = U ‘/rtla(i)’ re [1’5]'
(Vs'ais ),Hn(l))€f5(K5 i)

By construction, Q5,; C Q5,;, = K5, C Q. Ks.i holds for each r € [1,5].
In Proposmon we have constructed sets /\/l ®' as intersections M =N, N PN Py,

where N >* is an open zero-neighborhood as in Lemma Apply Constructlon. Wlth R; (see
Constructlon 1) V.) taking the role of R, M := W), K := K5 ; and P := Py ;"\ P, ; to construct

an open zero—nelghborhood Hr, CM; CX (Wa(i)). The set Fs i occurlng in Lemma is NQS !

Qs,5 Q5,4

from the proof of Lemma |5.1.2} By construction, Hp, = <resQW““3 _)_ (’HK5 *) holds for an open

zero neighborhood ’Hg“’ cx (95, Ks,i)' Finally, for each ¢ € I the construction yields a constant
0 < 74, v; < R; with the following property:

fXeXx (Wa(i)) such that for each (V5 (i) B
”Xk”m | < 73, then X is contained in M;.
Recall from Construction [D.9|that for each pair (X,Y) € Hpr, X Hpg,, there are unique vector fields
Xo YV, X* Y eX (Q%,Kw . Together with the definition of R; (5.1.1|V.), the estimates (D.9.4))

and imply the following properties, which we note here for later use:

) € F5(K5,:), the local representative X, satisfies

X ;Y (2), X*(2) € By, (0, Sa() € Oy, Vo € Qs g, . (5.1.3)



92 5 LIE GROUP STRUCTURE ON THE ORBIFOLD DIFFEOMORPHISM GROUP

Moreover, for each chart (V' ,H%(i)) € F5(K5,), the vector field X o; Y satisfies the estimate

5,a(%)

(D.9.4), i.e. H(X 4 Y)[”]Hﬁ(o) < v;. Recall that v; in Construction W is chosen exactly as in

Lemma Hence Lemma (b) yields for X,Y € Hp, and z € V3! | ;) the identity
1>

(
exp,, TS (X o; YV)(z) = 20 eXPyy, (X 0;Y)(x). (5.1.4)

Define the open subset H := Agl (EBZ-GI HR,_») of Xorm (Q),. By construction, 0o, € H C M.

The vector fields X ¢o; Y and X™* induced by orbisections in H yield families whose members are
M-related for suitable changes of orbifold charts A. The details are checked in the next lemma.

5.1.7 Lemma Consider orbisections [6],[F] € H with families of canonical lifts {0} ,;c ; , {Tj},c;
with respect to the atlas B. Let A € Chy, w, be a change of charts which satisfies dom A C Q%K&i
and Im A € Qs g for k= a(i) and | = a(j). Then the following identities hold:

T/\(O’k O Tk:)‘dom)\ = (O’l 0j Tl)O/\ (5.1.5)
TAo} |dom A = O'l*j o\ (5.1.6)
Then the maps o ©; Tj|y, and a;" U, are equivariant with respect to the derived action of G;.

Proof. The identities (5.1.5) and (5.1.6) may be checked locally. Fix z € dom A C Q 5 I, , together
with a chart (V2% ,kF) € F5(Ks5,) such that o € V' . The manifold atlas chosen for K C Wy is
: 5,

subordinate to the cover (Z;NK})1<r<n,. Hence there is some Z; with V3", C Z. Asz € V', C K,
and A(z) € Qs g, C Ky, by construction (cf. Lemmal|1.6.9), there is an embedding of orbifold
charts pu: Z — W; with p(z) = A(x). After possibly replacing p with vy o p for suitable v € Hj,
there is an open neighborhood U, of z in Q%’KE) . with ul|y, = Aly,. By construction, we obtain
w(@) = AMx) € Qs g, € K7 and Ty = Ty A holds. The definition of S together with equation
(p.1.3) implies T'u(o; o; 7;)(x), Tuoj(z) € Oy and (o, o; 7)p(x), 0,7 u(z) € Oy. Let exp, be the
Riemannian exponential map induced by the pullback metric on Bs(0) with respect to (x%)~!. The
map (k)71 is a Riemannian embedding of B;(0) into W;. From [43, IV. Proposition 2.6], we
deduce for v € domexp,, that

expyy, Tr(ry) "t (v) = p(kyy) ' exp, (v). (5.1.7)

Recall from Construction [5.1.6] that for i € I, there is some open set Hp, with the same properties
as in Lemma such that [6] € H implies o, € Hp,. For X € Hp,, we have:

i. k¥ expy, 0X(z) = exp, Tk, X(2) for each z € 37 (combine Lemma (b) and (f)),
ii. expy, oX(V3',) C V3, and expy, oX(Vy) C V3, (see Lemma (d)),
1 ’ ) )
iii. V%"Jc C expyy, o X (V5Y) (see Lemma (d)).
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The families {0} and {73} are canonical families, whence o;u = Tuoy holds. In addition, for the
vector field oy o; 7, on V3!, the local identities (D.9.3) and (D.9.8)) are available. Combining these
%

facts we compute:

expyy, Te Aok 0i k) (2) = expyy, Tept(ok ©i 7) (1) = expyy, T(u(ky) " k) (0% 0 71) ()
B1.7) _ B1.4) _
=" p(kl) " exp, Try(on 0 i) (x) "= p(kl) 'Kl expy, (0% o 1) (7)
(D.9.3) 1
= [Lexpyy, (eXka In,) eXPyy, Ok €XPyy, Tk (z)
i.+(E.1.7)
T expyy, Tuok expyy, Te(x) = expyy, o expyy, ()
i.+(5.1.7)
i+E1D expyy, 01 expyy, Tip(r) = (expyy, 01 expyy, T1)A(x)
D-9.7)

= expPyy, (o105 T1)(A(2)).

Since expyy, restricts to a diffeomorphism on T,y W; N O;, the computation yields (5.1.5)).
To obtain (5.1.6), we use z € V3', and compute with the facts from above:
D

) . (D.9.8) -
expy, Tedoy! (x) = expy, Thoy! (z) == p(expy, 00kla, «, ) (2).

Aszx € V%k,n7 by iii. the image (expyy, OUk\Qz,KW)_l(QU) is contained in V3. Since Tﬁﬁak(V{fk) -
domexp,,, we conclude with (5.1.7) that oyu(Vy%) = Tuok(Vy) C domexpy,. Thus we may
consider:
(expwy, 01) © expy, Te Aoy () = expyy, oup(expyy, oklo, i, )~ (@)
= expyy, Tpoy(expy, O'lezst‘i ) Hx)

= nexpw, ok)(€xPw, Tkloy i, )7 (@) = plx) = Az) € Qs k-

)

Recall A(z) € Qs g, and Tupoi(x) € O,. Now the definition of O; in Construction V. yields
expyy, Topoy' (x) € Qo iy . On Qy g, the map expy,, ooy is injective, by Step 1 in the proof of
Lemma We deduce that expy, Ao} (z) = expy, 0,7 (A(x)) must hold. Since expyy, restricts
to a diffeomorphism on 7)) N Oj, the computation yields (5.1.6]). O

The families {0 o; 7;},., and {O’;i }ie ; Obtained in this way induce orbisections:

5.1.8 Proposition Consider orbisections [6], [7] € H, whose canonical families with respect to B
are given by {o;},c ; and {75}, ;, respectively. Then

(a) The family {oag) i Ta(i)}iel induces an orbisection [oo 7] € M whose family of canonical
lifts with respect to the atlas A is given by (0 © T); := o) i Ta@)lv, fori € 1.

(b) The family {azi'(i)} induces an orbisection [g;] € M whose canonical lifts with respect to
i€l
the atlas A are given by (c*); == O'Zi(i)|Ui foriel.
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Proof. The families {(0 ¢ 7);};c; and {(0%);},c; are compatible families of vector fields on the atlas
A by Lemma These families yield canonical families of lifts with respect to the atlas A. In
particular, the identities (5.1.5) and (5.1.6)) allow the definition of continuous maps:

coT:Q = TQ,x— Twi(aor)iwi_l(x) if x € ¢¥;(U;)
" Q—->TQ,x— Twi(a*)iwi_l(x) if x € ¢¥;(Uy).

These data allow the definition of orbisections [o ¢ 7] and [ *] by Remark |3 (a).

To complete the proof, we have to show that [7o7],[07] are contained in M. To this end, we
need to assure that [7o7] and [0%] are compactly supported. The orbisections [6],[7] € H are
compactly supported, whence supp[d] U supp[7] is contained in a compact subset K C @Q. Since
B is locally finite, there is a finite subset S, C B such that (W],H],goj) € S, - if and only if
Imp; NK # 0. Consider (W;, Hj,p;) € B\ S, . By Remarkm ) the canonical lifts of [5], [7]
on W are the zero-section in X (WW;). The conclusion in Construction [D.9) - 1mphes that 00,7, =0
and o} = 0 for each i € a~'(j). Therefore the supports supplo o 7] and supp[o*] are contained in
Ko, = U(Wam Hotiy 0oy €S r »i(U;). As S, >+ is finite and for j € J the set a~!(j) is finite, K, ,
is a finite union of compact sets ¢;(U;). Hence the supports of [7o7] and [0*] are contained in a
compact set, whence these orbisections are compactly supported.

Following Proposition we may consider the canonical lifts (o ¢ 7), and o} on each chart
(Wi, Hy, 1) € B. The orbisections [7 o 7], [0*] will be contained in M if their respective canonical
lifts are contained in M, for each i € a=1(k), k € J.

Fix i € a~!(k) and define (0 07)k)m) == (00 T)k)w, 0 £yt and (07)1) = (0% )k, © Ky ', respectively
(cf. Definition for (Vi ki) € F5(Ksi)- By construction [5.1.6} it suffices to prove for each
chart (Vi K k) in F5(Ks,;), the condition ||((0 o 7)k ["]HTo)l
7; holds. Observe that the conditions may be checked on Qs Ks,- Uniqueness of canonical lifts
together with (5.1.5)) and (5.1.6)) forces the canonical lifts (aor)k respectively (c*); to coincide with
o, ©; Tk, respectively o, on Qs ks, Recall from the construction that the constant 7; corresponds

to the constant T in Constructlon - Hence a combination of with Corollary yields
)
(

< 1; respectively ||(O'Z)[n] ||Tm),1

H TOT)k [”]HBl(O) 1 = [[(o)pn1 © (7)) pn HBl(O) < 7i and (@) B1(0),1 = [|((o))pa1)* ERORER
. We conclude that each of the canonical lifts of [7o7] and [0*] on (W, Hy, ¢x) is contained in
./\/l with 7 € o~ (k). Summing up, [7 7] and [0*] are contained in M. O

5.1.9 Remark (a) The last lemma implies that the map E may be applied to [0 ¢ 7] and [0*] for
[o],[7] € H.

(b) Moreover, consider the canonical lifts (oo 7)w, .,
for [o],[r] € H on a chart (Wy), Hagi), Pa)) € B for i € I. Let again o,(;) and 7,(; be
the canonical lifts of [6] and [7], respectively, on (Wy(), Ha(i); Pa(iy). Then uniqueness of
canonical lifts shows that the restrictions of these vector fields to €25 ; satisfy

and ogy - of [0 o 7] and [0*], respectively,

* *;
= Oa(i) %i Ta(i) and TWaiy = Tali)

(coT)w,,,

f

by Lemma
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In the rest of this section, these properties will be crucial for several key arguments. We shall now
assure that the orbisections constructed satisfy the identities needed for composition and inversion

in E(M):

5.1.10 Lemma Consider 6], [7] € H. The following identities hold:

E([6]) o E([7]) = E([g o 7)) (5.1.8)
E(j8])~" = E([o")). (5.1.9)

Proof. Choose and fix arbitrary [6], [7] € H. The left hand and the right hand sides of the equations
resp. are orbifold diffeomorphisms. As observed in Proposition and Corollary
[2.1.11] orbifold diffeomorphisms are uniquely determined by their underlying maps or their family
of lifts. To prove the assertion it therefore suffices to show that their family of lifts or the underlying
maps on both sides are equal.

Consider the right hand sides of both equations: The orbisections [o ¢ 7] and [0*] have been con-
structed by a family of canonical lifts {o o 7);},.; resp. {(0%):};c; with respect to the atlases A and
T.A. Both orbisections are contained in M. Taking identifications Im(co7);, Im(c*); C Oa(i) holds.
Corestriction of each lift to TU; ﬁéa(i) yields representatives of [¢]| and [#]|*. Thus representatives
of E([go7]) and E([o*]) are given by (E7°7, {e("”)i}iel , P, v) respectively (B, {e"i* }iEI ,P' V)
in Orb(A,C). The lifts of these maps satisfy for each i € I by construction:

CXPw, ;) ©Pa(i) © XPw, ;) OTi = XDPw, ofcor); = eloo)s (5.1.10)

*

(eXpWa(i) Oaa(i)‘ﬂzi)il'[]i = eXpWa(i) OO-; =e%i. (5111)

We show that the lifts in coincide with the lifts of E([5]) o E([7]). As Orb is a category,
composition in Orb is associative. Hence lifts can be computed iteratively: E([o]) o E([7]) =
[expo,p) © [0]|0 [expoyp) © [ = lexpoyp) © ([0]|0 [expoyp] 0 [7][7). As 7, i) and o, (;) are contained
in Hp,, the composition of charted orbifold maps (cf. Construction [E.4.1)) yields a lift of E7 o ET
on U; which coincides with the left hand side of . Therefore S follows from by
an application of Corollary

To prove the identity (5.1.9) we show that the underlying maps of both sides are equal. To this end,
let ¢ be the underlying map of E([6*]). By Proposition [2.1.12} it suffices to check the identity

eXpo, 00 0 e’ =1idg .

If this identity holds, then assertion follows. Clearly the identity can be chekced locally for
each chart (U;, Gy, ;) € A. By construction on U; we have e 1; = Pali) © e . Here €% is the lift
of E([o*]) in the chart U;. Fix 2 € U; and notice Ime?i C Qy; by (5.1.11). Choose a H,;)-stable
neighborhood U, C €y ; of i (x) in W ;). Restrict the canonical lift o, ;) of [6] on Wy;) to U,.
Then oy, = 040 |5£Jm is a canonical lift of [6] on the chart (U, Hoiy,v, , Pa(i)lu, ). From Uy C Qs ;
and [6] € H, we deduce Imoy, = 043;)(Usz) C Oa(i)v by Lemma iii. Taking identifications,
we may compose oy, and EXpTUwﬂOQ(i) = expyy, |TmeOO(i)' Recall from Lemma that
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Expry o o is a lift of expg,},. Moreover, Construction shows that Exp;y; o o U is a
lift of exp,1, 0o. Hence, we obtain the following identities

¢

eXPoy, 00 0 €7 () = eXPoyy, 90 © Pa(i) © €7 () = Pa(i) (EXDry 16

GE1.1T)
= va(i)((exPw, ,, °Ta(v.) © (eXPw, ;) °Fa(i)l0a.,)
Q2

) Spa(z)('r) = %(33)

Since x € U; has been chosen arbitrarily, we may repeat the construction for each = € U;, whence
€Xpoyp, 00 0 e =idg and thus (5.1.9) follow. O

ooy, oe’i (z))

! Ul(m))

a(i)

UH?

||Iﬂ

We now turn our attention to the composition and inversion maps:

5.1.11 Lemma The maps

comp: H xH — MC Xow (Q),, ([6],[7]) — [do7]
nv: H — M g xOrb (Q)Ca [6—] = [o’*]

are smooth.

Proof. The atlases A and C are indexed by I. Let o; and o,(; be the canonical lifts with re-
spect to (U;, Gy, v;) € A and (Woy, Hai), Paciy) € C, respectively. The continuous linear maps
7i: Xow (Q), = X (U;),[6] — o5 and Ai: Xow (Q), = X (Way)) » [6] = 0a) induce patchworks for
Xor (Q),, by Corollary The product Xomp (@), X Xow (Q),. is a locally convex vector space
and we have the family of maps A; x A;: Xom (@), X Xom (Q), = X (Wa(i)) x X (Wa(i)) foriel.
Arguments as in the proof of Lemma show that the family (\; X \;);er yields a patchwork for
Xorm (@), X Xow (Q).. Let p be the corresponding topological embedding for this patched space
(cf. Definition [C.3.F).

The patchwork on each of the spaces (Xor (@), X Xorb (@), (A X Ni)ier) , (Xor (Q),, (Ni)ier) and
(Xorb (@), , (Ti)icr) is indexed by I. On the open set Hp, constructed in consider the maps

comp;: Hr, X Hr, = X(U;),(X,Y)— X o, Y|y,
inv;: ,HR,i — X(UZ) ,X — X

U;-

Since H = A" (DicrHr,), the identities for the patchwork established in the proof of Lemma
yield p(H x H) C ®icr(Hr, x Hr,) and Ac(H) C @iecrHpr,. By construction, we deduce from

Proposition [5.1.8}
(Hr; xHR,;)

(compi)ielmi”{ = A ocomp and (inv;) iertr;

52] .
AC;L[ i =Ayinv.

iel

These mappings make sense, since comp, and inv; vanish on the zero element. Hence comp and inv
are patched mappings. By Proposition [C.3.8] it is sufficient to prove that comp and inv are smooth
on the patches, i.e. for each ¢ € I, the maps comp, and inv; are smooth. For the remainder of this
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proof we therefore fix ¢ € I and prove the smoothness of comp, and inv;:

. . .. Weaii Qr Ky, .
The open sets Q. k; ,, 7 € [1,5] contain U;. Consider the restriction maps res, | ? , Tesy, >* which
’ Ks i

are linear and continuous, whence smooth by [26, Lemma F.15 (a)]. Recall that the maps

5,K5 ; 5,K5 ;

Q Q
cit Mo 0 X Hy o x(QéK) X Xo Y

Q5sK5,i

i Hay 5 X (U, ) X o X

are smooth by Lemma By definition the maps comp, and inv; are given as compositions:

Q5

5

_ 1:Ks,i Wai) Waiy
comp, = resy; oc; o (resQS,Ki xresg |HR@- XHR@_)

Q

. 2 K5 ;
inv; = res;;*" "

# o1; 0 Tesgy * ) |
g Qs.x, 1 HR; "

i

We conclude that comp, and inv; are smooth, whence comp and inv are smooth. O

Endow E(M) with the smooth manifold structure making £: M — E(M) a diffeomorphism.
We are now in a position to construct a Lie group structure on a subgroup of Diffo,1, (Q,U):

5.1.12 Proposition There is an open subset P C E(M) C Diffo, (Q,U) which contains the
identity such that the subgroup generated by P,

Difforb (Q,U)O = <7)>,

admits a unique smooth manifold structure turning Diff o, (Q,U), into a connected Lie group mod-
eled on Xor (Q), and P into an open connected identity-neighborhood.

C

Proof. Endow E(M) with the unique smooth manifold structure turning E: M — E(M) into a
diffeomorphism. Consider Py := F(H) as an open submanifold of F(M). Combining Lemma [5.1.10
and Lemma [5.1.11| the composition and inversion

m: Py x Po = E(M), (If]. 13]) = [f] o [9] = E(comp(E~([f]), E~"([3])))
v: Po = B(M), [f] = [f]7" = E(inv(E}([f]))

are smooth maps. Observe that by Proposition and definition of m and ¢ the images are
contained in E(M). The set Py is an open identity-neighborhood on which inversion and group
multiplication of Diffo,, (Q,U) are smooth. Hence the preimage ¢=*(Pg) = Py N (Po)~! with
(Po)~! := 1(Py) is an open neighborhood of the identity in Py. Thus E~1(Py N (Py)~ 1) is an
open zero-neighborhood in Xoy, (Q),. Since this space is locally convex, we may choose a convex
zero neighborhood Hy € E~Y(Py N (Py)™') C Xow (Q),. Then Py := E(H1) € Py N (Py)~ !
is a connected, open identity neighborhood in E(M). Since P; C Py N (Po)~! holds, we have
Y Py) = Po N (P1)"t = (P1)~! = «(P1). Being a preimage of an open set with respect to
a continuous map, (P;)~! is open. Furthermore it is connected as a continuous image of such
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a set. We obtain an open, connected identity-neighborhood P := P; U (P;)~! C Py in E(M)
by [21}, Corollary 6.1.10].

From the above, we deduce m(P,P) C E(M) and the mapping P x P — E(M), ([f],[g]) — [f] o [4]
induced by m is a smooth map. Furthermore, P~! = P C E(M) holds and the mapping P —
E(M),[f] — [f]" induced by ¢ is smooth. In conclusion all prerequisites of Proposition (a)
have been checked. Hence we derive a unique smooth manifold structure on

Diﬁorb (Q’U)O = <7)>

turning it into a Lie group such that P is an open identity-neighborhood in Diffo., (Q,U),. In
addition the manifold structure induced by Diffo,, (Q,U), coincides with the submanifold structure
of P C E(M). Therefore, P C Diffo,, (Q,U), is open and connected. As the group operations of
Diffo., (Q,U), are smooth, each of the sets P™ (the elements of Diff o1, (Q,U),, which are obtained
by n-fold composition of elements in P, n € N) is a connected identity-neighborhood. Since P is a
symmetric identity-neighborhood, we deduce from the proof of |37, Theorem 5.7]:

Difforp, (Q,U)y = (P) = | J P™.
n=1
Hence Diffo,, (Q,U), is a connected Lie group by |21, Corollary 6.1.10]. O

In the next section, we shall construct a Lie group structure on Diffo,, (Q,U). The Lie group
structure on the subgroup Diffo,, (Q,U), of Diffo,p, (Q,U) will turn this subgroup into the identity
component of the Lie group Diff o1, (Q,U).

5.2. Lie group structure on Diffo,, (Q,U)

Unless stated otherwise, all symbols used in this section retain the same meaning as in Section
In particular, we shall always be working with a Riemannian orbifold (Q,U, p). First, we will
prove that the Lie group Diffo., (Q,U), is independent of the choice of the atlases A, B and the
local data constructed in Section Second, the construction does not depend on the choice of the
Riemannian orbifold metric on (Q,U). Having dealt with these preparations, an application of the
Construction Principle will yield a unique smooth Lie group structure on Diffo,p (Q,U). The
strategy of the proof follows |28] where a similar argument has been used to turn the diffeomorphism
group of a manifold into a Lie group.

5.2.1 Lemma The Lie group Diffo., (Q,U), constructed in Proposition does neither depend
on the choice of atlases A and B, nor on the local data collected in Construction [5.1.1)

Proof. Let AT and BT be orbifold atlases which satisfy the same properties as A and B in Construc-
tion Replace A and B in the construction of Section [5.1] with A+ and B*. Taking the Rieman-
nian orbifold metric p as before, we obtain another connected, smooth Lie group Diffo,, (Q,Z/l)g
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depending on the new set of data. As shown in Section there is a C'°°-diffeomorphism ET,
E7([6]) := [expoyp,] © [¢] mapping the open convex zero-neighborhood H™ (defined as in Proposition
with respect to AT and BT, the open subset Ht C X, (Q),, and the local data constructed
for AT, BT) onto an open identity neighborhood in Diff o1, (Q,L{)S_. Then O := H;NH] is an open,
convex (and hence connected) zero-neighborhood in Xo.p (Q,U),.. The map E takes O diffeomor-
phically onto an open identity neighborhood in Diffo., (Q,U),. As Diffo., (Q,U), is a connected
Lie group, E(O) generates this group by [37, Theorem 7.4]. Analogously, ET maps O diffeomor-
phically onto an open identity neighborhood in Diffo,1, (Q,Z/l)(')|r which generates this group. Recall
from Proposition that E([6]) = [expo) © [6]|% = E+([6]) holds for each [6] € O. Hence both
maps coincide on O. We deduce that Diffo,, (Q,U), = (E(O)) = Diffo, (Q,Z/l)ar as an abstract
group and also as a Lie group. O

5.2.2 Lemma The Lie group Diffo,y, (Q,U), constructed in Proposition does not depend on
the choice of the Riemannian orbifold metric p on (Q,U) (cf. Section .

Proof. Let p” be another Riemannian orbifold metric on (Q,U). By Lemma lm we may use
the same atlases A = {(U;, Gy, ;) |i € I} and B = {(W;, H;,¢;)|j € J} as in Construction |5.1.1}
Reviewing this, the local data constructed in Construction II. - IV. do not depend on the
Riemannian orbifold metric. The constants R;, ¢ € I and s;,5;, j € J in Construction @ V.

change for p” = (pjﬁ) jes. The new constants depending on p# will be denoted by Rf, i € I and
sf, Sj#, j € J (see Construction V. for their properties).

Let [ex/p_o\rb#} be the Riemannian orbifold exponential map with respect to (Q,U, p”). As in Section
one constructs open zero-neighborhoods H# := Agl(@igHR#) and H# C M?#, which depend
on the data in Construction I. - TV., the constants Rz#, i € I and s?&,Sf,j € J, as well

as on the Riemannian orbifold metric p#. Furthermore, we obtain an injective map E#: M# —
Diff o, (Q,U)#, a connected Lie group Diffo,p (Q,L[)é’E = (P#) and a convex zero-neighborhood
HE € H* C Xon, (Q), such that B#[, 4 : HY — P# C Diffon, (Q,U)F ,[6] — [bon, ] © 5]
is a diffeomorphism onto an open identity neighborhood.

Fix some i € I and let F5(K5,;) = {(‘/57}(1(7:)» Hz(i)) ’ 1<n< Ni} be the atlas of Construction [5.1.1
IV.8. For each 1 < n < N; the Riemannian metrics induce pullback metrics with respect to the
manifold charts Ii%(i).
and pf(i). For (Vi)
denoted by expyy,, . ) and exp#va(i

C

The charts Ii%(i) induce pullback metrics on Bs(0) with respect to Pa(d)

nﬁ(i))ﬂ < n < N; the associated Riemannian exponential maps will be

] respectively. Finally we define the local representatives of

XeXx (Wa(i)) with respect to k2D via Xy = X ot © (nﬁ(”)*l € 0*(B5(0),R9).

Observe that the open set Hp, in Construction was obtained by Construction Reviewing
Construction for 1 < n < N;, real numbers ¢,,d, > 0 have been chosen such that for each
x € B4(0), the map ¢q(),[n),z: Be, (0) = RY, y XDy, ) [n] (z,y) is a diffeomorphism onto its open

8To shorten our notation, we number all charts from 1 to some N; € N, i € I. It will always be clear from the
context which charts are meant.
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image which contains Bs, (0). Furthermore, by Lemma the choice of €, yields the smooth map
ba(iym: Ws, — Be, (0), by (T, y) = o ’[n}’m(y). Recall that ¢, < v; for 1 < n < N;. Here
v; is the constant constructed in Lemma [D.6| with respect to the finite family F5(K5 ;). Thus the
assertions of Lemma hold. For each x € szfa(i), 1 <n < N, there is an open set N, C T, W)
with the following property:

Bs, (k29 (2)) C expy,

n n (i)

(2P (@), Bz, (0)) € koW expy, (V). (5.2.1)

Observe that the neighborhood H ,# has been obtained by another application of Construction @

with respect to a family of constants 6#, 5# >0forl1<n<N;.
By Lemma (c), we may choose constants e > e > 0for 1 < n < N so small that

1,n
expf(i) (] ({K%(i) (m)} X B_# (O)) is contained in Bs, (ka”(z)) for z € Vi For 1 <n <N
? 1,n B
we choose for each sfjn a constant 67 > 51%” > 0 which satisfies the assertion of Lemma (b),
with e replaced with sfjn. Apply Construction with R := Rl# and P := Pf ;N Pf ;» but replace

the pairs (¢7,67) with (eﬁn, (ﬁén) to obtain an open zero-neighborhood H 4+ C HZ;KS’i- Thus the
map ‘
Unp - B4(O) X Bg#n (O) - B€n (O)a Un (Ia y) = ba(z),[n] ($, expﬁ/a(w J[n] (I)C, y)) (522)

#

1,n

<eff <v#
n )
where v# is the constant as in Lemma with respect to the finite family F5(K5;). Hence we

deduce with Lemma[D.6 (b) from equations (5.2.2) and (5.2.1) that the map

(E'E#);: Hpp = X (.x,) 5 (E71E™)i(X)(2) = expy,

makes sense and is smooth as a composition of smooth maps. By construction,

R,i exp#va(i) oX(x) (5.2.3)

makes sense. In addition, we show that (E*IE#)i is a smooth map. To see this, let 1 <n < N; and
recall that H ,» C X (Qs5,x; ,) is open and F5(Ks;) covers Qs g, ,. Hence for 1 <n < N;, the maps
ot X (95,1(5’1.) — C*®(B5(0),R?), X X1 form a patchwork by Definition Analogously, the
maps t,: X (QLKS,i) — C®(B1(0),R%), X Xin)l By (0) yield a patchwork for 1 < n < N;. Consider

the open subset LBl(O),Bafﬁ (0)]oe € C*=(B5(0),R?). For X € Hps we obtain X, (Bs(0)) C

Bsﬁn(o) (cf. Construction m and Lemma . Hence rn(HR#) C LBl(O)’Beﬁn (0) |oo holds. In
addition, |26, Proposition 4.23 (a)] with (5.2.2)) yields a smooth map

Un: |B1(0), B¢ (0)Joo = C*(B1(0),R?), Un(0) = (un)s (),

with (up)«(0)(x) := up(z,0(zx)) for x € B1(0). By (5.2.2), U, maps the zero-map to the zero-map.

Evaluating (5.2.2)) pointwise for (X,z) € Hps x O k. ,, the local formula (5.2.2) and Lemma

(b) yield the identity t, o (E~'E#); = U, or,. Thus (E~'E#); is a patched mapping which is

smooth on the patches, whence (E~1E#); is smooth by Proposition

For each j € I, construct in the same manner an open set H» C X (stKs_j) together with a smooth
’ :

map (E~'E#);. Define HY := (resg;”.(“)_l(HR?) C Hpr C X (Wa)). By Construction [5.1.6

Ui }
iel

H# = Ac_l(@ieIHf) C H# holds. For each [6] € H#, the family {(E‘lE#)i(aa(sz’Ks_i)
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is a family of vector fields. Since [4] is compactly supported, only finitely many canonical lifts ;)
are non-zero. By standard Riemannian geometry, the Riemannian exponential map composed with
the zero section yields the identity. Hence (5.2.3|) shows that only finitely many of the vector fields

(B E#)i (a0,
family of an orbisection. If this is true, then these vector fields define a compactly supported
orbisection E~'E#([5]), whose lifts with respect to A are given by {(E*IE#)Z-(JQ(,;) |2s.xe,, )0 }iel.
On U; C €4 ;, these vector fields yield an orbisection if the following is satisfied:

Let [6] € H# and )\ € Chw, . w, be a change of charts which satisfies dom A C Q; ; and cod A C € ;
for some k = a(i) and l = o(j). Then the following identity holds:

U; will be non-zero. We claim that these vector fields form a canonical
il

TANE ™ E7)i(0kl0s x; ldoma = (BT E®) j(a1l0s i, ) © A (5.2.4)

The argument given in the proof of Lemma may be repeated almost verbatim. We check
the identity - locally: Choose some z € dom A C € ; and a chart (V5”k7 kk) € F5(Ks;) with
r € V.. Again there is some Z with V;, C Z;. As z € V", C K} and A\(z) € Ky, there is an
embedding of orbifold charts Z’“ — W, with u( ) = A(z). After poss1b1y composing p with a
suitable element of Hj, there is an open neighborhood U, of x in Z} with p|y, = My, and thus
Top =Ty
Since p and p# are Riemannian orbifold metrics, each change of orbifold charts in Chw, w, is
a Riemannian embedding of its domain endowed with the induced metrics into the Riemannian
manifold (W, p;) respectively (W7, pfﬁ) By construction of HZ# ,each X € HZ# satisfies

<&, < R;foreach 1 <n<N;. (5.2.5)

-1 #
H‘bk,mw XPw ) Xl || 5.0

Recall from Construction [5.1.1] V. the properties of R; and Sy:

The definitions imply that T,u(E 1E#)l(ak|951K5J)(fok) C O C dom expyy, for [6] € H#. Com-
puting locally on V7%, we use that w(kE)~! is a Riemannian embedding into W;. Again by
[43, IV. Proposition 2.6], the identity expy, T'(u(kF)~1)(v) = p(kk)~! eXpyy, ] (v) holds for each
v € dom eXPy, [n]- The family {0y}, ; is a canonical family of lifts, whence oy = Tpok|dom - By
definition of HZ# C "HR?, the identity x% exp#vk oX(z) = expﬁvh[n] T'rin X (2) holds for each z € V3
and X € HZ# (cf. the proof of Lemma . Observe that A(z) € Q1 ; and 0; € H]# Combining
these facts one computes:

expyy, TLAE ™ E*)i(0kls i, ) (@) = expyw, Tu(p(sh) ™ w}) (expw, |n,) ™ exply, on(e)

) 1 k
= u(55) " expyyy g THE (expyy, [v) " expll, i) P2 pesplt, o)

= (k) exp, o Trhow(@) = explf, on(u(z)) = expll, a1 (A(2)
P22 expyy, (BLE#); (010, 1, ) (M@)).
As x € K}, and A7) € Q i, ;, the definition of R; implies TzA(EilE#)k(O'k‘QSYKSJ_)(I) € O,. By
construction of HJ#7 we deduce (E~1E#); (UZ|QE”K5J )A(z) € 0. As expyy, is injective on T)\(I)WMOA;
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and x € dom \ was arbitrary, this proves (5.2.4). We conclude that the family of vector fields
{(BLE#)i(0agni,,)

E~'E#([6]). Define E~'E#: H#* — Xom, (Q)..,[6] — E~'E#([6]). Using the patchworks (\;);er
and (7;)ser for Xom (Q), (see proof of Lemma |5.1.11)), a computation yields the identity

, is a family of canonical lifts for a compactly supported orbisection
€

Q # )
resUl K51(E IE#) resza(z) )\Z|Zl# :TiEilE#, iel.

We have already seen that (E’lE#)Z— is smooth and (E~'E#);(0,(;)) = 0; for each i € I. By [26,

. Ql Ky Wa( ) —1 # .
Lemma F.15 (a)], the mappings resy. 1resle x, , are smooth, whence E~"E7 is a patched map-

ping which is smooth on the patches. By Propomtlon E~'E# must be smooth and therefore
it is continuous. Using continuity, there is an open, connected zero-neighborhood R#* C ’H# NnH#
such that E-1E#(R#) C E~!(P). Uniqueness of canonical lifts proves that the canonical lifts
of E7'E#([6]) on Wy coincides on U; with (E_lE#)Z‘(O'a(,L')‘QS_’KS Dlv.- Recall the construction
of the representative £ of E([6]) in Proposition Using (5.2.3)), the construction yields for
E(E-'E#([6])) and i € I the lifts exp#v oo;. The same lifts are obtained, if this construc-

tion is carried out with respect to the Rlemanman orbifold exponential map [exp? ,]. As orbifold
ﬂ

diffeomorphisms are uniquely determined by a family of lifts (cf. Corollary [2.1.11), E#([5]) =
E o (E7'E#)([6]) € E(E~Y(P)) = P holds for each [5] € R¥. The set R” is an open and
connected zero-neighborhood contained in ’H#. Since Diff oy, (Q,U)O# is connected, (E#(R#)) =
Diff o, (Q,U)¥ holds by |37, Theorem 7.4], which implies Diff o1, (Q,U)f C Diffou, (Q,U),. In par-

ticular, the inclusion morphism Diff .1, (Q,Z/{)# — Diffor, (Q,U), is smooth on the open identity-
neighborhood E#(R#), hence smooth by [10, III. §1, Proposition 4]. Reversing the roles of p

and p#, one deduces that also Diffo., (Q,U), C Diffom (Q,L{)f)‘iﬁ and the inclusion morphism

Diffo., (Q,U), — Difforn (Q,U)# is smooth. In conclusion, Diffo., (Q,U), and Diffo,, (Q,U)zfé
coincide as Lie groups. O

So far, we achieved that the Lie group structure on Diffo, (Q,U), does neither depend on the
local data (the atlases A, B etc.) nor on the Riemannian orbifold metric. We exploit these facts to
prove that the requirements of Proposition (b) are satisfied:

5.2.3 Proposition Let [¢] € Diffoun, (Q U) be an arbitrary orbifold diffeomorphism. Then for each
[f] € Diffor, (Q,U), we have [¢] o [f] o [¢]~* € Diffows (Q, U), and

cg): Diffors (Q,U)y — Diffor, (Q,U),, [f] = [#] o [f] o [¢] 7

is a smooth map.

Proof. The proof will be quite simple, after some preparations:
Following Corollary [2.1.13(d), we may choose orbifold atlases V; := {(V}/, L}, m}) €U |k € K} C U,
i € {1,2} together with a representative ® = (¢, {¢r},cx,P,v) € Orb(Vy, V) of [¢] such that
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each ¢p: V! — Vk is a dlffeomorphlsm Furthermore, Corollary E assures that we may choose
P = Chy, and v(X) = ¢y, | py (dom A) for A € Chy .

By Proposition [I.6.8| there are locally finite atlases .A and B indexed by I and J, respectively, which
satisfy the properties of the atlases in Construction [5.1.1] I. In addition, there is a map B: J — K
such that W} is an open subset of Vﬁl(j), the inclusion of sets induces an embedding of orbifold charts
and WJ - Vﬂl( ) is compact for each j € J. As a consequence of Lemma we may construct
Diffor, (Q,U), with respect to these atlases and the Riemannian orbifold metric p. Thus there are
open sets Hy C H = Agl(@iel Hpg,) and a diffeomorphism E|3;, onto an identity neighborhood in

Diffor, (Q,U),-
By construction, the inclusions of sets U; € Wy ;) C V B(a(i) and ¢g(4(i)) are changes of orbifold

charts for each 7 € I. For ¢ € I, the sets W;r(i) = Pp(a(i)) Wa()) and Ut = = ¢ga(i)(Us) are LB(Q(Z))

stable, open and relatively compact subsets of V (a(iy (cf. Lemma 2.1.9 (a)). Define the following
sets of orbifold charts for Q:

A= U G mdalys) |1 € T} and B = {0} By, =3 lw) |G € T}

The underlying map ¢ is a homeomorphism and each ¢y, is a diffeomorphism. Hence AT and Bt
are orbifold atlases for @) such that U, Ut - WJr for each i € I and the inclusions of sets induce

embeddings of orbifold charts. Since W;r is a relatlvely compact subset of V 50) for each j € J, we

deduce from the continuity of ﬂg( I and |21, Corollary 3.1.11] that the image of each chart in AT
and BT is relatively compact. Exploiting that ¢ is a homeomorphism, AT and BT are locally finite
atlases, since the same holds for A and B. Furthermore, by construction of A and B, for each con-
nected component C' C @, there is a point z¢ which is only contained in the images of a unique pair
of charts in A x B. The homeomorphism ¢ permutes the connected components of @@, whence each
z¢ is mapped into a separate component. Each element of {¢(z¢) | C C @ a connected component}
is thus contained in the images of a unique pair in A" x BT such that the images of different pairs
are contained in different connected components. Summing up, the atlases A1 and B* satisfy all
properties required in Construction I

As B is an atlas, a family of lifts for a representative of [(Z)] is given by {(IJj = s |w, }jeJ' By

construction, each of these lifts is a diffeomorphism and ®,;)(U;) = UZ-+ for each ¢ € I. Corollary
2.1.13|assures that {CIDj_l }jeJ is a family of lifts for a representative of [¢]~* in Orb(B™, B). Observe

that @;1(Ui+) = U; holds for each i € a~'(j). Before we prove the smoothness of ¢(g)» consider the
following auxiliary maps:

Define t;: Hp, — X (U;"), X = TPy X®_ )|+ for i € I. For [6] € H, the family {t;(0:)},c;
defines a family of vector fields. We show that these vector fields are a family of canonical lifts of
an orbisection: Let \ € ChijUjf be any change of charts with arbitrary i, € I. As noted above,
o= ‘I)_l )\(I) )| -1

() D21 (dom ) is a change of charts in Chy, v, and we compute

tj(oj) o A =TPo(j)0;®, |U+)‘ T(I)a(J)JJ:“(I)a(z ldom
= Tq>a(j)Tu0i a(i)|d0mA = TAt;(03)|dom A-
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The family {t;(c:)},;c; is a family of canonical lifts with respect to A™, whence it induces a unique
orbisection t([6]). By construction, t;(c;) will be the zero-section if o; is the zero-section. Hence
t([o]) is compactly supported and we obtain a map t: H — Xouw (Q),, [0] — t([6]). Consider the
patchwork induced by the maps

pi: Xom (Q), = X (Wagn)) »pi([6]) = 0a) and ¢ Xow (Q), — X (U;") ,qs([6]) = oy+, 1€,

sending an orbisection to their canonical lifts. By construction of H (cf. Construction )

pi(H) C Hp, holds. From t; OpimRi = ¢; ot we deduce that t is a patched mapping. We claim that

t; is smooth for each ¢ € I. If this were true, this implies the smoothness of ¢ by Proposition

Qs ks

To prove the claim, consider t,: ’HRf’K“' — %(@a(i) (95,1(5,7:)) X — T@Q(Z)XCI)
a(z) (QS Ky, 1)

U+

suffices to prove the smoothness of t.. By constructlon Q5,15 is covered by the finite family of

manifold charts Fs(Ks,;) = {(1/5 iy ) ’ 1<n< N} Hence the sets Vo'l = @) (Vi)

5,a(i) °
cover ®,;y(Qs x5,). Set AL L)

a(i) 1 Pa)(25,x5 ;)

. . Wq . .
and note the identity ¢; = res thr resg, . ) Since the restriction maps are smooth, it

(b;(li)‘V;oj(—i) to obtain a manifold atlas for @, (s &, ,):

Fd(Ks,) = {(Vn " ’yf;(i) ‘ 1<n< N'}. By Definition |C.3.1| there are finite families of linear

5,a(i)?
continuous mappings 07,y : X (Qs,55,) = C=(V Yo ),Rd),X — X, and HZJ X (Po(iy5,55.,) —
Co(Vy ) R, Y = Y, with 1 <n < N;. The family (67;))1<n<n, is a patchwork for X (Q5 ;)

and (67 (+))1<n<N is a patchwork for X (P (i)(2s,k5,)) by Lemma |26, Lemma F.6]. As oL

ai) is
smooth, the pullback C*°(® (11) Vet R9) is continuous linear and therefore smooth by |24, Lemma

V'n. 4+
()
3.7]. A quick computation yields for 1 < n < N; the identity GZJ ot =C*> (@;(11 )|
We conclude that t; is a patched mapping, which is smooth on the patches, Whence smooth by

Proposition [C.3.8]

Vs, ) d
na-l(—l ?R )002(1

The orbifold diffeomorphism [¢]~! induces a unique pullback metric p# := ([¢]~1)*p on Q (cf.
Lemma [4.0.8). Denote by p; the members of p on the orbifold charts (W;, Hj,p;), j € J. The
Riemannian metric associated to p# with respect to (W, Hj, ¢f), j € J are given by the pullback

metric p}# = (<I>f1)*,oj Forj € J let exp;: D; — W; be the Riemannian exponential maps with
respect to (W, p;) and expj D# — VVJr be the exponential map with respect to (W+, pf) These
pullback metrics turn ®;, ¢ Yinto Rlemanman isometries and the map [@] into an orbifold isometry.

In particular we derive T®;(D;) = D]# and the exponential identity

D#*
exp? (T®;)] p, = ¢;exp;.
Let [6] be in H and consider e as in Proposition From the last identity we deduce

o, _ -1 _ # -1
oy 07 0 Dyy ‘Uf = Dy (i) €XPyi) Uiq)a(z‘)'Uj = exp] ;) T(ba(i)UiQa(i)'Uj' (5.2.6)
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Combining Lemma with Lemma [5.1.2) one may construct Diffo,, (Q,U), with respect to the
atlases AT, Bt and the Riemannian orbifold metric p#. Hence there are an open connected zero-
neighborhood H;; C Xow (@), and a map E;: H; — Diffom, (Q,U), ,[06] — [expgrb] o [6]|Q#.
Here [expgrb} is the Riemannian orbifold exponential map associated to p#, whose domain is
Q#. The map E; is a diffeomorphism onto its image, which is an open identity-neighborhood in
Diffor, (Q,U),- As t is smooth and thus continuous, there is an open connected zero-neighborhood
A C H; such that t(A) C H.

Recall from Corollary [2.1.11] that an orbifold diffeomorphism is uniquely determined by the lifts
of any of its representatives. Hence for [6] € Hi = E~!(P) (cf. Proposition [5.1.12)), the orb-
ifold diffeomorphism [¢] o E([6]) o [¢]! is uniquely determined by {@a(i) oe’io <I>;(1Z.)\U‘+}‘ K In

v Jae
Proposition a representative of E;([Ef]) for [5] € H;; in Orb(A™,B") has been explic-
itly computed. Its lifts were given by {expf(i) oaU_Jr} e Since the lifts uniquely determine
i Jie

the diffeomorphism, equation (5.2.6) implies c(5 E([6]) = E;t([&]) € Diffo., (Q,U), for every
[6] € A. In particular, c[dg]E(A) C Diffor, (Q,U),. The set E(A) is an open connected identity-
neighborhood, whence it generates the connected Lie group Diffo., (Q,U), by |37, Theorem 7.4].
Therefore C[Qg] (Diﬁorb (Q,Z/{)O) = C[$](<E(A)>) - Difforb (Q,Z/f)o We deduce from C[QB]|E(A) =

N
E; o t|g# o (E\E(A))*1 that the group automorphism ¢ 5 of Diffoy, (Q,U), is smooth on the open
identity neighborhood E(A), hence smooth by |10, III. §1, Proposition 4]. O

The preceding proposition shows that for each [¢], the conjugation map ¢ g s smooth and maps

Diffo., (Q,U), to itself. All requirements of Proposition (b) have been checked. Apply-
ing this construction principle, we obtain a unique Lie group structure on Diff o, (Q,U), turning
Diffo,, (Q,U), into an open submanifold of Diffo,, (Q,U). Summarizing the results, we obtain:

5.2.4 Theorem The group Diffo., (Q,U) can be made into a Lie group in a unique way such that
the following condition is satisfied:
For some Riemannian orbifold metric p on (Q,U), let [expom] be the Riemannian orbifold expo-

nential map with domain ). There exists an open zero-neighborhood H, in Xomw (Q),. such that

[6] = lexpons) © 617

is a well-defined C*-diffeomorphism of H, onto an open submanifold of Diff o, (Q,U).
The condition is then satisfied for every Riemannian orbifold metric on (Q,U). The identity com-
ponent of Diffor, (Q,U) is the Lie group Diffo, (Q,U), constructed in Section .

5.2.5 Corollary If (Q,U) is a compact orbifold, then the Lie group Diffo., (Q,U) is a Fréchet-Lie
group.

Proof. If Q is compact, then Xou, (@), = Xor (Q) is a Fréchet space, by Corollary O

We now consider subgroups of Diff o1, (Q, ) which turn out to be Lie subgroups of Diff o,1, (Q,U).
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5.2.6 Definition Let K C @ be a compact subset and denote for an orbifold map [f] its underlying
map by f. Define the set of all orbifold diffeomorphisms whose support is contained in K:

Difforb (Q,H)K = {[f] € Diﬂ.Orb (Qvu) f|Q\K = idQ\K} :

We also say that the elements of Diffo,1, (Q,U), coincide with the identity morphism of @ off K.
Furthermore, we define the subset Diffo,, (Q,U),. C Diffo,, (Q,U) of all orbifold diffeomorphisms,
whose underlying map coincides with idg outside some compact set in ). Observe that the sets
Diffor, (Q,U) ;¢ and Diffo,, (Q,U),, are subgroups of Diffo,, (Q,U).

5.2.7 Remark Notice that, by construction, Diffo,, (Q,U), contains Diff o, (Q,U),. The normal
subgroup Diffo,1, (Q,U),. therefore is an open subgroup of Diff oy, (Q,U) by |37, Theorem 5.5]. Hence
it becomes a normal open Lie subgroup of Diff o1, (Q,U).

5.2.8 Proposition Fach compact subset K of Q is contained in a compact set L such that the
group Diffou, (Q,U), is a closed Lie subgroup of Diff o, (Q,U) modeled on X o (Q) -

Proof. We shall again use the notation of Section [5.1] The atlas A is locally finite and the image
of each chart in A is relatively compact. Thus there are only finitely many charts (U;, Gy, ;)
in A with ¥;(U;) N K # 0. Let Ix be the set indexing this family and consider the closed set
L:=Q\ (UZEI\IK %(Uz)) By construction, K C L C {J;cs, %i(U;) holds, whence L is a compact
set. We claim that Diffo,1, (Q,U), is a closed Lie subgroup of Diffo,1, (Q,U) modeled on Xou (Q) -
Choose for each ¢ € I\ Ik a non singular point z; € U;. By [41, Theorem 1.9.5], we may choose
g; > 0 with expyy, (Bpogiy(0z,,€:)) N Hyiy-zi = {x;}. By definition of the topology on X (Wa(i)),
there is an open neighborhood R; C X (Wa(i)) of the zero-section such that o € R; implies o(x;) €
By (04,,€;). Define the open neighborhood of the zero-orbisection

R = Agl @ R: ® @ X (Wa(j)) C Xorb (Q)c

i€I\Ix JEIK

Let [6] be an element of H; N'R, where H; is the open zero-neighborhood defined in Proposition
5.1.1 l Denote by {c;},.; the family of canonical lifts of [¢] with respect to A. Recall that E([5])
is a diffeomorphism, whose local lift with respect to (U;, Gi,1;),i € I\ Ik is the map e% =
eXpw,, ., |éa(i> o ;. Furthermore, eXPyy, ., lo is a diffeomorphism for each x € U;, which

\)

a(i)yNTaWa(i
maps 0, to x. Since the canonical lift With(r)espect(‘éo (Ui, G, ;) of the zero-orbisection is the
zero-section, we deduce that E(H1 N RN Xow (Q);) C Diffow (Q,U);, holds.

On the other hand, consider [6] € H; N R with E([¢]) € Diffo, (Q,U),. The underlying map of
E([6]) coincides with idg on @ \ L. By construction, ¢;(U;) N L # 0 holds for each ¢ € I\ Ik.
Hence ¢, ;) 0 €?" = idgoy; = ;. We deduce that e”: U; — Wy(;) must be an embedding of
orbifold charts. Since the canonical inclusion U; — W, ;) is an embedding of orbifold charts by
Construction I.(d), Proposition @ (d) yields e”* = h|y, for some h € H,(;. Specializing
to the non-singular point xz; € Uj, this yields e (x;) = h(x;) € Hqy).2. Since [6] is contained in
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R, 0; € R; and thus e (x;) N Hyy.2; = {x;}. We obtain h(z;) = x; and since x; is non-singular,
h =idw,,, follows. Thus e?" =idw,, |v, and we deduce that o; must be the zero-section in X (U;).
Repeat the argument for each i € I\ Ix. As Q\ L = UieI\IK ¥;(U;) holds by construction, [5] is
an element of Xo,, (). Summarizing the preceding results, we obtain:

E(Hl N R) N Diff o1, (Q7U)L = E(?’h NRNXom (Q)L) (5.2.7)

Since P = E(H1) generates Diffo,, (Q,U),, we deduce that Diffo,, (Q,U), is a Lie subgroup of
Diffo, (Q,U) modeled on Xou, (Q) . The space Xom (Q) is a closed vector subspace of Xor, (Q),
by Lemma [3.3.8] Hence the identity implies that Diffo,, (Q,U); is locally closed in the
topological group Diffo,;, (Q,U) and thus Diffo,, (Q,U); is a closed subgroup by |9} IIL. §2, No. 1
Proposition 4. O

For a trivial orbifold (i.e. a manifold) one need not refine the zero-neighborhood, i.e. we can always
choose K = L in Proposition for a trivial orbifold.

5.2.9 Remark As mentioned in the introduction, this is not the first work which considers Lie
group structures on the diffeomorphism group of an orbifold. In [7] and the follow-up [8|, the
diffeomorphism group of a compact orbifold was turned into a Fréchet-Lie group in the sense of
convenient differential calculus. We mention that the article |7] contains several errors, making
it unclear whether the methods outlined in [7,/8] turn the orbifold diffeomorphism group into a
convenient Lie group. To illustrate our concerns, we point out two serious problems in [7]:

e Lemma 23 in [7] states that the local lifts of an orbifold map are independent of local charts
once the lifts are chosen. In particular, it is claimed that there is a unique extension of a lift
defined on an open subset of a chart. The assertion clarifies the definition of an orbifold map
proposed in |7]. However, the lemma is false, as there may be several extensions to a lift. A
counter-example can be obtained as follows: Let R/(v) be the orbifold induced by the action
of the reflection 7 at the origin. Consider a smooth map f: | — 1,3[— R with f(¢) # 0 if and
only if ¢ €]0,1[U]2, 3[. If ¢: R — R/G is the global chart for this orbifold, go f is a continuous
map, which induces a morphism of orbifolds in the sense of |7]. In fact, we may choose for
example f|j_1,1.5; as a smooth lift at 0. Clearly there are several possibilities to extend this
lift smoothly to the pair of charts | — 1, 3[, R thus contradicting the lemma.

e In Definition 31 of |7], the space of C"-orbifold morphisms C§, (O1,Os) is endowed with a
topology. The topology is defined via the construction of a neighborhood base which depends
on a fixed locally finite covering C of the orbifold O;. Since the covering C is fixed, the sets
defined in Definition 31 will in general not contain all elements of C3,(O1,02). To see
this, consider the manifold case, explicitly the space C"(R,S!). Here S! is the circle with the
structure of a one-dimensional smooth manifold. Cover R by some locally finite covering with
compact sets I,, and choose a C*®-map f € C"(R,S!) such that f(I,) = S! holds for some I,,.
Since S! is not covered by a single manifold chart of S, Definition 31 in |7] implies that f is
not contained in any basic set defined there (not even in basic neighborhoods around itself!).
Hence Definition 31 does not yield a “neighborhood base” (or a topology) on Cg (01, O2).
Unfortunately this “topology” is used in [7] and [8] to obtain a topology on the diffeomorphism
group of a compact orbifold, which is supposed to turn this group into a convenient Lie group.
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5.3. The Lie algebra of Diffo,, (Q,U)

In this section, the Lie algebra L(G) of the group G := Diffo, (Q, L{) constructed in Section
will be determined. We stick to the notation introduced in Sections [5.1 and [5.2] By constructlon
the map E: Xouw (Q), 2 H1 — P C G, [6] = [expoy,] © [6]/ is a dlffeomorphlsm of the open zero-
neighborhood H; to an open identity-neighborhood P in G. Furthermore, £ maps Ooy1, to id(g u)
by Proposition Use the natural isomorphism Ty, £ to identify T; G with Xom, (Q), =
Too., Xorb (Q)..-

We modify the classical argument to compute the Lie algebra of the diffeomorphism group of a
compact manifold via the adjoint action by Milnor (see [49, pp. 1035-1036]). To compute the Lie
bracket, we have to understand the adjoint action of T; G on itself. Using the chart F, the
product on G pulls back to a smooth product operation

[6] = [7] == E=H(E((8]) o E([7]))

on the zero-neighborhood {([6],[7]) | E([6]) o E([7]) €e InE} C H1 x H1 € Xowb (Q),. X Xorb (Q),.-
By construction, [6] * 00,5 = [6] = Oorb *[6] holds. Hence the constant term of the Taylor series
of % in (0o, 00rb) (cf. |23, Proposition 1.17]) vanishes. Following |55, Example I1.1.8], the Taylor

series is given as
6]+ [7] = ([6] + [7]) + b([6], [7]) + - -

gt[&] * s[7]) is a continuous Xoy, (Q).-valued bilinear map and the dots

dq.u)

d(@.u

~ A 87
Here (o], (7)) = 225,
stand for terms of hlgher degree (cf. [32]). With arguments as in [49, p. 1036], the adjoint action of
G on itself is given by

Tiaq.a
([ = 001, 7)) — 171, 61,

In other words, the skew-symmetric part of the bilinear map b defines the adjoint action.
By [49, Assertion 5.5] (or |55, Example I1.3.9]), the Lie algebra L(G) of G may be identified with
Tid(g )G such that the Lie bracket coincides with the adjoint action: [z,y] = ad(z)y. To compute
the Lie bracket [-,-], it is sufficient to compute the second derivative of the local product operation
in Xou (@),. Consider the atlas A as in Construction together with the linear topological
embedding with closed image Aa: Xow (Q), = P,c; X (Ui),[6] = (0i)ier. For fixed [6],[7] €
Xor (Q),, the map (t,s) — t[5]  s[7] factors through a finite subproduct of the direct sum. Hence
the derivative of sG] ¢[7] may be computed from the derivatives of the canonical lifts (¢[5] * s[7]);.
Recall from Lemma 0| that for each pair [6], [] € H1, there is an orbisection [767] € Xom, (Q),
such that E([g o 7]) = E([6]) o E([#]) Returning for a moment to E as a map on M as in Proposition
The mapping F is bijective, whence we deduce for i € I the identity

(t[o] * s[7])i = (toag) ©i $Ta@)lU.

For the rest of the proof, fix ¢ € I and compute %Z,t gtoa(l-) i 8Ta(s))|u,- By construction, the
t,s=!

Qs
vector field to, ;) ©; 8Tq(;) is defined on Qs Ko As the restriction map resy;

5,1

is continuous
linear by |26 Lemma F.15 (a)], it commutes with the differential, i.e.

Qs Ks ; 82 82

t0a@) ©i $Ta(i) = 7 s
Dt |, O T = Gy,

(taa(i) 3¢ 8Ta(i))|Ui'
s=0
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Thus it suffices to compute the derivative in X (Q X KW_).
The set {(Vf (@) AR ‘ (Vs oy bin o)) e }“5(K57,;} is finite and covers Qs x . Hence the topology
1 s 85,4

on the space X (Q 5 K ) is induced by the linear embedding with closed image

I':x (Q%Ks,i) — H COO(VS (i)’ Rd)yX = (prQT’ig(i)X|V§a(i))]—'5,K5,i‘
(V2 oy i ) EF5 (Ks5.0)

5,a(i)?

Here pr, is the linear projection onto the second component of Bs (0) x R?. Since (f@'%(i))_l |Bs (0) 18
1

a diffeomorphism onto Vénoé(i)7 the mapping
3

2
4

C”((RZ(“)*IB%@ ) OOO( %4 Ja(i)? ) - OOO(B' (0)7Rd)»X — Xo (H%(i))il\B%(o)

is an isomorphism of topological vector spaces by [26, Lemma A.1]. We derive an embedding of

topological vector spaces with closed image (C“((nﬁ(l))_1|35 ©):RY) £, (x5, o T. Using this map,
s ,

the derivative may be computed locally in A := []z 4, ., C*(Bs (0),R%). For X € X (Wu)),

define X1, := prQTm%(i)X(ﬁz(i))_l|B§(0) € C>(B:(0), R%). The map pr, is linear and each Tre®

is linear in the vector space comporfent. Hence the definition of the vector space operations of

X (Wa(s)) shows that the identity (£X)(,) = tX[n) holds for each t € R and X € X (Wy;)).

To compute the derivative of (to ;) i 57a(i)) in A, more information on (toq(s) @i $Ta(i))[n] 1S needed.

Fortunately, by Construction [5.1.6] a local formula is available. To write it down explicitly, we need

to recall notation and facts from the construction:
For each chart (V7' ;). kol )) let exp,, be the Riemannian exponential map on Bs(0) associated to

the pullback metric with respect to an() and the member of the orbifold metric pq ;) on Wy -
Recall from Constructlon . that for x € V ali)’ there is an open set N, C T, W,;) such that

Trol )( N,) C domexp,, holds and exp,, restrlcts to an étale embedding on this set (cf. Lemma MD
By Construction m for (toq () o STa(i))|Q and each chart Véna(i) the local identity (D.9.3))
%

holds. We want to keep track of the local Chart ( 5oges k) in which we construct a new vector field

via the operation ¢ as in Construction m Hence we write o] for ¢ in the chart (V' , % kk). Using
the notation introduced, the identity (D.9.3) yields the followmg formula for x € B 3 (0)

Trp D taa ) 0 5Tai) (kD)7 (@) = (@, (t0a@)m) O] (5Tati)) ) (%))
=(@, (€xDy, ey )) 7 XDy (XD, (2, (5Ta (i) ) () (t0ai) )iy (XD (5Ta(i)) il ()
=(@, (€xDy, e . )) T XD (XD, (2, 8(Ta (i) ) () H(0ai) D) (XD 8(Tai))nl ())))-
Apply pry to the formula above to obtain the desired identity for (toq(;) ©i $Ta(i))[n)- To simplify

the notation, we abbreviate X := (04(;))n) and Y := (74(;))n)- Recall the following properties
of exp,, (cf. |41, Theorem 1.6.12]): exp,,(z,0) = x,dzexp,(z,0) = idga« for all z € Bs(0). Define

M, = T,‘if{(i)(N(Ka(i)),l(z)) C T2 Bs(0) for z € Bs (0). Since exp,, is injective on (z,0) € Tﬁa(l)(Nz)
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with exp,,(z,0) = z and dy exp,,(z,0) = idga, we derive
d(exp,, |r,)) 7 (@, ) = idga

For z € Bs(0), the facts collected above allow us to obtain

82
pn t’szgto'a(i) i 8Ta(i) ) [n) (%)
2
= Dl (expy ) expy(exp, (@, 8Y (@), X (exp, (2, 5Y (1))
9s0t |, N
0 4, 0
= s d(exp,, |a,) g exp,, (exp,,(z, sY (z)), tX (exp,, (z, sY (z))))
S 1s=0 tli=o
= 5 d(exp,, |a,) " (exp, (z, sY (), X (exp,, (z, sY (x)))). (5.3.1)
s=0

The map d(exp,, [a,) " is linear in the second argument. Hence the rule on partial derivatives

(1.1.1) applied to (5.3.1)) yields the following identity:

82

T exp (.57 (2) )

_ 0
(17060 57060 (0) =dlex0n 11) ™" (030, (2,0).0X (5

t,s=0

s=0
0
= a®expy an) " (| expulien s (@), Xexp, 00)))
s=0

=dX (2, Y () + d? (exp, |ar,) " (2, Y (2), X (2))) .

Sxy:=

The derivative d® (exp,, |TKQ(1-)(N ))_l(ac, -,+) is a symmetric bilinear map by |23, Proposition 1.13].
Hence Sxy is symmetric in X and Y. An analogous computation yields:

82

Eyen (toa(i) ©i $Ta(i))m)(7) = dY (z, X(z)) + Sxvy-

t,s=0

As C™ (/ig(i),Rd) is an isomorphism of topological vector spaces and evaluation at x is continuous
linear, ((ad([6])[7])a(i))[n) is given by

2
(@d (D)) a)im () = 55

02
(toa i) % $Tas ) n (iC) T 9ot (tTa i) @i SOa(i ) n (SC)
fs0 (@) (#)/[n] 950t bt (2) (#)/[n]

=dX(Y(x)) — dY(X(2)) = (d(0a(i) (n) (Ta(i)) in] = UTa(i)) ] (Ta(i)) ) (2)-

Recall from |55, Definition 1.3.6] that the Lie bracket of vector fields VW in X (Q%ij is the
unique vector field [V, W], such that for each chart (Vénoé(i)7 H%(i)) € F5(K5,;) the identity
s

(VW) = dWp Vin) — dVim Wiy
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is satisfied. By the above computation, the negative of the Lie bracket of the vector fields o ;)
and 7,(;) coincides with (ad([6])[7])a() on Qs g, . Since U; © Qs g, holds, the canonical lift
(ad([6])[7]): on U; coincides with the negative of the Lie bracket of the canonical lifts of o; and
7;. By abuse of notation, let [0, 7;] be the Lie bracket of the lifts in X (U;). The families {o;},.;
and {7;},.; are families of canonical lifts of the orbisections [5] and [7] with respect to the atlas A.
Hence each pair of lifts 0;, 0; (respectively 7;, 7;) for i, j € I is ¢-related for ¢ € Chy, v, (i.e. (3.2.3)
holds). By [49, Assertion 4.6], [0, 7;] and [0}, 7;] are ¢-related for each ¢ € Chy, y, and every pair
i,j € I. Hence ([04,7;])icr is a family of canonical lifts for the compactly supported orbisection
ad([6])[7]- The result of this section may now be summarized as follows:

5.3.1 Theorem (Lie algebra of Diff o, (Q,U)) Identify Tia g 44 Diffory (Q,U) via To,,, E with the
space Xom (Q),. and the Lie algebra of Diff o, (Q,U) with (Xow (Q),., [+, -]). The Lie bracket |-, -]
is defined as follows:

For arbitrary [6],[7] € Xow (Q),, their Lie bracket [[6],[7]] is the unique compactly supported
orbisection whose canonical lift on an orbifold chart (U, G, ¢) is the negative of the Lie bracket in
X (U) of their canonical lifts oy and Ty.

If the orbifold is trivial (i.e. a manifold), Theorem specializes to the well known description
of the Lie algebra for the diffeomorphism group of a manifold (cf. |55, Example 11.3.14]).

5.4. Regularity properties of Diffo,, (Q,U)

In this section, we prove that Diffo,1, (Q,U) is a regular Lie group in the sense of Milnor (cf. [49,
Definition 7.6]). Unless stated otherwise the notation from Section [5.1] and Section [5.2| will be used.
Another prerequisite is the definition of C*-regularity as outlined in Appendix The philosophy
in the proof of the Lie group properties for Diff o1, (Q,U) was to compute the relevant data locally
in orbifold charts. Hence we investigate the situation on orbifold charts, where we study the flows of
vector fields and their differentiability properties. Several facts from the calculus of C"*-mappings
(see Definition cf. |2]) are needed. We study the following differential equation:

5.4.1 Define f: [0,1] x B5(0) x C([0, 1], C%°(B5(0),R%)) — R via f(t,z,7) :="(t,z) := v(t)(z)
for r € Ng U {oo}. Consider the evaluation maps e: C*(B5(0),R%) x B5(0) — R% ¢(a,2) := o(x)
and e1: C"([0, 1], C>=(B5(0),R%)) x [0,1] — C>=(Bs5(0),R?), (v,t) ~ ~(t). By |2, Proposition 3.20],
¢ is smooth and &7 is of class C>". We may rewrite the map f as f(¢t,z,v) = e(e1(y,t),z).
Hence the chain rule |2, Lemma 3.17] implies that f is of class C™* with respect to the product
[0,1] x (Bs(0) x C"([0,1], C>*(Bs5(0),R%))). Thus the initial value problem

{x’(f) = f(t,x(t),y) = v (¢, =(t)),

x(ty) =wz0, o € B5(0) (5.4.1)

admits a unique maximal solution ¢y, 4.~ by |2, Theorem 5.6]. Fixing ¢ty = 0, the flow of (5.4.1)),
FIJ == FI/(0,-): [0,1] x (B5(0) x C"([0, 1], C>(B5(0), R?))) 2 Qo — R (¢, (20,7)) = @000, (1),
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is of class C™*1:° on the open subset 2y by |2, Proposition 5.9].

5.4.2 Lemma Let r € Ng U {oo}, v € C"([0,1],C%(B5(0),R%)) and consider f as in .

(a)
(b)

()

If v satisfies ||7(t)||m’0 <1 for allt € [0,1], then the map F1(-,~), is defined on [0,1]x Bs(0)
and F14([0,1] x B3(0) x {7}) C B4(0).

Consider ¢ > 0 and a compact subset K C B3(0). There exists 0 < 7 < 1 such that for all
v € C7([0,1],C>(Bs5(0),R%)) with SUPye0,1] ||’y(2€)||f(0)’1 < 7 (cf. Definition , we have
IFY (¢, ) — idp,0)llx,1 < € for all t € [0,1].

For 7 as in (b) and B;(0) := {f € C*(B5(0),R9) ||fHTm)7O < T}, we obtain a smooth map

F: CT([O’ 1]7 BT(O)) - CT—H([O’ 1]7 COO(B?)(O)aRd)),V = Fl(])c('v’}/)ho,l]ng(O)-

Proof.  (a) For zy € B3(0), the maximal solution to the initial value problem ([5.4.1)) is the mapping

F1J(-,29,7). We claim that it is defined at least on [0,1]. Restricting FI, we obtain the
maximal solution to the initial value problem whose image remains inside of B4(0):
Denote this solution by u: [0,to[— B4(0). Then u is of class C'. If ¢, < 1 holds, we deduce
[lu(®)]] < ||u(0)|| + Hfot (s, u(s))ds|| < ||zol| +1 =: p < 4 from the Fundamental Theorem of
Calculus [23, Theorem 1.5]. Therefore ulg ;,; does not leave the compact subset B,(0) C B4(0).
Close to tg, the right hand side of the differential equation @ is defined on an open subset of
a finite-dimensional Banach space, whence by |30, Lemma 3.11], C* maps coincide with the k-
times continuously Fréchet differentiable maps considered in [45]. One may therefore apply [45,
IV. Theorem 2.3]: The maximal solution must be defined on an interval strictly larger than

[0,t0], thus contradicting the choice of ¢y. We conclude that Fl£(~, ~) maps [0, 1] x B3(0) into
B,4(0).

Observe that F1Z (-, ) is of class C"1:°° by By |2, Lemma 3.15] FI{ (-, ~) is a C'-mapping,
whence the derivatives required for ||-[| ;- ; exist. The mapping h: [0, 1]x B3(0) — R h(t,z) =
Y (¢, Flg(t, x,7)) is of class C™*° by the chain rule [2, Lemma 3.19]. Fix 2 € B3(0) and consider
the map g: [0,1] — £ (Rd) ,g(t) = ds Fl{; (t,z,7;-). Schwarz’ Theorem [2, Proposition 3.6 and
Remark 3.7] implies that g is a solution to

v =, FIg (t.2,7):) o (1) (5.4.2)
y(O) = lde .

The domain of v (¢, -) is an open subset of R%. Hence the derivative dyy” (¢, z;-) is determined
by the Jacobian matrix. As all norms on R? are equivalent, there is a constant C' > 0, de-
pending only on d and the choice of norm such that ||doy" (¢, 2;)[|,, < C'sup|q)=1 [[0%7" (¢, 2)||
with partial derivatives in the 2-variable. Furthermore, FI{ (-, ~) maps [0, 1] x B3(0) into B,(0)
by (a) and ||Hm , controls the partial derivatives. Hence the above estimate yields

sup |[day” (8 FY (t,,7); )
te0,1]

< sup C'[|y(t)

oP  ¢e[0,1] HB4(O)’1 .
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Vice versa, there is a constant ¢ > 0, depending only on the norm and d such that

sup sup
te[0,1] |a|=1

O (FIf(t,,7) — idga) @) | < sup cllg(t) = (0],
te(0,1]

Let 6 > 0 be an upper bound for sup,¢(y; C HV(QHT(O) - The mapping g is of class C*,
whence the Fundamental Theorem of Calculus |23 Theorem 1.5] yields:

o) = idsoly = 1a(0) = 90V, = | [ dar” (5. s )56

/ 0llg(s)]l,, ds = / 6(19(0)l, + (lg(s)]lo, — l9(0 >||op>>
< / 0 llidgall,, ds + / 01lg(s) — idgall,, ds = 0t + / 0 llg(s) — idgall,, ds
0 0

Apply Gronwall‘s inequality [3, 6.1 Gronwall’s Lemma] to choose 1 > Z > 0 such that

1

SUDs¢(0,1] ||’7(t)||m’1 < & implies

sup sup [0 (E1] (1., 7) ~ idae) (@)]| < sup_ella(t) (O], < ¢ (5.4.3)
t€(0,1] |a|=1 t€(0,1]
Observe that the estimate (5.4.3)) holds for each « € B3(0), as the constants did not depend on

x. We have to obtain an estimate for Flg: The Fundamental Theorem of Calculus |23, Theorem
1.5] with equation ([5.4.1) yields for = € B3(0):

t
HFI (t,2,7) —idp,(0) H = HFlf (t,z,~) — F11 (0, z v)H ’/ AN (s, FIf (s, 2,7))ds
0

Require sup,¢jo 17 [|7(t )||m0 < ( to obtain sup,¢jg HF]f (t,2,7) —idp, ) (x H < ¢. The

estimates show that 7 := min {C N oE 1} is a constant with the desired properties.

Let 7 € NgU{oo}, X be a Fréchet space and U C R an open subset. By Remark EL each of
the topological spaces [0,1],C"(]0, 1], X) and C" (U, X) is metrizable. The set C"([0, 1], B-(0))
is an open subset of the Fréchet space C7([0,1], C°°(B5(0),R%)) (cf. |24, Lemma 3.6])7 hence
metrizable. Therefore each finite Cartesian product of these spaces is a k-space by |20, XI.
9.3] and we may use the Exponential Law for C"™*-maps (cf. |2, Theorem 3.28 (e)]):

Since F1(-,~) is of class C"t1:°°, we deduce that F() is in C™+1(]0, 1], C°°(Bs3(0), R?). Hence
F makes sense and we claim that F' is smooth. By Fl(’; is of class C"*1*° on the product
[0,1] x (B3(0) x C"([0,1], B-(0))). The Exponential Law implies that

(F1))V: 0,1] = C>(B3(0) x C7([0, 1], Br(0))), ¢ = ((z,7) = FIf (¢,2,7))
is a Cmt'-map. Now (FI{)¥ coincides with the map

(F1))T: [0,1] = C>(C7([0,1], B (0)) x B3(0),RY), ¢ = (7, 2) = FIf (t,2,7)),
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except for the inessential order of  and . Combine the Exponential Law with [2, Lemma
3.22| to establish the isomorphism

®: C=(C"([0,1], B;(0)), C>=(Bs(0),R%)) — C>=(C"([0,1], B;(0)) x Bs(0),R%), f — .

Then (FM):= (@ 1((F1))1)): [0,1] — C=(C"([0,1], B-(0)), C>°(Bs3(0), R%)) is a mapping of
class C"*! by the Exponential Law. Evaluating (F")! at (¢,7) € [0,1] x C™([0, 1], B,(0)) the
definition yields (F)'(¢)(y) = F"(v,t). Hence by [2, Corollary 3.8] and the Exponential Law,
the map F”: C"([0,1], B;(0)) x [0,1] — C°(B3(0),R%), (y,t) — F(y)(t) is a C>"lmap.
By [2l Theorem 3.28 (e)], this proves F' to be a smooth map.

O

To prove the (CY-)regularity of Diffo, (Q,U), we have to construct a smooth evolution map
C°([0,1], Xom (Q),.) — Diffou, (Q,U). We will assure the smoothness of all relevant maps via
patched mapping arguments. These are prepared by the following preliminary lemma.

5.4.3 Lemma Consider r € NoU{oo} and define for v € C"([0,1],X (W) and (Vi Hz(i)) €

F5(Ks,i) the C"-curves 7y _acy = 0 a0y (cf. Deﬁm'tz'on and Y] = Cm((nﬁ(i))*l,Rd)oyﬁa(¢>.
For each i € I, there is an open C*-neighborhood £ C X Wa(l—)) of the zero-section such that the
following holds:

(a) For~ € C™([0,1],€"), we obtain a map e(vy) € C™T1([0,1], X (Q2,x5.,)), defined locally via

e (B)(@) = (expw, 1) o (RED) TP (£, k2D (@), 3p))s () € 0,1]x Vitarry (5.44)

for f as in and N, as in @ Furthermore, for S, as in Construction V. and
(t,xz) € [0,1] x Vo' oy the following estimates hold:

Xy, ., °e(N(0)(@) € Vilawy  and  e(7)(t)(2) € By, (0zs Sagiy)- (5.4.5)

(b) For each v € C7([0,1],€"), the map e(7)(0) is the zero section in X (Q2,k,,). If v is the
constant map v = Ow, then e(7)(t) is the zero-section for each t € [0, 1].

(i)’

(¢) The following maps are smooth

s C([0,11,€Y) > C™H([0, 11, (Qarres, )7 = ()
6;: C"([o, 1],5i) — X (QQ,KW) ;v e()(1).

Proof. The set F5(K5 ;) is finite, whence by Lemma (a), we can choose and fix v > 0 with the
following properties: For each y € (U k, ;, the map expy, o is injective on

N= U @) ({0} xB0),

(V2 iy oin D)EL,
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where I, = {(V5 i a(z)) € F5(Ks,)

zeV, a(z)} Lemma (b) holds for the exponential maps

exp,, associated to the pullback metric on Bs(0) with respect to p,;y and sy, o®),

Consider (V3" ko ) € F5(K5,). By Lemma there are constants €, > 0 and 1 > §,, > 0 such
that a2 ™ : B4(0) x By, (0) — B., (0,), a2 (x,y) := exp,, |B (0,)(z+y) is a smooth map. Shrinking
En, O, Without loss of generality &,, < min {R;, v} holds for the constant R; from Construction
V. Recall that m%(i)(‘/;a(i)) = B5(0), whence by Lemma (b) there is a constant 0 < 7, < 1

such that for v € C"([0,1],C>(Bs(0),R%)) with supyeoq [17(t) < T, one has

”34(0)71

sup HFI t,,y) — 1dBd(0)’ < 0. (5.4.6)

te[o,1] B,(0),1

Observe that d, < 1 together with (5.4.6) implies Fl{;(t, -,7)(B2(0)) € B3(0). Consider the open
zero-neighborhood E,, := {f € C>~(Bs(0),R9) ‘ 1 5@y < Tn} and let

E = {cr €X(s,x5,) ‘ Oln] =PIy © Tk o 0o (K2W)~1 ¢ En}

be the open neighborhood of the zero-section in X (957 Ks,i) induced by FE,. Repeating this con-
struction, we obtain open neighborhoods of the zero map (respectively the zero-section) for each
chart in F5(K5,). Let Vi =g . &L C X (Qs5,k5.,). We show that the open zero-neighborhood

&= (resg/“( R )_1(Vi) C X (Way)) satisfies the assertion of the lemma.

(a) Consider v € C7([0,1], Vi) and (Vy',;), & kol )) € F5(Ks,). The map h, sending (t) to v, ()
for t € [0,1] is continuous linear by |26 Lemma F.6 and Lemma 4.11]. We deduce from

[33, Lemma 1.2] that (hy,).: C7([0,1], X (Qs5,x5,)) — C7([0,1],C>°(B5(0),R%)),y > vy is
-D

continuous linear. Since v € V;, we have v .y € C"([0,1],E,). By construction, (5.4.6

holds, af{(i) is smooth and Fl{;(~,~,’y[n]) a C"tL>_mapping by By the Exponential
Law |2, Theorem 3.28 (e)], a map in C"*+1(]0, 1], C°°(B2(0),R%)) may be defined via

e(V)n(t) = a2 o (idp, 0y, FI§ (t, -, V) — idp,y(0))s ¢ € [0,1]. (5.4.7)

Observe that e(v),(t)(B2(0)) C B, (0) for each ¢ € [0,1]. The construction may be repeated
for each chart in F5(K5;). As e, < min{v, R;}, we obtain by definition of v and R; for
(t,x) € [0,1] x B(0):

T(/Qg(i))—l(x, e(Y)n(t)(z)) € N(H%(i)),l(z) N Bpa(i) (O(K%(i))fl(x), Sa(i))- (5.4.8)

By Lemma (b), the formula (5.4.7) is equivalent to the right hand side of (5.4.4). From
the uniqueness of the flow Flg (-,’y[n]), we deduce that the mappings e(7), coincide on the

intersections of their domains, whence we obtain a map e(y) € C"([0,1], X (Q2,x,,)). The
local representative of this time dependent vector field on (V3', ) K@ ) € F5(K5,) is e(Y)n-
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For z € V!

sa(i)’

the formula of e(7),, together with Lemma (b) allows us to compute

(expy,, In,) 0 e(M(B)(@) = (kD) "V exp,, e(v)n () (k7 ()
= K‘%(i) FI(J; (t’ Kn (x)’ ’7[71]) € V?:La(i)'

Furthermore, ([5.4.8) shows that the estimate (5.4.5) holds. The map resg;“g; ~ is continuous
linear by [26], Lemma F.15], whence (res, “;{” )w: CT([0,1],X (W) = C™([0,1], X (Q5,x5.,))
is continuous linear by [33, Lemma 1.2]. A551gn to a map v € C"([0,1],€?) the vector field

e(resg/5 a;’) (7)). By abuse of notation, we will omit resQW“(”

r Wa i
C ([ ’ ]ag )a 6(7) - B(I‘GSQ i() (7))
The map Fl{;(-, ko )(x), Yn]) is a solution to the initial value problem (5.4.1)) with initial value

FIJ(0, 157 (2), 71a)) = 557 (2). We obtain e(7)(0)(z) = (exp,, [n.) ™" () = 0: from G4,
since expyy,_ . )(0 ) = x holds and on N, the map expy, () 1s Injective.

~ from now on, ie. for v €
5.0

If v = 0, its flow is defined as Fl1J (¢, kol )(I),O) = Kn ()(SL‘). Analogous to the previous
argument, e(’y)( ) is the zero-section for each t € [0, 1].
We prove the smoothness of w’,§* via a patched mapping argument. To this end, consider

the continuous linear maps pj,: X (Qs i, ;) = C™(Bs(0),R?),0 = 0 a0 © (nﬁ(i))*wgs(o) for
€ [1,5]. By Definition [C.3.1] p® := (pfw)(vn R e (K ) is a topological embedding with

closed image. Thus Lemma |C.3.6| yields a topologmal embedding with closed image
pi: C([0, 1]7:{( 5, K5, @ C"([0,1], €= (Bs(0), R ))7’7'_>(p7810’7)]:5,1<5,i'
F5(Ks,i)

Consider the maps h': C7([0,1],V;) = C"™"1([0,1], X (Qs5,x5.,)),7 + e(v). We claim that there
are smooth maps D,, such that the following diagram is commutative:

W,
a(i)
resg

o7 ([0,1], €) ———>1 7 ([0,1], Vi) o1 ([0,1],

X (
l ®]: (K"’) 7‘+1 J( e’}

Fs(Ks,i) Fs(Ks,i)

hi

QQ,KEW‘))

Observe that the vertical arrows are given by embeddings with closed image and composition
in the upper row yields w; = A’ o res. Since res is a smooth map, w; will be smooth if A’
is smooth. If the claim is true, then by Proposition h* and thus w; will be smooth.
Consider the open sets | B2(0), Bs, (0)] s € C*(B3(0),R?) and define

(a5 @)+ [B2(0), Bs, (0)] e = C=(B2(0),RY), (a5 ™). (9)() = a3 (x, g(a).

By |26, Proposition 4.23 (a)], (a%(i))* is smooth, since af'” is smooth. From Lemma
and the definition of E,,, we deduce that F,: C"([0,1], E,) — C"*1(]0,1],C°>°(B3(0),R%)),
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EF.(y)(t) = Flg(t,~,7)|33(0) —idp,), t € [0,1] is smooth. The estimate (5.4.6) yields
F(7)([0,1]) € [B2(0), Bs, (0) |- Thus (an). 0 L+ C7([0,1], E,) x [0,1] — C>(Bs(0), R%)
is a C°""Llmap by the Exponential Law |2, Theorem 3.28 (e)] and |2, Lemma 3.18]. Ap-
ply |2, Corollary 3.8 and Theorem 3.28 (e)] to obtain a smooth map:

Dy C7([0,1], Ey) = C"71([0,1], O (B2(0), RY), 5y = ((an ™). 0 EL)Y(7) = (an) 0 Fu(y)

with D,(0) = 0. A computation with (5.4.4) and Lemma (b) shows that ©r, (k, ,)Dn
makes the above diagram commutative. By |2, Proposition 2.20|, we consider the smooth
evaluation e1: C"71([0,1], X (Q2,x5.,)) = X (Q2,k5.,) » v+ ¥(1). Since 6; = &1 ow; holds, 6; is
smooth.

O

5.4.4 Lemma In the setting of Lemma define the open set € := A" (D,;c; €") € Xow (Q)..,
where C 1is the orbifold atlas introduced in |5.1.5 Let r € No U {oo}. For each i € I and v €
CT([Ov 1Lx0rb (Q)c)7 we deﬁne Ya(i) [07 1] - X(Wa(z)) b (’Y(t))a(zﬁ where (’Y(t))a(z) is the
canonical lift of v(t) with respect to the chart (Wa(y, Ha(i), Pa(i))-

(a) If v € C7([0,1], Xom (Q),), then the map ~Yaqy is of class C" and for i € I, the map
pi: C"([0,1], X0 (Q),.) = C"([0,1], X (Wa(i))), Y Ya(i) 15 continuous linear.

(b) For each v € C([0,1],€), we obtain a path e(y) € C™1([0,1], Xom (Q),) whose canonical lifts
with respect to A are given by e(p;(v))|u, fori € I.

Proof. (a) Pick v € C"([0,1], Xom (Q),). By construction, Ac oy € C"([0,1],B,c; X (Wag)))
has compact image. Arguing as in the proof of Lemma ~ induces a family of maps
(Ya(i))ier € @,e; CT([0,1], X (Wy(i)))- Recall from the Definition of the c.s. orbisection
topology that each map 7w, : Xom (@), — X (Waii)) 6] — oW, is continuous linear.
By [33, Lemma 1.2, p; is a continuous linear map, as p; = (Tw,,, )« holds.

(b) Consider the family of time-dependent vector fields (s +— e(va(i))(5)|v,)icr constructed in
Lemma (a). We claim that for fixed s € [0, 1], these vector fields are a canonical family
of lifts of an orbisection. It is sufficient to check the following stronger condition:

For alli,j € I and any change of charts pu: Qo g, , 2 dom p — cod pp € Qo fey ;5 e(Va(j))(s) ©
p =T o e(Va())(5)|domp holds.
We check the condition locally: Pick 2 € dom p together with charts (V5" n%(l)) € F5(Ks,),

55}6)7 Hroi{;)) € F5(Ks ;) such that « € Vo) and u(x) € Vo) € 2.k ;- Since vq() € &,
d. .6)) yields maps

@z [0,1] = V')t = (k@)1 Flg(t, k@) (), Ya(i)n])
Pu(e): [0,1] — Vg’r;(j),t — (H%l(j))_l Flg (t, /i;’%(j) (x), va(j)[m]).

These maps are Cl-integral curves for the (time-dependent) vector field Va(i) With initial
condition ¢,(0) = z, respectively for v,(;) with ¢, (0) = u(x) (using the terminology
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of |45, TV, §2]). The charts in F5(K5 4(;)) are contained in some Z;’;(i), by Construction
Since = € Ky and p(x) € Ky, there is a change of charts A: Z{Z(i) — Wy(j) with
A(x) = p(z). Composing A with a suitable element of H,;), without loss of generality there
is an open neighborhood U, of x with u|y, = A|ly,. The set Vi'ai is contained in dom A,
whence Ao @, : [0,1] = Wy defines a C''-curve such that Ao ¢, (0) = A(z) = p(z) € Qo k., , -
For fixed t € [0, 1], the vector fields v,(;)(t) and v,(;)(t) are members of a canonical family of
lifts of an orbisection, i.e. v4(;)(t) © A = T'Ayq () (t)|dom »- We compute:

Yai) ) AP (1) = TAMa() (8) (02 (1) = TA(Fr00) (1) = 55 (X0 02) (1)

Thus the C'-curve A o ¢, is an integral curve for the time-dependent vector field Ya(j) With
initial condition Ao, (0) = A(z) = u(x). On the other hand, the same is true for the C! curve
©u(z)- As integral curves for (time-dependent) vector fields are unique (cf. |45, IV. Theorem
2.1] with [45, p. 71]) we derive A o 9, = @, (q)-

Computing locally, we exploit that A o (nz(i))*l is a Riemannian embedding of B5(0) into
Wa)- In particular, by [43, IV. Proposition 2.6] the identity

eXPyy, ) TS () = A(kED)Lexp, (v) Vo € domexp,,

holds. Notably, the estimates (5.4.5) and (5.4.8) hold. With Lemma [D.6] (b) and the identity
(5.4.4) for e(ya(iy) on [0,1] x Vy'a (i) one deduces from the above identity

expyy, ; TAe(Va()(8)(x) = expyy,  TATrE D) T De(ya0i)) (5) ()
= A D)Vexp, T De(ya(i)(s) ()
= M) W expy_ N, e(Ya@m) () (@)
= A(sSD)TEFI (5, 529 (@), Yagipin) = A © 0a(5) = @p(a)(5)-

On the other hand, the local formula (5.4.4) for e(vq(;)) on [0,1] x V57, ) implies

eXpWQ(J-) oe(’Ya(j))(s)(M(x)) = @u(m)(s) = eXpWau) T)‘e(f)/a(z))(s)(x)

By construction, A(z) = pu(z) € K5. Moreover, the mappings e(7a(;))(s) and e(va(:))(s) are
vector fields which satisfy the estimate (5.4.5). Together with these facts, the definition of the
constants (cf. Construction V.) yields:

e(Ya()) (8) (1(2)), TAe(Va(i))(3)(x) € Bp;, 0u(a)s Sa()) € Oaj)-

The map eXPw,, is injective on the intersection Oa(j) NTy2)Wa(j)- Hence from the above
identity e(ya(j))(s) o pu(x) = T o e(Yaiy)(s)(x) follows, thus proving the claim. Since U;
is contained in Qs ,, we deduce that the family (e(Va(:))(s)|v;)ier is a canonical family
for an orbisection. Thus Remark (a) shows that this family induces an orbisection
e(y)(s). Observe that Ac o v([0,1]) factors through a finite subset of C by |11} III, §1, No. 4,
Proposition 5|. We derive from Lemma (b) that there are only finitely many members of
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(e(Ya(i))(8))ier which are not the zero-section. Assume that the finite subset F' C I satisfies
e(Yai))()|lu, # Oy, if and only if i € F. Then supple(y)(s)] € U,;cp @ai)(Wae)). Since
each q(;)(Wa()) is a relatively compact subset of @, the orbisection [e(7)(s)] is compactly
supported.

We are left to prove that the assignment [0,1] — Xom (Q).,s — e(y)(s) is of class C™T1.
Identify Xop, (Q), via A4 with a sequentially closed subspace of ,.; X (U;). It suffices to
prove that A4 o e(y) is contained in C™1([0,1],ED,.; X (U;)). The path A4 o e(y) factors
through the inclusion @, X (U;) < @,;c; X (U;). Each component is given by the C"+1-
path ¢ — e(p;(7))(t)|v,, whence A4 o e(y) is a path of class C™! as a map to @, ; X (U;).

icl

O

To assure the smoothness of the evolution map on the Lie group, we exploit the patched locally
convex structure of Xo, (Q),. Unfortunately C"([0,1], Xomp (Q),.) will inherit this structure only if
Xor (Q), is countably patched (cf. Lemma [C.3.6). To assure this condition, we require:

Convention: For the rest of this section, we let Q be a o-compact (or second countable) space.

5.4.5 Lemma Let QQ be a o-compact space and r € Ny. The maps

w: C([0,1],€) = C™([0,1], Xow (Q),), ¥ > €(7)
evol: C"([0,1],€) = Xom (Q),., v — e(y)(1)

are smooth and map the constant path v = 0oy, to itself respectively to 0oy -

Proof. The topological space @ is o-compact and A,C are locally finite, whence I is countable.
Corollary (c) shows that the mappings A4, Ac turn Xoum (Q), into a patched locally convex
space. As r < oo holds, the spaces @,.; C""'([0,1], X (U;)) and C""1([0,1], @,c; X (U;)) are iso-
morphic by the proof of Lemma The same is true if we replace each U; with W, ;). For A as
in Construction [5.1.1]and C as in we identify these spaces to consider the mappings

Pa: CTJFI([O’ 1]7:{01@ (Q)c) - @CT+1([07 1}’}: (Ui))77 = Aao Y= (Pin)iGI‘
FPe: C([0,1], Xom (Q) ) — @CT([Q 1,X (Wa@))s v = Ac oy = (Ya(i))ier-
el

An application of Lemma [C-3.6] proves: P4, Pc are linear topological embeddings with closed image,
whose components form patchworks, for C™1([0,1], Xom (Q),) and C"([0,1], X0 (Q),), respec-
tively. The maps w and evol are well-defined by Lemma (b) and we claim that they are

Qo505
smooth. For ¢ € I, let resUj’K‘r’” : X (Q2,k5.,) = X (U;) be the restriction map. These mappings are

Q .
linear and continuous by [26, Lemma F.15 (a)]. Thus r; :== C"*1([0, 1], resUj'K‘r’"l) is continuous and
linear by |33, Lemma 1.2|, hence a smooth map. For ¢ € I, consider the smooth map w; defined in
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Lemma [5.4.3] By Lemma (b) the smooth map r; o w; maps the constant path v = Ow,,,, to
the constant path whose image is the zero-section. From the definitions we obtain

<€B r; o wi> o Pe|gist ) = A aw, (5.4.9)

el

Hence w is smooth on the patches and we deduce from with Proposition that w is a
smooth map. As the evaluation map evy: C"1((0,1], Xom (@),.) = Xow (Q), .y — (1) is smooth
(cf. |2 Proposition 3.20]), the smoothness of evol follows from evy o w = evol . The last assertion is
a direct consequence of Lemma (b). O

5.4.6 Lemma Let H, C Xom, (Q), be the open zero-neighborhood of Theorem|5.2.4 Consider an
open identity-neighborhood S C E(H,) which is symmetric, i.e. S = S~'. There is an open subset
0o, € R C E C Xow (Q), such that w(C7([0,1],R)) C C™T1([0,1], E~1(S)).

c

Proof. Consider the C°-neighborhood of the constant path Yo, = 00b:
CTH([0,1], ETY(S)) == C°([0,1], ET(S)) N C"FH([0, 1], Xow (Q),.)-

Specializing to r = 0 in Lemma we see that w: C°([0,1],&) — C([0,1], X0 (Q),) is smooth
with w(Yoo,.) = Yoo, Then w=I(CI([0,1], E~Y(S))) € C°([0,1],&) is an open zero-neighborhood.
The definition of the compact open topology yields an open set 0o, € R C Xom, (@), such that

C

Yoo € CY([0,1],R) Cw™H(C([0,1], E71(S))). The assertion follows. O

Observe that, by construction, also evol(C"([0,1],R)) € H,. We shall see presently that with the
maps constructed in Lemma a smooth evolution for the Lie group Diffo,, (Q,U) may be
constructed. We would like to apply methods similar to the manifold case (cf. |49, p. 1046]) to
prove the regularity of Diffo (Q,U). However, if (Q,U) is a non-trivial orbifold, it is more difficult
to verify the existence of right logarithmic derivatives. We need representatives of the orbifold
diffeomorphisms in S tailored to this purpose:

5.4.7 Lemma Consider [f] € S with [f] = [E?] for some [0] € H,. For each [§] € S, there is a
representative Ef(g) of [§] with lifts {Ef(g)l} , such that the following properties are satisfied:
1€
(a) for eachi € I, the lift E¢(g); is an étale embedding in C*(e”* (U;), Wai)) (cf. Lemma ,
(b) if [9] = [f]~* holds, then the lifts are given by Ef(f_l)i = (e?)7! for alli € I.

Proof. Let [79] be the unique preimage of [§] with respect to E. From [¢] = E([79]) = [expoy) ©
[79]|* we deduce that the claim will hold if there are representatives of [expo,,] and [#9][* whose
composition yields the desired representative. The map [f] is an orbifold diffeomorphism with

representative £7 = (E°,{€"},cr,[P,v]). Hence the orbifold charts { (e (U;), Gy, ¢ai) |€"i(Ui))}ieI
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(cf. Lemma [5.1.2) cover Q. Recall the following details from the proof of Lemma
By Step 3, Hy(;)- Im et C €2y ; is an invariant subset such that Im e is H,;)-stable. Using Lemma

5.1.2]iii., the canonical lifts 77, map Ime”* into Ouiy- Thus ( z(z)lﬁﬁﬁi Jicr s a family of lifts for a

representative 7/ of [7'9] 2. As Qp; C K2 (1)» We obtain an open subset T'Im e’iN0, (i) € domexpy,
(cf. Construction 1| IV.). This set is G;-stable, whence eXpw, ;) ) is a lift of the

orbifold exponential map expp,,- By Remark (a), there is a representative e?p\(;b of [expoy)

whose family of lifts contains eXPw,, 7 1 00 }iel' Composing expg,p, and 7/, we obtain a
representative of F([79]) = [§] whose lifts are the smooth mappings

R AT/ Oa i
E(f;E7 )i = (eXPWW,) |7 1m 70, i) OTz(Z-) T oo - (5.4.10)

As a consequence of the proof of Lemma [5.1.2] these maps are equivariant étale embeddings.
Since e%i is a lift for [f] for each i € I, the map E(f f 1); o €% is a change of orbifold charts.

Hence for each z € I, there is a unique v/ € H, a(s) such that ~f o E(f; f~14); = (e7) L
The family (71- )ie ; induces a lift of the identity € by Proposition m We obtain another
representative & o expg,y, o 7' of E([#9]), whose lifts Ef(g)i = %rl o E(f, §)i, © € I are étale
embeddings. Furthermore, for [§] = [f]!, by construction assertion (b) holds. O

5.4.8 Remark (a) The construction of E(f;§) in Lernrna (combine Ho ;). Ime? C Qs ; (see
step 3 of the proof of Lemma with Lemma iii. ) shows that we can define maps

E? eXpyy, ;) © a(l iHM ) -(Im i) w1th EY |Im coi = E(f 1), As each Ta() is a canonical lift

of an orbisection, we deduce that o E}% = E? on for each n € Ha(i).

(b) Let [f] = id(g ) and consider v/ as in the proof of Lemma Then fy;d(Q'”) = idy,, for
each i € I. To see this, observe the identities id(g ) = 1d(Q u) and E‘l(id(Q’u)) = 00rb-
For i € I, both lifts constructed in (5.4.10) coincide as idy, = expyy,_, ©0y,. This forces the

identity fyZ d@.w

= idy,.
5.4.9 Deﬁnltlon For [¢] in S, let [c;?ﬂ be the unique orbisection in H, with E([(;E]) [¢]. Apply
Lemma - 7/ to [¢]~! € S. By Part (b) of Lemma we obtain a representative ¢ of [¢]. For
each ¢ € [ the hfts gi = EJ),I(QAS)Z- of ¢ are embeddings of Uy, = expv[,am(aiz> 1(U )) € Qg with

Im g? = U;. The pointwise operations make
Cj’ = {f S C’OO(U@,TWO(@)) iﬂ'TWa(i) o f = gj)}

a vector space. Endow Cf’ with the unique topology turning (gf)* xXU;) — C’?, 0 0; 0 gf into
an isomorphism of topological vector spaces. We define a linear map

Ay Cgy = { 1612191 16] € Xom (@), } = @D 7,161 0 8] = (01 0 g0 ier

iel
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where o; is the canonical lift of [6] on U;. As orbisections are uniquely determined by a family
of canonical lifts, the map A g 1s injective. Endow C[ 4 with the unique locally convex topology
turning A[ 3] into a topologicaﬁ embedding.

The lifts g;d(Q’”) are the identity on U; for each i € I, by Remark (b). Therefore C;
Xorb (@), coincide, and hence the mappings A and A4 are the same.

deo u) and

id(q,u)

For the rest of this section, fix the notation of Definition [5.4.9] We obtain a structural result for
the tangent manifold of Diff o1, (Q,U):

5.4.10 Lemma Let [¢] be an element of S with S as in Lemma . There is an isomorphism
of topological vector spaces

a[q@] : T[qg]Diﬁ'Qrb (Q,Zx{) — ImA[(l;],
whence T[qg] Diff o, (Q,U) is isomorphic as a topological vector space to O[«i]'

Proof. Fix [¢] € S. As S is a symmetric set (i.e. S = S™1), the inverse [¢] ™! of [¢] is contained in
S. By construction of S, there is a representative of [¢]~* with lifts {(gf’)_lz Us = Wag ¢ K To

shorten our notation, we set Uy, = (gf’)’l(Ui) and recall Uy, C Qo ; from Definition 5.4.9[ The
family of lifts { gf } uniquely determines a representative of [(;AS]7 by Corollary [2.1.13] We proceed
iel

in several steps:

Step 1: Construct the mapping - For each [g] € S, denote by [69] the compactly supported
orbisection with E([69]) = [g]. By Lemmaw (a) each [g] € S possesses a representative Ej_,(g)

with lifts (E;-1(9))i := fyid’ exPyy, ., O‘Ti(i)|U¢i' Fix i € I,p € Uy, and consider the map
6$i S — Wa(i)7 [g] = E(ﬁfl(g)l(p)

We show that efi is smooth. To this end. let 7w, , : Xom (Q), = X (Wq(;)) be the map which
sends an orbisection to its canonical lift on W, ;). By Definition (b), this map is continuous
linear, hence smooth. Choose a manifold chart (V},,v,) of the manifold W,y with p € V,,. The
map Ty, : X (Wa(i)) — C®(V,,RY), X Xy, = pryT7p Xy, is continuous linear by Definition
Let g,: C°(V,,,RY) — R4, f + f(p) be the evaluation map in p. This map is a linear map,
which is smooth by [2, Proposition 3.20]. Finally define ev,: X (Wa(i)) — TpWay, X = X(p).
As evy, = (Tytp) (¥p(p), ) 0 €, 0 Ty, holds, ev, is continuous linear. By construction of H,, it is
contained in the open subset M constructed in Proposition (cf. Construction [5.1.6). Hence
Lemmaii. implies that ev, maps 1w, o E~1(8) C M; into the set Oa(i) NT,Wa(). The image
of the smooth map ev, oy, ,, 0 E~'|s is thus contained in dom expy,, ., " TpWa(i)- By construction

of the lifts F é,l(g)i in Lemma [5.4.7, one may rewrite Eﬁi as composition of smooth maps, thus
establishing the desired smoothness:

bi — AP -1
ey’ = oexpPy,_, |1,Wa ©€VpOTw,, o F |s.
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Repeating the construction for each pair p € Uy,, where ¢ runs through I, we obtain a map

gt Ty Diffor, (Q,U) — H(TWa(i))U¢i
il

Vi (T[é]aff"(v))ielme%i

and abbreviate its image as V[d3] = Im gy

Step 2: Endow V[J)] with a vector space structure which turns g into a linear map.

The tangent space T[ (Z)]Diﬂo,b (Q,U) is the set of equivalence classes of Cl-curves n: ] —e,e[— S
with 7(0) = [¢], where n ~ 0 if and only if (E~!on)/(0) = (E~106)’(0). Abbreviate the equivalence
classes with respect to this relation by [t — n(t)]~ (and likewise in TW,;)). Since each %7 is smooth

and 7 is of class C, for each i € I and p € Uy, the curve s]‘fi o is of class C''. Hence the definition
of g yields

0‘[55]([77]~) =([t— E[d;]fl(n(t))i(P)]Aa)ieI,peU%- (5.4.11)

The curve 7 in (5.4.11) passes through [¢] for ¢ = 0, whence by Lemma (b) for i € I,

E; 1(n(0)); = g% holds. Therefore we infer from (5.4.11) the identity

‘/[43] - {(fi)ie[ S H(TWa(i))U¢i Viel,pe Uy, fl(p) S qu(p)Wa(i)} . (5.4.12)
iel

In particular, (5.4.12]) shows that the pointwise operations turn V[ 3] into a vector space. Furthermore,

by (5.4.12)) T[gg]ag’i : T[d;]Difforb (Q.U) — Tg?(p)Wa(i) is linear. By definition, the map g becomes

linear if V[ 3 is endowed with the vector space structure induced by pointwise operations.

Step 3: A formula relating o g to ciag - Let pigy: Diffow (Q,U) — Diffor, (Q,U) , [¢)] = [¥]o[¢]
be the right translation and define
G® = ((g)ier)* H(TWa(z‘))Ui - H(TWa(z‘))Ud’h(fi)ieI = (fiog)ier
iel i€l
Consider [n]~, € Tia, ,,,Diffors (Q,U). The composition in Diff o, (Q, ) is continuous, as the latter
is a Lie group. Since 7(0) = id(g ) holds, we may thus assume 7(t) o [¢] € S for all t. By Lemma

5.4.7| (a), there is a representative of 7(t) o [¢] with lifts E; 1(n(t) o b); = fyf’ eXPyy, O'Z((g()(bl(]m.

Here UZEZ;W is the canonical lift on W, of the compactly supported orbisection [o1(1)°¢] with
E([o"®°9]) = n(t) o [¢]. The set Uy, is contained in Qg; C Qs k., (cf. Construction [5.1.6).

By Remark we thus have 0280¢|U . = O’Z((:; o ai(i)hj ,,- Recall that by construction of

O'Z((:; o ‘72(1‘)|U o, (see (D.9.7) in Construction the identity

n(t) ¢ _ n(t) @
eXPyy, ) OF a(i) i O.a(i)|Uq>7¢ = eXpyy, ) ©0 4 © XP, ) ooa(i)|U¢i
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holds. Furthermore, gf’ = qu_l(qg)i = 'yf’ ° eXpw,, oai(i)|U¢i and Imgf5 = U;. Hence we deduce
eXPw,, ., Oaz(i)(Udn) C Hyi)-U; € 2. Analogous to Step 2 in the proof of Lemma one shows

that 7? € H,(;) commutes with eXPw,, ., OUZ((E; |7, ,).U;- Summing up, we obtain:

o) (Toyg ([))) = ([t = B3 (n(t) © 0)i(p)]-)

i€l,pelsy,
nt) . ¢
[t — ’Yz ©eXPw, iy Ta(s) i Ua(i)(p)]w)iel PEU,;

t’—>% eXpW()UZ((Z;e XPW,() a()( )] )

1€l,peUy,

=gf’

( [t expuy, 710 2 exPyy, ) 720 (D))
_,_/
1€1,pEUy,
=G

We derive g © TP[(Z)]|doma;d(QM) =G%o Qid g - Now G‘b(\/}d@’w) = V[q;] follows, as Tp[(%] is a
diffeomorphism.
Step 4: G?|y. Viag, 18 linear. To see this, let v,w € Tiaq, .., Diffory (Q) and 7 € R. Since Ty,
g and a4, ,,, are linear, the formula in Step 3 yields:
G¢(aid<Q)u) (v+rw)) = g (Tp[(j;] (v + rw))
= ag (T (v) + 1oy (Tog (w))
= G¢(aid(Q,M) ('U)) + TG¢ (aid(Q,u) (’LU))
Step 5: Qid(g 4 8 an isomorphism of topological vector spaces and Vid(g 1y = Im Ay.
Consider the map h: Xom, (Q), — Tidq, 4, Diffors (Q,U) , [6 } [t — E(t[6])]. For i € I, we denote

by o; the canonical lift on U; of the orbisection [§]. Then (5.4.11) together with Remark (b)

and (5.4.10)) implies:
Qid(q 1y © P([6]) = ([t = expyy,, (toi(p)])ier peu,- (5.4.13)

As expy o is the Riemannian exponential map on Wy ), the map ¢; ,(t) := expy, (i)(tai(p)) is
a geodesic with c; ,(0) = oi(p). Therefore yields i, © h([6]) = (0:)icr = Aa([5]).
Since F is a diffeomorphism h = THE(0, ) is an isomorphism of topological vector spaces. Now
Qid(g ) © h = A4 shows that Vid(g 1y = Imtia g 4 and Qidq 4, 1S an isomorphism of topological
vector spaces. In particular, the formula shows that aiq @0 18 a linear isomorphism onto the closed
subspace Viq , ., = ImAa C D, X (Uy).
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Step 6: G¢

G? is the map (g?)}‘el and each gf’: Ug, — U is a diffeomorphism. The map (gf’)* xXU;) — C’f is
an isomorphism of topological vector spaces by Definition From [11, Proposition I1.31 8 (i)],

V -
V,[:] 18 an isomorphism of topological vector spaces and V[qg] =Im A[J)]. By definition,
Q. u

i

¢
we deduce that the mapping G¢|$Z g(Ui) is an isomorphism of topological vector spaces. By Step
5, Via g 4, is & subspace of ,; X (U;) and V5 = G?(Vid g .4,)) holds by Step 3. Since G® maps
P, X (Us) into @, Cy,, the set V4 1s contained in @Dic; Cs:- Endow Vig , ,,, with the subspace
V.
topology of ,.; X (U;) and V[d?} with the subspace topology of P,.; C’?. The map G¢ V;[in,u)
becomes an isomorphism of topological vector spaces. By construction, for (f;)ier € V[ 3 there is a
unique [;?] € Xow (@), such that (f;)ier = G¢AA([;?]) = (sz o g?)iej. Hence the elements in V;,

are of the form (o; o g?)ie 1, where o; is the canonical representative on U; of some [6] € Xor, (Q),.-
As a consequence of the definition of A[ g)» as a set Im A[ 3 and V[ 3 coincide. By definition of the
topology, they also coincide as topologicai vector spaces.

Step 7: g is an isomorphism of topological spaces for each [(Z)] € S. Endow V[q;] with the topology

as in Step 6 and obtain a commutative diagram for [¢] € S:

did(Q u)

Tid(@,u)DiffOrb (@Q.U) Vid(g 1)

V,\
Tp;: G¢ [#]
J (4] J lV‘d(Q,w
o

T Diffow, (Q,U) ———=—— Vg,

As all arrows with the exception of the lower row are isomorphisms of topological vector spaces, so
is ) By Step 6, Im g = V[Q;] =1Im A[q;] holds, thus proving the assertion. O

We are now in the position to obtain regularity properties for the Lie group Diffo., (Q,U).

5.4.11 Theorem Let (Q,U) be o-compact. Then the Lie group Diffon, (Q,U) is C*-regular for
each k € Ng U {oo}. In particular, this group is regular in the sense of Milnor.

Proof. We claim that Diffo,, (Q,U) is a (strongly) C°-regular Lie group. If this is true, then the
assertion is a direct consequence of Definition [C:5.3] To prove the claim, by Lemma [C.5.4] it suffices
to obtain a smooth evolution and right product integrals for some zero-neighborhood C([0, 1], U).
Let E: H, — Diffo., (Q,U), [6] — [expoy) © []|? be the manifold chart at the identity introduced
in Theorem (cf. Proposition [5.1.5)). Using the map evol introduced in Lemma we define
a map

F1 := FEoevol |CU([O,1],R): CO([O, 1],R) — Difforb (Q,U) s

where R is chosen as in Lemma [5.4.6] with respect to the symmetric subset & C Im E. By Lemma
5.4.5] evol is a smooth map, whence E; is smooth as a composition of smooth maps. Identify
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Xor (Q), with L(Diffo,, (Q,U)) via the isomorphism ToE(0, ) = ai?ii@ w © A 4 and recall from step

5 of Lemma [5.4.10 Via ,, ,,, = Xorb (Q),. Following Lemma the Lie group Diffo,, (Q,U) will
be (strongly) CY-regular if we can show that each v € C°([0, 1], R) has a right product integral P(v)

with P(7)(1) = B (7).

We first need to understand the derivative of a C'-curve n: [0, 1] — & C Diffo,, (Q,U). For s € [0, 1],
we let [67()] be the preimage E~'(n(s)) (cf. Definition [5.4.9)). Recall from Lemma that for all

s,t € [0,1], there is a representative E,;)-1(n(s)) of n(s). Using the notation of Deﬁnition the

lifts of this representative with respect to the atlas {(Un(t)u Ha(i),Un(t). , @a(i)|Un(t). )} are given

“® (t) (s) -
t

Eyy-1(n(s))i = -CXPw, i OUZ(%

The derivative of the lift with respect to s may be computed locally in manifold-charts. To do
so, we fix p € Uy, for some t € [0,1]: Since Uy, € Q2 by Definition [5.4.9, we choose and

fix a manifold chart (V%”;(i),mgf)) € F5(Ks,) with p € V7. Observe that by [26, Lemma

F.6 and Lemma 4.11], the map Ki'”: X (V3)) = C=(B5(0),RY), X 15 X, with X,) =

Un(ey; *

Cm((n%y))*l,Rd)(Hﬁa(i) (X)), is an isomorphism of topological vector spaces. As 7 is of class C1,
the following composition yields a C'-curve:

Mepi = Kﬁéi) o resl‘//‘ﬁ?ﬁ OTW, i) © E ton:[0,1] — COO(Bg,(O)7Rd).

5, (1)
Let exp,,, be the Riemannian exponential map induced on Bs(0) by the pullback metric of the Rie-

mannian metric on Wy, via (mgs))*l. Since E71(S8) € H, and (V;g(l,), /@%I(f)) € Fs,ks5.,, the con-
struction of #, (cf. Theorem or more precisely Construction and Construction[D.9) shows
Mep.i([0,1])(B3(0)) € Be, (0) € By, (0), whence nip.i(s) € [B2(0), By, (0)]oc © C*(B5(0),RY)
holds for all s € [0,1]. By choice of vy, the set B4(0) x By, (0) is contained in domexp, (cf.
Lemma [D.6). We deduce from [26, Proposition 4.23] that

(exp,, )1 | B2(0), By, (0)]oo = C(B2(0),RY), f + exp,, (idp,0); f|Ba(0))

is smooth. We obtain a C'-curve (expy,, )« 0nep,it [0, 1] = C>(B2(0), R?). Furthermore, Lemma
(b) yields expyy, ., oT(ﬁ?{ff))_1|B2(0)XBynp ©0) = (H%ff))—l o exp,, |32(0)X3%p (0)- The above consid-
erations did not depend on p € U,(;),, whence they may be repeated for each p € Uy ),,i € I. With
Lemma (b) and the Exponential law |2, Theorem 3.28|, we may now compute the derivative as

ey (' (1) = any ([s = nt + 8)]~) = ([s = Egy - (n(t + 5))i(p)]~)ierpev, e,
= ([s— VZ](t) eXPw, ;) UZ((Z;FS) (P)]~)iel,peU7<f,>i
= ([s = 7 expy,, (TESD) T (5ED (), 01 i (t + 5) (55D (D) )icrpev ),

= (Is = 1 (55D) expy, (Mt + ) (55D ()] ierpev ),

a(i)\— 9 1%}
= (O™ 5o (exn,)e o mpd) (G RED BN Dicrsev, - (5:414)
s=t
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Let ¢ € C°([0,1],R) be some continuous curve. By Lemma we may consider the C'-curve
n:=FEow(£):[0,1] — S. To compute the derivative n/(t), we exploit the identity (5.4.14). The
definition of the mappings implies

142 Wai — ol
i = KD oxes 50 om0 B o (B ow(€)) = (s K @(€)(s)ac vr,, )

The canonical lift w(£)(s)q(;) is uniquely determined, whence w(£)(s)a( ) Coincides with w;(§a(i)(s))
(cf. Lemma [5.4.3) on s g, by the proof of Lemma [5.4.4] Since (V, 5a(z)”<°'”p ) € Fs5(K5,), we
derive V;g(i) C Qy k. ;. Therefore the lift satisfies (5.4.4)). Summing up, for (s,z) € [0, 1] x V;Z(i)'

N (8) (@) = Kt (e(€)ai () () ()
= pry TR0 (expr, [.) ™ 0 (5) ™ 0 F (5, K2 (), Euin)
Observe that exp,, Tnglgi)(expwam In,) " = exp, Tng}(f) (expy,, [n,) ™. By construction of N,
(see Lemma (b)), we obtain:

-1

)7 = w0,

a(i) — o)
eXpnP TK;nP (eXpWQ(,;) Nz) - K;np eXpWa(i) (eXpWQ(i) Ny,

Insert this identity and the local formula for 7, ; into (5.4.14)):

a1 0) = (TGI8 ) 5

((exp,,, )« © Nepi) (s, H?Lff) (p)))

s=t 1€l,peUy 1),

— (1616 5
P S

F1j (s, H%S) (p), fa(i)[np]))>

s=t iGI,pEU,](t)i

Fixing Kﬁii)(p) and €, the flow F1J(., /inf, (P), €a(iyin,)) is a solution to the differential equation
(p-4.1). Thus
9 a(i a(i
50l R (1), atying) = FR(E A5 (), aoing): Satirim,) () FI (1 55 (0). €a(imn,))
s=t

- Tﬁgf,i)g(t)a(i) o (Hg,(,i))il (Flg (t’ ’iz,(,i) (p)a ga(i)[np]))'

Since £(t)a(s) is a canonical lift, it is equivariant with respect to He ;). Thus the last identity proves:

) (1) = (TOIEBao (55 FIL @ 550 (), oy, it vev,
= (€Wt (77 (50 D) T FI (1 15 (9), iy ) VicT e, 0,
Moreover, w(&)(t) = ( (t)) holds by construction. Using the notation of Lemma and its

proof, we obtain expy, ow(&)(t)aw) () = En(t)~,n(t))i(p). On the other hand, lD yields
the identity

expyy, ) ow(€)D)ags) () = (55 ) " FIL (8, 550 (D), Eaiying)):
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By choice of 7" (see the proof of Lemma , we derive:

(3

) (1) = (€O (07 (P)ierpevye, = E@)aw 097" ier = My (E() o n(t)).

We may now use the structural results on the tangent space of Diffo,, (Q,U) at v(t) € S. To
shorten the notation, abbreviate ¥ := T E(0, ) = a;ﬁ@ w ° A 4. From Lemma|5.4.10| and its proof

(in particular, the formula in Step 3), we infer
A (g (7)) = €0 0 1(8) = A0 (GMOAACE()) = A (e (T BE(D).

The map A;(lt) 0 oy (y) is an isomorphism of topological vector spaces, whence n'(t) = T'p, ) ¥ (£(2))

follows. Recalling the definition of n we have 7/(t) = 4 E(w()(t)) = Tppwe)@) Y(E®)).
The facts obtained so far allow the right logarithmic derivative of n(t) = E(w(n)(t)) to be computed:

8"(n)(t) = TpE(w(g)(t))*l%E(W(g)(t)) =Tppwe) ) TPewE )Y (E[R) =P (E(®). (5.4.15)

By construction, E;(§) = E(w(£)(1)) = n(1) and Lemma [5.4.5] implies w(£)(0) = 0oyp,. Thus n(0) =
E(w(£)(0)) = E(0o) = id(gu) holds. Furthermore, the computation of the right logarithmic
derivative (5.4.15)) shows that the curve £ possesses a right product integral E(w(§)) = n. We have
already seen that the mapping E; is smooth, thus the proof is complete and Diffo,, (Q,U) is a
(strongly) C°-regular Lie group. O

The orbifolds in the present paper are not assumed to be second countable. We had to require
second countability of the orbifold to assure that Xo., (Q), is countably patched. In this case, we
obtain an atlas indexed by the countable set I, whence the map

A: @ CT([Ov 1], X (U%» - C" ([07 1]7 @:{ (UZ)> ) (fl) = Z(Ll)*(fl)
i€l iel iel

is an isomorphism of topological vector spaces for r € Ny if the mapping spaces are endowed with
the compact open C"-topology (see Lemma . This fact was crucial to prove the smoothness
of the evolution map evol. It is known that A fails to be an isomorphism of locally convex spaces if
I is uncountable. We give a proof for this fact:

Fix r = 0 and let I be an uncountable set. Notice that arguments as in the proof of Lemma [C.3.6]
assure that the map A is an isomorphism of vector spaces which is continuous. We denote its inverse
by O (see Lemma for the construction). Hence we have to prove that © is discontinuous if T
is uncountable.

For each i € I, we choose and fix a one-dimensional subspace E; C X (U;). The locally convex
direct sum P, ; R = P, ; £; may be identified in a canonical way with a subspace of P,.; X (U;)
by |11} II. §4 No. 5 Proposition 8]. If we consider the subspaces C([0,1], E;) € C([0,1],%X(U;))
for i € I, we may analogously identify €@, ; C([0,1],R) = @,.,; C([0,1], E;) with a subspace of
P, C([0,1], X (U;)). A trivial computation yields the identity

A (QB (o, 1]7Ei)> =C ([0, 1],@&-) .

i€l icl
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E
Hence the inverse © restricts to a map T := O] C(lgfl]cé[ao 1 . We claim that 7' is discontinuous,

whence ©® must be discontinuous. To prove this claim, 1dent1fy each of the spaces E; with R. The
assertion then follows from the next lemma, whose proof was communicated to the author by D.
Vogt and S.A. Wegner:

5.4.12 Lemma The map T: C([0,1],P,; R) — D,c; C([0,1],R) is discontinuous for each un-
countable set I.

Proof. Recall from [47, §24] and Remark that the compact-open topology on the space
C([0,1],P;c; R) is induced by the following system of seminorms:

ps(f) == sup > &i[(£(t))il, with § = (6;)ics and 6; >0 fori € I.
te[0,1] o7

Analogously, the topology on €, ; C([0,1],R) is induced by the following system of seminorms:

iel

q-((fi)ier) : Zsl sup |fi(t)|, with € = (€;)icr and g; > 0 for i € I.
il t€[0.1]

Arguing indirectly, we suppose that T is a continuous map. Since T is linear, it is continuous if and
only if

Ve = (ei)ier 30 = (6:)ier, C > 0 ¥(fi)ier € @ C((0, 1), R),
el

qe((fi)ier) < Cps (Z(%hﬂ)
el
= Ve = (&:)ier 30 = (6:)ic1 V(fi)ier € P C([0,1],R),

> sup 1fi(0)] < sup Zém

el zEI

To obtain a contradiction, fix € = (1);c; and choose 6 = (6;);cs as above. For n € N, define the set
M, :={i € I|é <n}. By construction, I = J, .y My, holds. Since I is uncountable, there must be
For n € N, consider E C My with E = {i1,...,i,} and choose f;, € C([0,1],R) with 0 < f;, <1
such that supp f;, Nsupp f;; = 0 if k& # j. Furthermore, let there be t; € [0,1] with f;, (tx) = 1
for 1 < k < n. Define (fi)ier € @B,c; C([0,1],R) via f; := fi, if i =i for 1 <k <mnand f; :=0
otherwise. By choice of 9,

neN

3 sup [£:(0) < sup S al4(0) (5.4.16)

icq t€l0,1] t€[0,1] o7

Compute both sides of the above inequality. For the left hand side of (|5.4.16|) the definition of the

family (f;)ies yields:
Z sup |fi(t)] = Z sup |f1k Z I=n.

el t€[0,1] 1<k<n t€[01] 1<k<n
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On the other hand, since the supports of the maps f;, are disjoint, the right hand side of (5.4.16)),
evaluates as:

sup Y Silfi(t)] = sup > 6 |fin ()| = sup 8, < sup & <N,
te[0,1] 57 efo.1] 1= 1<k<n €My

Hence (5.4.16)) yields n < N, where N is fixed but n may be chosen arbitrarily large. We derive a
contradiction, whence T' may not be continuous. O

Summing up, the inverse © of A is discontinuous for uncountable index sets I. Hence A fails
to be an isomorphism of topological vector spaces if I is uncountable. Thus our methods do not
generalize to the setting of arbitrary paracompact orbifolds. As already stated in the introduction,
this observation leads to the following open question:

Open Problem: Let (Q,U) be a paracompact reduced orbifold which is not second countable. Is
the Lie group Diffo,, (Q,U) a C"-regular Lie group for some r € Ny U {o0}?



6. Application to Equivariant Diffeomorphism Groups

In this section, we consider good orbifolds with an orbifold atlas of a single chart. If (Q,U) is such
an orbifold, we let {(U,G,m)} be an orbifold atlas for (Q,U) and call (U, G,w) a global chart. Tt
turns out that for certain orbifolds with global chart, the group Diffo,, (Q,U) induces a Lie group
structure on a subgroup of the diffeomorphism group of U. We begin our inquiry with several
observations:

6.0.1 Let (Q,U) be an orbifold with global chart (U, G, 7). Consider a diffeomorphism of U which is
a weak equivalence, i.e. a diffeomorphism h:U—=U together with a group automorphism a: G — G
such that hog = a(g)oh holds for all g € G. Note that h~!is also a weak equivalence, with respect
to the group automorphism a~!. In particular, » and h~! induce mutually inverse continuous maps
h: Q@ — Qand h™1: Q — Q, respectively. The pair (h, 71) induces a representative of an orbifold map
such that the corresponding orbifold map is a diffeomorphism of orbifolds by Proposition [2.1.7 and
Proposition Therefore, each diffeomorphism of the global chart which is a weak equivalence
canonically induces a unique diffeomorphism of (Q,U).

Denote by [A] the diffeomorphism of orbifolds associated to h € Diff% (/) by the above construction.
We consider the map - N
D: Diff%(U) — Diffow, (Q,U) , f — [f].

Each orbifold diffeomorphisms in the image of D is induced by a lift in the global chart, i.e. by
an element of DiffG(M ). Since orbifold diffeomorphisms are uniquely determined by their lifts (cf.
Corollary 2.1.11)), the composition of the lifts in the global chart induces the composition of orbifold
diffeomorphisms. The same argument shows that the image D(h~!) coincides with D(h)~! (the
inverse in Diffo,p (Q,U)) by Corollary Summing up, D is a group homomorphism.

The map D is not injective, as elements of DiHG(U ) which differ only by composition with an
element of G are mapped to the same diffeomorphism of orbifolds. From |51, Lemma 2.11], we
deduce that the kernel of D coincides with G. Hence D induces an injective group homomorphism
A:

1—— G—— Diff% U) —» Diff°(U) /G —— 1

D
A

DiHOrb (Q> u)

We now ask, whether all orbifold diffeomorphisms of (Q,U) arise as quotients of elements on
Diff’(U). Tt will turn out that this is the case for certain orbifolds with a global chart, i.e. we
prove that A is an isomorphism of groups in some cases. In this situation wndow Diff%(U)/G via
A with the unique Lie group structure turning the mapping into an isomorphism of Lie groups.

6.0.2 We can also obtain a Lie group structure on a subgroup of DiﬁG(U ). Consider the subgroup
of Diff%(U) whose elements coincide with the identity off some compact subset:

Diff¢ (U) := { f € DIff%(U) | 3K C U compact, flox = idU\K} .



132 6 APPLICATION TO EQUIVARIANT DIFFEOMORPHISM GROUPS

By construction, Diff%(U) is a subgroup of Diff“ (/). Then D maps DiffS(U) into the open Lie
subgroup Diffou, (Q,U), of Diffom, (Q,U). If the intersection G' N DiffS (U) contains only idy,
the mapping D restricts to an injective group homomorphism A, : Diﬁ"f(U) — Diffow, (Q,U),. By
Newman'‘s theorem GNDiff.(U) = {idy } holds, whenever U is non-compact. Since D is surjective for
certain orbifolds, A, becomes an isomorphism of groups for these orbifolds. Thus Difff(U) may be
endowed with a Lie group structure induced by Diffo,, (Q,U),.. The construction principle outlined
in Proposition then allows the construction of a unique Lie group structure on DiHG(U) which
contains Diff¢ () as an open subgroup.

6.0.3 We introduce the class of orbifolds with global chart considered throughout this section: Let
d be in N and G be a finite subgroup of the orthogonal group O(d) C Diff(R?) such that:

(IS) The group G satisfies G, = {idga} for all x € R%\ {0}.

Recall that for odd dimension d, each element g of O(d) possesses at least one real eigenvalue \,.
By orthogonality we must have A\; € {—1,1}. If an element g € G \ {idga}, condition (IS) implies
Ay = —1. Then ¢? is an element of G with real eigenvalue 1. Again condition (IS) forces g = idgn
and thus all eigenvalues of ¢ must be 1 or —1. Using condition (IS), all eigenvalues of g are thus —1
and we obtain g = — idge. Hence for odd d only G = {idga, — idga } or G = {idra} are possible. We
are interested in the non trivial case, whence we assume for the rest of this section that G # {idga}
holds. We record the following observations

(a) If d is odd, the group G is generated by —idg«. For d = 1 this is a reflection, which will be
denoted as r: R - R,z — —z.

(b) If d = 2, the group G may not contain reflections by condition (IS). In this case G contains at
least one (non-trivial) rotations of R? which fixes the origin.

Let m: R? — R?/G be the quotient map onto the orbit space and Q := R?/G. Then {(R%, G, )}
is an atlas for @), turning the orbit space into a good orbifold with a global chart. We identify for
d € {1,2} the orbit spaces with [0, co[ respectively a cone:

s ¢
— S G

Figure 6: Cone shaped orbifolds. The element ~ is a rotation which generates G for d = 2.

Each finite subgroup of O(2) — which is not a dihedral group — is cyclic by [4, Ch. 5, Theorem 3.4].
Hence the illustration above exhibits the general case for d = 2.
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6.0.4 Proposition Let (Q,U) be an orbifold as in . Consider [h] € Diffom, (Q,U) with repre-
sentative (h,{hi},c;,[P,v]) € [h]. The map h lifts to a weak equivalence h: R* — R® with respect
to the G-action.

Proof. Consider [h] € Diffo,p, (Q,U) with representative (h, {hiticr, (Pv)) € [h]. To construct a
weak equivalence as required, we shall construct at first a lift on the set of non-singular points.

For the orbifolds defined in there is only one singular point. The origin in R? is jointly
fixed by all elements of G. Hence R¢ \ {0} corresponds to the set of non-singular points and we
set Qreg := @ \ {0}. Recall that the global chart 7: R — @ is a branched covering in the sense

of [53, Section 10]. Hence q:= 7|25,
Diffeomorphisms of orbifolds preserve singular points by Proposition [2.1.5] and thus the homeo-
morphism h: @ — @ satisfies fw(0) = 7(0). The restriction h|g‘:§ yields a homeomorphism. To

construct a lift of h, we construct at first a lift on R¢\ {0}:

is a covering by |53, Theorem 10.3].

If d = 1 holds, then the space R\ {0} is disconnected. Then the mapping qljo,o[: 0, 00[— Qreg
is a homeomorphism and we obtain a well-defined homeomorphism ht := (qhom[)*lhqhom[, which
maps |0, 00| to itself. This mapping extends to a homeomorphism via

ht(x) x>0
rohtor(z)=—-ht(—z) z<0.

m®me%me@H{

By construction, h,es and also its inverse are equivariant maps with respect to G = (r). We deduce
from |12, II. Lemma 7.2| that h,ce extends to a continuous map h: R — R by h(0) = 0. Similarly
we extend the inverse of h..o, whence h is an equivariant homeomorphism, i.e. an equivalence.

If d > 2 holds, then the space R?\ {0} is (path-)connected. We have to construct a lift freg:

R4\ {0}

freg l
q

o h‘Qrequ

R\ {0} — O

For d > 3, the space R?\ {0} is simply connected, path-connected and locally path-connected.
Choose g € R?\ {0} and yo € ¢ 'hq(x). Then by |36, Proposition 1.33], there is a unique lift
Breg: R4\ {0} — R4\ {0} of h|@= o ¢ which maps xo to yo.

For d = 2, the space R? \ {0} is not simply connected. However, it is path-connected and locally
path-connected. We may still apply [36, Proposition 1.33] if the fundamental group 1 (R?\ {0}, x¢)
satisfies:

(P]97% 0 g).(m (R*\ {0} ,20)) € gu(m (R?\ {0}, 10)) (6.0.1)

Recall that the fundamental group 71 (R?\ {0}, x¢) can be identified with Z (cf. [36, Example 1.15]).
Moreover, as G C SO(2) holds, the subgroup G C O(2) must be a cyclic group, generated by a
rotation 7y of order m € N. As we have already seen, () is homeomorphic to a cone and Q;e; may be
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identified with a cone whose tip has been removed. In particular, the space @Q;cg is homeomorphic
to R?\ {0} (see Example for further details on this homeomorphism).

Consider a generator [e] of the fundamental group w1 (R? \ {0}, ), where e is chosen as a circle
around the origin passing through zy. If v is a rotation of order m, then we have g.[e] = [goe] is a
loop in Qyeg, which passes m times through 7(yo). The next picture illustrates this behavior:

Figure 7: Image of a loop in the generator [e] of 71 (R? \ {0}, () with respect to g.. The loop
displayed in Qg is a curve homotopic to the image of the closed loop for m = 3.

Note that 71 (Qreg,q(yo)) is isomorphic to Z and let [f] be the generator of m1(Qreg,q(z0)). By
abuse of notation we let [f] be the generator of each fundamental group for points in Qeg. From
the arguments above, we deduce g.(m1(R?\ {0},z0)) = (m[f]) and thus

s 0 g), ([e]) = () (mlf]) = m([ho f)) € (mlf)) = Img..

Therefore property (6.0.1) is satisfied and we obtain a unique lift hyeg: R?\ {0} — R?\ {0} of h
mapping xg to yo.

(h

Qreg
Qreg

Analogous arguments allow the construction of a unique lift (h™!) g for A1 9\M% 0 g and d > 2,
which maps yo to xg. We claim that (hil)rcg is the inverse of hyeg. If this is true, then heg is a
homeomorphism. To prove the claim, consider the map f := hyeg © (h‘l)]reg and compute

qo f =qo°o hreg o (h_l)reg =ho qo (h_l)reg =4q.

Hence f is a lift of idg,,, taking yo to yo, and so is the map idga\ (o). By the uniqueness of lifts
between pointed spaces (see |36, Proposition 1.34]), hyeg © (W ')reg = f = idgay r03- Likewise,
(F™M)reg © Preg = idga\ (o} Summing up, heg is a homeomorphism with inverse (O

We now show that the homeomorphism h,., is a weak equivalence. To this end, let g be in G and
x in R?\ {0}. We have

qohpegogo hr_eé(x) = hhlq(z) = q(x).
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Hence hyeg 0 g © h;eé is a lift of idga\ (o)} and so there is an unique element a(g) € G such that
hreg © g © hoek(w0) = a(g)(x0). By uniqueness of lifts, hreg 0 g o bl = a(g) on R?\ {0}. Repeat this
construction for each g € G to obtain a map a: G — G With hyeg © g = a(g) © hyeg on R\ {0} for
each g € G. Since a(gk) © hyeg = hreg © (gk) = (g).hreg © k = (g).ct(k).hreg holds and hyes is a
homeomorphism, the map « is an injective group homomorphism. As G is finite, « is thus a group
automorphism and h,., is a weak equivalence.

We extend the weak equivalence hieg to a map h: R — R4 by defining iL(O) = 0. This map is
clearly bijective, equivariant with respect to a and lifts h. An analogous argument® as in the proof
of [12, II. Lemma 7.2] shows that this map and its inverse are both continuous. Hence h is the
desired weak equivalence of R? with respect to the G-action. [

6.0.5 Proposition For an orbifold (Q,U) as z'n the mapping D introduced in is surjec-
tive. In particular, the induced map A: Diff®(R?) /G — Diffom, (Q,U) is a group isomorphism.

Proof Consider an arbitrary orbifold diffeomorphism [fz] € Diffo, (Q,U) and fix a representative
h = (h,{h; Yiers [Pv]) of [h] with the following properties: Each h;: V; — W;,i € I is a diffeomor-
phism such that there are embeddings of orbifold charts \;: V; — R4 and wi: Wi — R< into the
global chart from above. A representative with these properties exists by compatibility of orbifold
charts and a combination of Corollary and Corollary We have to prove that [fz] is
contained in the image of D.

Construct a lift of the homeomorphism A in Diff“(R%): Let h: RY — R? be the lift of h constructed
in Proposition The lift & is a weak equivalence and we denote by a: G — G the associated
group automorphism. We claim that & is a smooth map with smooth inverse. If this is true, then
h € DiffY(RY) is a smooth lift of A which is compatible with the family of lifts {h;} Hence,

Corollary |2 m implies A(hG) = [h] € Tm D.
To prove the claim, recall that {h;},.; is a family of smooth lifts for h. For each i € I the following
diagram commutes with the exception of the outer square:

\/
/\

Notice that h; ' is a lift for h=', whence whA\ih; ' jt;! = 7|im ., holds. Consider the set of non-
singular points in the image of p; which we abbreviate as Reg,,, = Impy; N (RZ\ {0}). Since
each point in Reg,, is non-singular, by the above we obtain a disjoint union Reg,, = I_IP; with

Pg = {x € Reg,,, ‘ ﬁ)\ihflufl(aﬁ) = g(x)} As G is a finite group, the sets Pg are open and closed.

iel”

9The proof works exactly the same if we replace equivariant mappings with weak equivalences.
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Case 1, d > 2: Then Reg,, is a connected set and we obtain Reg,, = Pg for some g € G. By
continuity, we must have 3
hltma, = g0 i 0hio A7

In other words, i£|1m A; 18 a smooth mapping. Furthermore, for z = g.y € g.Im \; we have iz(x) =
a(g).h(y). Thus h is smooth on all of G.(Im ;) since each element of G is smooth and h is smooth
on Im );. The charts associated to the lifts h;: V; — W; cover @, whence R¢ = Uier G-(Im \;)
holds. Then h is smooth and an analogous argument yields the same for hL. Summing up, for
d > 2 the lift h is contained in DiﬁG(Rd).

Case 2, d = 1: The set Reg,,, is disconnected if 0 € Im y1;. However, analogous arguments as in the
case d > 2 assure that h is smooth on R\ {0}. It suffices to prove that A is also smooth in 0. To this
end, consider ¢ € I with 0 € Im y; (observe that this implies 0 € Im \; since h; is a lift of h, which
fixes 7(0)). Then A; and p; are embeddings of orbifold charts whose images contain the point fixed
by the reflection r and are G = (r)-stable sets. To shorten the notation, define hy := p; o h; o )\;1.
By construction, 70 hgorohy ' = 7|t a, holds. Thus |51, Lemma 2.11] yields a unique vy € G' = (r)
with hg or = 7 0 hg. Since hg is a bijective map, we must have v = r and thus hg is equivariant.
We claim that h|im x, = g 0 ho holds for a uniquely determined element g € (r). If this is true, then
l~z|1m a; is smooth. An analogous argument shows that l~f1|1mm is smooth. Summing up, both h
and k™! are smooth, whence h is contained in Diff®(R).

Proof of the claim: Arguing as in the case d > 2, there are elements v7,y~ € G such that the
following is satisfied:

Blm Min0,00[ =Y 0 Boltm A;n[0,00 and Alim Ain]=00,00 =7 © holtm A;r]—o00,0]-

We have to prove that 4+ and v~ coincide. Recall from the proof of Proposition that the map
h is equivariant. Since G = (r) is a commutative group, we obtain for 2 € Im A;N]— o0, 0[:

7o ho(e) = h(@) = ~h(~a) = —y* 0 hy(~a) = r o+ 0 hy(r(x)) = r oy * 07 0 ho(a) = ¥ 0 ho(a).

As hg(z) # 0 is a non-singular point, indeed v~ = 7 follows. O

6.0.6 Corollary For an orbifold (Q,U) as in the map A.: Diff¢ (R?) — Diffo, Q.U),
introduced in[6.0.9 is an isomorphism of groups.

Proof. It (Q,U) is one of the orbifolds introduced in the only element in G N Diff¢(RY) is
the unit element idga. Hence A, is an injective group homomorphism. We will prove that A, is a
surjective map.

To this end consider [h] € Diffoup (Q,U),. with a representative (h, {iz} ,[P,v]). Here the lift

h: R? — R? has been chosen with h € D~([h]) (which is possible by Proposition [6.0.5). Let
K C @ be a compact set with h|g\ g = idg\x. As 7: R? — @ is a proper map by Lemma
the set 7~ 1(K) is compact. Choose a compact set L C R? with 7=}(K) C L and R?\ L being
connected if d > 2. If d = 1, we may assume that 0 € L and R\ L contains exactly two connected
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components. Recall from the proof of Proposition that the lift 2 has been constructed with
respect to an arbitrary pair xop € R?\ {0} and yo € 7~ 'hm(xo) such that h(zg) = yo (if d > 2).
Without loss of generality, choose zy € R¢ \ L. Since h\Q\W(L = idg\r(z) holds, one can set yo = xg.
We claim that the lift / with respect to these choices is contained in lefG(Rd) If this is true, then
Ac(h) = D(h) = [h] follows and A, is a group isomorphism.

To prove the claim, it suffices to prove that h coincides with idre outside the compact set L. We
distinguish two cases: If d > 2, then h is a lift of the identity on the connected set R?\ L which
takes g to z¢ ansd so is idga\ ;. Hence, h|ga\; = idga\ 1, by uniqueness of lifts (cf. |36, Proposition
1.34]). Hence h € Diff¢ (R?) follows.

If d = 1, by choice of L the space R\ L contains two connected components C7,Cs. Now |51}
Lemma 2 11] yields hlc, = gi|c, for some g; € G and i € {1,2}. By construction of , we have
h(]0, 00[) €]0, 00[ and h(]— 00, 0[) C]— oo, 0[, whence g; = go = idg and thus & € Diff¢ (R). O

For the rest of this section, if (Q,U) is an orbifold as in6.0.3, we endow the group Diff¢ (R?) with
the unique Lie group structure turning A, into an isomorphism of Lie groups. We shall use this Lie
group structure to construct a Lie group structure on DiﬁG(Rd).

6.0.7 Proposition Let d be in N and G be a subgroup of O(d) as defined z'. Then the group
Diff (R%) may be endowed with a unique Lie group structure such that Diff¢ (RT) becomes an open
subgroup.

Proof. We use the Lie group structure on Difch(Rd) together with the construction principle in
Proposition Clearly the subgroup Diff¢ (R?) of Diff“ (R?) satisfies the requirements of Propo-
sition (a). To obtain a Lie group structure on Diff(R?), we have to verify the following
condition: For each g € DiffG(Rd), the mapping

cz: DiffY(RY) — DiffS(RY), h — §

°g

:‘r

makes sense and is smooth. First, we notice that for each § € Diff® (R9) the map c; makes sense
because supp cz(h) C g(supp h) is compact.
Since D is a group homomorphism, we have for § € Diff”(R?) and & € Diff¢ (R?) the identity

D(§)Ac(h)D(§) = D(§)D(h)D(§) = D(ghg) = D(cg(h) = Ac(cz(h).

Thus cp(gy © Ac = A, o ¢z holds. Here cD g): Diffo., (Q,U),. — Diffor, (Q,L{)c,[f] — D(g) o
[f] o D(§)~! is the conjugation map (cf. . Since Diffo,, (Q,U) is a Lie group which contains
Diffo., (@, U),, as an open subgroup, cD(g) isa smooth map. Furthermore, A, and A ! are smooth,
whence c; is a smooth map. Now Proposition 3| (b) proves the assertion. Furthermore, G is
a discrete normal subgroup of Diff“(R%) and Diff (Rd) /G is a Lie group such that A becomes an
isomorphism of Lie groups. O
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6.0.8 Remark The group Diff(R?) has been turned into a Lie group modeled on the space X.(R9)
of compactly supported vector fields in [27]. The Lie group Diff(R?) turns the subgroup DiffG(]Rd)
into a closed Lie subgroup modeled on the space of equivariant compactly supported vector fields.
The induced Lie group structure is precisely the Lie group structure on DiffG(Rd) constructed in
Proposition [6.0.7} We sketch a proof for these facts:

Diff’(R%) is a closed Lie subgroup of Diff(R?): The Lie group structure on Diff(R?) has been
obtained by applying the construction principle (Proposition to the Lie group Diff.(R?).
Hence it suffices to prove that Diff.(R?) contains Diff¢ (R?) as a closed Lie subgroup, whose induced
Lie group structure coincides with the structure induced by A.: Difff(Rd) — Diff o, (Q,U),.. For
the following arguments we identify X.(R?) with the space C°(R? R?) (see Definition for
details). However, we suppress the identification in the notation below.

In [27, Theorem 6.5, the group Diff.(RY) was turned into a Lie group using the following global
chart at the identity element:

a: X.(R%) D Q — Diff.(RY), o + idga +0

(for a suitable open zero-neighborhood 2 C X.(R%)). If we endow R? with the flat Riemannian
metric py (i.e. the one associated to the euclidean metric), then the Riemannian exponential map
with respect to this metric is given by exp(v) = v+p for v € T,R? (cf. |41, Example after Definition
1.6.4]). Hence we may rewrite « as a(o) = expoo.

By construction, G is a subgroup of the orthogonal group, whence each element in G is a Riemannian
isometry with respect to ps. In particular, exp commutes via exp oy = exp o(dy) = 7. exp with every
v € G. Thus for o € X.(R%), we derive exp oo oy = expodyoo = 7.exp oo for each v € G. In other
words, a(QN X% (R%)) C Diff(R?). We remark that each element in Diff¢ (R) is equivariant with
respect to the G-action. Hence a(o) € Ima N Difff(Rd) implies exp oo 0oy = 7.exp oo = exp ody.o.
As the Riemannian exponential map exp |Tde, is injective for each p € RY, the identity dy.c = oo~y
follows for each v € G. We conclude

a(N X8 (R?)) = Diff¢(RY).

The restriction of a to 2 N XS (RY) induces a submanifold chart & for Diff¢ (R%). Hence Diff (R%)
becomes a Lie subgroup of Diff.(R?) modeled on the closed vector subspace X&(R?) of X.(R%) (cf.
Example . This proves the first assertion. We denote by Diff¥ (R%)* the group Diff¢ (R?) with
the structure of a closed Lie subgroup of Diff,(R?). The symbol Diff¢ (R%) will denote the Lie group
constructed in Proposition [6.0.7]

The Lie groups Diff¢(R?) and Diff¢(R%)* coincide: Observe that each element of G is a
Riemannian isometry with respect to the flat Riemannian metric py on R?. Since R?/G is an orbifold
with global chart, the family (p;) induces a Riemannian orbifold metric p on (Q,U). Let [expo,,]
be the Riemannian orbifold exponential map associated to p. By Lemma[5.2.2] we may assume that
the Lie group Diffo,1 (Q,U) has been constructed with respect to the Riemannian orbifold metric
p. Therefore a chart around the identity element for the open Lie subgroup Diff o, (Q,U), is given
by
E: Xou (Q), 2 H = Diffors (Q,U), , [5] = [expog] o [6]

for a suitable open zero-neighborhood H. The Riemannian exponential map exp: TRY — R? associ-
ated to py is a lift of [expo,,]. Since (RY, G, 7) is a global chart for R?/G, we obtain a representative
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(expoyp, {exp}, [P, V]) of [expoyy,] by Remark [1.2.4) (a). Hence for each [6], a representative of E([6])
is induced by the lift exp ooga (Where oga is the unique canonical lift of [§] in the global chart).
Recall from Example that the mapping H: Xom, (RY/G)  — XF(R?),[6] — opa is an isomor-
phism of topological vector spaces. Shrinking the open zero neighborhood H, we may assume that
H(H) C QN X% (RY) holds. Combining these facts, a trivial computation shows that the following
diagram is commutative:

) .
Xomw (), = H E Diffo., (Q,U),
J{H JHH J{Acl
XG(RY) +—=—— 0 xF(RY) — 2 Diff S (RY)*

We deduce that the group homomorphism A;! is smooth as a map into Diﬁ:"f(Rd)* on a neigh-
borhood of the identity in Diffo,, (Q,U). Hence A! is smooth as a map of the Lie group
Diffo, (Q,U),. into Diff (R%)* by |10, IIL. §1 2. Proposition 4]. Vice versa the same holds for
Ag: DiffCG(]Rd)* — Diffor, (Q,U),. Therefore A, is an isomorphism of Lie groups. However,
Ag: Difff (R%) — Diffo,1, (Q,U), is also an isomorphism of Lie groups. We obtain an isomorphism
of Lie groups

idpifre gay: DIffg (RY)* — Diff¢ (RY), idpigora) = A7? 0 A,

whence the Lie groups Diff¢ (R%) and Diff¢ (R%)* coincide.






A. Hyperplanes and Paths in Euclidean Space

The results in this appendix are part of the folklore. However, for the reader’s convenience we
provide full proofs for these known facts. As usual, a hyperplane H in euclidean space R? is a linear
subspace of codimension 1 and a path is a continuous map from an interval to R¢.

A.1 Lemma Let d € N and X C R? g linear subspace such that dim X < d — 2. Consider an open
and path-connected subset C C R? and z,y € C\ X. Then there ezists a path p: [0,1] — C\ X
connecting x and y. In other words, C'\ X is path-connected.

Proof. Without loss of generality, we may assume X = R x {0} and m > 2. The set C is
path-connected, whence there is a path ¢: [0,1] — C with ¢(0) = z and ¢(1) = y. If the intersection
Im g N X is empty, there is nothing to prove. Otherwise we construct a path as follows:

Consider the projections 7y : R — R4 x {0} = X ans my: R? — {0} x R™, respectively. The
projections are continuous open maps, with mx + w3 = idga. Observe that z € X if and only if
ma(z) = 0 holds. The set {q(¢) |t € [0,1],m2(q(t)) =0} = ImgN X is compact and does not contain
x and y. Therefore we can choose x; € X,1 <i < N and € > 0 with

ImgNX C U Bs(xz) X BE(O) CK:= U Be(xz) X BE(O) - C\ {x,y}
1<i<N 1<i<N

As each closed ball is path-connected, the sets B.(x;) x B:(0) are path-connected. Hence the set K
is a set with finitely many path-components K7, ..., K, (cf. |20, p. 115]). Each path-component is a
union K; = U, <<, Be(wi,;) X B(0) and is thus compact. Furthermore, the boundary 0K satisfies
0K = 0K1UJK> U...UJK,, since the sets K; form a finite partition of closed and disjoint sets.
AsImgnN X C K° holds, we deduce that the boundary 0K; does not contain elements of ImgN X.
We construct the path by induction: The set Ly := ¢~ 1(K7) is a closed subset of [0, 1], which does
not contain 0, 1 by construction. Case 1: If L; = {), set q; := q.

Case 2: If L; # (), the compactness of L; enables us to consider s; := min L; and #; := max L.
For t € {s1,t1}, we must have ¢(t) € OK;. As shown above, this implies ¢(s1),q(s2) ¢ X, i.e.
ma(q(s1)), m2(q(t1)) € B:(0)\{0} holds. Note that B.(0)\{0} is path-connected (by a variation of |20,
V. Theorem 2.2|), since m > 2 is satisfied. Furthermore, mx(K) is path-connected, whence there

is a path 71 : [s1,61] = mx (K1) X (BE(O) \ {0}) C K; C C with y1(s1) = ¢(s1) and 1 (t1) = q(t1).
Define a mapping

q(t)  t€[0,1]\]s1, ta]
’yl(t) te [Sl,tﬂ.

By construction, ¢; is a path with ¢;(0) = z and ¢;(1) = y. Furthermore, Imq; N K1 = ¢1([s1,t1])
implies Im ¢; N K7 N X = (). This also holds in Case 1. In either case, note that the definition of ¢;
yields Im gy N X C Uyeje, K-

Assume that for all 4 with 1 < i < n < 7, we have already constructed a path ¢; connecting z
and y, whose image is contained in C with Img; N X C | K;. Consider the compact set

q1:[0,1] = C, tl—>{

i+1<j<r
L, = q;*(K,) C€]0,1[. If L,, is empty, simply set g, := ¢,_; to obtain a path with the desired
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properties. Otherwise, we have to construct a path ¢, from ¢,_; such that the image does not
intersect (K; U...U K,) N X. Apply the above construction verbatim with L, # § and g,_1
instead of L and ¢. Since ¢,_1 does not intersect K; N X for each 1 < ¢ < n — 1, the construction
yields a mapping ¢, with Img, N X C U, <;<, Ki, whose image is contained in C. Summing
up, after finitely many steps the mapping p := ¢, satisfies: Imp C C, p(0) = z,p(1) = y and
ImpnNnX C U7'+1§i§7' K; = (). Hence p is a path with the desired properties. O

A.2 Lemma Let d,m € N, C be an open connected subset of R* and (Xi)i=1,....m be a family of
vector subspaces of R such that dim X; < d for all 1 <i <m and X; # X; fori # j.

(a) For each pair z,y € C'\ U;~, X;, there is a path p: [0,1] — C such that
1. p(0) ==z, p(1) =y,
2. p([0,1])NX; =0 for all i such that dim X; < d — 2,
3. p([0,1)NX; N X,; =0 for all i,j such that i # j.

(b) Assume there is k € Ng such that dmX; =d—14f1 <i <k and dimX; < d — 1 other-
wise. Then the set R\ U/, X; with the subspace topology has at most 2% (path-)connected
components.

(c) IfC CR? is a conver open subset, then C\|J;", X; possesses at most 2% connected components.

Proof.  (a) Since for ¢ # j we have dim X; N X; < d — 2, it suffices to construct a path p which
satisfies Properties 1. and 2. for an arbitrary finite number of subspaces Y; with dimY; <
d — 2. Since C is path-connected, C' \ Y] is path-connected by Lemma Iteratively,
C\Y1\Y2\---\Y,,=C\(Y1U...UY,,) is path connected by Lemma |A.]]

(b) The subspaces X; are closed in R?, whence Q := R\ |J!", X; is an open set. The components
of Q coincide with the path-components of Q by |20, V. 5.6]. We claim that there are at
most 2¥ path-components. For a hyperplane X, we consider the two half spaces H;F,H i
such that R? is the disjoint union H ;r UX; UH;. The half-spaces are the path-components
of R?\ X;. Each half-space is a convex set. We observe that each intersection of half-spaces
Hf(l) Nn...N Hz(k) with o: {1,2,...,k} = {4, —} is again a convex set. From (a) we deduce
that these sets yield path-connected subsets of R? \ Ui<j<m X; if we remove Uy, <<, X5
Hence R% \ |J!, is realized as a union of no more than 2* path-connected sets, from which
the assertion follows.

(¢) From the proof of (b), we deduce that the components are induced by intersections of &k half-
spaces, which are convex sets. However the same holds for the subset C'N H;l(l) N...N H;(k).
From part (a) we deduce with arguments as in (b) that all non-empty sets of this kind induce
the connected components of C'\ Uzr;l X;. As there are at most 2 non-empty sets of this
kind, the assertion follows.

O



B. Group Actions and Newman‘s Theorem

In this section, we recall several basic facts concerning group actions, orbit spaces and quotient
mappings to orbit spaces. We are interested only in continuous group actions, whence each group
action in this thesis will be required to be continuous. Several basic results will be repeated to fix
some notation. For further information on group actions, we recommend [12,/59).

B.1. Group actions

B.1.1 Definition (Group actions of topological groups) Let G be a topological group and X a
topological space. A G-action on X is a continuous map ©: G x X — X such that:

(a) ©(1,z) =z for all x € X, where 1 is the identity element of G.
(b) ©(g2,0(91,2)) = O(g291,x) for all g1,¢92 € G and = € X.

The pair (X,0) (or (X,G) if the action is clear) is called a G-space and we denote it usually just
by the underlying space X. We shall abbreviate g.z := ©(g, x) if it is clear which action is meant.
For z € X the orbit of = is the set G.x := {g.x | g € G}. Let X/G := {G.z|x € X} be the set of all
orbits and endow it with the quotient topology induced by p: X — X/G,x — G.xz. The space X/G
is called the orbit space of the G-space X.

B.1.2 Definition (Isotropy subgroups and fixed point sets) Let X be a G-space. Define the isotropy
group G, :={g € Glgx=x}of z € X.
For g € G, the set of fized points of g will be denoted by £, = {x € X |g.x = x} and we write

Se={reX|G#{1}}= |J =,
gEG\{1}

For a subset S C X, we define ¢g.5 := {g.z |z € S} and let Gg := {g € G|g.5 = S} be the isotropy
group of S. A subset S C X is called G-invariant if Gg = G holds. Furthermore, a G-stable subset
of X is a connected set S C X such that for g € G either g.5 = S or .5 NS = () is satisfied.

The elegant proof of the following lemma has been communicated to the author by A. Pohl:

B.1.3 Lemma Let X be a manifold, G a finite topological group acting on X via homeomorphisms,
i.e. ©(g,-): X — X is a homeomorphism for each g € G. Then, for each x € X, there exist
arbitrarily small open G-stable neighborhoods of x whose isotropy groups coincide with G,. In
particular, the G-stable open sets form a base for the topology on X.

Proof. Let U be any neighborhood of z and G.x = {z1,x2,...,2,} be the distinct elements in the
G-orbit of z, i.e. x; # x; for ¢ # j. Without loss of generality, z = x; holds. For ¢ = 1,...,n,
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choose an open neighborhood U; of z; with the following property: For i # j, the sets U; and U;
are disjoint and U; C U holds. For i = 1,...,n, define G} := {g € G| g.z; = 2} and set

S = m ﬂ 9.U;.

1<i<n geG!

As G acts by homeomorphisms, the set S’ C U; C U is an open neighborhood of z. Consider h € G.
If h.x = w; holds, this implies h=! € G}. Therefore S’ C h=1.U; yields h.S" C U;. For i # 1 we
deduce from U; NU; = () and S” C U; for h as above h.S’ NS’ = (). On the other hand, for i = 1 we
have h € G, whence hG} = G; for all j and thus

n

hs'=( () () Ui=() () 9Ui=5" (B.1.1)
i=1g€G]

i=1gea! i=

Let S be the connected component of S’ which contains z. As X is locally path connected, S is an
open neighborhood of x by |20, V. Theorem 4.2]. Since G acts by homeomorphisms, by Gy
permutes the connected components of S’ and fixes . Combine and the fact h.S' NS =
for h € G\ G,. We deduce that Gs = G, holds and S is a G-stable open neighborhood of  which
is contained in S’ C U. O

B.1.4 Lemma (|59, Proposition 3.1 and Proposition 3.6]) Let X be a Hausdorff G-space and G a
compact topological group. Consider the quotient map 7: X — X/G,x — G.x onto the orbit space.
Then

) X/G is a Hausdorff space.

) 7 is a continuous, open and closed map.

) 7 is a proper map.

) X is compact if and only if X/G is compact.
)

B.1.5 Remark Let M be a (possibly infinite-dimensional) manifold. The discrete topology is the
unique Hausdorff topology turning a finite subgroup G of Diff" (M) into a topological group. The
natural mapping ©: G x M — M, (g,z) — g(z) is continuous since each element in G is continuous
and G is endowed with the discrete topology. Hence each finite subgroup of Diff" (M) induces a
canonical action of a compact group on M which satisfies the prerequisites of Lemma

B.1.6 Definition Let f: X — Y be a map from the G-space X to the H-space Y.

(a) If there is a group homomorphism A: G — H such that f(g.xz) = A(g).f(z) holds for all
x € X,g €@, fis called equivariant with respect to .

(b) If G and H coincide and f(g.z) = g.f(x) holds for all z € X, g € G, we call f equivariant.
An equivariant homeomorphism is called an equivalence.

(¢) Let f be a homeomorphism and G = H. If there is a group automorphism «: G — G with
flg.x) = a(g).f(z) for all z € X, g € G, then the map f is called a weak equivalence.
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Notice that the inverse of a (weak) equivalence is again a (weak) equivalence (cf. [12, I 2.]).

B.1.7 Definition Let M be a smooth manifold which is also a G-space. We define the set

Diff (M) := {f € Diff(M)| f is a weak equivalence} .

B.1.8 Remark It is easy to check the following facts about Diff%(M):

(a) The set Diff% (M) is a subgroup of Diff (M).
(b) If G C Diff (M) acts via the natural action on M, then G C Diff® (M) follows. In this case, G
is a normal subgroup of DiffG(M ).

B.2. Newman'‘s Theorem

The following theorem of M.H.A. Newman is an important tool to investigate the structure of
orbifolds (for a proof see [19] also cf. |12, IIT 9.]):

B.2.1 Theorem (Newman 1931) Let G be a finite group acting effectively by homeomorphisms on
a connected paracompact finite dimensional manifold M. Then the set M \ X¢ of points with trivial
isotropy group is dense and open in M.

In the situation of Theorem [B.2.1] the elements of X are called singular points and the elements of
M\ X are called non-singular points. If G acts by C*° diffeomorphisms on a paracompact smooth
manifold, then Newman’s Theorem is much easier to prove, see |51, Lemma 2.10].

We compile several interesting consequences of Newman’s Theorem. For further information, we
refer to 51, Section 2.4].

B.2.2 Lemma (cf. [51, p. 36]) Let M be a smooth finite dimensional paracompact manifold, G a
finite subgroup of Diff (M) and x € M. Then there exists arbitrarily small G-stable charts (W, k) with
x € W such that k(x) =0 and K conjugates the isotropy group Gy to a (finite) group of orthogonal
transformations on k(W). Furthermore, Tpg = idy,ar implies glw = idw for each g € Gy; if M is
connected it implies g = id ;.

Proof. Since G is finite, we may choose a G-invariant Riemannian metric on M by |51, Proposition
2.8]. The group G thus acts via Riemannian isometries with respect to this metric. Let exp,; be the
Riemannian exponential map with respect to this metric. By [41, Theorem 1.6.12], we may choose
€ > 0 such that exp,, induces a diffeomorphism from the open ball B.(0,) centered at 0, in T, (M)
to an open neighbourhood W of x, expy, ,: B-(0,) — W C M. As the metric is G-invariant, each
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g € G, induces an orthogonal transformation 7T, g of T, M. Since exp,, commutes with Riemannian
isometries on its domain, we deduce exp M.z © 29| dom exp M =9 OEXDpf o This formula shows that
T.g = id implies g|lw = idw, and also that W is G-invariant. By continuity of exp,,, we can
shrink e to ensure that W is contained in G-stable neighborhood of x (cf. Lemma [B.1.3)). Hence
there is € > 0 such that exp,, ,(B:(0;)) = W is a G-stable subset with Gy = G,. For such a
W, define k := (expyy , |BE(OI))71- The pair (W, k) satisfies the assertion. In particular, W may be
taken arbitrarily small.

For the final assertion, note that g # idy; implies g|w # idw, by Newman’s Theorem. O

B.2.3 Lemma Let M be a connected paracompact smooth manifold and G be a finite subgroup of
Diff (M). Denote by X the set of singular points with respect to the derived action G x TM —
™M, (9, X) — g.X = Tg(X) of G on TM. For each open connected set U C TM, the set of
non-singular points U \ Xrg is (path-)connected.

Proof. Without loss of generality we may assume U # (). Let C be a component of U \ Xrg and
C be its closure in U. We will show that C is open. The connectedness of U then entails C = U.
If there was another component D # C, then C N D = (), because D is open and C N D = (). But
D C U = C yields a contradiction, whence U \ Xr¢ is connected.

To see that C' is open, let X € dC (the boundary with respect to U). Then X € Y7 as C is open
and closed in the open subset U \ Xr¢g of U. By definition of the derived action for g € G we have
mrm(X) = mram(9-X) = g.mrm(X) if g. X = X. This implies Gx € Grpyp(x)- By Lemma
there is a G-stable manifold-chart (W, k) such that nrp(X) € W, Gw = G,,,(x) and £ conjugates
Gw to a finite group of orthogonal transformations on k(W) = B.(0) C R? for d = dim M and
some € > 0. For g € G, (x), let g be the orthogonal transformation conjugate to g, i.e. g is a
linear map with § o kK = k o g. The functoriality of the tangent functor implies T¢Tx = TkTg.
Taking identifications T'g = (§|p_(0) © Pr1,d7)(|B.(0) X § is the restriction of a linear map. Thus 7'
conjugates the action of Gy = G,.,,(x) on TW to a linear action on Tr(TW) = B.(0) x R%. Since
W is G-stable with Gw = Gr,,,(x), the set TW is G-stable with Grw = Gr.,,(x) by definition
of the derived action. Hence TW N Yrqg = TW N ETG”TW<X) holds. Choose an open connected
neighborhood Q of X in TW NU. If Q\ Y1 is a connected set, then (Q\ Xrg)NC =QNC £
follows as X € C and thus Q \ Xr¢ C C. As Q\ Y7¢ is dense in by Newman’s Theorem, we
deduce that Q C C. Thus C will be open as required.

To verify this, observe that Q@ C TW entails Q N Xrg = QN EG#TMOO‘ Consider the open sets
Q:=Tk(Q) and V := Tk(Q\ Zpg) = Q\ Tr(Xra,,,, ) We claim that V is connected. If this is
true, the same holds for Q \ Y7, whence the proof is complete.

Proof of the claim: As Tk conjugates the group action to a linear action, the set QﬂTﬂ(TWﬂETg)
is the intersection of the open (path-)connected set Q with a finite union of linear subspaces of R2%.
By Lemma M’ the set V will be connected if for each g € Grpy(x) the fixed point set of the
associated linear map 7§ is not a hyperplane in R?*?. For each g € Grra(x) \ {idas}, Lemma
implies that g is not the identity map. From |13, I. Proposition 2.18 (1)], we deduce that the
fixed points of § are contained in a hyperplane H C R%. Each linear subspace fixed by T is thus
contained in H x H and dim(H x H) = 2d — 2. Hence T§ does not fix any hyperplane, whence V'
is connected. O



C. Infinite Dimensional Manifolds and Lie Groups

In this section, we briefly recall the notions of infinite dimensional manifolds and infinite dimensional
Lie groups. Manifolds and Lie groups modeled on infinite dimensional spaces may be defined almost
exactly as in the finite dimensional case.

C.1. Manifolds modeled on locally convex spaces

C.1.1 Definition We recall from [32] that a manifold with rough boundary modeled on a locally
convex space E is a Hausdorff topological space M with an atlas of smoothly compatible homeo-
morphisms ¢: Vi — Uy from open subsets V4 of M onto locally convex subsets Uy C E with dense
interior. If each Uy is open, M is an ordinary manifold (without boundary). In a similar fashion
C"-manifolds may be defined for » € Ny. Unless stated otherwise, every manifold will be assumed to
be without boundary. Direct products of locally convex C*-manifolds, tangent spaces and tangent
bundles may be defined as in the finite dimensional setting. We refer to [55] for details.

C.1.2 Notation Let M, N be C"-manifolds (where 1 < r < o0) and f: M — N a mapping of
class C". We denote by T'f: TM — TN the tangent map. Abbreviate by T, f: T, M — Ty N
the restriction of T'f to the tangent space T, M of M at x € M. If N is an open subset of a locally
convex space F, the tangent map T'f: TM — TN = N x F is given by (z,v) — (f(x),df (z,v)) for
reM,velT,Mandamapdf: TM — F. If f: U — V is a C"-map, where U,V are open subsets
of locally convex spaces E and F, it is convenient to think of df(x,-) as a differential. Hence we
canonically identify T, U = FE and T,V = F' to obtain df (z,v) = T, f(v).

We let mrpr: TM — M be the bundle projection. For r = oo we denote by X (M) the space of
smooth vector fields, i.e. smooth mappings X: M — TM with wpp 0 X = idyy.

C.2. Function spaces and their topologies

Our exposition of the C"-topology follows [26], but we allow locally convex subsets. Albeit the
definition of differentiability differs from the one used in [26], on open subsets of locally convex
spaces over the field R are equivalent by [6, Proposition 7.4].

C.2.1 Definition (Compact-open topology) Let X, Y be Hausdorff topological spaces, K C X
compact and U C Y open. We define the set

K, U] ={feC(X,Y)|f(K)CU}.
Then the sets
|_K17U1J N I_KQ,UQJ n...N I_Kn7UnJ

with n € N, K; C X compact and U; C Y open for 1 <i < n, are a base for a topology on C(X,Y)
(cf. |21}, Section 3.4]). It is called the compact-open topology and we denote by C(X,Y)..,. the space
C(X,Y) with this topology.
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C.2.2 Definition Let E, F be locally convex topological vector spaces, U C E a locally convex
subset with dense interior and r € Ny U {oc}. Endow C"(U, F) with the unique locally convex
topology turning

(@D (Npsj<r: CT(UF) = [ CW x B, F), f s (d9f)
No3j<r

into a topological embedding. We call this topology the compact-open C”-topology. Notice that it
is the initial topology with respect to the family (d(j)(~))N3j§r.

C.2.3 Remark

(a) By [23, Lemma 1.14], Definition [C.2.2] coincides on open sets with the definition in [24] Defini-
tion 3.1]. Hence if U is an open subset of finite-dimensional space E and F is a Fréchet space,
then C" (U, F') is a Fréchet space by [24, Remark 3.2].

(b) For each compact subset K C U and open subset V' C F, the set

LK, V]ri={y € C"(U, F) [7(K) €V}

is open in C"(U, F) by |26, Lemma 4.22].

If s,7 € NgU{oo} with r < s, then C*(U, F) C C"(U, F') holds by definition and the topology
on C*(U, F) is finer than the subspace topology induced by C" (U, F). Let Q be an open set
in C*(U, F') such that Q = C*(U, F) N A holds for some open A C C"(U, F'). Then we call €2
a C"-open set in C*(U, F) or a C"-neighborhood of f € C*(U, F), for any f € Q.

C.2.4 Definition Let E be a locally convex space and M a C"-manifold. Then we let C" (M, E)
be the space of all C"-mappings v: M — E. The pointwise operations turn C”"(M, F) into a vector
space. Endow C"(M, E) with the initial topology with respect to the family

00 C"(M,E) — C"(Vii, E), v = |u, o k7"

where k: U, — V;, ranges through an atlas of M. The topology is independent of the choice of atlas
by [26, Lemma 4.9]. If M is an open subset of a locally convex space, |26, Lemma 4.6] proves that
this topology coincides with the compact open C"-topology.

C.2.5 Definition

(a) Let U C R be an open subset d € Ny and K C U compact. For ¢ € C"(U,R%), r € NgU{o0},
the maximum norm |[-||  and k € Ny with k& < r, we use standard multiindex notation to set

1€l = max max [|0°€ ()]l -

(b) Let E be alocally convex space and r € NgU{occo}. Endow C"([0, 1], E') with the locally convex
vector topology induced by the family of seminorms |||/« , defined via

ak
HPYHC’k,p = max max p (ny(t)>

j=0,...,k te[0,1]

where p ranges through the continuous seminorms on E and k € Ny with £ < 7.
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C.2.6 Remark

(a) Let U C R be some open subset, where d € No. As U is o-compact, there is a sequence
of compact sets (K, )nen such that U = |, oy K. By a variant of [24, Proposition 4.4], the
locally convex topology induced by the family of seminorms {|||| Kok ‘ neN0<k< 7“} on
C"(U,R?) coincides with the compact-open C"-topology.

(b) A variant of |24, Proposition 4.4] shows that the topology introduced in Definition (b)
is initial with respect to the mappings d¥): C"([0,1], E) — C([0,1] X RI, E)co,v — dY)7,
0 <k <r,ie. it coincides with the compact-open C"-topology.

In particular, then C"([0,1],U) := {y € C"([0,1], E) | v([0,1]) CU} = [[0,1],U], is an open
subset for each open U C E. If E is metrizable (respectively complete), C"([0,1], E) is
metrizable by |39, 2.8 Theorem 1] (respectively complete by |33 Lemma 1.4]).

C.2.7 Notation Let U C E and V C F be locally convex subsets with dense interior of locally
convex topological vector spaces E and F', respectively. Furthermore, let G be a topological vector
space and f: U — C(V,G) be a map. We associate to f the map

AU xV — G defined via f"(u,v) = f(u)(v).

C.3. Spaces of sections and patched spaces

In this section we endow the space of smooth vector fields X (M) on a smooth manifold M with a
topology. Furthermore, we use the concept of a “patched locally convex space” (cf. [25,26]) to obtain
a criterion for the differentiability of maps between spaces of sections. We recall the following facts
from |26, Appendix F]:

C.3.1 Definition Let M be a smooth manifold modeled on the locally convex space E and
wram s TM — M be the bundle projection. Consider a maximal atlas A of M and a chart (Viy, ) € A
with 9: Vi — Uy. Let pry: Vi x £ — E be the canonical projection.

For a vector field X € X (M), we define a local representative X, := pry o T9 o X|y,: Vy — E. In
particular Ty o X (y) = (¥(y), Xy (y)) holds for all y € V.

We endow X (M) with the unique locally convex topology turning the linear map

r:x(M) = J[ C®°(V B), X = (Xy) v, p)ea
(Vw,l[l)eA
into a topological embedding. Then the topology on X (M) is the initial topology with respect to
the family of linear maps 6y : X (M) = C=°(Vy, E), X — Xy.

C.3.2 Lemma (|26, Lemma F.9|) The topology on X (M) is initial with respect to the family
(06)(v,,¢)eB, where B C A is some atlas for M.
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Proof. Combine |26, Lemma F.9] with |26, Proposition 4.19], which guarantees that the topology
defined in [26] coincides with our definition of the compact-open C”-topology over the field R. O

C.3.3 Notation Let M be a smooth manifold and U an open subset of M. We define the restriction
map res}!: X (M) — X(U),X — X|}Y. For each open subset U this map is continuous linear
by |26, Lemma F.15].1°

C.3.4 Definition Let d € N. We define the space of compactly supported vector fields %.(R%).1
The assignment 0: X.(R?) — C>® (R4, R%), X ~ pr, o X is a bijective map, where pr, denotes the
canonical projection TR? = R? x R — R?, (z,y) ~ y. We define a topology on C°(R4,RY) (and
thus also on X.(R%)) turning 6 into an isomorphism of topological vector spaces. Choose a locally
finite cover U = (U;)ser of R? by relatively compact open subsets U; C R such that the cover is
countable. Then consider the map

Ry: X(R?) = P C= (Ui, R?), Ry(0) := (pra 0 0lu, )ict
i€l

We endow X.(R?) with the unique locally convex topology induced by the linear map Ry,. Here the
right hand side has been endowed with the locally convex direct sum topology. By [26, Lemma 8.10],
the topology constructed does not depend on the choice of covering U (recall from |26, Proposition
4.19] that the topology defined in |26] coincides with our definition of the compact-open C"-topology
over the field R). Furthermore X.(R9) is a Hausdorff space and Ry is a topological embedding with
closed image by [26, Proposition 8.13].

C.3.5 Definition A patched locally convex space over R is a pair (E, (p;)icr), where E is a topo-
logical R-vector space and (p;)cs is a family of continuous linear maps p;: F — E; to topological
vector spaces F; such that

(a) for each x € E, the set {i € I'|p;(z) # 0} is finite,
(b) the linear map
p: E= @ Ei, v (:(2)icr = Y pil2)
i€l i€l
from E to the direct sum @;c;F; (equipped with the direct sum topology cf. |11} I1.29.5
Definition 2]) is a topological embedding,
(c) the image p(E) is sequentially closed in P, ; E.

The mappings p;: E — FE; are called patches, and the family (p;);cs is called a patchwork. If I is a
countable set, we also say that E is countably patched.

10The article [26] uses another concept of differentiability in locally convex vector spaces which is adapted to non-
discrete topological fields. However as |6, Proposition 7.4] asserts, this concept of differentiability coincides with
the one from Definition[1.1.1Jon open sets of locally convex vector spaces over the field R. As we are only interested
in this case, we may use the results of |26] without restriction.

HSince this space is only needed in Example we shall only consider vector fields on R? (cf. |26, Appendix F|
for a more general definition).



C.3 Spaces of sections and patched spaces 151

C.3.6 Lemma Let (E,(p;)icr) be a patched topological R-vector space, with p;: E — E; and p as
in Definition[C.3.5, For each r € No U {oc}, the map

pe: C7([0,1], E) = C"([0,1],ED Ei),g = pog
iel

is a linear topological embedding whose image is sequentially closed. If |I| < oo or E is countably
patched and r < oo, then the family C"([0,1],p;): C"([0,1], E) — C"([0,1], E;),y — pio~, i € I,
turns C"([0,1], E) into a patched locally convex space over R.

Proof. The maps C"([0,1],p;) are continuous linear for ¢ € I and p, is a topological embedding
by [33, Lemma 1.2]. Without loss of generality we identify £ with a subspace of I := P, ; E;. Let
(fn)nen C Imp, be a sequence which converges to some f € C"([0,1], F). Since E is sequentially
closed, due to the continuity of the point evaluation maps (cf. |2, Proposition 3.20]) for ¢t € [0, 1]
the sequence (f,(t))nen converges in E. Hence the image of f is contained in E. Recall that
directional derivatives may be computed as limits of sequences. As each element f(t) is contained in
F and E is sequentially closed, the mappings d®) f, for Ny 3 k < r, take their images in E. Hence
f€C([0,1], E) holds and Im p, is sequentially closed as a subspace of C"([0, 1], F).

Case 1: |I| < co. Since [ is finite, the coproduct F' := P, E; in the category of locally convex
topological vector spaces coincides with the product of the E;. Hence the canonical projection
m;: F'— F; and the canonical inclusion ¢;: E; — F are continuous linear for ¢ € I. From |33 Lemma

1.2] we deduce that the mappings

((mi)w)ier: C([0,1, P E:) = @ C7([0,1], Ei), f + (mi© fict,
i€l el

P o, 1, ) — (0,1, P B, (£:) = D> ()« (f:)

el el el

are continuous linear and mutually inverse. Thus C"([0,1],P,; Es) and @,.; C"([0, 1], E;) are
isomorphic as locally convex spaces, whence the maps (p;)«,¢ € I form a patchwork for C"([0, 1], E).

Case 2: |I| = oo and r < oo. The canonical inclusions yield a family of continuous linear
maps ((¢i)«)icr by |33l Lemma 1.2]. As in the first case we obtain a linear and continuous map
A D, C7([0,1), ;) — CT([0,1], F'), (i )ier = > e (ti)«(vi). For the rest of the proof, we sup-
press the inclusions ¢; in the notation. To prove our claim, we have to construct an inverse mapping
for A. To do so, pick v € C"([|0,1], F'). The compact set v([0,1]) C F' is contained in a finite partial
sum by [11, 3, 1I1.4 §1, Proposition 5]. As the inclusion of a finite partial sum is a topological
embedding with closed image, from |33 Lemma 1.2] and the isomorphism established for the finite
case, we deduce that there are unique v; € C"([0,1], E;), for ¢ € I with v = A((7:)icr). Hence we
obtain a well-defined inverse of A via ©: C"([0,1], F') — @,c; C"([0,1], E}), v = (Vi)ier-

We claim that A is an isomorphism of locally convex spaces. To prove the claim, let T'; be the set
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of all continuous seminorms on F;. Consider ¢ = (¢;);cr € T' :=[] ier L and obtain a continuous
seminorm 74: F' — [0,00[,74(>_;c; xs) = sup{qi(x;)|i € I'} with z; € E;. Since the space E is
countably patched, the topology on F coincides with the box topology by [39, Proposition 4.1.4].
Hence the family (r,)4er determines the locally convex topology on F. By definition of the topology
on C"([0,1], F), the continuous seminorms s,: C"([0, 1], F') — [0, oo],
. o* ok
sq(v) == sup sup 7(zxv(z)) = sup sup supq(z7i(T)),

0<k<r z€[0,1] 0<k<rx€l0,1] i€l
determine the locally convex topology on C” ([0, 1], F)) for ¢ ranging through I'. Likewise, the locally
convex topology on C"([0,1], E;) is determined by the continuous seminorms t,,: C"([0,1], E;) —
[0, 00[, g, (i) = SUPg<i<r SUPe[0,1] qi(%% (z)), where ¢; ranges through I';. The locally convex
sum topology, i.e. the box topology on ,.; C"([0, 1], E;), is induced by the family of seminorms
Uq - @ie[ CT([O’ 1]7 El) - [07 00[7

k
ug((Vi)ier = suptq, (v;) =sup sup sup qi(Zryi(x))
il i€l 0<k<r z€[0,1]
for ¢ = (¢;)iesr € T. Observe that for each ¢ € T, we have s, 0 A = u,. We deduce that A~!
is continuous (cf. |11, II, §2 No. 4 Proposition 4]), whence A is an isomorphism of locally convex
spaces. O

If r = oo and |I| = oo, the map A introduced in the proof of Lemma still is a continuous
linear bijection, but its inverse fails to be continuous in general.

C.3.7 Definition Let I be a set and (F, (p;)icr) and (F, (gi)ier) patched locally convex R-vector
spaces with canonical embeddings p: E — @,.; £; and q: F' — @, F; as in Definition

(a) A map f: U — F defined on an open subset U C F is called a patched mapping if there exists
a family (f;):er of mappings f;: U; — F; on certain open neighborhoods U; of p;(U) in E;,
which is compatible with f in the following sense: We have 0 € U; and f;(0) = 0 for all but
finitely many i, and ¢;(f(z)) = fi(pi(z)) for all i € I, i.e. go f = (P, [fi) Op@Ui.

(b) For k € Ng U {oc}, we say that a patched mapping f: U — F is of class C* on the patches if
all of the mappings f; in (a) can be chosen of class C*.

C.3.8 Proposition Let I be a set and (E,(pi)ic1), (F,(g:)icr) be patched topological R-vector
spaces. Assume that f: U — F is a patched mapping from an open subset U C E to F. If f is of
class C**1 on the patches, then f is of class C*. If E and F are countably patched and f is C* on
the patches, then f is of class C*.

Proof. Fori € I,let f;: U; — F; be the mappings compatible with f. Consider the box neighborhood
PBicrU; == (Hiel Ui) N (®iel EZ') which is open in the locally convex sum (cf. [39, 4.3]). The
compatibility condition yields q o f = (P, fi) © p@w’. As shown in |25, Proposition 7.1], the
map P, fi is a C*-map if each f; is of class CF*! (respectively if each f; is a C*-map and I is
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countable). By definition, this is the case if and only if f is C¥*1 (respectively C* in the countable
case) on the patches. The map (,c; fi) Op\%U" is of class C* as a composition of a C*-map and a
smooth map. Thus go f is a C*-map. Since the subspace Im g is sequentially closed, the corestriction
(go f)|"™ 2 is a C* map. As q|'™4 is an isomorphism of topological vector spaces, f is a C¥-map. [

C.4. Lie groups

C.4.1 Definition A (locally convex) Lie group is a group G equipped with a smooth manifold struc-
ture(modeled on a locally convex space) turning the group operations into smooth maps. Denote
its neutral element by 1 and recall that L(G) := T4 G is its Lie algebra (cf. [23|/55] for details).

C.4.2 Definition Let G be a Lie group. We denote by p,: G — G, h — hg the right translation
by g € G. This yields a natural right action of G on the tangent Lie group TG (cf. |10} IIL. §2]):

v-g:= (Tppy)(v) € TpyG for xz € G,v € T,G.

The following construction principle for Lie groups will be our main tool to construct Lie group
structures (cf. |10} IIL. §1.9, Proposition 18]).

C.4.3 Proposition Let G be a group and U,V subsets of G such that1 € V =V ~1 and V-V C U.
Suppose that U is equipped with a smooth manifold structure modeled on a locally convex space such
that V is open in U and which turns t: V =V CU and p: V XV — U - the mappings induced by
inversion and the group multiplication respectively - into smooth maps. Then the following holds:

(a) There is a unique smooth manifold structure on the subgroup Go := (V) of G generated by V
such that Gy becomes a Lie group, V is open in Gq, and such that U and Gq induce the same
smooth manifold structure on the open subset V.

(b) Assume that for each g in a generating set of G, there is an open identity neighborhood W C U
such that gWg~' C U and cg: W = U h ghg™! is smooth. Then there is a unique smooth
manifold structure on G turning G into a Lie group such that V is open in G and both G and
U induce the same smooth manifold structure on the open subset V.

C.5. Regular Lie groups

C.5.1 Definition Let G be a Lie group with Lie algebra L(G). Consider a C*-curve p: [0,1] — G
with £ > 1 and recall that

0"p € C*7H([0,1], L(G)), (8"p)(1) := p'(t) - p(t) "

is called the right logarithmic derivative of p. Furthermore we call p a right product integral for 6"p.
If ¢: [0,1] — G is another C*-curve such that 6"p = 6"q (i.e. both p and ¢ are right product integrals
for 6"q), then ¢ = p - go holds for some constant gy € G (cf. [49, Lemma 7.4]).
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C.5.2 Definition If v € C*([0,1], L(G)) with k € Ng U {oo} admits a right product integral p, we
define P(7) :=p-p(0)~!. Thus P(v) is a right product integral for vy such that P(v)(0) = 1¢ is the
identity element of G. The product integral is uniquely determined by this property.

C.5.3 Definition Let k € Ng U {oo}. A Lie group G with Lie algebra L(G) is called (strongly)
C*-regular, if for each ¢ € C*([0,1], L(G)), the initial value problem

(0)=1g,  d"(7)=¢ (C.5.1)
has a solution P(¢), which is then contained in C**1([0, 1], G), and the corresponding evolution map
evolg: C*([0,1], L(G)) — G, & — P(£)(1)

is smooth. If G is C*-regular, we write
Evolg: C*([0,1], L(G)) — C**1([0,1], G), & — P(€)

for the map on the level of Lie group-valued curves. For more information on regularity see [31].
The group G is called regular (in the sense of Milnor) if it is C*°-regular. For k < r the C"-regularity
follows from C*-regularity.

Notice that we have defined regularity properties of Lie groups using the right logarithmic deriva-
tive. Alternatively one may define left logarithmic derivative, left product integrals and regularity
properties using these notions. However, it is well known that this results in the same concepts of
regularity as defined in See |17}, Proposition 1.3.6] for a proof.

The following lemma will be our main tool to prove the regularity of the orbifold diffeomorphism
group. Its proof carries over almost verbatim from |17, Proposition 1.3.10]:

C.5.4 Lemma Let G be a smooth Lie group with Lie Algebra L(G). Assume that there is a zero-
neighborhood U C C*([0,1], L(@)) for k € No U {oc} such that every & € U has a right product
integral. Furthermore assume that Ey: U — G, &+ P(€)(1) is smooth. Then G is C*-regular.



D. Riemannian geometry: Supplementary Results

In this thesis we assume some basic familiarity with Riemannian metrics and geodesics. Our
approach also requires standard results from Riemannian geometry as outlined in [18,/41}/43]. The
results obtained in this section are a variation of ideas first developed in [28]. Our goal is to fix the
necessary notation and to provide estimates needed in the proof of the main theorems.

D.1 Notation The pair (M, ppr) will always denote a finite dimensional smooth Riemannian man-
ifold M, with Riemannian metric ppr. Notice that for each x € M the Riemannian metric yields a
positive definite inner product ppr,: TouM x Ty M — R. We usually abbreviate

pr(X,Y) = pro(X,Y) VX,Y € T, M.

We define the e-balls with respect to the Riemannian metric in T, M around the origin 0, as
B, (0z,¢) = {X € TIM‘ Vem(X, X) < 5}. Recall that on every Riemannian manifold there

exrists a Riemannian exponential map
expy i TM D Dy — M

whose domain Dy is an open neighborhood of the zero-section. Each Riemannian exponential map
on a smooth Riemannian manifold is smooth.

Recall the following standard result of Riemannian geometry:

D.2 Lemma Let (M,p) be a Riemannian manifold with exponential map expy;: Dy — M and
K C M be a compact subset. There is € > 0 and an open set V.C M containing K such that the
following holds

(a) for each x € V', the map exp,, |E;ii"0/’m(7]:)ﬁ(ow’5)) is a diffeomorphism with open image in M,

(b) Uyey Bo(0z,€) € Dy is an open neighborhood of the zero section on K.

Proof. Apply [41, Theorem 1.8.15] to each point @ € K. Since K is compact, this yields a finite
family z1,xo,...,z, € K and constants €1, ...,&, such that:

e for each 1 <k <n and y € expy;(B,(0s,,¢x)), the mapping exp,; |, (0, .c,) i an embedding
with open image,
o K CV = e, ePr(By(0z,,x)) holds.

Set € := min{ey,...,e,}. The pair (g, V) satisfies the assertion of the lemma since | J, oy B,(0s,€)
is an open neighborhood of the zero section by the proof of |41, Theorem 1.8.15].
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For the rest of this section, we endow R? (for d € N) with the maximum norm |-|| . We denote
by B,(z) the metric ball around = € R? with respect to ||-||,, and radius r > 0. As a first step we
discuss Riemannian exponential maps on metric balls in euclidean space. To this end, fix the metric
ball B5(0) C R% d € N and endow it with an arbitrary Riemannian metric.

D.3 Lemma Consider B5(0) as a Riemannian manifold with arbitrary Riemannian metric. Let
exp: D — Bs(0) be the associated Riemannian exponential map. There existe >0 and 1 >0 >0
such that

(a) Ba(0) x B-(0) € D and ¢, = exp(x, )|E§(IJ(OI)’ VBO) s o diffeomorphism for each x € B4(0).

(b) Bs(z) C exp(x, B-(0)) for each x € B4(0) and b: Ws — B.(0),b(x,y) = ¢; ' (y) is a smooth
map on the subset Ws 1= U$€B4(0) {z} x Bs(z) of B5(0) x R™.

(c) For each t > 0, there exists oy €]0,¢[ such that ¢, (By,(0)) C By(x) for each x € B4(0).

Ift < g holds in (c), we obtain a smooth map

[+ B3(0) x Bo,(0) X By, (0) = B:(0), f(2,y, 2) := b, $g, (4 (2))-

Proof. (a) The set B4(0) x {0} is a compact subset of D. Lemmayields an open neighborhood
B4(0) x {0} € W C D, such that exp(z,-) restricts to is a diffeomorphism on W NT, M for
each x € mpp, ) (W). An application of Wallace Lemma |21} 3.2.10] yields € > 0 such that
B4(0) x B-(0) C W holds.

(b) For fixed z € B4(0), we have dg exp(z,0;-) = idga (cf. |41, Proof of Theorem 1.6.12]). Apply
the parameter dependent Inverse Function Theorem |30, Theorem 5.13] to the exponential
map on By(0) x B.(0). By compactness of B4(0), this yields some ¢ > 0 which satisfies the
assertion of (b). Note that Wy is relatively open in B4(0) x R? and thus a locally convex subset
of R x R? with dense interior.

(¢) By uniform continuity of exp on B4(0) x B.(0), we may choose o; with the desired properties.
If ¢ < £ holds, we obtain ¢4, (,)(2) € Bs(z) for each (z,y,z) € B3(0) x By, (0) x By, (0). The
assertion now follows from (b).

O

The mappings defined in the last lemma will be used to obtain estimates for the growth of metric
balls if certain maps are applied to these balls. We are interested in the composition of suitable vector
fields on Bs(0) with the Riemannian exponential map. Recall that canonical lifts of orbisections
are vector fields and lifts of the Riemannian orbifold exponential map are typically Riemannian
exponential maps of the charts. Hence the following estimates describe the local behavior of a
composition of such lifts. Moreover, the computations will enable us to control the composition of
orbisections and the Riemannian orbifold exponential map.

In the proof of the next Lemma we use the space £(R?) of linear and continuous endomorphisms
of R For the rest of this section we endow the space £(R?) with the operator norm [[lop with
respect to |||
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D.4 Lemma Consider B5(0) as Riemannian manifold with arbitrary Riemannian metric and ex-
ponential map exp. Let €,6, and D be as in Lemma and p > 0. There erists an open C'-
neighborhood N of the zero map in C™(Bs(0),R?) such that each & € N satisfies

(a) (idp,(0),€)(B3(0)) € Bs(0) x B-(0) € D and the estimate |lexp(z,&(z)) — 2|, < min{%,$
holds for each x € B3(0),

(b) the map F¢ := expo(idp,(0y.&|Bs(0)) 5 an étale embedding,

(¢) fory € Bs(0), the following estimates are available:

( ¢(y)) € Fe(Bs(y)) € Bs(Fe(y)), s €]0,3 — [[yll] (D.4.1)
_1(0) C Fg(B(0)) C Buost1 (0), 5 €]0,3] (D.4.2)
Bsr (0)g ¢ (B,(0)) € Bsrsa (0), re 0,2+ 3] (D.4.3)

(d) there is a map & € C*°(Im F¢g,R?) such that (F¢)™! = expo(idim £, £*) is satisfied,
(e) ||§*||?(0)’1 < p holds for each £ € N and if £ =0, then £* =0,
(f) the map

I: N — C™(B2(0),RY), & — &£*|p,0)

is smooth.

Proof. We need preparatory estimates to control the derivatives of all relevant maps.
Since €, were chosen as in Lemma we may consider the smooth map

a: B4(0) x Bs(0) — B.(0),a(x,y) :=b(z,z +y) = ¢, (x +y).

Since exp(x,0) = x holds, we derive a(z,0) = 0 for each « € B4(0). Thus dja(x,0;-) = 0 holds for
all z € B4(0). The set B3(0)x {0} C a~!(B,(0)) is compact, whence the Wallace Lemma |21} 3.2.10]
allows us to choose 0 < ¢t < min {%, %} with

a(B3(0) x B;(0)) C B,(0) and (D.4.4)
ldia(z, y; ), < g for(z, y) € B3(0) x By(0). (D.4.5)

Set m := sup {||d2a(907 Y Mop ’ x € B3(0),y € Bt(O)} < oo. It is well known that the invertible ma-

trices form an open subset £(R?)* of £(R?) and inversion is continuous on this set (cf. [30, Propo-
sition 1.33]). Hence there is 0 < v < 1 such that for A € £L(R?) with [|4 — idgall,, < 7 and thus
d —_ .
A € LR?Y)X, we have ||[A~! — ldeHOp < 51
By Lemma we may choose o; > 0 with respect to ¢ and J such that € > o, and ¢,(B,,(0)) C
Bi(z) C Bmin{l é}(m) for each € B4(0). We obtain an open neighborhood of the zero-map
872

| B3(0), By, (0)| € C(Bs5(0),R%).,, and by construction each ¢ € | B3(0), By, (0)] satisfies the asser-
tions of (a). We shrink | B3(0), B,,(0)] to construct N:

For ¢ € [B3(0), B,,(0)] N C>(B5(0), R?), we define the smooth maps Fe := exp o(id g, (0), €| 5,(0))
and g¢ := F¢ —idp, (). Our goal is to apply a quantitative version of the Inverse Function Theorem
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for Lipschitz continuous maps (cf. [30, Theorem 5.3]). From |23, Lemma 1.9], we deduce that the
assignment B3(0) — £ (R?),z + dge(z, ) is well defined and continuous. Since the domain of g is

convex, an estimate for ||dge(z, )|, will yield a Lipschitz constant for ge:

dge(z;-) = d(Fe — idp,(0))(7; ) = dFe(z;-) — idpe
= dyexp(z,£(2);+) — idga + d2 exp(2,§(2); d§(2;+)), 2 € B3(0).

T (2) Tr1(2)

The map F: B4(0) x B.(0) — L(RY), (z,w) + dy exp(z,w;-) — idga is continuous by |30, Lemma
3.13] with F(x,0) = 0 for € B3(0). Using the Wallace Lemma as above, we find s €]0,¢] such

that F(B5(0) x B,(0)) € By (0). Then Wy i= [B5(0), B.(0))] € C(B5(0), R is an open

neighborhood of the zero-map. For each ¢ € | B3(0), By, (0)] N Wy N C>=(Bs(0), R?) and = € B3(0),
we derive ||T7(z)]|,, < 3 < 3.

Since B3(0) x B:(0) is compact, there is an upper bound ||d2 exp(z, y;-)||,, < C < oo independent

of (x,y) € Bs(0) x B.(0). For each £ € |B3(0), B,,(0)] N W7 and € B3(0) we obtain the estimate
The topology on C'*(Bs(0),R?) is initial with respect to the family of mappings (d*))zen, by

Definition Thus we obtain an open C*-neighborhood of the zero-map in C*°(B5(0), R¢) via

Ws = {& € C=(B5(0),RY) | dV¢ € [B5(0) x Bi(0), B, (0)] }

Define the C'-neighborhood N as N := | B3(0), By, (0) |NW;NWs. For each £ € A, the construction

shows Lip(ge) = sup.; <3 [dge(z; )], <7 < 5

Since Lip(ge) < 1= ﬁ, the Lipschitz Inverse Function Theorem |30, Theorem 5.3| yields: For
idga|,,

¢ € N, the map F¢ is a homeomorphism onto its image and (D.4.1)) is satisfied. Specializing (D.4.1])
to y = 0 together with (a) yields (D.4.2). Apply Fgl to (D.4.2) to obtain (D.4.3]). We claim that F
is an étale embedding. If this is true, (b) holds. To prove the claim, note that for each z € B3(0),

one has 1 > [|dge(z; Weop = ldFe(2;-) —idga ()|, Hence dFe(z;-) is in £ (R?) " for each z € Bs(0).
The Inverse Function Theorem (see [45} I,4 Theorem 5.2|) implies that F is a local diffeomorphism
and since it is already a homeomorphism onto its image, F¢ is an étale embedding.

We now prove the assertions (d)-(f). To this end, observe that by (c), the image of F satisfies
BH%(O) C Im F¢ C B4(0). Choose z € Im F¢ and set y := F{l(m) € B3(0). By construction of N,
we have £(y) € B,,(0), whence

z = Fe(y) = dy(£(y)) € Bily) € B3 (v) (D.4.6)

and thus y € Bi(z) holds. We may thus define £*(z) := b(w,F{l(aﬁ)) and obtain a smooth

map &*: ImF; — R? with Im&* C B.(0). From the above estimates, we deduce that he« =
exp o(idm r,, £*) is defined. A computation with 2z € B3(0) then shows

he- 0 Fe(2) = exp(Fe(2), € (Fg(2))) = br, () (€ Fe(2)) = bre(2) (97, Fe | (Fe(2))) = 2.
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Hence (d) holds. Notice that by construction &*(z) = a(x, (F¢)~(z) — x) for z € ImFe. In
particular, if £ = 0, then F¢ = idp, (), whence £*(z) = a(x, F{l(x) —z) = a(z,0) = 0. To obtain
the estimate for (e), we computes the derivative:

de* (@;) = dralz, (Fe) ™ (2) — :) + deale, (Fe) (@) — a3 d(Fy ) (as) — idga().  (DAT)

By construction, we have d(Fgl)(m;-) = (dFe(y;-))~" with y = Fgl(gc). By definition of N,
[dFe(y, ) —idgall,, <~ and we derive |(dFe(y; )~ — ideHOp < %.

Let « € By(0). Since Fé_l(x) — x € B,(0) by (D.4.6)), the operator norm of the second summand
n is smaller than m - m < £. Likewise, a combination of (D.4.6) and (D.4.5) yields

that the operator norm of the first summand is less than £. Summing up, ||d{*(x;-) < p holds
for each « € B2(0). As the operator norms on the compact set By (0) were constructed with respect
to [|-[l o, we derive sup|o = [[09€" 1 5;7,0 < sUP,cB ) 1467 (23 )l < p- Moreover, by (D.4.6) and
(D.4.4)) the estimate ||£*(z)||, = ||a(:1c,Fg1(x) — 2)|lo < p follows. In conclusion, 1€ I35y <P
and thus (e) holds.

Recall that £*(z) = a(x, (F{1|32+%(0) - id32+§(0))($)) for z € By, 1(0) € Im F¢ (cf. (D.4.3)). By
construction of A/, we obtain F£_1|Bz+%(0) — idB2+%(0) € [B2(0), B5(0) | € C’OO(B%_é(O),]Rd). Let

ax be the map a.: | Ba(0), B5(0) |00 — C®(B2(0), R?) defined via a.(n)(x) := a(z,n(x)). This map
is smooth by |26, Proposition 4.23 (a)] and since C'*° (Bz+é(0),Rd) is a topological vector space,
a: COO(B2+§(O),]Rd) — COO(BQ+é(O),Rd),f — f —idp, , () is smooth. We claim that

8

llop

h: N — COO(BH%(O)aRd)’ﬁ — F5_1|B2+%(0)

is smooth. If this is true, the assertion of (f) follows, since I = a. o & o h. Remark (a)
implies that the space C°°(B5(0),R?) is metrizable. Hence by |26, Proposition E.3|, & is a smooth
map if and only if the map h o ¢ is smooth for each smooth curve c: R — A. By the Exponential
Law (see, e.g. |26, Proposition 12.2]), the map hoc: R — C°°(B2+%(O),Rd) will be smooth if
(hoce): R x B2+§(0) — R4 (1,2) = h(c(7))(z) is smooth. To verify this, we adapt an argument
from [44] p. 455]: Consider the map

H:Rx B2+§(O) X B3(0) - Rda (T,J?,Z/) — exp(y,cA(T, y)) — T = Fc('r)(y) -

which makes sense by construction of /. Furthermore, H is smooth, as ¢": R x B5(0) — R? is
smooth by [2, Theorem 3.28]. Since Fe(r) o h(c(7))(z) = = holds for each 7 € R and x € By, 1(0),
we obtain the identity H(7,z,(ho¢)"(r,2)) = 0. A computation yields the following estimate for
the derivative of H:

lds H (7, %,y;-) — idgal|o, = [|d1 exp(y, " (7, 9); ) + da exp(y, ¢ (7,y); dac™ (7,93 ) — idpal|,,
< |ldi exp(y, " (7, y); -) — idgall,, + [ld2 exp(y, " (1, y); dac” (7,55 ) [l
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Here we used the estimates for 77 and Tj; obtained above, which apply because ¢(7) € N holds
for each 7 € R. We deduce that d3H (7,z,y;-) is invertible for each (7,z,y) € R X By1(0) x B3(0).
Furthermore, for fixed (7,2) € R x By, 1(0), the map H(7,z,-) = Fy(r)(-) — « is injective on Bs(0).
Using the injectivity, we deduce with the Implicit Function Theorem [30, Theorem 5.2| that (hoc¢)”?
is smooth. In conclusion, (f) holds. O

D.5 Lemma ([45, I1.3 Theorem 3.3]|) Let M be a finite dimensional paracompact manifold of
dimension d. Given an open cover O of M, there exists a locally finite manifold atlas V(O) :=
{(Vs ks k) }pep with the following properties:

(a) the cover V(O) is subordinate to O and each chartdomain Vs i is precompact,
(b) for each k € I, one has ki (Vs i) = B5(0) C R4,
(c) for each T € [1,5], the open sets Vy i = k' (B-(0)) cover M for k € I.

If M is o-compact, then every atlas with properties (a) - (c) is countable.

Proof. The manifold M is locally compact and paracompact. Apply |21, Lemma 5.1.6] together
with local compactness of M to obtain a refinement O of the covering O, such that the closure of
each of the open sets in O is compact and contained in some open set in O. By Proposition m
each component of M is second countable and thus we may apply [45, 11.3 Theorem 3.3] to obtain
a (countable) locally finite manifold atlas subordinate to O’ for each component. Thus the closure
of any chart domain in this atlas is compact as a closed subset of a compact set. Taking the union
of the atlases for the components, we obtain an atlas V(O) for M with the desired properties. If M
is o-compact, say M = UneN K,, with compact sets K,,, then each K, meets V5 j for only finitely
many k. Hence I = J,cy{k € I'| Vs NK, # 0} is countable. O

We shall combine our considerations to construct special neighborhoods of the zero-section in
X (M) for a paracompact Riemannian manifold (M, pas). Consider some atlas {(Vs i, k) |k € I}
for M as in Lemma For each chart (Vs x, ki), we define the pullback Riemannian metric pj, on
Bs(0) with respect to H;l. Then /f,zl becomes a Riemannian embedding. In particular,

Tk}, (Bpy (0 (2): 7)) = Bp(0z,7) 7>0 (D.5.1)

holds for x € V5 ;. Moreover, the Riemannian exponential map exp; associated to the Riemannian
pullback metric pj, satisfies T, ' (dom exp,,) C dom exp,; and

expys Ty domexp, = Ky - €XPy - (D.5.2)

For the remainder of this section, we endow the image of a manifold chart with the pullback Rie-
mannian metric just described. Whenever the constructions require a Riemannian metric on a
chartdomain, we use the induced metric without further mention. In the next lemma, we use
notation as in Definition [C3.11

D.6 Lemma Let (M, pyr) be a d-dimensional paracompact Riemannian manifold with Riemannian
exponential map exp,; and some open cover O of M. Choose via Lemma an atlas V(O) =
{(Vs.k, kk) | k € I} with respect to O. There are v, > 0 for k € I such that
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(a) for eachy € M, the map expy; is injective on Ny :=U,.c; Try ' ({rn(y)} x By, (0)) € T, M,
where the index set is defined as I, := {k € I ’ yEVart
(b) Tkn(Ny) C domexp,,, exp,, |1«,(n,) 5 an étale embedding and exp, Tkn|N, = knexpy |,

for each n € I,.

If J C I is finite, we may choose v > 0 such that (a), (b) hold for each k € I with respect to v = v.
Moreover, in this case there exists open C'-zero-neighborhoods Ny, C COO(Vg),k,Rd) for k € J such
that for each X € 0,1 (Ny) C X (Vs1)

(c) the map exp,, oX|m is defined, with Imexp,, Ole CVsk

(d) the following estimates are available: exp,, OX(@) C Vor, Vo € exppoX(Var) € Vag
and B4(0) x B, (0) C dom expy,.

(e) the map F¥ :=expy; oX|y,, is an étale embedding,

(f) for each x € V31, we have X,, (z) € B,(0).

Proof. Foreach k € I, Lemmaallows us to choose v}, > 0 such that exp,,(z, -) restricts to an étale

embedding of B, (z) for each z € B4(0). Since Vi1, is compact and the cover V is locally finite, there
is a finite subset F}, C I such that Vs ; Om # () if and only if ¢ € F). By compactness of mﬁ@
for j € Fj, there is some vy, > 0 such that for each j € Fy, one has T'(kx o k") ({kx(2)} x B,,(0)) C
{rk(z)} x B, (0) for all z € Vi NVy ;. The choice of v, together with shows that the open
sets N, induced by the family (v )rcr satisfy the assertion of (a). Since Tk, (Ny) C {kn(x)} x B, (0)
holds for each n € I, by construction, the set Tk, (NN, ) is contained in the domain of exp,, for each
n € I,. Hence yields exp,; |n, = expy, Tﬁ,:1|domexkamk|Nm = H;l expy, Tkhi|n,. We
deduce that (b) must hold.

If J C I is finite, choose v := min {vy | k € J}. We are left to construct the open sets Nj. Fix k € J
and consider the chart (Vs i, xi). Reviewing Lemma the construction of N C C*°(B5(0), R?)
may be carried out using arbitrarily small €, since by hypothesis € must have the same properties
as in Lemma [D.4] where it may be chosen arbitrarily small. The map rj is a diffeomorphism,
whence the pullback C*(ky, R%): C°°(B5(0),R?Y) — C°(Vs 4, RY), f — f o ky is linear bijective
and continuous by a combination of |26, Lemma 4.11] and |6, Proposition 7.4]. Define the open C*-
neighborhood N, := C°(ky, RY)“1(N]) € C>(Vs 1, RY). The Riemannian exponential map expy,
is related to exp,, via and the identity in (b). Hence the properties obtained via Lemma
for vector fields with X, € N}, imply (c) - (f). O

D.7 In the setting of Lemma |[D.6] consider a compact subset K C M. As V(O) is locally finite,
there is a finite subset F5(K) := {(Vs i, fx,) | 1 < j < N} of V(O) such that V5 x N K # () holds if
and only if (V5 i, k) € F5(K). Notice that F5(K) induces a family of open neighborhoods of K via

N
KCQ k= U Viks 1€[LD5]
=1
The set F5(K) is finite, whence the set K5 := Uiil Vs, is compact. Again, we define a finite

subset F5(K5) := {(Vsn, kn) | n € I, Vs, N K5 # 0} of V(O) as the set of charts which intersect the
compact set K5. As above, one defines open neighborhoods €, , of K5 for r € [1,5].
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We will now construct a neighborhood of the zero section such that the composition of sections in
this neighborhood with the Riemannian exponential map yields an étale embedding. The arguments
in the proof of the following lemma are inspired by |38 2. Theorem 1.4].

D.8 Lemma Let K C M be a compact set and Fs5(K) = {(Vsi, ki) |1 <k <N} as above.
Construct for each 1 < k < N a C'-zero-neighborhood N;, C COO(Vg,’hRd) as in Lemma
(¢)-(f) applied with the finite set J = {1,...,N}. Furthermore, consider the continuous maps
GSS’K: X(Q5.kx) = C°(Vs 4, RY), X +— X,,. There are open C*-zero-neighborhoods My C Ny
such that, setting Es x = ﬂiv:l(egs‘K)_l(Mk) C X(Qs5,x) and E = (resy )71 (Es k) € X(M)
(cf. Notation , the map Fx := expy 0X|q, , is an étale embedding for each X € E, and
FX(QLK) g QQ,K holds.

Proof. By Lemma for each X € 60, (Nj) the map exp,; oX |m is defined and its image is
contained in Vaj, for each (Vs i, ki) € F5(K). The manifold M is locally compact, hence a regular
topological space. Thus by [21, Theorem 3.1.6], we may separate the compact set V3 i, from the closed
set M\ V3 . We obtain disjoint open sets Ay, By € M such that Vo C Ay and M\ Va3, C By, hold
for each (Vs , ki) € Fs(K).

Claim: There are open neighborhoods M; C N} of the zero-map, 1 < & < N, such that for
X € E5 i the following holds: FX(WJ{;QQQ,K) C Agand Fx (2 x\ Vi) € By foreach 1 <k < N.
If this is true, then the proof may be completed as follows:

Let X be contained in Ej5 ;. Observe that the construction of Ej ; implies that for each 1 <k < N
the map Fx|v; ,n0sx = F%|viun0s, is an étale embedding by Lemma (e). Consider distinct
7,y € Qo and choose 1 < k < N with x € Vo If y € Vs.x we must have F'x (z) # Fx(y) since
the map is an étale embedding on V5 N Qs . On the other hand, if y € Qa x \ Vo & M \ Vi,
by the above Fy(z) € Fx (Vo NQa k) C Ay and Fx(y) € Fx(Qa,x \ Vax) C Bg. Since Ay and
By, are disjoint, again Fx(x) # Fx(y) follows, whence Fx must be injective. Thus each X € FE
yields an injective local diffeomorphism exp,; 0X|q, ,, i.e. exp); 0X|q, , is an étale embedding.
Furthermore, F'x maps m into V5, by Lemma (d). Hence the definition of ; x and Q9 g
yleld FX (m) Q Q27K'

Proof of the claim: For k # j, we obtain a sets
Kij = kx(Vag N (M \ V3;)) C B2(0) and By := Try(TVs, Nexpy, (Bj N Va ).

By construction each set K3; C Bs(0) is compact and each set By; is an open subset of T'B5(0).
Define Agp := Trkip(TVsi N exp;;(Ak)) for 1 < k < N. Recall the identity exp,; 00y = iday,
where 05y € X (M) is the zero section. This yields the inclusions Kj; x {0} C By; for each pair
(k,j) € {1 <k,j <N|k+#j}and B2(0) x {0} C Agj. Hence, the Wallace Lemma |21} 3.2.10] yields
constants ex; > 0 for 1 < j < N which satisfy Kj; x B.,;(0) € By; and B(0) x B, (0) C Ay, for
each pair (k,j) € {1 <k,j < N|k# j}. Moreover, for 1 < k < N we obtain an open neighborhood

N
My, = LBQ(O)7BEM (O)J N ﬂ LKkj’BEk:_j (O)J < COO(BE)(O)?Rd)

=1
Tk
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of the zero-map. Define the Cl-open set My, = C*(kg, RY) (M) NN € C®°(Vsx, RY). By
construction, each vector field X € Es i (defined as in the statement of the lemma) may be composed
on Q3 x with exp,,;. With the identities and Lemma (b), the mapping Fx may be
evaluated locally on V2 in the chart (Vs g, ki) € F5(K). For any X € Es ¢, we note that X, €
C>(kx, RY)~1(| B2(0), B, (0)]) holds. Observe that By(0) x B,,(0) C Agx and the definition
of Ay imply Fx(Vay) C Ag. Furthermore, each element y € Qs i \ Vs is contained in Va,,
for some 1 < n < N. Thus k,(y) is contained in K,; by construction. Furthermore, X, €
C>®(Kn, RO (| Ky, Be,,. (0)]) and K, x B, , (0) C By, hold. By definition of B,,;,, a computation
in the chart (Vs ,,kKy,) yields Fx(y) € By. As y € Qo \ Vai and k were chosen arbitrarily,
Fx (2,5 \ V3,1) € By, holds for each 1 < k < N. O

We are interested in vector fields which yield, after composition with the Riemannian exponential
map, an inverse for Fx (respectively, the composition Fy o Fx). In the rest of this section, we
construct C''-neighborhoods of the zero-section, whose elements permit such vector fields. Further-
more, the mappings sending a vector fields to the vector field which induces Fx o Fy respectively
F)zl should be smooth on these neighborhoods. The leading idea is to construct these fields locally
in a cover of charts, which will enable us to obtain them as global objects from the local data. For
reasons which are explained in Section [5| we construct a neighborhood of the zero-section depending
on an open Cl-neighborhood of the zero-section chosen in advance and on a positive constant R.

D.9 Construction Consider the setting of Lemma Let K C M be compact and E5 g C
X (Q5,Kx) an open neighborhood of the zero-section as in Lemma Fix R > 0 and an arbitrary
open C'-neighborhood of the zero-section P C X (€5 ). By construction of the manifold atlas,
Q5 k C 1 K, holds by Lemma (c). As the family F5(K5) is a manifold atlas for Qs g, the

topology on X (1 k) is initial with respect to the family {GKHVI . ‘ (Vs ks ki) € Fs (K5)} by Defini-

tion Thus there is a family of open C'-neighborhoods of the zero-map W, C C*°(B;(0), R%) =
COO(‘/IJC; Rd)a (V5,k7 Kk) S fs(K5) with

Q1 K\ — _
(reso ) M (Esk NP) 2 () (Onyly, , © C(kklvaun RY))TH(WR).
F5(Ks)

Here C* (kv ,, RY): C(B1(0),R?) — C°°(V; 5, R?) denotes the pullback f +— f o kly, ,, which
is continuous by [26, Lemma 4.4]. Since B1(0) € Bs(0) = sx(Vs,x) holds, Remark [C.2.6] (a) implies

that we may choose 7 > 0 such that for f € BF := {f € C*(B5(0),R9) ‘ ”fHTm)I < 7'} the

condition f|p, o) € W} is satisfied. Shrinking 7 if necessary, we may assume 7 < R. Define the open
C'-neighborhood of the zero-section

E' = ) (k2" 0 0%k, RY)“H(BY) C X () -
F5(Ks)

Then, the inclusions E' C (resgzi?)*l(E&K NP)and (resd )"L(E')C EN (reszK)’l(P) hold.

Qs, K5
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Step 1: A vector field inducing the composition exp,; o X o Fy: Since the family F5(K5) is finite,
we may fix a constant v > 0 with ¥ < R as in Lemma Consider arbitrary (Vs n, kn) € F5(K5)
and shrink the C'-open set B™: Choose &, > Osp > 0 and 1 > §,, > 0 with properties as in Lemma
such that &,, < min {7, v} holds. Set o, := Osp and p, := min{v,7}. Apply Lemmawith
the constants ¢, 6, p, taking the roles of ¢, §, p to obtain a C'-neighborhood N, of the zero-map in
C>(B5(0),R?). Then each X € C°°(k,,RY)(N,) C C>®(V; ,,,RY) satisfies the assertions of Lemma
(c)-(e) with respect to v. By choice of the constants (cf. Lemma [D.3), there is a smooth map
fn: Bs(0) x By, (0) x By, (0) = B, (0) with

fn(wvovo) = O,fn(%y,O) =y and fn(xvovz) =2z (x,y,z) € BB(O) X By, (0) X By, (0) (Dgl)

Hence the partial derivative satisfies dj f,,(z,0,0;:) = 0, for all € Bs(0). The continuous map
Bs3(0) x By, (0) X Bo, (0), (2,y,2) = ||dfn(2,y,2; )], is bounded on By(0) x Bea (0) x Bea (0) by
some t,, > 1. As the partial derivative with respect to z vanishes in B2(0) x {0} x {0}, a compactness
argument yields 0 < p,, < min {V e } such that for all (x,y,2) € B2(0) x By, (0) x B, (0)

lop

’ 72 Bdt,

the estimate ||d1 f,.(z,y,2;)l,, < § holds. Define the open C'-zero-neighborhood

lop

Hy, = N1 {f € C=(B50), R | I/l gg5.4 < tin } € C=(Bs(0),RY)

Since p,, < 7 holds, we deduce H;, C BY. Set H' := (5, (OSS’Ks)_lCOC(/@n,Rd)(H;) CX(Qs5,x,)
to obtain a C'-neighborhood of the zero-section contained in E’.

Let &,7n be elements of H]. By Lemma F¢(B2(0)) € B3(0) holds, whence the composition
Fy, o F¢|p, (o) is defined. Since p,, < 0y, we have F, F¢(x) € B, (x) for each 2 € B2(0) by definition
of o, = Osp (cf. Lemma . Therefore, for each © € B3(0),

no&(z) = o5 (FyFe(x)) = fulz, &(2), n(Fe(x))) € Be, (0) € B-(0) (D.9.2)

is defined and yields a smooth map n ¢ &: B2(0) — B, (0) C B,(0). Observe that n,& = 0 implies
no& =0by (D.9.1). For (Vs n,kn) € F5(K5) and X € H', set X,y := X, ok L. Moreover, for € H’
the composition Fx := expy; 0X|q, , is defined. Consider y € V3, and X € H'. By construction
Xin) € H;,, whence X, (5n(y)) € By, (0) € B,(0). Since {sn(y)} x B,(0) C Tkn(Ny), Lemma
(b) yields for Fx , as in Lemma

i Py (5 (9) = 5D, (50 (0), Xiag (50 (9)) = 5 5D, T 0 X(9)
= expy Tk, "Thy 0 X (y) = expy 0X (y) = Fx(y).

Furthermore, a combination of Lemma (b) and (c) allows us to compute the identity

Tk (exp s |Ny)_1’{;1|eXp,L(Tﬂn(Ny)) = (exp,, |Trcn(Ny))_1
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for y € V3,,. Set z := K, (y) with y € V5. Since &, < v, we conclude {z} x B.,(0) C Tky(NNy).
This yields the following identity:

(id32(0)7 X[n] < )/[n])(z) = (SC, fn(x’ l/[n] (JL‘), X[n] (FY[n] (1‘)))) = (Cxpn |{:v}><BE”(0))71FX[n] FY[n] (ZE)
:(eXpn ‘Tnn(Ny))_lFX[n] FY["] (.’17) = Tﬁn(eXpM ‘Ny)_1HT_LI|Cxp“(Tnn(Ny))FX[n] FY[W,] (JJ)
=T'in (exp |Ny)71K:T'7llFX[n] FY[n] (z) = Trn(expy |Ny)71 €XPnmr XHT:IFY[n] (z)
=Tkn(expyy |Ny)_1 expy; X expy Y(y) = Thn(expyy, \Ny)_1 expyr X (Fy (). (D.9.3)
This assignment is defined and smooth on Vs, by (D.9.2). Hence for X,Y € H', we can define
XoY: Qo g, = TM,z+ (expy |n,) (expy 0X oexp,, oY )(x), which is an element of X (2 k. ).
The identity (D.9.3)) yields X oY =0 for X,Y = 0. Define for X,Y € H' the map (X oY), :=

(X oY) Vo © Ky |Ba(o)- Then the above computation (D.9.3) yields (X ¢ Yy, = X © ¥, on
B5(0). From (D.9.2), we deduce

[(XoY = [ Xt o Yl 55,0 < €n < min{r,v} < R. (D.9.4)
2

)i | 3507.0
2

Step 2: A vector field inducing F);l: By construction, each H/, for (V5 ,,kn) € F5(K5) is con-
tained in a set N, as constructed via Lemma such that the assertions of Lemma (c) -(e)
hold for O (k,,, R?)(N,,). In particular, we may apply Lemma with K = Kj, the open cover
F5(K5) and the open sets (H],) (v, .xn)eFs(Ks): For each chart in F5(Kj5), we obtain an open C'-
zero-neighborhood H,, € C*(ky,, RY)(HL,) € C(Vs,n, R?). Then define

Moo = N (025551 (1,) C H.
(Vs,nvﬁn)efs(Ks)

By Lemma (e) for each X € HES'K"’ the mapping exp,; 0X|q, , is a étale embedding. Consider

X e Hgs’Ks and (Vs p, kn) € F5(K5). By construction of H,, in Step 1, we deduce with Lemma
(c) that B3 (0) C Fx,, (B2(0)) holds. We already established the identities Fx (y) = fon "X (Rn ()
and Tkp(expys [N, )" 67 exp, (Trn(N,)) = (€XDy, |70, (n,)) " for y € Vs, and X € HES‘K5. Further-
more, Lemma(c)—(e) yield amap X, € C* (Im Fx,, R?) with Fxy = exp,, (idim Fx,, ,X[’;l}) =
F);[i]. ’X[’;L] ROR < pp = min{v,7} < R. Hence by choice of v, we deduce
X (y) € Trn(Ny) and thus Fx: | (y) € exp,,(Tkn(Ny)) for cach y € Vs,
we compute for (Vs ., fn) € F5(K5) and y € V%:

This map satisfies

n- Combining these facts
Ty (€xPy [, (v,) ™ Expy (Rn () = (expag v,) ™y (Fxpy) ™ (R ()

= (expay In,) ™ (5 Fxpy fin) (1)

= (expy, |Ny)_1F);1(y) = (expyy |n,) " (expyy X|Q2,K5)_1(9)-

By the computation, we obtain a section of the tangent bundle on Qs 5 via
1.Ks

X" Qs g, = TM, X*(y) = (expay |n,) " 0 (exppy 0X) 7 (1)



166 D RIEMANNIAN GEOMETRY: SUPPLEMENTARY RESULTS

Let (Vsn,kn) € F5(K5) and y € Vs . Observe that exp, |74, (n,) is injective. Furthermore,
Fx, (Fn(y)) = expy, (kn(y), X[, (Fn(y )) and (kn(y), X[}, (kn(y))) € Thn(Ny). These identies imply
(expy, |70, () FX[*W,]( (Y )) (Kn(y), [n](“n( y)), whence the local identity above yields

X*(y) = (expyy |n,) "t o Fx'(y) = Try, ' (idp, (), X[ in(y) for each y € Vs . (D.9.5)

As X7, is a smooth map by Lemma (D.9.5)) shows that X* is smooth. Hence X* € X (Q%,KS)
follows. In addition for each (V5 ., kn) € F5(K5), by choice of p,

HX["] < pp =min{r,7} < R. (D.9.6)

B2(0),1

Define Hp : (resQM ) 1(7—[25’1(5) and observe that the estimates obtained in Step 1 and 2 remain
valid for sections in thls set.

Conclusion: We have constructed C'-neighborhoods of the zero-section

Q 5 —
,HR5,KO — ! H H.l CX (Qs,K5) s
(VS,nHQn)E]: (K )

Hg = (resQMS,Ks)_ (HQS Koy C x (M)

where I't X (Q5.1,) = [z, enyers (i5) C>® (Vs ,, R?) is the embedding defined in and each
H, C C>®(V5,,RY) is an open C'-neighborhood of the zero map.
By construction, Hp is contained in the zero-neighborhood E N (resf ‘K)’l(P) chosen in advance.

Here E is a neighborhood as in Lemma and P C X (95 k) is an open C'-neighborhood of the
zero-section. In particular, Lemma implies that each element of Hpg satisfies the assertions of

Lemma (d), i.e

For (Vs , kn) € F(K5) and X € Hg, we have X, (V1,,) C B,(0) with B»(0) x B, (0) C domexp,,.

For a pair (X,Y) € Hr X Hp there are vector fields X oY € X (s x,) and X* € X(Q%K;;)v
respectively, such that the following identities are satisfied:

expy o(X oY) = expy; X expys Yla,, ks (D.9.7)

expyy 0X* = (expyy OX|92,K5)_1|Q%K5' (D.9.8)

We note that if X and Y are the zero section, then the local formulas (D.9.3) and (D.9.5) (with
Lemma (e)) prove that X oY and X* are the zero section in X (2 x,) and X (Q%J%), respec-

tively.

The neighborhood Hp constructed in this section is used in Section [5] to obtain symmetric neigh-
borhoods in the space of compactly supported orbisections. The argument in Construction
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depends only on a finite atlas. Hence the sets constructed are open in X (M) with the topology
introduced in Definition Unfortunately, the vector fields X ¢ Y and X* will thus in general
not be defined on all of M. Because of this, we are not able to prove a statement of the following
kind: If X, Y € Hg, then X oY € EF and X* € E. At the moment, we can only prove the following:

D.10 Corollary Consider the setting of Construction [D.9 and let H,,, (Vs n,kn) € F5(Ks) and
Hpr be as constructed there. For each pair n,§ € H., the map no &: B2(0) — B,(0) satisfies
||77<>§Hm1 < 7 < R. Hence, by (D.9.3), for any pair (X,Y) € Hr x Hr and each chart

(Vs,n, kin) € Fs5(Ks), we derive H(XOY)WHT(O)J <T.

In Section [5] we consider a setting, which allows X ¢ Y to be extended uniquely to all of M. In
this case, Corollary will imply the result mentioned above (cf. Proposition |5.1.8).

Proof of Corollary[D.10. By (D.9.2), it suffices to prove that the norm of the derivative is bounded
by 7. To do so, we recall the estimates from Step 1 of Construction Let x € B1(0),y € B2(0)

and consider ¢ € H),. Then F¢(x) € B(0) and ||§||?(m1 < pip, With 0 < p < min{u, & s (-

Recall that ||d1 fr(y1, Y2, ys; )||Op < % holds and ¢, is an upper bound for ||dfy, (y1, Y2, y3; -)||Op with
(y1,Y2,y3) € B2(0) x By, (0) x By, (0). As H], C N, for an open neighborhood N,, constructed via
Lemma , we deduce from the proof of the lemma that § > [|dFe(z;-) — idga lop = lldFe(z; ), —1
for [|z[|,, < 3. For each (z,y) € B1(0) x B1(0) we obtain the estimate ||d¢(z;y)l|,, < [d€(x;-)ll,, <

gt~ Choose t,, large enough such that [|d§(z;y)|,, <2 on B1(0) x B1(0). Using the rule on partial

[

derivatives and the chain rule with these estimates, we compute for (z,y) € B1(0) x B1(0):

(0 €) (@5 1) 22 ldfa(, €(), n(Fe (2)), 9, d(, v), dn(Fe (), dFe (2, 9))]|.,
< s f (2, €)1 (@), ) + 1 (2, EC), m(Fe(@)): oy - 1 (59) o
 ldfa (€2, n(Fe()); o, - Idn(Fe(w); ), - 1dFe (25 9) .

< g + [ldfn (2, (), n(Fe(2)); )l op (1€ (5 )l o +2 [ldn(Fe (2);-) )
—_——— N ,
<tn <dpin <dpn

<<+

+ - <

Wl
=2 ]
Wl

We derive H%(noé“)(x)“oo <7 forx € B1(0) and j € {1,2,...,d} and thus Ineéllgm, <7 O

D.11 Lemma Consider the open zero neighborhoods ’Hgs‘KS as in Construction . The maps
cHPS X WS 5 X (), (X,Y) o XoY
L ’H%S’Kf’ —+ X (Qg,m) , X — X~

are smooth.
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Proof. Let I be the finite set indexing F5(K5). Following Definition and the definition of
Q, i, the topology on X (. k,) .7 € [1,5] is defined via the linear embedding with closed image

L X (k) — H O (Vy i, RY) = EB C>°(Vy i, RY).
kel kel
Therefore the maps pj, := X (Q.x;) = C®(Vy, RY), p(X) := X, |v, .k € I define a patchwork
for X (9 k) indexed by I. Define

p: X (Q5,5) X X (Q,x;) = @O (Ve RY) x CF (Vs RY), (X,Y) = (0] x L)X, Y))ker
kel

Recall that finite products coincide with direct sums in the category of locally convex vector spaces.
The universal property of the direct sum therefore assures that the map

L: @ C> (Vs RY) x C°(Vs 4, RY) — (@ COO(I/S,k,Rd)> X (@ COO(I/S,k,Rd)>

kel kel kel
(Xk, Yi)wer = (Xi)ker, (Ye)ker)

is an isomorphism of locally convex spaces. Furthermore, L o p = I's x I's holds. As I's is an
embedding with closed image, the map I's x I'5 is a linear embedding with closed image (identifying
the domain of I's via the embedding with a closed subspace of the codomain of I's this follows
from |11} II, No. 6 Proposition 8]). We conclude that p is an embedding with closed image and the
family (p} x p})ker yields a patchwork for X (5 k) X X (95 K, )-
We claim that the maps ¢ and ¢ are patched mappings which are smooth on the patches. If this is
true, then the assertion follows from Proposition [C:3.8] Proceed in two steps and prove the claim
first for the map c:
Recall from Construction that ’H%’K"’ = ﬂne,(efj"‘5)—1(7-tn) holds. Here each of the sets H,,
is an open neighborhood of the zero-map with H,, C C®(k; 1, RY) "1 (H)) = C®(k,, R?)(H/,) and
H! C C*°(B5(0),R%). We define maps

i Moy X M, — C(Ba(0),RY), (1, €) = o &

cn: Hp X Hy — C (Vo RY),

(X,Y) = C (k| s RT) 0 hyy 0 (C® (k1 RY) x C°(k, 1, RY)) (X, Y).

Observe that by Step 1 in Construction each map ¢, maps the zero map (0,0) € H,, x H, to
0€ C>®(Vap, R?). From the definition of ¢ and the identity , a trivial computation yields the
identity ¢, o (p2 x p3) = p? o c for each n € I. Therefore c is a patched mapping whose compatible
family is (¢, )ner. By Proposition the first part of the claim will hold if each ¢,, is a smooth
map. However, ¢, will be smooth if and only if h,: H!, x H!, — C®(B2(0),R%), (n,&) — no € is
smooth, since C> (1, R%) and C*(k,,, R?) are mutually inverse isomorphisms of topological vector
spaces by |26, Lemma A.1]. Fix n € I and prove that h,, is a smooth map:

To this end, recall the constants £,,d, obtained in Construction [D.9] By Lemma [D.3] we may
consider the smooth maps

en: B4(0) x B., (0) = R, (x,y) — exp,, (x,y)
an: B4(0) x Bs, (0) = B, (0), an(x,y) == by(z,x +y).

n
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By |26, Proposition 4.23 (a)], these maps induce smooth push-forward maps

enst [B3(0), Be,, (0) o = CF(B3(0), RY), ens(7)(2) := en(z,7(x))
ans: | B2(0), Bs, (0)Joo — C**(B2(0),RY), anx (1) () := an(z,n(x)),

where | B3(0), Be, (0) |0 € C°°(B4(0),R%) and | B2(0), Bs, (0) oo € C*(Bz (0), R?) are open sets.
Recall from Construction[D.9|that !, is a subset of an open set N,, which has been constructed by an
application of Lemma Hence n € H), satisfies Lemma (a), whence 1(Bs(0)) C B, (0) holds.
In other words, H], C | B5(0), B, (0) ]« is satisfied (after restricting to B4(0), which we suppress in

the notation). By definition, e,.(n) = F;, with F,, as defined in Lemma Furthermore, applying

the estimate (D.4.2]), we obtain e,.(n) € [B2(0), B3(0)]. By |26, Lemma 11.4|, there is a smooth
composition map

©: C%(B3(0),R?) x [ B(0), B3(0) o = C**(Bz (0),RY), (f,9) = f ° 913 0);

where | B2(0), B3(0)] € C*°(B3(0),R?). Hence, we conclude that we may compose © and (€,,« X €,,)
to obtain a smooth map © o (en. X eps): H), X Hl, — COO(B%(O),Rd). By definition of H!,,
we derive for n € H), the estimate Fy(x) € Bsy () for © € B3(0) (see Lemma (a)). Thus
O(en«(n), ens(€))(x) — x € By, (0) holds for x € By(0),7n,& € H.,.

Combine the identity (D.9.2) with the definition of f,, in Lemma (¢) to deduce the identity

hin(1,€) = ans(O(€ns(n), €nx(§)) — idB%(O))~

We conclude that h,, is smooth as composition of smooth maps. Summing up, this proves the first
part of the claim.
As a second step, we construct a compatible family for ¢. To this end, define maps

5
4

in: H/n - OOO(B (O)aRd)ag = §*|B%(O)
tn: Hn = C®(Va ), R, X = C® (kv ”,Rd) 0in 0 C® (K, 1, RY).

7m0
From the identity (D.9.5), we derive p?w = 1,p>. Hence ¢ is a patched mapping and we have to
prove that each ¢, is smooth. Again ¢,, will be smooth if 7,, is smooth.

Recall that H!, C N, holds for an open set \;,, C C°°(B5(0),R?) with the properties of the set A in
Lemma Hence the map I,,: Ny, = C*(B2(0),R%),& — £*|p,(0) is smooth by Lemma ().
Let A: B3(0) < B2(0) be the canonical inclusion. The pullback C>(\,R%) is continuous linear,

hence smooth. Finally, the identity i, = C°°(X\,R%) o I, |5, assures that i, is smooth. O






E. Maps of orbifolds

In this section, we recall the notion of an orbifold map in local charts which was introduced in [56]
(cf. Section [L.3|for details on orbifolds). Our exposition follows [56] and we repeat basic facts for the
readers convenience. Orbifold maps in the sense discussed here correspond to maps in a category of
groupoids. Our notion of orbifold map developed here is thus equivalent to other types of orbifold
maps which are equivalent to maps in the associated groupoid category (cf. [14] for the so called
Chen-Ruan good map and [1] for the Moerdijk-Pronk strong map, respectively).

E.1. (Quasi-)Pseudogroups
In this section we let M be a smooth manifold.

E.1.1 Notation (Transitions) A transition on M is a diffeomorphism f: U — V, where U, V are
open subsets of M. Notice that the empty map ) — () is a transition on M.
The product of two transitions f: U — V, g: U’ — V' is the transition

FPOVY gl wnvny: g HUNV!) = FUNV),2 = f(g(x)).

The inverse of f is the inverse of f as a function. If f: U — V is a map, we denote by dom f the
domain of f and cod f the codomain of f. For x € dom f we denote by germ,, f the germ of f at x
and the set of all transitions of M by A(M).

E.1.2 Definition (Pseudogroup) A pseudogroup on M is a subset P C A(M) which is closed under
products and inversion of transitions. We call P a full pseudogroup, if for every open subset U C M
the transition idy is contained in P. A full pseudogroup is called complete if it satisfies

(Gluing Property) If f € A(M) and there is an open cover (U;);er of dom f such that f
all 4 € I, then f is an element of P.

u;, € P for

The pseudogroup P is closed under restrictions, if for any f € P and open set U C dom f, the map
f \5((]) : U — f(U) is in P. For example, every full pseudogroup is closed under restrictions.

E.1.3 Definition (Quasi-Pseudogroup) A subset P of A(M) is called a quasi-pseudogroup on M
if the following properties are satisfied:

(a) For each f € P and = € dom f, there exist an open set U with 2 € U C dom f and g € P
together with an open set V such that f(z) € V C domg and

(flo)™" = glv.

(b) If f,g € P and z € f~!(cod f Ndom g), then there exists h € P and an open neighborhood
U C f~(cod f Ndom g) Ndom h of x with go f|y = h|y.
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Thus inversions and compositions of elements in a quasi-pseudogroup are only required to corre-
spond locally to other elements in the quasi-pseudogroup. For pseudogroups, inverses and composites
globally belong to the pseudogroup. Quasi-pseudogroups are designed to work with the germs of
their elements. In general, quasi-pseudogroups may be thought of as generators for pseudogroups
in the following sense:

E.1.4 Definition Let P be a pseudogroup on M which satisfies the gluing property and is closed
under restrictions. The pseudogroup P is generated by a set A C A(M) if A C P holds and for
each f € P and = € dom f there exists g € A and an open set U C dom f Ndom g with x € U and
flu = glu. Then P is uniquely determined by A.

Consider a subset B of A(M). If there exists a unique pseudogroup @ on M which satisfies the
gluing property, is closed under restrictions and generated by B, then we say that B generates Q.

E.1.5 Remark (a) The set A(M) is a pseudogroup. Each pseudogroup is a quasi-pseudogroup.

(b) Each quasi-pseudogroup generates a unique pseudogroup which satisfies the gluing property

and is closed under restrictions. Vice versa each generating set for such a pseudogroup is
necessarily a quasi-pseudogroup.

E.2. Charted orbifold maps

In this section, we let (Q,U) and (Q',U’) be orbifolds. Morphisms of orbifolds will be constructed
in several steps, since they arise as equivalence classes of certain objects:

E.2.1 Definition Let V := {(V;, G;,7;) |i € I} be a representative of U. We abbreviate the disjoint
union of the the chart domains of elements in ¥V with

V= HVi and define 7: V — Q,x — m;(x) for z € V.
i€l
Then the subset
W) :={feAV)|mof=mnlaoms}

of the set of all transitions on V is a complete pseudogroup on V' which is closed under restrictions.

The last definition may be used to associate to each orbifold an étale Lie groupoid (as is explained
in [56, 2.9 and 2.10]). Since we are not interested in the correspondence of orbifolds and Lie
groupoids, we will not pursue this relation any further. However this relation was invaluable to
derive the notion of orbifold map introduced in this section. We refer to [56| for further details.

E.2.2 Definition Let f: Q — Q' be a continuous map. Consider two orbifold charts (V,G,7) € U
and (V',G',7") € U'. A smooth map fy:V — V' is called local lift of f with respect to (V,G, )
and (V',G',7') if 7’ o fyy = f o7 holds. In this case, fy is also called a local lift of f at ¢ for each
qgen(V).
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E.2.3 Definition (Representative of an orbifold map) A representative of an orbifold map from
an orbifold (Q,U) to an orbifold (Q’,U’) is a tuple

f=fAfitier Pov)

where

(R1) f: Q — @' is a continuous map,
(R2) for each ¢ € I, the map f;: V; — V/ is a local lift of f with respect to orbifold charts
Vi, Gy, mi) €U, (V!, Gl wh) € U such that

U (Vi) =Q
iel
and (V;, G, m;) # (V;,Gj,m;) holds for 4,5 € I, i # j,
(R3) P is a quasi-pseudogroup which consists of changes of charts of the orbifold atlas
V:={(V;,,G;,m;)|i eI}
of (Q,U) and generates ¥(V),
(R4) Set F := [L;c; fi: V = I;e; Vi = 1ie; Vi@ = fi(x) if 2 € V;. Choose any orbifold atlas

V' € U’ which contains the set {(V/, G}, 7})},c;- Then v: P — ¥(V') is a map which assigns
to each A € P a change of charts

v(A): (WL H, X)) = (V.G ¢)
between orbifold charts in V' such that the following properties are satisfied

a) Fol=v(\)o Flgomx for all A\ € P,
b) for all A\, u € P and all x € dom A N dom g with germ, A\ = germ, u we have

germp(,) ¥(A) = germp(,) V(1)
c) for all \,p € P and all z € A~ (cod A N dom y) we have
EEIMp () v(p) * eI o () v(A) = gerMp (4 v(h)
where h is an element of P such that there is an open set U with
x €U C A ' (cod AN dom u) Ndomh

and po My = hly,
d) for all A € P and = € dom A such that there is an open set € U C dom A with A|y = idy

we have germp,y v(\) = germp, idys where U’ := [[;.; V/.
The orbifold atlas V is called the domain atlas of the representative f, and the set {(V/, G, 7) |i € I}
is called the range family of f . Note that the range family is not necessarily indexed by I. Moreover,
the mapping v does not depend on the choice of V' since it takes its values in U(i,j)EIXICth:/’Vj/
(cf. Notation below). The continuous map f will sometimes be called the underlying map of
the representative f . The map f may not be chosen arbitrarily. As [56, Example 4.5] shows, it is
not even sufficient to require that f be a homeomorphism, to assure that there is a representative
f with underlying map f.
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The technical condition in (R2) that two orbifold charts in V be distinct is required, because in
several places I is used as an index set for V (cf. property (R3)).
In view of Definition [E:2.3] it is useful to have a shorthand for the changes of charts associated to
a given orbifold atlas. We fix the following notation.

E.2.4 Notation Let V = {(V;,G;,1;)|i € I} be a representative of U. Recall the notation for the
set of all changes of charts between two orbifold charts (first introduced in Lemma (b)):

Chy, v; == {\: Vi 2 dom A = cod A C Vj | X is a change of charts}
We define the set of all changes of charts of the atlas V via

Chy :={A: V; Ddom A — cod A C V; | A is a change of charts and 4,j € I} = U Chy, v, .
(i,§)eIx1I

Observe that Chy is a (quasi-)pseudogroup, which generates ¥(V).

E.2.5 Definition Let f := (f{fi}icr> Pr,v1) and g = (g,{gi}ics > P2, v2) be two representatives
of orbifold maps with the same domain atlas V representing the orbifold structure ¢ on @) and both
range families being contained in the orbifold atlas V' of (Q",U"). Set F':=[],.; f;. We say that f
is equivalent to g if f =g, f; = g; for all ¢ € I and

germp(,) v1(A1) = germp(,) v2(A2)

holds for all \y € Pi,A2 € Py,z € domA; Ndom Ay with germ, A\; = germ, As. This defines an
equivalence relation. The equivalence class of f will be denoted by

(fi{fiticr» [Pr,01]).

By abuse of notation, we denote by f the equivalence class | f} of the representative f , if it is clear
that we refer to equivalence classes. The equivalence class of the representative f is called orbifold
map with domain atlas V and range atlas V', in short orbifold map with (V,V’) or, if the specific
atlases are not important, a charted orbifold map. Define Orb(V,V’) to be the set of all orbifold

maps with (V,V'). To shorten our notation we denote an element h € Orb(V,V’) by V Ly,

E.2.6 Remark

(a) The results of [56] apply to the class of second countable orbifolds and the wider class of
paracompact orbifolds. We only required orbifolds to be paracompact. Second countability of
all spaces seems to be a standard requirement in the theory of groupoids (cf. [51]). However,
[13,/34] and the survey article by Lerman [46] outline the theory of Lie-groupoids for non
second countable manifolds. In particular, the article by Lerman indicates that all desirable
properties on the groupoid side are preserved for paracompact orbifolds and manifolds. Hence
we require only the weaker condition.
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(b) In Deﬁnitionwe used quasi-pseudogroups instead of the pseudogroups Chy or ¥ (V) since,
in general, a quasi-pseudogroup P will be much smaller (sometimes even finite). Observe the
following facts, whose proofs we omit here:

i. Let (f,{fi};cr,P,v) be a representative of an orbifold map. Replacing P with a quasi-
pseudogroup P’ whose elements arise as restrictions of maps in P (if necessary reducing
them to open neighborhoods which are stable with respect to the group action), one may
replace v with a map v/ which maps each element in P’ to an open embedding in the range
family. The pair (P’, ') may be chosen such that (f, {fi};c;, P,v) and (f,{fi},c;, P, V")
are in the same equivalence class.

ii. Consider a representative of an orbifold map f: (Q,U) — M, where M is a con-
nected manifold (without boundary) and range family of the charted map is the atlas
(M, {idas},idps). The map v may then be chosen as the map taking each h € P to id .

E.3. The identity morphism
In this section, we construct the identity morphism in the category of reduced orbifolds.

E.3.1 Definition Let f: @ — Q' be a continuous map between orbifolds (Q,U), (Q',U"). Suppose
fv is a local lift with respect to the orbifold charts (V,G,n) € U and (V',G’',n") € U’. Consider
embeddings of orbifold charts in ¢ and U’ respectively,

A (W, K, x)— (V,G,m) and p: (W, K X')— (V' G, '),
such that fi (A(W)) C u(W’) holds. Then the map
gi=p tofyo W =W

is a local lift of f with respect to (W, K, x) and (W', K, x"). We say fv induces the local lift g with
respect to A and p and call g induced lift of f with respect to fy, A and u.

E.3.2 Proposition (|56, Proposition 5.3]) Let (Q,U) be an orbifold and fv be a local lift of idg with
respect to (V,G,m),(V',G',7") € U. For eachv € V there exists a restriction (S, Gs,w|s) of (V,G,)
with v € S and a restriction (S', G, 7| s:) of (V',G',7') such that fv| is diffeomorphism which
is a change of charts from (S,Gg,m|s) to (S',Gs/,7'|s/). In particular, fyv|s induces the identity
idg with respect to the embeddings of orbifold charts ids and (fy gl)*l,

Proposition shows that every local lift of the identity idg is a local diffeomorphism (but in
general it need not be a global diffeomorphism as |56, Example 5.4] shows).

E.3.3 Proposition (|56, Proposition 5.5]) Let (Q,U) be an orbifold and {fi},.; a family of lo-
cal lifts of idg which satisfies (R2). Then there exists a pair (P,v) such that (idq,{fi};c;, P V)
is a representative of an orbifold map on (Q,U). The pair (P,v) is unique up to equivalence of
representatives of orbifold maps.
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E.3.4 Proposition (|56, Proposition 5.6]) Let Q be a topological space and suppose U and U’ are
orbifold structures on Q. Consider a charted orbifold map

f=(dg,{fi}ics» [P V])

such that the domain atlas V is a representative of U and the range family V', which is an orbifold
atlas, is a representative of U'. If f; is a local diffeomorphism for each i € I, then U = U" holds,
i.e. the orbifolds coincide.

E.3.5 Definition Let (Q,U) be an orbifold and f = (f, {fi}ticr»[P,v]) be a charted orbifold map
whose domain atlas is a representative of Y. The representative f is called [ift of the identity id(q 1)

if f =idg holds and f; is a local diffeomorphism for each i € I. We also say that f is a representative
of id(g ). The set of all lifts of id(q 44y is the identity morphism id(q 1y of (Q,U).

E.4. Composition of charted orbifold maps

E.4.1 Construction Let (Q,U), (Q',U") and (Q",U") be orbifolds, and

V={(V;,Gs,m)iel}, V' :={(V,Gx})|jel}

Jjr

be representatives of U and U’, respectively, where V is indexed by I and V' by J. Furthermore, let
V" e U”. Consider charted orbifold maps

f: (fa {fi}iel ’ [Pf’ Vf]) € Orb(V7Vl>

and
J= (g, {gj}jej ) [Pga Vg]) S Orb(V’, V”).

Define a: I — J to be the unique map such that for each ¢ € I, f; is a local lift of f with respect
to (Vi, G, m;) and (V;(i), G/a(i),w/a(i)). We define the composition of ¢ and f:

gofi=h=(h{hi}ics[Ph,vn]) € Orb(V, V")

is given by h := go f and h; := go(;)o fi for all i € I. To construct a representative ( Py, vy) of [Pr, vp]
fix representatives (Py,vy) and (Py,vy) of [Py, vs] and [Py, v,], respectively. Consider p € Py with
domp C V;, codp C Vj for the orbifold charts (V;, G;,m;) and (V;,Gj,7;) in V. Property (R4a)
assures

fj Op = Vf(ﬂ) © fildomua

where v;(u) is a change of charts in V'. For z € domy set y, = f;(x) € domwvy(u). Since P,
generates W(V') we may choose §,, . € P, such that there is an open set y, € U}, , € dom§, . N
dom vy (i) and the following is satisfied:

e

v, =viwloy, .-
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We may choose an open set z € Uy, , C dom p such that f;(U, ) C U}, , holds. By adjusting choices
one may achieve that for p1, 0 € Py and x, € dom puy, k € {1,2} we have

'ul‘UF‘l’l'l ?é /“L2|Uu2,x2 or gul,wl = f,uz,wy (E41)

Define the quasi-pseudogroup
P = {plu,., |u € Py, x € domp}

and observe that it generates ¥()) as Py generates (V). As property (E.4.1)) holds, we obtain a
well defined map

v P = V"), on(plu, ) = ve(€ua)-

Since v, and vy satisfy the properties (R4a) - (R4d), the same holds for v}. Furthermore, the
equivalence class of (P, vy,) does not depend on the choices in the construction of P, and vp,.

So far, we have only explained the composition of charted orbifold maps in Orb(V,V’) and
Orb(V',V"). Obviously we need the composition of maps in Orb(V,V’) and maps in Orb(V" V")
for arbitrary V", V"’. The leading idea is to construct a common refinement of the range family and
the atlas V" together with induced maps, which may then be composed as in Construction [E.4.1}
Before we introduce the general construction, we define the notion of induced charted orbifold maps:

E.4.2 Lemma and Definition (|56, Lemma and Definition 5.11]) Let (Q,U) and (Q',U’) be
orbifolds. Consider representatives

V={(V;,Gi,m)|i €I} of U indexed by I
V' ={(V/,G,m])|l € L} ofU" indexed by L, and a charted map

f=(FASYier [Pr.vg]) € Ob(V,V).

Define B: I — L to be the unique map such that for each i € I, f; is a local lift of f with respect to
Vi, Gy, ;) and (Vé(i)’G,IB(i)77r;3(i))' Suppose there are

a representative W = {(W;, H;,v;)|j € J} of U, indexed by J,

a subset {(WJ’, H, %) |j € J} of U, indexed by J (not necessarily an orbifold atlas),
amap a: J — 1,

for each j € J, an embedding of orbifold charts

A (Wi, Hy, ) = (Vag), Gati)s Tag))
and an embedding of orbifold charts
wi s Wi 2y i) = (Viaayy Gatat) Tatatin)
such that fo(j)(Aj(W;) C p;(W)) holds.
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For each j € J we define the smooth map
Then the following assertions hold

(a) €:= (idg, {)‘j}jeJ J[Peyve]) (with [P-,ve] provided by Proposition is a lift of id(qu)-
(b) The set {(W]',H]', V3) |j € J} and the family (p;);es may be extended to a representative

W' = {(Wy, Hy,vy) |k € K}
of U" and a family {ur} e of embeddings of orbifold charts such that
&= (idgr (e - [Porver]) € OBV, V)

(with [Per, ver]| provided by Proposz'tion is a lift of the identity id g/ 1.
(¢) There is a uniquely determined equivalence class [Pr,vp] such that

hi=(f,{hi};c;»[Pa,vn]) € Orb(V, W)
and foe=¢oh holds.
We say that the charted orbifold map h is induced by f

E.4.3 Definition Let (Q,U) and (Q',U’) be orbifolds. Further let Vi, Vs be representatives of U
and Vi, V) be representatives of U’. Suppose that fi € Orb(V;, Vi), i = 1,2. We call fi and fs
equivalent ( fi~ fg) if there are representatives W of U and W’ of U’ together with lifts of the identity
g; € Orb(W, V) and &, € Orb(W', V), respectively (for i € {1,2}) and a map h € Orb(W, W') such
that the following diagram commutes

v v

Let (Q,U) and (Q',U’) be orbifolds. The notion of equivalence of charted maps induces an
equivalence relation on the set of all charted orbifold maps whose domain atlas is contained in U
and whose range family is contained in U’. To prove this fact, in [56] the following lemmata clarify
the relation of induced lifts and induced charted orbifold maps.
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E.4.4 Lemma ( [56, Lemma 5.13]) Let (Q,U) and (Q',U") be orbifolds and

= (f{fitier . [PV]) € Orb(V,V")

be a charted orbifold map, where V and V' are representatives of U and U', respectively. Assume that
there are orbifold charts (Vo,Ga, 7o) €V, a = a,b and points x € Vo, with wa(x,) = mp(xp). Then
there are arbitrarily small orbifold charts (i.e. for each open set Q C Q we may choose charts, which
are contained in Q) (W, K,x) €U, W', K',x") e U and embeddings \o,: (W, K, x) = (Va, Go, 7o),
po: WK X') — (V2, G, 7wl of orbifold charts with x, € Ao(W), o = a,b such that the induced
lift g of f with respect to fa, Aa, tha coincides with the one induced by fy, Ay, by In other words, we
obtain a commutative diagram

V*H/’
/ , \
A
122
v, fo VE;

E.4.5 Lemma ([56, Lemma 5.14]) Let (Q,U) and (Q',U’) be orbifolds, V a representative of U,
and V' one of U'. Further let f € Orb(V,V’). Assume that h € Orb(Wy, W}) and j € Orb(Wa, W5)
are both induced by f There are representatives W of U and W' of U’ together with lifts of the
identity ; € Orb(W,W;), i = 1,2 and €, € Orb(W', W!), i = 1,2 such that a charted orbifold map
ke Orb(W, W') exists, making the following diagram commutative.

W1 L)W{

W/ G RW (E.4.2)
N, oA

WQ L) Wé

If the orbifolds are second countable, we may choose W and W' to be countable.

E.4.6 Definition It follows from the last lemma that the relation ~ introduced in Definition [E.4.3]
is indeed an equivalence relation. For details we refer to the exposition in [56].

Denote the equivalence class of a charted orbifold map f with respect to the equivalence relation
~ introduced in Definition by | f] It will be clear from the context whether f is a charted
orbifold map and | f] denotes its equivalence class, i.e. the orbifold morphism, or f is a representative
of the charted orbifold map and | f] is the equivalence class of representatives, which by abuse of
notation is also abbreviated as f .
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E.5. The orbifold category

We have explained how to construct orbifolds and morphisms of orbifolds. Now we introduce the
category of orbifolds, which is isomorphic to a full category of certain Lie groupoids (cf. [56] for
details on this topic).

E.5.1 Definition The category Orb is defined as follows: The class of objects Ob Orb is given by
the class of all paracompact Hausdorfl orbifolds (as defined in Definition . For two orbifolds
(Q,U) and (Q',U’), the morphisms, i.e. orbifold maps from (Q,U) to (Q',U’) are the equivalence
classes [f] of all charted orbifold maps f € Orb(V, V') where V is a representative of & and V' is a
representative of U’, that is,

Orb((Q,U),(Q",U")) := { [ﬂ ‘ f € Orb(V, V"),V representative of U, V' representative of Z/l’} .

The composition in Orb is induced by the following construction: Let
[/] € Orb((Q.U),(Q",U") and  [j] € Orb((Q",U"), (Q",U"))

be orbifold maps. Choose representatives f € Orb(V, V') of [f] and § € Orb(W, W') of [§]. Then find
representatives IC, K’ and K" of U, U’ and U”, respectively, and lifts of the identity € € Orb(IC, V),
g} € Orb(K/, V"), ), € Orb(K/,W'), &’ € Orb(K",W") together with charted orbifold maps h €
Orb(K,K'), k € Orb(K’,K") such that the diagram

v Loy w — W

S NS

k

commutes. Define the composition of [§] and [f] as

E.5.2 Proposition (|56, Lemma 5.17 and Proposition 5.18]) It is always possible to compose two
orbifold maps in Orb((Q,U), (Q",U")) and Orb((Q',U"),(Q",U")) and the composition in Orb is
well-defined.

All equivalence classes of lifts of the identity coincide for a given orbifold (@,U). Hence the
“identity morphism” introduced in Definition is the identity morphism of (Q,U) in Orb.

E.5.3 Proposition (|56, Proposition 5.19]) Let (Q,U) be an orbifold and ¢ a lift of id(g ). Then
the equivalence class [] of e consists precisely of all lifts of id(g . Hence the “identity morphism”
id( ) is the equivalence class [e].



F. Orbifold geodesics: Supplementary Results

In this section, we supply proofs for some of the more technical assertions in Section

F.1 Lemma (Lemma [£.1.4) Let [¢] € Orb (Z,(Q,U)) be an orbifold path and [a,b] C T some
compact sub-interval. There emsts a charted orbzfold map § = (clizy[ {9k 1<pen + [Pgr vg]) with
r<a<b<uy,lz,y[CZ, and N € N such that:

1[0l hay = 19,
l

2. dom g, =|l(k),r(k)[ for each 1 <k < N, such that

x=1(1) <l(2) <r(1) <l(3) <r@)<---<IN)<r(N-1)<r(N)=y

3. Py = {idy(wyr(n} YU Lidjucry r(s

k+1y—1 1< k: <N-1 where Lk 1 18 the canonical
) ( == 2 k
inclusion |l(k),r(k)[2)I(k + 1) ( )[f—)]l

(h+1),r(k+ 1] .

Proof of Lemma[{.1.] Consider a representative ¢ = (¢, {¢;};c; , [Pe, ve]) of [¢] whose domain atlas is
contained in Az. As [a, b] C T is compact, there is a finite subset I C I such that [a,b] C | J;cp dom¢;
and dome; N [a,b] # O for all i € F hold. Set z := inf|J,.pdome; and y := sup|J,cpdome;
and consider ¢|j, ;. By construction, for i € F the set dome; is contained in Jz,y[. Consider
the representative ij, , of the orbifold map [i}, ] whose lifts are given by the family {idqom ¢, };c -
Following Constructionthe composition h := ¢ol),y[ is arepresentative of [¢]|j, 1 1= [¢]o[i]4,y(]-
By construction, the family of lifts of h is {¢i};cp - As F is finite, we can choose and fix a
partition of |z, y[ by real numbers I(k)’,r(k)’,1 < k < N € N which are ordered as in 2., such that
Jl(k), (k) [C dom¢;, holds for some i, € F. Note that each inclusion ¢y : JI(k)’, r(k)'[— dom¢;, is
a change of orbifold charts. Apply Lemma with respect to the family of pairs (4, idcodec;, );
k€ {1,...,N} to obtain a representative §' = (cjs,y[, {9k} <p<n » [P+ Vy]) induced by h.

Choose (f*! € P, with dom /X1 CJi(k), (k)| and cod M1 Cli(k + 1), r(k + 1)'[. Set b, ==
(=1 1(1) i= 2, r(N) ==y and

(k) == supdom ¢y ™ (k4 1) := inf dom ¢} ™ for each 1 <k < N — 1.

By construction |I(k),r(k)[C]I(k),r(k)'[ holds for 1 < k < N. The numbers I(k), (k) are ordered
as in 2., since the I(k)’, r(k)" were ordered in this way. Furthermore, |z, y[= U, <,<n]l(k), (k)] is

satisfied. With this choice of L£+17 the quasi-pseudogroup P, as defined in 3. generates the changes
of charts for {]i(k),r(k)[|1 < k < N}. Define

idcodkcik1 if A= ii]l(lk),r(k)[)
vg(A) = v () if A ="
ve (™t if A= () 7!

to obtain a map v,: P, — ¥(A), where A € U contains the range family of §'.
Apply Lemma with respect to the pairs (JI(k), r(k)[—]l(k)',7(k)'],idcod;, ) for 1 <k < N to
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obtain a representative § = (cjzy[, {9x}1<p<n [P 7]) induced by §’. Reviewing the construction
of vy, we see that by construction and property (R4) (d) of Definition the germs of v(\) and
vp(p) must coincide at gi(z) if germ, A = germ,, p holds for z € dom g,. Thus (Py,v,) ~ (P,v)
follows, whence we may replace the pair (P,v) with (P,,v,). Observe that in each step, we have
only applied Lemma [E.4.2} Thus [g] = [¢]]},.,( holds. O

Clearly the definition of the restriction of an orbifold map yields the following Lemma:

F.2 Corollary If [¢] € Orb(Z,(Q,U)) is an orbifold geodesic and [a,b] C I compact, then the
restriction [§] = [¢]|jz,y| with x < a < b <y constructed in Lemma is an orbifold geodesic.

Proof. Simply choose in Lemma[4.1.4] an atlas contained in Az. O

F.3 Lemma Consider representatives ¢ = (¢, {ck},c 4, P v]), ¢ = (¢, {c}.},cp, [P, V']) of orbifold

geodesics in Orb (Z, (Q,U)), whose domain atlases are contained in Az. Assume that the lifts satisfy
codey, = Uy for (U, G, ¥r) € U, respectively codc,. = W, for (W,,H,,¢,.) € U. The following
conditions are equivalent:

(a) [¢] = [€],

(b) For all k € A,r € B and t € domeg Ndomel., there is a change of charts /\f’r: Up O
dom AP" — W, with T,(AF"¢p)(1) = Tyer (1) (iie. the initial vectors coincide),

(c) for any t € Z, there is a pair (k,r) € A X B and a change of charts A\¢: Uy, 2 dom Ay — W,
such that t € dom ¢, Ndom ¢, and Ti(Aier)(1) = Tier(1),

(d) there are representatives § = (¢, {ck} ey [Py, Vg)) of [€] and §" = (¢, {ck}er» [Pysvyl), Tespec-
tively, of [¢'] whose domain atlases are contained in Az.
In particular, a geodesic arc in Q is uniquely determined by the initial vector.

Proof. “(a) = (b)” is a reformulation of Lemma [4.1.3] for orbifold geodesics. “(b) = (c)” is trivial.
To check “(c) = (d)” , we construct representatives induced by ¢ and ¢: The chart domains of the
domain atlases of é and ¢ are intervals I}, := domcg, k € A, respectively J, := domdc,., r € B.
Pick some ty € Z together with a pair (k,r) € A x B satisfying the hypothesis of (c). There
is Ay, € Chy,,w, with Ty, (A¢yer)(1) = Tiyc,(1). Shrinking dom \;,, we may assume that the set
to € dom ), is Gg-stable. Thus it induces an orbifold chart (dom Ay, Gk dom /\tovwk|dom ,\to) ceu.
As ¢, is a geodesic, we may choose e, > 0 with ¢ ([to — €t,, to + €1,]) C dom A, and [tg — €, to +
eo] € Jr. The change of charts Ay, is a Riemannian isometry, since (Q,U,p) is a Riemannian
orbifold. In particular, A;, maps geodesics of dom A\, C Uy to geodesics of W,.. Thus A, o ¢k : Jtg —
Etysto + €1y Wy is a geodesic. Uniqueness of geodesics in Riemannian manifolds implies that
At © ckhto,gto,tﬁgto[ = c’ThtO,Eto,tﬁgtO[, as their derivatives coincide in ty. For the trivial orbifold 7
the set Cy, :=|to—et,, to+¢€t,[C IxNJ, induces an orbifold chart via the inclusion of sets. Set a(tg) :=
k and B(to) := r and define changes of orbifold charts ji¢, «: Cty =+ Ln(te), tto,8: Cto — Jp(ty) and
Vtg,o: dom Ay — Uy g,y via the inclusion of sets. Furthermore, set 14, 5 1= Ay,. Reviewing the
construction, we see that co () thtg,a € Im vy, o and C%(to)ﬂto,ﬁ C Im M\, = Imuy, g. This implies

Vt;,laca(to)ﬂto,a = V;O,lﬁczﬂ(to)ﬂtoﬁ' (F.3.1)
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With respect to the pair (Cy,, {idCto } ,Ct, — I) and (dom Ay, , Gk dom Mg » Uk |domt0) the lifts of ¢ and
¢’ coincide. The construction did not depend on o and may be repeated for each ¢ € Z. In this way
we obtain a (possibly infinite) subset R C T such that | J,., C; = T and C; # Cs if t # s. Since these
sets cover Z, the construction yields an orbifold atlas C C Az for Z. It may happen that the charts
(dOHl At Ga(t),dom Aes ¢a(t) |dorn /\t) and (dom Ass Ga(s),dom As? wa(s) |dorn )\S) coincide for s # t. To
satisfy the requirement (R2) in Definition we redefine the charts: Take dom A4 x {s} instead of
dom A, and redefine the group actions, changes of charts etc. in the obvious way. Recall that this does
not change the equivalence class of é and ¢ by virtue of Lemma Without loss of generality we
may thus assume (dOHl )\t) Ga(t),dom Aer ’L/)a(t) |dom )\t) 7é (dom )‘Sa Ga(s),dom As) '(/)a(s) |d0m As) for s 7& t.
Using Lemma the charted maps ¢ and ¢, induce representatives h and &' with respect to C
and an atlas W € U which contains {(dom A¢, Gu(t).dom A, » Va(t) ldom A, ) |t € R}. From we

deduce that the lifts of A and b’/ coincide. Choose a refinement of the domain atlas of A as follows:
There is a sequence of real numbers in 7

<UD <r(=2) <l(0) < r(—1) <) <r(0) <1(2) <r(l) < ---

such that ]I(n), r(n)[ is contained in some chart of the domain atlas of h for each n € Z. Apply an
argument as in the proof of Lemma (cf. Lemma [F.1|) to obtain a cover of Z by intervals Iy
indexed by Z, such that the following is satisfied:

1. IynI; #0ifand only if j € {k — 1,k,k+ 1}, k,j € Z,

2. h induces a representative § = (¢, {91} rez > [Py, vg]) of [¢] and R’ induces a representative §' =
(' {9keez » [Py vgl) of [¢'] such that Py, = Py and P, = {id]l(k))T(k)[,LZ'H, ()=t |k ez},
where (f T ((FF1) =1 are defined as in Lemma

3. As the lifts of & and &’ coincide, for each k € Z the lifts gk, g, are given as restriction
gk = g;c = hs']l(k:),r(k)[: ]l(kﬁ),?“(k‘)[—) Vi, (Vkakawk)) € U of a lift hy of h.

Shrinking the sets JI(n), r(n)[, n € Z, we assume that g;(Jl(k + 1), 7(k)[) and gr(Ji(k),r(k —1)[) are
contained in stable subsets of dom v (¢f ™ )Ndom vy (¢5) and dom vy ((¢f )~ )Ndom vy ((ef_,)~1),
respectively, for each k € Z. Restricting the changes of charts to these stable subsets, by Defini-
tion the pairs (Py,v;) and (Py, vy) may be replaced by equivalent pairs such that the maps
v5(A),vg (X) are embeddings of orbifold charts with dom vg(\) = domwy (X) for each A € P;. Un-
fortunately, v; and vy need not coincide. However, since the lifts coincide we obtain

k+1 1 _ Lk+1)

V(™) 0 gk ligke 1y e = Ghr1 0 U = v (7)) 0 gelpger o[-

Hence both geodesic arcs coincide. As Vg(L’,:H) LZH) are embeddings of orbifold charts with

the same domain, for each k € Z there is some v € Ggi1 with ug(Lﬁ'H) = ’)/k+1.1/g/(LZ+1).

“(d) = (a)* Consider representatives g of [¢] and §’ of [¢/] as constructed in Step “(c) = (d)” . We
claim that [§] = [¢§'] holds. To prove the claim, consider the case that the geodesic arc Im ¢ contains
non-singular points. Hence there are k € Z and z € T such that ¢(z) = ¥xcr(z) is non-singular.
For each subset Hi C G the components of [ geH, Jg Are totally geodesic submanifolds of (V, pk)
by [42, II. Theorem 5.1]). Assume that there is a an open, non-empty set U such that Imc, N U
is contained in a component jointly fixed by the elements of some subset Hy C Gy, which contains
elements different from the identity idy, € Gi. Then the image Im ¢, is contained in this component

and Vg/ (
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(cf. [41, Proof of Theorem 1.10.15]). This contradicts the choice of ¢;(z), whence the non-singular
points must be a dense subset of Im ¢; with respect to the subspace topology. Changes of charts
preserve non-singular points. Hence the same argument may be repeated to prove that the non-
singular points must be dense in the image of each cg, k € Z. In conclusion, we have to consider two
cases:

Case 1: The geodesic arc of [¢] (or equivalently the arc of [¢/]) contains a non-singular point. The
preparatory considerations show that the non-singular points are dense in the image of each lift.
Hence ’yk+1.V§(L’]z+1) = Vg/(L’lz+1) implies yx41 = idy,_,,Vk € Z as Imcy41 contains non-singular
points. We deduce v; = vy, whence § = ¢’ follows.

Case 2: The geodesic arc of [¢] (or equivalently the arc of [¢/]) is contained in the singular locus of
Q. We construct a representative of [¢] which coincides with §’. Apply Lemma with suitable
changes of charts to g and ¢’, such that (Vi, G, ¢x) # (Vj,Gj,v;) holds if k # j. Observe that
for each choice (x)rez € [z G the pairs {(id]l(k),r(k)[,nk)}kez induce another representative h
of [¢] by Lemmam Recall from the construction'? of h = (¢, {n o Ck}pez » Pnyvn) the following
details: As ny, € G, is defined on Vi, we may choose P, = P; and v}, is uniquely determined by the
identity

l/h(L£+1) = n];_ill/g(L]’z+l)/’7kj1 |77k, (dom VQ(L£+1)) . (F32)

We claim that it is possible to inductively (starting from 0 and consider the cases Ny and Zg
independently) choose the family (nx)rez, such that nrcr = ¢ and v, = vy, Begin with £ = 0.
Since dom v4(:? ;) = dom v (¢ ;) holds (and these maps are embeddings of orbifold charts by Step
“(c) = (d)”), by Proposition (d) there is 7o € Go with v4(¢Y ) = 70.v4 (:°4). The situation is
visualized in Figure [§] where we depict the lifts together with the embeddings of orbifold charts.

The isometry 7 fixes the geodesic ¢y pointwise on the set Im ¢y N cod vy (12,) since
Yocoli(o),r(—1)f = Y0V (2 1)e—1 i) r(-1)1 = Y4 (t21)e-1lu),r(—1)1 = Colji)r(-1)- (F.3.3)

Hence vg.co = ¢y follows. Set 1y = 751 and n_; = idy_, to obtain ng.co = ¢o and n_j.c1 =

c_1. Furthermore, (F3:2) yields v5,(:%;) = novg(:2)idy._, = 75 'vs(:%;) = vy (:2;). Proceed by
induction on k > 1: Consider k& > 1 such that for 0 <[ < k elements 7; € G| have been chosen with

- = ¢ and vp(t1_1) = mvg ()0 dom vy () = Var (H-1)-

We have to choose ny with ng.cy = cx and v (LF_|) = nkl/g(l’llz—l)nkj—ll|dOmV§(L§71)‘ Argue as in
the case k = 0: Since the embeddings of orbifold charts share the same domain, there is v € G
with v,.v5(F ) = vy (tF_,). A computation as (F.3.3)) shows that 7 fixes Im¢j, pointwise. Since

12Unfortunately, these details are not apparent from the mere statement of Lemma However, the proof of this
Lemma in |56, p. 21] readily entails these facts: Notice that we may choose P, = Pj, since we applied Lemma
to the pairs {(id]l(k),r(k)[7 n’“)}kez' Here the first embedding of each pair is an identity, whence we need not

restrict the elements of Py as in [56, p. 21]. Moreover, the identity (F.3.2)) then follows directly from the proof.
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Figure 8: Lifts of orbifold geodesics in the singular locus related by pairs of embeddings.

domuwy (i) is Gg_1-stable and ny_q fixes Im c,_1 pointwise, nx—1(domvy(ef_,)) = domvz(LF_,)
follows. Thus we consider the embedding of orbifold charts A == v5(tk_ )1 laom vy(k_)- Since
dom A\ = dom ygvy (1F_,), Proposition (d) yields a unique hy € Gy with A = hy.ye.vg (Lf_ ).
Define 7, via the formula 7y := (hg - )~ € Gi. We compute the following identities:

v (t5-1) = eV ()M 1 laomuy () = A = Mooty Ve (1) = vgr (1)

M- ck).r k-1 = Ve (1—1) © k1 uy.rb-1)1 = Vo (ko) M 21 -Chm1 k) e (1)

= V@(LZA) o Cr—1[ju(k)r(k=1)[ = CElJik),r(k—1)[-

Thus the isometry 7, fixes the geodesic ¢j pointwise on Im c; N cod vy (LZ_I), whence 7y, fixes all of
Im ¢, pointwise. We may thus inductively choose elements in G, k > 1, with the required properties.
Observe that by (R4) (c) and (d) of Definition v () | im k) = vi(F )71, Instead of
choosing 7y, for k < 0 such that g 105 (K )t | dom va (A = Ve (e¥1), it suffices to choose 7 with
nkVQ(LZH)nkjﬂdom ek, ) = vy (uf ). If we require that 7, fixes ¢; pointwise, then an argument
as in the case k > 1 allows us to inductively choose 7 for & < —1 with the desired properties.
Summing up, there is a family (nx)gez such that h = ¢’ holds, where h was constructed via Lemma
with respect to the pairs {(idjik),r(k)[, k) } yoppr By Lemma g~ h = g§'. Hence in both
cases [¢] = [g] = [¢'] = [¢/] follows from Definition O

The next lemma is a restatement of Lemma [£.1.9] together with a detailed proof. We shall
demonstrate that two orbifold geodesics whose initial vectors coincide in some point induce a well
defined join, i.e. an orbifold geodesic defined on the union of their respective domains.
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F.4 Lemma (Lemma [4.1.9) Consider an orbifold geodesic [¢] € Orb (Z,(Q,U)) together with an
orbifold geodesic [¢'] € Orb (Z',(Q,U)) such that for some xo € ZNT' their initial vectors coincide.
There is an unique orbifold geodesic [¢V ¢'] € Orb(ZUZ',(Q,U)) such that [¢V &)z = [¢] and
eV ez =1é.

Proof of Lemmal[4.1.9 As a first step, we construct an orbifold geodesic on Z UZ’, with the same
initial vector at xo: If Z C 7’ holds, we set [¢ V ¢'] := [¢]. If Z/ C T holds set [¢ V &] := [¢]'. For
these cases, the assertion follows from Proposition [4.1.8| (b). Interchanging the roles of [¢] and [¢/]
if necessary, it suffices to consider the case Z =|a, b[ and I’ =]z, y[ with a < z < b < y.

Fix to €]z, b with ty > z¢. We construct an orbifold geodesic by gluing several pieces: Choose
representatives ¢ = (¢, {cx}pcn , [Pz, ve]) of [¢] and ¢ = (¢, {c}.},cp, [Pe,ve]) of [¢] such that the
lifts are defined on charts, which are contained in Az and Az, respectively. Since the initial vectors
of [¢] and [¢'] at z( coincide, they coincide at each point in ZNZ' =]z, b] by Proposition By a
combination of Lemmal|F.3|(d) and Lemma[E.4.2] we may thus assume that there are ky, € A, 7y, € B
with o € domcy, = dom c’”0 Cla, b, such that Clmo = ¢, holds. Proposition implies that

c(t) t€la,b|

cvdilayl—Qt— {C (t) te€lz,yl

is a continuous map. Restricting the lifts (cf. proof of Lemma, we obtain representatives ¢[jq 4
induced by ¢ and ¢'[}4, ,; induced by ¢&":

The lifts of these mappings are precicsely the restrictions of lifts ¢y, ¢/ such that the intersections
dom cxN]a, to[ and dom c.Ntg,y[ are non-empty. As these intersections may coincide, we choose
new index sets R, S for these atlases. Since the domain atlases of ¢ and ¢’ are contained in Az an
Az, respectively, the domain atlas of ¢¢|j, 4,[ is contained in Aj, 4, and the domain atlas of &', o
is contained in Ay, . By construction, éljq o1 = (Cliato[ {9k} eer » [Flastols Via,to]]) 18 obtained by
restriction of all data to the open set ]a, tg, i.e: There is a map a: R — A such that the lifts satisfy
Ik = Ca(k)|dom CagmyNartol: Each element in P, 4, is constructed as the restriction of an element in
P; to an open subset of its domain and 14 ¢,[(ft|dom pnja,to]) = Ve(ut). As U, 1= dom Chy, N]a, to[# 0
holds, this chart is contained in the domain atlas W, ;. of é']a,tg[- Let 4: Uy, — dom Chy,y be the
inclusion of sets. Define change of charts as follows: For A € P, ;,; and (W, G, %) € Wiq 11 € Aja sl

Ao (illmmi(dom)\))—l if e ChUtO,W
/\t0 =q170A\ if Ae ChW,UtO

i 0 Ao (i|miNidom )1 if X € Chy, 1, .

Each of these changes of charts is well defined and A # p implies Ay, # pr,- Thus we may define

Vio(Aty) = V]a,to[(A). Furthermore, set Vto(iddomck,,o) = idv,%, v, (1) == idetO and v, (i71) =
idetO . We obtain a set of changes of charts

Cio == { Mo | A € Chusyy w UChw,,, UChu,, s W € Wiasor} U {iddomckto,i,i_ } .

Since P, 4, is a quasi-pseudogroup, the construction implies that C' := Cy, U P, 4, is a quasi-

pseudogroup which generates W (W, o[ U {(dom Chz s {iddom cns } ,dom Chz —]a, sup dom Chz [)})
to
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Our previous observations imply that for an atlas B € U containing the codomains of the lifts
{9} e g the map
Vo (A) it X e Cy,

ve: C = ¥(B),\— )
Vato[(A)  iF A€ Py

is well defined. Consider ¢,¢, := ([ja,supdom Chyg [ {dom gr}pcp U {tho} ,C,vc). The map vjq 4
satisfies property (R4) of Definition Together with the definition of A\, and v¢, this implies
that vc satisfies the property (R4). Hence é, 4, is a representative of an orbifold map such that each
lift is a geodesic defined on a chart in Aj, supdom ¢y, [ I other words, [€a.t,] 1s an orbifold geodesic
“0

whose initial vector at any point in its domain coincides with the corresponding one of [¢].

Note that in the domain atlas of é,4,, only (dom Chyy {iddom Chrg } ,domcy, —]a, sup dom Chyy b
intersects [tg, b[. We may thus interpret this chart as an “adhesive joint” .

to

Repeat the construction for ¢’: We obtain ¢, 5, := (¢[jinfdome,, ,y[> {7k} pegU {c’r } ,D,vp). Again
Tt

only the chart with domain dom¢;, = dome,  in its domain atlas intersects Ja, to].

We will glue the geodesics é,.1,, €1y, at their “adhesive joints” to obtain a geodesic on ]a,y[: With
the exception of idgom Cryy = idgom Cryy the quasi-pseudogroups C' and D contain only changes of
charts, whose domains are contained in ]a, tg] (for C) respectively in |to,y[ (for D). In particular,

cNnD= {iddom Chy, } holds, whence we obtain a disjoint union:

CUD = {idaom ey, }UC\ {idaomer,, }UD\ {idaom e, }-

Consider \,y € CUD. If A\ € C\ D and p € D such that the composition is defined on some
open subset of their domains, then p = idgom enyy € C. Vice versa, an analogous condition holds
for elements in D \ C. Thus any pair in (C'\ D) x (D \ C) may not be composed on any open
subset of their respective domains. As both sets C, D are quasi-pseudogroups, P* := C' U D is a
quasi-pseudogroup which generates the changes of charts of the atlas whose domains are given by

{domh,|s e S}U{gr |k € R} U {domc’% } Define

A) ifaxeD
V() = v () 1 <
ve(N)  ifaed.
As VC(idc;ctO) = idet0 = ide,O = VD(idetO) holds, the map v* is well defined. Since v¢ and
vp satisfy condition (R4), the same holds for v* with respect to the lifts {hs|s € S} U {cx, } U
{gr|k € R}. Hence ¢* := (cV ¢, {hs|s € S}U {ck, } U{gr |k € R}, P*,v*) is a representative of
an orbifold geodesic on |a, yl.
Observe that the initial vector of ¢* at zy coincides by construction with the initial vector of [¢] at
xo. As the initial vector of [¢] coincides with the one of [¢/] in zq, [¢ V &] := [¢*] satisfies the first
assertion by Proposition O
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