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Deutsche Zusammenfassung

Diffeomorphismengruppen von kompakten Mannigfaltigkeiten und deren Untergruppen bilden eine
wichtige Beispielklasse für unendlich dimensionale Liegruppen. Die Liegruppen-Struktur dieser
Gruppen ist wohl bekannt: Nach einem klassischen Resultat ist die Diffeomorphismengruppe einer
kompakten Mannigfaltigkeit eine unendlich dimensionale reguläre Liegruppe (vgl. [49]). Die alge-
braische Struktur dieser Gruppen wird in [5] beschrieben. Allgemeiner werden in [48] Liegruppen
Strukturen auf Diffeomorphismengruppen von parakompakten Mannigfaltigkeiten (sogar auf Man-
nigfaltigkeiten mit Ecken) konstruiert (siehe auch [27] für den Spezialfall der Gruppe Diff(Rn)).
Darüber hinaus werden in [44] die Diffeomorphismengruppen von Mannigfaltigkeiten mit der Struk-
tur einer regulären Liegruppe im Sinne des “covenient setting of analysis” versehen. An dieser
Stelle ist anzumerken, dass der “convenient setting of analysis” (siehe [44]) nicht äquivalent zu
der in dieser Arbeit verwendeten Differentialrechnung in lokal konvexen Räumen ist. Die Unter-
suchung der vorliegenden Dissertation basiert auf einem Konzept von Cr-Abbildungen zwischen
lokal konvexen Räumen, welches als Kellers Crc -Konzept bekannt ist [40] (vgl. [49], [23] und [32]
für einführende Darstellungen und siehe auch [6]). Das Ziel der vorliegenden Dissertation ist es, die
Resultate bezüglich der Liegruppen Struktur von Diffeomorphismengruppen von Mannigfaltigkeiten
auf Diffeomorphismengruppen von reduzierten parakompakten Orbifaltigkeiten zu verallgemeinern.

Orbifaltigkeiten wurden zuerst von Satake in [57] unter dem Namen V -Mannigfaltigkeit einge-
führt um Mannigfaltigkeiten zu verallgemeinern. Später wurden sie von Thurston in verschiedenen
Arbeiten verwandt (vgl. [58]). Thurston und seine Schüler prägten und verbreiteten den Ausdruck
“orbifold” (“Orbifaltigkeit”) für Objekte dieser Art. Eine Orbifaltigkeit sollte man sich konzep-
tionell als Mannigfaltigkeit mit “milden Singulariäten” vorstellen. Objekte mit der Struktur von
Orbifaltigkeiten entstehen in natürlicher Weise zum Beispiel in der symplektischen Geometrie, der
Physik und der algebraischen Geometrie (vgl. dazu den Überblick in [1]).
Es ist allgemein bekannt, dass Orbifaltigkeiten auf mindestens drei verschiedene Weisen definiert
werden können: Sie können über Atlanten von lokalen Karten, ähnlich einer Mannigfaltigkeit
beschrieben werden (siehe [1, 34, 51]). Außerdem korrespondieren Orbifaltigkeiten zu gewissen
Klassen von Liegruppoiden (siehe [51] oder den Überblicksartikel [50]). Schließlich können Orb-
ifaltigkeiten als Deligne-Mumford stacks aufgefasst werden (vgl. [46]). Nach Meinung des Autors
dieser Dissertation ist der erste Ansatz am besten geeignet um Methoden der Differentialgeome-
trie auf Orbifaltigkeiten anwenden zu können. Daher werden in dieser Arbeit Orbifaltigkeiten in
lokalen Karten beschrieben. Unglücklicherweise ist es von diesem Standpunkt her schwierig, Mor-
phismen von Orbifaltigkeiten zu definieren. In der Literatur existiert eine Vielzahl von Vorschlägen
zur Definition dieser Morphismen, als da wären die Chen-Ruan good map [15], die Moerdijk-Pronk
strong map [52], oder die Abbildungen welche in [7] definiert werden. Wie bereits bemerkt wurde,
sind Orbifaltigkeiten in lokalen Karten äquivalent zu gewissen Liegruppoiden. In der Kategorie
der Liegruppoide sind Morphismen jedoch wohl bekannt und gut verstanden. Daher sollten die
Morphismen von Orbifaltigkeiten den Morphismen in der Kategorie der Liegruppoide entsprechen,
jedoch in lokalen Karten definiert werden können. Die Orbifaltigkeitsabbildungen, welche von Pohl
in [56] eingeführt werden, erfüllen diese Forderungen genau, da sie modelliert wurden um Gruppoid-
Morphismen zu entsprechen.1 Darüber hinaus können diese Abbildungen in lokalen Karten in einer
1Von anderen Konzepten von Orbifaltigkeitsabbildungen wird in der Literatur ebenfalls behauptet, dass sie diese



Weise definiert werden, welche dem Autor besonders geeignet für Methoden der Differentialgeome-
trie und Lie-Theorie erscheint. Aus diesen Gründen verstehen wir unter Abbildungen von Orb-
ifaltigkeiten in der vorliegenden Arbeit Abbildungen im Sinne von Pohl [56] (siehe Anhang E für
eine kompakte Einführung zu diesen Abbildungen).
Um die Liegruppen-Struktur für die Diffeomorphismengruppe einer Orbifaltigkeit zu konstruieren
werden einige Hilfsmittel aus der Riemannschen Geometrie auf Orbifaltigkeiten benötigt. Die
benötigten Resultate sind bereits für sich interessant und beinhalten die folgenden Ergebnisse:
Wir betrachten Geodätische auf Riemannschen Orbifaltigkeiten und werden sehen, dass Diese ein-
deutig durch ihre Startwerte festgelegt werden. Diese Beobachtung ermöglicht die Konstruktion
einer Riemannschen Orbifaltigkeits-Exponentialabbildung [expOrb]. Diese Abbildung ist eine Abbil-
dung von Orbifaltigkeiten im Sinne von Pohl [56], welche das Konzept einer Riemannschen Expo-
nentialabbildung auf Riemannsche Orbifaltigkeiten verallgemeinert (vgl. [34] beziehungsweise [15]
für eine Darstellung von Riemannschen Exponentialabbildungen auf geodätisch vollständigen Orb-
ifaltigkeiten).

Die Riemannsche Exponentialabbildung auf einer Mannigfaltigkeit ist ein wichtiges Werkzeug
zur Konstruktion der Liegruppen-Struktur auf der Diffeomorphismengruppe einer Mannigfaltigkeit
(vgl. [49]). Analog erlaubt die Riemannsche Orbifaltigkeits-Exponentialabbildung diesen Ansatz
fortzuführen: Wir versehen die Diffeomorphismengruppe einer parakompakten reduzierten Orb-
ifaltigkeit mit der Struktur einer unendlich dimensionalen lokal konvexen Liegruppe im Sinne von
[55]. Präziser gefasst umfassen die Ergebnisse dieser Arbeit den folgenden Satz (siehe Theorem
5.2.4):

Satz A Die Diffeomorphismengruppe DiffOrb (Q,U) einer parakompakten reduzierten Orbifaltigkeit
(Q,U) kann in eindeutiger Weise zu einer Liegruppe gemacht werden, so dass das Folgende gilt:
Seien ρ eine Riemannsche Orbifaltigkeits-Metrik auf (Q,U) und [expOrb] die zugehörige Riemannsche
Orbifaltigkeits-Exponentialabbildung. Dann existiert eine offene Nullumgebung Hρ im Raum der
kompakt getragenen Schnitte in das Tangentialorbibündel, so dass

E : Hρ → DiffOrb (Q,U) , [σ̂] 7→ [expOrb] ◦ [σ̂]

einen C∞-Diffeomorphismus auf eine offene Untermannigfaltigkeit von DiffOrb (Q,U) induziert.
Diese Eigenschaft wird dann von jeder Riemannschen Orbifaltigkeits-Metrik auf (Q,U) erfüllt. Ist
(Q,U) eine kompakte Orbifaltigkeit, dann ist die Liegruppe DiffOrb (Q,U) eine Fréchet-Liegruppe.

Dieses Ergebnis verallgemeinert die klassische Konstruktion der Liegruppen-Struktur für die Dif-
feomorphismengruppe Diff(M) einer parakompakten Mannigfaltigkeit. Für eine solche Mannig-
faltigkeit werden Untergruppen der Liegruppe Diff(M) betrachtet, deren Elemente außerhalb einer
gegebenen kompakten Teilmenge mit der Identität übereinstimmen. Es ist bekannt, dass diese Un-
tergruppen Lie-Untergruppen von Diff(M) sind (vgl. [26, Section 14]). In Kapitel 5.2 beweisen wir
ein ähnliches Resultat für Diffeomorphismen von Orbifaltigkeiten, welches aus Theorem A folgt:

Eigenschaften teilen, vgl. [1, Section 2.4]. Ein Gegenbeispiel zu dieser Behauptung befindet sich jedoch in [56].



Satz B Sei (Q,U) eine parakompakte reduzierte Orbifaltigkeit. Für jede kompakte Teilmenge K
von Q definieren wir die Gruppe DiffOrb (Q,U)K aller Diffeomorphismen der Orbifaltigkeit, welche
außerhalb von K mit der Identität der Orbifaltigkeit übereinstimmen. Sei DiffOrb (Q,U)c die Gruppe
aller Diffeomorphismen der Orbifaltigkeit, welche außerhalb irgend einer kompakten Teilmenge mit
der Identität der Orbifaltigkeit übereinstimmen. Dann gilt das Folgende:

(a) Die Gruppe DiffOrb (Q,U)c ist eine offene normale Lie-Untergruppe von DiffOrb (Q,U).
(b) Für jede kompakte Teilmenge K von Q existiert eine kompakte Menge L ⊇ K, so dass

DiffOrb (Q,U)L eine abgeschlossene Lie-Untergruppe von DiffOrb (Q,U) ist. Der Modellraum
der abgeschlossenen Lie Untergruppe DiffOrb (Q,U)L ist der Raum der Schnitte in das Tan-
gentialorbibündel, welche außerhalb von L verschwinden.

Ist (Q,U) eine triviale Orbifaltigkeit (d.h. eine Mannigfaltigkeit), so kann man in (b) immer K = L
wählen.

An dieser Stelle ist anzumerken, dass Liegruppen-Strukturen auf der Diffeomorphismengruppe einer
Orbifaltigkeit bereits von Borzellino und Brunsden untersucht wurden. In [7] und der nachfolgenden
Arbeit [8] wurde die Diffeomorphismengruppe einer kompakten Orbifaltigkeit mit der Struktur einer
Fréchet-Liegruppe im “convenient setting” versehen. Dem Autor ist nicht bekannt, ob die Abbildun-
gen von Orbifaltigkeiten welche in [7] betrachtet werden, äquivalent zu der Klasse von Abbildungen
ist, welche in der vorliegenden Arbeit betrachtet werden. Falls beide Klassen äquivalent wären, so
folgen die Ergebnisse betreffend der Liegruppen-Struktur der Diffeomorphismengruppe aus [7,8] di-
rekt aus Satz A. Dies folgt aus der bekannten Tatsache, dass in Fréchet-Räumen beide Begriffe von
“glatten Abbildungen” übereinstimmen (vgl. [40] und [44, Theorem 4.11 (a)]). Fréchet-Liegruppen
im Sinne von [55] sind also “convenient Fréchet-Liegruppen” . Allerdings ist zu bemerken, dass die
Darstellung in [7] einige ernstzunehmende Fehler enthält (siehe Bemerkung 5.2.9 für weitere Details
zu diesem Thema).
Wir merken an, dass in der Gruppoid-Formulierung von Orbifaltigkeiten, Topologien für Räume von
Abbildungen von Orbifaltigkeiten bereits untersucht wurden. Chen konstruiert in [14] eine Topolo-
gie auf dem Raum der Abbildungen von Orbifaltigkeiten, deren Definitionsbereich eine kompakte
Orbifaltigkeit ist. Mit der dort betrachteten Topologie wird dieser Raum eine Banach-Orbifaltigkeit
(vergleiche außerdem ähnliche Resultate in [35]). Die Darstellung in der vorliegenden Arbeit ist
jedoch unabhängig von diesen Ergebnissen.

Nach der Konstruktion der Liegruppe DiffOrb (Q,U) charakterisieren wir die zu dieser Gruppe
gehörige Liealgebra. In diesem Zusammenhang ist es erhellend, sich zunächst an den Spezialfall der
Diffeomorphismengruppe Diff(M) einer kompakten MannigfaltigkeitM zu erinnern. In [49] beweist
Milnor, dass die Liealgebra zu Diff(M) der Raum der Vektorfelder X (M) auf M ist, wobei die
Lie Klammer durch den negativen Kommutator von Vektorfeldern gegeben ist. Es zeigt sich, dass
ein analoges Ergebnis ebenfalls für die Liealgebra zu der Liegruppe DiffOrb (Q,U) gilt. Um dieses
Ergebnis zu verstehen, benötigen wir die folgenden Fakten:
Eine Abbildung von Orbifaltigkeiten [σ̂], welche ein Schnitt in das Tangentialorbibündel ist, nen-
nen wir Orbisection. Bezüglich einer Karte der Orbifaltigkeit (Q,U) induziert jede Orbisection
ein eindeutig bestimmtes Vektorfeld, den so genannten kanonischen Lift. Spezieller korrespondiert
jede Orbisection zu einer eindeutig bestimmten Familie von Vektorfeldern (vgl. Kapitel 3 für weit-
ere Details). Der Modellraum der Liegruppe DiffOrb (Q,U) ist der Raum der kompakt getragenen



Orbisections XOrb (Q)c. Wir können nun das folgende Ergebnis bezüglich der zu der Diffeomorphis-
mengruppe DiffOrb (Q,U) assoziierten Liealgebra formulieren (Theorem 5.3.1):

Satz C Die Liealgebra zu DiffOrb (Q,U) ist (XOrb (Q)c , [ ·, · ]). Hierbei ist die Lie-Klammer [ ·, · ]
wie folgt definiert:
Für beliebige [σ̂], [τ̂ ] ∈ XOrb (Q)c ist die Lie-Klammer [ [σ̂ ] , [τ̂ ]] die eindeutig bestimmte kompakt
getragene Orbisection, deren kanonischer Lift auf der Orbifaltigkeitskarte (U,G,ϕ) der negative
Kommutator in X (U) der kanonischen Lifte σU und τU ist.

Schließlich werden Regularitäts-Eigenschaften der Liegruppe DiffOrb (Q,U) diskutiert. Zu diesem
Zweck sei an die Definition einer regulären Liegruppe erinnert:
Es sei G eine Liegruppe, welche auf einem lokal konvexen Raum modelliert ist und r ∈ N0 ∪ {∞}.
Bezeichne mit 1 das Einselement von G. Mit Hilfe der Tangentialabbildung der Rechtsmultiplikation
ρg : G → G, x 7→ xg mit g ∈ G definieren wir v.g := T1ρg(v) ∈ TgG für v ∈ T1(G) =: L(G). Die
Liegruppe G heißt nach [17], [31] und [32] Cr-regulär, falls das Anfangswertproblem{

η′(t) = γ(t).η(t)

η(0) = 1

für jede Cr-Kurve γ : [0, 1] → L(G) eine (notwendigerweise eindeutige) Cr+1-Lösung Evol(γ) :=
η : [0, 1]→ G besitzt und die Abbildung

evol : Cr([0, 1], L(G))→ G, γ 7→ Evol(γ)(1)

glatt ist. Ist G eine Cr-reguläre Liegruppe und r ≤ s, so ist G auch Cs-regulär. Eine C∞-reguläre
Liegruppe G wird auch regulär (im Sinne von Milnor) genannt – die Eigenschaft wurde zuerst in [49]
definiert. Jede endlich dimensionale Liegruppe ist C0-regulär (vgl. [55]). Verschiedene wichtige
Ergebnisse der unendlich dimensionalen Lie Theorie sind nur für reguläre Liegruppen verfügbar
(siehe [49], [55], [31], vgl. auch [44] und die Verweise in diesen Arbeiten). Wir beweisen das folgende
Resultat (Theorem 5.4.11):

Satz D Ist (Q,U) eine Orbifaltigkeit, die dem zweiten Abzählbarkeitsaxiom genügt, so ist die
Liegruppe DiffOrb (Q,U) eine Ck-reguläre Liegruppe für jedes k ∈ N0 ∪ {∞}. Insbesondere ist diese
Liegruppe dann regulär im Sinne von Milnor.

Man beachte, dass im Allgemeinen Orbifaltigkeiten in der vorliegenden Arbeit nicht dem zweiten
Abzählbarkeitsaxiom genügen müssen. Allerdings wird die Zweitabzählbarkeit der Orbifaltigkeit
benötigt, um zu zeigen, dass die Evolutions-Abbildung evol glatt ist. Es ist bekannt, dass die
Argumente, die dieses Ergebnis in der vorliegenden Arbeit sicherstellen nicht auf Orbifaltigkeiten
verallgemeinert werden können, welche nicht das zweite Abzählbarkeitsaxiom erfüllen. Aus diesem
Grund ergibt sich folgende Frage:



Offenes Problem: Sei (Q,U) eine parakompakte reduzierte Orbifaltigkeit, welche nicht das
zweite Abzählbarkeitsaxiom erfüllt. Ist die Liegruppe DiffOrb (Q,U) eine Cr-reguläre Liegruppe für
ein r ∈ N0 ∪ {∞}?

Die vorliegende Arbeit beginnt mit einer kurzen Einführung in unendlich dimensionale Analy-
sis, Orbifaltigkeiten und deren Eigenschaften (Kapitel 1). Unser Ziel ist es eine möglichst in sich
geschlossene Darstellung von Orbifaltigkeiten und Abbildungen von Orbifaltigkeiten zu geben. Da-
her stellt Anhang E die wichtigsten Informationen zu den Abbildungen von Orbifaltigkeiten im Sinne
von [56] zusammen. Die Darstellung vermeidet jedoch die Beziehung zu Abbildungen von Grup-
poiden, welche die Definitionen ursprünglich motiviert hat. Die übrigen Kapitel der vorliegenden
Arbeit sind wie folgt organisiert:
In den Kapiteln 2 und 3 werden spezielle Klassen von Abbildungen von Orbifaltigkeiten im Rah-
men der Abbildungen aus [56] diskutiert. Unter anderem werden Diffeomorphismen von Orb-
ifaltigkeiten, Zerlegungen der Eins und Schnitte in das Tangentialorbibündel betrachtet. Danach
werden Werkzeuge aus der Riemannschen Geometrie auf Orbifaltigkeiten entwickelt um den Be-
weis der zentralen Aussagen der Arbeit vorzubereiten. Die bereits vorgestellten Resultate wer-
den schließlich in Kapitel 5 behandelt. Abschließend betrachten wir Gruppen von äquivarianten
Diffeomorphismen DiffG(Rn), welche zu gewissen “good orbifolds“, d.h. Orbifaltigkeiten mit einer
globalen Karte, gehören. Die in diesen Beispielen konstruierten Liegruppen korrespondieren zu
abgeschlossenen Lie Untergruppen von Diff(Rn), wobei wir diese Gruppe mit der in [27] konstru-
ierten Liegruppen-Struktur versehen.
Einige Anhänge enthalten weniger einführendes Material. Die in diesen Anhängen erzielten Ergeb-
nisse sollten bei einem ersten Lesen der Arbeit zunächst ohne Beweis studiert werden. Ihre Darstel-
lung im Hauptteil der Arbeit hätte von der eigentlichen Argumentationslinie abgelenkt.

Die vorliegende Fassung entspricht, bis auf die von den Gutachtern gewünschten Änderungen, der
zur Begutachtung eingereichten Fassung.





Introduction and Statement of Results

Diffeomorphism groups of compact manifolds and their subgroups are prime examples of infinite
dimensional Lie groups. There are many well known results concerning the Lie group structure of
these groups; e.g., a classical result states that the diffeomorphism group of a compact manifold is an
infinite dimensional regular Lie group (see [49]). For the algebraic structure of these groups, see [5].
More generally, Lie group structures on diffeomorphism groups of paracompact manifolds (even with
corners) were constructed in [48] (also cf. [27] for the special case Diff(Rn)). Furthermore, in [44]
the diffeomorphism groups of manifolds were endowed with the structure of a regular Lie group in
the “convenient setting of analysis”. We remark that the “convenient setting of analysis” (see [44]) is
inequivalent to the setting of analysis adopted in this paper. Our studies are based on a concept of
Cr-maps between locally convex spaces known as Keller’s Crc -theory [40] (see [49], [23] and [32] for
streamlined expositions, cf. also [6]). The present paper generalizes the results on diffeomorphism
groups of manifolds to diffeomorphism groups of reduced paracompact orbifolds.

Orbifolds were first introduced by Satake in [57] as V -manifolds to generalize the concept of a
manifold. Later on they appear in the works of Thurston (cf. [58]), who popularized the term
“orbifold”. One might think of an orbifold as a manifold with “mild singularities”. Objects with
orbifold structure arise naturally, for example in symplectic geometry, physics and algebraic geom-
etry (cf. the survey in [1]). It is well known that there are at least three different ways to define an
orbifold: Orbifolds may be described by atlases of local charts akin to a manifold (see [1, 34, 51]).
Furthermore, orbifolds correspond to special classes of Lie groupoids (see [51] or the survey [50]).
Finally one might think of them as Deligne-Mumford stacks (cf. [46]). The author thinks that the
first approach is suited best to apply methods from differential geometry to orbifolds. Hence in
the present paper we define orbifolds in local charts. Unfortunately, this point of view makes it
difficult to define morphisms of orbifolds. The literature proposes a variety of notions for these
morphisms, e.g. the Chen-Ruan good map [15], the Moerdijk-Pronk strong map [52], or the maps
in [7]. However, orbifolds in local charts are equivalent to certain Lie groupoids, whose morphisms
are well understood objects. Thus orbifold morphisms should correspond to a class of Lie groupoid
morphisms. The orbifold maps introduced by Pohl in [56] satisfy these requirements, since they
were modeled to be equivalent to groupoid morphisms.2 Furthermore these maps allow a charac-
terization in local charts, which is amenable to methods of differential geometry and Lie theory.
Therefore in the present paper, maps of orbifolds will be orbifold maps in the sense of Pohl [56] (for
a comprehensive introduction to these maps see Appendix E).
To construct the Lie group structure on the diffeomorphism group of an orbifold we have to develop
several tools from Riemannian geometry on orbifolds. These results are of interest in their own right
and include the following:
We discuss geodesics on Riemannian orbifolds and prove that they are uniquely determined by their
initial values. Then a detailed construction for a Riemannian orbifold exponential map [expOrb] is
provided. This map is an orbifold morphism in the sense of Pohl [56], which generalizes the con-
cept of a Riemannian exponential map to Riemannian orbifolds (cf. [34] and [15], respectively for
Riemannian exponential maps on geodesically complete orbifolds).
2Other concepts of orbifold maps are also widely believed to satisfy similar properties, cf. [1, Section 2.4]. However
in [56] a counterexample to these claims may be found.



The Riemannian exponential map on a manifold may be used to construct the Lie group structure
on the diffeomorphism group of the manifold (cf. [49]). The Riemannian orbifold exponential map
allows us to follow this line of thought: We endow the diffeomorphism group of a paracompact
reduced orbifold with the structure of an infinite dimensional locally convex Lie group in the sense
of [55]. More precisely the main results subsume the following theorem (cf. Theorem 5.2.4):

Theorem A The diffeomorphism group DiffOrb (Q,U) of a paracompact reduced orbifold (Q,U) can
be made into a Lie group in a unique way such that the following is satisfied:
For some Riemannian orbifold metric ρ on (Q,U), let [expOrb] be the Riemannian orbifold exponen-
tial map. There exists an open zero-neighborhood Hρ in the space of compactly supported sections
of the tangent orbibundle such that

E : Hρ → DiffOrb (Q,U) , [σ̂] 7→ [expOrb] ◦ [σ̂]

induces a well defined C∞-diffeomorphism onto an open submanifold of DiffOrb (Q,U). This condi-
tion is then satisfied for every Riemannian orbifold metric on (Q,U). If (Q,U) is a compact orbifold,
then the Lie group DiffOrb (Q,U) is a Fréchet-Lie group.

This result generalizes the classical construction of a Lie group structure on the diffeomorphism
group Diff(M) of a paracompact manifold. For such a manifold, we may consider subgroups of
Diff(M), whose elements coincide outside of a given compact set with the identity. It is known that
these subgroups are Lie subgroups of Diff(M) (cf. [26, Section 14]). Section 5.2 contains a similar
result for diffeomorphisms of orbifolds, which is a consequence of Theorem A:

Theorem B Let (Q,U) be a paracompact reduced orbifold. For each compact subset K of Q we
define the group DiffOrb (Q,U)K of all orbifold diffeomorphisms which coincide off K with the iden-
tity morphism of the orbifold. Let DiffOrb (Q,U)c be the group of all orbifold diffeomorphisms which
coincide off some compact set with the identity morphism of the orbifold. Then the following holds:

(a) The group DiffOrb (Q,U)c is an open normal Lie subgroup of DiffOrb (Q,U).
(b) For each compact subset K of Q, there is a compact set L ⊇ K such that DiffOrb (Q,U)L is a

closed Lie subgroup of DiffOrb (Q,U). The closed Lie subgroup DiffOrb (Q,U)L is modeled on
the space of sections in the tangent orbibundle which vanish off L.

If (Q,U) is a trivial orbifold (i.e. a manifold), one may always choose K = L in (b).

We remark that Lie group structures for diffeomorphism groups of orbifolds were already considered
by Borzellino and Brunsden. In [7] and the follow up [8], the diffeomorphism group of a compact
orbifold has been turned into a convenient Fréchet-Lie group. The author does not know whether
the orbifold morphisms introduced in [7] are equivalent to the class of orbifold maps considered in
the present paper. If both notions were equivalent, the results of [7, 8] concerning the Lie group
structure of the diffeomorphism group are subsumed in Theorem A. This follows from the fact that
in the Fréchet setting both notions of “smooth maps” coincide (cf. [40] and [44, Theorem 4.11 (a)]).



Hence Fréchet Lie groups in the sense of [55] and “convenient Fréchet Lie groups” coincide. However,
we have to point out that the exposition in [7] contains several major errors (see Remark 5.2.9 for
further information on this topic).
We also mention that in the groupoid setting, topologies for spaces of orbifold maps have been
considered. Chen constructs in [14] a topology on the space of orbifold morphisms whose domain is
a compact orbifold, turning the space into a Banach orbifold (also cf. similar results in [35]). The
exposition of the present paper is independent of these results.

After constructing the Lie group DiffOrb (Q,U), we determine the Lie algebra associated to this
group. It is instructive to recall the special case of the diffeomorphism group Diff(M) of a compact
manifold M . Milnor proves in [49] that the Lie algebra associated to Diff(M) is the space of vector
fields X (M) on M , whose Lie bracket is the negative of the bracket product of vector fields. It
turns out that an analogous result holds for the Lie algebra of the Lie group DiffOrb (Q,U). To
understand the result we need the following facts:
A map of orbifolds [σ̂], which is a section of the tangent orbibundle is called an orbisection. With
respect to an orbifold chart of Q, each orbisection induces a unique vector field on the chart domain,
called its canonical lift. In particular, each orbisection corresponds to a unique family of vector
fields (cf. Section 3 for details). By construction, the local model for the Lie group DiffOrb (Q,U)
is the space of compactly supported orbisections XOrb (Q)c. We are now in a position to formulate
the following result on the Lie algebra of the diffeomorphism group DiffOrb (Q,U) (Theorem 5.3.1):

Theorem C The Lie algebra of DiffOrb (Q,U) is given by (XOrb (Q)c , [ ·, · ]). Here the Lie bracket
[ ·, · ] is defined as follows:
For arbitrary [σ̂], [τ̂ ] ∈ XOrb (Q)c, their Lie bracket [ [σ̂ ] , [τ̂ ]] is the unique compactly supported
orbisection whose canonical lift on an orbifold chart (U,G,ϕ) is the negative of the Lie bracket in
X (U) of their canonical lifts σU and τU .

Finally we discuss regularity properties of the Lie group DiffOrb (Q,U). To this end, recall the notion
of regularity for Lie groups:
Let G be a Lie group modeled on a locally convex space, with identity element 1, and r ∈ N0∪{∞}.
We use the tangent map of the right translation ρg : G → G, x 7→ xg by g ∈ G to define v.g :=
T1ρg(v) ∈ TgG for v ∈ T1(G) =: L(G). Following [17], [31] and [32], G is called Cr-regular if the
initial value problem {

η′(t) = γ(t).η(t)

η(0) = 1

has a (necessarily unique) Cr+1-solution Evol(γ) := η : [0, 1]→ G for each Cr-curve γ : [0, 1]→ L(G),
and the map

evol : Cr([0, 1], L(G))→ G, γ 7→ Evol(γ)(1)

is smooth. If G is Cr-regular and r ≤ s, then G is also Cs-regular. A C∞-regular Lie group G is
called regular (in the sense of Milnor) – a property first defined in [49]. Every finite dimensional Lie
group is C0-regular (cf. [55]). Several important results in infinite-dimensional Lie theory are only
available for regular Lie groups (see [49], [55], [31], cf. also [44] and the references in these works).
We prove the following result (Theorem 5.4.11):



Theorem D For a second countable orbifold, the Lie group DiffOrb (Q,U) is Ck-regular for each
k ∈ N0 ∪ {∞}. In particular this Lie group is regular in the sense of Milnor.

Notice that in general the orbifolds in the present paper are not assumed to be second countable.
However our methods require second countability of the orbifold to prove that the evolution map
evol is smooth. It is known that the approach outlined in the present paper may not be adapted to
orbifolds which are not second countable. Hence we pose the following question:

Open Problem: Let (Q,U) be a paracompact reduced orbifold which is not second countable. Is
the Lie group DiffOrb (Q,U) a Cr-regular Lie group for some r ∈ N0 ∪ {∞}?

The present article commences with a brief introduction to infinite dimensional calculus, orbifolds
and their properties (Section 1). Our goal is to present a mostly self contained exposition of orbifolds
and their morphisms. In particular, Appendix E contains all necessary information about orbifold
maps in the sense of [56]. However, the exposition avoids references to the groupoid morphisms
after which these maps are modeled. The thesis is organized as follows:
In Sections 2 and 3 classes of orbifold maps are discussed in the setting of [56]. These include
orbifold diffeomorphisms, partitions of unity and sections of the tangent orbibundle. Afterwards,
we consider Riemannian geometry on orbifolds and develop important tools employed in the proof
of the central results of this work. The main results of the thesis are contained in Section 5. As an
application we consider groups of equivariant diffeomorphisms DiffG(Rn) associated to certain good
orbifolds (i.e. orbifolds with a global chart). The Lie group structures obtained in these examples
correspond to certain closed Lie subgroups of Diff(Rn) (considered as the Lie group constructed
in [27]).
The less introductory material contained in the appendices should be taken on faith on a first
reading. The presentation of this material in the text would have distracted from the main line of
thought.

This version of the thesis is, up to corrections required by the reviewers, identical to the version of
the thesis submitted for reviewing.



1. Preliminaries and Notation

1.0.1 Conventions In this thesis, we work exclusively over the field R of real numbers. All topo-
logical spaces will be assumed to be Hausdorff. We write N := {1, 2, . . .} and N0 := N ∪ {0}.

1.1. Differential calculus in infinite dimensional spaces

Basic references for differential calculus in locally convex spaces are [6, 23, 24, 29, 40]. Basic facts
on infinite dimensional manifolds are compiled in Appendix C.1. For the reader’s convenience, we
recall various definitions and results:

1.1.1 Definition Let E,F be locally convex spaces, U ⊆ E be an open subset, f : U → F a
map and r ∈ N0 ∪ {∞}. If it exists, we define for (x, h) ∈ U × E the directional derivative
df(x, h) := Dhf(x) := limt→0 t

−1(f(x+ th)− f(x)). We say that f is Cr if the iterated directional
derivatives

d(k)f(x, y1, . . . , yk) := (DykDyk−1
· · ·Dy1f)(x)

exist for all k ∈ N0 such that k ≤ r, x ∈ U and y1, . . . , yk ∈ E and define continuous maps
d(k)f : U × Ek → F . If f is C∞ it is also called smooth. We abbreviate df := d(1)f .

1.1.2 Remark If E1, E2, F are locally convex spaces and U ⊆ E1, V ⊆ E2 open subsets together
with a C1-map f : U ×V → F , then one may compute the partial derivative d1f with respect to E1.
It is defined as d1f : U ×V ×E1 → F, d1f(x, y; z) := limt→0 t

−1(f(x+ tz, y)− f(x, y)). Analogously
one defines the partial derivative d2f with respect to E2. The linearity of df(x, y, ·) implies the
so-called Rule on Partial Differentials for (x, y) ∈ U × V, (h1, h2) ∈ E1 × E2:

df(x, y, h1, h2) = d1f(x, y;h1) + d2f(x, y;h2). (1.1.1)

By [23, Lemma 1.10], f : U × V → F is C1 if and only if d1f and d2f exist and are continuous.

1.1.3 Definition (Differentials on non-open sets)

(a) The set U ⊆ E is called locally convex if every x ∈ U has a convex neighborhood V in U .
(b) Let U ⊆ E be a locally convex subset with dense interior. A continuous mapping f : U → F

is called Cr if f |U◦ : U◦ → F is Cr and each of the maps d(k)(f |U◦) : U◦ × Ek → F admits
a (unique) continuous extension d(k)f : U × Ek → F . If U ⊆ R and f is C1, we obtain a
continuous map f ′ : U → E, f ′(x) := df(x)(1). We shall write ∂

∂xf(x) := f ′(x). In particular
if f is of class Cr, we define recursively ∂k

∂xk
f(x) = ( ∂k−1

∂xk−1 f)′(x) for k ∈ N0 such that k ≤ r,
where f (0) := f .

Using these definitions one may define infinite dimensional manifolds as usual. We refer to Ap-
pendix C.1 for definitions and comments on the notation used. To discuss regularity properties of
Lie groups, the notion of Cr,s-mappings is useful.
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1.1.4 Definition (Cr,s-mappings) Let E1, E2 and F be locally convex spaces, U and V open subsets
of E1 and E2, respectively, and r, s ∈ N0 ∪ {∞}. A mapping f : U × V → F is called a Cr,s-map if
for all i, j ∈ N0 such that i ≤ r, j ≤ s, the iterated directional derivative

d(i,j)f(x, y, w1, . . . , wi, v1, . . . , vj) := (D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f)(x, y)

exists for all x ∈ U, y ∈ V,w1, . . . , wi ∈ E1, v1, . . . , vj ∈ E2 and yields continuous mappings

d(i,j)f : U × V × Ei1 × E
j
2 → F,

(x, y, w1, . . . , wi, v1, . . . , vj) 7→ (D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f)(x, y).

Again this concept may be extended to maps on non-open domains with dense interior:

1.1.5 Definition Let E1, E2 and F be locally convex spaces. Consider locally convex subsets
with dense interior U of E1 and V of E2, and r, s ∈ N0 ∪ {∞}. We say that a continuous map
f : U × V → F is a Cr,s-map, if f |U◦×V ◦ : U◦ × V ◦ → F is a Cr,s-map and for all i, j ∈ N0 such
that i ≤ r, j ≤ s, the map

d(i,j)(f |U◦×V ◦) : U◦ × V ◦ × Ei1 × E
j
2 → F

admits a continuous extension d(i,j)f : U × V × Ei1 × E
j
2 → F .

For further results and details on the calculus of Cr,s-maps we refer to [2].

1.1.6 Definition Let U, V be locally convex subsets with dense interior of locally convex spaces E1

and E2, respectively, and let F be a locally convex space. For r, s ∈ N0 ∪ {∞}, we define the spaces

Cr(U,F ) := {f : U → F | f is a mapping of class Cr}
Cr,s(U × V, F ) := {f : U × V → F | f is a mapping of class Cr,s} .

Furthermore, we define C(U,F ) := C0(U,F ) and endow Cr(U,F ) with the compact-open Cr-
topology (see Section C.2)

In the following, we let Diffr(M) be the group of Cr-diffeomorphisms from a Cr-manifold M to
itself for r ∈ N0 ∪ {∞}. To shorten the notation, we write Diff(M) := Diff∞(M) if M is a smooth
manifold.
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1.2. Orbifolds I: Moerdijk’s definition

In this section, we introduce orbifolds as in the works of Moerdijk et al. Our exposition follows [51],
but we slightly change the definition of orbifold charts (see Remark 1.2.4).

1.2.1 Definition (Orbifold charts) Let Q be a topological space. An orbifold chart of dimension
n ≥ 0 is a triple (U,G, φ), where U is a connected smooth paracompact n-dimensional manifold
without boundary, G is a finite subgroup of Diff(U) and φ : U → Q is an open map which factors
to a homeomorphism on the orbit space U/G→ φ(U).

If (U,G, φ) is an orbifold chart on Q and S an open G-stable subset of U , then {g|S : g ∈ GS}
is a group isomorphic to GS by Newman’s Theorem B.2.1. Thus by abuse of notation the triple
(S,GS , φ|S) is again an orbifold chart called the restriction of (U,G, φ) on S.
Let (V,H, ψ) be another orbifold chart on Q. An embedding λ : (V,H, ψ) → (U,G, φ) of orbifold
charts is a topological embedding λ : V → U which is an étale map3 that satisfies φ ◦ λ = ψ.

We say that two orbifold charts (U,G, φ) and (V,H, ψ) of dimension n on Q are compatible if for
any z ∈ φ(U) ∩ ψ(V ), there exist an orbifold chart (W,K, θ) on Q with z ∈ θ(W ) and embeddings
between orbifold charts λ : (W,K, θ)→ (U,G, φ) and µ : (W,K, θ)→ (V,H, ψ).

1.2.2 Proposition ([51, Proposition 2.12]) Let Q be a topological space.

(a) For any embedding λ : (V,H, ψ) → (U,G, φ) between orbifold charts on Q, the image λ(V ) is
a G-stable open subset of U , and there is a unique isomorphism λ : H → Gλ(V ) ≤ G for which
λ(hx) = λ(h)λ(x).

(b) The composition of two embeddings between orbifold charts is an embedding between orbifold
charts.

(c) For any orbifold chart (U,G, φ), any diffeomorphism g ∈ G is an embedding of (U,G, φ) into
itself, and g(g′) = gg′g−1.

(d) If λ, µ : (V,H, φ)→ (U,G, φ) are two embeddings between the same orbifold charts, there exists
a unique g ∈ G with λ = g ◦ µ.

Proof. The proof for [51, Proposition 2.12] carries over verbatim to finite dimensional connected
manifolds without boundary.

1.2.3 Definition (Orbifolds I) An orbifold atlas of dimension n for a topological space Q is a set
of pairwise compatible orbifold charts

U := {(Ui, Gi, φi) | i ∈ I}

of dimension n on Q such that
⋃
i∈I φi(Ui) = Q. Two orbifold atlases of Q are equivalent if their

union is an orbifold atlas. An orbifold of dimension n is a pair (Q,U), where Q is a paracompact
Hausdorff topological space and U is an equivalence class of orbifold atlases of dimension n on Q.
3i.e. for each p in the domain of λ, the tangent map Tpλ is an isomorphism. On occasion these maps will also be
called local diffeomorphisms.
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1.2.4 Remark The definition of an orbifold does not exactly follow the exposition in [51]. We have
to mention two changes:

(a) For an orbifold chart (U,G, π) as defined in this section, the chart domain U is a finite di-
mensional connected and paracompact manifold. In [51] one is only allowed to choose U as an
open subset of Rn. However, every orbifold in our sense uniquely determines one in the sense
of [51]. This fact follows from Lemma B.2.2: Let (U,G, π) be an orbifold chart as in Defi-
nition 1.2.1. Then Lemma B.2.2 allows the construction of an orbifold chart (Vx, GVx , π|Vx)
for x ∈ U , where Vx is diffeomorphic to an open subset of Rn. Hence the orbifolds defined in
Definition 1.2.3 admit an orbifold atlas whose chart domains are open subsets of Rn.

(b) Contrary to the treatment in [51], we do not require the topological space Q to be second
countable. We do not need second countability of Q for most of this work, whence we chose
to omit it here (also compare Remark E.2.6).

1.3. Orbifolds II: Haefliger’s definition

We recall an equivalent definition of orbifolds as outlined in [34]:

1.3.1 Definition (Orbifolds II, [34]) Let Q be a paracompact Hausdorff topological space.

(a) Let n be in N0. A (reduced) orbifold chart of dimension n on Q is a triple (V,G, ϕ) where V
is a connected paracompact n-dimensional manifold without boundary, G is a finite subgroup
of Diff(V ), and ϕ : V → Q is a map with open image ϕ(V ) that induces a homeomorphism
from V/G to ϕ(V ). In this case, (V,G, ϕ) is said to uniformize ϕ(V ).

(b) Two reduced orbifold charts (V,G, ϕ), (W,H,ψ) on Q are called compatible if for each pair
(x, y) ∈ V ×W with ϕ(x) = ψ(y) there are open connected neighborhoods Vx of x and Wy

of y and a C∞-diffeomorphism h : Vx → Wy such that ψ ◦ h = ϕ|Vx . The map h is called a
change of charts.

(c) A reduced orbifold atlas of dimension n on Q is a set of pairwise compatible reduced orbifold
charts

V := {(Vi, Gi, ϕi) | i ∈ I}
of dimension n on Q such that

⋃
i∈I ϕi(Vi) = Q.

(d) Two reduced orbifold atlases are equivalent if their union is a reduced orbifold atlas.
(e) A reduced orbifold structure of dimension n on Q is an equivalence class of reduced orbifold

atlases of dimension n on Q.
(f) A reduced orbifold of dimension n is a pair (Q,U) where U is a reduced orbifold structure of

dimension n on Q.

The Definition 1.3.1 is equivalent to the Definition 1.2.3, i.e. they yield the same equivalence
classes of orbifold atlases. The compatibility conditions of both definitions coincide by [51, Propo-
sition 2.13]. The proof outlined in [51] carries over without any changes to our setting.
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1.3.2 Remark (a) The term “reduced” refers to the requirement that for each reduced orbifold
chart (V,G, ϕ) in U the group G is a subgroup of Diff(V ). Hence the action of G on V is
effective. We will only consider reduced orbifolds (and maps between them). Thus to shorten
our notation, we will drop the term “reduced” in the remainder of the paper. A “reduced”
orbifold will thus simply be called an orbifold.

(b) We will occasionally refer to the dimension of an orbifold as defined in 1.3.1 as the orbifold
dimension. We shall prove later that, as in the case of a manifold, the orbifold dimension is
an invariant of the orbifold. More explicitly two orbifolds can only be diffeomorphic to each
other if they have the same orbifold dimension. We postpone these considerations until we are
ready to define morphisms of orbifolds.

(c) In general, maps of orbifolds (see Appendix E) only admit local lifts in certain orbifold at-
lases contained in the equivalence class U of the orbifold (Q,U). Therefore we introduce the
convention: An atlas V contained in U will be called a representative of U .

(d) Notice that U is only an equivalence class of orbifold atlases. We have not defined a maximal
atlas, since the definition of orbifold charts would force the maximal atlas to be a proper
class (and not a set). We avoid the set theoretic problems incurred by such a construction.
However, by abuse of notation we will sometimes write (U,G, π) ∈ U to denote an orbifold
chart compatible with the given orbifold structure U .

For the rest of this paper we shall always assume that the orbifolds considered are defined as
in Definition 1.3.1. As we have already remarked, the definition of orbifolds given in the previous
section is equivalent to our working definition of an orbifold. In particular the changes of orbifold
charts restrict locally to open embeddings in the sense of Proposition 1.2.2. On occasion it will turn
out to be advantageous to work with embeddings of orbifold charts, as Proposition 1.2.2 is then
available.

1.4. The topology of the base space of an orbifold

In this section, we compile several facts about orbifolds which are well known in the literature
(cf. [1, 7, 15,51]).We give proofs for the reader’s convenience.

1.4.1 Lemma For any orbifold (Q,U), the family of open subsets
{
Ṽ := π(V )

∣∣∣ (V,G, π) ∈ U
}

is
a base for the topology on Q.

Proof. Let p ∈ Q and U ⊆ Q an open neighborhood of p. Choose an orbifold chart (V,G, π) ∈ U
such that p ∈ Ṽ = π(V ). The map π is given by the composition of the quotient map onto the orbit
space with a homeomorphism onto an open set. Hence Lemma B.1.4 shows that π is continuous
and open. The set π−1(U) is an open subset of V containing some element p̂ ∈ π−1(p). By Lemma
B.1.3 we can choose a Gp̂-invariant open set S such that p̂ ∈ S ⊆ π−1(U) and (S,Gp̂, π|S) is an
orbifold chart. By construction, p ∈ π(S) ⊆ U , proving the lemma.
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To analyse the structure of the base space we need a well known fact from topology:

1.4.2 Proposition If X is a Hausdorff space that is locally compact and paracompact, then each
component of X is σ-compact. If, in addition, X is locally metrizable, then X is metrizable and
every component has a countable basis of the topology.

Proof. By [20, XI. Theorem 7.3] each component is σ-compact. The space X is paracompact, locally
metrizable and Hausdorff, hence we may choose a locally finite closed cover consisting of metrizable
subspaces. Then X is metrizable by [21, Theorem 4.4.19]). Each connected component C is Lindelöf
by [20, XI. Theorem 7.2]. We deduce from [21, Corollary 4.1.16] that C is second countable.

1.4.3 Proposition If (Q,U) is an orbifold, then the topological space Q has the following properties:

(a) Q is a locally compact Hausdorff space.
(b) Q is connected if and only if Q is path connected.
(c) Q is metrizable.
(d) Every connected component C of Q is open, σ-compact and second countable.

We remark that Q is not necessarily second countable.

Proof. (a) The space Q is Hausdorff by definition of an orbifold. Clearly being a locally compact
space is a local condition, i.e. may be checked within π(U), where (U,G, π) ∈ U is an arbitrary
orbifold chart. Lemma B.1.4 shows that π(U) is a locally compact Hausdorff space, since every
finite dimensional Hausdorff manifold U is such a space.

(b) The quotient map onto the orbit space is continuous and open (Lemma B.1.4) and manifolds
are locally path-connected. Thus Q is locally path connected, whence the assertion follows
from general topology [20, V. Theorem 5.5].

(c) For every chart (U,G, π) ∈ U the group G ⊆ Diff(U) is finite. The manifold U is locally
metrizable (since every chart is a homeomorphism) and a paracompact locally compact Haus-
dorff space. By Proposition 1.4.2, U is metrizable. The quotient map onto an orbit space is a
closed-and-open map by Lemma B.1.4. Since metrizability is an invariant of closed-and-open
maps by [21, Theorem 4.2.13], the space Q is locally metrizable. Summing up, Q is a locally
metrizable, locally compact and paracompact Hausdorff space. Again by Proposition 1.4.2 the
metrizability of Q follows.

(d) The space Q is locally path-connected, which implies the openness of C by [20, V. 5.4]. We
already know that Q is a Hausdorff space which is paracompact and locally compact. Every
component of Q is then σ-compact and second countable by Proposition 1.4.2.

To prove the last remark, consider the following counterexample: Let (Q,U) be an arbitrary
orbifold modeled on a topological space Q 6= ∅ and I be a set with cardinality at least ℵ1. Construct
the orbifold (QI ,UI) by defining the topological space QI :=

∐
i∈I Q as the disjoint union of copies

of Q and the orbifold charts on every copy of Q as copies of charts in U . Then (QI ,UI) is not second
countable, even if Q is.
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1.5. Local groups and the singular locus

Let (Q,U) be an orbifold of dimension n, (U,G, π) ∈ U an orbifold chart of Q and x ∈ U . Let z :=
π(x). We deduce from [51, Lemma 2.10] that the differential at x induces a faithful representation
Gx → TxU, g 7→ Txg and hence a faithful representation of Gx in Gl(n,R) (cf. also Lemma B.2.2).
The corresponding finite subgroup of Gl(n,R) is unique up to conjugation in Gl(n,R) (induced by
the change of chart maps). This conjugacy class will be called TGx. Since Ggx = gGxg

−1 for any
g ∈ G, we have TGx = TGgx. Let λ : (V,H, ψ)→ (U,G, π) be an embedding of orbifold charts and
y ∈ V with λ(y) = x and λ ◦ h = λ(h) ◦ λ for h ∈ H, entailing that λ(Hy) = Gx by Proposition
1.2.2 and

TGx = TyλTHy(Tyλ)−1.

Thus the conjugacy class of TGx depends only on the point z and not on the choice of the orbifold
chart (U,G, π) on Q or on x. Hence the following definition is justified.

1.5.1 Definition (local group) Let (Q,U) be an orbifold. For every z ∈ Q, by the above there is
a group Γz(Q) ⊆ Gl(n,R) which is unique up to conjugation in Gl(n,R). We call Γz(Q) the local
group of z. In the literature Γz(Q) is also called the isotropy group of z. We avoid this and reserve
“isotropy group” for the subgroup of a group acting on a manifold, which fixes a given point.

The singularities, i.e. points with non-trivial local group, generate a structure which distinguishes
a non-trivial orbifold from a manifold. We claimed that orbifolds are manifolds with “mild singulari-
ties”. To emphasize this point we shall investigate the singular locus (i.e. the set of all singularities).
As a consequence of Newman’s Theorem B.2.1, the singular locus is a nowhere dense closed subset
of the base space of an orbifold. In other words, the topological base space of an orbifold contains
an open and dense manifold. A proof for this result is given in the rest of this section:

1.5.2 Definition (Singular locus) Let (Q,U) be an orbifold. The singular locus of Q is the subset

ΣQ := {z ∈ Q |Γz(Q) 6= {1}} .

In a chart (U,G, π), one has ΣQ∩π(U) = π(ΣG), where ΣG is the set of points in U with non trivial
isotropy subgroup with respect to the action of G. An element x ∈ Q is called a singular point if
x ∈ ΣQ and x is called non-singular if x 6∈ ΣQ.
Since there are different orbifold structures on the same topological space, occasionally we have to
indicate which one is meant. In these cases we shall write Γz(Q,U) resp. Σ(Q,U), to avoid confusion.

1.5.3 Proposition (Newman, Thurston) The singular locus ΣQ of an orbifold (Q,U) is a closed
set with empty interior.

Proof. Let (U,G, π) be any chart at some point p ∈ Q. By definition ΣQ ∩π(U) is the image of ΣG.
As G ⊆ Diff(U) is finite, we deduce from Newman’s Theorem B.2.1 that the set NU of non-singular
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points in U is open and dense. Lemma B.1.4 shows that the quotient map π onto the orbit space is
open, whence

ΣQ = Q \
⋃

(U,G,π)∈U

π(NU )

is a closed set. Since NU is dense in U , π(NU ) is dense in π(U). Then (Q \ ΣQ) ∩ π(U) is dense in
π(U) and since the open sets π(U) cover Q (for some atlas), Q \ ΣQ is dense in Q. In particular
(ΣQ)◦ = ∅ holds.

1.6. Orbifold atlases with special properties

In this section, we construct special orbifold atlases. These atlases are needed later on, to construct
charts for the diffeomorphism group of an orbifold.

1.6.1 Definition Let (Q,U) be an orbifold and V a representative of U . We say that another
representative W of U refines V (or is a refinement of the atlas V) if for every chart (W,G,ψ) ∈ W,
there is a chart (V,H, π) ∈ V and an open embedding of orbifold charts λW,V : (W,G,ψ)→ (V,H, π).
Given another representative V ′ of U , we say that W is a common refinement of V and V ′, if W
refines V and W refines V ′.

1.6.2 Lemma For an orbifold (Q,U) and two arbitrary representatives V,V ′ of U , there exists a
common refinement W of V and V ′.

Proof. Since the union W := V ∪ V ′ is an orbifold atlas for (Q,U), i.e. all charts are pairwise
compatible, we may choose for each x ∈ Q an orbifold chart whose image contains x which and
embedds into a chart in V and a chart in V ′ (cf. Definition 1.2.1). The collection of all charts chosen
this way is an atlas, which is a common refinement of V and V ′.

1.6.3 Lemma Let (Q,U) be an orbifold. For any representative V of U , consider the classes of
orbifold charts

U b V := {(U,H, φ) ∈ U | ∃λU,V : (U,H, φ)→ (V,G, ψ) embedding, for some (V,G, ψ) ∈ V}

U @ V :=
{

(U,H, φ) ∈ U b V
∣∣∣λU,V (U) ⊆ V is compact

}
.

Then the sets {φ(U) | (U,H, φ) ∈ U b V} and {φ(U) | (U,H, φ) ∈ U @ V} of open sets are bases for
the topology on Q.
Note that the compactness of λU,V (U) in V implies that φ(U) ⊆ ψ(V ).

Proof. Consider an arbitrary open set Ω ⊆ Q and some point x ∈ Ω. The set V is an atlas and thus,
there is some chart (V,G, ψ) ∈ V with x ∈ Imψ, say x = ψ(y). Because V is locally compact, y has
a compact neighborhood K in V , contained in the open set ψ−1(Ω). By Lemma B.2.2, K contains
an G-stable open neighborhood W of y in V . Then (W,GW , ψ|W ) ∈ U @ V (because λW,V can be
chosen as the inclusion map and Imψ|W ⊆ Ω.
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1.6.4 Definition Let (Q,U) be an orbifold. An orbifold atlas V := {(Vi, Gi, πi) | i ∈ I} of (Q,U) is
called locally finite orbifold atlas if the family (πi(Vi))i∈I is a locally finite family of open sets.4

1.6.5 Lemma Let (Q,U) be an orbifold. Then the following holds:

(a) There is a locally finite representative V of U .
(b) For each representative W of U , there is a locally finite representative W ′ which refines W.
(c) The refinement W ′ in (b) may be chosen with the following property: For each (U,G, ψ) ∈ W ′,

there are (V,H, ϕ) ∈ W and an open embedding λU,V of orbifold charts such that λU,V (U) ⊆ V
is a compact set, whence Ũ ⊆ Ṽ . (using notation as in Lemma 1.4.1)

Taking identifications, without loss of generality λU,V is just the canonical inclusion (of sets) and G
is a subgroup of H.

Proof. (a) The topological space Q is a locally compact Hausdorff space. For each q ∈ Q pick a
compact neighborhood Uq of q. Then (U◦q )q∈Q is an open cover of Q. By paracompactness
of Q, there is a locally finite open refinement (Wj)j∈J of (U◦q )q∈Q. Note that every Wj is
compact. By [21, Lemma 5.1.6], there exists a shrinking (Oj)j∈J of (Wj)j∈J that is an open
cover of Q such that Oj ⊆Wj for each j ∈ J . The uniformized subsets of Q form a basis of the
topology by Lemma 1.4.1. Thus for each j ∈ J , the compact set Oj is covered by finitely many
uniformized sets which are contained in Wj , say Oj ⊆

⋃nj
k=1Bj,k. Since the family (Wj)j∈J is

locally finite,
{Bj,k | j ∈ J, k = 1, . . . , nj}

is a locally finite open covering of Q by uniformized subsets. The corresponding atlas V is
thus locally finite.

(b) and (c) We may argue as in (a), but replace the set of all uniformized subsets of Q by the set
of all uniformized subsets, which are images of U bW (resp. images of U @W for (c)). Since
Lemma 1.6.3 assures that these sets of images are bases of the topology, no further changes in
the proof are needed. For the last statement identify U and λU,V (U) resp. G with λ(G).

1.6.6 Lemma Let (Q,U) be an orbifold and W a locally finite orbifold atlas such that for each
(V,H,ϕ) ∈ W the uniformized subset ϕ(V ) is relatively compact. Consider a refinement W ′ as in
Lemma 1.6.5 (c) indexed by a set I. There exists a map α : I → W, which associates to each i a
chart (Vα(i), Hα(i), ϕα(i)) into which (Ui, Gi, ψi) embeds (as an orbifold chart) via an inclusion of
sets Ui → Vα(i). Furthermore, IV := α−1(V,H, ϕ) ⊆ I is finite for each (V,H, ϕ) ∈ W.

Proof. Lemma 1.6.5 (c) ensures that for each i ∈ I, there is at least one chart in W such that
(Ui, Gi, ψi) embeds into this chart via the inclusion of sets. Choose a chart (Vα(i), Hα(i), ϕα(i)) such
that Ui ⊆ Vα(i) is compact, Gi ⊆ Hα(i) and ψi = ϕα(i)|Ui holds. We obtain a map α : I → W with
the desired properties. For each (V,H, ϕ) ∈ W, the uniformized subset ϕ(V ) is relatively compact.
Since W ′ is locally finite, there is only a finite subset of I such that ψi(Ui) ∩ ϕ(V ) 6= ∅. Therefore
IV := α−1(V,H, ϕ) is finite for each (V,H, ϕ) ∈ W.
4We assume here that the atlas is “indexed by I” in the sense that the map I → V, i 7→ (Vi, Gi, ψi) is injective.
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Later on an orbifold atlas will be needed which is adapted to a certain closed and discrete set. To
construct such an atlas we need to deal with some technical difficulties in the following Lemma:

1.6.7 Lemma Let X be a paracompact topological space, D ⊆ X be a closed discrete subset (i.e. X
induces the discrete topology on D) Then there exist disjoint open neighborhoods Ωx ⊆ X for x ∈ D
such that (Ωx)x∈D is locally finite.

Proof. For x ∈ D let Vx be an open neighborhood of x such that Vx ∩ D = {x}. Then V :=
{Vx |x ∈ D} ∪ {X \D} is an open cover of X and there is a locally finite open cover (Wj)j∈J
subordinate to V. Let J ′ := {j ∈ J |D ∩Wj 6= ∅}. Then (Wj)j∈J′ is an open cover of D and for
each j ∈ J ′, there is xj ∈ D with Wj ⊆ Vxj . Since Vxj ∩ D = {xj}, xj is uniquely determined.
Since D ⊆

⋃
j∈J′Wj , the map J ′ → D, j 7→ xj is surjective. For x ∈ D choose j(x) ∈ J ′ with

xj(x) = x. Then (Wj(x))x∈D is a locally finite open cover of D. Since every paracompact space
is normal by [21, Theorem 5.1.5.], the space X is a regular topological space. Hence there is a
neighborhood Cx ⊆ Wj(x) which is closed in X. The locally finite union Ax :=

⋃
y∈D\{x} Cy of

closed sets is closed and x 6∈ Ax since x 6∈ Vy ⊇ Cy. Define Ωx := C◦x \ Ax. Then (Ωx)x∈D has the
desired properties.

1.6.8 Proposition Let (Q,U) be an orbifold, V ∈ U an orbifold atlas and D a closed discrete subset
of Q. There exist locally finite atlases A = {(Ui, Gi, ψi) | i ∈ I} and B = {(Wj , Hj , ϕj) | j ∈ J} ∈ U
such that all of the following conditions are satisfied:

(a) the charts in A,B are relatively compact, i.e. if (U,G, ψ) is such a chart, then the set ψ(U) is
a compact subset of Q,

(b) the atlas A refines B and B refines V as in Lemma 1.6.5 (c),
(c) For z ∈ D, there are unique iz ∈ I and jz ∈ J with z ∈ ψi(Vi) and z ∈ ϕj(Uj), respectively,
(d) If Q is σ-compact, then the sets I and J are countable.

Proof. It suffices to construct B with the asserted properties (to get A, we apply the same con-
struction with B instead of V). The space Q is a metrizable locally compact space by Proposition
1.4.3. Using Lemma 1.6.7, we may choose disjoint open neighborhoods Ωz ⊆ Q for z ∈ D such
that (Ωz)z∈D is locally finite.As Q is locally compact, we may choose for each z ∈ D a compact
neighborhood L1,z ⊆ Ωz. By Lemma 1.6.3, for each z there is a relatively compact orbifold chart
(Uz, Gz, ϕz) ∈ U @ V such that z ∈ ϕz(Uz) ⊆ ϕz(Uz) ⊆ L◦1,z. Furthermore, the inclusion of sets
induces an embedding of orbifold charts. Again by local compactness, we may choose for each z a
compact neighborhoods z ∈ L2,z ⊆ ϕz(Uz).
The set L2,z is contained in L1,z. Since each L1,z is contained in Ωz and these sets form a lo-
cally finite family, the family (L2,z)z∈D is locally finite. The set L :=

⋃
z∈D L2,z is thus closed

by [21, Corollary 1.1.12] and we may consider the open subset Q′ := Q \ L. Now Q′ is locally com-
pact and as Q is metrizable by Proposition 1.4.3, the subspace Q′ is paracompact. The images of the
class R := {(V,H, π) ∈ U @ V |π(V ) ⊆ Q′} form a basis for the topology on Q′. Using an argument
analogous to Lemma 1.6.5 (c), there is a locally finite orbifold atlas B′ = {(Wj , Hj , ϕj) | j ∈ J ′} ⊆ R
for Q′ such that each chart (W,H,ϕ) ∈ B′ is relatively compact and embeds into some member of V
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as in Lemma 1.6.5 (c). Notice that by construction none of the charts in B′ contain elements of D.
For each z ∈ D, the set Lz := L1,z ∩Q \ ϕz(Uz) ⊆ Q′ is compact. The atlas B′ is locally finite and
thus there are finite subsets J ′z ⊆ J ′ such that ϕj(Wj) ∩ Lz 6= ∅ iff j ∈ J ′z. Assume that P is the
image of an orbifold chart in B′ which is contained in

O := Q \
⋃
z∈D

Lz =

(⋃
z∈D

ϕz(Uz)

)
∪

(
Q \

⋃
z∈D

L1,z

)
.

As each L1,z is a closed set and the family (L1,z)z∈D is locally finite, the union of the sets L1,z is
closed by [21, Corollary 1.1.12]. Therefore O is an open set and by construction

P =

(⋃
z∈D

ϕz(Uz) ∩ P

)
∪

(
P ∩

(
Q \

⋃
z∈D

L1,z

))

is a disjoint union of two open sets. As orbifold charts are connected, we deduce that their images
are located as follows:
Either the image is contained in Q \

⋃
z∈D L1,z, or it intersects at least one of the Lz, z ∈ D, or it

is contained in
⋃
z∈D ψz(Uz). Discarding the charts whose image is contained in

⋃
z∈D ϕz(Uz), we

obtain the subset

J ′′ :=
⋃
z∈D

J ′z ∪

{
j ∈ J ′

∣∣∣∣∣ϕj(Wj) ∩
⋃
z∈D

L1,z = ∅

}

of J ′ such that the family B′′ := {(Wj , Hj , ϕj) | j ∈ J ′′} covers Q \
⋃
z∈D ψz(Uz).

Set J := J ′′
∐
D. The set indexes the atlas B := B′′ ∪ {(Wz, Hz, ϕz) | z ∈ D}. By construction, B is

a refinement of V with the properties of Lemma 1.6.5 (c).
It remains to prove that B is locally finite: As B′′′ is a locally finite atlas, it suffices to check
the following condition: For each z ∈ D, only finitely many charts in B′′ intersect the image of
(Uz, Gz, ϕz). For each z ∈ D, the charts indexed by z are contained in L1,z and by construction
only a finite number of charts in B′′ intersect L1,z. Thus at most finitely many images of charts in
B intersect a given L◦1,z, z ∈ D, whence A and B are locally finite.

If Q is σ-compact, then Q is a countable union of compact sets, each of which meets Imϕj for only
finitely many j ∈ J (as B is locally finite). Hence J is countable. Likewise the index set I of A is
countable.

The following lemma will allow us to control the local behavior of sections in the tangent orbifold.

1.6.9 Lemma Let (Q,U) be an orbifold and W = {(Vi, Hi, ϕi) | i ∈ I} be a locally finite orbifold
atlas. For each i ∈ I, let Ki ⊆ Vi be a compact subset. Then, for each i ∈ I, there is an open cover{
Zki
}

1≤k≤ni
of Ki ⊆ Vi such that

(a) the sets Zki are Hi-stable for i ∈ I, 1 ≤ k ≤ ni,
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(b) for each j ∈ I with Zki ∩ Ki ∩ ϕ−1
i ϕj(Kj) 6= ∅ there is an embedding of orbifold charts

λkij : Zki → Vj
(c) The cover

{
Zki
}

1≤k≤ni
may be chosen such that for each i ∈ I, 1 ≤ k ≤ Ni there is a Hi-stable

set open set Ẑki such that Zki is a compact set, contained in Ẑki and each embedding λkij is the
restriction of an embedding on Ẑki .

Proof. The set K̃i := ϕi(Ki) is compact and since W is locally finite, there is a finite subset Fi of
W such that K̃i ∩ ϕ(V ) 6= ∅ if and only if (V,H,ϕ) ∈ Fi. In particular, there is a finite set Ji such
that K̃ij := K̃i ∩ ϕj(Kj) 6= ∅ if and only if j ∈ Ji. The compact sets K̃ij are contained in Ṽi. The
set

Kij :=Ki ∩ ϕ−1
i (K̃ij) = Ki ∩ ϕ−1

i ϕj(Kj) = (ϕ|Ki)−1(ϕj(Kj)). (1.6.1)

is closed in Ki and hence compact. For each j ∈ Ji, the set Kij is contained in ϕ−1
i ϕj(Vj). Thus

each Kij may be covered with open Hi-stable subsets Λrij of Vi such that there is an open embedding
of orbifold charts λrij : Λr → Vj . Since Kij is compact, for each j there is a finite family (Λrij)1≤r≤mj
which covers Kij . As Ji is finite, we obtain for each x ∈ Ki an open neighborhood

Nx :=
⋂

x∈Λrij

Λrij ∩

Vi \ ⋃
j∈J,x 6∈Kij

Kij

 .

Choose an Hi-stable connected open neighborhood x ∈ Zx ⊆ Nx. Each y ∈ Zx is contained in Kij

only if x is contained in Kij as well. For each j ∈ Ji such that x ∈ Kij , the open embeddings defined
on Λrij restrict to an open embedding of orbifold charts on Zx. Since Ki is compact we may select a
finite open cover {Zxk |xk ∈ Ki, 1 ≤ k ≤ n} of Ki. Observe that Zxk ∩Ki∩ϕ−1

i ϕj(Kj) = Zxk ∩Kij

holds by (1.6.1). If this intersection is non-empty, we derive xk ∈ Kij . By construction, there is an
embedding of orbifold charts on Zxk which satisfies (b). Hence the family (Zxk)1≤k≤n satisfies all
properties of assertion (b).
(c) follows directly from (b) and local compactness of each Vi: Before selecting a finite cover by some
of the Zx, we set Ẑx := Zx and choose for each x a compact neighborhood x ∈ Cx ⊆ Ẑx. The Hi-
stable sets form a base of the topology and we may select a new Hi-stable subset x ∈ Zx ⊆ C◦x ⊆ Ẑx.
By compactness of Ki, we may select a finite covering from the family (Zx)x∈Ki which satisfies
(c).
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1.7. Examples of orbifolds

This section collects well known simple examples from the literature to illustrate the definition of
an orbifold. We also fix some terminology for later use.

1.7.1 Example Every paracompact smooth finite dimensional manifold M without boundary is an
orbifold. An orbifold atlas for M is given by the following set of charts:

{(C, {idC} , idC) |C ⊆M a connected component}

where by abuse of notation idC : C → M is the inclusion map. We call this orbifold structure
induced on the manifold M the trivial orbifold structure.

1.7.2 Example (A mirror in R2 [58, 13.1.1]) Consider R2 together with the action of the linear
diffeomorphism γ : R2 → R2, (x, y) 7→ (−x, y). The map γ fixes the points (0, y), y ∈ R.
An orbifold structure is induced on the quotient R2/〈γ〉 ∼ H :=

{
(x, y) ∈ R2

∣∣x ≥ 0
}
:

R2 γ

quotient
map

H

Figure 1: A mirror in R2. The boundary of the half plane contains the singular points, while points
outside the boundary are non-singular points.

This example can be generalized in the following way to manifold with boundary (cf. [58, 13.2.2]):

Let M be a (smooth) manifold with boundary ∂M . Glue together two copies of M along ∂M to
obtain the double dM of M . Recall that by using a collar around the boundary (cf. [38, Chapter 4,
6.]) the double may be endowed with the unique structure of a smooth manifold without boundary
(see [54, Definition 5.10 and Theorem 6.3] for a full account on the construction). Again the diffeo-
morphism which interchanges both halves of the double generates a finite group Γ. By construction
the orbifold dM/Γ is isomorphic to M . Hence every manifold with boundary is in a natural way an
orbifold, whose singular locus is the boundary of the manifold.

1.7.3 Example (Good orbifolds) Let M be a smooth finite dimensional paracompact manifold and
Γ ⊆ Diff(M) be a subgroup. Assume that the canonical action of Γ on M is proper, i.e. there exists
a metric d on M such that Γ acts by diffeomorphisms and for each x ∈ M there exists r > 0 such
that {

γ ∈ Γ
∣∣ γ.Bdr (x) ∩Bdr (x) 6= ∅

}
is finite. Then the orbit space M/Γ may be endowed with an orbifold structure induced by the
group action of Γ on M (cf. [13, III.G1.3] for details). An orbifold which arises in this way is called
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developable or good orbifold.
A particularly attractive situation arises if M is a connected, paracompact manifold and Γ is finite.
Then the good orbifold obtained from these data possesses an atlas with one chart, i.e. (M,Γ, π),
where π : M →M/Γ is the canonical quotient map. In Example 1.7.6 we compute orbifold structures
for M = S2. Several of these structures will be good orbifolds.

1.7.4 Example (Symmetric products [1, Example 1.13]) Suppose that M is a smooth finite di-
mensional, paracompact manifold. Consider the symmetric product Xn := Mn/Sn, where Mn is
the n−fold Cartesian product of M and Sn the symmetric group of n letters which acts on Mn

by permutation of coordinates. Tuples of points have non trivial isotropy groups if they contain a
number of repetitions in their coordinates. The diagonal ofMn is fixed by each element of the finite
group Sn.

In the next example we consider two orbifold charts on the same topological space which induce
non-diffeomorphic orbifolds.

1.7.5 Example ([56, Example 2.2]) Let Q := [0, 1[ be the topological space with the induced
topology of R. The map f : Q → Q, x 7→ x2 is a homeomorphism. Let ρ : R → R be the reflection
in 0. Consider the map p : ]− 1, 1[→ Q, x 7→ |x|. Then p induces a homeomorphism ]− 1, 1[/〈ρ〉 and
we derive orbifold charts V1 := (]− 1, 1[, 〈ρ〉, p) and V2 := (]− 1, 1[, 〈ρ〉, f ◦ p).
However, these orbifold charts are not compatible. Assume to the contrary that they are compatible.
Since f ◦ p(0) = 0 = p(0) there exist open connected neighborhoods U1, U2 of 0 in ] − 1, 1[ and a
diffeomorphism h : U1 → U2 such that f ◦ p = p ◦ h. This equation leads to h(x) ∈

{
±
√
|x|
}
. By

continuity we have the following choices for h:

h1(x) :=
√
|x| h2(x) := −

√
|x|

h3(x) :=

{
−
√
|x|, x ≤ 0√
|x|, x ≥ 0

h4(x) :=

{ √
|x|, x ≤ 0

−
√
|x|, x ≥ 0

Since none of the above is a differentiable, the two charts are not compatible.

1.7.6 Example (Orbifold structures on the 2-sphere) The following examples are all modeled on
the 2-sphere S2, i.e. the topological space of each of the orbifolds is the 2-sphere with the topology
turning it into a smooth manifold. Examples of this type first appeared in [58]. We give a detailed
construction based on the exposition in [34]:
Let N be the north pole and S the south pole of S2. Endow the sphere with the usual topology
turning S2 into a smooth manifold. Define charts around N and S, respectively, as follows:
Let Xi := BR2

3
4π

(0), i = 1, 2 be the open disc of radius 3
4π centered at 0 in R2. We describe points

in polar coordinates (r, θ), 0 ≤ r < 3
4π, 0 ≤ θ < 2π. Recall that the geodesics connecting N and

S on S2 are the great circles connecting N and S. To construct the charts pick a great circle C
connecting N and S. Every great circle connecting N and S can uniquely be identified by an angle of
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rotation 0 ≤ θ < 2π. Furthermore, each x on S2 \{S} is uniquely determined by a set of coordinates
(r, θ), 0 ≤ r < π, 0 ≤ θ < 2π. Here r is the length of the geodesic segment between x and N .
Analogously we may identify each point x in S2 \ {N} by a pair (π − r, θ), 0 ≤ r < π, 0 ≤ θ < 2π,
where π − r is the length of the geodesic segment between x and N . We obtain (inverses of) charts

ψ1 : X1 → S2, (r, θ) 7→

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

sin r
0

cos r

 ,

ψ2 : X2 → S2, (r, θ) 7→

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 sin r
0

− cos r


for the manifold S2. These charts turn S2 into a smooth compact manifold in the usual way.
We construct an orbifold structure on S2: Let ni ∈ N for i = 1, 2. Consider the subgroup
Gi ⊆ Diff(Xi) which corresponds to a rotation σi of order ni on X1 and X2. The map pi : Xi →
Xi, (r cos θ, r sin θ) 7→ (r cos(niθ), r sin(niθ)) identifies two points if and only if they are in the same
Gi orbit.
Consider the quotient map Xi → Xi/Gi and canonically identify the orbit space with the “cone”

Ci :=

{
(r, θ) ∈ Xi

∣∣∣∣ 0 ≤ θ < 2π

ni

}
endowed with the quotient topology with respect to ci : Xi 7→ Ci, (r, θ) 7→ (r, θ mod 2π

ni
). A

computation shows that ci : Ci → Xi, (r, θ) 7→ (r, niθ) is a homeomorphism of the topological
spaces Ci and Xi. Moreover, pi factors through the quotient Xi/Gi ∼ Ci. We obtain orbifold
charts (Xi, Gi, qi), i ∈ {1, 2} with qi := ψi ◦ pi. A computation shows that Aij := q−1

i (Im qj) ={
(r, θ) ∈ Xi

∣∣ π
4 ≤ r ≤

3π
4

}
is an open annulus. Furthermore, we obtain for each (r, θ) ∈ Aij a neigh-

borhood Ωr,θ such that the mapping

τij |Ωr,θ := (qi|qj(Ωr,θ))−1 ◦ qj : Ωr,θ → Xi, (r, θ) 7→
(
π − r, nj

ni
· θ
)
, i 6= j ∈ {1, 2}

makes sense. The maps τij |Ωr,θ are local diffeomorphisms, which commute with the orbifold charts,
i.e. qiτij = qj |dom τij , i 6= j ∈ {1, 2} holds. Locally the restrictions of the maps τij thus yield change
of chart morphisms. Since we obtain change of charts for each x ∈ Aij , the orbifold charts are
compatible and induce the structure

S2
(n1,n2) := (S2, {(Xi, Gi, qi) | i = 1, 2})

of a compact orbifold on S2. As a topological space, the base space of S2
(n1,n2) coincides with S2

with the usual topology. We distinguish the following cases:

n1, n2 = 1 In this case we have qi = ψi, i = 1, 2 and thus S2
(1,1) is just the C∞-manifold S2. As a

connected trivial orbifold, S2 is a good orbifold.
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n1 > 1, n2 = 1: We obtain a cone-shaped singularity of order n1 in N , while S is a regular point.
The orbifold S2

(n1,1) is called Zn1
-teardrop. It is an example of a non developable orbifold. Indeed

the orbifold S2
(n1,n2) is developable (good) if and only if n1 = n2 holds (see [13, Ch. III.G, Example

1.4 (1)]).

n1 6= n2, n1, n2 > 1: We obtain an orbifold with two cone-shaped singularities of order n1 respec-
tively n2. An orbifold of this kind is called Zn1

-Zn2
-football. As already mentioned, this orbifold is

non-developable.

n1, n2 = n > 1: Consider an action of a finite group of diffeomorphisms Γ ⊂ Diff(S2) generated by
a rotation of order n on S2 which fixes north and south pole. The group Γ acts smoothly, effectively
and almost free on S2. Hence the orbit space S2/Γ is an orbifold using the global orbifold chart
π : S2 → S2/Γ. By construction the orbifold structure of this orbifold agrees with S2

(n,n). It is an
example of a good orbifold.

On the level of topological spaces all of these orbifolds coincide. However the additional structure
of cone-shaped singularities on the space is illustrated in the following picture:

(a) (b) (c)

Figure 2: Orbifold structures on S2: (a) the trivial orbifold S2
(1,1), i.e. the manifold S2,

(b) the teardrop S2
(n1,1) and (c) the football S2

(n1,n2).



2. Maps of Orbifolds

In this thesis, we use maps of orbifolds as defined in [56]. For the reader’s convenience, we repeat
the definitions and constructions of [56] in Appendix E. In this section, we obtain a characterization
of orbifold diffeomorphisms. Then several tools and constructions for later chapters (such as open
suborbifolds and orbifold partitions of unity) are provided.

2.1. Orbifold diffeomorphisms

Throughout this section, let (Qi,Ui), i ∈ {1, 2} be arbitrary orbifolds. By definition, diffeomor-
phisms of orbifolds are the isomorphisms in the category of reduced orbifolds:

2.1.1 Definition A morphism of orbifolds [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)) is called an orbifold dif-
feomorphism if there is [ĝ] ∈ Orb((Q2,U2), (Q1,U1)) such that

id(Q1,U1) = [ĝ] ◦ [f̂ ] and id(Q2,U2) = [f̂ ] ◦ [ĝ].

In this case, we also write [f̂ ]−1 := [ĝ]. Let DiffOrb ((Q1,U1), (Q2,U2)) be the set of orbifold diffeo-
morphisms contained in Orb((Q1,U1), (Q2,U2)).
To shorten our notation, the orbifold diffeomorphism group DiffOrb ((Q,U), (Q,U)) will be denoted
by DiffOrb (Q,U).

We will now characterize the lifts of orbifold diffeomorphisms. It will turn out that an orbifold
diffeomorphism is completely determined by properties of its lifts.

2.1.2 Proposition Let [f̂ ] ∈ Orb((Q1,U1), (Q2,U2)) be a diffeomorphism of orbifolds. Each rep-
resentative f̂ = (f, {fi}i∈I , [Pf , νf ]) satisfies the following properties:

(a) the map f is a homeomorphism and
(b) every local lift fi of f̂ is a local diffeomorphism.

Proof. We first notice that since [f̂ ] ◦ [f̂ ]−1 and [f̂ ]−1 ◦ [f̂ ] are the respective identity morphisms,
the maps f : Q1 → Q2 and f−1 : Q2 → Q1 (where f−1 is the underlying continuous map of [f̂ ]−1)
are homeomorphisms since composition yields the identity on Q2 and Q1, respectively. Hence (a) is
true.
Two representatives of the class [f̂ ] are related via lifts of the identity. Lifts of such mappings
are local diffeomorphisms, whence locally lifts of different representatives of [f̂ ] are related via
diffeomorphisms to each other. Thus the definition of [f̂ ] shows that it suffices to prove assertion
(b) for any representative f̂ of [f̂ ].
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Choose and fix representatives V = {(Vi, Gi, πi) | i ∈ I} of U1, U = {(Uj , Hj , ψj) | j ∈ J} of U2

and W = {(Wk, Lk, ϕk) | k ∈ K} of U1 such that the maps [f̂ ] and [f̂ ]−1 possess representatives
f̂ ∈ Orb(V,U) and ĝ ∈ Orb(U ,W), respectively. Let α : I → J and β : J → K be the maps such
that the mappings fi : Vi → Uα(i) and gj : Uj → Wβ(j) are local lifts of f̂ and ĝ, respectively, with
respect to orbifold charts (Vi, Gi, πi) and (Uα(i), Gα(i), ψα(i)), (Uj , Gj , ψj) and (Wβ(j), Gβ(j), ϕβj ).
To shorten the notation, set Ṽi := πi(V ) and derive for every i ∈ I a commutative diagram:

Vi
fi //

πi

��

Uα(i)

gα(i)
//

ψα(i)

��

Wβ(α(i))

ϕβα(i)

��

Ṽi
f |Ṽi // Ũα(i)

f−1|Ũα(i)
// W̃βα(i)

Composition in the lower row induces the identity idQ1 |Ṽi . We conclude that for each i ∈ I, the
map gα(i) ◦ fi is a local lift of the identity and thus a local diffeomorphism by Proposition E.3.2.
In particular, each fi is an immersion and hence dimQ1 ≤ dimQ2. An analogous argument shows
dimQ2 ≤ dimQ1, whence dimQ1 = dimQ2. Since the orbifold dimensions coincide, dimVi =
dimUα(i) holds. The inverse mapping theorem (see [45, I, §5 Theorem 5.2]) now implies that the
immersion fi is a local diffeomorphism.

2.1.3 Corollary Two orbifolds (Qi,Ui), i ∈ {1, 2} which are isomorphic have the same orbifold
dimension.

2.1.4 Definition Consider an orbifold map [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)) together with a cor-
responding representative of orbifold maps f̂ = (f, {fi} , [Pf , νf ]). We say that [f̂ ] preserves lo-
cal groups if f : Q1 → Q2 maps every element p of Q1 onto some element f(p) of Q2 such that
Γp(Q1) ∼= Γf(p)(Q2).
This property may be interpreted as preservation of the local structure of an orbifold. In particular,
one would expect that this is a natural property of orbifold diffeomorphisms. Indeed this is true, as
the following proposition shows:

2.1.5 Proposition Let [f̂ ] : (Q1,U1) → (Q2,U2) be a map of orbifolds, with a representative f̂ =
(f, {fi}i∈I , (Pf , νf )) such that f is a homeomorphism and each fi is a local diffeomorphism. Then
[f̂ ] preserves local groups. In particular, every orbifold diffeomorphism preserves local groups.

Proof. Let p be in Q1. There are orbifold charts (V,G, π) ∈ U1 and (U,H,ψ) ∈ U2 together with a
local lift fV : V → U of f̂ such that p ∈ Ṽ , q := f(p) ∈ Ũ and fV is a local diffeomorphism. Fix
some preimage p̂ ∈ π−1(p) and denote its image by q̂ := fV (p̂).
Since Gp̂ is finite, there is an open connected neighborhood Ω of p̂ in V such that for every γ ∈ Gp̂,
there is some µγ ∈ Pf with γ|Ω = µγ |Ω. Thus one obtains

fV (γ.x) = νf (µγ)fV (x) ∀x ∈ Ω, γ ∈ Γp̂ (2.1.1)
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Shrinking Ω if necessary, we may assume that Ω to be a G-stable open connected subset with
GΩ = Gp̂ and fV |Ω is a diffeomorphism onto an open subset of U . By (2.1.1), ψ ◦ fV factors over
Ω/Gp̂ and it is an open map. Hence (Ω, Gp̂, ψ ◦ fV ) is an orbifold chart for Q2. By construction fV
is an embedding of orbifold charts from (Ω, Gp̂, ψ ◦ fV ) to (U,H,ψ). Hence (Ω, Gp̂, ψ ◦ fV ) ∈ U2 and
thus Γp ∼= Gp̂ ∼= Γq (the groups are even conjugate in Gl(n,R)).

2.1.6 Remark The proof of Proposition 2.1.5 provides information about an orbifold map: Con-
sider an orbifold map which satisfies the prerequisites of Proposition 2.1.5. Let fi : Vi → Wi be
its local lift with respect to the charts (Vi, Gi, πi) and (Wi, Hi, ψi) and x ∈ Vi. Then there is an
arbitrarily small open neighborhood Ωx of x in Vi with the following properties:

(a) fi|Ωx is a diffeomorphism onto an open set Ωfi(x) := fi(Ωx),
(b) the set Ωx is Gi-stable with Gi,Ωx = Gi,x,
(c) for each γ ∈ Gi,x, the restriction γ|Ωx is an element of Pf ,
(d) the set Ωfi(x) is Hi-stable with Hi,Ωfi(x)

= Hi,fi(x).

In particular, (Ωx, Gi,x, πi|Ωx) and (Ωfi(x), Hi,fi(x), ψi|Ωfi(x)
) are orbifold charts contained in U1 and

in U2,respectively. Locally, we may therefore always construct lifts which are diffeomorphisms.

It is possible to construct a charted orbifold map from a family of local lifts as in the last remark:

2.1.7 Proposition Let (Qi,Ui), i ∈ {1, 2} be orbifolds, f : Q1 → Q2 a homeomorphism and {fi}i∈I
be a family of local lifts of f with respect to V ∈ U1 andW ∈ U2 such that each fi is a local diffeomor-
phism. Assume that V satisfies (R2) from Definition E.2.3. Then there exists a pair (P, ν) such that
(f, {fi}i∈I , [P, ν]) ∈ Orb(V,W) is a representative of an orbifold map in Orb ((Q1,U1), (Q2,U2)).
The pair (P, ν) is unique up to equivalence.

Proof. Let V = {(Vi, Gi, πi) | i ∈ I} be the representative of U1 such that every lift fi is a map
fi : Vi → Wi for some (Wi, Hi, ψi) ∈ U2. As f is a homeomorphism, W := {(Wi, Hi, ψi) | i ∈ I} is
an orbifold atlas. Define F :=

∐
i∈I fi. Consider the set

P := {h ∈ Ψ(V) |h is a change of charts and F |domh, F |codh are étale embeddings} .

Clearly P is a quasi-pseudogroup which generates Ψ(V). Construct a map ν : P → Ψ(W) as follows:
For λ ∈ P there are i, j ∈ I such that domλ ⊆ Vi and codλ ⊆ Vj . The map F |domλ = fi|domλ is a
diffeomorphism onto an open set Uλ ⊆Wi. We may now define

ν(λ) := fjλfi|−1
Uλ

: Uλ → fj(codλ)

The set fj(codλ) is open since fj is a local diffeomorphism. Following the definition of P , ν(λ)
is a diffeomorphism. We compute ψjν(λ) = ψjfjλ(fi|domλ)−1 = fπjλ(fi|domλ)−1 = fπifi|−1

Uλ
=

ff−1ψi|Uλ = ψi|Uλ , which shows ν(λ) ∈ Ψ(W). In addition, F ◦λ = fj ◦λ = ν(λ)◦fi|domλ = ν(λ)◦
F |domλ. Thus we have constructed a quasi-pseudogroup P and a well-defined map ν : P → Ψ(W)
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satisfying property (R4a) of Definition E.2.3. Reviewing (R4b)-(R4d) of the same definition, clearly
these properties are satisfied by ν. In conclusion, (f, {fi}i∈I , P, ν) is a representative of an orbifold
map.
To prove the uniqueness, assume that there is another pair (P ′, ν′) turning (f, {fi}i∈I , (P ′, ν′)) into
a charted map. Consider λ ∈ P and µ ∈ P ′ with germx λ = germx µ for some x in their domeins.
Then the mappings fj ◦λ = ν(λ)◦fi|domλ and fj ◦µ = ν′(µ)fi|domµ coincide in some neighborhood
of x. Since fj is a local diffeomorphism, the mappings ν(λ) and ν′(µ) coincide in some neighborhood
of F (x).

Combining Remark 2.1.6 and Proposition 2.1.7, we obtain the following corollary:

2.1.8 Corollary Let f : Q1 → Q2 be a homeomorphism and {gi}i∈I a family of local lifts of f with
respect to atlases V ′ and W ′ such that each gi is a local diffeomorphism. Assume that V ′ satisfies
(R2). Then there exist an orbifold atlas V which refines V ′ indexed by some J and an orbifold atlasW
which refines W ′ and a family of lifts fj with respect to (Vj , Gj , ψj) ∈ V, (Wβ(j), Hβ(j), ϕβ(j)) ∈ W
such that each fj is a diffeomorphism. In addition there is a unique equivalence class [P, ν] with
P = ChV′ and ν(λ) := fkλ(fj |domλ)−1|fj(domλ) for λ ∈ ChVj ,Vk , (Vr, Gr, ψr) ∈ V ′ for r ∈ {j, k}
such that f̂ := (f, {fj}j∈J , [P, ν]) ∈ Orb(V ′,W ′).

2.1.9 Lemma Let V = {(Vi, Gi, ψi) | i ∈ I} and W = {(Wj , Hj , ϕj) | j ∈ J} be atlases for orbifolds
(Q1,U1) and (Q2,U2), respectively. Consider a charted map of orbifolds f̂ = (f, {fi}i∈I , [P, ν]) ∈
Orb(V,W) with the same properties as the map f̂ in Corollary 2.1.8. Then the following holds:

(a) For each Gi-stable subset Ω ⊆ Vi, the set fi(Ω) is an Hβ(i)-stable subset of Wβ(i) with isotropy
group Hβ(i),fi(Ω)

∼= Gi,Ω.
(b) After possibly shrinking V and W, we may assume that the map5 β : I → J is bijective.
(c) If β is bijective, then ν : ChV → ChW is a bijection.

Proof. (a) Let Ω ⊆ Vi be a Gi-stable subset with isotropy subgroup Gi,Ω and x ∈ Ω. Because
P = ChV the proof of Proposition 2.1.5 applies and we can take Ωx = Ω in Remark 2.1.6.

(b) If there are i, j ∈ I with β(i) = β(j), we obtain a diffeomorphism f−1
j fi : Vi → Vj . A

quick computation shows that ψjf−1
j fi = f−1ϕβ(j)fi = ψi and thus f−1

j fi is an embedding
of orbifold charts. Reversing the roles of i and j, also f−1

i fj is an embedding of orbifold
charts. Therefore we may omit one index of the pair i, j with β(i) = β(j) and the set of
orbifold charts indexed by the reduced set will again be an orbifold atlas. The axiom of choice
allows us to shrink V to obtain an orbifold atlas (which by abuse of notation will also be
called V) such that β is injective. Clearly since f is a homeomorphism, the set of charts
{(Wj , Hj , ϕj) ∈ W | j = β(i) for some i ∈ I} is an orbifold atlas. Thus by replacing J with
β(I), we may assume that β is surjective, hence bijective.

(c) It is obvious that ν is injective. Let λ ∈ ChWk,Wl
be any change of charts morphism with

(Wr, Hr, ϕr) ∈ W, r = k, l. There are unique i, j ∈ I with β(i) = k and β(j) = l and
5which assigns to each index i an index β(i) ∈ J such that gi : Vi →Wβ(i) holds.
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we obtain a diffeomorphism µ(λ) := f−1
j λfi|f−1

i (domλ) : f−1
i (domλ) → f−1

j (codλ). A quick
computation leads to ψjµ(λ) = f−1ϕlλfi|f−1

i (domλ) = f−1fψi|domλ = ψi|domλ which proves
that µ(λ) ∈ ChVi,Vj . By construction ν(µ(λ)) = λ holds and thus ν is a bijection.

The next proposition is the converse of Proposition 2.1.2, i.e. we shall prove that the properties
of orbifold diffeomorphisms in Proposition 2.1.2 actually characterizes those, and are equivalent to
the categorical definition. The leading idea is to use the local properties of the lifts (i.e. that every
lift may locally be inverted) to construct a family of lifts for f−1. In general a given lift may not
be inverted globally. Nevertheless it is possible to construct smaller charts and induced lifts, which
may be inverted globally.

2.1.10 Proposition Let (Qi,Ui), i ∈ {1, 2} be orbifolds and V ∈ U1,W ∈ U2. Consider an charted
map f̂ := (f, {fi}i∈I , [P, ν]) ∈ Orb(V,W). If f is a homeomorphism and fi : Vi → Wα(i) is a local
diffeomorphism for each i ∈ I, then the orbifold map [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)) is a diffeomor-
phism of orbifolds.

Proof. Combining Corollary 2.1.8 and Lemma 2.1.9, there are orbifold atlases V ′ indexed by J and
W ′ indexed by K together with a representative ĝ := (f, {gj}j∈J , [P

′, ν′]) ∈ Orb(V ′,W ′) of [f̂ ] such
that each lift gj : Vj →Wβ(j) is a diffeomorphism and the map β : J → K is a bijection. We use the
computation from the proof of Lemma 2.1.9: The inverse g−1

j : Wβ(j) → Wj of gj is a local lift of
f−1 with respect to (Wβ(j), Hβ(j), ϕβ(j)) and (Vj , Gj , ψj). Since f is a homeomorphism, the family
W ′ is an atlas for Q2 indexed by K. As each g−1

j is a diffeomorphism, by Proposition 2.1.7 there is
a pair Q ⊆ Ψ(W ′) and µ : P → Ψ(V ′) such that ĥ := (f−1,

{
g−1
j

}
j∈K , [Q,µ]) ∈ Orb(W,V).

Consider the compositions ĥ ◦ ĝ and ĝ ◦ ĥ: The local lift for every j ∈ J of ĝ has been constructed
as inverse maps of the local lift of ĝ with respect to (Vj , Gj , ψj) and (Wβ(j), Hβ(j), ϕβ(j)). Thus the
composition of both representatives gives a lift of the identity and we derive

[f̂ ] ◦ [ĝ] = [ĥ ◦ ĝ] = id(Q2,U2) and [ĝ] ◦ [f̂ ] = [ĝ ◦ ĥ] = id(Q1,U1) .

Observe that the proof of the last proposition yields the following fact: Assume that each member
of the family of local lifts for an orbifold map is a diffeomorphism. Then this family uniquely
determines the orbifold map. In particular, each orbifold diffeomorphism is uniquely determined by
its family of local lifts:

2.1.11 Corollary An orbifold diffeomorphism [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)) is uniquely determined
by the family of local lifts {fi}i∈I where (f, {fi}i∈I , [P, ν]) ∈ [f̂ ] is an arbitrary representative.
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2.1.12 Proposition An orbifold diffeomorphism [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)) is uniquely deter-
mined by its underlying continuous map, i.e. for f̂ = (f, {fj}j∈J , [P, ν]) the map f uniquely deter-
mines [f̂ ].

Proof. Let [ĝ] ∈ Orb ((Q1,U1), (Q2,U2)) be another orbifold diffeomorphism with underlying map
f . Then the underlying map of [ĝ]−1 is f−1. Hence each representative ĥ of [ĝ]−1◦[f̂ ] is given by ĥ =
(idQ, {hi}i∈I , [P ′, ν′]). Recall from Construction E.4.1 that the lifts hi, i ∈ I arise as composition
of suitable lifts of representatives of [f̂ ] and [ĝ]−1. Since all lifts of orbifold diffeomorphism are
local diffeomorphisms by Proposition 2.1.2, we deduce that each hi is a local diffeomorphism. Now
Proposition E.5.3 implies id(Q=,U=)[ĥ] = [ĝ]−1 ◦ [f̂ ]. Thus [ĝ] = [f̂ ] follows and proves the assertion.

Summarizing the preceding results, one obtains:

2.1.13 Corollary For an orbifold map [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)) the following are equivalent:

(a) [f̂ ] is an orbifold diffeomorphism,
(b) each representative (f, {fi}i∈I , [P, ν]) ∈ [f̂ ] satisfies: f is a homeomorphism and each fi is a

local diffeomorphism,
(c) there is a representative f̂ = (f, {fi}i∈I , [P, ν]) of [f̂ ] such that f is a homeomorphism and

each fi is a local diffeomorphism
(d) there is a representative f̂ = (f, {fj}j∈J , [P, ν]) ∈ Orb(V,W) of [f̂ ] such that f is a home-

omorphism and each fj is a diffeomorphism. Furthermore, the assignment α : V → W such
that fj is a local lift with respect to the pair (Vj , Gj , ϕj), (Wα(j), Gα(j), ψα(j)) can be chosen
bijective.

If f̂ is as in (d), then a representative of [f̂ ]−1 is given by (f−1,
{
f−1
j

}
, [ν(P ), θ]) ∈ Orb(W,V).

Here θ : ν(P ) → Ψ(V) assigns to λ ∈ ν(P ) with domλ ⊆ Wα(i) and codλ ⊆ Wα(j) the map
θ(λ) := f−1

j λfi|f−1
i (domλ).

In particular, an orbifold diffeomorphism is uniquely determined by its underlying map and we obtain
a natural inclusion of the orbifold diffeomorphisms into the set of homeomorphisms:

DiffOrb ((Q1,U1), (Q2,U2))→ Homeo((Q1,U1), (Q2,U2))

[(f, {fi}i∈I , [P, ν])] 7→ f

We remark that the characterization of orbifold diffeomorphisms via any family of lifts will be
crucial for the rest of this work. It enables us avoid the technical details of the definition of orbifold
maps. Instead we may think of an orbifold diffeomorphism as a family of compatible smooth lifts.
In particular, these results enable an efficient investigation of orbifold diffeomorpismgroup.
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2.2. Open suborbifolds and restrictions of orbifold maps

We define the notion of an open suborbifold to introduce the restriction of an orbifold map to an
open subset. Any subset of a metrizable space with the induced topology is again a metrizable space.
Every metrizable space is paracompact and Hausdorff by [21, Theorem 5.1.3]. Since the base space
Q of the orbifold (Q,U) is metrizable by Proposition 1.4.3, each of the subspaces in the following
constructions will be a paracompact Hausdorff space.

2.2.1 Definition (open suborbifold) Let (Q,U) be an orbifold. An orbifold (X,X ) is called an
open suborbifold of (Q,U) if there is a map [ι̂] = [(ι, {ιk}k∈I , [P, ν])] ∈ Orb ((X,X ), (Q,U)) such
that

(a) ι is a topological embedding with open image,
(b) every ιk is a local diffeomorphism.

A map [ι̂] with the properties (a) and (b) is called an open embedding of orbifolds.

Since it will not be needed, we shall not define the general notion of a (possibly non-open)
suborbifold. The reader is refered to [1, Definition 2.3] for further information on this topic.

2.2.2 Definition (Restriction of an orbifold map to an open subset) Let (Q,U) be an orbifold and
Ω ⊆ Q be an open subset. Choose an atlas A ∈ U such that the images of (V,G, ψ) ∈ A which satisfy
ψ(V ) ⊆ Ω cover Ω. Then A|Ω := {(V,G, ψ) ∈ A |ψ(V ) ⊆ Ω} is an orbifold atlas for Ω. Notice that
the equivalence class UΩ of A|Ω does not depend on the choice of A and defines an unique orbifold
structure on Ω. The inclusion ιΩ : Ω ↪→ Q of sets induces an open embedding of orbifolds, which we
denote by [ι̂Ω] : (Ω,UΩ) → (Q,U). Define the restriction [f̂ ]|Ω of [f̂ ] ∈ Orb ((Q,U), (Q2,U2)) to Ω
via

[f̂ ]|Ω := [f̂ ] ◦ [ι̂Ω].

2.2.3 Definition (Corestriction of an orbifold map) Let (X,X ) be an open suborbifold of (Q,U)
together with an open embedding of orbifolds [ι̂]. Consider another orbifold (Q′,V) and a map
[f̂ ] ∈ Orb ((Q′,V), (Q,U)) with representative f̂ = (f, {fk}k∈I , [P, ν]) ∈ [f̂ ] such that Im f ⊆ Im ι.
For k ∈ I, let the lifts be given as fk : Vk → Uα(k), where (Uα(k), Gα(k), ψα(k)) is an orbifold chart.
Then Im fk ⊆ ψ−1

α(k)(Im ι) holds. As Im fk is connected, it is contained in a connected component of
the invariant set ψ−1

α(k)(Im ι). The connected components of an invariant set are Gα(k)-stable subsets
of Uα(k). Hence these connected components can be made into orbifold charts for the subset Im ι.
Using these charts, Lemma E.4.2 shows that there is a representative ĝ ∈ Orb(V ′,U ′) of [f̂ ] such
that each lift gk : V ′k → U ′k of ĝ satisfies ϕ(U ′k) ⊆ Im ι. Define the corestriction of [f̂ ]:

[f̂ ]|Im ι :=
[
(f |Im ι, {gk}k , [P

′, ν′])
]
∈ Orb ((Q′,V), (Im ι,UIm ι))

Here (P ′, ν′) is the pair obtained via Lemma E.4.2 for ĝ. In particular, we obtain a unique map
([ι̂]|Im ι)−1 ◦ [f̂ ]|Im ι ∈ Orb ((Q′,V), (X,X )) into the open suborbifold. By definition of the equiv-
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alence relation (Definition E.4.3), the class [f̂ ]|Im ι does not depend on any choices made in the
construction.

2.2.4 Remark

(a) An orbifold (X,X ) is an open suborbifold of (Q,U) if and only if there is an orbifold diffeo-
morphism from (X,X ) to an orbifold which arises as the restriction of U to an open subset.

(b) Consider an open subset Ω ⊆ Q and the representative f̂ = (f, {fk}k∈I , [P, ν]) of [f̂ ] ∈
Orb ((Q,U), (Q′,W ′)) such that there is J ⊆ I with the following properties:
VΩ := {(Vj , Gj , πj)}j∈J ⊆ UΩ and Ω =

⋃
j∈J πj(Vj) hold.

Define PJ := P ∩ChVΩ
and set νJ := ν|PJ . The composition in Orb is induced by composition

of suitable representatives. A computation with the representative above yields [f̂ ]|Ω = [ĥ],
where ĥ := (f |Ω, {fj}j∈J , [PJ , νJ ]).

(c) Let (X,X ) be an open suborbifold with open embedding of orbifolds [ι̂]. By construction
[f̂ ]|Im ι̂ = [f̂ ] ◦ [ι̂] ◦ [ι̂]|Im ι)−1 holds.

(d) In Section 3 tangent spaces of orbifolds and the tangent orbifold are defined. As these objects
are defined via an arbitrary orbifold chart, analogous to the manifold case, for each open
suborbifold (X,X ) of (Q,U) the tangent spaces T Xp X and T Uι(p)Q are canonically isomorphic.6
If the open suborbifold is an open subset, we shall identify the tangent spaces later on.

6Here the symbol T U
p Q denotes the tangent space of the orbifold (Q,U). The notation was chosen to emphasize the

dependence on the orbifold structures X and U .
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2.3. Partitions of unity for orbifolds

2.3.1 Definition Let (Q,U) be an orbifold, V = {(Vi, Gi, πi) | i ∈ I} a representative of U and
endow R with the trivial orbifold structure (i.e. the one induced by its manifold structure).
A family

{
(χi, {χi,j}j∈J , [Pi, νi])

}
i∈I

in Orb(V, {idR}) is called a smooth orbifold partition of unity

subordinate to V if the family of continuous maps {χi}i∈I is a partition of unity subordinate to the
open covering {πi(Vi)}i∈I , i.e.

(a) suppχi ⊆ πi(Vi) for all i ∈ I,
(b) the family (suppχi)i∈I is locally finite,
(c) χi ≥ 0, for all i ∈ I and

∑
i∈I χi(x) = 1 for each x ∈ Q.

2.3.2 Proposition (Partition of Unity) Let (Q,U) be an orbifold. For each representative V of U
there exists a smooth orbifold partition of unity subordinate to V.

Proof. Each representative of U allows a locally finite refinement by Lemma 1.6.5 (b), thus the
assertion will be true if the existence of a smooth orbifold partition of unity for an arbitrary locally
finite representative of U can be verified.
Let V := {(Uα, Gα, πα) |α ∈ I} be a locally finite representative and Ṽ := {πα(Uα)}α∈I be the family
of open images of the charts in V. Since Q is a paracompact Hausdorff space, applying [21, Lemma
5.1.6] twice, there are locally finite families of open sets W̃ 1

α ⊆ W̃ 1
α ⊆ W̃ 2

α ⊆ W̃ 2
α ⊆ πα(Uα) such

that
{
W̃ 1
α

∣∣∣α ∈ I} covers Q (here the closure means closure in Q). Let W i
α := π−1

α (W̃ i
α), i ∈ {1, 2}.

Observe that since W̃
i

α ⊆ Imπα, it is closed in the subspace topology. On Imπiα, we identify
πα with the quotient map onto the orbit space of the Gα-action on Uα. This map is surjective
continuous, open and closed by Lemma B.1.4. Hence for i = 1, 2 [20, III. Theorem 8.3 (5) and
Theorem 11.4] imply πα(W i

α) = W̃ i
α and W i

α ⊆ π−1
α (W̃ i

α). Vice versa [20, III. Theorem 11.2 (2)]
yields W i

α = π−1
α

(
W̃ i
α

)
. By construction, every set W i

α is Gα-invariant.
The manifold Uα is a smooth connected paracompact (hence second countable by Proposition 1.4.2)
and finite dimensional manifold. By the smooth Urysohn Lemma (cf. [16, Corollary 3.5.5]) for
manifolds, there is a smooth map fα : Uα → [0, 1] such that fα|W 1

α
≡ 1 and supp fα ⊆ W 2

α. Define
an equivariant smooth map θα : Uα → R with values in [0, 1] by averaging over Gα:

θα(y) :=
1

|Gα|
∑
γ∈Gα

fα(γ.y).

Notice that W 1
α ⊆ supp θα ⊆ W 2

α still holds by Gα-invariance of these sets. In particular, the map
vanishes outside of W 2

α. For every β ∈ I, define a map as follows:

θα,β : Uβ → [0, 1], x 7→

{
θα(y) πβ(x) = πα(y) for some y ∈ Uα
0 π−1

α πβ(x) = ∅
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The Gα-equivariance of θα implies that θα,β is well-defined, and it is Gβ-equivariant. We claim
that θα,β is smooth: To see this, note that for each x ∈ π−1

β (Imπα), there is an open neighborhood
Vx ⊆ Uβ of x and a smooth change of charts λ : Vx → Uα. On the open set Vx, the map θα,β is a
composition of smooth maps: θα,β |Vx = θα ◦ λ. Hence on π−1

β (Imπα) the map θα,β is smooth.

By construction supp θα ⊆W 2
α ⊆ Uα holds, i.e. we obtain πβ(supp θα,β) ⊆ W̃ 2

α ⊆ Imπα. The above
shows that θα,β is a smooth map on the open neighborhood π−1

β (Imπα) of its support. On the open
set Uβ \ supp θα,β the map vanishes and in conclusion θα,β is smooth.
Notice that θα,α = θα holds by construction. Since the family Ṽ is locally finite, for x ∈ Q there are
only finitely many α ∈ I such that π−1

α (x) 6= ∅. Define another Gβ-equivariant smooth map on Uβ :

χα,β : Uβ → [0, 1], χα,β :=
θα,β∑
δ∈I θδ,β

.

The map χα,α satisfies χα,α|Uα\W 2
α
≡ 0. Since πα is an open map and πα(W 2

α) is closed, the map
χα,α descends to a continuous map on Q:

χα : Q→ [0, 1], x 7→

{
χα,α(x) x = πα(y) with y ∈ Uα
0 x ∈ Q \ Uα

.

By construction suppχα ⊆ πα(Uα). For every σ ∈ I, the smooth map χα,σ is a lift of χα in the
chart (Uσ, Gσ, πσ) ∈ V. The family Ṽ covers Q and we have constructed a family of continuous
maps with smooth lifts in every orbifold chart of V. As R is a trivial orbifold, the following data
completes the construction of an orbifold map: Choose the quasi-pseudogroup P := ChV which
generates Ψ(V) and take ν : ChV → Ψ({(R, {idR} , idR)}), f 7→ idR. These choices induce a map
(χα, {χα,σ} , [P, ν]) which clearly satisfies the requirements of Definition E.2.5 (cf. Remark E.2.6)
and (χ̂α := (χα, {χα,σ} , [P, ν]))α∈I ⊆ Orb(V, {idR}) is a family of charted orbifold maps.
The construction of χα shows W̃α

1 ⊆ suppχα ⊆ πα(Uα) and the sets W̃ 1
α cover Q. Thus the family

{suppχα}α∈I covers Q and since Ṽ is locally finite, this family is locally finite. A quick computation
now shows for x ∈ Q:∑

α∈I
χα(x) =

∑
α∈I,x∈πα(Uα)

χα,απ
−1
α (x) =

∑
α∈I,x∈πα(Uα)

θα,α∑
δ∈I θδ,α

(π−1
α (x))

=
∑

α∈I,x∈πα(Uα)

θαπ
−1
α (x)∑

δ∈I,x∈πδ(Uδ) θδπ
−1
δ (x)

= 1.

The family (χα)α∈I therefore is a partition of unity subordinate to V. In conclusion, (χ̂α)α∈I is a
smooth orbifold partition of unity subordinate to V.

2.3.3 Notation Let (Q,U) be an orbifold with a locally finite representative V of U indexed by I.
Consider an orbifold partition of unity {χ̂α}α∈I subordinate to V as in Proposition 2.3.2. For any
pair (α, β) ∈ I × I, the lift of χα on Uβ will be abbreviated as χα,β .



3. Tangent Orbibundles and their Sections

In this section, we construct an analogue to tangent manifolds and tangent maps for an orbifold.
Tangent orbifolds are well known objects (cf. [1, Proposition 1.21]). We emphasize that the bundle
map associated to a tangent orbifold is a map of orbifolds. This allows us to define orbisections,
i.e. maps of orbifolds which are sections of the bundle map. In Chapter 5.1, suitable spaces of
orbisections will serve as model space for the diffeomorphism group of an orbifold. Furthermore,
it is possible to construct a tangent endofunctor for the category of reduced (smooth) orbifolds.
Throughout this section, let (Q,U) be an orbifold. We begin with the construction of tangent
orbifolds:

3.1. The tangent orbifold and the tangent endofunctor

3.1.1 Construction (Tangent space of an orbifold) Let p ∈ Q and (Vi, Gi, πi) ∈ U , i ∈ {1, 2}
be arbitrary orbifold charts with p ∈ πi(Vi). Consider pairs (πi, vi), i = 1, 2 where vi ∈ TxiVi
with xi ∈ π−1

i (p). Notice that by compatibility of orbifold charts, there exist open neighborhoods
xi ∈ Ui ⊆ Vi and a change of charts λ : U1 → U2 such that λ(x1) = x2. Identify the tangent spaces
TxiVi with the corresponding tangent spaces of the open submanifolds Ui ⊆ Vi. Since every change
of charts is a diffeomorphism, the tangent spaces Tx1V1 and Tx2V2 are isomorphic.
Introduce an equivalence relation on the set of all possible pairs of this kind: We declare two
pairs to be equivalent, (π1, v1) ∼ (π2, v2), if there are open subsets xi ∈ Ui ⊆ Vi and a change of
charts λ : U1 → U2 such that Tλ(v1) = v2. Here Tλ : TU1 → TU2 is the tangent map of λ. Since
T : Man → Man is a functor (Man being the category of smooth manifolds), the relation ∼ is an
equivalence relation. The equivalence class [π, v] of (π, v) is called a formal orbifold tangent vector
and define the set TpQ of all formal orbifold tangent vectors at p.
Consider x1 ∈ π−1(p), (U,G, π) ∈ U . The isotropy subgroup Gx1

acts on Tx1
U via the linear

diffeomorphisms γ.v := Tx1
γ.v. Every γ ∈ G is a self-embedding of orbifold charts, whence

(π, v) ∼ (π, Tγ.v) ∀γ ∈ G. (3.1.1)

Let ṽ ∈ Tx1U/Gx1 be the equivalence class of v ∈ Tx1U for x1 ∈ π−1(p). We obtain a bijective map

kx1
π : Tx1

U/Gx1
→ TpQ, kx1

π (ṽ) := Tπ(v) := [π, v].

To see that this map is indeed injective, consider elements kx1
π (ṽ) = kx1

π (w̃). Thus there is a change
of charts λ with Tλ(v) = w. By [51, Lemma 2.11] λ|O = g|O holds for suitable g ∈ Gx1

on an open
neighborhood O of x1 . By definition of Tx1

U/Gx1
this implies ṽ = w̃.

Endow TpQ with the unique topology making the bijection kx1
π a homeomorphism. The space TpQ,

is called tangent space of Q at p. We claim that the topology on TpQ neither depends on the choice
of charts nor on the preimage x1 in a given chart. Choose some chart (U,G, π). As a first step, we
prove that the topology does not depend on the choice of the preimage in this chart:

Step 1: Choose another x2 ∈ π−1(p). There is some γ ∈ G with γ.x1 = x2. The isotropy groups of
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x1 and x2 are thus conjugate γ.Gx1γ
−1 = Gx2 . The derived actions of Gxi on TxiU, i ∈ {1, 2} are

conjugate via the linear isomorphism Tx1
γ, i.e. g.v = Tx1

(γ−1◦g◦γ)(v) for all g ∈ Gx2
. This induces

a homeomorphism T̃x1γ : Tx1U/Gx1 → Tx2U/Gx2 . For v ∈ Tx1U , let ṽ be its image in Tx1U/Gx1

and compute

((kx2
π )−1 ◦ kx1

π )(ṽ) = (kx2
π )−1[π, v]

(3.1.1)
= (kx2

π )−1[π, Tx1
γ.v] = T̃x1

γ(ṽ).

Since T̃x1
γ is a homeomorphism, so is (kx2

π )−1 ◦ kx1
π : Tx1

U/Gx1
→ Tx2

/Gx2
. In conclusion the

topology on TpQ does not depend on the choice of xi ∈ π−1(p), whence the index xi of kxiπ can now
be omitted.

Step 2: Consider another chart (W,H,ψ) with p ∈ ψ(W ) and pick y ∈ ψ−1(p). By compatibility
of charts, there are open subsets x ∈ VU ⊆ U , y ∈ VW ⊆W and a change of charts homomorphism
λ : VU → VW with λ(x) = y. Shrinking the open sets VU , VW , we may assume that (VU , Gx, π|VU )
is an orbifold chart and λ an open embedding of orbifold charts. This map conjugates (in the
sense of Proposition 1.2.2 (a)) the Gx-action on TxU to the Hy-action on TyW again inducing a
homeomorphism T̃xλ : TxVU/Gx → TyVW /Hy. As in Step 1, a well-defined homeomorphism is given
by

kψ ◦ k−1
π : TxU/Gx → Ty/Hy, ṽ 7→ T̃ λ(ṽ).

Therefore the topology on TpQ is independent of the choice of charts.

3.1.2 Remark Let (U,G, π) be an orbifold chart with p ∈ Imπ. The homeomorphism TpQ ∼=
TxU/Gx for x ∈ π−1(p) allows us to think of TpQ as an orbifold. In particular, the tangent space
TpQ may be identified with a convex cone. In contrast to tangent spaces of manifolds, the tangent
spaces of an orbifold will not be vector spaces. Nevertheless, each orbifold tangent space contains a
zero element 0p := [π, 0x], where (U,G, π) is a chart with p = π(x) and 0x ∈ TxU the zero element.
In the manifold case, our definition boils down to: The tangent space of a manifold (considered as
a trivial orbifold) at p is the tangent space of the manifold at p.

3.1.3 Definition (Tangent orbifold) Consider the set T Q :=
⋃
p∈Q TpQ. Since the tangent spaces

are mutually disjoint, we derive a well-defined map

πTQ : T Q→ Q, [ψ, v] 7→ ψ(x), where v ∈ Tx domψ.

If (U,G,ψ) ∈ U is an arbitrary chart, then G acts on TU via the derived action γ.X := Tγ(X).
Define Π: TU → TU/G to be the quotient map to the orbit space with respect to this action. Using
the notation of Construction 3.1.1, we obtain a map for (U,G, ψ) ∈ U :

Tψ : TU → T Q, v 7→ [ψ, v]

In particular, each v ∈ TxU is mapped to some [ψ, v] ∈ Tψ(x)Q. Choose an atlas A ∈ U . We equip
T Q with the final topology with respect to the family (Tψ)(U,G,ψ)∈A.
This topology induces a canonical orbifold structure on T Q. An atlas for this orbifold is given by
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the family (TU,G, Tψ),7 where (U,G,ψ) runs through A. The G-action of the chart (TU,G, Tψ) is
the derived action of G, i.e. γ.v := Tγ(v). With respect to this structure πTQ induces an orbifold
map. Its lifts are given by the bundle projections TU → U , for (U,G, π) ∈ U .
We define the tangent orbifold T (Q,U) of (Q,U). It is the orbifold (T Q, T U), where T U is the
orbifold structure induced by T A. A proof for the details of this construction will be given in the
next lemma.

3.1.4 Lemma Let (Q,U) be an n-dimensional orbifold. Using the notation of Definition 3.1.3, the
following statements hold:

(a) Let (U,G,ψ), (V,H, ϕ) ∈ U and λ : U ⊇W →W ′ ⊆ V be a change of charts. Its tangent map
Tλ : TW → TW ′ is a diffeomorphism with TϕTλ = Tψ|TW .

(b) For any chart (U,G,ψ) ∈ U we set Ũ := ψ(U) and T Ũ := ImTψ. Then T Ũ is an open set in
T Q and Tψ is an open map.

(c) The topology on T Q does not depend on the choice of the atlas A ∈ U in Definition 3.1.3.
(d) For each A ∈ U , the set T A := {(TU,G, Tψ) | (U,G, ψ) ∈ A} is an orbifold atlas for T Q. The

orbifold charts in this atlas are compatible via the changes of charts computed in (a).
(e) The map πTQ : T Q → Q, [ψ, v] 7→ ψ(x), v ∈ TxU is continuous and T Q is a Hausdorff

paracompact space. In conclusion, T (Q,U) is an orbifold.
(f) πTQ induces a morphism of orbifolds πT (Q,U) ∈ Orb (T (Q,U), (Q,U)).
(g) The topology on T Q induces on each TpQ the topology obtained in Construction 3.1.1.

Proof. (a) For the change of charts λ, the tangent map Tλ : TW → TW ′ is a diffeomorphism. It
suffices to prove the commutativity for each element of TrW , where r ∈W is arbitrary. Since
λ is a change of charts, ϕλ = ψ|domλ holds. The definition of Tψ(r)Q yields [ψ, v] = [ϕ, Tλ(v)].
We obtain for v ∈ TrW the identity

TϕTλ(v) = [ϕ, Tλ(v)] = [ψ, v] = Tψ(v).

(b) The space T Q is endowed with the final topology with respect to the mappings Tπ, where
(V,H, π) runs through A. To prove the assertion we need to show that (Tπ)−1(Tψ(V )) is an
open set for every (W,H, π) ∈ A and open set V ⊆ TU . Define the set of changes of charts
from U to W :

ChU,W := {λ : U ⊇ domλ→ codλ ⊂W |λ is a change of charts} .

Then one computes its preimage as

(Tπ)−1(Tψ(V )) = {w ∈ TW | [π,w] ∈ Tψ(V )}
= {w ∈ TW | ∃λ ∈ ChU,W , w = Tλ(v) for some v ∈ V }

=
⋃

λ∈ChU,W

Tλ(domTλ ∩ V ) ⊆ TW.

7Notice that we should have written {Tg | g ∈ G} instead of G in the definition of (TU,G, Tψ). Definition 1.2.1
requires the acting group to be a subgroup of Diff(TU) which is only satisfied by {Tg | g ∈ G}. However, we use
the canonical identification G ∼= {Tg | g ∈ G} to justify the shorter (but in fact incorrect) notation (TU,G, Tψ).
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Each Tλ is a diffeomorphism onto its (open) image, whose domain is an open set. Thus every
Tλ(domTλ ∩ V ) is an open subset in TW . This proves (Tπ)−1(Tψ(V )) to be an open set,
whence Tψ is an open map with open image T Ũ in T Q.

(c) To see that the topology does not depend on the choice of A, we consider the final topology
O′ on T Q with respect to the mappings Tψ, where (U,G,ψ) runs through an atlas A′ ∈ U . It
suffices to prove that the topologies coincide if A ⊆ A′ holds. Thus without loss of generality
the final topology O with respect to A is finer than the topology O′. However, the computation
in (b) shows that O′ is also finer than O, whence O = O′ follows and the topology does not
depend on the choice of A.

(d) If (U,G, φ) ∈ A is an arbitrary chart, then Tφ has an open image by (b). Consider the
map Tφ : TU/G → ImTφ, v 7→ [φ, v]. Combining Proposition 1.2.2 with the definition of the
equivalence relation in Construction 3.1.1, this map is a well-defined bijective map. We may
factor Tφ as Tφ = Tφ ◦ Π, where Π is the quotient map to the orbit space associated to
the G action on TU . Since Π is a quotient map and Tφ is continuous, Tφ is continuous. If
V ⊆ TU/G is an open set, then Π−1(V ) is an open set. Since Tφ is open by (b) the set
Tφ(V ) = TφΠ−1(V ) is an open set. Thus Tφ is an open map and in conclusion Tφ may be
factored as the quotient map to the orbit space associated to the group action composed with
a homeomorphism. In particular, the set of orbifold charts

T A := {(TU,G, Tπ) | (U,G, π) ∈ A}

covers T Q. In (a), we have constructed a family of maps which are change of chart maps for
T A. Using this family of changes of charts, the definition of the chart maps and tangent spaces
TpQ shows that each pair of orbifold charts in T A is compatible. Thus T A is an orbifold atlas
inducing a unique orbifold structure T (Q,U) of dimension 2 · dim(Q,U) on T Q.

(e) The definitions of πTQ and T Q together with the compatibility of orbifold charts yield
π−1
TQ(ψ(U)) = Tψ(TU), for every (U,G, ψ) ∈ U . Hence the preimages of a basis of the

topology under πTQ are open (cf. Lemma 1.4.1) and thus πTQ is continuous by [21, Proposi-
tion 1.4.1.].

The space T Q is a Hausdorff space: Let x, y ∈ T Q be distinct points.
First case: πTQ(x) 6= πTQ(y). There are orbifold charts (Ux, Gx, ψx), (Uy, Gy, ψy) ∈ U such
that πTQ(x) ∈ ψx(Ux), πTQ(y) ∈ ψy(Uy) and ψx(Ux) ∩ ψy(Uy) = ∅ hold. As the images of
these charts do not intersect, the set ChUx,Uy is empty. By construction of the equivalence
relation, Tψx(TUx) ∩ Tψy(TUy) = ∅. Hence x ∈ π−1

TQ(ψx(Ux)) and y ∈ π−1
TQ(ψy(Uy)) are

contained in disjoint open sets.
Second case: πTQ(x) = πTQ(y). Choose any orbifold chart (U,G,ψ) with πTQ(x) ∈ ψ(U).
Then x, y ∈ π−1

TQ(ψ(U)) = Tψ(TU). Both x and y are contained in Tψ(TU), which is home-
omorphic to the orbit space TU/G. This space is Hausdorff by Lemma B.1.4 and there are
disjoint open subsets x ∈ Vx, y ∈ Vy of Tψ(TU). As Tψ(TU) is open, both points are con-
tained in disjoint open subsets of T Q. In conclusion the space T Q is a Hausdorff space.

The space T Q is paracompact : Connected components of T Q are open and closed, there-
fore [21, Theorem 5.1.35] implies that Q will be paracompact if each connected component of
T Q is paracompact. We claim that each connected component C of T Q is second countable.
If this is true, paracompactness of a component is assured by the following observations: The
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quotient map to an orbit space preserves locally compact spaces by Lemma B.1.4. Thus T Q
is locally compact, hence a regular space. Combining [21, Theorem 3.8.1] and [21, Theorem
5.1.2] second countability of a component implies paracompactness of that component.
Proof of the claim: Every component C ′ ⊆ Q is second countable (cf. Proposition 1.4.3).
The continuous map πTQ maps C into some component C ′ ⊆ Q. Since C ′ is second countable,
there is a countable base B of the topology on C ′. The images of orbifold charts in C ′ also
form a base of the topology by Lemma 1.4.1. Thus without loss of generality B contains only
(open) images of a set of orbifold charts R = {(Ui, Gi, πi) | i ∈ I} in U . By construction of
πTQ, the countable family of open sets T B := (Tπi(TUi))(Ui,Gi,πi)∈R covers C. Observe that
TŨi ∼= TUi/Gi and TUi is the tangent manifold of a connected paracompact manifold, thus
connected paracompact and second countable by Proposition 1.4.2. The quotient map to the
orbit space is continuous and open by Lemma B.1.4 which implies that TŨi is also second
countable. As a countable union of open and second countable spaces, C is second countable.

(f) The map πTQ is continuous by (e) and we have to construct lifts for πTQ: Consider an arbitrary
orbifold chart (TU,G, Tψ) ∈ T U . Let πTU : TU → U be the bundle projection of the tangent
bundle. This map is smooth, and we obtain a commutative diagram:

TU
Tψ

//

πTU

��

T Ũ

πTQ

��

U
ψ

// Ũ

Choose a representative A ∈ U and define PπTQ :=
⋃

(U,W )∈A×A {Tλ |λ ∈ ChU,W }. We have
to show that the quasi-pseudogroup PπTQ generates Ψ(T A). Let ϕ ∈ Ψ(T A) and pick
an arbitrary v ∈ domϕ. Then there are (TU,G, Tπ), (TV,H, Tψ) ∈ T A and an open set
v ∈ Ω ⊆ TU such that ϕ|Ω is a diffeomorphism onto an open set Ω′ ⊆ TV which contains
w := ϕ(v). Since Tψ(w) = Tπ(v) holds, the equivalence relation shows that there are open sets
x ∈ W ⊆ U , y ∈ W ′ ⊆ V and a change of charts λ : W → W ′ such that v ∈ TxW, w ∈ TyW ′
and Tλ(v) = w. Shrinking W and W ′ we may assume that Tλ : TW → TW ′ is an embedding
of orbifold charts. Thus on TW , the maps Tλ and ϕ|TW are embeddings of orbifold charts.
By Proposition 1.2.2, there is an h ∈ Hw such that h.Tλ = ϕ|TW . The definition of the
group action on charts in T A yields ϕ|TW = h.Tλ = T (h ◦ λ). Now h ◦ λ ∈ Ψ(A) implies
T (h.λ) ∈ PπT (Q,U)

. In conclusion, PπTQ generates Ψ(T A). Define the map

νπTQ : PπTQ → Ψ(A), Tλ 7→ λ.

By construction, this map satisfies (R4a)-(R4d) of Definition E.2.3 and therefore

πT (Q,U) := (πTQ, {πTU | (U,G, π) ∈ A} , [PπTQ , νπTQ ]) ∈ Orb(T A,A)

is a representative of an orbifold map. We call πT (Q,U) the bundle projection. By abuse
of notation, we let πT (Q,U) also be the equivalence class of the charted map πT (Q,U) in
Orb(T (Q,U), (Q,U)). Clearly any choice of A in the above construction yields the same
class πT (Q,U). In particular, for each chart (TU,G, Tψ) in T U there is a representative of
πT (Q,U) such that the bundle projection πTU : TU → U is a local lift of πT (Q,U). The triple
(T (Q,U), (Q,U), πT (Q,U)) is an orbibundle, the tangent orbibundle (cf. [1, p.14]).
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(g) Choose some orbifold chart (U,G,ψ) ∈ U such that p ∈ ψ(U). Shrinking the chart, we may
assume {z} = ψ−1(p), i.e. G ∼= Γp. By construction, TpQ ⊆ Tψ(TU) holds. Recall from
(c) that Tψ = Tψ ◦ Π, where Π is the quotient map to the orbit space with respect to the
G-action on TU and Tψ is a homeomorphism. Observe (Tψ)−1(TpQ) = Π(TzU). Notice
that for manifolds the subspace topology of TzU ⊆ TU coincides with the usual topology of
TzU . As the quotient map to an orbit space is open, [20, VI. Theorem 2.1] proves that the
subspace topology of (Tψ)−1(TpQ) and the quotient topology on Π(TzU) = TzU/G coincide.
In Construction 3.1.1, TpQ has been endowed with precisely the same topology. Hence the
induced topology on TpQ coincides with the one from Construction 3.1.1.

Notice that for any trivial orbifold (i.e. for a manifold), the tangent orbibundle coincides with the
tangent bundle of the manifold. For a non-trivial orbifold, an explicit example of a tangent orbifold
will be computed in Example 3.3.9.
Mappings to the tangent orbifold admit representatives which are charted maps whose range atlas
is T A for some A ∈ U . Thus orbifold maps to the tangent orbifold always posses representatives
which may be computed in the canonical orbifold charts of the tangent orbifold.

3.1.5 Lemma Let [f̂ ] ∈ Orb ((Q,U), T (Q,U)) be an arbitrary orbifold map. There is a represen-
tative f̂ ∈ [f̂ ] such that the range atlas of f̂ is contained in T W for some W ∈ U . In other words,
f̂ is a charted orbifold map with f̂ ∈ Orb(V, T W), where V and W are some representatives of U .

Proof. Let [f̂ ] be as above. Consider the composition πT (Q,U) ◦ [f̂ ] of [f̂ ] with the bundle projection
πT (Q,U) (Lemma 3.1.4). Reviewing [56, Lemma 5.17] (cf. Section E.5), the composition in Orb
is induced by the composition of representatives of the equivalence classes. Fix a representative
πT (Q,U) ∈ Orb(T W,W) for some W ∈ U . Then there are representatives V,V ′′ of U respectively
a representative V ′ of T U together with the following charted orbifold maps: ĝ ∈ Orb(V,V ′) with
ĝ ∈ [f̂ ] and ĥ ∈ Orb(V ′,V ′′) with ĥ ∈ πT (Q,U) such that these maps induce the composition, i.e.
πT (Q,U) ◦ [f̂ ] = [ĥ ◦ ĝ]. Furthermore, these charted maps can be chosen such that the following
diagram is commutative:

T W
πT (Q,U)

// W

V
ĝ
// V ′

ε1

<<zzzzzzzz
ĥ // V ′′

ε2

aaBBBBBBBB

Here the charted maps ε1 and ε2 are lifts of the identity (cf. Definition E.5.1) and composition in
the diagram is composition of charted orbifold maps. By definition of the composition in Orb we
obtain [f̂ ] = [ε1 ◦ ĝ] with a representative ε1 ◦ ĝ ∈ Orb(V, T W).

The rest of this section will be devoted to construct a tangent functor for the category Orb. To
achieve this goal, we have to construct tangent orbifold maps. We record several observations, which
will allows us to introduce tangent orbifold maps.
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3.1.6 Remark

(a) Let V be a representative of U for an orbifold (Q,U). The G-action in a chart in V acts on the
tangent chart via the derived action. Since the tangent functor T : Man→ Man (where Man is
the category of smooth (not necessarily finite dimensional) manifolds) is functorial, Proposition
1.2.2 (e) and the definition of the tangent manifold imply that TΨ(V) := {Tλ |λ ∈ Ψ(V)} is
a quasi-pseudogroup which generates Ψ(T V). Furthermore, if P is some quasi-pseudogroup
which generates Ψ(V), then the quasi-pseudogroup T P := {Tλ |λ ∈ P} generates Ψ(T V).

(b) Let λ, µ ∈ ChV,W be change of charts and X ∈ domTλ ∩ domTµ such that germX Tλ =
germX Tµ holds. Choose an open X-neighborhood UX ⊆ TV with Tλ|UX = Tµ|UX . This
implies λ|πTV (UX) = µ|πTV (UX). Since πTV is an open map, πTV (UX) is open and contains
πTV (X). Thus germπTV (X) λ = germπTV (X) µ holds.

3.1.7 Definition Let (Qi,Ui), i = 1, 2 be orbifolds and [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)) be a mor-
phism with representative f̂ = (f, {fi}i∈I , [P, ν]) ∈ Orb(V,W).
Furthermore, consider orbifold atlases V = {(Vi, Gi, ψi) | i ∈ I} andW = {(Wj , Hj , ϕj) | j ∈ J}. For
two changes of charts Tλ = Tµ is satisfied if and only if λ = µ, whence T ν : T P → Ψ(T W), Tλ 7→
Tν(λ) is a well defined map. Here T P is the quasi-pseudogroup of some (P, ν) in the class [P, ν]
as in Remark 3.1.6 (a). The class [T P, T ν] does not depend on the choice of (P, ν) in [P, ν] by the
definition of equivalence (cf. Definition E.2.5).
Combining Remark 3.1.6 (b) and the properties (R4a)-(R4d) of Definition E.2.3 for the map ν with
respect to F :=

∐
i∈I fi, we see that T ν satisfies properties (R4a)-(R4d) with respect to F ′ :=∐

i∈I Tfi. In particular, we derive Tϕα(i)Tfi(Tλ.x) = Tϕα(j)Tfj(x) for each λ ∈ ChVj ,Vi . Thus
there is a well-defined continuous map T f : T Q1 → T Q2, T f(x) := Tϕα(i)TfiTψ

−1
i (x), x ∈ ImTψi.

In conclusion, a charted map of orbifolds is given by

T̂ f := (T f, {Tfi}i∈I , [T P, T ν]) ∈ Orb(T V, T W).

The map T̂ f is a representative of the orbifold tangent map [T̂ f ] of [f̂ ]. We have to check that the
construction of this map is functorial.

3.1.8 Lemma The assignment T : Orb→ Orb, (Q,U) 7→ T (Q,U), [f̂ ] 7→ [T̂ f ] is a functor, i.e.

(a) If ε̂ = (idQ, {fi}i∈I , [P, ν]) ∈ Orb(V,W) is a lift of the identity id(Q,U), then T̂ ε is a lift of the
identity idT (Q,U).

(b) Let f̂ = (f, {fi}i∈I , [Pf , νf ]) ∈ Orb(V,W) and ĝ = (g, {gj}j∈J , [Pg, νg]) ∈ Orb(W,A). Then

T̂ g ◦ f = T̂ g ◦ T̂ f .
(c) Two representatives f̂1, f̂2 of [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)) induce equivalent charted orbifold

maps, i.e. [T̂ f1] = [T̂ f2].
(d) [T̂ g ◦ f ] = [T̂ g] ◦ [T̂ f ] holds for [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)), [ĝ] ∈ Orb ((Q2,U2), (Q3,U3)).

Proof. (a) For each i ∈ I let the lifts fi : Vi →Wα(i) be given with respect to the charts (Vi, Gi, ψi)
and (Wα(i), Hα(i), ϕα(i)). Here α : I → J is the map which assigns to fi the chart Wα(i). Each
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fi is a local diffeomorphism by Definition E.3.5. Using functoriality of T , again Tfi is a
local diffeomorphism. By Proposition E.5.3 the assertion will be true if T idQ = idTQ holds.
Consider x ∈ T Q with x ∈ ImTψi for some i ∈ I. Choose zx ∈ TVi with Tψi(zx) = x
and observe that by Proposition E.3.2, we may choose orbifold charts (Sx, Gx, ψx|Sx) and
(S′x, G

′
x, ψx|S′x) with πTVi(x) ∈ Sx such that fi induces the identity on Sx with respect to idSx

and (fi|Sx)−1. Hence fi|Sx is a change of charts, which implies T idQ(x) = T idQ(Tψi(zx)) =
Tϕα(i)Tfi(zx) = Tϕα(i)T (fi|Sx)(zx) = x.

(b) Define hi := gα(i) ◦ fi and h = g ◦ f . Then ĝ ◦ f̂ is given by ĥ = (h, {hi | i ∈ I} , [Ph, νh]). From
Definition 3.1.7, we infer ̂T (g ◦ f) = (T h, {Thi | i ∈ I} , [T Ph, T νh]).
By construction, one has T̂ f ∈ Orb(T V, T W) and T̂ g ∈ Orb(T W, T A). These charted
orbifold maps may therefore be composed as in Construction E.4.1: The charted orbifold map
T̂ f ◦ T̂ g is given as ĥT := (T g ◦ T f,

{
Tgα(i) ◦ Tfi

}
i∈I , [PhT , νhT ]). By functoriality of T , we

have hi = T (gα(i) ◦ fi) = Tgα(i)Tfi for i ∈ I. Hence the lifts of ̂T (g ◦ f) and ĥT coincide for
each i ∈ I. We conclude T h = T g ◦ T f .
If (T Ph, T νh) ∼ (PhT , νhT ) holds, then both maps will be equivalent as charted orbifold maps.
By construction of the quasi-pseudogroups this indeed follows directly from the functoriality
of T and property (R4b) of Definition E.2.3. However, since quasi-pseudogroups work with
the germs of maps, the computation has to be carried out on the germ level. Here are the
technical details:
Let λ, µ ∈ ChTVi,TVj , i, j ∈ I, λ ∈ T Ph, µ ∈ PhT and X ∈ domλ ∩ domµ with germX λ =
germX µ. To establish the equivalence, we have to prove the identity

germThi(X) T νh(λ) = germThi(X) νhT (µ). (3.1.2)

Set x := πTVi(X). By definition of the quasi-pseudogroups of f̂ and ĝ (combine Remark 3.1.6
and Construction E.4.1), we obtain the following data:
1. η, ρ ∈ Pf , x ∈ Uη,x, Uρ,x open and η|Uη,x , ρ|Uρ,x ∈ Ph with λ = Tη|Uη,x and germX µ =

germX Tρ,
2. ξη,x, ξρ,x ∈ Pg with νh(η|Uη,x) = νg(ξη,x) and germfi(x) ξη,x = germfi(x) νf (η), respec-

tively for νh(ρ|Uρ,x) = νg(ξρ,x) and germfi(x) ξρ,x = germfi(x) νf (ρ)
3. ξµ,X ∈ T Pg with νhT (µ) = T νg(ξµ,X) and germTfi(X) ξµ,X = germTfi(X) T νf (Tρ).

For φ, ψ ∈ Pf and z ∈ domφ∩domψ Remark 3.1.6 (b) implies germz φ = germz ψ if and only
if germX Tφ = germX Tψ for some X ∈ TzVi. Exploiting property (R4b) for νf we obtain
germfi(x) νf (φ) = germfi(x) νf (ψ), whence germTfi(X) T νf (Tφ) = germTfi(X) T νf (Tψ) holds.
Analogously the same holds for νg and νh by 1. and 2.:

germThi(X) T νh(λ) = germThi(X) Tνh(η|Uη,x) = germThi(X) Tνg(ξη,x).

We already know germX Tη = germX λ = germX µ = germX Tρ and by Remark 3.1.6 (b)
germx η = germx ρ follows. Using property (R4b) for νf and 2. one obtains germfi(x) ξη,x =
germfi(x) νf (η) = germfi(x) νf (ρ).
Together with 3. this yields germTfi(X) Tξη,x = germTfi(X) T νf (Tρ) = germTfi(X) ξµ,X .
Again by 3. and property (R4b) for T νg we derive:

germThi(X) T νh(λ) = germThi(X) T νg(Tξη,x) = germThi(X) T νg(ξµ,X) = germThi(X) νhT (µ).
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Since X, λ, µ were arbitrary, (T Ph, T νh) ∼ (PhT , νhT ) holds and we conclude ̂T (g ◦ f) =

T̂ g ◦ T̂ f .
(c) In view of of (a) and (b), we can apply T to the diagram (E.4.2) which defines the equivalence

of charted orbifold maps (cf. Definition E.4.3 and the assertion follows.
(d) This is just the combination of (b) and (c).

3.1.9 Remark Let (Qi,Ui), i ∈ {1, 2} be orbifolds and [f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)). The definition
of the tangent orbifold map implies that the following diagramm is commutative

T (Q1,U1)
T [f̂ ]

//

πT (Q1,U1)

��

T (Q2,U2)

πT (Q2,U2)

��

(Q1,U1)
[f̂ ]

// (Q2,U2)

In other words, the family (πT (Q,U))(Q,U)∈Orb defines a natural transformation relating the endo-
functors T and idOrb.
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3.2. Orbisections

We now study sections of an orbifold into its tangent orbibundle. These maps will be called “orbi-
sections” and may be thought of as an analogue of vector fields on manifolds. In this section, (Q,U)
is an orbifold.

3.2.1 Definition A map of orbifolds [σ̂] ∈ Orb ((Q,U), T (Q,U)) is called an orbisection if it
satisfies

πT (Q,U) ◦ [σ̂] = id(Q,U) .

Its support supp[σ̂] is the closure of {x ∈ Q |σ(x) 6= 0x}, where 0x ∈ TxQ is the zero-element. We
define the set of all orbisections XOrb (Q) of the orbifold (Q,U).
An orbisection [σ̂] ∈ XOrb (Q) with supp[σ̂] ⊆ K for some compact subset K ⊆ Q is called compactly
supported (in K).
For K ⊆ Q compact define the set XOrb (Q)K := {[σ̂] ∈ XOrb (Q) | supp[σ̂] ⊆ K} of orbisections
supported in K. Let XOrb (Q)c be the set of all compactly supported orbisections in XOrb (Q).

If M is a trivial orbifold (i.e. a manifold), then orbisections are vector fields on the manifold. It
is well known that vector fields for a manifold form a vector space. In Section 3.3 we will prove
that the set XOrb (Q) (and the subspaces XOrb (Q)c ,XOrb (Q)K are topological vector spaces over
R for any orbifold. This fact is quite surprising for a non-trivial orbifold. Indeed, recall that at a
singular point, the orbifold tangent space does not support a vector space structure. However, lifts
of a special kind for orbisections, we may obtain a vector space structure: For vector fields, it is
often advantageous to consider the representative of a vector field X : M → TM in charts. For a
manifold chart Ψ, this representative is defined to be XΨ := dΨ ◦X ◦Ψ−1. It is possible to obtain
lifts of a similar kind for orbisections on arbitrary orbifolds.

3.2.2 Definition Consider [σ̂] ∈ XOrb (Q) with σ̂ = (σ, {σi}i∈I , [Pσ, νσ]) ∈ Orb(V, T V). If for each
i ∈ I, the lift is a vector field σi ∈ X (Vi), then (σi)i∈I is called < family of canonical lifts for the
orbisection [σ̂] with respect to V. If there is no risk of confusing which orbifold atlas is meant, we
will also say that {σi}i∈I is a canonical family for [σ̂].

Representatives of orbisections with canonical lifts with respect to a given atlas are unique:

3.2.3 Lemma Let [f̂ ] ∈ XOrb (Q) and V ∈ U be an arbitrary orbifold atlas such that there exists
a representative ĥ = (f, {fi}i∈I , [Ph, νh]) ∈ Orb(V, T V) whose lifts form a canonical family for [f̂ ].
Then ĥ is unique, i.e. if there is another representative of [f̂ ] whose lifts form a canonical family
with respect to V, then the members of this family must coincide with {fi}i∈I .

Proof. Let ĝ = (f, {gi}i∈I , [Pg, νg]) ∈ Orb(V, T V) be another representative of [f̂ ] whose lifts form a
canonical family with respect to V. For each chart (Vi, Gi, ψi), i ∈ I we have πTVifi = idVi = πTVigi.
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On the other hand, gi and fi are lifts of f , thus for every point x ∈ Vi, there is γx ∈ Gi such that
Tγxfi(x) = γx.fi(x) = gi(x). Combining these observations, we obtain

x = πTVifi(x) = πTVigi(x) = πTViTγxfi(x) = γx.x. (3.2.1)

Thus for each x ∈ Vi \ ΣGi (i.e. x is non-singular), we derive γx = idVi and fi(x) = gi(x). The
continuous maps fi and gi coincide on the dense set Vi \ ΣGi , whence fi = gi.

It turns out that analogous to vector fields on manifolds, one is able to construct a canonical
family for each orbisection with respect to any given orbifold atlas. At first we have to assure that
there is at least some representative with a family of canonical lifts for a given orbisection:

3.2.4 Lemma For every orbisection [f̂ ] ∈ XOrb (Q), there is a representative V of U indexed by
some I and a representative of an orbifold map ĝ = (f, {fi}i∈I , [Pĝ, νĝ]) ∈ Orb(V, T V) such that

(a) ĝ ∈ [f̂ ],
(b) {fi}i∈I is a canonical family for [f̂ ] with respect to V.

Proof. Following Lemma 3.1.5, we choose orbifold atlases A ∈ U and W ∈ U indexed by I such
that there is a representative ĥ = (f, {hi}i∈I , [Pĥ, νĥ]) ∈ Orb(W, T A) of [f̂ ]. For i ∈ I let
hi : Vi → TUα(i) be the lift with respect to (Vi, Gi, ψi) ∈ W and (TUα(i), Gα(i), πα(i)) ∈ T A.
By Lemma 3.1.5, the composition h1

i := πTUα(i)
◦ hi : Vi → Uα(i) is a local lift of idQ, since

πT (Q,U) ◦ [ĥ] = id(Q,U). For each v ∈ Vi there is an open Gi-stable set V vi by Proposition E.3.2 such
that h1

i |V vi is an open embedding of orbifold charts.

Thus Vi can be covered by open Gi-stable subsets
{
V ji

∣∣∣ j ∈ Ji} such that h1
i |V ji is an embed-

ding of the orbifold chart (V ji , GV ji
, ψi|V ji ) into Wα(i). Define an orbifold atlas V ∈ U via V :={

(V ji , GV ji
, ψi|V ji )

∣∣∣ i ∈ I, j ∈ Ji}. Since h1
i is invertible on each V ji , for j ∈ Ji, one can construct a

family of lifts for f as follows: Set

f ji := T (h1
i |V ji )−1 ◦ hi|V ji : V ji → TV ji .

A computation proves the identity πTV ji ◦f
j
i = idV ji

, i.e. f ji ∈ X
(
V ji

)
. Since h1

i |V ji is an embedding
of orbifold charts, the same holds for T (h1

i |V ji )−1 = (Th1
i |TV ji )−1 (cf. Lemma 3.1.4). By construction

the mooth maps f ji are induced by the lifts hi of ĥ with respect to the inclusion of V ji and the open
embedding Th1

i |TV ji . Hence Lemma E.4.2 implies that there is a representative ĝ ∈ [f̂ ] whose local

lifts are given by the family (f ji )i∈I,j∈Ji . Therefore, ĝ ∈ Orb(V, T V) is a representative of [f̂ ] whose
lifts form a canonical family with respect to the atlas V.

We now have canonical lifts for an orbisection at our disposal. With this tool, it is possible to
deduce a surprising properties of orbisections:
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3.2.5 Proposition Orbisections preserve local groups.

Proof. Consider [f̂ ] ∈ XOrb (Q) together with a representative f̂ = (f, {fi}i∈I , [Pf , νf ]) such that
{fi}i∈I is a canonical family with respect to some orbifold atlas V. Consider x ∈ Q together with
an orbifold chart (Vi, Gi, ψi) such that x ∈ ψi(Vi). Abbreviate G := Gi. Recall fi ∈ X (Vi), i.e. it is
a vector field on Vi. Choose z ∈ Vi with ψi(z) = x. We have to prove that Gz coincides with Gfi(z).
To this end consider γ ∈ Gfi(z). By definition, γ acts on TV ; via the derived action γ.v := Tγ(v).
One computes

z = πTVifi(z) = πTVi(γ.fi(z)) = πTViTγ(fi(z)) = γ.πTVifi(z) = γ.z.

Thus every γ ∈ Gfi(z) is an element of Gz. Hence θ : Gfi(z) → Gz, γ 7→ γ is an injective group
homomorphism. We claim that θ is surjective. To prove this, consider δ ∈ Gz. Observe that every
δ ∈ Gz is a change of charts (even an embedding of orbifold charts) and there is g ∈ Pf together
with an open (connected) neighborhood Ωz ⊆ Vi of z such that δ|Ωz = g|Ωz holds. The map νf (g) is
a change of charts of TVi into itself. Restricting to the open connected component C of dom νf (g)
which contains fi(z), [51, Lemma 2.11] implies that there is a unique γ ∈ G such that νf (g)|C = γ|C .
On the open set Ωz ∩ f−1

i (C), the identity

fi ◦ δ|Ωz∩f−1
i (C) = νf (g)fi|Ωz∩f−1

i (C) = γ.fi|Ωz∩f−1
i (C) (3.2.2)

holds. The set Ωz ∩ f−1
i (C) is a non-empty open set and by Newman’s Theorem B.2.1 there is a

non-singular y ∈ Ωz ∩ f−1
i (C). Specializing to y, equation (3.2.2) yields:

fi(δ.y) = γ.fi(y) = Tγfi(y) ⇒ δ.y = πTVifi(δ.y) = πTViTγfi(y) = γ.y.

Then δ−1γ.y = y and y being non-singular forces γ = δ. Applying this to (3.2.2) we obtain:

fi(z) = fi(δ.z) = Tδ.fi(z) = δ.fi(z).

In other words, δ fixes fi(z) and thus δ is an element of the isotropy subgroup Gfi(z). Thus θ is
surjective. We conclude that θ : Gz → Gfi(z), γ 7→ γ is an isomorphism of groups and that the local
groups Γz and Γf(z) are isomorphic.

The property to preserve local groups limits the choice of images an orbisection may take on a
given singular point. In particular, there are elements in the tangent space at a singular point which
are not in the image of any orbisection. We refer to Example 3.3.9 for such a case.

3.2.6 Proposition Let [f̂ ] be an orbisection and V ∈ U be an orbifold atlas. Furthermore, let
f̂ = (f, {fi}i∈I , [Pf , νf ]) ∈ Orb(V, T V) be a representative of [f̂ ] such that {fi}i∈I is a family of
canonical lifts. For each element φ of the set of changes of charts ChV of V (cf. Notation E.2.4)
with domφ ⊆ Vi and codφ ⊆ Vj, (Vα, Gα, ψα) ∈ V, α ∈ {i, j}, the identity

fjφ = Tφfi|domφ (3.2.3)
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holds. The pair (ChV , ν) with
ν : ChV → Ψ(T V), φ 7→ Tφ,

is a representative of [Pf , νf ]. Here ChV is the quasi-pseudogroup of all changes of charts for the
atlas V (cf. Notation E.2.4).

Proof. Pick an arbitrary change of charts φ as above and choose a representative (Pf , νf ) of [Pf , νf ].
It suffices to prove the identity (3.2.3) on small neighborhoods of arbitrary points in domφ. Let
x0 ∈ domφ be such a point. Since Pf generates Ψ(V), there is an open x0-neighborhood Ux0

⊆
domφ ⊆ Vi together with γφx0

∈ Pf such that γx0
|Ux0

= φ|Ux0
holds. By definition, we obtain a local

lift of f :
fjφ|Ux0

= fjγx0 |
φ
Ux0

= νf (γφx0
)fi|Ux0

. (3.2.4)

On the other hand, the composition Tφfi|Ux0
is defined, since fi|Ux0

∈ X (Ux0
). By Lemma 3.1.4

(a), Tφ is a change of charts of T V and thus Tφfi|Ux0
is a local lift of f on Ux0

. For every y ∈ Ux0
,

we obtain
Tψjνf (γφx0

)fi(y) = TψjTφfi(y).

Thus there is a unique group element gy ∈ Gj such that gy.νf (γφx0
)fi(y) = Tφfi(y) holds. In

Proposition 3.2.5 we have seen that orbisections preserve local groups, whence they preserve non-
singular points. Therefore lifts of orbisections map non-singular points to non-singular points. The
set Ux0

is a non-empty open subset of Vi and by Newman’s Theorem B.2.1, the non-singular points
of the Gi-action on Vi are dense in Ux0

. Using (3.2.4) for non-singular y ∈ Ux0
we obtain the

identities

Tφfi(y) = gy.νf (γφx0
)fi(y) = gy.fjφ(y) = Tgy(fjφ(y)), whence

φ(y) = πTVjTφfi(y) = πTVjTgy(fjφ(y)) = gy.φ(y).

As changes of charts preserve non-singular points and y is non-singular, gy = idVj follows. The
maps νf (γφx0

)fi and Tφfi therefore coincide on the non-singular points of Ux0
. As these points form

a dense subset in Ux0 , the continuous maps must coincide on Ux0 , whence Tφfi|Ux0
= νf (γφx0

)fi|Ux0

holds and indeed Tφfi|Ux0
= fjφ|Ux0

follows.
The quasi-pseudogroup ChV generates Ψ(V) and our previous considerations show that ν (as defined
above) satisfies property (R4a) of Definition E.2.3. The functoriality of T implies properties (R4b)-
(R4d) of Definition E.2.3 for (ChV , ν). Notice that we did not change the family of lifts {fi}i∈I .
Thus ĥ := (f, {fi}i∈I , [Ch, ν]) ∈ Orb(V, T V) is a charted map such that [f̂ ] = [ĥ].

3.2.7 Remark Let M,N be smooth manifolds and f : M → N be a smooth map. Recall that
σ ∈ X (M) and τ ∈ X (N) are called f -related if Tf ◦σ = τ ◦f holds. Hence Proposition 3.2.6 shows
that canonical families of an orbisection are families of pairs of f -related vector fields, where f runs
through the changes of charts of the domains of the pair.

3.2.8 Lemma Let [f̂ ] be an orbisection and V be an arbitrary representative of U . There is a
refinement V ′ of V and a representative ĥ = (f, {hi}i∈I , [P, ν]) ∈ Orb(V ′, T V ′) of [f̂ ] such that
{hi}i∈I is a family of canonical lifts for [f̂ ].
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Proof. By Lemma 3.2.4, we may choose a representative W of U indexed by I and a representative
ĝ = (f, {gi}i∈I , [P, ν]) ∈ Orb(W, T W) of [f̂ ] such that {gi}i∈I is a canonical family. Choose a
common refinement V ′ of W and V. The refinement V ′ induces a common refinement T V ′ of T V
and T W, since embeddings of orbifold charts are mapped to embeddings of orbifold charts by the
tangential functor T . Let V ′ be indexed by J and α : J → I be a map such that for j ∈ J there
is an embedding of orbifold charts λj : (V ′j , G

′
j , π
′
j)→ (Wα(j), Hα(j), ψα(j)). The family {gi}i∈I is a

canonical family, therefore

gα(j)λj(V
′
j ) = gα(j)(Imλj) ⊆ T Imλj .

Define the maps hj := (Tλj)
−1gα(j)λj : V ′j → TV ′j . Then Lemma E.4.2 assures that there is a pair

(P, ν) such that ĥ := (f, {hj}j∈J , [P, ν]) is a representative of [f̂ ]. A computation yields

πTVjhj = πTVj (Tλj)
−1gα(j)λj = λ−1

j πTWα(j)
gα(j)λj = idVj

for each j ∈ J . In conclusion, {hj}j∈J is a canonical family and the domain atlas of ĥ is a refinement
of V.

The results obtained so far show that each orbisection possesses representatives whose lifts form
canonical families for suitable refinements of V. We will now prove a converse: For each orbisection
and an arbitrary orbifold atlas, there is a representative whose lifts form a canonical family with
respect to the given atlas. This result is quite surprising since in general maps of orbifolds need not
have lifts on an orbifold chart chosen in advance.

3.2.9 Proposition Let [f̂ ] ∈ XOrb (Q) and W be an arbitrary representative of U indexed by J .
There exists a representative ĝ = (f, {gj}j∈J , [P, ν]) ∈ Orb(W, T W) such that {gj}j∈J is a canonical
family with respect to W .

Proof. Lemma 3.2.8 allows us to choose a refinement V of W indexed by I and a representative
ĥ := (f, {fVi}i∈I , [P, ν]) ∈ Orb(V, T V) of [f̂ ] such that {fVi}i∈I is a family of canonical lifts for
[f̂ ]. Let (Wj , Gj , ψj) ∈ W be an arbitrary orbifold chart. We have to construct a local lift of f
on (Wj , Gj , ψj). To achieve this, consider x ∈ Wj . Since ψj(x) ∈ Q and V is an atlas, there is a
chart (Vi, Gi, ϕi) ∈ V together with a change of charts λx ∈ ChVi,Wj (cf. Notation E.2.4) such that
x ∈ Imλx. Then we define

fWj
(z) := TλxfViλ

−1
x (z) ∈ TzWj (3.2.5)

for all z ∈ Imλ. The definition of fWj
neither depends on the choice of λx nor on (Vi, Gi, ϕi). To

see this, consider another chart (Vj , Gj , ϕj) ∈ V and a change of charts morphism µx ∈ ChVr,Wj

with x ∈ Imµx. Denote the intersection Imλx ∩ Imµx as Ωx. We will show that for each z in
the open x-neighborhood Ωx, equation (3.2.5) yields the same fWj (z) if µx is used instead of λx.
Observe that hx := λ−1

x µx|µ−1
x (Ωx) is a change of charts in ChVr,Vi . Using that the family {fVi}i∈I

is a canonical family of lifts with respect to V, we compute for z ∈ Ωx

TλxfViλ
−1
x (z) = TλxfVihxµ

−1
x (z) = TλxThxfVjµ

−1
x (z) = TµxfVjµ

−1
x (z).
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Hence, on Ωx the assignment (3.2.5) does not depend on any of the above choices. Thus it makes
sense to define a map as follows

fWj
: Wj → TWj , x 7→ TλfViλ

−1(x) if there is (Vi, Gi, ϕi) ∈ V and λ ∈ ChVi,Wj
with x ∈ Imλ.

For each x ∈ Wj there is a change of charts such that the identity (3.2.5) holds in an open x-
neighborhood. Hence, the map fWj

is a smooth and by construction, a smooth vector field. Repeat-
ing the construction for each chart in W, we obtain a family of vector fields

{
fWj

}
j∈J which lift f .

We claim that the family of vector fields is a canonical family of lifts. It suffices to prove identity
(3.2.3) for each φ ∈ ChWj ,Wk

and j, k ∈ J . To this end fix φ ∈ ChWj ,Wk
and consider z ∈ domφ

together with a change of charts λz ∈ ChVi,Wj such that z ∈ Imλz ⊆ domφ. Then φ ◦ λz ∈ ChVi,Wk

implies

fWk
◦ φ(z)

(3.2.5)
= T (φλz)fVi(φ ◦ λ)−1φ(z) = TφTλzfiλ

−1
z (z)

(3.2.5)
= TφfWj

(z).

Since z ∈ domφ was arbitrary, this proves identity (3.2.3). Hence by Proposition 3.2.6 we may choose
ν, such that the map ĝ := (f,

{
fWj

}
j∈J , [ChW , ν]) is a representative of an orbisection with canonical

lifts. The atlas V is a refinement ofW, thus for every i ∈ I, there is an embedding of orbifold charts
λi : (Vi, Gi, πi)→ (Wα(i), Gα(i), ψα(i)). By construction, we obtain fVi = Tλ−1

i fWα(i)
λi and therefore

every lift fVi is induced by a suitable lift of ĝ. Following Definition E.4.3, we have ĝ ∼ ĥ and the
classes [ĝ] and [f̂ ] coincide. Thus the lifts are a canonical family of [f̂ ] with respect to W.

Proposition 3.2.9 shows that every orbisection may be identified in every given atlas with a unique
family of canonical representatives. In particular, orbisections satisfy analogous properties as C∞-
sections in the tangent bundle in the sense of [15, below Remark 4.1.8].

3.2.10 Remark

(a) A family F of vector fields on an orbifold atlas V which satisfies Equation (3.2.3) induces a
continuous map F : Q→ T Q (cf. the proof of Proposition 3.3.1 for the explicit construction)
such that

- (F,F , [ChV , ν]) ∈ Orb(V, T V) with ν : ChV → Ψ(T V), λ 7→ Tλ,
- F is a canonical family.

Vice versa, if (f, {fi}i∈I , [Pf , νf ]) is a representative of an orbisection whose lifts form a
canonical family with respect to an atlas V, then the above construction for {fi}i∈I yields
the map f . Lemma 3.2.3 implies that an orbisection is uniquely determined by its family of
canonical lifts with respect to any atlas V. This induces a one to one correspondence between
the set of orbisections and families of vector fields for some orbifold atlas V which satisfy
(3.2.3).

(b) Notice that (a) implies: For [f̂ ] ∈ XOrb (Q) and (U,G, ψ) ∈ U , there is a unique vector field
f̂U ∈ X (U) such that for f̂ = (f, {fi}i∈I , [P, ν]) the identity Tψf̂U = fψ holds.

(c) The canonical lift of the zero orbisection 0Orb with respect to some orbifold chart (U,G, ψ) is
the zero-section in X (U). If [f̂ ] ∈ XOrb (Q) is an orbisection and (U,G,ψ) ∈ U is some chart
such that ψ(U) ∩ supp[f̂ ] = ∅, then the canonical lift of [f̂ ] on U is the zero-section in X (U).
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(d) Proposition 3.2.5 implies that orbisections in XOrb (Q) take their values in

T Qinv :=
{

[π, v]
∣∣ (U,G,ψ) ∈ U , v ∈ TU with g.v = v for all g ∈ GπTU (v)

}
.

Notice that TxU inv := {v ∈ TxU | g.v = v for all g ∈ Gx} is a subvectorspace of TxU and
TU inv :=

⋃
x∈U TxU

inv is invariant with respect to the derived G-action on TU . Since
the chart mapping Tψ is an open map, [20, VI. Theorem 2.1] implies that the restriction

Tπ|TQ
inv∩ImTπ

TU inv is a quotient map. Furthermore, the map Tπ|TQ
inv∩Tπ(x)Q

TxU inv is bijective. Thus
Tπ(x)Q

inv := Tπ(TxU
inv) is in a natural way a vector space, whence the fibres of T Qinv are

vector spaces. Notice that this vector space structure induces a vector space structure on
XOrb (Q) by pointwise operations on canonical lifts. The details are recorded in the next
section.

(e) The underlying continuous map σ of an orbisection [σ̂] ∈ XOrb (Q) uniquely determines the
orbisection. To see this, we choose a family of canonical lifts (σi)i∈I with respect to some atlas
{(Ui, Gi, ψi)}i∈I ∈ U for [σ̂]. From part (d) we derive for x ∈ Ui the identity

σi(x) = (Tψi|
TQinv∩Tπ(x)Q

TxU inv )−1 ◦ σ ◦ ψi(x).

Hence, the underlying map σ uniquely determines the canonical lifts σi. By part (a), the
canonical family {σi}i∈I uniquely determines [σ̂], whence the assertion follows. In particular,
we obtain a canonical embedding

XOrb (Q)→ C(Q, T Q), [σ̂] 7→ σ
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3.3. Spaces of orbisections

We now study spaces of orbisections. For these spaces we will obtain the structure of a real topo-
logical vector space. The construction of the vector space structure is inspired by arguments first
given in [7].

3.3.1 Proposition The set XOrb (Q) of orbisections is a real vector space with pointwise vector
space operations on canonical lifts. The zero element 0Orb ∈ XOrb (Q) of XOrb (Q) is called the zero
orbisection. Endowing XOrb (Q) with this vector space structure, the sets XOrb (Q)K ⊆ XOrb (Q)c ⊆
XOrb (Q) become linear subspaces.

Proof. Let [f̂ ], [ĝ] ∈ XOrb (Q) and choose an arbitrary representative V of the orbifold structure
U , indexed by some set I. By Proposition 3.2.9 we may choose unque representatives of orbifold
maps f̂ = (f, {fi}i∈I , [Pf , νf ]) ∈ Orb(V, T V) of [f̂ ] and ĝ = (g, {gi}i∈I , [Pg, νg]) ∈ Orb(V, T V) of
[ĝ] such that the families of lifts are canonical families. Without loss of generality Pf = Pg = ChV
and νf (λ) = νg(λ) = Tλ hold, by Proposition 3.2.6. By construction, for each i ∈ I the lifts
are vector fields fi, gi ∈ X (Vi). Recall from [16, 2.7] that the vector space structure on X (Vi) is
induced by pointwise operations. We define the vector space operations on XOrb (Q) via the following
construction:
For z ∈ R consider fi + zgi : Vi → TVi ∈ X (Vi). Remember that tangent maps act as linear maps
on each tangent space. For every change of charts λ ∈ Ψ(V) with domλ ⊆ Vi and codλ ⊆ Vj we
obtain:

(fj + zgj)λ(p) = fj(λ(p)) + zgj(λ(p)) = νf (λ)fi(p) + zνg(λ)gi(p)

= Tpλ(fi(p)) + zTpλ(zgi(p)) = Tpλ(fi(p) + zgi(p)) (3.3.1)
=: νf+zg(λ)(fi(p) + zgi(p)).

Define the quasi-pseudogroup Pf+zg := ChV together with νf+zg : Pf+zg → Ψ(T V), λ 7→ Tλ. The
pair (Pf+zg, νf+zg) and the family (fi + zgi)i∈I satisfy properties (R4a)-(R4d) of Definition E.2.3.
Notice that by Identity (3.3.1) for a chart (Vi, Gi, ψi) ∈ V the map Tψi(fi+ zgi) is constant on each
fibre ψ−1

i (y). As ψi is a quotient map, the map

f + zg|ψi(Vi) : ψ(Vi)→ Tψi(TVi), x 7→ Tψi ◦ (fi + zgi)ψ
−1(x)

is continuous, by [20, VI. Theorem 3.2] Furthermore, the map fi+zgi is a smooth lift for f+zg|ψi(Vi).
We claim that for every pair (i, j) ∈ I × I, the maps f + zg|ψi(Vi) and f + zg|ψj(Vj) coincide on
ψj(Vj) ∩ ψi(Vi). If this is true, then f + zg : Q → T Q, x 7→ f + zg|ψi(Vi)(x), for x ∈ ψi(Vi) is a
well-defined continuous map. We obtain a charted orbifold map

f̂ + zg := (f + zg, {fi + zgi}i∈I , [Pf+zg, νf+zg]) ∈ Orb(V, T V)

such that each lift fi + zgi is a vector field. Hence {fi + zgi}i∈I is a canonical family with respect
to the atlas V and [f̂ + zg] ∈ XOrb (Q) holds. Proof of the claim: Consider x ∈ ψi(Vi)∩ψj(Vj). For
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every pair yα ∈ ψ−1
α (x), α ∈ {i, j}, there is a change of charts λ ∈ ChVi,Vj such that λ(yi) = yj .

Again by (3.3.1), the claim follows as

f + zg|ψj(Vj)(x) = Tψj(fj + zgj)(yj) = Tψj(fj + tgj)(λ(yi))

= TψjTλ(fi + zgi)(yi) = Tψi(fi + zgi)(p) = f + zg|ψi(Vi)(x)

It remains to show that the construction does not depend on the atlas V. Let V ′ be another repre-
sentative of U and f̂ ′ and ĝ′, respectively, be representatives of [f̂ ] resp. [ĝ], whose families of lifts
form canonical families with respect to V ′. By Lemma 1.6.2, we may choose a common refinement of
V and V ′. The definition of equivalence of orbifold maps implies that the classes will be equal if the
induced lifts on this refinement coincide. Without loss of generality we may assume that V ′ refines
V: Let V ′ = {(Wk, Hk, φk) | k ∈ K} and α : K → J be the map which assigns to k ∈ K an element
of I such that there is an embedding of orbifold charts λk : (Wk, Hk, φk) → (Vα(k), Gα(k), ψα(k)).
The atlas T V ′ for T Q is a refinement of T V. In particular, Tλk is an embedding of (TWk, Hk, Tφk)

into (TVα(k), Hα(k), Tψα(k)). Let f̂ ′ = (f, {f ′k}k∈K , [P
′
f , ν
′
f ]) and ĝ′ = (g, {g′k}k∈K , [P

′
g, ν
′
g]). The

families {fi}i∈I and {gi}i∈I are families of vector fields and we obtain induced vector fields on each
chart (Wk, Hk, φk) since this chart embeds into a chart (Vα(k), Gα(k), ψα(k)). Combine Lemma 3.2.8
and the uniqueness assertion for canonical lifts (Lemma 3.2.3) to obtain the following identity for
the induced vector fields

f ′k = Tλ−1
k fα(k)λk, g′k = Tλ−1

k gα(k)λk.

Constructing ̂f ′ + zg′ ∈ Orb(V ′, T V ′) as above, we deduce from the last identity that f̂ + zg ∼
̂f ′ + zg′. A vector space structure on XOrb (Q) is thus defined via the assignment:

[f̂ ] + z[ĝ] := [f̂ + zg].

Clearly 0Orb ∈ XOrb (Q)K ⊆ XOrb (Q)c holds, whence these subsets are not empty. The last claim
follows from the definitions: For [f̂ ], [ĝ] ∈ XOrb (Q)c with supp[f̂ ] ⊆ K and supp[ĝ] ⊆ L with
K,L ⊆ Q compact, one obtains supp([f̂ ] + z[ĝ]) ⊆ supp[f̂ ]∪ supp[ĝ] ⊆ K ∪L. Therefore XOrb (Q)K
and XOrb (Q)c are linear subspaces.

Our goal for the remainder of this section is to topologize the vector spaces XOrb (Q) and
XOrb (Q)c. If Q is a compact topological space, then XOrb (Q) will be a Fréchet space.

3.3.2 Lemma Let (Q,U) be an orbifold and V = {(Ui, Gi, ψi) | i ∈ I} an arbitrary representative
of U indexed by I. There is a bijection identifying each [f̂ ] ∈ XOrb (Q) with a unique representative
f̂V whose lifts {fUi}i∈I form a canonical family for [f̂ ] with respect to V.

(a) The map
ΛV : XOrb (Q)→

∏
i∈I

X (Ui) , f̂V 7→ (fUi)i∈I

is a linear injection into a direct product of topological vector spaces (cf. Section C.3 for
information on X (Ui)), whose image is the closed vector subspace

H :=

{
(fi)i∈I ∈

∏
i∈I

X (Ui)

∣∣∣∣∣∀λ ∈ ChV ,domλ ⊆ Ui, codλ ⊆ Uj , fjλ = Tλfi|domλ

}
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(b) If V is a locally finite atlas such that each chart in V is relatively compact, then the map

ΛV : XOrb (Q)c →
⊕
i∈I

X (Ui) , f̂V 7→ (fUi)i∈I

is a linear injection into the direct sum of topological vector spaces (cf. [39, 4.3]). Making
identifications, its image is the closed vector subspace H ∩

⊕
i∈I X (Ui).

Proof. (a) For [f̂ ] ∈ XOrb (Q), we let (f̂Ui)i∈I be the family of canonical lifts with respect to V.
Proposition 3.2.6 shows that Im ΛV is contained in H. Remark 3.2.10 (a) implies that ΛV
is injective and Im ΛV = H holds. The vector space operations of XOrb (Q) are defined via
pointwise operations for families of vector fields. Hence by definition, ΛV is a linear map.
We have to show that H is a closed vector subspace. Consider λ ∈ ChUi,Uj and arbitrary
y ∈ domλ. Each element in H must satisfy fj(λ(y)) = Tλfi(y), i.e. we observe evλ(y)(fj) =
(Tλ ◦ evy)(fi). Here evy and evλ(y) are point evaluation maps defined on X (Ui) and X (Uj),
respectively. The choice of the topology on X (Ui) (cf. Definition C.3.1) implies that point
evaluation maps are continuous mappings on these spaces. To see this, note that for a manifold
chart (κ, Vκ) the restriction map resUiVκ is continuous (cf. Notation C.3.3). By [2, Proposition
3.20], point evaluation maps are continuous for all spaces C∞(Vκ, Tλ(y)Vj), whence the claim.
Since the projections prk :

∏
i∈I X (Ui) → X (Uk) , (fi)i∈I 7→ fk are continuous for all k, we

derive a continuous mapping

hλ,y :
∏
i∈I

X (Ui)→ Tλ(y)Uj , (fi)i∈I 7→ (Tλ ◦ evy)(fi)− evλ(y)(fj).

We may now write the space H as the intersection

H =
⋂

λ∈ChA

⋂
y∈domλ

h−1
λ,y(0).

Since each hλ,y is continuous, the space H is a closed subspace of
∏
i∈I X (Ui) as an intersection

of such spaces.
(b) The atlas V is locally finite and thus only finitely many charts intersect a given compact

set. In particular, ΛV makes sense. The canonical injection I :
⊕

i∈I X (Ui) →
∏
i∈I X (Ui) is

continuous by [39, 4.3.1] and thus I−1(H) = H∩
⊕

i∈I X (Ui) is a closed subset of
⊕

i∈I X (Ui).
Again by Proposition 3.2.6 Im ΛV is contained in I−1(H) and by Remark 3.2.10, ΛV is injective
and Im ΛV = I−1(H) = H ∩

⊕
i∈I X (Ui).

3.3.3 Definition

(a) Let V be a representative of U for an orbifold (Q,U). Endow XOrb (Q) with the locally convex
vector topology making the linear map

Λ: XOrb (Q)→
∏

(U,G,ψ)∈V

X (U) , [f̂ ] 7→ (fU )(U,G,ψ)∈V
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a topological embedding. Here we have used the unique lifts fU constructed in Remark 3.2.10.
We call this topology the orbisection topology and note that it is the initial topology with
respect to the family of maps τU : XOrb (Q)→ X (U) , [f̂ ] 7→ fU , (U,G, ψ) ∈ V.

(b) Let V := {(Vj , Hj , ψj) | j ∈ J} ∈ U be a locally finite orbifold atlas such that each chart in V
is relatively compact. Endow XOrb (Q)c with the locally convex vector topology making the
map

ΛV : XOrb (Q)c →
⊕
j∈J

X (Vj) , [f̂ ] 7→ (fVj )j∈J

from Lemma 3.3.2 (b) a topological embedding. We call this topology the compactly supported
orbisection topology (or c.s. orbisection topology).
With respect to this topology, the linear maps τVj : XOrb (Q)c → X (Vj) , [f̂ ] 7→ fVj are contin-
uous for each (Vj , Gj , ψj) ∈ V.

A priori, the topologies defined on the spaces of orbisections might depend on the choice of orbifold
atlas. However, as in the manifold case, we will see that neither the orbisection topology nor the c.s.
orbisection topology depend on this choice. To prove the independence of the compactly supported
orbisection topology of the choice of the orbifold atlas, relatively compact orbifold charts are needed.
This explains the additional requirement in Definition 3.3.3.

3.3.4 Lemma Let W = {(Wi, Gi, φi) | i ∈ I} ∈ U be an arbitrary orbifold atlas for Q.

(a) The orbisection topology with respect to V is initial with respect to the family (τWi
)(Wi,Hi,φi)∈W .

(b) Let W be locally finite such that each chart in W is relatively compact. The c.s. orbisection
topology OV with respect to V and the c.s. orbisection topology OW with respect to W coincide.

Proof. (a) Consider the atlas W ∪ V obtained by joining the atlases V and W. Clearly the orbi-
section topology induced by V (respectively by W) is coarser than the orbisection topology
induced by W ∪V. We claim that the orbisection topology induced by V is finer than the one
induced by V ∪ W. If this is true then both orbisection topologies coincide. An analogous
argument applies to the topology induced byW. Hence it suffices to prove that the orbisection
topology induced by V coincides with the one induced by W ∪ V. Without loss of generality
we may assume that V is contained in W, i.e. W =W ∪ V holds.
Let T be the initial topology on XOrb (Q) with respect to (τWi

)(Wi,Gi,φi)∈V . Fix (U,H,ψ) ∈ W,
we have to show that τU : (XOrb (Q) , T )→ X (U) is a continuous map.
The open sets

{
Ṽi := Ũ ∩ W̃i

∣∣∣ i ∈ I} form an open cover of Ũ . Define Vi := ψ−1(Ṽi) to derive
an open cover of U . By [26, Lemma F.16], the topology on X (U) is initial with respect to the
family (resUVi)i∈I . Since every Vi satisfies ψ(Vi) ⊆ φi(Wi) by compatibility of orbifold charts,
there is a family of changes of charts (λik)k∈Ki in ChWi,U such that

⋃
k∈Ki codλik = Vi.

Another application of [26, Lemma F.16] implies that the topology of X (Vi) is initial with
respect to (resVicodλik

)k∈Ki . Using transitivity of initial topologies, τU will be continuous with
respect to T if we can show that every

fik := resUcodλik
◦τU : XOrb (Q)→ X (codλik)
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is continuous for i ∈ I, k ∈ Ki. But [26, Lemma F.15 (a)] implies that the mapping
resWi

domλ : X (Wi)→ X (domλik) is continuous. Now we use that

gλik : X (domλik)→ X (Imλik) , X 7→ Tλ ◦X ◦ λ−1

is continuous. To see this, observe that in charts (using Lemma C.3.2), the mapping reduces
to a pullback by a smooth map which is continuous, by [24, Lemma 3.7]. We conclude from
fik = gλ resWi

domλ τWi
that τU is continuous with respect to T for every (U,G,ψ) ∈ V. Thus

the orbisection topology with respect to V is finer than T , whence both topologies coincide.
(b) Consider V = {(Vj , Hj , ψj) | j ∈ J}. Notice that V ∪ W still is a locally finite atlas with

relatively compact charts. After replacing W = {(Wi, Gi, ϕi) | i ∈ I} with W ∪ V, we may
assume without loss of generality that V ⊆ W holds. Let OW be the c.s. orbisection topology
with respect to W and OV be the c.s. orbisection topology with respect to V. Since V is
contained in W the definition of the c.s. topology implies OV ⊆ OwW , i.e. the topology
OW is finer than OV .Conversely we have to prove that OV is finer than OW . To see this,
it suffices to prove that idXOrb(Q)c

: (XOrb (Q)c ,OV) → (XOrb (Q)c ,OV) is continuous, which
follows from [11, I. §1 6. Proposition 5] if every zero-neighborhood in OW contains a zero-
neighborhood in OV . We proceed in three steps:

Step 1: Zero-neighborhoods in X (Wr) induce zero-neighborhoods in (XOrb (Q)c ,OV)
Consider an orbifold chart (Wr, Gr, ϕr) ∈ W. The projection prr :

∏
i∈I X (Wi) → X (Wr)

and the canonical inclusion IW :
⊕

i∈I X (Wi) →
∏
i∈I X (Wi) are continuous (cf. [11, II. §4

5. Proposition 7]). Furthermore, since V ⊆ W holds, we identify each chart (Vj , Hj , ψj) in V
with a chart (Wα(j), Gα(j), ϕα(j)) in W. Then the canonical inclusion

IV,W :
⊕
j∈J

X (Vj)→
⊕
i∈I

X (Wi) , (fj)j∈J 7→ (f̃i)i∈I with f̃i :=

{
0 for i 6= α(j) for all j
fj if i = α(j) for j ∈ J

is continuous. Then ΛWr
:= prr ◦ IW ◦ IV,W :

⊕
i∈I(Vi, Hi, ψi)→ X (Wr) is a continuous map.

Now each zero-neighborhood Ω in X (Wr) induces a zero-neighborhood (ΛWr ◦ ΛV)−1(Ω) in
OV .

Consider [σ̂] ∈ XOrb (Q)c and denote its canonical lifts on (Wi, Gi, ψi) ∈ W by σWi
. By

Proposition 3.2.6, the canonical lift σWr is uniquely determined by the canonical lifts{
σVj

∣∣∣ (Vj , Hj , ψj) ∈ V with ϕr(Wr) ∩ Imψj 6= ∅
}
.

Recall that all charts inW are relatively compact and V is a locally finite atlas. Thus for each
r ∈ I, there is only a finite subset Jr ⊆ J such that Imψi ∩ ϕr(Wr) 6= ∅ holds if and only if
j ∈ Ir. Denote the canonical inclusion

⊕
k∈Jr X (Vk) ↪→

⊕
j∈J X (Vj) by ιJr . By [11, II. §4

5. Proposition 8 (i)], the map ιJr is continuous for each Jr ⊆ J . The maps IW and IV,W
respectively, are (up to identification) just inclusions of subsets and prr is a projection. Since
the lift σWr of an orbisection [σ̂] ∈ XOrb (Q)c is uniquely determined by the family of lifts
indexed by Jr, we obtain for each open set Ω ∈ X (Wr) the following:

The lift σWr
is contained in Ω if and only if [σ̂] ∈ (ΛWr

◦ ΛV)−1(Ω),

if and only if (σVk)k∈Jr ∈ (ΛWr ◦ ιJr )−1(Ω).
(3.3.2)
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Step 2: The countable case We shall assume for this step only that the atlases V,W are
indexed by countable sets I, J .
Consider the vector spaces (

⊕
i∈I X (Wi))box and (

⊕
j∈J X (Vj))box respectively, endowed with

the box-topology. Since I, J are countable, the box topology coincides with the locally convex
direct sum topology by [39, Proposition 4.1.4]. A typical zero-neighborhood in

⊕
i∈I X (Wi) is

given by U := ⊕i∈IUi, where Ui ⊆ X (Wi) is an open set. For each i ∈ I choose by Step 1 an
open box neighborhoods Bi :=

⊕
α∈Ji B

i
α such that Bi ⊆ (ΛWi ◦ ιJi)−1(Ui). Reformulating

Condition (3.3.2) this yields: If σVα ∈ Biα holds for all α ∈ Ji, then σWi
∈ Ui follows. Using the

boxes defined above, we construct sets Ωj :=
⋂
i∈Ij B

i
j . Recall that V contains only relatively

compact charts and W is locally finite. Thus for fixed j ∈ J the set Ij := {j ∈ Ji | i ∈ I} is
finite, whence the set Ωj is an open zero-neighborhood of X (Vj). Now B :=

⊕
j∈J Ωj is a box

zero-neighborhood in
⊕

j∈J X (Vj). The open box-neighborhood B contains only elements of⊕
j∈J X (Vj) which are mapped by the projection

⊕
j∈J X (Vj)→

⊕
k∈Ji X (Vk) into ⊕k∈JiBik

for each i ∈ I. We obtain the following condition for an orbisection [σ̂] ∈ XOrb (Q)c with
families of canonical lifts (σVj )j∈J with respect to V and (σWi

)i∈I with respect to V:

[σ̂] ∈ Λ−1
V (B)⇔ (σVj )j∈J ∈ B ⇒ (∀i ∈ I)(σVj )j∈Ji ∈

⊕
k∈Ji

Bik

⇒ (∀i ∈ I) σWi ∈ Ui ⇒ [σ̂] ∈ Λ−1
W (U)

In other words, the typical zero-neighborhood Λ−1
W (U) in OW contains the zero-neighborhood

Λ−1
V (B) ∈ OV . As sets of the form Λ−1

W (
⊕

i∈I Ui) form a base of zero-neighborhoods in OW , we
deduce OW ⊆ OV and thus OW = OV . Furthermore, the map ρ := ΛW |Im ΛW ◦ (ΛV |Im ΛV )−1)
is an isomorphism of topological vector spaces.

Step 4: The general case In general neither V nor W need to be countable (since the
orbifolds we consider need not be σ-compact). Orbifold charts are connected, whence each
chart is contained in exactly one connected component. Let C be the family of connected
components of Q and for C ∈ C and an atlas A define AC := {(V,H, ψ) ∈ A |ψ(V ) ⊆ C}.
The subset AC is an atlas of orbifold charts for the component C. We may split the atlases
V, W into disjoint unions V =

⊔
C∈C VC resp. W =

⊔
C∈CWC . By construction, VC is still

contained in WC Decompose the direct sums

⊕
i∈I

X (Wi) =
⊕
C∈C

 ⊕
(W,G,φ)∈WC

X (W )

 ⊕
j∈J

X (Vj) =
⊕
C∈C

 ⊕
(V,H,ψ)∈VC

X (V )


and observe that the maps ΛV and ΛW decompose as ΛV = (ΛVC )C∈C and ΛW = (ΛWC

)C∈C .
Every connected component C ⊆ Q is σ-compact by Proposition 1.4.3 (d). Since WC and
VC are locally finite, both atlases have to be countable. Step 3 yields for each connected
component C an isomorphism ρC = ΛWC

|Im ΛWCΛ−1
VC |

Im ΛVC : Im ΛVC → Im ΛWC
. Taking

direct sums in the category of topological vector spaces is functorial. Therefore the map
⊕C∈CρC :

⊕
C∈C Im ΛVC →

⊕
C∈C Im ΛWC

is an isomorphism of locally convex topologi-
cal vector spaces. Observe that the families of canonical inclusions (of vector subspaces)
ιC : Im ΛVC ↪→

⊕
(V,H,ψ)∈VC X (V ) respectively ι′C : Im ΛWC

↪→
⊕

(W,G,φ)∈WC
X (W ) induce
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continuous linear maps ι := ⊕C∈CιC and ι′ := ⊕C∈Cι′C , respectively. By [11, II.6, Proposition
8], the subspace topology on Im ι turns ι into an isomorphism of topological vector spaces and
the same holds for ι′ and the subspace topology on Im ι′. We deduce that

ΛW |Im ΛW ◦ (ΛV |Im ΛV )−1 = ι′ ◦
⊕
C∈C

(
ΛWC

|Im ΛWC ◦ (ΛVC |Im ΛVC )−1
)
◦ ι−1

is an isomorphism of topological vector spaces. Thus OV = OW holds.

To illustrate the construction of the orbisection topologies, we consider the special case of orbi-
sections on an orbifold with a global chart. It turns out that we may then identify the orbisections
with subspaces of vector fields on the global chart.

3.3.5 Example Let d ∈ N. Consider a finite subgroup G ⊆ Diff(Rd). We define an orbifold
structure on Q := Rn/G via the atlas V :=

{
(Rd, G, π)

}
, where π : Rd → Rd/G is the quotient

mapping.

(a) By Proposition 3.2.9, each orbisection [σ̂] ∈ XOrb (Q) can be identified with a unique vector
field in X

(
Rd
)
. Since the group elements are changes of charts, for the canonical lift of an

orbisection on the global chart g.X = Tg◦X = X ◦g holds for each g ∈ G. Thus the canonical
lifts are G-equivariant vector fields. Hence by Lemma 3.3.4, the map ΛV : XOrb (Q)→ X

(
Rd
)

(cf. Lemma 3.3.2) establishes an isomorphism of topological vector spaces between XOrb (Q)
and the space of all G-equivariant vector fields XG(Rd).
Observe that XG(Rd) is a closed subspace of X

(
Rd
)
. To prove this, recall that for each p ∈ Rd

the point evaluation evp : C∞(Rd,Rd) → Rd is continuous by [2, Proposition 3.20]. Hence
for each pair (p, g) ∈ Rd × G, the map Ep,g : C∞(Rd,Rd) → Rd, f 7→ dg(p, ·) ◦ evp(f) −
evg(p)(f) is continuous. We may then identify XG(Rd) with the closed vector subspace⋂
p∈Rd

⋂
g∈GE

−1
p,g(0).

(b) We identify the compactly supported orbisections XOrb (Q)c with the set of equivariant com-
pactly supported vector fields of Rd. To this end, consider

XGc (Rd) :=
{
X ∈ Xc(Rd)

∣∣∀g ∈ G,Tg ◦X = X ◦ g
}

as a subspace of Xc(Rd) (cf. Definition C.3.4). We claim that XOrb (Q)c and XGc (Rd) are
isomorphic as topological vector spaces. To this end, choose a locally finite orbifold atlas
W = {(Ui, Gi, πi) | i ∈ I} for Q with I countable. By Lemma 1.6.5, we can choose W such
that for each i ∈ I the set Ui ⊆ Rd is a relatively compact open subset such that the inclusion
of sets induces an embedding of orbifold charts. Then Rd =

⋃
i∈I G.Ui holds, as W is an

orbifold atlas for Q = Rd/G. Since G is a finite group we may assume that for each i ∈ I and
g ∈ G there is j ∈ J with Uj = g.Ui and Gj = g.Gi.g

−1. Thus (Ui)i∈I is a locally finite cover
of Rd by relatively compact open subsets such that the cover is countable. Recall from the
definition of the topologies that the rows in the following commutative diagram are topological
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embeddings with closed image (cf. Lemma 3.3.2 and Definition C.3.4)

XOrb (Q)c
ΛW //

��

⊕
i∈I X (Ui)

∼=θ

��

XGc (Rd)
⊆
// Xc(Rd)

RW //
⊕

i∈I C
∞(Ui,Rd)

Here the isomorphism θ is defined via (fi)i∈I 7→ (pr2◦fi)i∈I . As canonical lifts of an orbisection
are unique by Lemma 3.2.3, Proposition 3.2.9 and a trivial computation yield Im θΛW ⊆
ImRW . Furthermore, the image ImR−1

W θΛW coincides with XGc (Rd). Denote by σRd the
canonical lift of [σ̂] ∈ XOrb (Q)c with respect to the global chart. Then R−1

W θΛW induces the
isomorphism of topological vector spaces

XOrb (Q)c → XGc (Rd), [σ̂] 7→ σRd .

Observe that XGc (Rd) is a closed vector subspace of Xc(Rd). This follows from part (a) and the
following facts: The inclusion ι :

⊕
i∈I C

∞(Ui,Rd) →
∏
i∈I C

∞(Ui,Rd) is continuous by [11,
II. §4, Proposition 7]. By definition of the topology on X

(
Rd
)
, we may identify XG(Rd) with a

closed vector subspace A of
∏
i∈I C

∞(Ui,Rd) such that ι−1(A) = RW(XGc (Rd)) holds. Hence
the assertion follows by continuity, since ImRW is a closed subspace.

We conclude that for the orbifold Q = Rd/G, the space XOrb (Q) corresponds to XG(Rd). Also
XOrb (Q)c corresponds to XGc (Rd).
We remark that a similar result holds for arbitrary orbifolds with a global chart, by essentially the
same argument.

3.3.6 Theorem Let (Q,U) be a second countable orbifold, i.e. Q is a second countable space (or
equivalently Q is a σ-compact space). The topological vector space XOrb (Q) is then a Fréchet space.

Proof. As Q is second countable, there is a countable orbifold atlas {(Ui, Gi, ψi) | i ∈ N} for Q. By
Lemma 3.3.4, the orbisection topology is initial with respect to the maps

τUi : XOrb (Q)→ X (Ui) , [f̂ ] 7→ fUi .

In particular, Lemma 3.3.2 yields a linear topological embedding

Λ: XOrb (Q)→
∏
i∈N

X (Ui) , [f̂ ] 7→ (fUi)i∈I

onto a closed subspace. The manifolds Ui are finite-dimensional, connected and paracompact man-
ifolds. Thus by Proposition 1.4.2, every Ui is σ-compact and second countable. The space Rn is a
Fréchet space over the locally compact field R. Combining these observations with Lemma C.3.2
and [26, Proposition 4.19], X (Ui) with the topology defined in Definition C.3.1 is a Fréchet space
for each i ∈ I. The countable product of Fréchet spaces is a Fréchet space (combine [11, I. §3
2.] with [39, Proposition 3.3.6]) and thus

∏
i∈I X (Ui) is a Fréchet space. From Lemma 3.3.2 and

Lemma 3.3.4, we deduce that XOrb (Q) is isomorphic to a closed vector subspace of the Fréchet
space

∏
i∈I X (Ui). Thus XOrb (Q) is a Fréchet space.
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3.3.7 Corollary

(a) The spaces XOrb (Q) with the orbisection topology and XOrb (Q)c with the c.s. orbisection
topology are Hausdorff and complete topological vector spaces.

(b) If (Q,U) is a compact orbifold, then the locally convex vector spaces XOrb (Q) and XOrb (Q)c
coincide. If Q is compact, then both spaces are Fréchet spaces.

(c) Let V be a locally finite orbifold atlas for Q which consists of relatively compact charts. The
family (τV )(V,G,ψ)∈V as in Definition 3.3.3 (b) forms a patchwork for XOrb (Q)c, turning it
into a patched locally convex space. The topological embedding is given by ΛV (cf. Definition
C.3.5).

Proof. (a) We endow the space of vector fields on a finite-dimensional manifold with the topology
introduced in Definition C.3.1. Recall that direct products and direct sums of Hausdorff
and complete locally convex vector spaces are again such spaces by [39, Proposition 4.3.3,
Proposition 4.3.6 and Proposition 4.4.3]. The assertion follows from [26, Remark F.8], since
the spaces XOrb (Q) and XOrb (Q)c with the topology of Definition 3.3.3 are isomorphic to
closed subspaces of complete and Hausdorff spaces.

(b) For finite index sets products and direct sums are canonically isomorphic. As locally finite
covers of compact spaces are finite, together with Theorem 3.3.6 this proves the claim.

(c) Follows directly from the definition of the c.s. orbisection topology (Definition 3.3.3).

3.3.8 Lemma Let K ⊆ Q be a compact subset and endow XOrb (Q)K ⊆ XOrb (Q)c with the subspace
topology. The space XOrb (Q)K is a closed subspace of XOrb (Q)c.

Proof. Choose an arbitrary locally finite orbifold atlas V := {(Vi, Gi, ψi) | i ∈ I} for (Q,U). By
Lemma 3.3.4 (b), there is a topological embedding ΛV : XOrb (Q)c →

⊕
i∈I X (Vi) whose image is

closed. For each i ∈ I, we obtain a (possibly empty) subset Ui := ψ−1
i (Q\K). If Ui = ∅ holds, define

Ai := X (Vi). Otherwise, consider x ∈ Ui and a manifold chart (Wψ, ψ) for Vi such that x ∈ Wψ.
The evaluation map evψx : C∞(Wψ,Rd) → Rd, ξ 7→ ξ(x) is continuous by [26, Proposition 11.1]. As
the topology on X (Vi) is initial with respect to the maps θψ : X (Vi) → C∞(Wψ,Rd), X 7→ Xψ,
the point evaluation evx : X (Vi) → Rd, σ 7→ evψx ◦ θψ(σ) is continuous. Hence we obtain a closed
set Ai :=

⋂
x∈Ui ev

−1
x (0). From [11, II. §4 5. Corollary 1], we conclude that A := ⊕i∈IAi =∏

i∈I Ai∩
⊕

i∈I X (Vi) is closed. By construction, each orbisection in Λ−1
V (A) vanishes off K, whence

its support must be contained in K. We deduce Λ−1
V (A) = XOrb (Q)K , whence XOrb (Q)K is a closed

set.

The results in this section suggest that orbisections behave in many ways as vector fields for finite
dimensional manifolds. Before we end this section, we point out that in some ways orbisections do
not behave like vector fields. There may be formal orbifold tangent vectors which are not contained
in the image of any orbisection. In the manifold case, this may never occur. The following example
was first considered by Borzellino et al. (see [7, Example 43]) in the context of their notion of orbifold
maps:
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3.3.9 Example Consider R, with an action induced by the linear diffeomorphism γ : R→ R, x 7→
−x. Set G := 〈γ〉 and let ψ : R → R/G be the quotient map to the orbit space. The quotient is
homeomorphic to Q := [0,∞[ (as a subspace of R). By abuse of notation we obtain an orbifold atlas
U := {(R, G, ψ)} for Q. Now (Q,U) is an orbifold and the local groups are trivial for every point
except 0 (where it is isomorphic to G). We may thus compute the tangent spaces of Q at x ∈ Q in
the following way:
For x 6= 0 we have TxQ ∼= R and T0Q ∼= [0,∞[. An atlas for the tangent orbibundle is induced by the
orbifold chart (TR, G, Tψ), where G acts on TR via the derived action. Taking identifications we
obtain TR ∼= R2. The group G acts via elements of O(1) on R. Hence its action on TR is induced
by the linear map Tγ : R2 → R2, (x, y) 7→ (−x,−y). The topological base space of the tangent
orbibundle is thus T Q = R2/G. The zero vector is the only fixed point of the derived action of
G. Since orbisections preserve local groups by Proposition 3.2.5, every orbisection maps 0 ∈ Q to
0 ∈ R2/G ∼= T Q. Thus all orbisections in XOrb (Q) must vanish in 0 ∈ Q and

Q′ :=
⋃

(f,{f̂(R,Z2,ψ)},P,ν)∈XOrb(Q)

Im f ( T Q

Is the topological subspace Q′ at least an orbifold? We shall prove that the answer to this question
is negative. Indeed it will turn out that Q′ is not locally compact.
Following Remark 3.2.10 (d), the set Q′ is homeomorphic to TRinv/G, i.e. it is homeomorphic to
(T (R \ {0}) ∪ {0 ∈ T0R})/G. Since T (R \ {0}) ∪ {0 ∈ T0R} ∼ R \ {0} × R ∪ {(0, 0)} is not locally
compact, Lemma B.1.4 (e) implies that Q′ is not locally compact.



4. Riemannian Geometry on Orbifolds

In this section, the notion of a Riemannian orbifold metric is recalled. Our approach follows the con-
struction of Riemannian metrics on manifolds (cf. [18, Ch. 1.2, Proposition 2.10]). The corresponding
construction of such an object for an orbifold is well known (see for example [51, Proposition 2.20];
we also recommend the survey in [15, Appendix 4.2]). Nevertheless, the results are repeated here
for the readers convenience, and to fix some notation.

4.0.1 Definition (Riemannian orbifold metric) Let (Q,U) be an orbifold and consider some orbifold
atlas V = {(Vi, Gi, ψi) | i ∈ I} for (Q,U). A Riemannian orbifold metric on Q is a collection ρ =
(ρi)i∈I , where ρi is a Riemannian metric on the manifold Vi such that the following holds:

(Compatibility) For each (i, j) ∈ I × I and each open Gi-stable subset S ⊆ Vi, every embedding of
orbifold charts λ : (S, (Gi)S , ψi|S)→ (Uj , Gj , ψj) is a Riemannian embedding, i.e.

ρj(Txλ(v), Txλ(w)) = ρi(v, w) ∀v, w ∈ TxVi, x ∈ S.

Let (Q,U) be an orbifold endowed with a Riemannian orbifold metric ρ. The triple (Q,U , ρ) is
called a Riemannian orbifold .

4.0.2 Remark Consider a Riemannian orbifold metric ρ on some orbifold (Q,U), associated tp an
atlas V as above. For a chart (V,G, ψ) ∈ V, the group G acts by self-embeddings of orbifold charts.
If V is endowed with a member ρi of ρ, each element of G thus acts as a Riemannian isometry with
respect to ρi.

4.0.3 Proposition ([51, Proposition 2.20]) Any orbifold (Q,U) admits a Riemannian orbifold
metric ρ.

Proof. Let V = {(Vi, Gi, ψi) | i ∈ I} be any representative of U , and {χ̂i}i∈I be a smooth orbifold
partition of unity subordinate to V, which exists due to Proposition 2.3.2. Recall from 2.3.3 that
for every pair (i, j) ∈ I × I, there is a smooth lift χi,j of χi to (Vj , Gj , ψj). For i ∈ I, choose some
Riemannian metric m(i) on Vi (cf. [45, VII., §1, Proposition 1.1]). As Gi acts by diffeomorphisms,
we obtain pullback metrics on Vi. Averaging over Gi, on every tangent space there is a positive
definite bilinear form:

〈v, w〉(i)p :=
1

|Gi|
∑
g∈Gi

m(i)
g.p(Tpg.v, Tpg.w), ∀v, w ∈ TpVi, p ∈ Vi

such that the family 〈−,−〉(i) := (〈−,−〉(i)p )p∈Vi defines a Riemannian metric on Vi. By construction,
each element of Gi is a Riemannian isometry with respect to 〈−,−〉(i).
Define a Riemannian metric ρi on Vi as follows: Because (suppχi)i∈I is locally finite, ψi(p) with
p ∈ Vi is contained in suppχi for only finitely many i ∈ I. Therefore there is an open Gi-stable
subset p ∈ Sp ⊆ Vi such that for y ∈ Sp, ψi(y) ∈ suppχk can hold only if ψi(p) ∈ suppχk for k ∈ I.
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Shrinking Sp, without loss of generality for each k ∈ I with ψi(p) ∈ suppχk there is an embedding of
orbifold charts λpk : (Sp, (Gi)Sp , ψi|Sp)→ Vk. If ψi(p) 6∈ suppχk simply let λpk : Sp → Vp be constant
(whence Tpλ

p
k = 0) and define for v, w ∈ TpVi:

(ρi)p(v, w) :=
∑
j∈I

χj,i(p) · 〈Tpλpj (v), Tpλ
p
j (w)〉(j)λj(p)

Since the χj,i are the lifts of an orbifold partition of unity, only finitely many terms are non-zero
and (ρi)p is a positive definite bilinear map on TpVi × TpVi. The definition of (ρi)p neither depends
on Sp nor on the choice of λpk:
To prove this, consider another Gi-stable set p ∈ S′p with embeddings µpk. Since we are only inter-
ested in the tangent map at p (which may be computed in an arbitrarily small open subset), we
restrict µpk and λpk to an open and Gi-stable subset S ⊆ Sp∩S′p which contains p. If ψi(p) 6∈ suppχk,
the contribution to (ρi)p(v, w) is zero. Otherwise, Proposition 1.2.2 (d) implies that there is a group
element g ∈ Gk such that µpk|S = g ◦ λpk|S . By construction, every g ∈ Gk is a Riemannian isometry
with respect to 〈−,−〉(k). Thus every choice induces the same map.
The maps λpj , χk,i are smooth and 〈−,−〉(k) is a Riemannian metric for each k ∈ I, thus the family
ρi := ((ρi)p)p∈Vi defines a smooth map on each open set TSp ⊕ TSp ⊆ TVi ⊕ TVi. By construction
the map does not depend on the set Sp and thus ρi is smooth on TVi⊕TVi. Hence it is a Riemannian
metric on Vi.
We claim that the family (ρi)i∈I satisfies the compatibility condition of Definition 4.0.1: Con-
sider arbitrary i, j ∈ I together with an open Gi-stable subset S ⊆ Vi and an embedding of orb-
ifold charts µ : (S, (Gi)S , ψi|S) → (Vj , Gj , ψj). For p ∈ S and v, w ∈ TpVi, we have to show that
(ρj)µ(p)(Tpµ(v), Tpµ(w)) coincides with (ρi)p(v, w).
Since µ is an embedding of orbifold charts and by construction one has χk,j = χk ◦ ψj , we derive
χk,j ◦ µ = χk,i|domµ. We compute:

(ρj)µ(p)(Tpµ(v), Tpµ(w)) =
∑
k∈I

χk,j(µ(p)) · 〈Tµ(p)λ
µ(p)
k Tpµ(v), Tµ(p)λ

µ(p)
k Tpµ(w)〉(k)

λ
µ(p)
k µ(p)

=
∑
k∈I

χk,i(p) · 〈Tp(λµ(p)
k µ︸ ︷︷ ︸
θpk:=

)(v), Tp(λ
µ(p)
k µ︸ ︷︷ ︸
=θpk

)(w)〉(k)

λ
µ(p)
k µ(p)

=
∑
k∈I

χk,i(p) · 〈Tpθpk(v), Tpθ
p
k(w)〉(k)

θpk(p)
.

Restrict every non-constant map θpk to a small open Gi-stable neighborhood of p such that the
restriction of θpk yields an embedding of orbifold charts (cf. [51, Proposition 2.13]). As the definition
of the metric does not depend on the choice of embedding, indeed we obtain

(ρj)µ(p)(Tpµ(v), Tpµ(w)) = (ρi)p(v, w).

The family ρ is compatible as in Definition 4.0.1, whence it is a Riemannian orbifold metric.

A Riemannian orbifold metric (uniquely) extends to each representative of the orbifold structure:
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4.0.4 Proposition Let (Q,U) be an orbifold and V = {(Vi, Gi, ψi) | i ∈ I} some representative of
U for which there is a Riemannian orbifold metric ρ = (ρi)i∈I . For each representative A of U ,
there exists a unique Riemannian orbifold metric ρ̂ which extends ρ to V ∪ A.

Proof. We construct a Riemannian metric on (U,H, φ) ∈ V ∪ A as follows: For q ∈ U choose an
H-stable subset q ∈ Sq ⊆ U together with an embedding τ qi : (Sq, HSq , φ|Sq )→ (Vi, Gi, ψi) for some
i ∈ I. Define for v, w ∈ TqU

(ρ̂U )q(v, w) := ρi(Tqτ
q
i (v), Tqτ

q
i (w))

Repeating this construction for each q ∈ U , arguments as in the proof of Propostion 4.0.3 show that
ρ̂U is a well-defined Riemannian metric on U . In particular, the ρ̂U does not depend on the choices
involved in its construction. Since in the above construction, we may always choose the inclusion
Sq ⊆ U for a chart (U,G,H) ∈ V, one obtains ρ̂U = ρU for (U,H, φ) ∈ V.
Finally, the family (ρ̂U )(U,G,φ)∈V∪A satisfies the compatibility condition of Definition 4.0.1. To see
this, consider a change of charts λ ∈ ChV∪A. It suffices to check the compatibility condition for each
q ∈ domλ ⊆ U separately. By construction, there are embeddings of orbifold charts τ iq : Sq → Vi and
τ jλ(q) : Sλ(q) → Vj into charts (Vi, Gi, ψi), (Vj , Gj , ψj) ∈ V. Then we compute for v, w ∈ Tq domλ:

(ρ̂codλ)λ(q)(Tqλ(v), Tqλ(w)) = ρj(Tqτ
j
λ(q)λ(v), Tqτ

j
λ(q)λ(w))

(?)
= ρi(Tqτ

i
q(v), Tqτ

i
q(w)) = (ρ̂U )q(v, w).

Here the identity (?) follows from the compatibility of the Riemannian orbifold metric (ρi)i∈I and
the fact that on a neighborhood Ω of τ iq(q) the mapping (τ jλ(q) ◦λ◦τ

i
q|Ω)−1 is a embedding of orbifold

charts.

Instead of defining a Riemannian orbifold metric as in Definition 4.0.1, Proposition 4.0.4 yields an
equivalent definition of a Riemannian orbifold metric: It may be defined as a family of Riemannian
metrics on the class of all compatible (with respect to the orbifold structure) orbifold charts, which
satisfies the compatibility condition (cf. [51, p.41]). From this point of view, a Riemannian orbifold
metric on any representative of U induces a uniquely determined Riemannian orbifold metric on the
equivalence class U . We shall adopt this point of view in Lemma 4.0.8 below.
Either way, a Riemannian orbifold metric was defined using embeddings of orbifold charts. The
reader may have noticed that our working definition of orbifolds (cf. Definition 1.3.1) uses change
of charts (but is equivalent to the approach using embeddings of orbifold charts). The definitions in
this chapter are slightly easier to formulate using open embeddings of orbifold charts, whereas we
chose this approach. Nevertheless, changes of orbifold charts are Riemannian isometries:

4.0.5 Lemma Let (Q,U , ρ) be a Riemannian orbifold and consider for some (U,H, φ), (V,G, ψ) ∈ U
a change of charts λ : U ⊇ domλ → codλ ⊆ V . Furthermore, let ρdomλ be the pullback metric of
ρU with respect to the inclusion domλ ⊆ U . Then λ : (domλ, ρdomλ) → (V, ρV ) is a Riemannian
embedding.

Proof. Let p ∈ domλ be arbitrary and choose an open connected H-stable subset p ∈ S ⊆ domλ.
Then (S,HS , φ|S) is an orbifold chart and λ|S is an embedding of orbifold charts. Since ρU and
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ρV are members of ρ, the map λ|S is a Riemannian embedding. In particular, (ρdomλ)p = (λ∗ρV )p
holds. Since p ∈ domλ was arbitrary, λ is a Riemannian embedding.

4.0.6 Definition Let (Qi,Ui, ρi), i = 1, 2 be Riemannian orbifolds and consider a map of orbifolds
[f̂ ] ∈ Orb ((Q1,U1), (Q2,U2)). The map [f̂ ] is called orbifold isometric, if there is a representative
f̂ = (f, {fi}i∈I , P, ν) ∈ Orb(V,W) such that each lift fi : Vi → Wα(i) is an isometric immersion of
the Riemannian manifold (Vi, ρ1,i) to the Riemannian manifold (Wα(i), ρ2,α(i)).
If [f̂ ] is a diffeomorphism of orbifolds which is orbifold isometric, [f̂ ] is called an orbifold isometry .

4.0.7 Remark The condition to be an isometric immersion of Riemannian manifolds may be
checked locally. Lemma 4.0.5 (i.e. the compatibility conditions of Riemannian orbifold metrics)
combined with Proposition 4.0.4 that a map [f̂ ] will be orbifold isometric if and only if each rep-
resentative f̂ := (f, {fj}j∈J , [P, ν]) shares this property that the family of lifts {fj}j∈J consists of
isometric immersions.
As an obvious first example, we mention that for a Riemannian orbifold (Q,U , ρ) the identity mor-
phism id(Q,U) is an orbifold isometry.

4.0.8 Lemma Let (Q,U , ρ) be a Riemannian orbifold and (Q1,U1) be an orbifold together with
an orbifold diffeomorphism [f̂ ] ∈ Orb ((Q1,U1), (Q,U)). There exists a unique Riemannian orbifold
metric [f̂ ]∗ρ on (Q1,U1) such that [f̂ ] becomes an orbifold isometry with respect to (Q1,U1, [f̂ ]∗ρ)

and (Q,U , ρ). The Riemannian orbifold metric [f̂ ]∗ρ is called pullback metric induced by [f̂ ].

Proof. Following Corollary 2.1.13 (d), we choose orbifold atlases V = {(Vi, Gi, ψi) | i ∈ I} ∈ U1 and
W = {(Wj , Hj , ϕj) | j ∈ J} ∈ U such that there is a representative ĝ = (f, {fi}i∈I , [P, ν]) of [f̂ ] with
the following properties:

(a) fi : Vi →Wβ(i) is a diffeomorphism for each i ∈ I,
(b) the map β : I → J is bijective,
(c) P = ChV holds and for λ ∈ ChVi,Vj , one has ν(λ) = fjλf

−1
i |fi(domλ) (see Corollary 2.1.8).

Proposition 4.0.4 yields a unique family of compatible Riemannian metrics (ρj)j∈J induced by ρ
such that each chart (Wj , Hj , ϕj) turns into a Riemannian manifold (Wj , ρj). Endow each manifold
Vi with the pullback metric f∗i ρβ(i), turning fi into a Riemannian isometry.
Claim: The family (f∗i ρβ(i))i∈I turns each λ ∈ ChVi,Vj , i, j ∈ I into a Riemannian embedding.
An argument analogous to the proof of Lemma 2.1.9 (c) shows that µ := fjλf

−1
i |fi(domλ) ∈

ChWβ(i),Wβ(j)
and fjλ = µfi|domλ holds. Consider p ∈ domλ and compute for v, w ∈ TpVi:

(f∗j ρβ(j))λ(p)(Tpλ(v), Tpλ(w)) = (ρβ(j))fjλ(p)(Tpfjλ(v), Tpfjλ(w))

= (ρβ(j))µfi(p)(Tpµfi(v), Tpµfi(w))

= (f∗i ρβ(i))p(v, w).

The last identity is due to the compatibility condition of ρ, since µ is a change of orbifold charts
(cf. Lemma 4.0.5). In view of Proposition 4.0.4, the compatible family (f∗i ρβ(i))i∈I yields a unique
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Riemannian orbifold metric [f̂ ]∗ρ.
We have to assure that [f̂ ]∗ρ does not depend on the choice of ĝ. To this end, consider another
representative ĥ = (f, {hk}k∈K , [ChV′ , ν′]) ∈ Orb(V ′,W ′) of [f̂ ] with the same properties as ĝ. Write
([f̂ ]∗ρ)′ for the Riemannian orbifold metric induced by ĥ. Reviewing Proposition 4.0.4, both metrics
will coincide if the family (f∗i ρβ(i))i∈I

∐
(h∗jρβ′(j))j∈J of Riemannian metrics is compatible in the

sense of Lemma 4.0.5. To check this choose i ∈ I, j ∈ J and some change of charts λ ∈ ChVi,V ′j .
Then hjλf−1

i |fi(domλ) is a change of charts. An analogous computation as above together with the
compatibility of the metrics ρβ(i) and ρβ′(j) yields that λ is a Riemannian embedding. Thus [f̂ ]∗ρ

and ([f̂ ]∗ρ)′ coincide, proving the uniqueness of the pullback orbifold metric.

4.0.9 Remark In Lemma 4.0.8 special representatives of an orbifold diffeomorphism were used
in the construction. Their lifts were given by a family of diffeomorphisms. The proof of Lemma
4.0.8 may be adapted to work with an arbitrary family of lifts of the orbifold diffeomorphism. In
general, these families will be families of local diffeomorphisms by Corollary 2.1.13. In this case,
the identities computed in the proof will only hold locally. Hence the same arguments require
cumbersome notation, which may be avoided in the construction if representatives are used whose
lifts are diffeomorphisms.

Our goal in introducing Riemannian orbifold metrics on orbifolds is to obtain an analogue of the
Riemannian exponential map on a manifold for a Riemannian orbifold. To this end, we need to
introduce the notion of a geodesic on a Riemannian orbifold.

4.1. Geodesics on orbifolds

In this section let (Q,U , ρ) be a Riemannian orbifold. Notice that by Proposition 4.0.4, the Rieman-
nian orbifold metric ρ induces a family of compatible Riemannian metrics for each representative
of U . As we introduced Riemannian orbifold metrics, the question arises how geodesics for a Rie-
mannian orbifold may be defined. Furthermore, one would like these geodesics to share at least
some properties of geodesics on a Riemannian manifold. Geodesics on Riemannian orbifolds have
been considered in the literature (cf. Haefliger and collaborators [13, 34], Chen et al. [15]) in the
context of different frameworks (i.e. étale groupoids, respectively Chen-Ruan good maps). For the
setting considered in this work, we shall give a definition of an orbifold godesic which shares the
properties developed for geodesics on Orbifolds in the literature. In fact, the restriction of a geodesic
to a compact interval corresponds to a unique G-geodesic in the sense of Haefliger. However, since
geodesics should be maps of orbifolds, our proofs are independent of this equivalence.
Throughout this section, I :=]a, b[⊆ R will always be an open interval with a < b. Endow I with
the canonical structure of an open submanifold of R (i.e. a trivial orbifold structure) and denote its
orbifold structure by UI . As a first step, we define smooth paths in orbifolds:

4.1.1 Definition An orbifold map [ĉ] ∈ Orb(I, (Q,U)) is called a smooth orbifold path.
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4.1.2 Example (a) If (Q,U) is a trivial orbifold (i.e. a manifold), a smooth orbifold path is just
a smooth curve I → Q.

(b) Reconsider Example 1.7.2: The map γ : R2 → R2, (x, y) 7→ (−x, y) is a reflection of R2 and H
is the right half plane. Let q : R2 → H be the quotient map to the orbit space with respect
to the 〈γ〉-action. Then H is an orbifold with global chart (R2, 〈γ〉, q). As the orbifold atlas
contains only one chart, the changes of charts are generated by γ and idR3 . Define I1 :=]0, 3

4 [
and I2 :=] 1

4 , 1[ which cover ]0, 1[= I1 ∪ I2. Let λ : I1 ⊇ I1 ∩ I2 → I2 be the inclusion. Then
the quasi-pseudogroup P :=

{
idI1 , idI2 , λ, λ

−1
}
generates the change of charts of {I1, I2}.

Consider the smooth maps c1 : I1 → R2, t 7→ (1−2t, 1−2t) and c2 : I2 → R2, t 7→ (2t−1, 1−2t).
We obtain a continuous map c : ]0, 1[→ H, t 7→ q ◦ ci(t), for t ∈ Ii. Set ν(λ) := γ, to uniquely
determine ν : P → Ψ(U), which satisfies (R4) of Definition E.2.3. Then ĉ := (c, {c1, c2} , P, ν)
is a smooth path in H. We sketch the images of the lifts and the smooth path in H:

R2 γ

c1c1
c2

quotient
map

H

c

Notice that there is the weaker notion of a continuous path. It was introduced in [13, Chapter
III, 3] to obtain a fundamental group of an étale groupoid. The map ĉ induces a continuous
path intoH in the sense of Haefliger (cf. [13, III. Example 3.3 (2)]). Define a map ν′ : P → Ψ(U)
via ν′(λ) = idR2 . The tuple (c, {c1, c2} , P, ν′) does not define a charted orbifold map, but it
induces a continuous path in the sense of Haefliger (cf. [13, III. Example 3.3 (2)]).

In the last example, an orbifold path has been constructed with respect to a special orbifold atlas:
Define the set of all orbifold charts AI = {(Vα, {idVα} , πα) |α ∈ A} ∈ UI such that an orbifold chart
(Vα, {idVα} , πα) ∈ UI is contained in AI if and only if: Vα = ]l(α), r(α)[⊆ I is an open interval with
a ≤ l(α) < r(α) ≤ b and the map πα : ]l(α), r(α)[→ I is the inclusion (of sets). By construction each
change of orbifold charts in ChVα,Vβ for two orbifold charts (Vα, {idVα} , πα), (Vβ ,

{
idVβ

}
, πβ) ∈ AI

is an inclusion of open sets.
Consider a smooth orbifold path [ĉ] ∈ Orb (I, (Q,U)) with representative ĉ = (c, {ck}k∈I , [P, ν])
whose lifts are defined on charts (dom ck, {iddom ck} , πk). The chart maps of orbifold charts on I are
diffeomorphisms, since they are also manifold charts of the smooth manifold I. Define an orbifold
atlas Vĉ := {πk(dom ck) | k ∈ I} of I, where πk(dom ck) ⊆ I is a connected open interval. Hence
Vĉ ⊆ AI holds. Apply Lemma E.4.2 together with this set of charts to obtain a representative
ĥ ∈ Orb(Vĉ,W) of [ĉ], whereW is the range atlas of ĉ. In conclusion, for each smooth orbifold path,
there is a representative whose domain atlas is contained in AI .

4.1.3 Lemma Let [ĉ] ∈ Orb (I, (Q,U)) be a smooth orbifold path and P be some point in I.
Identifying the tangent orbifold T I with the tangent manifold I ×R, the element T c(P, 1) ∈ Tc(P )Q
is called the initial vector of [ĉ] at P . For each representative ĉ = (c, {ck}k∈I , [P, ν]) ∈ Orb(V,W)
of [ĉ] with V ⊆ AI and P ∈ dom ck, the initial vector is induced by TP ck(1) = c′k(a).
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Proof. Consider the lift ck : dom ck → Vk, where (dom ck, {iddom ck} , πk) ∈ AI and (Vk, Gk, ψk) ∈ U .
As I is a trivial orbifold, the tangent manifold TI ∼= I × R coincides with the tangent orbifold.
We suppress the identification T idI in the formulas: By Definition 3.1.7 of the tangent orbifold
map, T c(P, 1) = TψkTckT (πk)−1(P, 1) is well-defined. Hence it suffices to prove Tπ−1

k (P, 1) =
(P, 1) ∈ domTck ∼= dom ck × R. As (dom ck, {iddom ck} , πk) ∈ AI , so πk is the inclusion of sets
dom ck ↪→ I, πk is the restriction of a linear continuous map. A computation in the identification
proves Tπ−1

k (P, 1) = (P, 1), whence from TP ck(1) = Tck(P, 1) the assertion follows.

4.1.4 Lemma Let [ĉ] ∈ Orb (I, (Q,U)) be an orbifold path and [a, b] ⊆ I some compact subset.
There exists ĝ = (c|]x,y[, {gk}1≤k≤N , [Pg, νg]) with x < a < b < y and N ∈ N such that

1. [ĉ]|]x,y[ = [ĝ],
2. dom gk =]l(k), r(k)[ for each 1 ≤ k ≤ N such that

x = l(1) < l(2) < r(1) < l(3) < r(2) < · · · < l(N) < r(N − 1) < r(N) = y

3. Pg =
{

id]l(N),r(N)[

}
∪
{

id]l(k),r(k)[, ι
k+1
k , (ιk+1

k )−1
∣∣ 1 ≤ k ≤ N − 1

}
, where ιk+1

k is the canonical
inclusion ]l(k + 1), r(k)[↪→]l(k + 1), r(k + 1)[.

Proof. Construct a refinement of the domain atlas of ĉ. A full proof is given in Appendix F.

In a neighborhood of a compact set, we may think of an orbifold path as a family of smooth paths,
which are compatible in the following way: On each intersection of their domains, the inclusion of
sets induces a change of orbifold charts in the range atlas which maps one lift to the other. The
situation is sketched in the following figure for a smooth path in an orbifold (Q,U):

Q

gk

gk+1

gk+2

gk+3

Figure 3: Image of a smooth orbifold path together with lifts on a special range atlas.
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We remark that representatives with the special properties discussed in Lemma 4.1.4 do not only
exist around a given compact set (cf. Lemma F.3).

4.1.5 Definition (Orbifold geodesic) Let [ĉ] ∈ Orb(I, (Q,U)) be a smooth path in a Rieman-
nian orbifold. The map [ĉ] is an orbifold geodesic if there is a representative (c, {ci}i∈I , [P, ν]) ∈
Orb(V, {(Vj , Gj , ψj}j∈J) with V ⊆ AI such that for each i ∈ I the lift ci : ]l(i), r(i)[→ Vα(i) is a
geodesic. Here (Vα(i), ρVα(i)

) is the Riemannian manifold, where ρVα(i)
is the member of the Rie-

mannian orbifold metric. If [ĉ] is a geodesic, then the map c : I → Q is called a (geodesic) arc.
Sometimes we will by abuse of notation also call the image of c a (geodesic) arc.

4.1.6 Example Return to Example 1.7.2: Consider γ : R2 → R2, (x, y) 7→ (−x, y) and the orbifold
R2/〈γ〉 ∼= H (where H is the right half plane in R2). Endow the global chart (R2, 〈γ〉, ψ) with the flat
Riemannian metric. As 〈γ〉 ⊆ O(2), this Riemannian metric is 〈γ〉-invariant. Non-trivial geodesics in
this metric are straight lines, which induce geodesics of orbifolds. Geodesics contained either in the
right or left half plane are mapped to straight lines in the quotient. Standard Riemannian geometry
shows that a connected component of the set of points fixed jointly by a set of Riemannian isometries
is a closed totally geodesic submanifold (cf. [42, II. Theorem 5.1]). Since 〈γ〉 acts by Riemannian
isometries, geodesics which contain singular points either pass through the singular locus in one
point or are contained in it. Furthermore, geodesics which pass through the singular locus, are
reflected (as befits an example called mirror in R2). The following figure depicts an arc of this type:

R2 γ

geodesic (lift)

quotient
map

H

Arc in R2/〈γ〉

Figure 4: Orbifold geodesic in R2/〈γ〉: Reflected line

In particular, orbifold geodesics behave differently from geodesics in Riemannian manifolds. It is well
known that the arc of an orbifold geodesic may be not even locally length minimizing (cf. [34, 2.4.2]).
The following picture (which is slightly wrong to show the reflection) illustrates this behavior:

R2 γ

geodesic (lift) quotient
map

H

Arc in R2/〈γ〉

Figure 5: Orbifold geodesic in R2/〈γ〉: Not length minimizing in any neighborhood of the singularity.
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For further examples of orbifold geodesics (in particular, closed geodesics on orbifolds) we refer
to [34, 2.4.5].

4.1.7 Proposition Let [ĉ] ∈ Orb(I, (Q,U)) be an orbifold geodesic together with a representative
ĝ = (c, {gj}j∈J , [P, ν]) of [ĉ]. If the domain atlas of ĝ is contained in AI , then each lift gj is a
geodesic.

Proof. As [ĉ] is an orbifold geodesic, there is a representative ĉ = (c, {ci}i∈I , [P ′, ν′]) ∈ Orb(V,V ′)
such that every ci is a geodesic in (Vi, ρi). Furthermore, the domain atlas of ĉ is contained in AI ,
(Vi, Gi, ψi) ∈ V ′ and ρi is the member of the Riemannian orbifold metric on this chart. Consider
the lifts gj : dom gj →Wj of ĝ with respect to the charts (Wi, Hi, πi) in the range atlas of ĝ. Since
ĉ ∼ ĝ, the definition of equivalence for orbifold maps yields the following data: There are lifts ε and
ε′ of the identity on I, respectively ε′′ and ε′′′ on (Q,U) together with a charted map of orbifolds ĥ
such that

ĉ ◦ ε = ε′ ◦ ĥ and ĝ ◦ ε′′ = ε′′′ ◦ ĥ.

We consider for j ∈ J some t ∈ dom gj . As t ∈ I, there is an index i ∈ I with t ∈ dom ci. Recall
from Definition E.3.5 that the lifts of ε, ε′, ε′′, and ε′′′ are local diffeomorphism. In particular, they
restrict to embeddings of orbifold charts on open sets by Proposition E.3.2. Together with Lemma
E.4.4, we obtain open neighborhoods U ⊆ dom ci of t and V ⊆ Vj of gj(t) such that: There are
changes of charts λ : dom ci ⊇ U → dom gj and µ : Vi ⊇ V →Wj with

gj ◦ λ = µ ◦ ci|U . (4.1.1)

The domain atlases are contained in AI , whence dom ci,dom gj ⊆ I and their chart maps are
induced by the inclusions of sets. Hence the change of charts λ : U → dom gj is the inclusion of an
open subset. Thus gj |U = µ◦ci|U . As (Q,U , ρ) is a Riemannian orbifold, µ is a Riemannian isometry.
Since isometries preserve geodesics (cf. [43, IV. Proposition 2.6]), the identity (4.1.1) shows that in
a neighborhood of t, the map gj is a geodesic in (Wj , ρj). The construction did neither depend on
j ∈ J nor on t, whence gj is a geodesic for each j ∈ J .

Two orbifold geodesics coincide on a joint interval I if and only if their initial vectors coincide (cf.
Lemma F.3). On a Riemannian manifold, geodesics are uniquely determined by their initial data in
one point. The same holds for orbifold geodesics:

4.1.8 Proposition Consider p ∈ Q, ξ ∈ TpQ.

(a) There is an ε > 0 such that there exists an orbifold geodesic ĉξ ∈ Orb(]− 2ε, 2ε[, (Q,U)) with
initial vector ξ in 0.

(b) Let [ĉ] ∈ Orb (I, (Q,U)) and [ĉ′] ∈ Orb (I ′, (Q,U)) be orbifold geodesics. If there exists
a ∈ I ∩ I ′ such that the initial vectors of ĉ and ĉ in a coincide, then the initial vectors of [ĉ]
and [ĉ′] coincide at each point in I ∩ I ′, whence [ĉ′]|I∩I′ = [ĉ]|I∩I′ holds.
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Proof. (a) Choose some representative (π,X) ∈ ξ, where (V,G, π) ∈ U and X ∈ TxV such that
Tπ(X) = ξ. Set x = πTV (X). Let ρV be the member of the Riemannian orbifold metric
on V , i.e. (V, ρV ) is a Riemannian manifold. Standard Riemannian geometry (cf. [43, III.
Theorem 6.4.]) shows that there is an ε > 0 and a geodesic c0 : ] − 2ε, 2ε[→ V with initial
condition (x,X), i.e. c0(0) = x and T0c0(1) = X. Let c := π ◦ c0, P :=

{
id]−2ε,2ε[

}
and

ν : P → Ψ(U) be the map which sends the element of P to idV . We obtain an orbifold
geodesic ĉ := (c, {c0} , P, ν). By construction the initial vector of ĉ in 0 is ξ.

(b) Since I ∩ I ′ is an open submanifold of I, I ′ the orbifold maps restrict to orbifold maps
in Orb (I ∩ I ′, (Q,U)). To shorten our notation we may therefore assume that I = I ′
and a = 0 holds. Choose representatives ĉ = (c, {ck}k∈I , [P, ν]) ∈ Orb(V,W) and ĉ′ =
(c′, {cr}r∈J , [P ′, ν′]) ∈ Orb(V ′,W ′) whose domain atlases are subsets of AI . We will check
the condition of Lemma F.3 (b), which is equivalent to the assertion:
As a first step, show that there is ε > 0 such that for each t ∈]−ε, ε[ the condition of Lemma F.3
(b) holds. Let c0 be a lift of ĉ and c′0 be a lift of ĉ′ with 0 ∈ dom c0 ∩ dom c′0. Set cod c0 = V0

and cod c′0 = V ′0 for orbifold charts (V0, {idV0
} , π0) and (V ′0 ,

{
idV ′0

}
, π′0), respectively. The

geodesics pass through c(0) = c′(0) with initial vector ξ ∈ Tc(0)(Q,U). The construction of
ξ ∈ Tc(0)(Q,U) yields a change of charts λ0 : V0 ⊇ U → V ⊆ V ′0 such that T0λ0c0(1) = T0c

′
0(1).

The lifts c0 and c′0 are geodesics and λ0 is an isometry. Uniqueness of geodesics on Riemannian
manifolds now assures that there is an ε > 0 such that Ttλ0c0(1) = Ttc

′
0(1) for all t ∈]− ε, ε[.

We claim that the subset of I where the condition of Lemma F.3 (b) holds contains I ∩ [0,∞[.
Assume that this was not the case and consider

t0 := inf {t ∈ I | t > 0, @λ ∈ ChW∪W′ : t ∈ dom ck ∩ dom c′r and Ttλck(1) = Ttc
′
r(1)} .

Let ck be the local lift of c and c′r be the local lift of c′ such that t0 ∈ dom ck ∩ dom c′r. Their
images are contained in (Vk, Gk, πk) and (Vr, Gr, πr), respectively. The first step assures that
t0 > 0 and by construction, the condition of Lemma F.3 (b) holds for all smaller t. This
forces c and c′ to coincide on [0, t0[ and by continuity of these maps, we obtain c(t0) = c′(t0).
Thus there is a change of charts λ : Vk ⊇ U → V ⊆ Vr with λck(t0) = c′r(t0). Choose
some t < t0 with ck([t, t0]) ⊆ domλ. Since t < t0 holds, there is a change of charts µ with
Ttµck(1) = Ttcr(1). Shrinking the domain of µ, we may assume that µ is an embedding
of orbifold charts and domµ ⊆ domλ is satisfied. Now λ|domµ is an embedding of orbifold
charts mapping domµ into Vr. By Proposition 1.2.2 (d) there is an element h ∈ Gr such
that h ◦ λ|domµ = µ. The change of charts λt0 := h ◦ λ is a Riemannian isometry which
satisfies Ttλt0ck(1) = Ttµck(1) = Ttc

′
r(1). We deduce that on its domain, λt0 maps the

geodesic ck to cr. There is some δ > 0 such that ck(]t0 − δ, t0 + δ[) ⊆ domλt0 holds. Hence
Tsλt0ck(1) = Tsc

′
r(1) holds for each s ∈]t0 − δ, t0 + δ[. This contradicts our choice of t0 and

thus there may be no such point in I ∩ [0,∞[. An analogous argument for t < 0 shows that
the condition of Lemma F.3 (b) holds for all of I, whence both orbifold geodesics coincide.

Since orbifold geodesics are uniquely determined by their initial vectors in some point, we may
construct a join for two suitable geodesics:
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4.1.9 Lemma Let [ĉ] ∈ Orb (I, (Q,U)) and [ĉ′] ∈ Orb (I ′, (Q,U)) be orbifold geodesics such
that for some x0 ∈ I ∩ I ′, their initial vectors coincide. Then there is a unique orbifold geodesic
[ĉ ∨ ĉ′] ∈ Orb (I ∪ I ′, (Q,U)) such that [ĉ ∨ ĉ′]|I′ = [ĉ′] and [ĉ ∨ ĉ′]|I = [ĉ].

Proof. It is possible to “glue” two orbifold geodesics whose initial vector coincides in one point. This
procedure, together with a full proof, can be found as Lemma F.4 in Appendix F.

Standard Riemannian geometry shows that the maximal domain I has to be an open subset of
R (since the lifts of an orbifold geodesic are geodesics in suitable charts, whose maximal domain is
always an open subset of R). Naturally we have to ask whether the orbifold geodesic constructed
in Proposition 4.1.8 (a) may uniquely (up to equivalence of orbifold morphisms) be extended to
a maximal domain. In fact each geodesic with this initial vector in 0 may then be derived as a
restriction of the maximal geodesic. The next lemma is inspired by a lemma due to Chen and Ruan
(cf. [15, Lemma 4.2.6]):

4.1.10 Lemma Let p ∈ Q be any point and ξ ∈ TpQ.

(a) There is a unique maximal interval Iξ such that an orbifold geodesic [ĉξ] ∈ Orb (Iξ, (Q,U))
with initial vector ξ in 0 exists on Iξ.

(b) If Q is compact, then Iξ = R holds, for each ξ ∈ T Q.

Proof. (a) Let Sξ be the set of all orbifold geodesics whose initial vector at 0 is ξ. Orbifold
geodesics with initial vector ξ at 0 exist by Proposition 4.1.8 (a), whence Sξ is non-empty. For
two elements [ĉ], [ĉ′] ∈ Sξ, there is a join [ĉ ∨ ĉ′] by Lemma 4.1.9 which is again an element of
Sξ. Any finite number of elements in Sξ may be joined in this way. For [ĉ] ∈ Sξ, we let Iĉ be
the interval such that [ĉ] ∈ Orb (Iĉ, (Q,U)).
Construct recursively an element [ĉξ] ∈ Sξ on the open subset Iξ :=

⋃
[ĉ]∈Sξ Iĉ. The set Iξ

is an open connected subset of R as a union of connected open subspaces with non-empty
intersection (cf. [21, Corollary 6.1.10]). Define c : Iξ → Q via c(t) := c′(t) if t ∈ dom c′ with
ĉ′ = (c′, {c′i}i∈I , [P, ν]) ∈ Sξ. This map is well-defined by Proposition 4.1.8. There exist
numbers

· · · < a−2 < a−1 < a0 = 0 < a1 < a2 < · · ·

such that Iξ =
⋃
k∈Z[ak, ak+1] and such that, for each k ∈ Z a lift ck of some ĉ ∈ Sξ is

defined on an open interval Ik containing [ak, ak+1], with image in (Vk, Gk, πk) and ck is a
geodesic. Choose l(k) so large and r(k − 1) so small that ak < r(k − 1) < l(k + 1) < ak+1

and ]l(k), r(k)[⊆ Ik hold and there exists a change of charts λk,k+1 with ck([l(k + 1), r(k)]) ⊆
domλk,k+1 with λk,k+1 ◦ ck|[l(k+1),r(k)] = ck+1|[l(k+1),r(k)]. Let W be an atlas containing
all (Vk, Gk, πk). Define P :=

{
id]l(k),r(k)[, ι

k+1
k , ιkk+1

∣∣ k ∈ Z
}

where ιk+1
k : ]l(k + 1), r(k)[→

]l(k + 1), r(k + 1)[ and ιkk+1 : ]l(k + 1), r(k)[→]l(k), r(k)[ are inclusions of sets. Now define
ν : P → Ψ(W) via ν(id]l(k),r(k)[) := idVk , ν(ιk+1

k ) := λk,k+1 and ν(ιkk+1) := λ−1
k,k+1. Then

ĉ := (c,
{
ck|]l(k),r(k)[

}
k∈Z , [P, ν]) is a geodesic and ĉ ∈ Sξ because Tπ0Tc0(0, 1) also is the

initial vector of some ĉ′ ∈ Sξ, and hence equal to ξ.
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(b) Following (a), it is sufficient to prove that an orbifold geodesic [ĉ] ∈ Orb (I, (Q,U)) with
initial vector ξ at 0 and I =]a, b[ may be extended in the following sense: If there is a sequence
(tn)n∈N ∈]a, b[ such that tn → b with b <∞ and lim c(tn) exists in Q, then there is an orbifold
geodesic [ĉ′] defined on ]a, b′[, b′ > b, whose initial vector at 0 is ξ. Set q := limn∈N c(tn)
and choose an orbifold chart (V,Gx, ψ) with q = ψ(x) for x ∈ V and G = Gx. Notice that
ψ−1(q) = {x} holds. Choose a compact neighborhood Ux of x and observe that Gx.Ux is
again a compact set. A compactness argument together with [18, 3.2 Proposition 2.5] proves
that there are δ > 0 and ε > 0 such that for each p ∈ Ux and v ∈ BρV (0q, ε), there is a
unique geodesic γv : ] − δ, δ[→ V with initial value T0γ(1) = v. Here ρV is the member of
the Riemannian orbifold metric on V . For N large enough one obtains c(tn) ∈ ψ(Ux), ∀n ≥
N . The definition of an orbifold geodesic implies that for each tn there is some local lift
cn : dom cn → Vn of c with tn ∈ dom cn and (Vn, Hn, ϕn) ∈ U . By compatibility of orbifold
charts, c(tn) ∈ Imϕn∩ψ(Ux) for n ≥ N implies that there is some change of orbifold charts λn
with λncn(tn) ∈ Gx.Ux. As each λn is a Riemannian embedding, the definition of an orbifold
geodesic yields ‖Ttnλncn(1)‖ρV = K = ‖Ttmλmcm(1)‖ρV for all n,m ≥ N . Using homogeneity
of geodesics on Riemannian manifolds ([18, 3.2 Lemma 2.6]),for each q ∈ Gx.Ux there is some
δ′ > 0 such that for each v ∈ BρV (0q,K + 1) the geodesic with initial value v exists on
]−δ′, δ′[. Let γX be the geodesic in (V, ρV ) with initial vector X. Choose n0 > N so large that
b−tn0

< δ′ holds. The geodesic gn0
: ]tn0

−δ, tn0
+δ′[→ V, t 7→ γTtn0

λn0cn0 (1)(t−tn0
) induces an

orbifold geodesic ĝ := (ψ ◦ gn0
, {gn0

} ,
{

id]tn0
−δ′,tn0

+δ′[

}
, ν) where ν(id]tn0

−δ′,tn0
+δ′[) := idV .

By construction, the initial vector of ĝ in tn0 coincides with the initial vector of ĉ in tn0 . Thus
Lemma 4.1.9 yields an orbifold geodesic ĉ∨ ĝ which is defined on ]a, tn0 +δ′[. The initial vector
of ĉ ∨ ĝ in 0 is ξ and its domain strictly contains ]a, b[.

4.1.11 Remark The maximal geodesics [ĉξ] on Iξ constructed in Lemma 4.1.10 (a) do not extend,
i.e. if [ĝ] ∈ Orb (I, (Q,U)) is a geodesic whose initial vector at a ∈ I ∩ Iξ coincides with the initial
vector of [ĉξ] in a, then I ⊆ Iξ and [ĉξ]|I = [ĝ] hold.

4.1.12 Theorem Let (Q,U , ρ) be a Riemannian orbifold and ξ ∈ T Q.

(a) There exist δ, δ′ > 0, an open neighborhood Oξ ⊆ T Q of ξ and a continuous map αξ : ] −
δ, δ′[ ×Oξ → Q and for ξ′ ∈ Oξ the path αξ(·, ξ′) : ] − δ, δ′[ → Q, t 7→ α(t, ξ′) is the geodesic
arc of an orbifold geodesic [ĉξ′ ] with initial vector ξ′ in 0. We call αξ a orbifold geodesic flow,

(b) If (ξ, ζ) ∈ T Q × T Q with Oξ ∩ Oζ 6= ∅, then αξ and αζ coincide on the intersection of their
respective domains.

(c) If the maximal orbifold geodesic [ĉξ] with initial vector ξ in 0 satisfies [c, d] ⊆ Iξ, then the set
Oξ in (a) may be constructed such that for ζ ∈ Oξ, the map [ĉζ ] is defined on [c, d].

Proof. (a) By Proposition 4.1.8 (a), there is some ε > 0 together with the representative of an
orbifold geodesic ĉ = (c, {gi | 1 ≤ i ≤ N} , P, ν) defined on ]− 2ε, 2ε[ with initial vector ξ in 0.
After shrinking the domain, without loss of generality ĉ is defined on an open neighborhood
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of [−ε, ε] with properties as in Lemma 4.1.4. We show that there is an open neighborhood of
ξ such that each orbifold geodesic with initial vector in this set exists at least on [0, ε].
To shorten the notation, relabel the charts as {−t,−t+ 1, . . . , 0, 1, . . . , s} for certain s, t ∈ N0

such that 0 ∈ dom g0. Let gi : ]l(i), r(i)[→ Ui, −t ≤ i ≤ s be the lifts, where the (Ui, Gi, ψi)
are charts in U . By construction, for −t ≤ i < s there is a change of charts λi+1

i satisfying
λi+1
i gi|]l(i+1),r(i)[ = gi+1|]l(i+1),r(i)[. Choose for 1 ≤ i ≤ s a point zi ∈]l(i), r(i − 1)[ with
z0 := 0 < zi < zj for i < j. Define Xi := Tzigi(1) for 0 ≤ i ≤ s and observe that gi is uniquely
determined by Xi. By construction [ψ0, X0] = ξ holds. Finally choose zs+1 ∈ dom gs with
zs+1 > ε and zs+1 > zs.
Standard Riemannian geometry on manifolds shows that the geodesic flow depends smoothly
on the initial data (cf. [18, 3.2 Proposition 2.5] and [45, IV, §3 and VII, §7], respectively).
On the Riemannian manifold (Ui, ρi), there is a geodesic flow ϕi : Di → TUi, defined on an
open set Di ⊆ R× TUi (cf. [45, IV, §4 Remark before Corollary 4.3]). The map ϕi is smooth
by an application of [45, IV, §2 Theorem 2.6]. Since gs is a geodesic defined on [zs, zs+1] ⊆
]l(s), r(s)[ with Tzsgs(1) = Xs, the compact set [0, zs+1 − zs] × {Xs} is contained in the
open set Ds. An application of Wallace Theorem [21, 3.2.10] provides an open neighborhood
[0, zs+1−zs]×{Xs} ⊆]−δs, zs+1−zs+δs[×Vs ⊆ Ds. For each element ζ of this neighborhood
in TUs, the geodesic with initial data ζ exists on the interval ]zs − δs, zs + δs[.
Shrinking Vs and δs, we may assume that Vs ⊆ π−1

TUs
(codλss−1) and zs − δs > r(s − 2)

hold. Identify T codλss−1 and T domλss−1 with open subsets of TUs respectively TUs−1 and
set V ′s := (Tλss−1)−1(Vs) ⊆ TUs−1. The geodesic gs−1 is determined by Xs−1 and its domain
]l(s−1), r(s−1)[ contains [zs−1, zs] with Tzsgs−1(1) ∈ V ′s . As the geodesic flow ϕs−1 is smooth,
arguments as above applied to ϕs−1 yield an open set Vs−1 ⊆ TUs−1 with Vs−1 ⊆ T codλs−1

s−2

and
- [0, zs − zs−1]× {Xs−1} ⊆]− δs−1, zs − zs−1 + δs−1[×Vs−1 ⊆ Ds−1,
- ϕs−1(zs − zs−1, Vs−1) ⊆ V ′s ,
- zs−1 − δs−1 > r(s− 3).

Again one obtains an open set V ′s−1 := (Tλs−1
s−2)−1(Vs−1) ⊆ TUs−2. Repeating the argument

for each 0 ≤ i ≤ s − 2, we arrive at an open neighborhood V0 ⊆ TU0 of X0. For each
ζ ∈ V0, there is a unique family of geodesics (ciζ)0≤i≤s such that ciζ is defined at least on
]zi − δi, zi+1 + δi[. In addition these families satisfy Tziλii−1ci−1(1) = Tzici(1).
Repeating the argument for [−ε, 0], we obtain an open set V −0 such that the geodesics are
defined on [−ε, 0]. Set V := V0 ∩V −0 and δ := z−t−1− δ−t and δ′ := zs+1 + δs. For each ζ ∈ V
and −t ≤ i ≤ s+1, the geodesics ciζ are defined on [zi−1−δi, zi+δi]. By construction one may
restrict their domains such that λi+1

i ciζ |]zi+1−δi+1,zi+1+δi[ = ci+1
ζ |]zi+1−δi+1,zi+1+δi[ holds. For

each ζ ∈ V , the family (ciζ)−t≤i≤s induces an orbifold geodesic. The continuity of the geodesic
flows yields a well-defined continuous map

α̃ : ]− δ, δ′[×V → Q, (t, ζ) 7→ ψi(c
i
ζ(t)) for each t ∈]zi − δi, zi+1 + δi[.

Consider the orbifold chart (TU0, G0, Tψ0) ∈ T U for the tangent orbifold T (Q,U). Chart
maps of orbifold charts are open maps and thus Oξ := Tψ0(V ) is open in T Q. It contains
ξ = Tψ0(X0) and the subspace topology on Oξ with respect to Q coincides with the quotient
topology induced on Oξ by Tψ0 (since Tψ0 factors via a homeomorphism with open image).
The restriction q := Tψ0|

Oξ
V is an open, continuous and surjective map. For each ζ ∈ Oξ,
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choose a preimage ζ̃ ∈ q−1({ζ}) ∈ V . Notice that each choice of preimage for ζ induces
an orbifold geodesic with initial vector ζ at 0. Following Proposition 4.1.8 (b) the geodesic
arcs obtained from a choice of q−1(ζ) coincide with the arc of [ĉζ ] on the intersection of their
domains. Hence each choice defines the same continuous path in Q. As ĉζ is defined at least
on ]δ, δ′[ the maximal geodesic with initial vector ζ is defined on this interval. We derive a
well-defined map

α : ]− δ, δ′[×Op → Q, (t, ζ) 7→ α̃(t, ζ̃).

The map id]−δ,δ′[×q is the product of open continuous surjective maps, whence it is itself
open, continuous and surjective. In particular, this mapping is a quotient map such that
α̃ = α ◦ (id]−δ,δ′[×q) holds. As α̃ is continuous, [20, VI. Theorem 3.1] implies that α is a
continuous map.

(b) By Proposition 4.1.8 (b), the arcs of two orbifold geodesics with the same initial data coincide.
Hence for each ω ∈ Oξ ∩Oζ , the arcs of the geodesics coincide, therefore αξ(·, ω) and αζ(·, ω)
coincide on the intersection of their respective domains. This proves the assertion.

(c) Repeat the proof of (a) verbatim with [c, d] ⊆ Iξ instead of [−ε, ε].

4.1.13 Corollary For every p ∈ Q, there is an open neighborhood Wp ⊆ T Q of 0 ∈ TpQ and a
continuous map α : ] − 2, 2[×Wp → Q such that ] − 2, 2[→ Q, t 7→ α(t, ξ) is the unique geodesic arc
with initial vector ξ in 0 defined on ]− 2, 2[, for each ξ ∈Wp.

Proof. Choose an arbitrary orbifold chart (U,G,ψ) such that p = ψ(x) for some x ∈ U . By definition
Tψ(0x) = 0p ∈ TpQ holds, where 0x ∈ TxU is the zero element. Standard Riemannian geometry
(see [18, 3.2 Proposition 2.7]) assures that there is a smooth mapping γ : ]− 2, 2[×V → U , defined
on some open set V ⊆ TU such that each x ∈ V induces a geodesic in U defined at least on
]−2, 2[. Arguing as in the proof of Theorem 4.1.12, we choose Wp := Tψ(V ) and α : ]−2, 2[×Wp →
Q, (t, ξ) 7→ ψ(γ(t, xξ)), where xξ is an arbitrary preimage of ξ under Tψ in V .

4.1.14 Lemma An orbifold geodesic [ĉ] ∈ Orb (I, (Q,U)) is uniquely determined by its underlying
map.

Proof. Let [ĉ] and [ĉ′] be orbifold geodesics whose underlying map c : I → Q coincides. Shrinking
the domains of definition of the lifts and composing with change of charts as necessary, we can
achieve the following: There are representatives ĉ of [ĉ] and ĉ′ of [ĉ′], respectively such that their
families of local lifts contain lifts c0, c′0 : ] − ε, ε[→ V for some orbifold chart (V,G, ψ). Since both
c0 and c′0 lift c, we have γx.c0(x) = c′0(x) for every x ∈ ]− ε, ε[ and γx ∈ G. Define for γ ∈ G the set

Uγ := {x ∈]− ε, ε[ | γ.c0(x) = c′0(x)} .

Notice that Uγ is a closed set for γ ∈ G and ] − ε, ε[ =
⋃
γ∈G Uγ . Since G is finite, Baires theorem

asserts that at least some Uγ must have non-empty interior. Hence the geodesics c0, c′0 coincide, up
to composition by a group element in G, on an open subset of ]−ε, ε[. Let x be a point in the interior
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of Uγ . Since the geodesics γ.c0, c′0 coincide on an open neighborhood of x, their derivatives must
coincide. By Lemma 4.1.3, the initial vectors of both geodesics at x coincide. Hence the assertion
follows from Proposition 4.1.8.

Albeit the quite similar behavior of orbifold geodesics to geodesics on Riemannian manifolds,
not all properties of geodesics may be preserved in the orbifold case. For example, as is noted
in [34, 2.4.2], orbifold geodesics may not even be locally length minimizing in the natural length
metric on Q (induced by piecewise differentiable paths). However, as we are only interested in
geodesics as a tool to obtain an exponential map, we shall not investigate this behavior.

4.2. The Riemannian orbifold exponential map

In this section, our main tool derived via Riemannian geometry on orbifolds, the Riemannian orbifold
exponential map, is introduced. As before the triple (Q,U , ρ) will be a Riemannian orbifold. By
Lemma 4.1.10 (a), for each ξ ∈ T Q, there is a maximal orbifold geodesic [ĉξ] with initial vector ξ
in 0. The geodesic arc of a maximal orbifold geodesic is unique by Proposition 4.1.8. Hence the
continuous map of the base spaces cξ : Iξ → Q is uniquely determined.

4.2.1 Definition (Riemannian orbifold exponential map) Let Ω be the set of all ξ ∈ T Q such that
the orbifold geodesic [ĉξ] with underlying map cξ : Iξ → Q satisfies [0, 1] ⊆ Iξ. The map

expOrb : Ω→ Q, ξ 7→ cξ(1)

is called Riemannian orbifold exponential map. The set Ω is an open neighborhood of the zero
section, by Theorem 4.1.12 (c) and Corollary 4.1.13. We call Ω the domain of the Riemannian
orbifold exponential map.

4.2.2 Lemma The Riemannian orbifold exponential map is continuous and for 0p ∈ TpQ the
identity expOrb(0p) = p holds.

Proof. Let ξ ∈ Ω be arbitrary. The geodesic [ĉξ] is defined on an open interval Iξ such that
[0, 1] ⊆ Iξ holds. By Theorem 4.1.12 (c), there is an open neighborhood ξ ∈ Oξ ⊆ T Q such
that each orbifold geodesic [ĉω] for ω ∈ Oξ is defined on [0, 1] ⊆] − δ, δ′[. Furthermore, Oξ ⊆ Ω
holds. There is a continuous map αζ : ] − δ, δ′[ ×Oξ → Q, (t, ω) 7→ ĉω(t) such that by construction
expOrb(ω) = αξ(1, ω), ∀ω ∈ Oξ is satisfied. Hence expOrb restricts to a continuous map on the open
set Oξ. Theorem 4.1.12 (b) assures that for any ζ ∈ Ω the maps αζ(1, ·) and αξ(1, ·) coincide on
Oξ ∩Oζ . From [20, IV. Theorem 9.4] we deduce that expOrb is continuous.
Choose an arbitrary orbifold chart (U,G, ψ) ∈ U such that p ∈ ψ(x) for some x ∈ U . The chart Tψ
maps 0x ∈ TxU to 0p ∈ TpQ. Standard Riemannian geometry assures that the geodesic γ starting
in x with velocity 0 is constant and hence defined on all of R. Setting c : R → Q, t 7→ p, we obtain
a representative of an orbifold geodesic ĉ := (c, γ, {idR} , ν), where ν(idR) := idU . The orbifold
geodesic [ĉ] has initial vector 0p in 0 and its arc is uniquely determined by Proposition 4.1.8. This
proves expOrb(0p) = p.
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4.2.3 Proposition Consider the open suborbifold (Ω,UΩ). The map expOrb induces a map of
orbifolds [expOrb] ∈ Orb ((Ω,UΩ), (Q,U)) also called Riemannian orbifold exponential map.

Proof. The subset Ω ⊆ T Q is open. Hence the orbifold structure T U induces a unique orbifold
structure (Ω, T UΩ) (cf. Definition 2.2.2), turning this orbifold into an open suborbifold of (T Q, T U).
We claim that there is a representative V of T UΩ together with a family of lifts, turning expOrb
into a charted orbifold map in Orb(V,W) for some W ∈ U . By Lemma 4.2.2, the map expOrb is
continuous. Construct smooth lifts of expOrb: To this end, consider arbitrary ξ ∈ Ω. By Theorem
4.1.12 and its proof, there is an open neighborhood ξ ∈ Oξ ⊆ Ω together with the following data:

- (TU1, G1, Tψ1) ∈ T U , with Oξ = Tψ1(V ) ⊆ Tψ1(TU1) for some open V ⊆ TU1,
- a family of orbifold charts {(Ui, Gi, ψi)}1≤i≤N ∈ U ,
- a continuous map θ : V → Q,X 7→ α̃(1, X) such that θ = expOrb ◦Tψ1|V holds. The map θ
is the composition of the geodesic flows ϕi on (Ui, ρi), 1 ≤ i ≤ N , changes of charts λii+1 for
1 ≤ i < N , the bundle projection of TUN and the orbifold chart ψN .

Recall from the proof of Theorem 4.1.12 that there is a partition 0 = t0 < t1 < · · · < tN < 1 such
that a smooth map Expξ : TU1 ⊇ V → UN may be defined via

Expξ(X) := πTUNϕN (1− tN , ·) ◦ TλN−1N ◦ ϕN−1(tN − tN−1, ·) ◦ · · · ◦ Tλ12 ◦ ϕ1(t1, ·)(X). (4.2.1)

Reviewing Theorem 4.1.12, we see that θ = ψN ◦ Expξ.
Choose an open G1-stable subsetW of V which contains some preimage xξ of ξ. Restricting Expξ to
W , we obtain a smooth map ExpW on an orbifold chart (W,GW , Tψ1|W ). By construction, ExpW
is a smooth lift of expOrb on W .
We show that any local lift Exp′W of expOrb obtained via (4.2.1) with respect to (W,GW , Tψ1|W )
and (UN , GN , ψN ) but taking other choices for the intermediary charts, geodesic flows and changes
of charts, coincides with γ.ExpW for some γ ∈ GN .
The lifts ExpW and Exp′W are defined as restriction of a composition of geodesic flows ϕi, changes
of charts λkk+1 and the bundle projection πTUN (cf. (4.2.1)). Notice that the flows, changes of
charts and the number N may differ for Exp′W . However, we fixed the chart ϕ := ϕN = ϕ′N ′ . Each
ϕi(ti − ti−1, ·) is defined on an open subset of TUi. It is a diffeomorphism from this subset onto its
(open) image in TUi (this follows from [45, IV, § 2, Theorem 2.9.]). The change of chart Tλkk+1

are étale embeddings. In addition, the bundle projection πTUN is an open map, whence ExpW is an
open map as a composition of such maps. The same holds for Exp′W whose image is contained in
(UN , GN , ψN ). The construction of the lifts ExpW and Exp′W shows that there are diffeomorphisms
φW : W → O, φ′W : W → O′ onto open sets O,O′ ⊆ TUN with ExpW = πTUN ◦ ϕN (1− tN , ·) ◦ φW
and Exp′W = πTUN ◦ ϕN (1 − t′N , ·) ◦ φ′W . Without loss of generality, taking the maximum of
tN , t

′
N , we may assume tN = t′N . Observe that we obtain a diffeomorpism φW ◦ φ′−1

W : O′ → O.
For each X ∈ O′, there are unique geodesics γ′X(t) := πTUNϕN (t,X) : [0, 1 − tN ] → UN and
γX(t) := πTUNϕN (t, φW ◦ φ′−1

W (X)) : [0, 1− tN ]→ UN . The geodesics γX , γ′X lift the same orbifold
geodesic arc, since ExpW and Exp′W are restrictions of orbifold geodesic flows. By Lemma F.3, for
X ∈ O′, there is some gX ∈ GN with T1−tN (gX .γX) = T1−tNγ

′
X .

The element gX acts as a Riemannian isometry, mapping geodesics to geodesics, which implies
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gX .γX(t) = γ′X(t), for all t ∈ [0, 1− tN ]. For any non-singular X ∈ O′, the isometry gX is uniquely
determined: To prove this, let g′X ∈ GN be another isometry with g′X .γX = γ′X . Then,

TgX(X) = TgX .ϕN (0, φW ◦ φ′−1
W (X)) = ϕN (0, X) = Tg′X .ϕN (0, φW ◦ φ′−1

W (X)) = Tg′X(X).

SinceX is non singular, TπTUN (X)gX = TπTUN g
′
X and by [51, Lemma 2.10], gX = g′X follows. The set

O′ ⊆ TUN is an open, connected set. Hence Lemma B.2.3 implies that C := O′\ΣTGN is connected.
As we have seen, for each X ∈ C, there is a unique gX with gX .γX(0) = γ′X(0). The set HgX :=
{c ∈ C | gX .γc(0) = γ′c(0)} =

{
c ∈ C

∣∣ gX .πTUNϕ′N (1− tN , c) = πTUNϕN (1− tN , φW ◦ φ′−1
W (c))

}
is a

closed set by [21, Theorem 1.5.4]. Uniqueness of gX proves that two such sets Hg and Hh are disjoint
if and only if g 6= h holds. Since GN is finite, the set HgX is open and closed. By connectedness of
O′ \ ΣTGW , there is a unique γ ∈ GN with

γ.πTUNϕN (1− tN , ·)|O′\ΣTGN = πTUNϕN (1− tN , ·) ◦ φWφ′−1
W |O′\ΣTGN . (4.2.2)

The set O′ \ ΣGN is dense in O′ by Newman’s Theorem B.2.1. Hence, by continuity, (4.2.2) holds
on all of O′. As (φ′W )−1(O′) = W by construction, we finally derive γ.ExpW = Exp′W .

The construction of lifts did not depend on ξ, thus we may cover Ω with a set of orbifold
charts V := {(Wi, Gi, πi) | i ∈ I} such that on each (Wi, Gi, πi) there exists a local lift ExpWi

of
expOrb with respect to (Wi, Gi, πi) and a suitable chart (Ui, Gi, ψi). Eliminating charts which occur
severalfold, we may assume (Wi, Gi, πi) 6= (Wj , Gj , πj) and (Ui, Gi, ψi) 6= (Uj , Gj , ψj) for i 6= j
(by replacing charts Ui with Ui × {i} if necessary). The charts in V are compatible since they
are contained in T U , their images cover Ω and we have V ∈ T UΩ. Define the atlas W :=
{(V,G, ψ) ∈ U |V = codWi for some i ∈ I}.
We show that it is possible to construct a quasi-pseudogroup P and a map ν such that the lifts
commute with the changes of charts as in Definition E.2.3. To this end, consider arbitrary local
lifts ExpW and Exp′W of expOrb with respect to the charts (W,G, π), (U,H,ψ) and (W ′, G′, π′),
(U ′, H ′, ψ′), respectively. Furthermore, let h ∈ ChV be a change of charts which induces a commu-
tative diagram:

domh
inc //

h

��

W
ExpW //

π

  
AA

AA
AA

AA
U

ψ
~~}}

}}
}}

}}

Ω
expOrb // Q

codh
inc // W ′

ExpW ′ //

π′
>>}}}}}}}}

U ′.

ψ′
``AAAAAAAA

(4.2.3)

Cover ExpW (domh) with the domains of suitable changes of charts. Our goal is to restrict h to
open subsets such that there are changes of charts which complement the right hand side of (4.2.3)
to a commuting triangle. By commutativity of (4.2.3), for each X ∈ domh there is an embedding of
orbifold charts λX ∈ Ch(U,U ′) such that λX(ExpW (X)) = ExpW ′(h(X)). Again let φW , φW ′ denote
the diffeomorphisms with ExpW = πTUϕU (1 − tN , ·) ◦ φW and Exp′W = πTU ′ϕ

′
U (1 − t′N , ·) ◦ φW ′ .

Since ϕN (t, φW (X)) is defined for all t ∈ [0, 1 − tN ], we deduce from the continuity of the flow
that there is some ε > tN , t

′
N such that πTUϕU (1 − t, ϕU (ε − tN , φW (X)) ∈ domλX holds for all
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t ∈ [0, 1 − ε]. Define for Y ∈ W the element Ỹ := ϕU (ε − tN , φW (Y )) ∈ TU . Now the open set
ϕ−1
U (T domλX) contains [0, 1 − ε] ×

{
X̃
}
. The Wallace Theorem [21, 3.2.10] assures that there is

an open neighborhood X̃ ∈ Ṽ ⊆ TU such that [0, 1 − ε] × Ṽ ⊆ ϕ−1
U (T domλX). By continuity of

φW , we can choose an open G-stable X-neighborhood V ⊆ (ϕU (ε− tN , ·) ◦ φW )−1(Ṽ )∩ domh with
GV = GX . For each Ỹ with Y ∈ V , the geodesic γỸ (t) := πTUϕU (t, Ỹ ), t ∈ [0, 1− ε] is contained in
domλX . We obtain two local lifts Exp′W |h(V ) and λX ◦ExpW ◦ h−1|h(V ) with respect to the charts
(h(V ), G′h(V ), π

′|h(V )) and (U ′, H, ψ′). The map λX is a Riemannian embedding into U ′ and thus
commutes with parallel displacement (see [43, IV. Proposition 2.6]) of the open set domλX . Hence
we derive TλXϕU (1− ε, Ỹ ) = ϕU ′(1− ε, TλX(Ỹ )) for Ỹ ∈ Ṽ . In particular, the following holds:

λX ◦ ExpW ◦ h−1|h(V ) = πTU ′TλXϕU (1− ε, ·)ϕU (ε− tN , ·) ◦ φW ◦ h−1|h(V )

= πTU ′ϕU ′(1− ε, ·)TλXϕU (ε− tN , ·) ◦ φW ◦ h−1|h(V ). (4.2.4)

The local lifts λXExpWh−1|h(V ) and Exp′W |h(V ) are therefore compositions of the bundle projection
πTU ′ , the geodesic flow on U ′ and some diffeomorphism. As we have already seen, there is some
γ ∈ H ′ such that γ.λXExpWh−1|h(V ) = Exp′W |h(V ) holds. Replacing λX with the embedding of
orbifold charts γ.λX , we derive

λX ◦ ExpW |V = ExpW ′ ◦ h|V . (4.2.5)

We may thus cover domh by open G-stable subsets {WXi | i ∈ Ih} such that for each hi := h|WXi
,

there is a change of charts λhi which satisfies λhi ◦ExpW |V = ExpW ′ ◦ h|V . Repeating this construc-
tion for every change of charts in ChV , we obtain P := {hi | i ∈ Ih, h ∈ ChV}. By construction P is
a quasi-pseudogroup which generates Ψ(V). For each element f of P choose and fix some h ∈ ChV
with f = hi and define the map ν : P → Ψ(W), f = hi 7→ λhi .
By construction, êxpOrb := (expOrb, {ExpW | (W,G, π) ∈ V} , P, ν) satisfies conditions (R1)-(R4a)
of Definition E.2.3. We check condition (R4b), i.e. if g, h ∈ P and x ∈ domh ∩ dom g with
dom g,domh ⊆ U and germx h = germx g, then germExpU (x) ν(h) = germExpU (x) ν(g).
Let dom ν(h) ⊆ V and cod ν(h) ⊆ V ′, where (V,H, ψ), (V ′, H ′, ψ′) are suitable orbifold charts.
By construction we already know ν(h)(ExpU (x)) = ν(g)(ExpU (x)). Restricting to an open and
HExpU (x)-stable subset ExpU (x) ∈ Sx of dom ν(g) ∩ dom ν(h), the changes of charts ν(g) and ν(h)
restrict to embeddings of orbifold charts. By Proposition 1.2.2, there is a unique γ ∈ H ′ such
that γ.ν(g)|Sx = ν(h)|Sx . Now γ.ν(g)(ExpU (x)) = ν(h)(ExpU (x)) = ν(g)(ExpU (x)) implies that
γ ∈ H ′ν(g)(Sx) and from Proposition 1.2.2 we obtain some δ ∈ H with ν(g)(δ) = γ.
As ExpU is an open map, the intersection Sx ∩ ImExpU (dom g ∩ domh) is a non-empty open set.
It contains at least one non-singular point y by Newman’s theorem B.2.1. Both maps coincide on
ExpW (dom g ∩ domh), whence

ν(g)(δ.y) = γ.ν(g)(y) = ν(h)(y) = ν(g)(y),

which implies δ.y = y. Since y is non-singular, δ = idV follows. The mapping ν(g) is a group
homomorphism, from which we deduce γ = idV ′ . In conclusion, ν(g)|Sx = ν(h)|Sx holds, whence
their germs agree, proving property (R4b). The above shows that there is locally only one choice
for ν(g). From this observation, one deduces that properties (R4c)-(R4d) are also valid for êxpOrb.
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We have thus constructed a charted map

êxpOrb = (expOrb, {ExpW }(W,G,π)∈V , [P, ν]) ∈ Orb(V,W)

for the range family W ∈ U as defined above. To finish the proof, we need to check that every other
choice of lifts yields a charted orbifold map which is equivalent to êxpOrb.
Let ẽxpOrb = (expOrb, {EW ′ | (W ′, G′, ψ′) ∈ V ′} , [P ′, ν′]) be another charted orbifold map whose
lifts are constructed as above. Arguing as before, for each lift ExpW , we may cover ImExpW with
the domains of embeddings µiW , i ∈ I of orbifold charts such that:

(a) domµiW 6= domµjW for each i 6= j,
(b) for each i, there is a lift EW ′i of exp′Orb and an embedding of orbifold charts λiW such that

ExpW (domλiW ) ⊆ domµiW and µiWExpW |domλiW
= EW ′iλ

i
W .

Repeating this argument for each chart in V, we obtain an orbifold atlas A of charts for Ω and a
family F of orbifold charts for Q. In particular, for each chart A ∈ A, there is a chart in F together
with two pairs of embeddings of orbifold charts: The first pair (ι1A, ι

2
A) being the canonical inclusion

into domExpW , respectively codExpW for a suitable lift of expOrb, while the second pair is given by
the embeddings (λA, µA) constructed above. It is now easy to check that the data (A,F , (ι1A, ι2A)A∈A)
and (A,F , (λA, µA)A∈A) satisfy the hypothesis of Lemma E.4.2. By construction, the induced lifts
of êxpOrb and ẽxpOrb coincide. In particular, the induced lifts satisfy an identity as in (4.2.4), i.e.
by construction they are given as the composition of geodesic flows, changes of charts and bundle
projection of manifolds. An argument as above shows that locally there is just one choice for the
change of charts in the image of ν. Local uniqueness of the changes of charts relating the lifts thus
forces êxpOrb ∼ ẽxpOrb (cf. Definition E.2.5). Hence [êxpOrb] = [ẽxpOrb] follows and we abbreviate
this unique map of orbifolds as [expOrb].

The above proof reveals several useful properties of the lifts for expOrb, which we collect in the
following

4.2.4 Remark

(a) The proof of Proposition 4.2.3 shows that arbitrary sets of lifts (which are given as lifts of
orbifold geodesic flows evaluated at 1) for expOrb, where no two are defined on the same chart,
may be complemented to a family of local lifts which satisfy (R2) of Definition E.2.3. Each of
these families then induces a representative of [expOrb].

(b) The families of lifts we constructed in Proposition 4.2.3 have the additional property that
for each ExpW : (W,GW , π) → (UW , GUW , ψ), there is an orbifold chart (V,H, ϕ) such that
W ⊆ TV is an H-stable subset which is GW -invariant.
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5. Lie Group Structure on the Orbifold Diffeomorphism Group

Throughout this section, we assume that (Q,U , ρ) is a smooth Riemannian orbifold. We construct
a Lie group structure on DiffOrb (Q,U) by an application of the construction principle outlined in
Proposition C.4.3. To this end, the subgroup of all compactly supported orbifold diffeomorphisms
will be turned into a Lie group.

5.1. Lie group structure on DiffOrb (Q,U)0

It turns out that our approach needs a framework, i.e. an orbifold atlas together with a collection
of local data, which we fix now. Based on this preliminary work, we construct a locally convex
Lie group structure modeled on XOrb (Q)c for the subgroup DiffOrb (Q,U)0 ⊆ DiffOrb (Q,U). This
group is generated by elements in DiffOrb (Q,U) suitably close to the identity. In Section 5.2, this
Lie group becomes the identity component for the Lie group DiffOrb (Q,U).

5.1.1 Construction

I. Choose for each connected component C ⊆ Q some zC ∈ C. As Q is locally path connected,
each component of Q is open. Hence {zC |C ⊆ Q, connected component} is a discrete and
closed subset. Combining Proposition 1.6.8 with Lemma 1.6.6, we may choose orbifold atlases
A,B ∈ U with the following properties:
(a) the atlases A = {(Ui, Gi, ψi) | i ∈ I} and B = {(Wj , Hj , ϕj) | j ∈ J} are locally finite,
(b) each chart in A,B is relatively compact (i.e. its image in Q is relatively compact),
(c) For each connected component C ⊆ Q, there are unique iC ∈ I, jC ∈ J with zC ∈

ψiC (UiC ) (resp. zC ∈ ϕjC (WjC )),
(d) A is a refinement of B and there is a map α : I → J such that each i ∈ I satisfies:

i) Ui ⊆ Wα(i) and the canonical inclusion of sets is an embedding of orbifold charts,
implying Gi ⊆ Hα(i) and ψi = ϕα(i)|Ui ,

ii) α(iC) = jC ,
iii) α−1(j) is finite for each j ∈ J .

II. For each i ∈ I, the set Ui ⊆ Wα(i) is compact and connected. By local compactness and
local connectedness, there is a relatively compact connected open set U i ⊆ Oi ⊆ Wα(i). The
set Hα(i).Oi is open, Hα(i)-invariant and Ui is a connected subset of Oi ⊆ Hα(i).Oi. Thus
Ui is contained in a connected component of Hα(i).Oi. Replacing Oi with this component,
without loss of generality Oi is an open, relatively compact, Hα(i)-stable subset. Notice that
Gi ⊆ Hα(i),Oi holds by construction.

III. For each j ∈ J , define a compact, Hj-invariant subset Kj := Hj .
⋃
i∈α−1(j)Oi. Apply Lemma

1.6.9 with respect to the family of compact sets (Kj)j∈J and the atlas B. There is a cover for
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each Kj by a finite set Zj :=
{
Zkj
∣∣ 1 ≤ k ≤ Nj} of open Hj-stable sets such that: for each

member of Zj , there is a finite family of embeddings (λkjh : Zkj →Wh)h∈Z(j,k) with properties
as in Lemma 1.6.9. By Part (c) of Lemma 1.6.9, each Zkj is relatively compact and the
embedding λkjh is the restriction of an embedding λ̂kjh whose domain contains Zkj .

IV. Consider the open submanifold K◦j , which is σ-compact as an open subset of the second
countable locally compact manifold Wj (cf. the proof of Proposition 1.6.8 (d)). By Lemma
D.5, we may cover each K◦j , j ∈ J with a countable family

{
(V k5,j , κ

j
k)
}

1≤k≤lj
, lj ∈ N0 ∪ {∞}

of manifold charts such that the cover is locally finite and subordinate to the open cover{
Zjk ∩ K◦j

∣∣∣ 1 ≤ k ≤ Nj} of K◦j . Furthermore, these charts satisfy κjk(V k5,j) = B5(0) and the

families V kr,j := (κjk)−1(Br(0)), 1 ≤ k ≤ jl cover K◦j for each r ∈ [1, 5].

Since Hα(i) is finite, the set Hα(i).U i ⊆ K◦α(i) is compact. The atlas
{

(V k5,j , κ
j
k)
}

1≤k≤lj
is

locally finite, whence there is a finite subset F5(Hα(i).Ui) such that V k5,α(i) ∩Hα(i).U i 6= ∅ if
and only if the chart (V k5,α(i), κ

j
k) belongs to F5(Hα(i).Ui). We define open sets

Ωr,i :=
⋃

(V n
5,α(i)

,κ
α(i)
n )∈F5(Hα(i).Ui)

V nr,α(i), r ∈ [1, 5]

and compact sets K5,i := Ω5,i. There is a finite subset F5(K5,i) such that a chart belongs to
F5(K5,i) if and only if V k5,α(i) ∩Hα(i).K5,i 6= ∅ holds. Observe that Hα(i).Ui ⊆ Ω1,i is satisfied.

V. Let ρj be the Riemannian metric on Wj and expWj
: Dj → Wj the associated Riemannian

exponential map. By compactness of Kj and Lemma D.2, there are constants sj > 0 for j ∈ J
such that: The closure of Ôj :=

⋃
x∈K◦j

Bρj (0x, sj) ⊆ TWj is contained in Dj and expWj

restricts to a diffeomorphism on TxWj ∩ Ôj for each x ∈ K◦j . Moreover, Ω 5
4 ,K5,i

is compact
for i ∈ I and α−1(j) is finite for j ∈ J . Shrinking the constants sj , we can achieve that for
each i ∈ I and x ∈ Ω 5

4 ,K5,i
the identity expWα(i)

(Bρα(i)
(0x, sα(i))) ⊆ Ω2,K5,i

is satisfied. Since

λ̂kjh(Zkj ) is compact, Lemma D.2 yields a constant 0 < Sjk < min {sh |h ∈ Z(j, k)} such that
expWh

restricts to a diffeomorphism on

T λ̂kjh
(
Bρj (0x, Sjk)

)
⊆ Tλ̂kjh(x)Wh, x ∈ Zkj .

Furthermore, since changes of charts are Riemannian embeddings, by choice of Sjk
Tλkjh

(
Bρj (0x, Sjk)

)
⊆ Bρh(0λkjh(x), sh)

holds for x ∈ domλkjh. For each j ∈ J , we define Sj := min {Sjk | 1 ≤ k ≤ Nj}. The set
F5(K5,i) is finite and for each chart (V k5,α(i), κ

α(i)
k ) ∈ F5(K5,i) the set

⋃
x∈V k

3,α(i)
Bρα(i)

(0x, Sα(i))

is a neighborhood of the zero-section on the compact set V k2,α(i). Hence the Wallace Lemma [21,
3.2.10] yields a constant Ri > 0 with

B2(0)×BRi(0) ⊆ Tκα(i)
k

 ⋃
x∈V k

2,α(i)

Bρα(i)
(0x, Sα(i))

 ∀(V k5,α(i), κ
α(i)
k ) ∈ F5(K5,i).
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For the rest of this section, we fix the data constructed in 5.1.1 and use the symbols without further
explanation. The next lemma is a rather technical statement. It is the first step in constructing
orbifold diffeomorphisms using the Riemannian orbifold exponential map.

5.1.2 Lemma Consider (Ui, Gi, ψi) ∈ A and for an orbisection [σ̂] ∈ XOrb (Q) denote by σα(i) its
canonical lift on Wα(i) and by σ its underlying continuous map. There exists an open neighborhood
Ni ⊆ X

(
Wα(i)

)
of the form Ni = (res

Wα(i)

Ω5,i
)−1(NΩ5,i

i ) of 0α(i) such that σα(i) ∈ Ni implies the
following:

i. ψi(Ui) ⊆ σ−1(Ω), where Ω is the domain of expOrb,
ii. [Êσ]|ψi(Ui) := [expOrb] ◦ [σ̂]|Ωψi(Ui) induces a diffeomorphism of orbifolds onto its image,
iii. σα(i)(Ω2,i) ⊆ Ôα(i) holds for Ôα(i) as in Construction 5.1.1 V.

for some zero-neighborhood NΩ5,i

i ⊆ X (Ω5,i).

Proof. The set Oi ⊆ K◦α(i) is open and Hα(i)-stable, whence an Hα(i)-stable open subset is given by
TOi ∩ Ôα(i) ⊆ Dα(i). We obtain an orbifold chart (TOi ∩ Ôα(i), Hα(i),TOi∩Ôα(i)

, Tϕα(i)|TOi∩Ôα(i)
)

together with the lift ExpTOi∩Ôα(i)
:= expWα(i)

|TOi∩Ôα(i)
: TOi ∩ Ôα(i) → Wα(i) of expOrb. By

Remark 4.2.4 (a), there is a representative êxpOrb ∈ Orb(V,W) of expOrb such that ExpTOi∩Ôα(i)

is contained in the family of local lifts of êxpOrb. Notice that ψi(Ui) ⊆ Q is an open subset, whose
inclusion ιψi(Ui) induces an open suborbifold structure (see Definition 2.2.1). Consider an orbisection
[σ̂] with Imσ|ψi(Ui) ⊆ Ω. Definitions 2.2.1 and 2.2.2 together with Proposition E.5.2 imply that there

is a well-defined map of orbifolds
[
Êσ|ψi(Ui)

]
:= [expOrb] ◦ [σ̂]|Ωψi(Ui). Now, we proceed in several

steps:

Step 1: Apply Lemma D.8 to the family F5(Hα(i).Ui) to obtain an open zero-neighborhoodNΩ5,i

i ⊆
X (Ω5,i) (playing the role of E5,K in the lemma). Define Ni := (res

Wα(i)

Ω5,i
)−1(N

Ω5,i

i ) ⊆ X
(
Wα(i)

)
and

observe that 0α(i) ∈ Ni and the following conditions hold: For eachX ∈ Ni, the map expWα(i)
◦X|Ω2,i

is an étale embedding into Wα(i). The set Ω2,i ⊆ Ω5,i ⊆ K◦α(i) is compact, which allows the
construction of a C0-neighborhood of the zero section P1,i ⊆ X (Ω5,i) such that X ∈ P1,i implies
X(Ω2,i) ⊆ Ôα(i). Set NΩ5,i

i := N
Ω5,i

i ∩ P1,i and Ni := (res
Wα(i)

Ω5,i
)−1(N

Ω5,i

i ∩ P1,i). Each vector field
in Ni satisfies iii. and Ni is a preimage as required. By construction, ψi(Ui) = ϕα(i)(Ui) ⊆ ϕα(i)(Oi)
holds and ExpTOi∩Ôα(i)

is a lift of expOrb, whence i. follows from property iii. In addition, if
σα(i) ∈ Ni then the map expWα(i)

◦σα(i)|Hα(i).Ui is an étale embedding. Specializing to Ui, the map
eσi := ExpTOi∩Ôα(i)

◦ σα(i)|Ui = ExpTOi∩Ôα(i)
◦ σi is a étale embedding, where σi is the canonical

lift of [σ̂] on (Ui, Gi, ψi). From now on, consider [σ̂] ∈ XOrb (Q) such that σα(i) ∈ Ni.

Step 2: The map eσi is equivariant with respect to the inclusion ν : Gi ↪→ Hα(i): Consider an
Hα(i)-invariant subset R ⊆ Ω2,i. We claim that expWα(i)

σα(i)|R is equivariant with respect to
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Hα(i). If this is correct, then eσi commutes with any δ ∈ Hα(i),Ui = Gi, as Hα(i).Ui ⊆ Ω2,i is
invariant. To prove the claim, let δ ∈ Hα(i) be arbitrary and x ∈ R. As δ.x ∈ R ⊆ Ω2,i holds,
σα(i) is a canonical lift and Hα(i) acts by Riemannian isometries, we compute: expWα(i)

σα(i)(δ.x) =

expWα(i)
Tδσα(i)(x) = δ. expWα(i)

σα(i)(x), thus proving the claim. The map eσi is a local lift of
Eσ|ψi(Ui) := (expOrb ◦σ|ψi(Ui))|Imϕα(i) .

Step 3: The set Im eσi is Hα(i)-stable with Hα(i). Im eσi ⊆ Ω2,i: Consider δ ∈ Hα(i) such that
δ. Im eσi ∩ Im eσi 6= ∅. For x, y ∈ Ui with eσi(x) = δ.eσi(y), one obtains

expWα(i) ◦σα(i)(x) = eσi(x) = δ.eσi(y) = expWα(i)
σα(i)(δ.y).

From Step 1, we conclude x = δ.y, since on Hα(i).Ui ⊆ Ω2,i the map expWα(i)
◦σα(i) is a étale

embedding. By Hα(i)-stability of Ui, δ ∈ Gi holds, whence δ. Im eσi = Im eσi . This proves the
Hα(i)-stability of Im eσi and GIm eσi = Gi.
The canonical lift σα(i) is contained in Ni. By construction of Ω1,i (cf. Lemma D.8), the equivariance
of this map implies:

Hα(i). Im eσi = expWα(i)
σi(Hα(i).Ui) ⊆ expWα(i)

σi(Ω1,i) ⊆ Ω2,i.

Step 4: Eσ|ψi(Ui) is injective and a homeomorphism onto its open image: Consider x, y ∈ ψi(Ui)
with Eσ|ψi(Ui)(x) = Eσ|ψi(Ui)(y) and choose preimages zx ∈ ψ−1

i (x), zy ∈ ψ−1
i (y) of x respectively

y in Ui. Since eσi is a lift of Eσ|ψi(Ui), there exists δ ∈ Hα(i) such that eσi(zx) = δ.eσi(zy). By Step
3, we must have δ ∈ Gi. Since eσi is an embedding, equivariance of this map yields δ.zy = zx. Both
points are in the same orbit, which forces x and y to coincide. Hence Eσ|Ũi is injective.
The local lift eσi is a étale embedding and the maps of orbifold charts are continuous and open.
For any open subset S ⊆ ψi(Ui), Eσ|ψi(Ui)(S) = ϕα(i) ◦ eσi ◦ ψ−1

i (S) is an open set. In conclusion,
Eσ|ψi(Ui) is an open map, whose image is open in Q. In particular, ImEσ|ψi(Ui) is an open suborb-
ifold of Q. An atlas for ImEσ|ψi(Ui) is given by

{
(Im eσi , Gi, ϕα(i)|Im eσi )

}
.

Since composition in Orb is well-defined, a representative of [expOrb] ◦ [σ̂]|Ωψi(Ui), corestricted to
Imϕα(i) is given by Êσ|ψi(Ui) = (Eσ|ψi(Ui), eσi , Gi, ν) ∈ Orb({(Ui, Gi, ψi)} ,

{
(Wα(i), Hα(i), ϕα(i))

}
).

The map Eσ|ψi(Ui) is a homeomorphism mapping the open suborbifold ψi(Ui) of Q onto an open sub-
orbifold such that the local lift of Eσ|ψi(Ui) is a diffeomorphism onto its (open) image. Proposition
2.1.10 assures that [Êσ|ψi(Ui)] is a diffeomorphism of orbifolds.

5.1.3 Later on, we shall apply patched mapping techniques (cf. Section C.3) to prove the smoothness
of several maps. To do so, we have to define an orbifold atlas, where charts may occur repeatedly:
Let C :=

{
(Wα(i), Hα(i), ϕα(i))

∣∣ i ∈ I} be the orbifold atlas which arises from B by collecting a
different copy of (Wj , Hj , ϕj) ∈ B for each i ∈ α−1(j). Observe that this atlas is locally finite and
each chart is relatively compact, as α−1(j) is finite and B is locally finite with relatively compact
charts.
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5.1.4 Proposition There are open zero-neighborhoods Ni ⊆ X
(
Wα(i)

)
, i ∈ I which generate an

open zero-neighborhood N ⊆ XOrb (Q)c such that each [σ̂] ∈ N induces an orbifold diffeomorphism
[Êσ] := [expOrb] ◦ [σ̂]|Ω ∈ DiffOrb (Q,U).

Proof. For each i ∈ I, construct via Lemma 5.1.2 a neighborhood Ni ⊆ X
(
Wα(i)

)
. The construction

shows that for each [σ̂] with σα(i) ∈ Ni, the map Eσ|ψi(Ui) is an embedding of the open suborbifold
ψi(Ui). By definition of the direct sum topology, the box

⊕
i∈I Ni :=

(∏
i∈I Ni

)⋂⊕
i∈I X

(
Wα(i)

)
is an open subset of

⊕
i∈I X

(
Wα(i)

)
(cf. [39, 4.3] respectively [25, Proposition 7.1] for a proof).

Using the atlas C introduced above, we define the set

N := Λ−1
C

(⊕
i∈I
Ni

)
, (5.1.1)

which is open in the c.s. orbisection topology by Lemma 3.3.4. A combination of Definition 2.2.3
and Remark 4.2.4 (a) shows that each [σ̂] contained in N induces a well-defined map of orbifolds
[Êσ] := [expOrb]◦ [σ̂]|Ω such that Eσ := expOrb ◦σ : Q→ Q is a local homeomorphism. In particular,
Eσ|ψi(Ui) is an open embedding for each i ∈ I. Let êxpOrb be the representative of the Riemannian
orbifold exponential map obtained from the family (ExpTOi∩Ôα(i)

)i∈I by Remark 4.2.4 (a). Then the

domain atlas E of êxpOrb contains the family
{

(TOi ∩ Ôα(i), Hα(i),TOi∩Ôα(i)
, Tϕα(i)|TOi∩Ôα(i)

)
}
i∈I

and for each [σ̂] ∈ N , the canonical lifts σi satisfy Imσi ⊆ TOi ∩ Ôα(i) for i ∈ I. Hence there
is a representative σ̂|Ω ∈ Orb(A, E) of [σ̂]|Ω whose lift on (Ui, Gi, ψi), i ∈ I is just σi|TOi∩Ôα(i) .
As composition in Orb is well-defined, we obtain [êxpOrb ◦ σ̂|Ω] = [expOrb] ◦ [σ̂]|Ω. Thus the
lifts constructed in Lemma 5.1.2 yield a representative Êσ := êxpOrb ◦ σ̂ = (Eσ, {eσi}i∈I , P, ν) ∈
Orb(A, C). Here each lift eσi is an étale embedding and (P, ν) is obtained by an application of
Construction E.4.1. The image of such a lift is an orbifold chart (Im eσi , Gi, ϕα(i)|Im eσi ).
We have to check that Eσ is surjective and injective for every [σ̂] ∈ N to prove the assertion.
Reviewing the construction of Ni, the map Eσ maps ψi(Ui) into ϕα(i)(Wα(i)). Every orbifold chart
is a connected set, whence its image is contained in a connected component of Q. Thus Eσ maps
every connected component of Q into itself. In conclusion, it suffices to prove that the restriction
of Eσ to each component is bijective, whence we can assume that Q is connected.
As a first step, we show that for every orbisection [σ̂] ∈ N the map Eσ is a proper map. To this
end consider an arbitrary compact subset L ⊆ Q. The atlas B is locally finite and thus L meets
only finitely many of the sets ϕj(Wj), j ∈ J , say L ⊆

⋃n
r=1 ϕjr (Wjr ) and L ∩ ϕj(Wj) = ∅ for all

j ∈ J \ {j1, . . . , jn}. For [σ̂] ∈ N , we have Eσ(ψi(Ui)) ⊆ ϕα(i)(Wα(i)). The closed set (Eσ)−1(L) is
thus contained in

(Eσ)−1(L) ⊆
n⋃
r=1

⋃
i∈α−1(jr)

ψi(Ui). (5.1.2)

By construction 5.1.1, each α−1(jr) is a finite set. Hence (Eσ)−1(L) is compact as a closed subset
of a union of finitely many compact sets. Since L was arbitrary, Eσ is a proper map (cf. [9, §10 3.
Proposition 7]). Combining the facts that Q is locally compact by Proposition 1.4.3 and Eσ is a
proper map, Eσ is a closed map (cf. [9, §10 1. Theorem 1]). The image of Eσ is an open and closed
set, since images of local homeomorphisms are open. But Q is connected and thus Eσ is surjective.
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The map Eσ is a proper, surjective local homeomorphism of connected and path-connected lo-
cally compact spaces. Summing up, Eσ is a covering of Q onto Q by [22, Theorem 4.22]. Recall
5.1.1 I. (c): There is some zQ ∈ Q such that zQ is contained in a unique pair of orbifold charts(
(UzQ , GzQ , ψzQ), (WzQ , HzQ , ϕzQ)

)
∈ A × B. Since Eσ(ψi(Ui)) ⊆ ϕα(i)(Wα(i)) and zQ is not con-

tained in any ϕj(Wj) except for j = jQ by 5.1.1, we derive from (5.1.2): |(Eσ)−1(zQ)| = 1. The
number of sheets of a covering is an invariant for the connected space Q (cf. [22, Theorem 4.16]),
whence Eσ is injective.
In conclusion we have constructed a charted orbifold map Êσ such that Eσ is a continuous, closed
bijective map (i.e. a homeomorphism by [20, III. Theorem 12.2]) and each lift eσi , (Vi, Gi, ψi) ∈ V is
a étale embedding. Each lift is a local diffeomorphism, whence Proposition 2.1.10 implies that Êσ
is a representative of an orbifold diffeomorphism [Êσ] = [expOrb] ◦ [σ̂]|Ω.

The mapping taking an orbisection from the zero-neighborhoods N (see Proposition 5.1.4) to
an orbifold diffeomorphism will in general not be injective. However, on a sufficiently small zero-
neighborhood one can always achieve this.

5.1.5 Proposition Consider the family (Ni)i∈I as in Proposition 5.1.4. For each i ∈ I, there is
an open neighborhood P2,i ⊆ X (Ω5,i) of the zero-section and sets MΩ5,i

i := NΩ5,i

i ∩ P2,i, Mi :=

(res
Wα(i)

Ω5,i
)−1(MΩ5,i

i ) such that on the zero-neighborhoodM := Λ−1
C
(⊕

i∈IMi

)
, the map

E : M→ DiffOrb (Q,U) , E([σ̂]) := [Êσ] = [expOrb] ◦ [σ̂]|Ω,

is injective with E(0Orb) = id(Q,U).

Proof. Following Proposition 5.1.4, each [σ̂] ∈ N = Λ−1
C
(⊕

i∈I Ni
)
induces an orbifold diffeomor-

phism [Êσ]. Shrink Ni to obtain an open C1-neighborhoodMi of the zero-section in X
(
Wα(i)

)
:

Choose for each i ∈ I a non-singular point zi ∈ Ui (which exists due to Newman’s Theorem B.2.1,
since Ui is an open set) and an Hα(i)-stable zi-neighborhood Uzi ⊆Wα(i) with Hα(i),Uzi

=
{

idWα(i)

}
.

This is possible since zi is non singular. The family F5(Hα(i).Ui) constructed in 5.1.1 covers
Ui and we may choose a chart (V k5,α(i), κ

α(i)
k ) such that zi ∈ V k3,α(i). Consider the open set

Ûzi := TV k5,α(i) ∩ Ôα(i) ∩ exp−1
Wα(i)

(Uzi) ⊆ TWα(i). The intersection TziWα(i) ∩ Ûzi is an open
zero-neighborhood. We obtain another open zero-neighborhood

bκα(i)
k (zi), pr2(Tκ

α(i)
k (Ûzi ∩ (κ

α(i)
k (zi)× Rd)))c ⊆ C∞(B5(0),Rd)

where pr2 : B5(0) × Rd → Rd is the projection. Define P2,i ⊆ X (Ω5,i) to be the open zero-
neighborhood induced by bκα(i)

k (zi), pr2(Tκ
α(i)
k (Ûzi ∩ (κ

α(i)
k (zi)×Rd)))c. By construction, the map

expWα(i)
◦σα(i) maps zi into Uzi if σα(i) is contained in P2,i. The intersectionMΩ5,i

i := NΩ5,i

i ∩P2,i

is a non-empty open zero-neighborhood in X (Ω5,i). DefineMi := (res
Wα(i)

Ω5,i
)−1(MΩ5,i

i ) ⊆ Ni. Then
M := Λ−1

C
(⊕

i∈IMi

)
contains 0Orb and is an open subset of N in XOrb (Q)c.

We show that the map E (as in the statement of the proposition) is injective onM. Assume that
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there are [σ̂], [τ̂ ] ∈ M such that E([σ̂]) = E([τ̂ ]). For E([σ̂]) = [Êσ], there is a representative
Êσ in Orb(A, C), by Proposition 5.1.4. By assumption, the orbifold maps induced by Êσ and Êτ
coincide, whence Eτ = Eσ follows. We will prove that for each i ∈ I, the lifts eσi and eτi coincide.
Fix i ∈ I and observe that Eσ = Eτ implies that for each z ∈ Ui, there is some γz ∈ Hα(i) with
eσi(z) = γz.e

τi(z). Consider a component C of Ui \ ΣGi . The set {c ∈ C | γ.eσi(c) = eτi(c)} is an
open and closed subset of C. As C is connected, there is a unique γC ∈ Hα(i) with eσi |C = γCe

τi |C .
For x ∈ C ∩ C ′, this yields the identity Tx(γCe

τi) = Txe
σi = Tx(γC′e

τi). Since eτi is a diffeo-
morphism, we derive Teτi (x)γ

−1
C′ γC = Teτi (x) idWα(i)

and γ−1
C′ γC ∈ Hα(i),eτi (x). By [51, Lemma

2.10], γC = γC′ follows. Then γC = γC′ follows for each component such that there is a chain
C = C1, C2, . . . , Cn = C ′ of components with Ck ∩ Ck+1 6= ∅. Observe that by a combination of
Lemma B.2.2 and Lemma A.2 each x ∈ ΣGi is contained in some C and

⋃
x∈C C is a neighborhood

of x. Hence there is a unique γ with γ.eτi = eσi . Specializing, we obtain γ.eτi(zi) = eσi(zi). The
lifts σα(i), τα(i) are elements of Mi, whence by definition of Mi, eσi(zi), eτi(zi) ∈ Uzi holds. The
Hα(i)-stability of Uzi forces γ to be in the isotropy subgroup of Uzi . Hence γ = idWα(i)

holds and
we obtain expWα(i)

◦σi = expWα(i)
◦τi. Lemma 5.1.2 iii. implies that Imσi and Im τi are contained

in Ôα(i). As expWα(i)
is injective on TxWα(i) ∩ Ôα(i) for x ∈ Ui, we must have τi = σi. Repeating

the argument for i ∈ I, the families {τi}i∈I and {σi}i∈I coincide. As those lifts are canonical lifts,
Remark 3.2.10 (a) implies [σ̂] = [τ̂ ] and E : M→ DiffOrb (Q,U) is injective.

We now apply the results of Section D to construct a neighborhood H of the zero-orbisection:

5.1.6 Construction Using the local data obtained in Construction 5.1.1 IV., we define open sets

Ωr,K5,i
:=

⋃
(V n

5,α(i)
,κ
α(i)
n )∈F5(K5,i)

V nr,α(i), r ∈ [1, 5].

By construction, Ω5,i ⊆ Ω5,i = K5,i ⊆ Ωr,K5,i
holds for each r ∈ [1, 5].

In Proposition 5.1.5 we have constructed sets MΩ5,i

i as intersections MΩ5,i

i = N
Ω5,i

i ∩ P1,i ∩ P2,i,
where NΩ5,i

i is an open zero-neighborhood as in Lemma D.8. Apply Construction D.9 with Ri (see
Construction 5.1.1 V.) taking the role of R, M := Wα(i), K := K5,i and P := P1,i∩P2,i to construct
an open zero-neighborhood HRi ⊆Mi ⊆ X

(
Wα(i)

)
. The set E5,K occuring in Lemma D.8 is NΩ5,i

i

from the proof of Lemma 5.1.2. By construction, HRi =
(

res
Wα(i)

Ω5,K5,i

)−1

(HK5,i

Ri
) holds for an open

zero neighborhood HK5,i

Ri
⊆ X

(
Ω5,K5,i

)
. Finally, for each i ∈ I the construction yields a constant

0 < τi, νi < Ri with the following property:
If X ∈ X

(
Wα(i)

)
such that for each (V k5,α(i), κ

α(i)
k ) ∈ F5(K5,i), the local representative Xk satisfies

‖Xk‖B1(0),1
≤ τi, then X is contained inMi.

Recall from Construction D.9 that for each pair (X,Y ) ∈ HRi ×HRi , there are unique vector fields
X �i Y,X∗i , Y ∗i ∈ X

(
Ω 5

4 ,K5,i

)
. Together with the definition of Ri (5.1.1 V.), the estimates (D.9.4)

and (D.9.6) imply the following properties, which we note here for later use:

X �i Y (x), X∗i(x) ∈ Bρα(i)
(0x, Sα(i)) ⊆ Ôα(i), ∀x ∈ Ω 5

4 ,K5,i
. (5.1.3)
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Moreover, for each chart (V n5,α(i), κ
α(i)
n ) ∈ F5(K5,i), the vector field X �i Y satisfies the estimate

(D.9.4), i.e.
∥∥(X �i Y )[n]

∥∥
B 5

4
(0)

< νi. Recall that νi in Construction D.9 is chosen exactly as in

Lemma D.6. Hence Lemma D.6 (b) yields for X,Y ∈ HRi and x ∈ V n5
4 ,α(i)

the identity

expn Tκ
α(i)
n (X �i Y )(x) = κα(i)

n expWα(i)
(X �i Y )(x). (5.1.4)

Define the open subset H := Λ−1
C
(⊕

i∈I HRi
)
of XOrb (Q)c. By construction, 0Orb ∈ H ⊆M.

The vector fields X �i Y and X∗i induced by orbisections in H yield families whose members are
λ-related for suitable changes of orbifold charts λ. The details are checked in the next lemma.

5.1.7 Lemma Consider orbisections [σ̂], [τ̂ ] ∈ H with families of canonical lifts {σj}j∈J , {τj}j∈J
with respect to the atlas B. Let λ ∈ ChWk,Wl

be a change of charts which satisfies domλ ⊆ Ω 5
4 ,K5,i

and Imλ ⊆ Ω 5
4 ,K5,j

for k = α(i) and l = α(j). Then the following identities hold:

Tλ(σk �i τk)|domλ = (σl �j τl) ◦ λ (5.1.5)

Tλσ∗ik |domλ = σ
∗j
l ◦ λ. (5.1.6)

Then the maps σj �i τj |Ui and σ
∗i
j |Ui are equivariant with respect to the derived action of Gi.

Proof. The identities (5.1.5) and (5.1.6) may be checked locally. Fix x ∈ domλ ⊆ Ω 5
4 ,K5,i

together
with a chart (V n5,k, κ

k
n) ∈ F5(K5,i) such that x ∈ V n5

4 ,k
. The manifold atlas chosen for K◦k ⊆ Wk is

subordinate to the cover (Zrk∩K◦k)1≤r≤Nk . Hence there is some Zrk with V n5,k ⊆ Zrk . As x ∈ V n5,k ⊆ Kk
and λ(x) ∈ Ω 5

4 ,K5,j
⊆ Kl, by construction 5.1.1 (cf. Lemma 1.6.9), there is an embedding of orbifold

charts µ : Zrk → Wl with µ(x) = λ(x). After possibly replacing µ with γ ◦ µ for suitable γ ∈ Hl,
there is an open neighborhood Ux of x in Ω 5

4 ,K5,i
with µ|Ux = λ|Ux . By construction, we obtain

µ(x) = λ(x) ∈ Ω 5
4 ,K5,j

⊆ K◦l and Txµ = Txλ holds. The definition of Sk together with equation
(5.1.3) implies Tµ(σj �i τj)(x), Tµσ∗ij (x) ∈ Ôl and (σl �j τl)µ(x), σ

∗j
l µ(x) ∈ Ôl. Let expn be the

Riemannian exponential map induced by the pullback metric on B5(0) with respect to (κkn)−1. The
map µ(κkn)−1 is a Riemannian embedding of B5(0) into Wl. From [43, IV. Proposition 2.6], we
deduce for v ∈ dom expn that

expWl
Tµ(κkn)−1(v) = µ(κkn)−1 expn(v). (5.1.7)

Recall from Construction 5.1.6 that for i ∈ I, there is some open set HRi with the same properties
as in Lemma D.8 such that [σ̂] ∈ H implies σk ∈ HRi . For X ∈ HRi , we have:

i. κkn expWk
◦X(z) = expn TκnX(z) for each z ∈ V n3,k (combine Lemma D.6 (b) and (f)),

ii. expWk
◦X(V n5

4 ,k
) ⊆ V n2,k and expWk

◦X(V n2,k) ⊆ V n3,k, (see Lemma D.6 (d)),
iii. V n5

4 ,k
⊆ expWk

◦X(V n2,k) (see Lemma D.6 (d)).
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The families {σk} and {τk} are canonical families, whence σlµ = Tµσk holds. In addition, for the
vector field σk �i τk on V n5

4 ,k
the local identities (D.9.3) and (D.9.8) are available. Combining these

facts we compute:

expWl
Txλ(σk �i τk)(x) = expWl

Txµ(σk �i τk)(x) = expWl
T (µ(κkn)−1κkn)(σk �i τk)(x)

(5.1.7)
= µ(κkn)−1 expn Tκ

k
n(σk �i τk)(x)

(5.1.4)
= µ(κkn)−1κkn expWk

(σk �i τk)(x)

(D.9.3)
= µ expWk

(expWk
|Nx)−1 expWk

σk expWk
τk(x)

i.+(5.1.7)
= expWl

Tµσk expWk
τk(x) = expWl

σlµ expWk
τk(x)

i.+(5.1.7)
= expWl

σl expWl
τlµ(x) = (expWl

σl expWl
τl)λ(x)

(D.9.7)
= expWl

(σl �j τl)(λ(x)).

Since expWl
restricts to a diffeomorphism on Tλ(x)Wl ∩ Ôl, the computation yields (5.1.5).

To obtain (5.1.6), we use x ∈ V n5
4 ,k

and compute with the facts from above:

expWl
Txλσ

∗i
k (x) = expWl

Tµσ∗ik (x)
(D.9.8)

= µ(expWk
◦σk|Ω2,K5,i

)−1(x).

As x ∈ V k5
4 ,n

, by iii. the image (expWk
◦σk|Ω2,K5,i

)−1(x) is contained in V n2,k. Since Tκknσk(V n2,k) ⊆
dom expn, we conclude with (5.1.7) that σlµ(V n2,k) = Tµσk(V n2,k) ⊆ dom expWl

. Thus we may
consider:

(expWl
σl) ◦ expWl

Txλσ
∗i
k (x) = expWl

σlµ(expWk
σk|Ω2,K5,i

)−1(x)

= expWl
Tµσk(expWk

σk|Ω2,K5,i
)−1(x)

= µ(expWk
σk)(expWk

σk|Ω2,K5,i
)−1(x) = µ(x) = λ(x) ∈ Ω 5

4 ,K5,j
.

Recall λ(x) ∈ Ω 5
4 ,K5,l

and Tµσ∗ik (x) ∈ Ôl. Now the definition of Ôl in Construction 5.1.1 V. yields
expWl

Txµσ
∗i
k (x) ∈ Ω2,K5,j . On Ω2,K5,j the map expWl

◦σl is injective, by Step 1 in the proof of
Lemma 5.1.2. We deduce that expWl

Tλσ∗ik (x) = expWl
σ
∗j
l (λ(x)) must hold. Since expWl

restricts
to a diffeomorphism on Tλ(x) ∩ Ôj , the computation yields (5.1.6).

The families {σj �i τj}i∈I and
{
σ∗ij
}
i∈I obtained in this way induce orbisections:

5.1.8 Proposition Consider orbisections [σ̂], [τ̂ ] ∈ H, whose canonical families with respect to B
are given by {σj}j∈J and {τj}j∈J , respectively. Then

(a) The family
{
σα(i) �i τα(i)

}
i∈I induces an orbisection [σ̂ � τ ] ∈ M whose family of canonical

lifts with respect to the atlas A is given by (σ � τ)i := σα(i) �i τα(i)|Ui for i ∈ I.
(b) The family

{
σ∗iα(i)

}
i∈I

induces an orbisection [σ̂∗] ∈ M whose canonical lifts with respect to

the atlas A are given by (σ∗)i := σ∗iα(i)|Ui for i ∈ I.
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Proof. The families {(σ � τ)i}i∈I and {(σ∗)i}i∈I are compatible families of vector fields on the atlas
A by Lemma 5.1.7. These families yield canonical families of lifts with respect to the atlas A. In
particular, the identities (5.1.5) and (5.1.6) allow the definition of continuous maps:

σ � τ : Q→ T Q, x 7→ Tψi(σ � τ)iψ
−1
i (x) if x ∈ ψi(Ui)

σ∗ : Q→ T Q, x 7→ Tψi(σ
∗)iψ

−1
i (x) if x ∈ ψi(Ui).

These data allow the definition of orbisections [σ̂ � τ ] and [σ̂∗] by Remark 3.2.10 (a).
To complete the proof, we have to show that [σ̂ � τ ], [σ̂∗] are contained in M. To this end, we
need to assure that [σ̂ � τ ] and [σ̂∗] are compactly supported. The orbisections [σ̂], [τ̂ ] ∈ H are
compactly supported, whence supp[σ̂] ∪ supp[τ̂ ] is contained in a compact subset K ⊆ Q. Since
B is locally finite, there is a finite subset Sσ,τ ⊆ B such that (Wj , Hj , ϕj) ∈ Sσ,τ if and only if
Imϕj ∩K 6= ∅. Consider (Wj , Hj , ϕj) ∈ B \Sσ,τ . By Remark 3.2.10 (d) the canonical lifts of [σ̂], [τ̂ ]
on Wj are the zero-section in X (Wj). The conclusion in Construction D.9 implies that σj �i τj ≡ 0

and σ∗ij ≡ 0 for each i ∈ α−1(j). Therefore the supports supp[σ̂ � τ ] and supp[σ̂∗] are contained in
Kσ,τ :=

⋃
(Wα(i),Hα(i),ϕα(i))∈Sσ,τ ψi(Ui). As Sσ,τ is finite and for j ∈ J the set α−1(j) is finite, Kσ,τ

is a finite union of compact sets ψi(Ui). Hence the supports of [σ̂ � τ ] and [σ̂∗] are contained in a
compact set, whence these orbisections are compactly supported.
Following Proposition 3.2.9, we may consider the canonical lifts (σ � τ)k and σ∗k on each chart
(Wk, Hk, ϕk) ∈ B. The orbisections [σ̂ � τ ], [σ̂∗] will be contained inM if their respective canonical
lifts are contained inMi for each i ∈ α−1(k), k ∈ J .
Fix i ∈ α−1(k) and define (σ � τ)k)[n] := ((σ � τ)k)κn ◦ κ−1

n and (σ∗k)[n] := (σ∗k)κn ◦ κ−1
n , respectively

(cf. Definition C.3.1) for (V n5,k, κ
n
k ) ∈ F5(K5,i). By construction 5.1.6, it suffices to prove for each

chart (V n5,k, κ
k
n) in F5(K5,i), the condition

∥∥((σ � τ)k)[n]

∥∥
B1(0),1

< τi respectively
∥∥(σ∗k)[n]

∥∥
B1(0),1

<

τi holds. Observe that the conditions may be checked on Ω 5
4 ,K5,i

. Uniqueness of canonical lifts
together with (5.1.5) and (5.1.6) forces the canonical lifts (σ�τ)k respectively (σ∗)k to coincide with
σk �i τk respectively σ∗ik on Ω 5

4 ,K5,i
. Recall from the construction that the constant τi corresponds

to the constant τ in Construction D.9. Hence a combination of (D.9.6) with Corollary D.10 yields∥∥((σ � τ)k)[n]

∥∥
B1(0),1

=
∥∥(σk)[n] � (τk))[n]

∥∥
B1(0),1

< τi and
∥∥(σ∗k)[n]

∥∥
B1(0),1

=
∥∥((σk))[n])

∗
∥∥
B1(0),1

<

τi. We conclude that each of the canonical lifts of [σ̂ � τ ] and [σ̂∗] on (Wk, Hk, ϕk) is contained in
Mi with i ∈ α−1(k). Summing up, [σ̂ � τ ] and [σ̂∗] are contained inM.

5.1.9 Remark (a) The last lemma implies that the map E may be applied to [σ � τ ] and [σ∗] for
[σ], [τ ] ∈ H.

(b) Moreover, consider the canonical lifts (σ � τ)Wα(i)
and σ∗Wα(i)

of [σ � τ ] and [σ∗], respectively,
for [σ], [τ ] ∈ H on a chart (Wα(i), Hα(i), ϕα(i)) ∈ B for i ∈ I. Let again σα(i) and τα(i) be
the canonical lifts of [σ̂] and [τ̂ ], respectively, on (Wα(i), Hα(i), ϕα(i)). Then uniqueness of
canonical lifts shows that the restrictions of these vector fields to Ω 5

4 ,i
satisfy

(σ � τ)Wα(i)
|Ω 5

4
,i

= σα(i) �i τα(i) and σ∗Wα(i)
= σ∗iα(i),

by Lemma 5.1.7.
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In the rest of this section, these properties will be crucial for several key arguments. We shall now
assure that the orbisections constructed satisfy the identities needed for composition and inversion
in E(M):

5.1.10 Lemma Consider [σ̂], [τ̂ ] ∈ H. The following identities hold:

E([σ̂]) ◦ E([τ̂ ]) = E([σ̂ � τ ]) (5.1.8)

E([σ̂])−1 = E([σ̂∗]). (5.1.9)

Proof. Choose and fix arbitrary [σ̂], [τ̂ ] ∈ H. The left hand and the right hand sides of the equations
(5.1.8) resp. (5.1.9) are orbifold diffeomorphisms. As observed in Proposition 2.1.12 and Corollary
2.1.11, orbifold diffeomorphisms are uniquely determined by their underlying maps or their family
of lifts. To prove the assertion it therefore suffices to show that their family of lifts or the underlying
maps on both sides are equal.
Consider the right hand sides of both equations: The orbisections [σ � τ ] and [σ∗] have been con-
structed by a family of canonical lifts {σ � τ)i}i∈I resp. {(σ∗)i}i∈I with respect to the atlases A and
T A. Both orbisections are contained inM. Taking identifications Im(σ�τ)i, Im(σ∗)i ⊆ Ôα(i) holds.
Corestriction of each lift to TUi∩Ôα(i) yields representatives of [σ̂]|Ω and [τ̂ ]|Ω. Thus representatives
of E([σ̂ � τ ]) and E([σ̂∗]) are given by (Eσ�τ ,

{
e(σ�τ)i

}
i∈I , P, ν) respectively (Eσ

∗
,
{
eσ
∗
i

}
i∈I , P

′, ν′)

in Orb(A, C). The lifts of these maps satisfy for each i ∈ I by construction:

expWα(i)
◦σα(i) ◦ expWα(i)

◦τi = expWα(i)
◦(σ � τ)i = e(σ�τ)i (5.1.10)

(expWα(i)
◦σα(i)|Ω2,i

)−1|Ui = expWα(i)
◦σ∗i = eσ

∗
i . (5.1.11)

We show that the lifts in (5.1.10) coincide with the lifts of E([σ̂]) ◦ E([τ̂ ]). As Orb is a category,
composition in Orb is associative. Hence lifts can be computed iteratively: E([σ]) ◦ E([τ ]) =
[expOrb]◦ [σ]|Ω ◦ [expOrb]◦ [τ ]|Ω = [expOrb]◦ ([σ]|Ω ◦ [expOrb]◦ [τ ]|Ω). As τα(i) and σα(i) are contained
in HRi , the composition of charted orbifold maps (cf. Construction E.4.1) yields a lift of Eσ ◦ Eτ
on Ui which coincides with the left hand side of (5.1.10). Therefore (5.1.8) follows from (5.1.10) by
an application of Corollary 2.1.11.
To prove the identity (5.1.9) we show that the underlying maps of both sides are equal. To this end,
let eσ

∗
be the underlying map of E([σ̂∗]). By Proposition 2.1.12, it suffices to check the identity

expOrb ◦σ ◦ eσ
∗

= idQ .

If this identity holds, then assertion (5.1.9) follows. Clearly the identity can be chekced locally for
each chart (Ui, Gi, ψi) ∈ A. By construction on Ui we have eσ

∗
ψi = ϕα(i) ◦ eσ

∗
i . Here eσ

∗
i is the lift

of E([σ̂∗]) in the chart Ui. Fix x ∈ Ui and notice Im eσ
∗
i ⊆ Ω2,i by (5.1.11). Choose a Hα(i)-stable

neighborhood Ux ⊆ Ω2,i of eσ
∗
i (x) in Wα(i). Restrict the canonical lift σα(i) of [σ̂] on Wα(i) to Ux.

Then σUx := σα(i)|TUxUx
is a canonical lift of [σ̂] on the chart (Ux, Hα(i),Ux , ϕα(i)|Ux). From Ux ⊆ Ω2,i

and [σ̂] ∈ H, we deduce ImσUx = σα(i)(Ux) ⊆ Ôα(i), by Lemma 5.1.2 iii. Taking identifications,
we may compose σUx and ExpTUx∩Ôα(i)

:= expWα(i)
|TUx∩Ôα(i)

. Recall from Lemma 5.1.2 that
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ExpTUx∩Ôα(i)
is a lift of expOrb. Moreover, Construction E.4.1 shows that ExpTUx∩Ôα(i)

◦ σUx is a
lift of expOrb ◦σ. Hence, we obtain the following identities

expOrb ◦σ ◦ eσ
∗
ψi(x) = expOrb ◦σ ◦ ϕα(i) ◦ eσ

∗
i (x) = ϕα(i)(ExpTUx∩Ôα(i)

◦ σUx ◦ eσ
∗
i (x))

(5.1.11)
= ϕα(i)((expWα(i)

◦σα(i)|Ux) ◦ (expWα(i)
◦σα(i)|Ω2,i

)−1|Ui(x))

Ux⊆Ω2,i
= ϕα(i)(x) = ψi(x)

Since x ∈ Ui has been chosen arbitrarily, we may repeat the construction for each x ∈ Ui, whence
expOrb ◦σ ◦ eσ

∗
= idQ and thus (5.1.9) follow.

We now turn our attention to the composition and inversion maps:

5.1.11 Lemma The maps

comp: H×H →M ⊆ XOrb (Q)c , ([σ̂], [τ̂ ]) 7→ [σ̂ � τ ]

inv : H →M ⊆ XOrb (Q)c , [σ̂] 7→ [σ̂∗]

are smooth.

Proof. The atlases A and C are indexed by I. Let σi and σα(i) be the canonical lifts with re-
spect to (Ui, Gi, ψi) ∈ A and (Wα(i), Hα(i), ϕα(i)) ∈ C, respectively. The continuous linear maps
τi : XOrb (Q)c → X (Ui) , [σ̂] 7→ σi and λi : XOrb (Q)c → X

(
Wα(i)

)
, [σ̂] 7→ σα(i) induce patchworks for

XOrb (Q)c, by Corollary 3.3.7. The product XOrb (Q)c × XOrb (Q)c is a locally convex vector space
and we have the family of maps λi × λi : XOrb (Q)c × XOrb (Q)c → X

(
Wα(i)

)
× X

(
Wα(i)

)
for i ∈ I.

Arguments as in the proof of Lemma D.11 show that the family (λi × λi)i∈I yields a patchwork for
XOrb (Q)c × XOrb (Q)c. Let p be the corresponding topological embedding for this patched space
(cf. Definition C.3.5).
The patchwork on each of the spaces (XOrb (Q)c×XOrb (Q)c, (λi×λi)i∈I) , (XOrb (Q)c , (λi)i∈I) and
(XOrb (Q)c , (τi)i∈I) is indexed by I. On the open set HRi constructed in 5.1.6 consider the maps

compi : HRi ×HRi → X (Ui) , (X,Y ) 7→ X �i Y |Ui
invi : HRi → X (Ui) , X 7→ X∗i |Ui .

Since H = Λ−1
C (⊕i∈IHRi), the identities for the patchwork established in the proof of Lemma D.11

yield p(H × H) ⊆ ⊕i∈I(HRi × HRi) and ΛC(H) ⊆ ⊕i∈IHRi . By construction, we deduce from
Proposition 5.1.8:

(compi)i∈I p|
⊕(HRi×HRi )
H×H = ΛA ◦ comp and (invi)i∈I ΛC |

⊕i∈IHRi
H = ΛA inv .

These mappings make sense, since compi and invi vanish on the zero element. Hence comp and inv
are patched mappings. By Proposition C.3.8, it is sufficient to prove that comp and inv are smooth
on the patches, i.e. for each i ∈ I, the maps compi and invi are smooth. For the remainder of this
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proof we therefore fix i ∈ I and prove the smoothness of compi and invi:
The open sets Ωr,K5,i , r ∈ [1, 5] contain Ui. Consider the restriction maps res

Wα(i)

Ω5,K5,i
, res

Ωr,K5,i

Ui
which

are linear and continuous, whence smooth by [26, Lemma F.15 (a)]. Recall that the maps

ci : H
Ω5,K5,i

Ri
×H

Ω5,K5,i

Ri
→ X

(
Ω 5

4 ,K5,i

)
, X 7→ X �i Y

ιi : H
Ω5,K5,i

Ri
→ X

(
Ω 5

4 ,K5,i

)
, X 7→ X∗i

are smooth by Lemma D.11. By definition the maps compi and invi are given as compositions:

compi = res
Ω 5

4
,K5,i

Ui
◦ci ◦ (res

Wα(i)

Ω5,Ki
× res

Wα(i)

Ω5,Ki
|HRi×HRi )

invi = res
Ω 5

4
,K5,i

Ui
◦ιi ◦ res

Wα(i)

Ω5,Ki
|HRi .

We conclude that compi and invi are smooth, whence comp and inv are smooth.

Endow E(M) with the smooth manifold structure making E : M → E(M) a diffeomorphism.
We are now in a position to construct a Lie group structure on a subgroup of DiffOrb (Q,U):

5.1.12 Proposition There is an open subset P ⊆ E(M) ⊆ DiffOrb (Q,U) which contains the
identity such that the subgroup generated by P,

DiffOrb (Q,U)0 := 〈P〉,

admits a unique smooth manifold structure turning DiffOrb (Q,U)0 into a connected Lie group mod-
eled on XOrb (Q)c and P into an open connected identity-neighborhood.

Proof. Endow E(M) with the unique smooth manifold structure turning E : M → E(M) into a
diffeomorphism. Consider P0 := E(H) as an open submanifold of E(M). Combining Lemma 5.1.10
and Lemma 5.1.11 the composition and inversion

m : P0 × P0 → E(M), ([f̂ ], [ĝ]) 7→ [f̂ ] ◦ [ĝ] = E(comp(E−1([f̂ ]), E−1([ĝ])))

ι : P0 → E(M), [f̂ ] 7→ [f̂ ]−1 = E(inv(E−1([f̂ ]))

are smooth maps. Observe that by Proposition 5.1.8 and definition of m and ι the images are
contained in E(M). The set P0 is an open identity-neighborhood on which inversion and group
multiplication of DiffOrb (Q,U) are smooth. Hence the preimage ι−1(P0) = P0 ∩ (P0)−1 with
(P0)−1 := ι(P0) is an open neighborhood of the identity in P0. Thus E−1(P0 ∩ (P0)−1) is an
open zero-neighborhood in XOrb (Q)c. Since this space is locally convex, we may choose a convex
zero neighborhood H1 ⊆ E−1(P0 ∩ (P0)−1) ⊆ XOrb (Q)c. Then P1 := E(H1) ⊆ P0 ∩ (P0)−1

is a connected, open identity neighborhood in E(M). Since P1 ⊆ P0 ∩ (P0)−1 holds, we have
ι−1(P1) = P0 ∩ (P1)−1 = (P1)−1 = ι(P1). Being a preimage of an open set with respect to
a continuous map, (P1)−1 is open. Furthermore it is connected as a continuous image of such
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a set. We obtain an open, connected identity-neighborhood P := P1 ∪ (P1)−1 ⊆ P0 in E(M)
by [21, Corollary 6.1.10].
From the above, we deduce m(P,P) ⊆ E(M) and the mapping P ×P → E(M), ([f̂ ], [ĝ]) 7→ [f̂ ] ◦ [ĝ]
induced by m is a smooth map. Furthermore, P−1 = P ⊆ E(M) holds and the mapping P →
E(M), [f̂ ] 7→ [f̂ ]−1 induced by ι is smooth. In conclusion all prerequisites of Proposition C.4.3 (a)
have been checked. Hence we derive a unique smooth manifold structure on

DiffOrb (Q,U)0 := 〈P〉

turning it into a Lie group such that P is an open identity-neighborhood in DiffOrb (Q,U)0. In
addition the manifold structure induced by DiffOrb (Q,U)0 coincides with the submanifold structure
of P ⊆ E(M). Therefore, P ⊆ DiffOrb (Q,U)0 is open and connected. As the group operations of
DiffOrb (Q,U)0 are smooth, each of the sets Pn (the elements of DiffOrb (Q,U)0, which are obtained
by n-fold composition of elements in P, n ∈ N) is a connected identity-neighborhood. Since P is a
symmetric identity-neighborhood, we deduce from the proof of [37, Theorem 5.7]:

DiffOrb (Q,U)0 = 〈P〉 =

∞⋃
n=1

Pn.

Hence DiffOrb (Q,U)0 is a connected Lie group by [21, Corollary 6.1.10].

In the next section, we shall construct a Lie group structure on DiffOrb (Q,U). The Lie group
structure on the subgroup DiffOrb (Q,U)0 of DiffOrb (Q,U) will turn this subgroup into the identity
component of the Lie group DiffOrb (Q,U).

5.2. Lie group structure on DiffOrb (Q,U)

Unless stated otherwise, all symbols used in this section retain the same meaning as in Section
5.1. In particular, we shall always be working with a Riemannian orbifold (Q,U , ρ). First, we will
prove that the Lie group DiffOrb (Q,U)0 is independent of the choice of the atlases A,B and the
local data constructed in Section 5.1. Second, the construction does not depend on the choice of the
Riemannian orbifold metric on (Q,U). Having dealt with these preparations, an application of the
Construction Principle C.4.3 will yield a unique smooth Lie group structure on DiffOrb (Q,U). The
strategy of the proof follows [28] where a similar argument has been used to turn the diffeomorphism
group of a manifold into a Lie group.

5.2.1 Lemma The Lie group DiffOrb (Q,U)0 constructed in Proposition 5.1.12 does neither depend
on the choice of atlases A and B, nor on the local data collected in Construction 5.1.1.

Proof. Let A+ and B+ be orbifold atlases which satisfy the same properties as A and B in Construc-
tion 5.1.1. Replace A and B in the construction of Section 5.1 with A+ and B+. Taking the Rieman-
nian orbifold metric ρ as before, we obtain another connected, smooth Lie group DiffOrb (Q,U)

+
0
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depending on the new set of data. As shown in Section 5.1, there is a C∞-diffeomorphism E+,
E+([σ̂]) := [expOrb]◦ [σ̂] mapping the open convex zero-neighborhood H+

1 (defined as in Proposition
5.1.12 with respect to A+ and B+, the open subset H+ ⊆ XOrb (Q)c and the local data constructed
for A+, B+) onto an open identity neighborhood in DiffOrb (Q,U)

+
0 . Then O := H1∩H+

1 is an open,
convex (and hence connected) zero-neighborhood in XOrb (Q,U)c. The map E takes O diffeomor-
phically onto an open identity neighborhood in DiffOrb (Q,U)0. As DiffOrb (Q,U)0 is a connected
Lie group, E(O) generates this group by [37, Theorem 7.4]. Analogously, E+ maps O diffeomor-
phically onto an open identity neighborhood in DiffOrb (Q,U)

+
0 which generates this group. Recall

from Proposition 5.1.5 that E([σ̂]) = [expOrb] ◦ [σ̂]|Ω = E+([σ̂]) holds for each [σ̂] ∈ O. Hence both
maps coincide on O. We deduce that DiffOrb (Q,U)0 = 〈E(O)〉 = DiffOrb (Q,U)

+
0 as an abstract

group and also as a Lie group.

5.2.2 Lemma The Lie group DiffOrb (Q,U)0 constructed in Proposition 5.1.12 does not depend on
the choice of the Riemannian orbifold metric ρ on (Q,U) (cf. Section 5.1).

Proof. Let ρ# be another Riemannian orbifold metric on (Q,U). By Lemma 5.2.1 we may use
the same atlases A = {(Ui, Gi, ψi) | i ∈ I} and B = {(Wj , Hj , ϕj) | j ∈ J} as in Construction 5.1.1.
Reviewing this, the local data constructed in Construction 5.1.1 II. - IV. do not depend on the
Riemannian orbifold metric. The constants Ri, i ∈ I and sj , Sj , j ∈ J in Construction 5.1.1 V.
change for ρ# = (ρ#

j )j∈J . The new constants depending on ρ# will be denoted by R#
i , i ∈ I and

s#
j , S

#
j , j ∈ J (see Construction 5.1.1 V. for their properties).

Let [êxpOrb
#

] be the Riemannian orbifold exponential map with respect to (Q,U , ρ#). As in Section
5.1, one constructs open zero-neighborhoods H# := Λ−1

C (⊕i∈IHR#
i

) and H# ⊆M#, which depend

on the data in Construction 5.1.1 I. - IV., the constants R#
i , i ∈ I and s#

j , S
#
j , j ∈ J , as well

as on the Riemannian orbifold metric ρ#. Furthermore, we obtain an injective map E# : M# →
DiffOrb (Q,U)

#
0 , a connected Lie group DiffOrb (Q,U)

#
0 = 〈P#〉 and a convex zero-neighborhood

H#
0 ⊆ H# ⊆ XOrb (Q)c such that E#|H#

0
: H#

0 → P# ⊆ DiffOrb (Q,U)
#
0 , [σ̂] 7→ [êxpOrb

#
] ◦ [σ̂]|Ω#

is a diffeomorphism onto an open identity neighborhood.
Fix some i ∈ I and let F5(K5,i) =

{
(V n5,α(i), κ

α(i)
n )

∣∣∣ 1 ≤ n ≤ Ni} be the atlas of Construction 5.1.1
IV.8. For each 1 ≤ n ≤ Ni the Riemannian metrics induce pullback metrics with respect to the
manifold charts κα(i)

n . The charts κα(i)
n induce pullback metrics on B5(0) with respect to ρα(i)

and ρ#
α(i). For (V n5,α(i), κ

α(i)
n ), 1 ≤ n ≤ Ni the associated Riemannian exponential maps will be

denoted by expWα(i),[n] and exp#
Wα(i),[n], respectively. Finally we define the local representatives of

X ∈ X
(
Wα(i)

)
with respect to κα(i)

n via X[n] := X
κ
α(i)
n
◦ (κ

α(i)
n )−1 ∈ C∞(B5(0),Rd).

Observe that the open set HRi in Construction 5.1.6 was obtained by Construction D.9. Reviewing
Construction D.9, for 1 ≤ n ≤ Ni, real numbers εn, δn > 0 have been chosen such that for each
x ∈ B4(0), the map φα(i),[n],x : Bεn(0)→ Rd, y 7→ expWα(i),[n](x, y) is a diffeomorphism onto its open

8To shorten our notation, we number all charts from 1 to some Ni ∈ N, i ∈ I. It will always be clear from the
context which charts are meant.
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image which contains Bδn(0). Furthermore, by Lemma D.3 the choice of εn yields the smooth map
bα(i),[n] : Wδn → Bεn(0), bα(i),[n](x, y) := φ−1

α(i),[n],x(y). Recall that εn < νi for 1 ≤ n ≤ Ni. Here
νi is the constant constructed in Lemma D.6 with respect to the finite family F5(K5,i). Thus the
assertions of Lemma D.6 hold. For each x ∈ V n4,α(i), 1 ≤ n ≤ Ni, there is an open set Nx ⊆ TxWα(i)

with the following property:

Bδn(κα(i)
n (x)) ⊆ expWα(i),[n](κ

α(i)
n (x), Bεn(0)) ⊆ κα(i)

n expWα(i)
(Nx). (5.2.1)

Observe that the neighborhood HR#
i
has been obtained by another application of Construction D.9

with respect to a family of constants ε#
n , δ

#
n > 0 for 1 ≤ n ≤ Ni.

By Lemma D.3 (c), we may choose constants ε#
n > ε#

1,n > 0 for 1 ≤ n ≤ Ni so small that

exp#
α(i),[n]

({
κ
α(i)
n (x)

}
×Bε#1,n(0)

)
is contained in Bδn(κ

α(i)
n (x)) for x ∈ V n4,α(i). For 1 ≤ n ≤ Ni,

we choose for each ε#
1,n a constant δ#

n > δ#
1,n > 0 which satisfies the assertion of Lemma D.3 (b),

with ε replaced with ε#
1,n. Apply Construction D.9 with R := R#

i and P := P#
1,i ∩ P

#
2,i, but replace

the pairs (ε#
n , δ

#
n ) with (ε#

1,n, δ
#
1,n) to obtain an open zero-neighborhood HR#

i
⊆ H

Ω5,K5,i

R#
i

. Thus the
map

un : B4(0)×Bε#1,n(0)→ Bεn(0), un(x, y) := bα(i),[n](x, exp#
Wα(i),[n](x, y)) (5.2.2)

makes sense and is smooth as a composition of smooth maps. By construction, ε#
1,n < ε#

n < ν#,
where ν# is the constant as in Lemma D.6 with respect to the finite family F5(K5,i). Hence we
deduce with Lemma D.6 (b) from equations (5.2.2) and (5.2.1) that the map

(E−1E#)i : HR#
i
→ X

(
Ω1,K5,i

)
, (E−1E#)i(X)(x) := expWα(i)

|−1
Nx

exp#
Wα(i)

◦X(x) (5.2.3)

makes sense. In addition, we show that (E−1E#)i is a smooth map. To see this, let 1 ≤ n ≤ Ni and
recall that HR#

i
⊆ X

(
Ω5,K5,i

)
is open and F5(K5,i) covers Ω5,K5,i

. Hence for 1 ≤ n ≤ Ni, the maps
rn : X

(
Ω5,K5,i

)
→ C∞(B5(0),Rd), X 7→ X[n] form a patchwork by Definition C.3.1. Analogously, the

maps tn : X
(
Ω1,K5,i

)
→ C∞(B1(0),Rd), X 7→ X[n]|B1(0) yield a patchwork for 1 ≤ n ≤ Ni. Consider

the open subset bB1(0), Bε#1,n
(0)c∞ ⊆ C∞(B5(0),Rd). For X ∈ HR#

i
we obtain X[n](B3(0)) ⊆

Bε#1,n
(0) (cf. Construction D.9 and Lemma D.4). Hence rn(HR#

i
) ⊆ bB1(0), Bε#1,n

(0)c∞ holds. In
addition, [26, Proposition 4.23 (a)] with (5.2.2) yields a smooth map

Un : bB1(0), Bε#1,n
(0)c∞ → C∞(B1(0),Rd), Un(σ) := (un)∗(σ),

with (un)∗(σ)(x) := un(x, σ(x)) for x ∈ B1(0). By (5.2.2), Un maps the zero-map to the zero-map.
Evaluating (5.2.2) pointwise for (X,x) ∈ HR#

i
× Ω1,K5,i

, the local formula (5.2.2) and Lemma D.6
(b) yield the identity tn ◦ (E−1E#)i = Un ◦ rn. Thus (E−1E#)i is a patched mapping which is
smooth on the patches, whence (E−1E#)i is smooth by Proposition C.3.8.
For each j ∈ I, construct in the same manner an open set HR#

j
⊆ X

(
Ω5,K5,j

)
together with a smooth

map (E−1E#)j . Define H#
i := (res

Wα(i)

Ω5,i
)−1(HR#

i
) ⊆ HR#

i
⊆ X

(
Wα(i)

)
. By Construction 5.1.6,

H# := Λ−1
C (⊕i∈IH#

i ) ⊆ H# holds. For each [σ̂] ∈ H#, the family
{

(E−1E#)i(σα(i)|Ω5,K5,i
)|Ui
}
i∈I
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is a family of vector fields. Since [σ̂] is compactly supported, only finitely many canonical lifts σα(i)

are non-zero. By standard Riemannian geometry, the Riemannian exponential map composed with
the zero section yields the identity. Hence (5.2.3) shows that only finitely many of the vector fields{

(E−1E#)i(σα(i)|Ω5,K5,i
)|Ui
}
i∈I

will be non-zero. We claim that these vector fields form a canonical
family of an orbisection. If this is true, then these vector fields define a compactly supported
orbisection E−1E#([σ̂]), whose lifts with respect to A are given by

{
(E−1E#)i(σα(i)|Ω5,K5,i

)|Ui
}
i∈I

.
On Ui ⊆ Ω1,i, these vector fields yield an orbisection if the following is satisfied:

Let [σ̂] ∈ H# and λ ∈ ChWk,Wl
be a change of charts which satisfies domλ ⊆ Ω1,i and codλ ⊆ Ω1,j

for some k = α(i) and l = α(j). Then the following identity holds:

Tλ(E−1E#)i(σk|Ω5,K5,i
)|domλ = (E−1E#)j(σl|Ω5,K5,j

) ◦ λ. (5.2.4)

The argument given in the proof of Lemma 5.1.7 may be repeated almost verbatim. We check
the identity (5.2.4) locally: Choose some x ∈ domλ ⊆ Ω1,i and a chart (V n5,k, κ

k
n) ∈ F5(K5,i) with

x ∈ V n1,k. Again there is some Zrk with V n5,k ⊆ Zrk . As x ∈ V n1,k ⊆ K◦k and λ(x) ∈ Kl, there is an
embedding of orbifold charts µ : Zrk → Wl with µ(x) = λ(x). After possibly composing µ with a
suitable element of Hl, there is an open neighborhood Ux of x in Zrk with µ|Ux = λ|Ux and thus
Txµ = Txλ.
Since ρ and ρ# are Riemannian orbifold metrics, each change of orbifold charts in ChWk,Wl

is
a Riemannian embedding of its domain endowed with the induced metrics into the Riemannian
manifold (Wl, ρl) respectively (Wl, ρ

#
l ). By construction of H#

i , each X ∈ H#
i satisfies∥∥∥φ−1

k,[n],x exp#
Wk,[n]X[n]

∥∥∥
B1(0),0

< εn < Ri for each 1 ≤ n ≤ Ni. (5.2.5)

Recall from Construction 5.1.1 V. the properties of Ri and Sk:
The definitions imply that Tµ(E−1E#)i(σk|Ω5,K5,i

)(V n1,k) ⊆ Ôl ⊆ dom expWl
for [σ̂] ∈ H#. Com-

puting locally on V n5,k, we use that µ(κkn)−1 is a Riemannian embedding into Wl. Again by
[43, IV. Proposition 2.6], the identity expWl

T (µ(κkn)−1)(v) = µ(κkn)−1 expWk,[n](v) holds for each
v ∈ dom expWk,[n]. The family {σk}k∈J is a canonical family of lifts, whence σlµ = Tµσk|domµ. By
definition of H#

i ⊆ HR#
i
, the identity κkn exp#

Wk
◦X(z) = exp#

Wk,[n] TκnX(z) holds for each z ∈ V n3,k
and X ∈ H#

i (cf. the proof of Lemma 5.1.7). Observe that λ(x) ∈ Ω1,j and σl ∈ H#
j . Combining

these facts one computes:

expWl
Txλ(E−1E#)i(σk|Ω5,K5,i

)(x) = expWl
Tx(µ(κkn)−1κkn)(expWk

|Nx)−1 exp#
Wk

σk(x)

= µ(κkn)−1 expWk,[n] Tκ
k
n(expWk

|Nx)−1 exp#
Wk

σk(x)
D.6(b)

= µ exp#
Wk

σk(x)

= µ(κkn)−1 exp#
Wk,[n] Tκ

k
nσk(x) = exp#

Wl
σl(µ(x)) = exp#

Wl
σl(λ(x))

(5.2.3)
= expWl

(E−1E#)j(σl|Ω5,K5,j
)(λ(x)).

As x ∈ K◦k and λ(x) ∈ Ω1,K5,j , the definition of Ri implies Txλ(E−1E#)k(σk|Ω5,K5,i
)(x) ∈ Ôl. By

construction ofH#
j , we deduce (E−1E#)j(σl|Ω5,K5,j

)λ(x) ∈ Ôl. As expWl
is injective on Tλ(x)Wl∩Ôl
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and x ∈ domλ was arbitrary, this proves (5.2.4). We conclude that the family of vector fields{
(E−1E#)i(σα(i)|Ω5,K5,i

)|Ui
}
i∈I

is a family of canonical lifts for a compactly supported orbisection

E−1E#([σ̂]). Define E−1E# : H# → XOrb (Q)c , [σ̂] 7→ E−1E#([σ̂]). Using the patchworks (λi)i∈I
and (τi)i∈I for XOrb (Q)c (see proof of Lemma 5.1.11), a computation yields the identity

res
Ω1,K5,i

Ui
(E−1E#)i res

Wα(i)

Ω5,K5,i
λi|

H#
i

H# = τiE
−1E#, i ∈ I.

We have already seen that (E−1E#)i is smooth and (E−1E#)i(0α(i)) = 0i for each i ∈ I. By [26,

Lemma F.15 (a)], the mappings res
Ω1,K5,i

Ui
, res

Wα(i)

Ω5,K5,i
are smooth, whence E−1E# is a patched map-

ping which is smooth on the patches. By Proposition C.3.8, E−1E# must be smooth and therefore
it is continuous. Using continuity, there is an open, connected zero-neighborhood R# ⊆ H#

0 ∩H#

such that E−1E#(R#) ⊆ E−1(P). Uniqueness of canonical lifts proves that the canonical lifts
of E−1E#([σ̂]) on Wα(i) coincides on Ui with (E−1E#)i(σα(i)|Ω5,K5,i

)|Ui . Recall the construction
of the representative Êσ of E([σ̂]) in Proposition 5.1.4. Using (5.2.3), the construction yields for
E(E−1E#([σ̂])) and i ∈ I the lifts exp#

Wα(i)
◦σi. The same lifts are obtained, if this construc-

tion is carried out with respect to the Riemannian orbifold exponential map [exp#
Orb]. As orbifold

diffeomorphisms are uniquely determined by a family of lifts (cf. Corollary 2.1.11), E#([σ̂]) =
E ◦ (E−1E#)([σ̂]) ∈ E(E−1(P)) = P holds for each [σ̂] ∈ R#. The set R# is an open and
connected zero-neighborhood contained in H#

0 . Since DiffOrb (Q,U)
#
0 is connected, 〈E#(R#)〉 =

DiffOrb (Q,U)
#
0 holds by [37, Theorem 7.4], which implies DiffOrb (Q,U)

#
0 ⊆ DiffOrb (Q,U)0. In par-

ticular, the inclusion morphism DiffOrb (Q,U)
#
0 → DiffOrb (Q,U)0 is smooth on the open identity-

neighborhood E#(R#), hence smooth by [10, III. §1, Proposition 4]. Reversing the roles of ρ
and ρ#, one deduces that also DiffOrb (Q,U)0 ⊆ DiffOrb (Q,U)

#
0 and the inclusion morphism

DiffOrb (Q,U)0 → DiffOrb (Q,U)
#
0 is smooth. In conclusion, DiffOrb (Q,U)0 and DiffOrb (Q,U)

#
0

coincide as Lie groups.

So far, we achieved that the Lie group structure on DiffOrb (Q,U)0 does neither depend on the
local data (the atlases A, B etc.) nor on the Riemannian orbifold metric. We exploit these facts to
prove that the requirements of Proposition C.4.3 (b) are satisfied:

5.2.3 Proposition Let [φ̂] ∈ DiffOrb (Q,U) be an arbitrary orbifold diffeomorphism. Then for each
[f̂ ] ∈ DiffOrb (Q,U)0 we have [φ̂] ◦ [f̂ ] ◦ [φ̂]−1 ∈ DiffOrb (Q,U)0 and

c[φ̂] : DiffOrb (Q,U)0 → DiffOrb (Q,U)0 , [f̂ ] 7→ [φ̂] ◦ [f̂ ] ◦ [φ̂]−1

is a smooth map.

Proof. The proof will be quite simple, after some preparations:
Following Corollary 2.1.13 (d), we may choose orbifold atlases Vi :=

{
(V ik , L

i
k, π

i
k) ∈ U

∣∣ k ∈ K} ⊆ U ,
i ∈ {1, 2} together with a representative Φ = (φ, {φk}k∈K , P, ν) ∈ Orb(V1,V2) of [φ̂] such that
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each φk : V 1
k → V 2

k is a diffeomorphism. Furthermore, Corollary 2.1.8 assures that we may choose
P = ChV1

and ν(λ) = φlλφ
−1
k |φk(domλ) for λ ∈ ChV 1

k ,V
1
l
.

By Proposition 1.6.8 there are locally finite atlases A and B indexed by I and J , respectively, which
satisfy the properties of the atlases in Construction 5.1.1 I. In addition, there is a map β : J → K
such thatWj is an open subset of V 1

β(j), the inclusion of sets induces an embedding of orbifold charts
and Wj ⊆ V 1

β(j) is compact for each j ∈ J . As a consequence of Lemma 5.2.1, we may construct
DiffOrb (Q,U)0 with respect to these atlases and the Riemannian orbifold metric ρ. Thus there are
open sets H1 ⊆ H := Λ−1

C (
⊕

i∈I HRi) and a diffeomorphism E|H1
onto an identity neighborhood in

DiffOrb (Q,U)0.
By construction, the inclusions of sets Ui ⊆ Wα(i) ⊆ V 1

β(α(i)) and φβ(α(i)) are changes of orbifold
charts for each i ∈ I. For i ∈ I, the sets W+

α(i)
:= φβ(α(i))(Wα(i)) and U+

i := φβα(i)(Ui) are L2
β(α(i))-

stable, open and relatively compact subsets of V 2
β(α(i)) (cf. Lemma 2.1.9 (a)). Define the following

sets of orbifold charts for Q:

A+ :=
{

(U+
i , Gi, π

2
βα(i)|U+

i
)
∣∣∣ i ∈ I} and B+ :=

{
(W+

j , Hj , ϕ
+
j := π2

β(j)|W+
j

)
∣∣∣ j ∈ J} .

The underlying map φ is a homeomorphism and each φk is a diffeomorphism. Hence A+ and B+

are orbifold atlases for Q such that U+
i ⊆ W+

α(i) for each i ∈ I and the inclusions of sets induce
embeddings of orbifold charts. Since W+

j is a relatively compact subset of V 2
β(j) for each j ∈ J , we

deduce from the continuity of π2
β(j) and [21, Corollary 3.1.11] that the image of each chart in A+

and B+ is relatively compact. Exploiting that φ is a homeomorphism, A+ and B+ are locally finite
atlases, since the same holds for A and B. Furthermore, by construction of A and B, for each con-
nected component C ⊆ Q, there is a point zC which is only contained in the images of a unique pair
of charts in A×B. The homeomorphism φ permutes the connected components of Q, whence each
zC is mapped into a separate component. Each element of {φ(zC) |C ⊆ Q a connected component}
is thus contained in the images of a unique pair in A+ ×B+ such that the images of different pairs
are contained in different connected components. Summing up, the atlases A+ and B+ satisfy all
properties required in Construction 5.1.1 I.

As B is an atlas, a family of lifts for a representative of [φ̂] is given by
{

Φj := φβ(j)|Wj

}
j∈J . By

construction, each of these lifts is a diffeomorphism and Φα(i)(Ui) = U+
i for each i ∈ I. Corollary

2.1.13 assures that
{

Φ−1
j

}
j∈J is a family of lifts for a representative of [φ̂]−1 in Orb(B+,B). Observe

that Φ−1
j (U+

i ) = Ui holds for each i ∈ α−1(j). Before we prove the smoothness of c[φ̂], consider the
following auxiliary maps:
Define ti : HRi → X

(
U+
i

)
, X 7→ TΦα(i)XΦ−1

α(i)|U+
i

for i ∈ I. For [σ̂] ∈ H, the family {ti(σi)}i∈I
defines a family of vector fields. We show that these vector fields are a family of canonical lifts of
an orbisection: Let λ ∈ ChU+

i ,U
+
j

be any change of charts with arbitrary i, j ∈ I. As noted above,

µ := Φ−1
α(j)λΦα(i)|Φ−1

α(i)
(domλ) is a change of charts in ChUi,Uj and we compute

tj(σj) ◦ λ = TΦα(j)σjΦ
−1
α(j)|U+

j
λ = TΦα(j)σjµΦ−1

α(i)|domλ

= TΦα(j)TµσiΦ
−1
α(i)|domλ = Tλti(σi)|domλ.
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The family {ti(σi)}i∈I is a family of canonical lifts with respect to A+, whence it induces a unique
orbisection t([σ̂]). By construction, ti(σi) will be the zero-section if σi is the zero-section. Hence
t([σ̂]) is compactly supported and we obtain a map t : H → XOrb (Q)c , [σ̂] 7→ t([σ̂]). Consider the
patchwork induced by the maps

pi : XOrb (Q)c → X
(
Wα(i)

)
, pi([σ̂]) = σα(i) and qi : XOrb (Q)c → X

(
U+
i

)
, qi([σ̂]) = σU+

i
, i ∈ I,

sending an orbisection to their canonical lifts. By construction of H (cf. Construction 5.1.6),
pi(H) ⊆ HRi holds. From ti ◦ pi|

HRi
H = qi ◦ t we deduce that t is a patched mapping. We claim that

ti is smooth for each i ∈ I. If this were true, this implies the smoothness of t by Proposition C.3.8.
To prove the claim, consider t′i : H

Ω5,K5,i

Ri
→ X

(
Φα(i)(Ω5,K5,i

)
)
, X 7→ TΦα(i)XΦ−1

α(i)|Φα(i)(Ω5,K5,i
)

and note the identity ti = res
Φα(i)(Ω5,K5,i

)

U+
i

t′i res
Wα(i)

Ω5,K5,i
. Since the restriction maps are smooth, it

suffices to prove the smoothness of t′i. By construction Ω5,K5,i
is covered by the finite family of

manifold charts F5(K5,i) =
{

(V n5,α(i), κ
α(i)
n )

∣∣∣ 1 ≤ n ≤ Ni}. Hence the sets V n,+5,α(i)
:= Φα(i)(V

n
5,α(i))

cover Φα(i)(Ω5,K5,i
). Set γα(i)

n := κ
α(i)
n Φ−1

α(i)|V n,+
5,α(i)

to obtain a manifold atlas for Φα(i)(Ω5,K5,i
):

F+
5 (K5,i) :=

{
(V n,+5,α(i), γ

α(i)
n )

∣∣∣ 1 ≤ n ≤ Ni}. By Definition C.3.1 there are finite families of linear

continuous mappings θnα(i) : X
(
Ω5,K5,i

)
→ C∞(V n5,α(i),R

d), X 7→ Xκn and θn,+α(i) : X
(
Φα(i)Ω5,K5,i

)
→

C∞(V n,+5,α(i),R
d), Y 7→ Yγn , with 1 ≤ n ≤ Ni. The family (θnα(i))1≤n≤Ni is a patchwork for X

(
Ω5,K5,i

)
and (θn,+α(i))1≤n≤Ni is a patchwork for X

(
Φα(i)(Ω5,K5,i

)
)
by Lemma [26, Lemma F.6]. As Φ−1

α(i) is

smooth, the pullback C∞(Φ−1
α(i)|

V n5,α(i)

V n,+
5,α(i)

,Rd) is continuous linear and therefore smooth by [24, Lemma

3.7]. A quick computation yields for 1 ≤ n ≤ Ni the identity θn,+α(i) ◦ t
′
i = C∞(Φ−1

α(i)|
V n5,α(i)

V n,+
5,α(i)

,Rd)◦ θnα(i).

We conclude that ti is a patched mapping, which is smooth on the patches, whence smooth by
Proposition C.3.8.

The orbifold diffeomorphism [φ̂]−1 induces a unique pullback metric ρ# := ([φ̂]−1)∗ρ on Q (cf.
Lemma 4.0.8). Denote by ρj the members of ρ on the orbifold charts (Wj , Hj , ϕj), j ∈ J . The
Riemannian metric associated to ρ# with respect to (W+

j , Hj , ϕ
+
j ), j ∈ J are given by the pullback

metric ρ#
j := (Φ−1

j )∗ρj . For j ∈ J let expj : Dj → Wj be the Riemannian exponential maps with
respect to (Wj , ρj) and exp#

j : D#
j →W+

j be the exponential map with respect to (W+
j , ρ

#
j ). These

pullback metrics turn Φj ,Φ
−1
j into Riemannian isometries and the map [φ̂] into an orbifold isometry.

In particular we derive TΦj(Dj) = D#
j and the exponential identity

exp#
j (TΦj)|

D#
j

Dj
= φj expj .

Let [σ̂] be in H and consider eσi as in Proposition 5.1.4. From the last identity we deduce

Φα(i) ◦ eσi ◦ Φα(i)|U+
i

= Φα(i) expα(i) σiΦ
−1
α(i)|U+

i
= exp#

α(i) TΦα(i)σiΦ
−1
α(i)|U+

i
. (5.2.6)
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Combining Lemma 5.2.1 with Lemma 5.1.2, one may construct DiffOrb (Q,U)0 with respect to the
atlases A+, B+ and the Riemannian orbifold metric ρ#. Hence there are an open connected zero-
neighborhood H+

# ⊆ XOrb (Q)c and a map E+
# : H+

# → DiffOrb (Q,U)0 , [σ̂] 7→ [exp#
Orb] ◦ [σ̂]|Ω#

.
Here [exp#

Orb] is the Riemannian orbifold exponential map associated to ρ#, whose domain is
Ω#. The map E+

# is a diffeomorphism onto its image, which is an open identity-neighborhood in
DiffOrb (Q,U)0. As t is smooth and thus continuous, there is an open connected zero-neighborhood
A ⊆ H1 such that t(A) ⊆ H+

# .
Recall from Corollary 2.1.11 that an orbifold diffeomorphism is uniquely determined by the lifts
of any of its representatives. Hence for [σ̂] ∈ H1 = E−1(P) (cf. Proposition 5.1.12), the orb-
ifold diffeomorphism [φ̂] ◦ E([σ̂]) ◦ [φ̂]−1 is uniquely determined by

{
Φα(i) ◦ eσi ◦ Φ−1

α(i)|U+
i

}
i∈I

. In

Proposition 5.1.4, a representative of E+
#([σ̂]) for [σ̂] ∈ H+

# in Orb(A+,B+) has been explic-

itly computed. Its lifts were given by
{

exp#
α(i) ◦σU+

i

}
i∈I

. Since the lifts uniquely determine

the diffeomorphism, equation (5.2.6) implies c[φ̂]E([σ̂]) = E+
#t([σ̂]) ∈ DiffOrb (Q,U)0 for every

[σ̂] ∈ A. In particular, c[φ̂]E(A) ⊆ DiffOrb (Q,U)0. The set E(A) is an open connected identity-
neighborhood, whence it generates the connected Lie group DiffOrb (Q,U)0 by [37, Theorem 7.4].
Therefore c[φ̂](DiffOrb (Q,U)0) = c[φ̂](〈E(A)〉) ⊆ DiffOrb (Q,U)0. We deduce from c[φ̂]|E(A) =

E+
# ◦ t|

H+
#

A ◦ (E|E(A)
A )−1 that the group automorphism c[φ̂] of DiffOrb (Q,U)0 is smooth on the open

identity neighborhood E(A), hence smooth by [10, III. §1, Proposition 4].

The preceding proposition shows that for each [φ̂], the conjugation map c[φ̂] is smooth and maps
DiffOrb (Q,U)0 to itself. All requirements of Proposition C.4.3 (b) have been checked. Apply-
ing this construction principle, we obtain a unique Lie group structure on DiffOrb (Q,U), turning
DiffOrb (Q,U)0 into an open submanifold of DiffOrb (Q,U). Summarizing the results, we obtain:

5.2.4 Theorem The group DiffOrb (Q,U) can be made into a Lie group in a unique way such that
the following condition is satisfied:
For some Riemannian orbifold metric ρ on (Q,U), let [expOrb] be the Riemannian orbifold expo-
nential map with domain Ω. There exists an open zero-neighborhood Hρ in XOrb (Q)c such that

[σ̂] 7→ [expOrb] ◦ [σ̂]|Ω

is a well-defined C∞-diffeomorphism of Hρ onto an open submanifold of DiffOrb (Q,U).
The condition is then satisfied for every Riemannian orbifold metric on (Q,U). The identity com-
ponent of DiffOrb (Q,U) is the Lie group DiffOrb (Q,U)0 constructed in Section 5.1.

5.2.5 Corollary If (Q,U) is a compact orbifold, then the Lie group DiffOrb (Q,U) is a Fréchet-Lie
group.

Proof. If Q is compact, then XOrb (Q)c = XOrb (Q) is a Fréchet space, by Corollary 3.3.7.

We now consider subgroups of DiffOrb (Q,U) which turn out to be Lie subgroups of DiffOrb (Q,U).
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5.2.6 Definition Let K ⊆ Q be a compact subset and denote for an orbifold map [f̂ ] its underlying
map by f . Define the set of all orbifold diffeomorphisms whose support is contained in K:

DiffOrb (Q,U)K :=
{

[f̂ ] ∈ DiffOrb (Q,U)
∣∣∣ f |Q\K ≡ idQ\K

}
.

We also say that the elements of DiffOrb (Q,U)K coincide with the identity morphism of Q off K.
Furthermore, we define the subset DiffOrb (Q,U)c ⊆ DiffOrb (Q,U) of all orbifold diffeomorphisms,
whose underlying map coincides with idQ outside some compact set in Q. Observe that the sets
DiffOrb (Q,U)K and DiffOrb (Q,U)c are subgroups of DiffOrb (Q,U).

5.2.7 Remark Notice that, by construction, DiffOrb (Q,U)c contains DiffOrb (Q,U)0. The normal
subgroup DiffOrb (Q,U)c therefore is an open subgroup of DiffOrb (Q,U) by [37, Theorem 5.5]. Hence
it becomes a normal open Lie subgroup of DiffOrb (Q,U).

5.2.8 Proposition Each compact subset K of Q is contained in a compact set L such that the
group DiffOrb (Q,U)L is a closed Lie subgroup of DiffOrb (Q,U) modeled on XOrb (Q)L.

Proof. We shall again use the notation of Section 5.1. The atlas A is locally finite and the image
of each chart in A is relatively compact. Thus there are only finitely many charts (Ui, Gi, ψi)
in A with ψi(Ui) ∩ K 6= ∅. Let IK be the set indexing this family and consider the closed set
L := Q \

(⋃
i∈I\IK ψi(Ui)

)
. By construction, K ⊆ L ⊆

⋃
i∈IK ψi(Ui) holds, whence L is a compact

set. We claim that DiffOrb (Q,U)L is a closed Lie subgroup of DiffOrb (Q,U) modeled on XOrb (Q)L.
Choose for each i ∈ I \ IK a non singular point xi ∈ Ui. By [41, Theorem 1.9.5], we may choose
εi > 0 with expWα(i)

(Bρα(i)
(0xi , εi)) ∩Hα(i).xi = {xi}. By definition of the topology on X

(
Wα(i)

)
,

there is an open neighborhood Ri ⊆ X
(
Wα(i)

)
of the zero-section such that σ ∈ Ri implies σ(xi) ∈

Bρα(i)
(0xi , εi). Define the open neighborhood of the zero-orbisection

R := Λ−1
C

 ⊕
i∈I\IK

Ri ⊕
⊕
j∈IK

X
(
Wα(j)

) ⊆ XOrb (Q)c .

Let [σ̂] be an element of H1 ∩ R, where H1 is the open zero-neighborhood defined in Proposition
5.1.12. Denote by {σi}i∈I the family of canonical lifts of [σ̂] with respect to A. Recall that E([σ̂])
is a diffeomorphism, whose local lift with respect to (Ui, Gi, ψi), i ∈ I \ IK is the map eσi =
expWα(i)

|Ôα(i)
◦ σi. Furthermore, expWα(i)

|Ôα(i)∩TxWα(i)
is a diffeomorphism for each x ∈ Ui, which

maps 0x to x. Since the canonical lift with respect to (Ui, Gi, ψi) of the zero-orbisection is the
zero-section, we deduce that E(H1 ∩R ∩ XOrb (Q)L) ⊆ DiffOrb (Q,U)L holds.
On the other hand, consider [σ̂] ∈ H1 ∩ R with E([σ̂]) ∈ DiffOrb (Q,U)L. The underlying map of
E([σ̂]) coincides with idQ on Q \ L. By construction, ψi(Ui) ∩ L 6= ∅ holds for each i ∈ I \ IK .
Hence ϕα(i) ◦ eσi = idQ ◦ψi = ψi. We deduce that eσi : Ui → Wα(i) must be an embedding of
orbifold charts. Since the canonical inclusion Ui → Wα(i) is an embedding of orbifold charts by
Construction 5.1.1 I.(d), Proposition 1.2.2 (d) yields eσi = h|Ui for some h ∈ Hα(i). Specializing
to the non-singular point xi ∈ Ui, this yields eσi(xi) = h(xi) ∈ Hα(i).xi. Since [σ̂] is contained in
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R, σi ∈ Ri and thus eσi(xi) ∩Hα(i).xi = {xi}. We obtain h(xi) = xi and since xi is non-singular,
h = idWα(i)

follows. Thus eσi = idWα(i)
|Ui and we deduce that σi must be the zero-section in X (Ui).

Repeat the argument for each i ∈ I \ IK . As Q \ L =
⋃
i∈I\IK ψi(Ui) holds by construction, [σ̂] is

an element of XOrb (Q)L. Summarizing the preceding results, we obtain:

E(H1 ∩R) ∩DiffOrb (Q,U)L = E(H1 ∩R ∩ XOrb (Q)L). (5.2.7)

Since P = E(H1) generates DiffOrb (Q,U)0, we deduce that DiffOrb (Q,U)L is a Lie subgroup of
DiffOrb (Q,U) modeled on XOrb (Q)L. The space XOrb (Q)L is a closed vector subspace of XOrb (Q)c
by Lemma 3.3.8. Hence the identity (5.2.7) implies that DiffOrb (Q,U)L is locally closed in the
topological group DiffOrb (Q,U) and thus DiffOrb (Q,U)L is a closed subgroup by [9, III. §2, No. 1
Proposition 4].

For a trivial orbifold (i.e. a manifold) one need not refine the zero-neighborhood, i.e. we can always
choose K = L in Proposition 5.2.8 for a trivial orbifold.

5.2.9 Remark As mentioned in the introduction, this is not the first work which considers Lie
group structures on the diffeomorphism group of an orbifold. In [7] and the follow-up [8], the
diffeomorphism group of a compact orbifold was turned into a Fréchet-Lie group in the sense of
convenient differential calculus. We mention that the article [7] contains several errors, making
it unclear whether the methods outlined in [7, 8] turn the orbifold diffeomorphism group into a
convenient Lie group. To illustrate our concerns, we point out two serious problems in [7]:

• Lemma 23 in [7] states that the local lifts of an orbifold map are independent of local charts
once the lifts are chosen. In particular, it is claimed that there is a unique extension of a lift
defined on an open subset of a chart. The assertion clarifies the definition of an orbifold map
proposed in [7]. However, the lemma is false, as there may be several extensions to a lift. A
counter-example can be obtained as follows: Let R/〈γ〉 be the orbifold induced by the action
of the reflection γ at the origin. Consider a smooth map f : ]− 1, 3[→ R with f(t) 6= 0 if and
only if t ∈]0, 1[∪]2, 3[. If q : R→ R/G is the global chart for this orbifold, q ◦ f is a continuous
map, which induces a morphism of orbifolds in the sense of [7]. In fact, we may choose for
example f |]−1,1.5[ as a smooth lift at 0. Clearly there are several possibilities to extend this
lift smoothly to the pair of charts ]− 1, 3[,R thus contradicting the lemma.

• In Definition 31 of [7], the space of Cr-orbifold morphisms CrOrb(O1,O2) is endowed with a
topology. The topology is defined via the construction of a neighborhood base which depends
on a fixed locally finite covering C of the orbifold O1. Since the covering C is fixed, the sets
defined in Definition 31 will in general not contain all elements of CrOrb(O1,O2). To see
this, consider the manifold case, explicitly the space Cr(R,S1). Here S1 is the circle with the
structure of a one-dimensional smooth manifold. Cover R by some locally finite covering with
compact sets In and choose a C∞-map f ∈ Cr(R,S1) such that f(In) = S1 holds for some In.
Since S1 is not covered by a single manifold chart of S1, Definition 31 in [7] implies that f is
not contained in any basic set defined there (not even in basic neighborhoods around itself!).
Hence Definition 31 does not yield a “neighborhood base” (or a topology) on CrOrb(O1,O2).
Unfortunately this “topology” is used in [7] and [8] to obtain a topology on the diffeomorphism
group of a compact orbifold, which is supposed to turn this group into a convenient Lie group.



108 5 LIE GROUP STRUCTURE ON THE ORBIFOLD DIFFEOMORPHISM GROUP

5.3. The Lie algebra of DiffOrb (Q,U)

In this section, the Lie algebra L(G) of the group G := DiffOrb (Q,U) constructed in Section 5.2
will be determined. We stick to the notation introduced in Sections 5.1 and 5.2. By construction,
the map E : XOrb (Q)c ⊇ H1 → P ⊆ G, [σ̂] 7→ [expOrb] ◦ [σ̂]|Ω is a diffeomorphism of the open zero-
neighborhood H1 to an open identity-neighborhood P in G. Furthermore, E maps 0Orb to id(Q,U)

by Proposition 5.1.5. Use the natural isomorphism T0OrbE to identify Tid(Q,U)
G with XOrb (Q)c

∼=
T0OrbXOrb (Q)c.
We modify the classical argument to compute the Lie algebra of the diffeomorphism group of a
compact manifold via the adjoint action by Milnor (see [49, pp. 1035-1036]). To compute the Lie
bracket, we have to understand the adjoint action of Tid(Q,U)

G on itself. Using the chart E, the
product on G pulls back to a smooth product operation

[σ̂] ∗ [τ̂ ] := E−1(E([σ̂]) ◦ E([τ̂ ]))

on the zero-neighborhood {([σ̂], [τ̂ ]) |E([σ̂]) ◦ E([τ̂ ]) ∈ ImE} ⊆ H1 ×H1 ⊆ XOrb (Q)c × XOrb (Q)c.
By construction, [σ̂] ∗ 0Orb = [σ̂] = 0Orb ∗[σ̂] holds. Hence the constant term of the Taylor series
of ∗ in (0Orb,0Orb) (cf. [23, Proposition 1.17]) vanishes. Following [55, Example II.1.8], the Taylor
series is given as

[σ̂] ∗ [τ̂ ] = ([σ̂] + [τ̂ ]) + b([σ̂], [τ̂ ]) + · · · .

Here b([σ̂], [τ̂ ]) = ∂2

∂s∂t

∣∣∣
t,s=0

(t[σ̂] ∗ s[τ̂ ]) is a continuous XOrb (Q)c-valued bilinear map and the dots

stand for terms of higher degree (cf. [32]). With arguments as in [49, p. 1036], the adjoint action of
Tid(Q,U)

G on itself is given by

ad([σ̂])[τ̂ ] = b([σ̂], [τ̂ ])− b([τ̂ ], [σ̂]).

In other words, the skew-symmetric part of the bilinear map b defines the adjoint action.
By [49, Assertion 5.5] (or [55, Example II.3.9]), the Lie algebra L(G) of G may be identified with
Tid(Q,U)

G such that the Lie bracket coincides with the adjoint action: [x, y ] = ad(x)y. To compute
the Lie bracket [ · , · ] , it is sufficient to compute the second derivative of the local product operation
in XOrb (Q)c. Consider the atlas A as in Construction 5.1.1 together with the linear topological
embedding with closed image ΛA : XOrb (Q)c →

⊕
i∈I X (Ui) , [σ̂] 7→ (σi)i∈I . For fixed [σ̂], [τ̂ ] ∈

XOrb (Q)c, the map (t, s) 7→ t[σ̂] ∗ s[τ̂ ] factors through a finite subproduct of the direct sum. Hence
the derivative of s[σ̂] ∗ t[τ̂ ] may be computed from the derivatives of the canonical lifts (t[σ̂] ∗ s[τ̂ ])i.
Recall from Lemma 5.1.10 that for each pair [σ̂], [τ̂ ] ∈ H1, there is an orbisection [σ̂ � τ ] ∈ XOrb (Q)c
such that E([σ̂ � τ ]) = E([σ̂])◦E([τ̂ ]) Returning for a moment to E as a map onM as in Proposition
5.1.5. The mapping E is bijective, whence we deduce for i ∈ I the identity

(t[σ̂] ∗ s[τ̂ ])i = (tσα(i) �i sτα(i))|Ui .

For the rest of the proof, fix i ∈ I and compute ∂2

∂s∂t

∣∣∣
t,s=0

(tσα(i) �i sτα(i))|Ui . By construction, the

vector field tσα(i) �i sτα(i) is defined on Ω 5
4 ,K5,i

. As the restriction map res
Ω 5

4
,K5,i

Ui
is continuous

linear by [26, Lemma F.15 (a)], it commutes with the differential, i.e.

res
Ω 5

4
,K5,i

Ui

∂2

∂s∂t

∣∣∣∣
t,s=0

tσα(i) �i sτα(i) =
∂2

∂s∂t

∣∣∣∣
t,s=0

(tσα(i) �i sτα(i))|Ui .
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Thus it suffices to compute the derivative in X
(

Ω 5
4 ,K5,i

)
.

The set
{

(V n5
4 ,α(i)

, κ
α(i)
n )

∣∣∣ (V n5,α(i), κ
α(i)
n )) ∈ F5(K5,i

}
is finite and covers Ω 5

4 ,K5,i
. Hence the topology

on the space X
(

Ω 5
4 ,K5,i

)
is induced by the linear embedding with closed image

Γ: X
(

Ω 5
4 ,K5,i

)
→

∏
(V n

5,α(i)
,κ
α(i)
n )∈F5(K5,i)

C∞(V n5
4 ,α(i),R

d), X 7→ (pr2Tκ
α(i)
n X|V n5

4
,α(i)

)F5,K5,i
.

Here pr2 is the linear projection onto the second component of B 5
4
(0)×Rd. Since (κ

α(i)
n )−1|B 5

4
(0) is

a diffeomorphism onto V n5
4 ,α(i)

, the mapping

C∞((κα(i)
n )−1|B 5

4
(0),Rd) : C∞(V n5

4 ,α(i),R
d)→ C∞(B 5

4
(0),Rd), X 7→ X ◦ (κα(i)

n )−1|B 5
4

(0)

is an isomorphism of topological vector spaces by [26, Lemma A.1]. We derive an embedding of
topological vector spaces with closed image (C∞((κ

α(i)
n )−1|B 5

4
(0),Rd))F5(K5,i

◦ Γ. Using this map,

the derivative may be computed locally in A :=
∏
F5(K5,i)

C∞(B 5
4
(0),Rd). For X ∈ X

(
Wα(i)

)
,

define X[n] := pr2Tκ
α(i)
n X(κ

α(i)
n )−1|B 5

4
(0) ∈ C∞(B 5

4
(0),Rd). The map pr2 is linear and each Tκα(i)

n

is linear in the vector space component. Hence the definition of the vector space operations of
X
(
Wα(i)

)
shows that the identity (tX)[n] = tX[n] holds for each t ∈ R and X ∈ X

(
Wα(i)

)
.

To compute the derivative of (tσα(i) �i sτα(i)) in A, more information on (tσα(i) �i sτα(i))[n] is needed.
Fortunately, by Construction 5.1.6 a local formula is available. To write it down explicitly, we need
to recall notation and facts from the construction:
For each chart (V n5,α(i), κ

α(i)
n ), let expn be the Riemannian exponential map on B5(0) associated to

the pullback metric with respect to κα(i)
n and the member of the orbifold metric ρα(i) on Wα(i).

Recall from Construction D.9 that for x ∈ V n5
4 ,α(i)

, there is an open set Nx ⊆ TxWα(i) such that

Tκ
α(i)
n (Nx) ⊆ dom expn holds and expn restricts to an étale embedding on this set (cf. Lemma D.6).

By Construction 5.1.6, for (tσα(i) �i sτα(i))|Ω 5
4
,K5,i

and each chart V n5
4 ,α(i)

the local identity (D.9.3)

holds. We want to keep track of the local chart (V n5,k, κ
k
n) in which we construct a new vector field

via the operation � as in Construction D.9. Hence we write �[n] for � in the chart (V n5,k, κ
k
n). Using

the notation introduced, the identity (D.9.3) yields the following formula for x ∈ B 5
4
(0)

Tκα(i)
n tσα(i) �i sτα(i)(κ

α(i)
n )−1(x) = (x, (tσα(i))[n] �[n] (sτα(i))[n](x))

=(x, (expn |Tκα(i)
n (Nx)

)−1 expn(expn(x, (sτα(i))[n](x)), (tσα(i))[n](expn(sτα(i))[n](x))))

=(x, (expn |Tκα(i)
n (Nx)

)−1 expn(expn(x, s(τα(i))[n](x)), t(σα(i))[n](expn s(τα(i))[n](x)))).

Apply pr2 to the formula above to obtain the desired identity for (tσα(i) �i sτα(i))[n]. To simplify
the notation, we abbreviate X := (σα(i))[n] and Y := (τα(i))[n]. Recall the following properties
of expn (cf. [41, Theorem 1.6.12]): expn(x, 0) = x, d2 expn(x, 0) = idRd for all x ∈ B 5

4
(0). Define

Mx := Tκ
α(i)
n (N

(κ
α(i)
n )−1(x)

) ⊆ TxB 5
4
(0) for x ∈ B 5

4
(0). Since expn is injective on (x, 0) ∈ Tκα(i)

n (Nx)
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with expn(x, 0) = x and d2 expn(x, 0) = idRd , we derive

d(expn |Mx
))−1(x, ·) = idRd .

For x ∈ B 5
4
(0), the facts collected above allow us to obtain

∂2

∂s∂t

∣∣∣∣
t,s=0

(tσα(i) �i sτα(i))[n](x)

=
∂2

∂s∂t

∣∣∣∣
t,s=0

(expn |Mx
)−1 expn(expn(x, sY (x)), tX(expn(x, sY (x))))

=
∂

∂s

∣∣∣∣
s=0

d(expn |Mx
)−1 ∂

∂t

∣∣∣∣
t=0

expn(expn(x, sY (x)), tX(expn(x, sY (x))))

=
∂

∂s

∣∣∣∣
s=0

d(expn |Mx)−1(expn(x, sY (x)), X(expn(x, sY (x)))). (5.3.1)

The map d(expn |Mx)−1 is linear in the second argument. Hence the rule on partial derivatives
(1.1.1) applied to (5.3.1) yields the following identity:

∂2

∂s∂t

∣∣∣∣
t,s=0

(tσα(i) �i sτα(i))[n](x) =d(expn |Mx)−1

(
expn(x, 0), dX

(
∂

∂s

∣∣∣∣
s=0

expn(x, sY (x))

))
+ d(2)(expn |Mx)−1

(
∂

∂s

∣∣∣∣
s=0

expn(x, sY (x)), X(expn(x, 0))

)
=dX(x, Y (x)) + d(2)(expn |Mx

)−1(x, Y (x), X(x)))︸ ︷︷ ︸
SXY :=

.

The derivative d(2)(expn |Tκα(i)
n (Nx)

)−1(x, ·, ·) is a symmetric bilinear map by [23, Proposition 1.13].
Hence SXY is symmetric in X and Y . An analogous computation yields:

∂2

∂s∂t

∣∣∣∣
t,s=0

(tσα(i) �i sτα(i))[n](x) = dY (x,X(x)) + SXY .

As C∞(κ
α(i)
n ,Rd) is an isomorphism of topological vector spaces and evaluation at x is continuous

linear, ((ad([σ̂])[τ̂ ])α(i))[n] is given by

((ad([σ̂])[τ̂ ])α(i))[n](x) =
∂2

∂s∂t

∣∣∣∣
t,s=0

(tσα(i) �i sτα(i))[n](x)− ∂2

∂s∂t

∣∣∣∣
t,s=0

(tτα(i) �i sσα(i))[n](x)

= dX(Y (x))− dY (X(x)) = (d(σα(i))[n](τα(i))[n] − d(τα(i))[n](σα(i))[n])(x).

Recall from [55, Definition I.3.6] that the Lie bracket of vector fields V,W in X
(

Ω 5
4 ,K5,i

)
is the

unique vector field [V,W ]i such that for each chart (V n5
4 ,α(i)

, κ
α(i)
n ) ∈ F5(K5,i) the identity

([V,W ]i)[n] = dW[n]V[n] − dV[n]W[n]
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is satisfied. By the above computation, the negative of the Lie bracket of the vector fields σα(i)

and τα(i) coincides with (ad([σ̂])[τ̂ ])α(i) on Ω 5
4 ,K5,i

. Since Ui ⊆ Ω 5
4 ,K5,i

holds, the canonical lift
(ad([σ̂])[τ̂ ])i on Ui coincides with the negative of the Lie bracket of the canonical lifts of σi and
τi. By abuse of notation, let [σi, τi ] be the Lie bracket of the lifts in X (Ui). The families {σi}i∈I
and {τi}i∈I are families of canonical lifts of the orbisections [σ̂] and [τ̂ ] with respect to the atlas A.
Hence each pair of lifts σi, σj (respectively τi, τj) for i, j ∈ I is φ-related for φ ∈ ChUi,Uj (i.e. (3.2.3)
holds). By [49, Assertion 4.6], [σi, τi ] and [σj , τj ] are φ-related for each φ ∈ ChUi,Uj and every pair
i, j ∈ I. Hence ([σi, τi ])i∈I is a family of canonical lifts for the compactly supported orbisection
ad([σ̂])[τ̂ ]. The result of this section may now be summarized as follows:

5.3.1 Theorem (Lie algebra of DiffOrb (Q,U)) Identify Tid(Q,U)
DiffOrb (Q,U) via T0OrbE with the

space XOrb (Q)c and the Lie algebra of DiffOrb (Q,U) with (XOrb (Q)c , [ ·, · ]). The Lie bracket [ ·, · ]
is defined as follows:
For arbitrary [σ̂], [τ̂ ] ∈ XOrb (Q)c, their Lie bracket [ [σ̂ ] , [τ̂ ]] is the unique compactly supported
orbisection whose canonical lift on an orbifold chart (U,G,ϕ) is the negative of the Lie bracket in
X (U) of their canonical lifts σU and τU .

If the orbifold is trivial (i.e. a manifold), Theorem 5.3.1 specializes to the well known description
of the Lie algebra for the diffeomorphism group of a manifold (cf. [55, Example II.3.14]).

5.4. Regularity properties of DiffOrb (Q,U)

In this section, we prove that DiffOrb (Q,U) is a regular Lie group in the sense of Milnor (cf. [49,
Definition 7.6]). Unless stated otherwise the notation from Section 5.1 and Section 5.2 will be used.
Another prerequisite is the definition of Ck-regularity as outlined in Appendix C.5. The philosophy
in the proof of the Lie group properties for DiffOrb (Q,U) was to compute the relevant data locally
in orbifold charts. Hence we investigate the situation on orbifold charts, where we study the flows of
vector fields and their differentiability properties. Several facts from the calculus of Cr,s-mappings
(see Definition 1.1.5, cf. [2]) are needed. We study the following differential equation:

5.4.1 Define f : [0, 1]×B5(0)×Cr([0, 1], C∞(B5(0),Rd))→ Rd via f(t, x, γ) := γ∧(t, x) := γ(t)(x)
for r ∈ N0 ∪ {∞}. Consider the evaluation maps ε : C∞(B5(0),Rd) × B5(0) → Rd, ε(σ, x) := σ(x)
and ε1 : Cr([0, 1], C∞(B5(0),Rd))× [0, 1]→ C∞(B5(0),Rd), (γ, t) 7→ γ(t). By [2, Proposition 3.20],
ε is smooth and ε1 is of class C∞,r. We may rewrite the map f as f(t, x, γ) = ε(ε1(γ, t), x).
Hence the chain rule [2, Lemma 3.17] implies that f is of class Cr,∞ with respect to the product
[0, 1]×

(
B5(0)× Cr([0, 1], C∞(B5(0),Rd))

)
. Thus the initial value problem{

x′(t) = f(t, x(t), γ) = γ∧(t, x(t)),

x(t0) = x0, x0 ∈ B5(0)
(5.4.1)

admits a unique maximal solution ϕt0,x0,γ by [2, Theorem 5.6]. Fixing t0 = 0, the flow of (5.4.1),

Flf0 := Flf (0, ·) : [0, 1]×
(
B5(0)× Cr([0, 1], C∞(B5(0),Rd))

)
⊇ Ω0 → Rd, (t, (x0, γ)) 7→ ϕ0,x0,γ(t),
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is of class Cr+1,∞ on the open subset Ω0 by [2, Proposition 5.9].

5.4.2 Lemma Let r ∈ N0 ∪ {∞}, γ ∈ Cr([0, 1], C∞(B5(0),Rd)) and consider f as in 5.4.1.

(a) If γ satisfies ‖γ(t)‖
B4(0),0

≤ 1 for all t ∈ [0, 1], then the map Flf0 (·, γ), is defined on [0, 1]×B3(0)

and Flf0 ([0, 1]×B3(0)× {γ}) ⊆ B4(0).
(b) Consider ζ > 0 and a compact subset K ⊆ B3(0). There exists 0 < τ ≤ 1 such that for all

γ ∈ Cr([0, 1], C∞(B5(0),Rd)) with supt∈[0,1] ‖γ(t)‖
B4(0),1

< τ (cf. Definition C.2.5), we have

‖Flf0 (t, ·, γ)− idB3(0)‖K,1 < ζ for all t ∈ [0, 1].

(c) For τ as in (b) and Bτ (0) :=
{
f ∈ C∞(B5(0),Rd)

∣∣∣ ‖f‖B4(0),0
< τ

}
, we obtain a smooth map

F : Cr([0, 1], Bτ (0))→ Cr+1([0, 1], C∞(B3(0),Rd)), γ 7→ Flf0 (·, γ)|[0,1]×B3(0).

Proof. (a) For x0 ∈ B3(0), the maximal solution to the initial value problem (5.4.1) is the mapping
Flf0 (·, x0, γ). We claim that it is defined at least on [0, 1]. Restricting Flf0 , we obtain the
maximal solution to the initial value problem (5.4.1) whose image remains inside of B4(0):
Denote this solution by u : [0, t0[→ B4(0). Then u is of class C1. If t0 < 1 holds, we deduce
‖u(t)‖ ≤ ‖u(0)‖+ ‖

∫ t
0
γ∧(s, u(s))ds‖ ≤ ‖x0‖+ 1 =: ρ < 4 from the Fundamental Theorem of

Calculus [23, Theorem 1.5]. Therefore u|[0,t0[ does not leave the compact subset Bρ(0) ⊆ B4(0).
Close to t0, the right hand side of the differential equation (5.4.1) is defined on an open subset of
a finite-dimensional Banach space, whence by [30, Lemma 3.11], Ck maps coincide with the k-
times continuously Fréchet differentiable maps considered in [45]. One may therefore apply [45,
IV. Theorem 2.3]: The maximal solution must be defined on an interval strictly larger than
[0, t0[, thus contradicting the choice of t0. We conclude that Flf0 (·, γ) maps [0, 1]×B3(0) into
B4(0).

(b) Observe that Flf0 (·, γ) is of class Cr+1,∞ by 5.4.1. By [2, Lemma 3.15] Flf0 (·, γ) is a C1-mapping,
whence the derivatives required for ‖·‖K,1 exist. The mapping h : [0, 1]×B3(0)→ Rd, h(t, x) :=

γ∧(t,Flf0 (t, x, γ)) is of class Cr,∞ by the chain rule [2, Lemma 3.19]. Fix x ∈ B3(0) and consider
the map g : [0, 1]→ L

(
Rd
)
, g(t) := d2 Flf0 (t, x, γ; ·). Schwarz’ Theorem [2, Proposition 3.6 and

Remark 3.7] implies that g is a solution to{
y′(t) = d2γ

∧(t,Flf0 (t, x, γ); ·) ◦ y(t)

y(0) = idRd .
(5.4.2)

The domain of γ∧(t, ·) is an open subset of Rd. Hence the derivative d2γ
∧(t, x; ·) is determined

by the Jacobian matrix. As all norms on Rd are equivalent, there is a constant C > 0, de-
pending only on d and the choice of norm such that ‖d2γ

∧(t, x; ·)‖op ≤ C sup|α|=1 ‖∂αγ∧(t, x)‖
with partial derivatives in the x-variable. Furthermore, Flf0 (·, γ) maps [0, 1]×B3(0) into B4(0)
by (a) and ‖·‖

B4(0),1
controls the partial derivatives. Hence the above estimate yields

sup
t∈[0,1]

∥∥∥d2γ
∧(t,Flf0 (t, x, γ); ·)

∥∥∥
op
≤ sup
t∈[0,1]

C ‖γ(t)‖
B4(0),1

.
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Vice versa, there is a constant c > 0, depending only on the norm and d such that

sup
t∈[0,1]

sup
|α|=1

∥∥∥∂α(Flf0 (t, ·, γ)− idRd)(x)
∥∥∥ ≤ sup

t∈[0,1]

c ‖g(t)− g(0)‖op .

Let θ > 0 be an upper bound for supt∈[0,1] C ‖γ(t)‖
B4(0),1

. The mapping g is of class C1,
whence the Fundamental Theorem of Calculus [23, Theorem 1.5] yields:

‖g(t)− idRd‖op = ‖g(t)− g(0)‖op =

∥∥∥∥∫ t

0

d2γ
∧(s,Flf0 (s, x, γ); g(s))ds

∥∥∥∥
op

≤
∫ t

0

θ ‖g(s)‖op ds =

∫ t

0

θ(‖g(0)‖op + (‖g(s)‖op − ‖g(0)‖op))ds

≤
∫ t

0

θ ‖idRd‖op ds+

∫ t

0

θ ‖g(s)− idRd‖op ds = θt+

∫ t

0

θ ‖g(s)− idRd‖op ds.

Apply Gronwall‘s inequality [3, 6.1 Gronwall’s Lemma] to choose 1 > τ1
C > 0 such that

supt∈[0,1] ‖γ(t)‖
B4(0),1

< τ1
C implies

sup
t∈[0,1]

sup
|α|=1

∥∥∥∂α(Flf0 (t, ·, γ)− idRd)(x)
∥∥∥ ≤ sup

t∈[0,1]

c ‖g(t)− g(0)‖op < ζ. (5.4.3)

Observe that the estimate (5.4.3) holds for each x ∈ B3(0), as the constants did not depend on
x. We have to obtain an estimate for Flf0 : The Fundamental Theorem of Calculus [23, Theorem
1.5] with equation (5.4.1) yields for x ∈ B3(0):∥∥∥Flf0 (t, x, γ)− idB3(0)(x)

∥∥∥ =
∥∥∥Flf0 (t, x, γ)− Flf0 (0, x, γ)

∥∥∥ =

∥∥∥∥∫ t

0

γ∧(s,Flf0 (s, x, γ))ds

∥∥∥∥ .
Require supt∈[0,1] ‖γ(t)‖

B4(0),0
< ζ to obtain supt∈[0,1]

∥∥∥Flf0 (t, x, γ)− idB3(0)(x)
∥∥∥ < ζ. The

estimates show that τ := min
{
ζ, τ1C , 1

}
is a constant with the desired properties.

(c) Let r ∈ N0∪{∞}, X be a Fréchet space and U ⊆ Rd an open subset. By Remark C.2.3, each of
the topological spaces [0, 1], Cr([0, 1], X) and Cr(U,X) is metrizable. The set Cr([0, 1], Bτ (0))
is an open subset of the Fréchet space Cr([0, 1], C∞(B5(0),Rd)) (cf. [24, Lemma 3.6]), hence
metrizable. Therefore each finite Cartesian product of these spaces is a k-space by [20, XI.
9.3] and we may use the Exponential Law for Cr,s-maps (cf. [2, Theorem 3.28 (e)]):
Since Flf0 (·, γ) is of class Cr+1,∞, we deduce that F (γ) is in Cr+1([0, 1], C∞(B3(0),Rd). Hence
F makes sense and we claim that F is smooth. By 5.4.1, Flf0 is of class Cr+1,∞ on the product
[0, 1]× (B3(0)× Cr([0, 1], Bτ (0))). The Exponential Law implies that

(Flf0 )∨ : [0, 1]→ C∞(B3(0)× Cr([0, 1], Bτ (0))), t 7→ ((x, γ) 7→ Flf0 (t, x, γ))

is a Cr+1-map. Now (Flf0 )∨ coincides with the map

(Flf0 )† : [0, 1]→ C∞(Cr([0, 1], Bτ (0))×B3(0),Rd), t 7→ ((γ, x) 7→ Flf0 (t, x, γ)),
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except for the inessential order of x and γ. Combine the Exponential Law with [2, Lemma
3.22] to establish the isomorphism

Φ: C∞(Cr([0, 1], Bτ (0)), C∞(B3(0),Rd))→ C∞(Cr([0, 1], Bτ (0))×B3(0),Rd), f 7→ f∧.

Then (F∧)† := (Φ−1((Flf0 )†)) : [0, 1] → C∞(Cr([0, 1], Bτ (0)), C∞(B3(0),Rd)) is a mapping of
class Cr+1 by the Exponential Law. Evaluating (F∧)† at (t, γ) ∈ [0, 1]× Cr([0, 1], Bτ (0)) the
definition yields (F∧)†(t)(γ) = F∧(γ, t). Hence by [2, Corollary 3.8] and the Exponential Law,
the map F∧ : Cr([0, 1], Bτ (0)) × [0, 1] → C∞(B3(0),Rd), (γ, t) 7→ F (γ)(t) is a C∞,r+1-map.
By [2, Theorem 3.28 (e)], this proves F to be a smooth map.

To prove the (C0-)regularity of DiffOrb (Q,U), we have to construct a smooth evolution map
C0([0, 1],XOrb (Q)c) → DiffOrb (Q,U). We will assure the smoothness of all relevant maps via
patched mapping arguments. These are prepared by the following preliminary lemma.

5.4.3 Lemma Consider r ∈ N0∪{∞} and define for γ ∈ Cr([0, 1],X
(
Wα(i)

)
) and (V n5,α(i), κ

α(i)
n ) ∈

F5(K5,i) the Cr-curves γκα(i)
n

:= θ
κ
α(i)
n
◦γ (cf. Definition C.3.1) and γ[n] := C∞((κ

α(i)
n )−1,Rd)◦γ

κ
α(i)
n

.
For each i ∈ I, there is an open C1-neighborhood E i ⊆ X

(
Wα(i)

)
of the zero-section such that the

following holds:

(a) For γ ∈ Cr([0, 1], E i), we obtain a map e(γ) ∈ Cr+1([0, 1],X
(
Ω2,K5,i

)
), defined locally via

e(γ)(t)(x) = (expWα(i)
|Nx)−1◦(κα(i)

n )−1◦Flf0 (t, κα(i)
n (x), γ[n]), (t, x) ∈ [0, 1]×V n2,α(i) (5.4.4)

for f as in 5.4.1 and Nx as in D.6. Furthermore, for Sα(i) as in Construction 5.1.1 V. and
(t, x) ∈ [0, 1]× V n2,α(i), the following estimates hold:

expWα(i)
◦e(γ)(t)(x) ∈ V n3,α(i) and e(γ)(t)(x) ∈ Bρα(i)

(0x, Sα(i)). (5.4.5)

(b) For each γ ∈ Cr([0, 1], E i), the map e(γ)(0) is the zero section in X
(
Ω2,K5,i

)
. If γ is the

constant map γ ≡ 0Wα(i)
, then e(γ)(t) is the zero-section for each t ∈ [0, 1].

(c) The following maps are smooth

ωi : C
r([0, 1], E i)→ Cr+1([0, 1],X

(
Ω2,K5,i

)
), γ 7→ e(γ)

θi : C
r([0, 1], E i)→ X

(
Ω2,K5,i

)
, γ 7→ e(γ)(1).

Proof. The set F5(K5,i) is finite, whence by Lemma D.6 (a), we can choose and fix ν > 0 with the
following properties: For each y ∈ Ω4,K5,i

, the map expWα(i)
is injective on

Ny =
⋃

(V n
5,α(i)

,κ
α(i)
n )∈Iy

(Tκα(i)
n )−1

({
κα(i)
n (y)

}
×Bν(0)

)
,
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where Iy =
{

(V n5,αi, κ
α(i)
n ) ∈ F5(K5,i)

∣∣∣x ∈ V n4,α(i)

}
. Lemma D.6 (b) holds for the exponential maps

expn associated to the pullback metric on B5(0) with respect to ρα(i) and κα(i)
n .

Consider (V n5,α(i), κ
α(i)
n ) ∈ F5(K5,i). By Lemma D.3, there are constants εn > 0 and 1 > δn > 0 such

that aα(i)
n : B4(0)×Bδn(0)→ Bεn(0x), a

α(i)
n (x, y) := expn |−1

Bεn (0x)(x+y) is a smooth map. Shrinking
εn, δn, without loss of generality εn < min {Ri, ν} holds for the constant Ri from Construction 5.1.1
V. Recall that κα(i)

n (V n5,α(i)) = B5(0), whence by Lemma 5.4.2 (b) there is a constant 0 < τn ≤ 1

such that for γ ∈ Cr([0, 1], C∞(B5(0),Rd)) with supt∈[0,1] ‖γ(t)‖
B4(0),1

≤ τn, one has

sup
t∈[0,1]

∥∥∥Flf0 (t, ·, γ)− idB3(0)

∥∥∥
B2(0),1

< δn. (5.4.6)

Observe that δn < 1 together with (5.4.6) implies Flf0 (t, ·, γ)(B2(0)) ⊆ B3(0). Consider the open
zero-neighborhood En :=

{
f ∈ C∞(B5(0),Rd)

∣∣∣ ‖f‖B4(0),1
< τn

}
and let

E in :=
{
σ ∈ X

(
Ω5,K5,i

) ∣∣∣σ[n] := pr2 ◦ Tκα(i)
n ◦ σ ◦ (κα(i)

n )−1 ∈ En
}

be the open neighborhood of the zero-section in X
(
Ω5,K5,i

)
induced by En. Repeating this con-

struction, we obtain open neighborhoods of the zero map (respectively the zero-section) for each
chart in F5(K5,i). Let Vi :=

⋂
F5(K5,i)

E in ⊆ X
(
Ω5,K5,i

)
. We show that the open zero-neighborhood

E i := (res
Wα(i)

Ω5,K5,i
)−1(Vi) ⊆ X

(
Wα(i)

)
satisfies the assertion of the lemma.

(a) Consider γ ∈ Cr([0, 1], Vi) and (V n5,α(i), κ
α(i)
n ) ∈ F5(K5,i). The map hn sending γ(t) to γ[n](t)

for t ∈ [0, 1] is continuous linear by [26, Lemma F.6 and Lemma 4.11]. We deduce from
[33, Lemma 1.2] that (hn)∗ : Cr([0, 1],X

(
Ω5,K5,i

)
) → Cr([0, 1], C∞(B5(0),Rd)), γ 7→ γ[n] is

continuous linear. Since γ ∈ Vi, we have γ
κ
α(i)
n
∈ Cr([0, 1], En). By construction, (5.4.6)

holds, aα(i)
n is smooth and Flf0 (·, ·, γ[n]) a Cr+1,∞-mapping by 5.4.1. By the Exponential

Law [2, Theorem 3.28 (e)], a map in Cr+1([0, 1], C∞(B2(0),Rd)) may be defined via

e(γ)n(t) := aα(i)
n ◦ (idB2(0),Flf0 (t, ·, γ[n])− idB2(0)), t ∈ [0, 1]. (5.4.7)

Observe that e(γ)n(t)(B2(0)) ⊆ Bεn(0) for each t ∈ [0, 1]. The construction may be repeated
for each chart in F5(K5,i). As εn < min {ν,Ri}, we obtain by definition of ν and Ri for
(t, x) ∈ [0, 1]×B2(0):

T (κα(i)
n )−1(x, e(γ)n(t)(x)) ∈ N

(κ
α(i)
n )−1(x)

∩Bρα(i)
(0

(κ
α(i)
n )−1(x)

, Sα(i)). (5.4.8)

By Lemma D.6 (b), the formula (5.4.7) is equivalent to the right hand side of (5.4.4). From
the uniqueness of the flow Flf0 (·, γ[n]), we deduce that the mappings e(γ)n coincide on the
intersections of their domains, whence we obtain a map e(γ) ∈ Cr+1([0, 1],X

(
Ω2,K5,i

)
). The

local representative of this time dependent vector field on (V n5,α(i), κ
α(i)
n ) ∈ F5(K5,i) is e(γ)n.
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For x ∈ V n2,α(i), the formula of e(γ)n together with Lemma D.6 (b) allows us to compute

(expWα(i)
|Nx) ◦ e(γ)(t)(x) = (κα(i)

n )−1 expn e(γ)n(t)(κα(i)
n (x))

= κα(i)
n Flf0 (t, κn(x), γ[n]) ∈ V n3,α(i).

Furthermore, (5.4.8) shows that the estimate (5.4.5) holds. The map res
Wα(i)

Ω5,K5,i
is continuous

linear by [26, Lemma F.15], whence (res
Wα(i)

Ω5,K5,i
)∗ : Cr([0, 1],X

(
Wα(i)

)
)→ Cr([0, 1],X

(
Ω5,K5,i

)
)

is continuous linear by [33, Lemma 1.2]. Assign to a map γ ∈ Cr([0, 1], E i) the vector field
e(res

Wα(i)

Ω5,K5,i
(γ)). By abuse of notation, we will omit res

Wα(i)

Ω5,K5,i
from now on, i.e. for γ ∈

Cr([0, 1], E i), e(γ) := e(res
Wα(i)

Ω5,K5,i
(γ)).

(b) The map Flf0 (·, κα(i)
n (x), γ[n]) is a solution to the initial value problem (5.4.1) with initial value

Flf0 (0, κ
α(i)
n (x), γ[n]) = κ

α(i)
n (x). We obtain e(γ)(0)(x) = (expWα(i)

|Nx)−1(x) = 0x from (5.4.4),
since expWα(i)

(0x) = x holds and on Nx the map expWα(i)
is injective.

If γ[n] ≡ 0, its flow is defined as Flf0 (t, κ
α(i)
n (x), 0) = κ

α(i)
n (x). Analogous to the previous

argument, e(γ)(t) is the zero-section for each t ∈ [0, 1].
(c) We prove the smoothness of ωi, δi via a patched mapping argument. To this end, consider

the continuous linear maps psn : X
(
Ωs,K5,i

)
→ C∞(Bs(0),Rd), σ 7→ σ

κ
α(i)
n
◦ (κ

α(i)
n )−1|Bs(0) for

s ∈ [1, 5]. By Definition C.3.1, ps := (psn)
(V n

5,α(i)
,κ
α(i)
n )∈F5(K5,i)

is a topological embedding with

closed image. Thus Lemma C.3.6 yields a topological embedding with closed image

ps∗ : Cr([0, 1],X
(
Ωs,K5,i

)
)→

⊕
F5(K5,i)

Cr([0, 1], C∞(Bs(0),Rd)), γ 7→ (psn ◦ γ)F5,K5,i
.

Consider the maps hi : Cr([0, 1], Vi)→ Cr+1([0, 1],X
(
Ω5,K5,i

)
), γ 7→ e(γ). We claim that there

are smooth maps Dn such that the following diagram is commutative:

Cr([0, 1], E i)
res

Wα(i)
Ω5,K5,i

// Cr([0, 1], Vi)
hi //

p5
∗

��

Cr+1([0, 1],X
(
Ω2,K5,i

)
)

p2
∗

��⊕
F5(K5,i)

Cr([0, 1], En)

⊕
F5(K5,i)

Dn
//
⊕

F5(K5,i)

Cr+1([0, 1], C∞(B2(0),Rd))

Observe that the vertical arrows are given by embeddings with closed image and composition
in the upper row yields ωi = hi ◦ res. Since res is a smooth map, ωi will be smooth if hi
is smooth. If the claim is true, then by Proposition C.3.8 hi and thus ωi will be smooth.
Consider the open sets bB2(0), Bδn(0)c∞ ⊆ C∞(B3(0),Rd) and define

(aα(i)
n )∗ : bB2(0), Bδn(0)c∞ → C∞(B2(0),Rd), (aα(i)

n )∗(g)(x) := aα(i)
n (x, g(x)).

By [26, Proposition 4.23 (a)], (a
α(i)
n )∗ is smooth, since aα(i)

n is smooth. From Lemma 5.4.2
and the definition of En, we deduce that Fn : Cr([0, 1], En) → Cr+1([0, 1], C∞(B3(0),Rd)),
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Fn(γ)(t) := Flf0 (t, ·, γ)|B3(0) − idB3(0), t ∈ [0, 1] is smooth. The estimate (5.4.6) yields
Fn(γ)([0, 1]) ⊆ bB2(0), Bδn(0)c∞. Thus (a

α(i)
n )∗ ◦ F∧n : Cr([0, 1], En)× [0, 1]→ C∞(B2(0),Rd)

is a C∞,r+1-map by the Exponential Law [2, Theorem 3.28 (e)] and [2, Lemma 3.18]. Ap-
ply [2, Corollary 3.8 and Theorem 3.28 (e)] to obtain a smooth map:

Dn : Cr([0, 1], En)→ Cr+1([0, 1], C∞(B2(0),Rd), γ 7→ ((aα(i)
n )∗ ◦ F∧n )∨(γ) = (aα(i)

n )∗ ◦ Fn(γ)

with Dn(0) = 0. A computation with (5.4.4) and Lemma D.6 (b) shows that ⊕F5(K5,i)Dn

makes the above diagram commutative. By [2, Proposition 2.20], we consider the smooth
evaluation ε1 : Cr+1([0, 1],X

(
Ω2,K5,i

)
)→ X

(
Ω2,K5,i

)
, γ 7→ γ(1). Since θi = ε1 ◦ ωi holds, θi is

smooth.

5.4.4 Lemma In the setting of Lemma 5.4.3, define the open set E := Λ−1
C (
⊕

i∈I E i) ⊆ XOrb (Q)c,
where C is the orbifold atlas introduced in 5.1.3. Let r ∈ N0 ∪ {∞}. For each i ∈ I and γ ∈
Cr([0, 1],XOrb (Q)c), we define γα(i) : [0, 1] → X

(
Wα(i)

)
, t 7→ (γ(t))α(i), where (γ(t))α(i) is the

canonical lift of γ(t) with respect to the chart (Wα(i), Hα(i), ϕα(i)).

(a) If γ ∈ Cr([0, 1],XOrb (Q)c), then the map γα(i) is of class Cr and for i ∈ I, the map
pi : C

r([0, 1],XOrb (Q)c)→ Cr([0, 1],X
(
Wα(i)

)
), γ 7→ γα(i) is continuous linear.

(b) For each γ ∈ Cr([0, 1], E), we obtain a path e(γ) ∈ Cr+1([0, 1],XOrb (Q)c) whose canonical lifts
with respect to A are given by e(pi(γ))|Ui for i ∈ I.

Proof. (a) Pick γ ∈ Cr([0, 1],XOrb (Q)c). By construction, ΛC ◦ γ ∈ Cr([0, 1],
⊕

i∈I X
(
Wα(i)

)
)

has compact image. Arguing as in the proof of Lemma C.3.6, γ induces a family of maps
(γα(i))i∈I ∈

⊕
i∈I C

r([0, 1],X
(
Wα(i)

)
). Recall from the Definition 3.3.3 of the c.s. orbisection

topology that each map τWα(i)
: XOrb (Q)c → X

(
Wα(i)

)
, [σ̂] 7→ σWα(i)

is continuous linear.
By [33, Lemma 1.2], pi is a continuous linear map, as pi = (τWα(i)

)∗ holds.
(b) Consider the family of time-dependent vector fields (s 7→ e(γα(i))(s)|Ui)i∈I constructed in

Lemma 5.4.3 (a). We claim that for fixed s ∈ [0, 1], these vector fields are a canonical family
of lifts of an orbisection. It is sufficient to check the following stronger condition:
For all i, j ∈ I and any change of charts µ : Ω2,K5,i ⊇ domµ→ codµ ⊆ Ω2,K5,j , e(γα(j))(s) ◦
µ = Tµ ◦ e(γα(i))(s)|domµ holds.
We check the condition locally: Pick x ∈ domµ together with charts (V n5,α(i), κ

α(i)
n ) ∈ F5(K5,i),

(V m5,α(j), κ
α(j)
m ) ∈ F5(K5,j) such that x ∈ V n2,α(i) and µ(x) ∈ V m2,α(j) ⊆ Ω2,K5,j

. Since γα(i) ∈ E i,
(5.4.6) yields maps

ϕx : [0, 1]→ V n3,α(i), t 7→ (κα(i)
n )−1 Flf0 (t, κα(i)

n (x), γα(i)[n])

ϕµ(x) : [0, 1]→ V m3,α(j), t 7→ (κα(j)
m )−1 Flf0 (t, κα(j)

m (x), γα(j)[m]).

These maps are C1-integral curves for the (time-dependent) vector field γα(i) with initial
condition ϕx(0) = x, respectively for γα(j) with ϕµ(x)(0) = µ(x) (using the terminology
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of [45, IV, §2]). The charts in F5(K5,α(i)) are contained in some Zrα(i), by Construction
5.1.1. Since x ∈ Kα(i) and µ(x) ∈ Kα(j), there is a change of charts λ : Zrα(i) → Wα(j) with
λ(x) = µ(x). Composing λ with a suitable element of Hα(j), without loss of generality there
is an open neighborhood Ux of x with µ|Ux = λ|Ux . The set V n5,α(i) is contained in domλ,
whence λ ◦ϕx : [0, 1]→Wα(j) defines a C1-curve such that λ ◦ϕx(0) = λ(x) = µ(x) ∈ Ω2,K5,i .
For fixed t ∈ [0, 1], the vector fields γα(i)(t) and γα(j)(t) are members of a canonical family of
lifts of an orbisection, i.e. γα(j)(t) ◦ λ = Tλγα(i)(t)|domλ. We compute:

γα(j)(t)(λϕx(t)) = Tλγα(i)(t)(ϕx(t)) = Tλ( ∂∂tϕx)(t) = ∂
∂t (λ ◦ ϕx)(t).

Thus the C1-curve λ ◦ ϕx is an integral curve for the time-dependent vector field γα(j) with
initial condition λ◦ϕx(0) = λ(x) = µ(x). On the other hand, the same is true for the C1 curve
ϕµ(x). As integral curves for (time-dependent) vector fields are unique (cf. [45, IV. Theorem
2.1] with [45, p. 71]) we derive λ ◦ ϕx = ϕµ(x).
Computing locally, we exploit that λ ◦ (κ

α(i)
n )−1 is a Riemannian embedding of B5(0) into

Wα(j). In particular, by [43, IV. Proposition 2.6] the identity

expWα(j)
T (λ(κα(i)

n )−1)(v) = λ(κα(i)
n )−1 expn(v) ∀v ∈ dom expn

holds. Notably, the estimates (5.4.5) and (5.4.8) hold. With Lemma D.6 (b) and the identity
(5.4.4) for e(γα(i)) on [0, 1]× V n2,α(i), one deduces from the above identity

expWα(j)
Tλe(γα(i))(s)(x) = expWα(j)

Tλ(Tκα(i)
n )−1Tκα(i)

n e(γα(i))(s)(x)

= λ(κα(i)
n )−1 expn Tκ

α(i)
n e(γα(i))(s)(x)

= λ(κα(i)
n )−1κα(i)

n expWα(i)
|Nxe(γα(i))(s)(x)

= λ(κα(i)
n )−1 Flf0 (s, κα(i)

n (x), γα(i)[n]) = λ ◦ ϕx(s) = ϕµ(x)(s).

On the other hand, the local formula (5.4.4) for e(γα(j)) on [0, 1]× V m2,α(j) implies

expWα(j)
◦e(γα(j))(s)(µ(x)) = ϕµ(x)(s) = expWα(j)

Tλe(γα(i))(s)(x).

By construction, λ(x) = µ(x) ∈ K◦j . Moreover, the mappings e(γα(j))(s) and e(γα(i))(s) are
vector fields which satisfy the estimate (5.4.5). Together with these facts, the definition of the
constants (cf. Construction 5.1.1 V.) yields:

e(γα(j))(s)(µ(x)), Tλe(γα(i))(s)(x) ∈ Bρα(j)
(0µ(x), sα(j)) ⊆ Ôα(j).

The map expWα(j)
is injective on the intersection Ôα(j) ∩ Tµ(x)Wα(j). Hence from the above

identity e(γα(j))(s) ◦ µ(x) = Tµ ◦ e(γα(i))(s)(x) follows, thus proving the claim. Since Ui
is contained in Ω2,K5,i

, we deduce that the family (e(γα(i))(s)|Ui)i∈I is a canonical family
for an orbisection. Thus Remark 3.2.10 (a) shows that this family induces an orbisection
e(γ)(s). Observe that ΛC ◦ γ([0, 1]) factors through a finite subset of C by [11, III, §1, No. 4,
Proposition 5]. We derive from Lemma 5.4.3 (b) that there are only finitely many members of
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(e(γα(i))(s))i∈I which are not the zero-section. Assume that the finite subset F ⊆ I satisfies
e(γα(i))(·)|Ui 6≡ 0Ui if and only if i ∈ F . Then supp[e(γ)(s)] ⊆

⋃
i∈F ϕα(i)(Wα(i)). Since

each ϕα(i)(Wα(i)) is a relatively compact subset of Q, the orbisection [e(γ)(s)] is compactly
supported.
We are left to prove that the assignment [0, 1] → XOrb (Q)c , s 7→ e(γ)(s) is of class Cr+1.
Identify XOrb (Q)c via ΛA with a sequentially closed subspace of

⊕
i∈I X (Ui). It suffices to

prove that ΛA ◦ e(γ) is contained in Cr+1([0, 1],
⊕

i∈I X (Ui)). The path ΛA ◦ e(γ) factors
through the inclusion

⊕
i∈F X (Ui) ↪→

⊕
i∈I X (Ui). Each component is given by the Cr+1-

path t 7→ e(pi(γ))(t)|Ui , whence ΛA ◦ e(γ) is a path of class Cr+1 as a map to
⊕

i∈I X (Ui).

To assure the smoothness of the evolution map on the Lie group, we exploit the patched locally
convex structure of XOrb (Q)c. Unfortunately C

r([0, 1],XOrb (Q)c) will inherit this structure only if
XOrb (Q)c is countably patched (cf. Lemma C.3.6). To assure this condition, we require:

Convention: For the rest of this section, we let Q be a σ-compact (or second countable) space.

5.4.5 Lemma Let Q be a σ-compact space and r ∈ N0. The maps

ω : Cr([0, 1], E)→ Cr+1([0, 1],XOrb (Q)c), γ 7→ e(γ)

evol : Cr([0, 1], E)→ XOrb (Q)c , γ 7→ e(γ)(1)

are smooth and map the constant path γ ≡ 0Orb to itself respectively to 0Orb.

Proof. The topological space Q is σ-compact and A, C are locally finite, whence I is countable.
Corollary 3.3.7 (c) shows that the mappings ΛA,ΛC turn XOrb (Q)c into a patched locally convex
space. As r < ∞ holds, the spaces

⊕
i∈I C

r+1([0, 1],X (Ui)) and Cr+1([0, 1],
⊕

i∈I X (Ui)) are iso-
morphic by the proof of Lemma C.3.6. The same is true if we replace each Ui with Wα(i). For A as
in Construction 5.1.1 and C as in 5.1.3, we identify these spaces to consider the mappings

PA : Cr+1([0, 1],XOrb (Q)c)→
⊕
i∈I

Cr+1([0, 1],X (Ui)), γ 7→ ΛA ◦ γ = (γUi)i∈I .

PC : Cr([0, 1],XOrb (Q)c)→
⊕
i∈I

Cr([0, 1],X
(
Wα(i)

)
), γ 7→ ΛC ◦ γ = (γα(i))i∈I .

An application of Lemma C.3.6 proves: PA, PC are linear topological embeddings with closed image,
whose components form patchworks, for Cr+1([0, 1],XOrb (Q)c) and Cr([0, 1],XOrb (Q)c), respec-
tively. The maps ω and evol are well-defined by Lemma 5.4.4 (b) and we claim that they are
smooth. For i ∈ I, let res

Ω2,K5,i

Ui
: X
(
Ω2,K5,i

)
→ X (Ui) be the restriction map. These mappings are

linear and continuous by [26, Lemma F.15 (a)]. Thus ri := Cr+1([0, 1], res
Ω2,K5,i

Ui
) is continuous and

linear by [33, Lemma 1.2], hence a smooth map. For i ∈ I, consider the smooth map ωi defined in
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Lemma 5.4.3. By Lemma 5.4.3 (b) the smooth map ri ◦ ωi maps the constant path γ ≡ OWα(i)
to

the constant path whose image is the zero-section. From the definitions we obtain(⊕
i∈I

ri ◦ ωi

)
◦ PC |⊕i∈IC

r([0,1],Ei)
Cr([0,1],E) = ΛAω. (5.4.9)

Hence ω is smooth on the patches and we deduce from (5.4.9) with Proposition C.3.8 that ω is a
smooth map. As the evaluation map ev1 : Cr+1([0, 1],XOrb (Q)c)→ XOrb (Q)c , γ 7→ γ(1) is smooth
(cf. [2, Proposition 3.20]), the smoothness of evol follows from ev1 ◦ ω = evol . The last assertion is
a direct consequence of Lemma 5.4.3 (b).

5.4.6 Lemma Let Hρ ⊆ XOrb (Q)c be the open zero-neighborhood of Theorem 5.2.4. Consider an
open identity-neighborhood S ⊆ E(Hρ) which is symmetric, i.e. S = S−1. There is an open subset
0Orb ∈ R ⊆ E ⊆ XOrb (Q)c such that ω(Cr([0, 1],R)) ⊆ Cr+1([0, 1], E−1(S)).

Proof. Consider the C0-neighborhood of the constant path γ0Orb ≡ 0Orb:

Cr+1([0, 1], E−1(S)) := C0([0, 1], E−1(S)) ∩ Cr+1([0, 1],XOrb (Q)c).

Specializing to r = 0 in Lemma 5.4.5 we see that ω : C0([0, 1], E) → C1([0, 1],XOrb (Q)c) is smooth
with ω(γ0Orb) = γ0Orb . Then ω−1(C1([0, 1], E−1(S))) ⊆ C0([0, 1], E) is an open zero-neighborhood.
The definition of the compact open topology yields an open set 0Orb ∈ R ⊆ XOrb (Q)c such that
γ0Orb ∈ C0([0, 1],R) ⊆ ω−1(C1([0, 1], E−1(S))). The assertion follows.

Observe that, by construction, also evol(Cr([0, 1],R)) ⊆ Hρ. We shall see presently that with the
maps constructed in Lemma 5.4.5, a smooth evolution for the Lie group DiffOrb (Q,U) may be
constructed. We would like to apply methods similar to the manifold case (cf. [49, p. 1046]) to
prove the regularity of DiffOrb (Q,U). However, if (Q,U) is a non-trivial orbifold, it is more difficult
to verify the existence of right logarithmic derivatives. We need representatives of the orbifold
diffeomorphisms in S tailored to this purpose:

5.4.7 Lemma Consider [f̂ ] ∈ S with [f̂ ] = [Êσ] for some [σ] ∈ Hρ. For each [ĝ] ∈ S, there is a
representative Ef̂ (ĝ) of [ĝ] with lifts

{
Ef̂ (ĝ)i

}
i∈I

such that the following properties are satisfied:

(a) for each i ∈ I, the lift Ef̂ (ĝ)i is an étale embedding in C∞(eσi(Ui),Wα(i)) (cf. Lemma 5.1.2),
(b) if [ĝ] = [f̂ ]−1 holds, then the lifts are given by Ef̂ (f̂−1)i = (eσi)−1 for all i ∈ I.

Proof. Let [τ̂g] be the unique preimage of [ĝ] with respect to E. From [ĝ] = E([τ̂g]) = [expOrb] ◦
[τ̂g]|Ω we deduce that the claim will hold if there are representatives of [expOrb] and [τ̂g]|Ω whose
composition yields the desired representative. The map [f̂ ] is an orbifold diffeomorphism with
representative Êσ = (Eσ, {eσi}i∈I , [P, ν]). Hence the orbifold charts

{
(eσi(Ui), Gi, ϕα(i)|eσi (Ui))

}
i∈I
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(cf. Lemma 5.1.2) cover Q. Recall the following details from the proof of Lemma 5.1.2:
By Step 3, Hα(i). Im eσi ⊆ Ω2,i is an invariant subset such that Im eσi is Hα(i)-stable. Using Lemma

5.1.2 iii., the canonical lifts τgα(i) map Im eσi into Ôα(i). Thus (τgα(i)|
Ôα(i)

Im eσi )i∈I is a family of lifts for a
representative τ̂ ′ of [τ̂g]|Ω. As Ω2,i ⊆ K◦α(i), we obtain an open subset T Im eσi∩Ôα(i) ⊆ dom expWα(i)

(cf. Construction 5.1.1 IV.). This set is Gi-stable, whence expWα(i)
|T Im eσi∩Ôα(i)

is a lift of the

orbifold exponential map expOrb. By Remark 4.2.4 (a), there is a representative ẽxpOrb of [expOrb]

whose family of lifts contains
{

expWα(i)
|T Im eσi∩Ôα(i)

}
i∈I

. Composing ẽxpOrb and τ̂ ′, we obtain a

representative of E([τ̂g]) = [ĝ] whose lifts are the smooth mappings

E(f̂ ; Êτ
′
)i := (expWα(i)

|T Im eσi∩Oα(i)
) ◦ τgα(i)|

Oα(i)

Im eσi . (5.4.10)

As a consequence of the proof of Lemma 5.1.2, these maps are equivariant étale embeddings.
Since eσi is a lift for [f̂ ] for each i ∈ I, the map E(f̂ ; f̂−1)i ◦ eσi is a change of orbifold charts.
Hence for each i ∈ I, there is a unique γf

−1

i ∈ Hα(i) such that γf
−1

i ◦ E(f̂ ; f̂−1)i = (eσi)−1.
The family (γf

−1

i )i∈I induces a lift of the identity ε̂ by Proposition E.3.3. We obtain another
representative ε̂ ◦ ẽxpOrb ◦ τ ′ of E([τ̂g]), whose lifts Ef̂ (ĝ)i := γf

−1

i ◦ E(f̂ ; ĝ)i, i ∈ I are étale
embeddings. Furthermore, for [ĝ] = [f̂ ]−1, by construction assertion (b) holds.

5.4.8 Remark (a) The construction of E(f̂ ; ĝ) in Lemma 5.4.7 (combine Hα(i). Im eσi ⊆ Ω2,i (see
step 3 of the proof of Lemma 5.1.2) with Lemma 5.1.2 iii.) shows that we can define maps
Eĝ
f̂

:= expWα(i)
◦τgα(i)|Hα(i).(Im eσi ) with Eĝ

f̂
|Im eσi = E(f̂ ; f̂−1). As each τgα(i) is a canonical lift

of an orbisection, we deduce that η ◦ Eĝ
f̂

= Eĝ
f̂
◦ η for each η ∈ Hα(i).

(b) Let [f̂ ] = id(Q,U) and consider γfi as in the proof of Lemma 5.4.7. Then γid(Q,U)

i = idUi , for
each i ∈ I. To see this, observe the identities id(Q,U) = id−1

(Q,U) and E−1(id(Q,U)) = 0Orb.
For i ∈ I, both lifts constructed in (5.4.10) coincide as idUi = expWα(i)

◦0Ui . This forces the

identity γid(Q,U)

i = idUi .

5.4.9 Definition For [φ̂] in S, let [σ̂φ] be the unique orbisection in Hρ with E([σ̂φ]) = [φ̂]. Apply
Lemma 5.4.7 to [φ̂]−1 ∈ S. By Part (b) of Lemma 5.4.7, we obtain a representative φ̂ of [φ̂]. For
each i ∈ I the lifts gφi := Eφ̂−1(φ̂)i of φ̂ are embeddings of Uφi := expWα(i)

(σφ
−1

i (Ui)) ⊆ Ω2,i with
Im gφi = Ui. The pointwise operations make

Cφi :=
{
f ∈ C∞(Uφi , TWα(i))

∣∣∣πTWα(i)
◦ f = gφi

}
a vector space. Endow Cφi with the unique topology turning (gφi )∗ : X (Ui)→ Cφi , σi 7→ σi ◦ gφi into
an isomorphism of topological vector spaces. We define a linear map

Λ[φ̂] : C[φ̂]
:=
{

[σ̂] ◦ [φ̂]
∣∣∣ [σ̂] ∈ XOrb (Q)c

}
→
⊕
i∈I

Cφi , [σ̂] ◦ [φ̂] 7→ (σi ◦ gφi )i∈I ,
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where σi is the canonical lift of [σ̂] on Ui. As orbisections are uniquely determined by a family
of canonical lifts, the map Λ[φ̂] is injective. Endow C[φ̂] with the unique locally convex topology
turning Λ[φ̂] into a topological embedding.

The lifts gid(Q,U)

i are the identity on Ui for each i ∈ I, by Remark 5.4.8 (b). Therefore Cid(Q,U)
and

XOrb (Q)c coincide, and hence the mappings Λid(Q,U)
and ΛA are the same.

For the rest of this section, fix the notation of Definition 5.4.9. We obtain a structural result for
the tangent manifold of DiffOrb (Q,U):

5.4.10 Lemma Let [φ̂] be an element of S with S as in Lemma 5.4.6. There is an isomorphism
of topological vector spaces

α[φ̂] : T[φ̂]DiffOrb (Q,U)→ Im Λ[φ̂],

whence T[φ̂]DiffOrb (Q,U) is isomorphic as a topological vector space to C[φ̂].

Proof. Fix [φ̂] ∈ S. As S is a symmetric set (i.e. S = S−1), the inverse [φ̂]−1 of [φ̂] is contained in
S. By construction of S, there is a representative of [φ̂]−1 with lifts

{
(gφi )−1 : Ui →Wα(i)

}
i∈I

. To

shorten our notation, we set Uφi := (gφi )−1(Ui) and recall Uφi ⊆ Ω2,i from Definition 5.4.9. The
family of lifts

{
gφi

}
i∈I

uniquely determines a representative of [φ̂], by Corollary 2.1.13. We proceed
in several steps:

Step 1: Construct the mapping α[φ̂]. For each [ĝ] ∈ S, denote by [σ̂g] the compactly supported
orbisection with E([σ̂g]) = [ĝ]. By Lemma 5.4.7 (a) each [ĝ] ∈ S possesses a representative Eφ̂−1(ĝ)

with lifts (Eφ̂−1(ĝ))i := γφi expWα(i)
◦σgα(i)|Uφi . Fix i ∈ I, p ∈ Uφi and consider the map

εφip : S →Wα(i), [ĝ] 7→ Eφ̂−1(ĝ)i(p).

We show that εφip is smooth. To this end. let τWα(i)
: XOrb (Q)c → X

(
Wα(i)

)
be the map which

sends an orbisection to its canonical lift on Wα(i). By Definition 3.3.3 (b), this map is continuous
linear, hence smooth. Choose a manifold chart (Vp, ψp) of the manifold Wα(i) with p ∈ Vp. The
map τVp : X

(
Wα(i)

)
→ C∞(Vp,Rd), X 7→ Xψp := pr2TψpX|Vp is continuous linear by Definition

C.3.1. Let εp : C∞(Vp,Rd) → Rd, f 7→ f(p) be the evaluation map in p. This map is a linear map,
which is smooth by [2, Proposition 3.20]. Finally define evp : X

(
Wα(i)

)
→ TpWα(i), X 7→ X(p).

As evp = (Tpψp)
−1(ψp(p), ·) ◦ εp ◦ τVp holds, evp is continuous linear. By construction of Hρ, it is

contained in the open subset M constructed in Proposition 5.1.5 (cf. Construction 5.1.6). Hence
Lemma 5.1.2 ii. implies that evp maps τWα(i)

◦E−1(S) ⊆Mi into the set Ôα(i)∩TpWα(i). The image
of the smooth map evp ◦τWα(i)

◦E−1|S is thus contained in dom expWα(i)
∩TpWα(i). By construction

of the lifts Eφ̂−1(ĝ)i in Lemma 5.4.7, one may rewrite εφip as composition of smooth maps, thus
establishing the desired smoothness:

εφip = γφi ◦ expWα(i)
|TpWα(i)

◦ evp ◦ τWα(i)
◦ E−1|S .
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Repeating the construction for each pair p ∈ Uφi , where i runs through I, we obtain a map

α[φ̂] : T[φ̂]DiffOrb (Q,U)→
∏
i∈I

(TWα(i))
Uφi

V 7→ (T[φ̂]ε
φi
p (V ))i∈I,p∈Uφi

and abbreviate its image as V[φ̂]
:= Imα[φ̂].

Step 2: Endow V[φ̂] with a vector space structure which turns α[φ̂] into a linear map.
The tangent space T[φ̂]DiffOrb (Q,U) is the set of equivalence classes of C1-curves η : ] − ε, ε[→ S
with η(0) = [φ̂], where η ∼ θ if and only if (E−1 ◦η)′(0) = (E−1 ◦ θ)′(0). Abbreviate the equivalence
classes with respect to this relation by [t 7→ η(t)]∼ (and likewise in TWα(i)). Since each εφip is smooth
and η is of class C1, for each i ∈ I and p ∈ Uφi the curve εφip ◦ η is of class C1. Hence the definition
of α[φ̂] yields

α[φ̂]([η]∼) = ([t 7→ E[φ̂]−1(η(t))i(p)]∼)i∈I,p∈Uφi . (5.4.11)

The curve η in (5.4.11) passes through [φ̂] for t = 0, whence by Lemma 5.4.7 (b) for i ∈ I,
Eφ̂−1(η(0))i = gφi holds. Therefore we infer from (5.4.11) the identity

V[φ̂] ⊆

{
(fi)i∈I ∈

∏
i∈I

(TWα(i))
Uφi

∣∣∣∣∣ ∀i ∈ I, p ∈ Uφi , fi(p) ∈ Tgφi (p)Wα(i)

}
. (5.4.12)

In particular, (5.4.12) shows that the pointwise operations turn V[φ̂] into a vector space. Furthermore,
by (5.4.12) T[φ̂]ε

φi
p : T[φ̂]DiffOrb (Q,U)→ Tgφi (p)Wα(i) is linear. By definition, the map α[φ̂] becomes

linear if V[φ̂] is endowed with the vector space structure induced by pointwise operations.

Step 3: A formula relating α[φ̂] to αid(Q,U)
. Let ρ[φ̂] : DiffOrb (Q,U)→ DiffOrb (Q,U) , [ψ̂] 7→ [ψ̂]◦[φ̂]

be the right translation and define

Gφ := ((gφi )i∈I)
∗ :
∏
i∈I

(TWα(i))
Ui →

∏
i∈I

(TWα(i))
Uφi , (fi)i∈I 7→ (fi ◦ gφi )i∈I

Consider [η]∼ ∈ Tid(Q,U)
DiffOrb (Q,U). The composition in DiffOrb (Q,U) is continuous, as the latter

is a Lie group. Since η(0) = id(Q,U) holds, we may thus assume η(t) ◦ [φ̂] ∈ S for all t. By Lemma
5.4.7 (a), there is a representative of η(t) ◦ [φ̂] with lifts Eφ̂−1(η(t) ◦ φ̂)i = γφi expWα(i)

σ
η(t)◦φ
α(i) |Uφi .

Here ση(t)◦φ
α(i) is the canonical lift on Wα(i) of the compactly supported orbisection [σ̂η(t)◦φ] with

E([σ̂η(t)◦φ]) = η(t) ◦ [φ̂]. The set Uφi is contained in Ω2,i ⊆ Ω 5
4 ,K5,i

(cf. Construction 5.1.6).

By Remark 5.1.9, we thus have ση(t)◦φ
α(i) |Uφi = σ

η(t)
α(i) �i σ

φ
α(i)|Uφi . Recall that by construction of

σ
η(t)
α(i) �i σ

φ
α(i)|Uφi (see (D.9.7) in Construction D.9) the identity

expWα(i)
◦ση(t)

α(i) �i σ
φ
α(i)|Uφi = expWα(i)

◦ση(t)
α(i) ◦ expWα(i)

◦σφα(i)|Uφi
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holds. Furthermore, gφi = Eφ̂−1(φ̂)i = γφi ◦ expWα(i)
◦σφα(i)|Uφi and Im gφi = Ui. Hence we deduce

expWα(i)
◦σφα(i)(Uφi) ⊆ Hα(i).Ui ⊆ Ω2,i. Analogous to Step 2 in the proof of Lemma 5.1.2, one shows

that γφi ∈ Hα(i) commutes with expWα(i)
◦ση(t)

α(i)|Hα(i).Ui . Summing up, we obtain:

α[φ̂](Tρ[φ̂]([η]∼)) =
(

[t 7→ Eφ̂−1(η(t) ◦ φ̂)i(p)]∼

)
i∈I,p∈Uφi

=
(

[t 7→ γφi ◦ expWα(i)
σ
η(t)
α(i) �i σ

φ
α(i)(p)]∼

)
i∈I,p∈Uφi

=
(

[t 7→ γφi expWα(i)
σ
η(t)
α(i) expWα(i)

σφα(i)(p)]∼

)
i∈I,p∈Uφi

=

[t 7→ expWα(i)
σ
η(t)
α(i) γ

φ
i expWα(i)

σφα(i)︸ ︷︷ ︸
=gφi

(p)]∼


i∈I,p∈Uφi

= Gφ ◦ αid(Q,U)
([η]∼)

We derive α[φ̂] ◦ Tρ[φ̂]|domαid(Q,U)
= Gφ ◦ αid(Q,U)

. Now Gφ(Vid(Q,U)
) = V[φ̂] follows, as Tρ[φ̂] is a

diffeomorphism.

Step 4: Gφ|Vid(Q,U)
is linear. To see this, let v, w ∈ Tid(Q,U)

DiffOrb (Q) and r ∈ R. Since Tρ[φ̂],
α

[φ̂]
and αid(Q,U)

are linear, the formula in Step 3 yields:

Gφ(αid(Q,U)
(v + rw)) = α[φ̂](Tρ[φ̂](v + rw))

= α[φ̂](Tρ[φ̂](v)) + rα[φ̂](Tρ[φ̂](w))

= Gφ(αid(Q,U)
(v)) + rGφ(αid(Q,U)

(w)).

Step 5: αid(Q,U)
is an isomorphism of topological vector spaces and Vid(Q,U)

= Im ΛA.
Consider the map h : XOrb (Q)c → Tid(Q,U)

DiffOrb (Q,U) , [σ̂] 7→ [t 7→ E(t[σ̂])]. For i ∈ I, we denote
by σi the canonical lift on Ui of the orbisection [σ̂]. Then (5.4.11) together with Remark 5.4.8 (b)
and (5.4.10) implies:

αid(Q,U)
◦ h([σ̂]) = ([t 7→ expWα(i)

(tσi(p))])i∈I,p∈Ui . (5.4.13)

As expWα(i)
is the Riemannian exponential map on Wα(i), the map ci,p(t) := expWα(i)

(tσi(p)) is
a geodesic with c′i,p(0) = σi(p). Therefore (5.4.13) yields αid(Q,U)

◦ h([σ̂]) = (σi)i∈I = ΛA([σ̂]).
Since E is a diffeomorphism h = T0E(0, ·) is an isomorphism of topological vector spaces. Now
αid(Q,U)

◦ h = ΛA shows that Vid(Q,U)
= Imαid(Q,U)

and αid(Q,U)
is an isomorphism of topological

vector spaces. In particular, the formula shows that αid(Q,U)
is a linear isomorphism onto the closed

subspace Vid(Q,U)
= Im ΛA ⊆

⊕
i∈I X (Ui).
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Step 6: Gφ|
V[φ̂]

Vid(Q,U)
is an isomorphism of topological vector spaces and V[φ̂] = Im Λ[φ̂]. By definition,

Gφ is the map (gφi )∗i∈I and each gφi : Uφi → Ui is a diffeomorphism. The map (gφi )∗ : X (Ui)→ Cφi is
an isomorphism of topological vector spaces by Definition 5.4.9. From [11, Proposition II.31 8 (i)],

we deduce that the mapping Gφ|
⊕
i∈I C

φ
i⊕

i∈I X(Ui)
is an isomorphism of topological vector spaces. By Step

5, Vid(Q,U)
is a subspace of

⊕
i∈I X (Ui) and V[φ̂] = Gφ(Vid(Q,U)

) holds by Step 3. Since Gφ maps⊕
i∈I X (Ui) into

⊕
i∈I Cφi , the set V[φ̂] is contained in

⊕
i∈I Cφi . Endow Vid(Q,U)

with the subspace

topology of
⊕

i∈I X (Ui) and V[φ̂] with the subspace topology of
⊕

i∈I C
φ
i . The map Gφ|

V[φ̂]

Vid(Q,U)

becomes an isomorphism of topological vector spaces. By construction, for (fi)i∈I ∈ V[φ̂] there is a

unique [σ̂f ] ∈ XOrb (Q)c such that (fi)i∈I = GφΛA([σ̂f ]) = (σfi ◦ g
φ
i )i∈I . Hence the elements in V[φ̂]

are of the form (σi ◦ gφi )i∈I , where σi is the canonical representative on Ui of some [σ̂] ∈ XOrb (Q)c.
As a consequence of the definition of Λ[φ̂], as a set Im Λ[φ̂] and V[φ̂] coincide. By definition of the
topology, they also coincide as topological vector spaces.

Step 7: α[φ̂] is an isomorphism of topological spaces for each [φ̂] ∈ S. Endow V[φ̂] with the topology
as in Step 6 and obtain a commutative diagram for [φ̂] ∈ S:

Tid(Q,U)
DiffOrb (Q,U)

αid(Q,U)
//

Tρ[φ̂]

��

Vid(Q,U)

Gφ|
V

[φ̂]
Vid(Q,U)

��

T[φ̂]DiffOrb (Q,U)
α[φ̂]

// V[φ̂]

As all arrows with the exception of the lower row are isomorphisms of topological vector spaces, so
is α[φ̂]. By Step 6, Imα[φ̂] = V[φ̂] = Im Λ[φ̂] holds, thus proving the assertion.

We are now in the position to obtain regularity properties for the Lie group DiffOrb (Q,U).

5.4.11 Theorem Let (Q,U) be σ-compact. Then the Lie group DiffOrb (Q,U) is Ck-regular for
each k ∈ N0 ∪ {∞}. In particular, this group is regular in the sense of Milnor.

Proof. We claim that DiffOrb (Q,U) is a (strongly) C0-regular Lie group. If this is true, then the
assertion is a direct consequence of Definition C.5.3. To prove the claim, by Lemma C.5.4 it suffices
to obtain a smooth evolution and right product integrals for some zero-neighborhood C0([0, 1], U).
Let E : Hρ → DiffOrb (Q,U) , [σ̂]→ [expOrb] ◦ [σ̂]|Ω be the manifold chart at the identity introduced
in Theorem 5.2.4 (cf. Proposition 5.1.5). Using the map evol introduced in Lemma 5.4.5, we define
a map

E1 := E ◦ evol |C0([0,1],R) : C0([0, 1],R)→ DiffOrb (Q,U) ,

where R is chosen as in Lemma 5.4.6 with respect to the symmetric subset S ⊆ ImE. By Lemma
5.4.5, evol is a smooth map, whence E1 is smooth as a composition of smooth maps. Identify
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XOrb (Q)c with L(DiffOrb (Q,U)) via the isomorphism T0E(0, ·) = α−1
id(Q,U)

◦ΛA and recall from step
5 of Lemma 5.4.10 Vid(Q,U)

= XOrb (Q)c. Following Lemma C.5.4, the Lie group DiffOrb (Q,U) will
be (strongly) C0-regular if we can show that each γ ∈ C0([0, 1],R) has a right product integral P(γ)
with P(γ)(1) = E1(γ).

We first need to understand the derivative of a C1-curve η : [0, 1]→ S ⊆ DiffOrb (Q,U). For s ∈ [0, 1],
we let [σ̂η(s)] be the preimage E−1(η(s)) (cf. Definition 5.4.9). Recall from Lemma 5.4.7 that for all
s, t ∈ [0, 1], there is a representative Eη(t)−1(η(s)) of η(s). Using the notation of Definition 5.4.9, the

lifts of this representative with respect to the atlas
{

(Uη(t)i , Hα(i),Uη(t)i
, ϕα(i)|Uη(t)i

)
}
i∈I

are given
as

Eη(t)−1(η(s))i = γ
η(t)
i . expWα(i)

◦ση(s)
α(i) |Uη(t)i

.

The derivative of the lift with respect to s may be computed locally in manifold-charts. To do
so, we fix p ∈ Uη(t)i for some t ∈ [0, 1]: Since Uη(t)i ⊆ Ω2,i by Definition 5.4.9, we choose and
fix a manifold chart (V

np
5,α(i), κ

α(i)
np ) ∈ F5(K5,i) with p ∈ V

np
2,α(i). Observe that by [26, Lemma

F.6 and Lemma 4.11], the map K
α(i)
np : X

(
V
np
5,α(i)

)
→ C∞(B5(0),Rd), X 7→ X[np] with X[np] =

C∞((κ
α(i)
np )−1,Rd)(θ

κ
α(i)
n

(X)), is an isomorphism of topological vector spaces. As η is of class C1,
the following composition yields a C1-curve:

ηt,p,i := Kα(i)
np ◦ res

Wα(i)

V
np
5,α(i)

◦τWα(i)
◦ E−1 ◦ η : [0, 1]→ C∞(B5(0),Rd).

Let expnp be the Riemannian exponential map induced on B5(0) by the pullback metric of the Rie-

mannian metric on Wα(i) via (κ
α(i)
np )−1. Since E−1(S) ⊆ Hρ and (V

np
5,α(i), κ

α(i)
np ) ∈ F5,K5,i

, the con-
struction ofHρ (cf. Theorem 5.2.4, or more precisely Construction 5.1.6 and Construction D.9) shows
ηt,p,i([0, 1])(B3(0)) ⊆ Bεnp (0) ⊆ Bνnp (0), whence ηt,p,i(s) ∈ bB2(0), Bνnp (0)c∞ ⊆ C∞(B5(0),Rd)
holds for all s ∈ [0, 1]. By choice of νnp , the set B4(0) × Bνnp (0) is contained in dom expnp (cf.
Lemma D.6). We deduce from [26, Proposition 4.23] that

(expnp)∗ : bB2(0), Bνnp (0)c∞ → C∞(B2(0),Rd), f 7→ expnp(idB2(0), f |B2(0))

is smooth. We obtain a C1-curve (expnp)∗◦ηt,p,i : [0, 1]→ C∞(B2(0),Rd). Furthermore, Lemma D.6

(b) yields expWα(i)
◦T (κ

α(i)
np )−1|B2(0)×Bνnp (0) = (κ

α(i)
np )−1 ◦ expnp |B2(0)×Bνnp (0). The above consid-

erations did not depend on p ∈ Uη(t)i , whence they may be repeated for each p ∈ Uη(t)i , i ∈ I. With
Lemma D.6 (b) and the Exponential law [2, Theorem 3.28], we may now compute the derivative as

αη(t)(η
′(t)) = αη(t)([s 7→ η(t+ s)]∼) = ([s 7→ E(η(t))−1(η(t+ s))i(p)]∼)i∈I,p∈Uγ(t)i

= ([s 7→ γ
η(t)
i expWα(i)

σ
η(t+s)
α(i) (p)]∼)i∈I,p∈Uγ(t)i

= ([s 7→ γ
η(t)
i expWα(i)

(Tκα(i)
np )−1(κα(i)

np (p), ηt,p,i(t+ s)(κα(i)
np (p))])i∈I,p∈Uγ(t)i

= ([s 7→ γ
η(t)
i (κα(i)

np )−1(expnp)∗(ηt,p,i(t+ s))(κα(i)
np (p))]∼)i∈I,p∈Uγ(t)i

= (T (γ
η(t)
i (κα(i)

np )−1)
∂

∂s

∣∣∣∣
s=t

((expnp)∗ ◦ ηt,p,i)∧(t, κα(i)
np (p), 1))i∈I,p∈Uγ(t)i

. (5.4.14)
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Let ξ ∈ C0([0, 1],R) be some continuous curve. By Lemma 5.4.6, we may consider the C1-curve
η := E ◦ ω(ξ) : [0, 1] → S. To compute the derivative η′(t), we exploit the identity (5.4.14). The
definition of the mappings implies

ηt,p,i = Kα(i)
np ◦ res

Wα(i)

V
np
5,α(i)

◦τWα(i)
◦ E−1 ◦ (E ◦ ω(ξ)) = (s 7→ Kα(i)

np (ω(ξ)(s)α(i)|V np
5,α(i)

)).

The canonical lift ω(ξ)(s)α(i) is uniquely determined, whence ω(ξ)(s)α(i) coincides with ωi(ξα(i)(s))

(cf. Lemma 5.4.3) on Ω2,K5,i
by the proof of Lemma 5.4.4. Since (V

np
5,α(i), κ

α(i)
np ) ∈ F5(K5,i), we

derive V np2,α(i) ⊆ Ω2,K5,i . Therefore the lift satisfies (5.4.4). Summing up, for (s, x) ∈ [0, 1]× V np2,α(i):

ηt,p,i(s)(x) = Kα(i)
np (e(ξ)α(i)(s))(κ

α(i)
np (x))

= pr2 ◦Tκα(i)
np (expWα(i)

|Nx)−1 ◦ (κα(i)
np )−1 ◦ Flf0 (s, κα(i)

np (x), ξα(i)[np]).

Observe that expnp Tκ
α(i)
np (expWα(i)

|Nx)−1 = expnp Tκ
α(i)
np (expWα(i)

|Nx)−1. By construction of Nx
(see Lemma D.6 (b)), we obtain:

expnp Tκ
α(i)
np (expWα(i)

|Nx)−1 = κα(i)
np expWα(i)

(expWα(i)
|Nx)−1 = κα(i)

np .

Insert this identity and the local formula for ηt,p,i into (5.4.14):

αη(t)(η
′(t)) =

(
T (γ

η(t)
i (κα(i)

np )−1)
∂

∂s

∣∣∣∣
s=t

((expnp)∗ ◦ ηt,p,i)∧(s, κα(i)
np (p))

)
i∈I,p∈Uη(t)i

=

(
T (γ

η(t)
i (κα(i)

np )−1)
∂

∂s

∣∣∣∣
s=t

Flf0 (s, κα(i)
np (p), ξα(i)[np]))

)
i∈I,p∈Uη(t)i

.

Fixing κ
α(i)
np (p) and ξ, the flow Flf0 (·, κα(i)

np (p), ξα(i)[np]) is a solution to the differential equation
(5.4.1). Thus

∂

∂s

∣∣∣∣
s=t

Flf0 (s, κα(i)
np (p), ξα(i)[np]) = (Flf0 (t, κα(i)

np (p), ξα(i)[np]), ξα(i)[np](t)(Flf0 (t, κα(i)
np (p), ξα(i)[np])))

= Tκα(i)
np ξ(t)α(i) ◦ (κα(i)

np )−1(Flf0 (t, κα(i)
np (p), ξα(i)[np])).

Since ξ(t)α(i) is a canonical lift, it is equivariant with respect to Hα(i). Thus the last identity proves:

αη(t)(η
′(t)) = (T (γ

η(t)
i )ξ(t)α(i)(κ

α(i)
np )−1 Flf0 (t, κα(i)

np (p), ξα(i)[np]))i∈I,p∈Uη(t)i

= (ξ(t)α(i)(γ
η(t)
i .(κα(i)

np )−1 Flf0 (t, κα(i)
np (p), ξα(i)[np]))i∈I,p∈Uη(t)i

.

Moreover, ω(ξ)(t) = E−1(η(t)) holds by construction. Using the notation of Lemma 5.4.7 and its
proof, we obtain expWα(i)

◦ω(ξ)(t)α(i)(p) = E(η(t)−1, η(t))i(p). On the other hand, (5.4.4) yields
the identity

expWα(i)
◦ω(ξ)(t)α(i)(p) = (κα(i)

np )−1 Flf0 (t, κα(i)
np (p), ξα(i)[np]).
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By choice of γη(t)
i (see the proof of Lemma 5.4.7), we derive:

αη(t)(η
′(t)) = (ξ(t)α(i)(g

η(t)
i (p))i∈I,p∈Uη(t)i

= (ξ(t)α(i) ◦ g
η(t)
i )i∈I = Λη(t)(ξ(t) ◦ η(t)).

We may now use the structural results on the tangent space of DiffOrb (Q,U) at γ(t) ∈ S. To
shorten the notation, abbreviate Ψ := T0E(0, ·) = α−1

id(Q,U)
◦ ΛA. From Lemma 5.4.10 and its proof

(in particular, the formula in Step 3), we infer

Λ−1
η(t)(αη(t)(η

′(t))) = ξ(t) ◦ η(t) = Λ−1
η(t)(G

η(t)ΛA(ξ(t))) = Λ−1
η(t)(αη(t)(Tρη(t)Ψ(ξ(t))).

The map Λ−1
η(t) ◦ αη(t) is an isomorphism of topological vector spaces, whence η′(t) = Tρη(t)Ψ(ξ(t))

follows. Recalling the definition of η we have η′(t) = d
dtE(ω(ξ)(t)) = TρE(ω(ξ)(t))Ψ(ξ(t)).

The facts obtained so far allow the right logarithmic derivative of η(t) = E(ω(η)(t)) to be computed:

δr(η)(t) = TρE(ω(ξ)(t))−1

d

dt
E(ω(ξ)(t)) = TρE(ω(ξ)(t))−1TρE(ω(ξ)(t))Ψ(ξ(t)) = Ψ(ξ(t)). (5.4.15)

By construction, E1(ξ) = E(ω(ξ)(1)) = η(1) and Lemma 5.4.5 implies ω(ξ)(0) = 0Orb. Thus η(0) =
E(ω(ξ)(0)) = E(0Orb) = id(Q,U) holds. Furthermore, the computation of the right logarithmic
derivative (5.4.15) shows that the curve ξ possesses a right product integral E(ω(ξ)) = η. We have
already seen that the mapping E1 is smooth, thus the proof is complete and DiffOrb (Q,U) is a
(strongly) C0-regular Lie group.

The orbifolds in the present paper are not assumed to be second countable. We had to require
second countability of the orbifold to assure that XOrb (Q)c is countably patched. In this case, we
obtain an atlas indexed by the countable set I, whence the map

Λ:
⊕
i∈I

Cr([0, 1],X (Ui))→ Cr

(
[0, 1],

⊕
i∈I

X (Ui)

)
, (fi) 7→

∑
i∈I

(ιi)∗(fi)

is an isomorphism of topological vector spaces for r ∈ N0 if the mapping spaces are endowed with
the compact open Cr-topology (see Lemma C.3.6). This fact was crucial to prove the smoothness
of the evolution map evol. It is known that Λ fails to be an isomorphism of locally convex spaces if
I is uncountable. We give a proof for this fact:

Fix r = 0 and let I be an uncountable set. Notice that arguments as in the proof of Lemma C.3.6
assure that the map Λ is an isomorphism of vector spaces which is continuous. We denote its inverse
by Θ (see Lemma C.3.6 for the construction). Hence we have to prove that Θ is discontinuous if I
is uncountable.
For each i ∈ I, we choose and fix a one-dimensional subspace Ei ⊆ X (Ui). The locally convex
direct sum

⊕
i∈I R ∼=

⊕
i∈I Ei may be identified in a canonical way with a subspace of

⊕
i∈I X (Ui)

by [11, II. §4 No. 5 Proposition 8]. If we consider the subspaces C([0, 1], Ei) ⊆ C([0, 1],X (Ui))
for i ∈ I, we may analogously identify

⊕
i∈I C([0, 1],R) ∼=

⊕
i∈I C([0, 1], Ei) with a subspace of⊕

i∈I C([0, 1],X (Ui)). A trivial computation yields the identity

Λ

(⊕
i∈I

C([0, 1], Ei)

)
= C

(
[0, 1],

⊕
i∈I

Ei

)
.
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Hence the inverse Θ restricts to a map T := Θ|
⊕
i∈I C([0,1],Ei)

C([0,1],
⊕
i∈I Ei)

. We claim that T is discontinuous,
whence Θ must be discontinuous. To prove this claim, identify each of the spaces Ei with R. The
assertion then follows from the next lemma, whose proof was communicated to the author by D.
Vogt and S.A. Wegner:

5.4.12 Lemma The map T : C([0, 1],
⊕

i∈I R) →
⊕

i∈I C([0, 1],R) is discontinuous for each un-
countable set I.

Proof. Recall from [47, §24] and Remark C.2.6 that the compact-open topology on the space
C([0, 1],

⊕
i∈I R) is induced by the following system of seminorms:

pδ(f) := sup
t∈[0,1]

∑
i∈I

δi|(f(t))i|, with δ = (δi)i∈I and δi > 0 for i ∈ I.

Analogously, the topology on
⊕

i∈I C([0, 1],R) is induced by the following system of seminorms:

qε((fi)i∈I) :=
∑
i∈I

εi sup
t∈[0,1]

|fi(t)|, with ε = (εi)i∈I and εi > 0 for i ∈ I.

Arguing indirectly, we suppose that T is a continuous map. Since T is linear, it is continuous if and
only if

∀ε = (εi)i∈I ∃δ = (δi)i∈I , C ≥ 0 ∀(fi)i∈I ∈
⊕
i∈I

C([0, 1],R),

qε((fi)i∈I) ≤ Cpδ

(∑
i∈I

(ιi)∗fi

)
⇐⇒ ∀ε = (εi)i∈I ∃δ = (δi)i∈I ∀(fi)i∈I ∈

⊕
i∈I

C([0, 1],R),∑
i∈I

εi sup
t∈[0,1]

|fi(t)| ≤ sup
t∈[0,1]

∑
i∈I

δi|fi(t)|.

To obtain a contradiction, fix ε = (1)i∈I and choose δ = (δi)i∈I as above. For n ∈ N, define the set
Mn := {i ∈ I | δi ≤ n}. By construction, I =

⋃
n∈NMn holds. Since I is uncountable, there must be

N ∈ N with |MN | =∞.
For n ∈ N, consider E ⊆ MN with E = {i1, . . . , in} and choose fik ∈ C([0, 1],R) with 0 ≤ fik ≤ 1
such that supp fik ∩ supp fij = ∅ if k 6= j. Furthermore, let there be tk ∈ [0, 1] with fik(tk) = 1
for 1 ≤ k ≤ n. Define (fi)i∈I ∈

⊕
i∈I C([0, 1],R) via fi := fik if i = ik for 1 ≤ k ≤ n and fi := 0

otherwise. By choice of δ, ∑
i∈I

sup
t∈[0,1]

|fi(t)| ≤ sup
t∈[0,1]

∑
i∈I

δi|fi(t)|. (5.4.16)

Compute both sides of the above inequality. For the left hand side of (5.4.16) the definition of the
family (fi)i∈I yields: ∑

i∈I
sup
t∈[0,1]

|fi(t)| =
∑

1≤k≤n

sup
t∈[0,1]

|fik(t)| =
∑

1≤k≤n

1 = n.
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On the other hand, since the supports of the maps fik are disjoint, the right hand side of (5.4.16),
evaluates as:

sup
t∈[0,1]

∑
i∈I

δi|fi(t)| = sup
t∈[0,1]

n∑
k=1

δik |fik(t)| = sup
1≤k≤n

δik ≤ sup
i∈MN

δi ≤ N.

Hence (5.4.16) yields n ≤ N , where N is fixed but n may be chosen arbitrarily large. We derive a
contradiction, whence T may not be continuous.

Summing up, the inverse Θ of Λ is discontinuous for uncountable index sets I. Hence Λ fails
to be an isomorphism of topological vector spaces if I is uncountable. Thus our methods do not
generalize to the setting of arbitrary paracompact orbifolds. As already stated in the introduction,
this observation leads to the following open question:

Open Problem: Let (Q,U) be a paracompact reduced orbifold which is not second countable. Is
the Lie group DiffOrb (Q,U) a Cr-regular Lie group for some r ∈ N0 ∪ {∞}?



6. Application to Equivariant Diffeomorphism Groups

In this section, we consider good orbifolds with an orbifold atlas of a single chart. If (Q,U) is such
an orbifold, we let {(U,G, π)} be an orbifold atlas for (Q,U) and call (U,G, π) a global chart . It
turns out that for certain orbifolds with global chart, the group DiffOrb (Q,U) induces a Lie group
structure on a subgroup of the diffeomorphism group of U . We begin our inquiry with several
observations:

6.0.1 Let (Q,U) be an orbifold with global chart (U,G, π). Consider a diffeomorphism of U which is
a weak equivalence, i.e. a diffeomorphism h̃ : U → U together with a group automorphism α : G→ G
such that h̃◦g = α(g)◦ h̃ holds for all g ∈ G. Note that h̃−1 is also a weak equivalence, with respect
to the group automorphism α−1. In particular, h̃ and h̃−1 induce mutually inverse continuous maps
h : Q→ Q and h−1 : Q→ Q, respectively. The pair (h, h̃) induces a representative of an orbifold map
such that the corresponding orbifold map is a diffeomorphism of orbifolds by Proposition 2.1.7 and
Proposition 2.1.10. Therefore, each diffeomorphism of the global chart which is a weak equivalence
canonically induces a unique diffeomorphism of (Q,U).

Denote by [ĥ] the diffeomorphism of orbifolds associated to h̃ ∈ DiffG(U) by the above construction.
We consider the map

D : DiffG(U)→ DiffOrb (Q,U) , f̃ 7→ [f̂ ].

Each orbifold diffeomorphisms in the image of D is induced by a lift in the global chart, i.e. by
an element of DiffG(M). Since orbifold diffeomorphisms are uniquely determined by their lifts (cf.
Corollary 2.1.11), the composition of the lifts in the global chart induces the composition of orbifold
diffeomorphisms. The same argument shows that the image D(h̃−1) coincides with D(h̃)−1 (the
inverse in DiffOrb (Q,U)) by Corollary 2.1.13. Summing up, D is a group homomorphism.
The map D is not injective, as elements of DiffG(U) which differ only by composition with an
element of G are mapped to the same diffeomorphism of orbifolds. From [51, Lemma 2.11], we
deduce that the kernel of D coincides with G. Hence D induces an injective group homomorphism
∆:

1 // G // // DiffG(U) // //

D

''OOOOOOOOOOO
DiffG(U)/G //

��

∆

��

1

DiffOrb (Q,U)

We now ask, whether all orbifold diffeomorphisms of (Q,U) arise as quotients of elements on
DiffG(U). It will turn out that this is the case for certain orbifolds with a global chart, i.e. we
prove that ∆ is an isomorphism of groups in some cases. In this situation wndow DiffG(U)/G via
∆ with the unique Lie group structure turning the mapping into an isomorphism of Lie groups.

6.0.2 We can also obtain a Lie group structure on a subgroup of DiffG(U). Consider the subgroup
of DiffG(U) whose elements coincide with the identity off some compact subset:

DiffGc (U) :=
{
f ∈ DiffG(U)

∣∣∣∃K ⊆ U compact, f |U\K = idU\K

}
.
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By construction, DiffGc (U) is a subgroup of DiffG(U). Then D maps DiffGc (U) into the open Lie
subgroup DiffOrb (Q,U)c of DiffOrb (Q,U). If the intersection G ∩ DiffGc (U) contains only idU ,
the mapping D restricts to an injective group homomorphism ∆c : DiffGc (U)→ DiffOrb (Q,U)c. By
Newman‘s theorem G∩Diffc(U) = {idU} holds, whenever U is non-compact. SinceD is surjective for
certain orbifolds, ∆c becomes an isomorphism of groups for these orbifolds. Thus DiffGc (U) may be
endowed with a Lie group structure induced by DiffOrb (Q,U)c. The construction principle outlined
in Proposition C.4.3 then allows the construction of a unique Lie group structure on DiffG(U) which
contains DiffGc (U) as an open subgroup.

6.0.3 We introduce the class of orbifolds with global chart considered throughout this section: Let
d be in N and G be a finite subgroup of the orthogonal group O(d) ⊆ Diff(Rd) such that:

(IS) The group G satisfies Gx = {idRd} for all x ∈ Rd \ {0}.

Recall that for odd dimension d, each element g of O(d) possesses at least one real eigenvalue λg.
By orthogonality we must have λg ∈ {−1, 1}. If an element g ∈ G \ {idRd}, condition (IS) implies
λg = −1. Then g2 is an element of G with real eigenvalue 1. Again condition (IS) forces g2 = idRn

and thus all eigenvalues of g must be 1 or −1. Using condition (IS), all eigenvalues of g are thus −1
and we obtain g = − idRd . Hence for odd d only G = {idRd ,− idRd} or G = {idRd} are possible. We
are interested in the non trivial case, whence we assume for the rest of this section that G 6= {idRd}
holds. We record the following observations

(a) If d is odd, the group G is generated by − idRd . For d = 1 this is a reflection, which will be
denoted as r : R→ R, x 7→ −x.

(b) If d = 2, the group G may not contain reflections by condition (IS). In this case G contains at
least one (non-trivial) rotations of R2 which fixes the origin.

Let π : Rd → Rd/G be the quotient map onto the orbit space and Q := Rd/G. Then
{

(Rd, G, π)
}

is an atlas for Q, turning the orbit space into a good orbifold with a global chart. We identify for
d ∈ {1, 2} the orbit spaces with [0,∞[ respectively a cone:

π π

d = 1 d = 2
r γ

Figure 6: Cone shaped orbifolds. The element γ is a rotation which generates G for d = 2.

Each finite subgroup of O(2) – which is not a dihedral group – is cyclic by [4, Ch. 5, Theorem 3.4].
Hence the illustration above exhibits the general case for d = 2.
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6.0.4 Proposition Let (Q,U) be an orbifold as in 6.0.3. Consider [ĥ] ∈ DiffOrb (Q,U) with repre-
sentative (h, {hi}i∈I , [P, ν]) ∈ [ĥ]. The map h lifts to a weak equivalence h̃ : Rd → Rd with respect
to the G-action.

Proof. Consider [ĥ] ∈ DiffOrb (Q,U) with representative (h, {hi}i∈I , (P, ν)) ∈ [ĥ]. To construct a
weak equivalence as required, we shall construct at first a lift on the set of non-singular points.
For the orbifolds defined in 6.0.3, there is only one singular point. The origin in Rd is jointly
fixed by all elements of G. Hence Rd \ {0} corresponds to the set of non-singular points and we
set Qreg := Q \ {0}. Recall that the global chart π : Rd → Q is a branched covering in the sense
of [53, Section 10]. Hence q := π|Qreg

Rd\{0} is a covering by [53, Theorem 10.3].
Diffeomorphisms of orbifolds preserve singular points by Proposition 2.1.5 and thus the homeo-
morphism h : Q → Q satisfies fπ(0) = π(0). The restriction h|Qreg

Qreg
yields a homeomorphism. To

construct a lift of h, we construct at first a lift on Rd \ {0}:

If d = 1 holds, then the space R \ {0} is disconnected. Then the mapping q|]0,∞[ : ]0,∞[→ Qreg
is a homeomorphism and we obtain a well-defined homeomorphism h+ := (q|]0,∞[)

−1hq|]0,∞[, which
maps ]0,∞[ to itself. This mapping extends to a homeomorphism via

hreg : R \ {0} → R \ {0} , x 7→

{
h+(x) x > 0

r ◦ h+ ◦ r(x) = −h+(−x) x < 0.

By construction, hreg and also its inverse are equivariant maps with respect to G = 〈r〉. We deduce
from [12, II. Lemma 7.2] that hreg extends to a continuous map h̃ : R → R by h̃(0) = 0. Similarly
we extend the inverse of hreg, whence h̃ is an equivariant homeomorphism, i.e. an equivalence.

If d ≥ 2 holds, then the space Rd \ {0} is (path-)connected. We have to construct a lift freg:

Rd \ {0}

q

��

Rd \ {0}

freg

44

h|Qreg◦q
// Qreg

For d ≥ 3, the space Rd \ {0} is simply connected, path-connected and locally path-connected.
Choose x0 ∈ Rd \ {0} and y0 ∈ q−1hq(x0). Then by [36, Proposition 1.33], there is a unique lift
hreg : Rd \ {0} → Rd \ {0} of h|Qreg ◦ q which maps x0 to y0.

For d = 2, the space R2 \ {0} is not simply connected. However, it is path-connected and locally
path-connected. We may still apply [36, Proposition 1.33] if the fundamental group π1(R2 \{0} , x0)
satisfies:

(h|Qreg ◦ q)∗(π1(R2 \ {0} , x0)) ⊆ q∗(π1(R2 \ {0} , y0)) (6.0.1)

Recall that the fundamental group π1(R2 \{0} , x0) can be identified with Z (cf. [36, Example 1.15]).
Moreover, as G ⊆ SO(2) holds, the subgroup G ⊆ O(2) must be a cyclic group, generated by a
rotation γ of order m ∈ N. As we have already seen, Q is homeomorphic to a cone and Qreg may be
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identified with a cone whose tip has been removed. In particular, the space Qreg is homeomorphic
to R2 \ {0} (see Example 1.7.6 for further details on this homeomorphism).
Consider a generator [e] of the fundamental group π1(R2 \ {0} , x0), where e is chosen as a circle
around the origin passing through x0. If γ is a rotation of order m, then we have q∗[e] = [q ◦ e] is a
loop in Qreg, which passes m times through π(y0). The next picture illustrates this behavior:

q∗

? x0

?
q(x0)

Figure 7: Image of a loop in the generator [e] of π1(R2 \ {0} , x0) with respect to q∗. The loop
displayed in Qreg is a curve homotopic to the image of the closed loop for m = 3.

Note that π1(Qreg, q(y0)) is isomorphic to Z and let [f ] be the generator of π1(Qreg, q(x0)). By
abuse of notation we let [f ] be the generator of each fundamental group for points in Qreg. From
the arguments above, we deduce q∗(π1(R2 \ {0} , x0)) = 〈m[f ]〉 and thus

(h|Qreg ◦ q)∗([e]) = (h|Qreg
Qreg

)∗(m[f ]) = m([h ◦ f ]) ∈ 〈m[f ]〉 = Im q∗.

Therefore property (6.0.1) is satisfied and we obtain a unique lift hreg : R2 \{0} → R2 \{0} of h|Qreg
Qreg

mapping x0 to y0.

Analogous arguments allow the construction of a unique lift (h−1)reg for h−1|Q\{0} ◦ q and d ≥ 2,
which maps y0 to x0. We claim that (h−1)reg is the inverse of hreg. If this is true, then hreg is a
homeomorphism. To prove the claim, consider the map f := hreg ◦ (h−1)reg and compute

q ◦ f = q ◦ hreg ◦ (h−1)reg = h ◦ q ◦ (h−1)reg = q.

Hence f is a lift of idQreg taking y0 to y0, and so is the map idRd\{0}. By the uniqueness of lifts
between pointed spaces (see [36, Proposition 1.34]), hreg ◦ (h−1)reg = f = idRd\{0}. Likewise,
(h−1)reg ◦ hreg = idRd\{0}. Summing up, hreg is a homeomorphism with inverse (h−1)reg.

We now show that the homeomorphism hreg is a weak equivalence. To this end, let g be in G and
x in Rd \ {0}. We have

q ◦ hreg ◦ g ◦ h−1
reg(x) = hh−1q(x) = q(x).
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Hence hreg ◦ g ◦ h−1
reg is a lift of idRd\{0} and so there is an unique element α(g) ∈ G such that

hreg ◦ g ◦ h−1
reg(x0) = α(g)(x0). By uniqueness of lifts, hreg ◦ g ◦ h−1

reg = α(g) on Rd \ {0}. Repeat this
construction for each g ∈ G to obtain a map α : G → G with hreg ◦ g = α(g) ◦ hreg on Rd \ {0} for
each g ∈ G. Since α(gk) ◦ hreg = hreg ◦ (gk) = α(g).hreg ◦ k = α(g).α(k).hreg holds and hreg is a
homeomorphism, the map α is an injective group homomorphism. As G is finite, α is thus a group
automorphism and hreg is a weak equivalence.
We extend the weak equivalence hreg to a map h̃ : Rd → Rd by defining h̃(0) = 0. This map is
clearly bijective, equivariant with respect to α and lifts h. An analogous argument9 as in the proof
of [12, II. Lemma 7.2] shows that this map and its inverse are both continuous. Hence h̃ is the
desired weak equivalence of Rd with respect to the G-action.

6.0.5 Proposition For an orbifold (Q,U) as in 6.0.3, the mapping D introduced in 6.0.1 is surjec-
tive. In particular, the induced map ∆: DiffG(Rd)/G→ DiffOrb (Q,U) is a group isomorphism.

Proof. Consider an arbitrary orbifold diffeomorphism [ĥ] ∈ DiffOrb (Q,U) and fix a representative
ĥ = (h, {hi}i∈I , [P, ν]) of [ĥ] with the following properties: Each hi : Vi → Wi, i ∈ I is a diffeomor-
phism such that there are embeddings of orbifold charts λi : Vi → Rd and µi : Wi → Rd into the
global chart from above. A representative with these properties exists by compatibility of orbifold
charts and a combination of Corollary 2.1.8 and Corollary 2.1.13. We have to prove that [ĥ] is
contained in the image of D.

Construct a lift of the homeomorphism h in DiffG(Rd): Let h̃ : Rd → Rd be the lift of h constructed
in Proposition 6.0.4. The lift h̃ is a weak equivalence and we denote by α : G → G the associated
group automorphism. We claim that h̃ is a smooth map with smooth inverse. If this is true, then
h̃ ∈ DiffG(Rd) is a smooth lift of h which is compatible with the family of lifts {hi}i∈I . Hence,
Corollary 2.1.13 implies ∆(h̃G) = [ĥ] ∈ ImD.
To prove the claim, recall that {hi}i∈I is a family of smooth lifts for h. For each i ∈ I the following
diagram commutes with the exception of the outer square:

Vi

λi

��

hi //

  
@@

@@
@@

@@
Wi

~~~~
~~

~~
~~

µi

��

Q
h // Q

Rd
h̃ //

π

??~~~~~~~~
Rd

π

``@@@@@@@@

Notice that h−1
i is a lift for h−1, whence πh̃λih−1

i µ−1
i = π|Imµi holds. Consider the set of non-

singular points in the image of µi which we abbreviate as Regµi := Imµi ∩ (Rd \ {0}). Since
each point in Regµi is non-singular, by the above we obtain a disjoint union Regµi = tP ig with

P ig :=
{
x ∈ Regµi

∣∣∣ h̃λih−1
i µ−1

i (x) = g(x)
}
. As G is a finite group, the sets P ig are open and closed.

9The proof works exactly the same if we replace equivariant mappings with weak equivalences.
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Case 1, d ≥ 2: Then Regµi is a connected set and we obtain Regµi = P ig for some g ∈ G. By
continuity, we must have

h̃|Imλi = g ◦ µi ◦ hi ◦ λ−1
i .

In other words, h̃|Imλi is a smooth mapping. Furthermore, for x = g.y ∈ g. Imλi we have h̃(x) =
α(g).h̃(y). Thus h̃ is smooth on all of G.(Imλi) since each element of G is smooth and h̃ is smooth
on Imλi. The charts associated to the lifts hi : Vi → Wi cover Q, whence Rd =

⋃
i∈I G.(Imλi)

holds. Then h̃ is smooth and an analogous argument yields the same for h̃−1. Summing up, for
d ≥ 2 the lift h̃ is contained in DiffG(Rd).

Case 2, d = 1: The set Regµi is disconnected if 0 ∈ Imµi. However, analogous arguments as in the
case d ≥ 2 assure that h̃ is smooth on R\{0}. It suffices to prove that h̃ is also smooth in 0. To this
end, consider i ∈ I with 0 ∈ Imµi (observe that this implies 0 ∈ Imλi since hi is a lift of h, which
fixes π(0)). Then λi and µi are embeddings of orbifold charts whose images contain the point fixed
by the reflection r and are G = 〈r〉-stable sets. To shorten the notation, define h0 := µi ◦ hi ◦ λ−1

i .
By construction, π ◦h0 ◦ r ◦h−1

0 = π|Imλi holds. Thus [51, Lemma 2.11] yields a unique γ ∈ G = 〈r〉
with h0 ◦ r = γ ◦ h0. Since h0 is a bijective map, we must have γ = r and thus h0 is equivariant.
We claim that h̃|Imλi = g ◦ h0 holds for a uniquely determined element g ∈ 〈r〉. If this is true, then
h̃|Imλi is smooth. An analogous argument shows that h̃−1|Imµi is smooth. Summing up, both h̃

and h̃−1 are smooth, whence h̃ is contained in DiffG(R).

Proof of the claim: Arguing as in the case d ≥ 2, there are elements γ+, γ− ∈ G such that the
following is satisfied:

h̃|Imλi∩[0,∞[ = γ+ ◦ h0|Imλi∩[0,∞[ and h̃|Imλi∩]−∞,0] = γ− ◦ h0|Imλi∩]−∞,0].

We have to prove that γ+ and γ− coincide. Recall from the proof of Proposition 6.0.4 that the map
h̃ is equivariant. Since G = 〈r〉 is a commutative group, we obtain for x ∈ Imλi∩ ]−∞, 0[:

γ− ◦ h0(x) = h̃(x) = −h̃(−x) = −γ+ ◦ h0(−x) = r ◦ γ+ ◦ h0(r(x)) = r ◦ γ+ ◦ r ◦ h0(x) = γ+ ◦ h0(x).

As h0(x) 6= 0 is a non-singular point, indeed γ− = γ+ follows.

6.0.6 Corollary For an orbifold (Q,U) as in 6.0.3, the map ∆c : DiffGc (Rd) → DiffOrb (Q,U)c
introduced in 6.0.2 is an isomorphism of groups.

Proof. If (Q,U) is one of the orbifolds introduced in 6.0.3, the only element in G ∩ DiffGc (Rd) is
the unit element idRd . Hence ∆c is an injective group homomorphism. We will prove that ∆c is a
surjective map.
To this end consider [ĥ] ∈ DiffOrb (Q,U)c with a representative (h,

{
h̃
}
, [P, ν]). Here the lift

h̃ : Rd → Rd has been chosen with h̃ ∈ D−1([ĥ]) (which is possible by Proposition 6.0.5). Let
K ⊆ Q be a compact set with h|Q\K ≡ idQ\K . As π : Rd → Q is a proper map by Lemma B.1.4,
the set π−1(K) is compact. Choose a compact set L ⊆ Rd with π−1(K) ⊆ L and Rd \ L being
connected if d ≥ 2. If d = 1, we may assume that 0 ∈ L and R \ L contains exactly two connected
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components. Recall from the proof of Proposition 6.0.4 that the lift h̃ has been constructed with
respect to an arbitrary pair x0 ∈ Rd \ {0} and y0 ∈ π−1hπ(x0) such that h̃(x0) = y0 (if d ≥ 2).
Without loss of generality, choose x0 ∈ Rd \L. Since h|Q\π(L) ≡ idQ\π(L) holds, one can set y0 = x0.
We claim that the lift h̃ with respect to these choices is contained in DiffGc (Rd). If this is true, then
∆c(h̃) = D(h̃) = [ĥ] follows and ∆c is a group isomorphism.

To prove the claim, it suffices to prove that h̃ coincides with idRd outside the compact set L. We
distinguish two cases: If d ≥ 2, then h̃ is a lift of the identity on the connected set Rd \ L which
takes x0 to x0 ansd so is idRd\L. Hence, h̃|Rd\L = idRd\L by uniqueness of lifts (cf. [36, Proposition
1.34]). Hence h̃ ∈ DiffGc (Rd) follows.
If d = 1, by choice of L the space R \ L contains two connected components C1, C2. Now [51,
Lemma 2.11] yields h̃|Ci = gi|Ci for some gi ∈ G and i ∈ {1, 2}. By construction of h̃, we have
h̃(]0,∞[) ⊆ ]0,∞[ and h̃(]−∞, 0[) ⊆ ]−∞, 0[, whence g1 = g2 = idR and thus h̃ ∈ DiffGc (R).

For the rest of this section, if (Q,U) is an orbifold as in 6.0.3, we endow the group DiffGc (Rd) with
the unique Lie group structure turning ∆c into an isomorphism of Lie groups. We shall use this Lie
group structure to construct a Lie group structure on DiffG(Rd).

6.0.7 Proposition Let d be in N and G be a subgroup of O(d) as defined in 6.0.3. Then the group
DiffG(Rd) may be endowed with a unique Lie group structure such that DiffGc (Rd) becomes an open
subgroup.

Proof. We use the Lie group structure on DiffGc (Rd) together with the construction principle in
Proposition C.4.3. Clearly the subgroup DiffGc (Rd) of DiffG(Rd) satisfies the requirements of Propo-
sition C.4.3 (a). To obtain a Lie group structure on DiffG(Rd), we have to verify the following
condition: For each g̃ ∈ DiffG(Rd), the mapping

cg̃ : DiffGc (Rd)→ DiffGc (Rd), h̃ 7→ g̃ ◦ h̃ ◦ g̃−1

makes sense and is smooth. First, we notice that for each g̃ ∈ DiffG(Rd) the map cg̃ makes sense
because supp cg̃(h̃) ⊆ g̃(supp h̃) is compact.
Since D is a group homomorphism, we have for g̃ ∈ DiffG(Rd) and h̃ ∈ DiffGc (Rd) the identity

D(g̃)∆c(h̃)D(g̃) = D(g̃)D(h̃)D(g̃) = D(g̃h̃g̃) = D(cg̃(h̃) = ∆c(cg̃(h̃).

Thus cD(g̃) ◦ ∆c = ∆c ◦ cg̃ holds. Here cD(g̃) : DiffOrb (Q,U)c → DiffOrb (Q,U)c , [f̂ ] 7→ D(g̃) ◦
[f̂ ] ◦D(g̃)−1 is the conjugation map (cf. 6.0.1). Since DiffOrb (Q,U) is a Lie group which contains
DiffOrb (Q,U)c as an open subgroup, cD(g̃) is a smooth map. Furthermore, ∆c and ∆−1

c are smooth,
whence cg̃ is a smooth map. Now Proposition C.4.3 (b) proves the assertion. Furthermore, G is
a discrete normal subgroup of DiffG(Rd) and DiffG(Rd)/G is a Lie group such that ∆ becomes an
isomorphism of Lie groups.
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6.0.8 Remark The group Diff(Rd) has been turned into a Lie group modeled on the space Xc(Rd)
of compactly supported vector fields in [27]. The Lie group Diff(Rd) turns the subgroup DiffG(Rd)
into a closed Lie subgroup modeled on the space of equivariant compactly supported vector fields.
The induced Lie group structure is precisely the Lie group structure on DiffG(Rd) constructed in
Proposition 6.0.7. We sketch a proof for these facts:

DiffG(Rd) is a closed Lie subgroup of Diff(Rd): The Lie group structure on Diff(Rd) has been
obtained by applying the construction principle (Proposition C.4.3) to the Lie group Diffc(Rd).
Hence it suffices to prove that Diffc(Rd) contains DiffGc (Rd) as a closed Lie subgroup, whose induced
Lie group structure coincides with the structure induced by ∆c : DiffGc (Rd)→ DiffOrb (Q,U)c. For
the following arguments we identify Xc(Rd) with the space C∞c (Rd,Rd) (see Definition C.3.4 for
details). However, we suppress the identification in the notation below.
In [27, Theorem 6.5], the group Diffc(Rd) was turned into a Lie group using the following global
chart at the identity element:

α : Xc(Rd) ⊇ Ω→ Diffc(Rd), σ 7→ idRd +σ

(for a suitable open zero-neighborhood Ω ⊆ Xc(Rd)). If we endow Rd with the flat Riemannian
metric ρf (i.e. the one associated to the euclidean metric), then the Riemannian exponential map
with respect to this metric is given by exp(v) = v+p for v ∈ TpRd (cf. [41, Example after Definition
1.6.4]). Hence we may rewrite α as α(σ) = exp ◦σ.
By construction, G is a subgroup of the orthogonal group, whence each element in G is a Riemannian
isometry with respect to ρf . In particular, exp commutes via exp ◦γ = exp ◦(dγ) = γ. exp with every
γ ∈ G. Thus for σ ∈ Xc(Rd), we derive exp ◦σ ◦γ = exp ◦dγ ◦σ = γ. exp ◦σ for each γ ∈ G. In other
words, α(Ω ∩XGc (Rd)) ⊆ DiffGc (Rd). We remark that each element in DiffGc (Rd) is equivariant with
respect to the G-action. Hence α(σ) ∈ Imα∩DiffGc (Rd) implies exp ◦σ ◦ γ = γ. exp ◦σ = exp ◦dγ.σ.
As the Riemannian exponential map exp |TpRd is injective for each p ∈ Rd, the identity dγ.σ = σ ◦ γ
follows for each γ ∈ G. We conclude

α(Ω ∩ XGc (Rd)) = DiffGc (Rd).

The restriction of α to Ω ∩ XGc (Rd) induces a submanifold chart α̃ for DiffGc (Rd). Hence DiffGc (Rd)
becomes a Lie subgroup of Diffc(Rd) modeled on the closed vector subspace XGc (Rd) of Xc(Rd) (cf.
Example 3.3.5). This proves the first assertion. We denote by DiffGc (Rd)∗ the group DiffGc (Rd) with
the structure of a closed Lie subgroup of Diffc(Rd). The symbol DiffGc (Rd) will denote the Lie group
constructed in Proposition 6.0.7.

The Lie groups DiffGc (Rd) and DiffGc (Rd)∗ coincide: Observe that each element of G is a
Riemannian isometry with respect to the flat Riemannian metric ρf on Rd. Since Rd/G is an orbifold
with global chart, the family (ρf ) induces a Riemannian orbifold metric ρ on (Q,U). Let [expOrb]
be the Riemannian orbifold exponential map associated to ρ. By Lemma 5.2.2, we may assume that
the Lie group DiffOrb (Q,U) has been constructed with respect to the Riemannian orbifold metric
ρ. Therefore a chart around the identity element for the open Lie subgroup DiffOrb (Q,U)c is given
by

E : XOrb (Q)c ⊇ H → DiffOrb (Q,U)c , [σ̂] 7→ [expOrb] ◦ [σ̂]

for a suitable open zero-neighborhood H. The Riemannian exponential map exp: TRd → Rd associ-
ated to ρf is a lift of [expOrb]. Since (Rd, G, π) is a global chart for Rd/G, we obtain a representative
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(expOrb, {exp} , [P, ν]) of [expOrb] by Remark 4.2.4 (a). Hence for each [σ̂], a representative of E([σ̂])
is induced by the lift exp ◦σRd (where σRd is the unique canonical lift of [σ̂] in the global chart).
Recall from Example 3.3.5 that the mapping H : XOrb

(
Rd/G

)
c
→ XGc (Rd), [σ̂] 7→ σRd is an isomor-

phism of topological vector spaces. Shrinking the open zero neighborhood H, we may assume that
H(H) ⊆ Ω ∩ XGc (Rd) holds. Combining these facts, a trivial computation shows that the following
diagram is commutative:

XOrb (Q)c

H

��

H
⊇

oo

H|H
��

E // DiffOrb (Q,U)c

∆−1
c

��

XGc (Rd) Ω ∩ XGc (Rd)
⊇

oo α̃ // DiffGc (Rd)∗

We deduce that the group homomorphism ∆−1
c is smooth as a map into DiffGc (Rd)∗ on a neigh-

borhood of the identity in DiffOrb (Q,U). Hence ∆−1
c is smooth as a map of the Lie group

DiffOrb (Q,U)c into DiffGc (Rd)∗ by [10, III. §1 2. Proposition 4]. Vice versa the same holds for
∆c : DiffGc (Rd)∗ → DiffOrb (Q,U)c. Therefore ∆c is an isomorphism of Lie groups. However,
∆c : DiffGc (Rd)→ DiffOrb (Q,U)c is also an isomorphism of Lie groups. We obtain an isomorphism
of Lie groups

idDiffGc (Rd) : DiffGc (Rd)∗ → DiffGc (Rd), idDiffGc (Rd) := ∆−1
c ◦∆c,

whence the Lie groups DiffGc (Rd) and DiffGc (Rd)∗ coincide.





A. Hyperplanes and Paths in Euclidean Space

The results in this appendix are part of the folklore. However, for the reader’s convenience we
provide full proofs for these known facts. As usual, a hyperplane H in euclidean space Rd is a linear
subspace of codimension 1 and a path is a continuous map from an interval to Rd.

A.1 Lemma Let d ∈ N and X ⊆ Rd a linear subspace such that dimX ≤ d− 2. Consider an open
and path-connected subset C ⊆ Rd and x, y ∈ C \ X. Then there exists a path p : [0, 1] → C \ X
connecting x and y. In other words, C \X is path-connected.

Proof. Without loss of generality, we may assume X = Rd−m × {0} and m ≥ 2. The set C is
path-connected, whence there is a path q : [0, 1]→ C with q(0) = x and q(1) = y. If the intersection
Im q ∩X is empty, there is nothing to prove. Otherwise we construct a path as follows:
Consider the projections πX : Rd → Rd−m × {0} = X ans π2 : Rd → {0} × Rm, respectively. The
projections are continuous open maps, with πX + π2 = idRd . Observe that z ∈ X if and only if
π2(z) = 0 holds. The set {q(t) | t ∈ [0, 1], π2(q(t)) = 0} = Im q ∩X is compact and does not contain
x and y. Therefore we can choose xi ∈ X, 1 ≤ i ≤ N and ε > 0 with

Im q ∩X ⊆
⋃

1≤i≤N

Bε(xi)×Bε(0) ⊆ K :=
⋃

1≤i≤N

Bε(xi)×Bε(0) ⊆ C \ {x, y} .

As each closed ball is path-connected, the sets Bε(xi)×Bε(0) are path-connected. Hence the set K
is a set with finitely many path-components K1, . . . ,Kr (cf. [20, p. 115]). Each path-component is a
union Ki =

⋃
1≤j≤ri Bε(xi,j)×Bε(0) and is thus compact. Furthermore, the boundary ∂K satisfies

∂K = ∂K1 ∪ ∂K2 ∪ . . . ∪ ∂Kr, since the sets Ki form a finite partition of closed and disjoint sets.
As Im q ∩X ⊆ K◦ holds, we deduce that the boundary ∂Ki does not contain elements of Im q ∩X.
We construct the path by induction: The set L1 := q−1(K1) is a closed subset of [0, 1], which does
not contain 0, 1 by construction. Case 1: If L1 = ∅, set q1 := q.
Case 2: If L1 6= ∅, the compactness of L1 enables us to consider s1 := minL1 and t1 := maxL1.
For t ∈ {s1, t1}, we must have q(t) ∈ ∂K1. As shown above, this implies q(s1), q(s2) 6∈ X, i.e.
π2(q(s1)), π2(q(t1)) ∈ Bε(0)\{0} holds. Note that Bε(0)\{0} is path-connected (by a variation of [20,
V. Theorem 2.2]), since m ≥ 2 is satisfied. Furthermore, πX(K1) is path-connected, whence there
is a path γ1 : [s1, t1]→ πX(K1)×

(
Bε(0) \ {0}

)
⊆ K1 ⊆ C with γ1(s1) = q(s1) and γ1(t1) = q(t1).

Define a mapping

q1 : [0, 1]→ C, t 7→

{
q(t) t ∈ [0, 1]\]s1, t1[

γ1(t) t ∈ [s1, t1].

By construction, q1 is a path with q1(0) = x and q1(1) = y. Furthermore, Im q1 ∩K1 = q1([s1, t1])
implies Im q1 ∩K1 ∩X = ∅. This also holds in Case 1. In either case, note that the definition of q1

yields Im q1 ∩X ⊆
⋃

2≤i≤rKi.
Assume that for all i with 1 ≤ i < n ≤ r, we have already constructed a path qi connecting x
and y, whose image is contained in C with Im qi ∩ X ⊆

⋃
i+1≤j≤rKj . Consider the compact set

Ln := q−1
n−1(Kn) ⊆ ]0, 1[. If Ln is empty, simply set qn := qn−1 to obtain a path with the desired
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properties. Otherwise, we have to construct a path qn from qn−1 such that the image does not
intersect (K1 ∪ . . . ∪ Kn) ∩ X. Apply the above construction verbatim with Ln 6= ∅ and qn−1

instead of L1 and q. Since qn−1 does not intersect Ki ∩X for each 1 ≤ i ≤ n− 1, the construction
yields a mapping qn with Im qn ∩ X ⊆

⋃
n+1≤i≤rKi, whose image is contained in C. Summing

up, after finitely many steps the mapping p := qr satisfies: Im p ⊆ C, p(0) = x, p(1) = y and
Im p ∩X ⊆

⋃
r+1≤i≤rKi = ∅. Hence p is a path with the desired properties.

A.2 Lemma Let d,m ∈ N, C be an open connected subset of Rd and (Xi)i=1,...,m be a family of
vector subspaces of Rd such that dimXi < d for all 1 ≤ i ≤ m and Xi 6= Xj for i 6= j.

(a) For each pair x, y ∈ C \
⋃m
i=1Xi, there is a path p : [0, 1]→ C such that

1. p(0) = x, p(1) = y,
2. p([0, 1]) ∩Xi = ∅ for all i such that dimXi ≤ d− 2,
3. p([0, 1]) ∩Xi ∩Xj = ∅ for all i, j such that i 6= j.

(b) Assume there is k ∈ N0 such that dimXi = d − 1 if 1 ≤ i ≤ k and dimXi < d − 1 other-
wise. Then the set Rd \

⋃m
i=1Xi with the subspace topology has at most 2k (path-)connected

components.
(c) If C ⊆ Rd is a convex open subset, then C\

⋃m
i=1Xi possesses at most 2k connected components.

Proof. (a) Since for i 6= j we have dimXi ∩ Xj ≤ d − 2, it suffices to construct a path p which
satisfies Properties 1. and 2. for an arbitrary finite number of subspaces Yi with dimYi ≤
d − 2. Since C is path-connected, C \ Y1 is path-connected by Lemma A.1. Iteratively,
C \ Y1 \ Y2 \ · · · \ Ym = C \ (Y1 ∪ . . . ∪ Ym) is path connected by Lemma A.1.

(b) The subspaces Xi are closed in Rd, whence Ω := Rd \
⋃m
i=1Xi is an open set. The components

of Ω coincide with the path-components of Ω by [20, V. 5.6]. We claim that there are at
most 2k path-components. For a hyperplane Xj , we consider the two half spaces H+

j , H
−
j

such that Rd is the disjoint union H+
j ∪Xj ∪H−j . The half-spaces are the path-components

of Rd \Xj . Each half-space is a convex set. We observe that each intersection of half-spaces
H
σ(1)
1 ∩ . . .∩Hσ(k)

k with σ : {1, 2, . . . , k} → {+,−} is again a convex set. From (a) we deduce
that these sets yield path-connected subsets of Rd \

⋃
1≤j≤mXj if we remove

⋃
k+1≤j≤mXj .

Hence Rd \
⋃m
i=1 is realized as a union of no more than 2k path-connected sets, from which

the assertion follows.
(c) From the proof of (b), we deduce that the components are induced by intersections of k half-

spaces, which are convex sets. However the same holds for the subset C ∩Hσ(1)
j1
∩ . . .∩Hσ(k)

jr
.

From part (a) we deduce with arguments as in (b) that all non-empty sets of this kind induce
the connected components of C \

⋃m
i=1Xi. As there are at most 2k non-empty sets of this

kind, the assertion follows.



B. Group Actions and Newman‘s Theorem

In this section, we recall several basic facts concerning group actions, orbit spaces and quotient
mappings to orbit spaces. We are interested only in continuous group actions, whence each group
action in this thesis will be required to be continuous. Several basic results will be repeated to fix
some notation. For further information on group actions, we recommend [12,59].

B.1. Group actions

B.1.1 Definition (Group actions of topological groups) Let G be a topological group and X a
topological space. A G-action on X is a continuous map Θ: G×X → X such that:

(a) Θ(1, x) = x for all x ∈ X, where 1 is the identity element of G.
(b) Θ(g2,Θ(g1, x)) = Θ(g2g1, x) for all g1, g2 ∈ G and x ∈ X.

The pair (X,Θ) (or (X,G) if the action is clear) is called a G-space and we denote it usually just
by the underlying space X. We shall abbreviate g.x := Θ(g, x) if it is clear which action is meant.
For x ∈ X the orbit of x is the set G.x := {g.x | g ∈ G}. Let X/G := {G.x |x ∈ X} be the set of all
orbits and endow it with the quotient topology induced by p : X → X/G, x 7→ G.x. The space X/G
is called the orbit space of the G-space X.

B.1.2 Definition (Isotropy subgroups and fixed point sets) Let X be a G-space. Define the isotropy
group Gx := {g ∈ G | g.x = x} of x ∈ X.
For g ∈ G, the set of fixed points of g will be denoted by Σg = {x ∈ X | g.x = x} and we write

ΣG := {x ∈ X |Gx 6= {1}} =
⋃

g∈G\{1}

Σg.

For a subset S ⊆ X, we define g.S := {g.x |x ∈ S} and let GS := {g ∈ G | g.S = S} be the isotropy
group of S. A subset S ⊆ X is called G-invariant if GS = G holds. Furthermore, a G-stable subset
of X is a connected set S ⊆ X such that for g ∈ G either g.S = S or g.S ∩ S = ∅ is satisfied.

The elegant proof of the following lemma has been communicated to the author by A. Pohl:

B.1.3 Lemma Let X be a manifold, G a finite topological group acting on X via homeomorphisms,
i.e. Θ(g, ·) : X → X is a homeomorphism for each g ∈ G. Then, for each x ∈ X, there exist
arbitrarily small open G-stable neighborhoods of x whose isotropy groups coincide with Gx. In
particular, the G-stable open sets form a base for the topology on X.

Proof. Let U be any neighborhood of x and G.x = {x1, x2, . . . , xn} be the distinct elements in the
G-orbit of x, i.e. xi 6= xj for i 6= j. Without loss of generality, x = x1 holds. For i = 1, . . . , n,
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choose an open neighborhood Ui of xi with the following property: For i 6= j, the sets Ui and Uj
are disjoint and U1 ⊆ U holds. For i = 1, . . . , n, define G1

i := {g ∈ G | g.xi = x} and set

S′ :=
⋂

1≤i≤n

⋂
g∈G1

i

g.Ui.

As G acts by homeomorphisms, the set S′ ⊆ U1 ⊆ U is an open neighborhood of x. Consider h ∈ G.
If h.x = xi holds, this implies h−1 ∈ G1

i . Therefore S′ ⊆ h−1.Ui yields h.S′ ⊆ Ui. For i 6= 1 we
deduce from Ui ∩U1 = ∅ and S′ ⊆ U1 for h as above h.S′ ∩S′ = ∅. On the other hand, for i = 1 we
have h ∈ Gx, whence hG1

j = G1
j for all j and thus

h.S′ =

n⋂
j=1

⋂
g∈G1

j

(hg).Uj =

n⋂
j=1

⋂
g∈G1

j

g.Uj = S′. (B.1.1)

Let S be the connected component of S′ which contains x. As X is locally path connected, S is an
open neighborhood of x by [20, V. Theorem 4.2]. Since G acts by homeomorphisms, by (B.1.1) Gx
permutes the connected components of S′ and fixes x. Combine (B.1.1) and the fact h.S′ ∩ S′ = ∅
for h ∈ G \Gx. We deduce that GS = Gx holds and S is a G-stable open neighborhood of x which
is contained in S′ ⊆ U .

B.1.4 Lemma ([59, Proposition 3.1 and Proposition 3.6]) Let X be a Hausdorff G-space and G a
compact topological group. Consider the quotient map π : X → X/G, x 7→ G.x onto the orbit space.
Then

(a) X/G is a Hausdorff space.
(b) π is a continuous, open and closed map.
(c) π is a proper map.
(d) X is compact if and only if X/G is compact.
(e) X is locally compact if and only if X/G is locally compact.

B.1.5 Remark Let M be a (possibly infinite-dimensional) manifold. The discrete topology is the
unique Hausdorff topology turning a finite subgroup G of Diffr(M) into a topological group. The
natural mapping Θ: G×M →M, (g, x) 7→ g(x) is continuous since each element in G is continuous
and G is endowed with the discrete topology. Hence each finite subgroup of Diffr(M) induces a
canonical action of a compact group on M which satisfies the prerequisites of Lemma B.1.4.

B.1.6 Definition Let f : X → Y be a map from the G-space X to the H-space Y .

(a) If there is a group homomorphism λ : G → H such that f(g.x) = λ(g).f(x) holds for all
x ∈ X, g ∈ G, f is called equivariant with respect to λ.

(b) If G and H coincide and f(g.x) = g.f(x) holds for all x ∈ X, g ∈ G, we call f equivariant .
An equivariant homeomorphism is called an equivalence.

(c) Let f be a homeomorphism and G = H. If there is a group automorphism α : G → G with
f(g.x) = α(g).f(x) for all x ∈ X, g ∈ G, then the map f is called a weak equivalence.
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Notice that the inverse of a (weak) equivalence is again a (weak) equivalence (cf. [12, I 2.]).

B.1.7 Definition Let M be a smooth manifold which is also a G-space. We define the set

DiffG(M) := {f ∈ Diff(M) | f is a weak equivalence} .

B.1.8 Remark It is easy to check the following facts about DiffG(M):

(a) The set DiffG(M) is a subgroup of Diff(M).
(b) If G ⊆ Diff(M) acts via the natural action on M , then G ⊆ DiffG(M) follows. In this case, G

is a normal subgroup of DiffG(M).

B.2. Newman‘s Theorem

The following theorem of M.H.A. Newman is an important tool to investigate the structure of
orbifolds (for a proof see [19] also cf. [12, III 9.]):

B.2.1 Theorem (Newman 1931) Let G be a finite group acting effectively by homeomorphisms on
a connected paracompact finite dimensional manifold M . Then the set M \ΣG of points with trivial
isotropy group is dense and open in M .

In the situation of Theorem B.2.1, the elements of ΣG are called singular points and the elements of
M \ΣG are called non-singular points. If G acts by C∞ diffeomorphisms on a paracompact smooth
manifold, then Newman’s Theorem is much easier to prove, see [51, Lemma 2.10].
We compile several interesting consequences of Newman’s Theorem. For further information, we
refer to [51, Section 2.4].

B.2.2 Lemma (cf. [51, p. 36]) Let M be a smooth finite dimensional paracompact manifold, G a
finite subgroup of Diff(M) and x ∈M . Then there exists arbitrarily small G-stable charts (W,κ) with
x ∈ W such that κ(x) = 0 and κ conjugates the isotropy group Gx to a (finite) group of orthogonal
transformations on κ(W ). Furthermore, Txg = idTxM implies g|W = idW for each g ∈ Gx; if M is
connected it implies g = idM .

Proof. Since G is finite, we may choose a G-invariant Riemannian metric on M by [51, Proposition
2.8]. The group G thus acts via Riemannian isometries with respect to this metric. Let expM be the
Riemannian exponential map with respect to this metric. By [41, Theorem 1.6.12], we may choose
ε > 0 such that expM induces a diffeomorphism from the open ball Bε(0x) centered at 0x in Tx(M)
to an open neighbourhood W of x, expM,x : Bε(0x)→ W ⊆ M . As the metric is G-invariant, each
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g ∈ Gx induces an orthogonal transformation Txg of TxM . Since expM commutes with Riemannian
isometries on its domain, we deduce expM,x ◦Txg|dom expM,x = g ◦ expM,x. This formula shows that
Txg = id implies g|W = idW , and also that W is Gx-invariant. By continuity of expM , we can
shrink ε to ensure that W is contained in G-stable neighborhood of x (cf. Lemma B.1.3). Hence
there is ε > 0 such that expM,x(Bε(0x)) = W is a G-stable subset with GW = Gx. For such a
W , define κ := (expM,x |Bε(0x))

−1. The pair (W,κ) satisfies the assertion. In particular, W may be
taken arbitrarily small.
For the final assertion, note that g 6= idM implies g|W 6= idW , by Newman’s Theorem.

B.2.3 Lemma Let M be a connected paracompact smooth manifold and G be a finite subgroup of
Diff(M). Denote by ΣTG the set of singular points with respect to the derived action G × TM →
TM, (g,X) 7→ g.X := Tg(X) of G on TM . For each open connected set U ⊆ TM , the set of
non-singular points U \ ΣTG is (path-)connected.

Proof. Without loss of generality we may assume U 6= ∅. Let C be a component of U \ ΣTG and
C be its closure in U . We will show that C is open. The connectedness of U then entails C = U .
If there was another component D 6= C, then C ∩D = ∅, because D is open and C ∩D = ∅. But
D ⊆ U = C yields a contradiction, whence U \ ΣTG is connected.
To see that C is open, let X ∈ ∂C (the boundary with respect to U). Then X ∈ ΣTG as C is open
and closed in the open subset U \ ΣTG of U . By definition of the derived action for g ∈ G we have
πTM (X) = πTM (g.X) = g.πTM (X) if g.X = X. This implies GX ⊆ GπTM (X). By Lemma B.2.2,
there is a G-stable manifold-chart (W,κ) such that πTM (X) ∈W , GW = GπTM (X) and κ conjugates
GW to a finite group of orthogonal transformations on κ(W ) = Bε(0) ⊆ Rd for d = dimM and
some ε > 0. For g ∈ GπTM (X), let g̃ be the orthogonal transformation conjugate to g, i.e. g̃ is a
linear map with g̃ ◦ κ = κ ◦ g. The functoriality of the tangent functor implies T g̃Tκ = TκTg.
Taking identifications T g̃ = (g̃|Bε(0) ◦pr1, dg̃)(g̃|Bε(0)× g̃ is the restriction of a linear map. Thus Tκ
conjugates the action of GW = GπTM (X) on TW to a linear action on Tκ(TW ) = Bε(0)×Rd. Since
W is G-stable with GW = GπTM (X), the set TW is G-stable with GTW = GπTM (X) by definition
of the derived action. Hence TW ∩ ΣTG = TW ∩ ΣTGπTW (X)

holds. Choose an open connected
neighborhood Ω of X in TW ∩ U . If Ω \ ΣTG is a connected set, then (Ω \ ΣTG) ∩ C = Ω ∩ C 6= ∅
follows as X ∈ C and thus Ω \ ΣTG ⊆ C. As Ω \ ΣTG is dense in Ω by Newman’s Theorem, we
deduce that Ω ⊆ C. Thus C will be open as required.
To verify this, observe that Ω ⊆ TW entails Ω ∩ ΣTG = Ω ∩ ΣGπTM (X)

. Consider the open sets
Ω̃ := Tκ(Ω) and Ṽ := Tκ(Ω \ΣTG) = Ω̃ \ Tκ(ΣTGπTM (X)

). We claim that Ṽ is connected. If this is
true, the same holds for Ω \ ΣTG, whence the proof is complete.
Proof of the claim: As Tκ conjugates the group action to a linear action, the set Ω̃∩Tκ(TW∩ΣTG)
is the intersection of the open (path-)connected set Ω̃ with a finite union of linear subspaces of R2d.
By Lemma A.2, the set Ṽ will be connected if for each g ∈ GπTM (X) the fixed point set of the
associated linear map T g̃ is not a hyperplane in R2d. For each g ∈ GπTM (X) \ {idM}, Lemma
B.2.2 implies that g̃ is not the identity map. From [13, I. Proposition 2.18 (1)], we deduce that the
fixed points of g̃ are contained in a hyperplane H ( Rd. Each linear subspace fixed by T g̃ is thus
contained in H ×H and dim(H ×H) = 2d− 2. Hence T g̃ does not fix any hyperplane, whence Ṽ
is connected.



C. Infinite Dimensional Manifolds and Lie Groups

In this section, we briefly recall the notions of infinite dimensional manifolds and infinite dimensional
Lie groups. Manifolds and Lie groups modeled on infinite dimensional spaces may be defined almost
exactly as in the finite dimensional case.

C.1. Manifolds modeled on locally convex spaces

C.1.1 Definition We recall from [32] that a manifold with rough boundary modeled on a locally
convex space E is a Hausdorff topological space M with an atlas of smoothly compatible homeo-
morphisms φ : Vφ → Uφ from open subsets Vφ of M onto locally convex subsets Uφ ⊆ E with dense
interior. If each Uφ is open, M is an ordinary manifold (without boundary). In a similar fashion
Cr-manifolds may be defined for r ∈ N0. Unless stated otherwise, every manifold will be assumed to
be without boundary. Direct products of locally convex Ck-manifolds, tangent spaces and tangent
bundles may be defined as in the finite dimensional setting. We refer to [55] for details.

C.1.2 Notation Let M,N be Cr-manifolds (where 1 ≤ r ≤ ∞) and f : M → N a mapping of
class Cr. We denote by Tf : TM → TN the tangent map. Abbreviate by Txf : TxM → Tf(x)N
the restriction of Tf to the tangent space TxM of M at x ∈M . If N is an open subset of a locally
convex space F , the tangent map Tf : TM → TN ∼= N × F is given by (x, v) 7→ (f(x), df(x, v)) for
x ∈M , v ∈ TxM and a map df : TM → F . If f : U → V is a Cr-map, where U, V are open subsets
of locally convex spaces E and F , it is convenient to think of df(x, ·) as a differential. Hence we
canonically identify TxU ∼= E and TyV ∼= F to obtain df(x, v) = Txf(v).
We let πTM : TM → M be the bundle projection. For r = ∞ we denote by X (M) the space of
smooth vector fields, i.e. smooth mappings X : M → TM with πTM ◦X = idM .

C.2. Function spaces and their topologies

Our exposition of the Cr-topology follows [26], but we allow locally convex subsets. Albeit the
definition of differentiability differs from the one used in [26], on open subsets of locally convex
spaces over the field R are equivalent by [6, Proposition 7.4].

C.2.1 Definition (Compact-open topology) Let X, Y be Hausdorff topological spaces, K ⊆ X
compact and U ⊆ Y open. We define the set

bK,Uc := {f ∈ C(X,Y ) | f(K) ⊆ U} .

Then the sets
bK1, U1c ∩ bK2, U2c ∩ . . . ∩ bKn, Unc

with n ∈ N, Ki ⊆ X compact and Ui ⊆ Y open for 1 ≤ i ≤ n, are a base for a topology on C(X,Y )
(cf. [21, Section 3.4]). It is called the compact-open topology and we denote by C(X,Y )c.o. the space
C(X,Y ) with this topology.
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C.2.2 Definition Let E,F be locally convex topological vector spaces, U ⊆ E a locally convex
subset with dense interior and r ∈ N0 ∪ {∞}. Endow Cr(U,F ) with the unique locally convex
topology turning

(d(j)(·))N03j≤r : Cr(U,F )→
∏

N03j≤r

C(U × Ej , F ), f 7→ (d(j)f)

into a topological embedding. We call this topology the compact-open Cr-topology . Notice that it
is the initial topology with respect to the family (d(j)(·))N3j≤r.

C.2.3 Remark

(a) By [23, Lemma 1.14], Definition C.2.2 coincides on open sets with the definition in [24, Defini-
tion 3.1]. Hence if U is an open subset of finite-dimensional space E and F is a Fréchet space,
then Cr(U,F ) is a Fréchet space by [24, Remark 3.2].

(b) For each compact subset K ⊆ U and open subset V ⊆ F , the set

bK,V cr := {γ ∈ Cr(U,F ) | γ(K) ⊆ V }

is open in Cr(U,F ) by [26, Lemma 4.22].
If s, r ∈ N0 ∪ {∞} with r ≤ s, then Cs(U,F ) ⊆ Cr(U,F ) holds by definition and the topology
on Cs(U,F ) is finer than the subspace topology induced by Cr(U,F ). Let Ω be an open set
in Cs(U,F ) such that Ω = Cs(U,F ) ∩ A holds for some open A ⊆ Cr(U,F ). Then we call Ω
a Cr-open set in Cs(U,F ) or a Cr-neighborhood of f ∈ Cs(U,F ), for any f ∈ Ω.

C.2.4 Definition Let E be a locally convex space and M a Cr-manifold. Then we let Cr(M,E)
be the space of all Cr-mappings γ : M → E. The pointwise operations turn Cr(M,E) into a vector
space. Endow Cr(M,E) with the initial topology with respect to the family

θκ : Cr(M,E)→ Cr(Vκ, E), γ 7→ γ|Uκ ◦ κ−1

where κ : Uκ → Vκ ranges through an atlas of M . The topology is independent of the choice of atlas
by [26, Lemma 4.9]. If M is an open subset of a locally convex space, [26, Lemma 4.6] proves that
this topology coincides with the compact open Cr-topology.

C.2.5 Definition

(a) Let U ⊆ Rd be an open subset d ∈ N0 and K ⊆ U compact. For ξ ∈ Cr(U,Rd), r ∈ N0∪{∞},
the maximum norm ‖·‖∞ and k ∈ N0 with k ≤ r, we use standard multiindex notation to set

‖ξ‖K,k := max
|α|≤k

max
x∈K
‖∂αξ(x)‖∞ .

(b) Let E be a locally convex space and r ∈ N0∪{∞}. Endow Cr([0, 1], E) with the locally convex
vector topology induced by the family of seminorms ‖·‖Ck,p defined via

‖γ‖Ck,p := max
j=0,...,k

max
t∈[0,1]

p

(
∂k

∂tk
γ(t)

)
where p ranges through the continuous seminorms on E and k ∈ N0 with k ≤ r.
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C.2.6 Remark

(a) Let U ⊆ Rd be some open subset, where d ∈ N0. As U is σ-compact, there is a sequence
of compact sets (Kn)n∈N such that U =

⋃
n∈NKn. By a variant of [24, Proposition 4.4], the

locally convex topology induced by the family of seminorms
{
‖·‖Kn,k

∣∣∣n ∈ N, 0 ≤ k ≤ r
}

on

Cr(U,Rd) coincides with the compact-open Cr-topology.
(b) A variant of [24, Proposition 4.4] shows that the topology introduced in Definition C.2.5 (b)

is initial with respect to the mappings d(j) : Cr([0, 1], E) → C([0, 1] × Rj , E)c.o, γ 7→ d(j)γ,
0 ≤ k ≤ r, i.e. it coincides with the compact-open Cr-topology.
In particular, then Cr([0, 1], U) := {γ ∈ Cr([0, 1], E) | γ([0, 1]) ⊆ U} = b[0, 1], Ucr is an open
subset for each open U ⊆ E. If E is metrizable (respectively complete), Cr([0, 1], E) is
metrizable by [39, 2.8 Theorem 1] (respectively complete by [33, Lemma 1.4]).

C.2.7 Notation Let U ⊆ E and V ⊆ F be locally convex subsets with dense interior of locally
convex topological vector spaces E and F , respectively. Furthermore, let G be a topological vector
space and f : U → C(V,G) be a map. We associate to f the map

f∧ : U × V → G defined via f∧(u, v) := f(u)(v).

C.3. Spaces of sections and patched spaces

In this section we endow the space of smooth vector fields X (M) on a smooth manifold M with a
topology. Furthermore, we use the concept of a “patched locally convex space” (cf. [25,26]) to obtain
a criterion for the differentiability of maps between spaces of sections. We recall the following facts
from [26, Appendix F]:

C.3.1 Definition Let M be a smooth manifold modeled on the locally convex space E and
πTM : TM →M be the bundle projection. Consider a maximal atlasA ofM and a chart (Vψ, ψ) ∈ A
with ψ : Vψ → Uψ. Let pr2 : Vψ × E → E be the canonical projection.
For a vector field X ∈ X (M), we define a local representative Xψ := pr2 ◦ Tψ ◦X|Vψ : Vψ → E. In
particular Tψ ◦X(y) = (ψ(y), Xψ(y)) holds for all y ∈ Vψ.
We endow X (M) with the unique locally convex topology turning the linear map

Γ: X (M)→
∏

(Vψ,ψ)∈A

C∞(Vψ, E), X 7→ (Xψ)(Vψ,ψ)∈A

into a topological embedding. Then the topology on X (M) is the initial topology with respect to
the family of linear maps θψ : X (M)→ C∞(Vψ, E), X 7→ Xψ.

C.3.2 Lemma ([26, Lemma F.9]) The topology on X (M) is initial with respect to the family
(θφ)(Vφ,φ)∈B, where B ⊆ A is some atlas for M .
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Proof. Combine [26, Lemma F.9] with [26, Proposition 4.19], which guarantees that the topology
defined in [26] coincides with our definition of the compact-open Cr-topology over the field R.

C.3.3 Notation LetM be a smooth manifold and U an open subset ofM . We define the restriction
map resMU : X (M) → X (U) , X 7→ X|TUU . For each open subset U this map is continuous linear
by [26, Lemma F.15].10

C.3.4 Definition Let d ∈ N. We define the space of compactly supported vector fields Xc(Rd).11
The assignment θ : Xc(Rd) → C∞c (Rd,Rd), X 7→ pr2 ◦X is a bijective map, where pr2 denotes the
canonical projection TRd ∼= Rd × Rd → Rd, (x, y) 7→ y. We define a topology on C∞c (Rd,Rd) (and
thus also on Xc(Rd)) turning θ into an isomorphism of topological vector spaces. Choose a locally
finite cover U = (Ui)i∈I of Rd by relatively compact open subsets Ui ⊆ Rd such that the cover is
countable. Then consider the map

RU : Xc(Rd)→
⊕
i∈I

C∞(Ui,Rd), RU (σ) := (pr2 ◦ σ|Ui)i∈I

We endow Xc(Rd) with the unique locally convex topology induced by the linear map RU . Here the
right hand side has been endowed with the locally convex direct sum topology. By [26, Lemma 8.10],
the topology constructed does not depend on the choice of covering U (recall from [26, Proposition
4.19] that the topology defined in [26] coincides with our definition of the compact-open Cr-topology
over the field R). Furthermore Xc(Rd) is a Hausdorff space and RU is a topological embedding with
closed image by [26, Proposition 8.13].

C.3.5 Definition A patched locally convex space over R is a pair (E, (pi)i∈I), where E is a topo-
logical R-vector space and (pi)i∈I is a family of continuous linear maps pi : E → Ei to topological
vector spaces Ei such that

(a) for each x ∈ E, the set {i ∈ I | pi(x) 6= 0} is finite,
(b) the linear map

p : E →
⊕
i∈I

Ei, x 7→ (pi(x))i∈I =
∑
i∈I

pi(x)

from E to the direct sum ⊕i∈IEi (equipped with the direct sum topology cf. [11, II.29.5
Definition 2]) is a topological embedding,

(c) the image p(E) is sequentially closed in
⊕

i∈I Ei.

The mappings pi : E → Ei are called patches, and the family (pi)i∈I is called a patchwork . If I is a
countable set, we also say that E is countably patched .

10The article [26] uses another concept of differentiability in locally convex vector spaces which is adapted to non-
discrete topological fields. However as [6, Proposition 7.4] asserts, this concept of differentiability coincides with
the one from Definition 1.1.1 on open sets of locally convex vector spaces over the field R. As we are only interested
in this case, we may use the results of [26] without restriction.

11Since this space is only needed in Example 3.3.5, we shall only consider vector fields on Rd (cf. [26, Appendix F]
for a more general definition).
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C.3.6 Lemma Let (E, (pi)i∈I) be a patched topological R-vector space, with pi : E → Ei and p as
in Definition C.3.5. For each r ∈ N0 ∪ {∞}, the map

p∗ : Cr([0, 1], E)→ Cr([0, 1],
⊕
i∈I

Ei), g 7→ p ◦ g

is a linear topological embedding whose image is sequentially closed. If |I| < ∞ or E is countably
patched and r < ∞, then the family Cr([0, 1], pi) : Cr([0, 1], E) → Cr([0, 1], Ei), γ 7→ pi ◦ γ, i ∈ I,
turns Cr([0, 1], E) into a patched locally convex space over R.

Proof. The maps Cr([0, 1], pi) are continuous linear for i ∈ I and p∗ is a topological embedding
by [33, Lemma 1.2]. Without loss of generality we identify E with a subspace of F :=

⊕
i∈I Ei. Let

(fn)n∈N ⊆ Im p∗ be a sequence which converges to some f ∈ Cr([0, 1], F ). Since E is sequentially
closed, due to the continuity of the point evaluation maps (cf. [2, Proposition 3.20]) for t ∈ [0, 1]
the sequence (fn(t))n∈N converges in E. Hence the image of f is contained in E. Recall that
directional derivatives may be computed as limits of sequences. As each element f(t) is contained in
E and E is sequentially closed, the mappings d(k)f , for N0 3 k ≤ r, take their images in E. Hence
f ∈ Cr([0, 1], E) holds and Im p∗ is sequentially closed as a subspace of Cr([0, 1], F ).

Case 1: |I| < ∞. Since I is finite, the coproduct F :=
⊕

i∈I Ei in the category of locally convex
topological vector spaces coincides with the product of the Ei. Hence the canonical projection
πi : F → Ei and the canonical inclusion ιi : Ei → F are continuous linear for i ∈ I. From [33, Lemma
1.2] we deduce that the mappings

((πi)∗)i∈I : Cr([0, 1],
⊕
i∈I

Ei)→
⊕
i∈I

Cr([0, 1], Ei), f 7→ (πi ◦ f)i∈I ,⊕
i∈I

Cr([0, 1], Ei)→ Cr([0, 1],
⊕
i∈I

Ei), (fi) 7→
∑
i∈I

(ιi)∗(fi)

are continuous linear and mutually inverse. Thus Cr([0, 1],
⊕

i∈I Ei) and
⊕

i∈I C
r([0, 1], Ei) are

isomorphic as locally convex spaces, whence the maps (pi)∗, i ∈ I form a patchwork for Cr([0, 1], E).

Case 2: |I| = ∞ and r < ∞. The canonical inclusions yield a family of continuous linear
maps ((ιi)∗)i∈I by [33, Lemma 1.2]. As in the first case we obtain a linear and continuous map
Λ:

⊕
i∈I C

r([0, 1], Ei) → Cr([0, 1], F ), (γi)i∈I 7→
∑
i∈I(ιi)∗(γi). For the rest of the proof, we sup-

press the inclusions ιi in the notation. To prove our claim, we have to construct an inverse mapping
for Λ. To do so, pick γ ∈ Cr([0, 1], F ). The compact set γ([0, 1]) ⊆ F is contained in a finite partial
sum by [11, 3, III.4 §1, Proposition 5]. As the inclusion of a finite partial sum is a topological
embedding with closed image, from [33, Lemma 1.2] and the isomorphism established for the finite
case, we deduce that there are unique γi ∈ Cr([0, 1], Ei), for i ∈ I with γ = Λ((γi)i∈I). Hence we
obtain a well-defined inverse of Λ via Θ: Cr([0, 1], F )→

⊕
i∈I C

r([0, 1], Ei), γ 7→ (γi)i∈I .
We claim that Λ is an isomorphism of locally convex spaces. To prove the claim, let Γi be the set
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of all continuous seminorms on Ei. Consider q = (qi)i∈I ∈ Γ :=
∏
i∈I Γi and obtain a continuous

seminorm rq : F → [0,∞[, rq(
∑
i∈I xi) := sup {qi(xi) | i ∈ I} with xi ∈ Ei. Since the space E is

countably patched, the topology on F coincides with the box topology by [39, Proposition 4.1.4].
Hence the family (rq)q∈Γ determines the locally convex topology on F . By definition of the topology
on Cr([0, 1], F ), the continuous seminorms sq : Cr([0, 1], F )→ [0,∞[,

sq(γ) := sup
0≤k≤r

sup
x∈[0,1]

rq(
∂k

∂xk
γ(x)) = sup

0≤k≤r
sup
x∈[0,1]

sup
i∈I

qi(
∂k

∂xk
γi(x)),

determine the locally convex topology on Cr([0, 1], F ) for q ranging through Γ. Likewise, the locally
convex topology on Cr([0, 1], Ei) is determined by the continuous seminorms tqi : Cr([0, 1], Ei) →
[0,∞[, tqi(γi) := sup0≤k≤r supx∈[0,1] qi(

∂k

∂xk
γi(x)), where qi ranges through Γi. The locally convex

sum topology, i.e. the box topology on
⊕

i∈I C
r([0, 1], Ei), is induced by the family of seminorms

uq :
⊕

i∈I C
r([0, 1], Ei)→ [0,∞[,

uq((γi)i∈I := sup
i∈I

tqi(γi) = sup
i∈I

sup
0≤k≤r

sup
x∈[0,1]

qi(
∂k

∂xk
γi(x))

for q = (qi)i∈I ∈ Γ. Observe that for each q ∈ Γ, we have sq ◦ Λ = uq. We deduce that Λ−1

is continuous (cf. [11, II, §2 No. 4 Proposition 4]), whence Λ is an isomorphism of locally convex
spaces.

If r = ∞ and |I| = ∞, the map Λ introduced in the proof of Lemma C.3.6 still is a continuous
linear bijection, but its inverse fails to be continuous in general.

C.3.7 Definition Let I be a set and (E, (pi)i∈I) and (F, (qi)i∈I) patched locally convex R-vector
spaces with canonical embeddings p : E →

⊕
i∈I Ei and q : F →

⊕
i∈I Fi as in Definition C.3.5.

(a) A map f : U → F defined on an open subset U ⊆ E is called a patched mapping if there exists
a family (fi)i∈I of mappings fi : Ui → Fi on certain open neighborhoods Ui of pi(U) in Ei,
which is compatible with f in the following sense: We have 0 ∈ Ui and fi(0) = 0 for all but
finitely many i, and qi(f(x)) = fi(pi(x)) for all i ∈ I, i.e. q ◦ f = (

⊕
i∈I fi) ◦ p|

⊕Ui
U .

(b) For k ∈ N0 ∪ {∞}, we say that a patched mapping f : U → F is of class Ck on the patches if
all of the mappings fi in (a) can be chosen of class Ck.

C.3.8 Proposition Let I be a set and (E, (pi)i∈I), (F, (qi)i∈I) be patched topological R-vector
spaces. Assume that f : U → F is a patched mapping from an open subset U ⊆ E to F . If f is of
class Ck+1 on the patches, then f is of class Ck. If E and F are countably patched and f is Ck on
the patches, then f is of class Ck.

Proof. For i ∈ I, let fi : Ui → Fi be the mappings compatible with f . Consider the box neighborhood
⊕i∈IUi :=

(∏
i∈I Ui

)
∩
(⊕

i∈I Ei
)
which is open in the locally convex sum (cf. [39, 4.3]). The

compatibility condition yields q ◦ f = (
⊕

i∈I fi) ◦ p|
⊕Ui
U . As shown in [25, Proposition 7.1], the

map
⊕

i∈I fi is a Ck-map if each fi is of class Ck+1 (respectively if each fi is a Ck-map and I is
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countable). By definition, this is the case if and only if f is Ck+1 (respectively Ck in the countable
case) on the patches. The map (

⊕
i∈I fi) ◦ p|

⊕Ui
U is of class Ck as a composition of a Ck-map and a

smooth map. Thus q◦f is a Ck-map. Since the subspace Im q is sequentially closed, the corestriction
(q ◦f)|Im q is a Ck map. As q|Im q is an isomorphism of topological vector spaces, f is a Ck-map.

C.4. Lie groups

C.4.1 Definition A (locally convex) Lie group is a group G equipped with a smooth manifold struc-
ture(modeled on a locally convex space) turning the group operations into smooth maps. Denote
its neutral element by 1 and recall that L(G) := T1G is its Lie algebra (cf. [23, 55] for details).

C.4.2 Definition Let G be a Lie group. We denote by ρg : G → G, h 7→ hg the right translation
by g ∈ G. This yields a natural right action of G on the tangent Lie group TG (cf. [10, III. §2]):

v · g := (Txρg)(v) ∈ TxgG for x ∈ G, v ∈ TxG.

The following construction principle for Lie groups will be our main tool to construct Lie group
structures (cf. [10, III. §1.9, Proposition 18]).

C.4.3 Proposition Let G be a group and U, V subsets of G such that 1 ∈ V = V −1 and V ·V ⊆ U .
Suppose that U is equipped with a smooth manifold structure modeled on a locally convex space such
that V is open in U and which turns ι : V → V ⊆ U and µ : V × V → U - the mappings induced by
inversion and the group multiplication respectively - into smooth maps. Then the following holds:

(a) There is a unique smooth manifold structure on the subgroup G0 := 〈V 〉 of G generated by V
such that G0 becomes a Lie group, V is open in G0, and such that U and G0 induce the same
smooth manifold structure on the open subset V .

(b) Assume that for each g in a generating set of G, there is an open identity neighborhood W ⊆ U
such that gWg−1 ⊆ U and cg : W → U, h 7→ ghg−1 is smooth. Then there is a unique smooth
manifold structure on G turning G into a Lie group such that V is open in G and both G and
U induce the same smooth manifold structure on the open subset V .

C.5. Regular Lie groups

C.5.1 Definition Let G be a Lie group with Lie algebra L(G). Consider a Ck-curve p : [0, 1]→ G
with k ≥ 1 and recall that

δrp ∈ Ck−1([0, 1], L(G)), (δrp)(t) := p′(t) · p(t)−1

is called the right logarithmic derivative of p. Furthermore we call p a right product integral for δrp.
If q : [0, 1]→ G is another Ck-curve such that δrp = δrq (i.e. both p and q are right product integrals
for δrq), then q = p · g0 holds for some constant g0 ∈ G (cf. [49, Lemma 7.4]).
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C.5.2 Definition If γ ∈ Ck([0, 1], L(G)) with k ∈ N0 ∪ {∞} admits a right product integral p, we
define P(γ) := p · p(0)−1. Thus P(γ) is a right product integral for γ such that P(γ)(0) = 1G is the
identity element of G. The product integral is uniquely determined by this property.

C.5.3 Definition Let k ∈ N0 ∪ {∞}. A Lie group G with Lie algebra L(G) is called (strongly)
Ck-regular , if for each ξ ∈ Ck([0, 1], L(G)), the initial value problem

γ(0) = 1G, δr(γ) = ξ (C.5.1)

has a solution P(ξ), which is then contained in Ck+1([0, 1], G), and the corresponding evolution map

evolG : Ck([0, 1], L(G))→ G, ξ 7→ P(ξ)(1)

is smooth. If G is Ck-regular, we write

EvolG : Ck([0, 1], L(G))→ Ck+1([0, 1], G), ξ 7→ P(ξ)

for the map on the level of Lie group-valued curves. For more information on regularity see [31].
The group G is called regular (in the sense of Milnor) if it is C∞-regular. For k ≤ r the Cr-regularity
follows from Ck-regularity.

Notice that we have defined regularity properties of Lie groups using the right logarithmic deriva-
tive. Alternatively one may define left logarithmic derivative, left product integrals and regularity
properties using these notions. However, it is well known that this results in the same concepts of
regularity as defined in C.5.3. See [17, Proposition 1.3.6] for a proof.

The following lemma will be our main tool to prove the regularity of the orbifold diffeomorphism
group. Its proof carries over almost verbatim from [17, Proposition 1.3.10]:

C.5.4 Lemma Let G be a smooth Lie group with Lie Algebra L(G). Assume that there is a zero-
neighborhood U ⊆ Ck([0, 1], L(G)) for k ∈ N0 ∪ {∞} such that every ξ ∈ U has a right product
integral. Furthermore assume that E1 : U → G, ξ 7→ P(ξ)(1) is smooth. Then G is Ck-regular.



D. Riemannian geometry: Supplementary Results

In this thesis we assume some basic familiarity with Riemannian metrics and geodesics. Our
approach also requires standard results from Riemannian geometry as outlined in [18, 41, 43]. The
results obtained in this section are a variation of ideas first developed in [28]. Our goal is to fix the
necessary notation and to provide estimates needed in the proof of the main theorems.

D.1 Notation The pair (M,ρM ) will always denote a finite dimensional smooth Riemannian man-
ifold M , with Riemannian metric ρM . Notice that for each x ∈M the Riemannian metric yields a
positive definite inner product ρM,x : TxM × TxM → R. We usually abbreviate

ρM (X,Y ) := ρM,x(X,Y ) ∀X,Y ∈ TxM.

We define the ε-balls with respect to the Riemannian metric in TxM around the origin 0x as
BρM (0x, ε) :=

{
X ∈ TxM

∣∣∣√ρM (X,X) < ε
}
. Recall that on every Riemannian manifold there

exists a Riemannian exponential map

expM : TM ⊇ DM →M

whose domain DM is an open neighborhood of the zero-section. Each Riemannian exponential map
on a smooth Riemannian manifold is smooth.

Recall the following standard result of Riemannian geometry:

D.2 Lemma Let (M,ρ) be a Riemannian manifold with exponential map expM : DM → M and
K ⊆ M be a compact subset. There is ε > 0 and an open set V ⊆ M containing K such that the
following holds

(a) for each x ∈ V , the map expM |
expM (Bρ(0x,ε))

Bρ(0x,ε)
is a diffeomorphism with open image in M ,

(b)
⋃
x∈V Bρ(0x, ε) ⊆ DM is an open neighborhood of the zero section on K.

Proof. Apply [41, Theorem 1.8.15] to each point x ∈ K. Since K is compact, this yields a finite
family x1, x2, . . . , xn ∈ K and constants ε1, . . . , εn such that:

• for each 1 ≤ k ≤ n and y ∈ expM (Bρ(0xk , εk)), the mapping expM |Bρ(0y,εk) is an embedding
with open image,

• K ⊆ V :=
⋃

1≤k≤n expM (Bρ(0xk , εk)) holds.

Set ε := min {ε1, . . . , εn}. The pair (ε, V ) satisfies the assertion of the lemma since
⋃
x∈V Bρ(0x, ε)

is an open neighborhood of the zero section by the proof of [41, Theorem 1.8.15].
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For the rest of this section, we endow Rd (for d ∈ N) with the maximum norm ‖·‖∞. We denote
by Br(x) the metric ball around x ∈ Rd with respect to ‖·‖∞ and radius r > 0. As a first step we
discuss Riemannian exponential maps on metric balls in euclidean space. To this end, fix the metric
ball B5(0) ⊆ Rd, d ∈ N and endow it with an arbitrary Riemannian metric.

D.3 Lemma Consider B5(0) as a Riemannian manifold with arbitrary Riemannian metric. Let
exp: D → B5(0) be the associated Riemannian exponential map. There exist ε > 0 and 1 > δ > 0
such that

(a) B4(0)×Bε(0) ⊆ D and φx := exp(x, ·)|exp(x,·)(Bε(0))
Bε(0) is a diffeomorphism for each x ∈ B4(0).

(b) Bδ(x) ⊆ exp(x,Bε(0)) for each x ∈ B4(0) and b : Wδ → Bε(0), b(x, y) := φ−1
x (y) is a smooth

map on the subset Wδ :=
⋃
x∈B4(0)

{x} ×Bδ(x) of B5(0)× Rd.
(c) For each t > 0, there exists σt ∈ ]0, ε[ such that φx(Bσt(0)) ⊆ Bt(x) for each x ∈ B4(0).

If t ≤ δ
2 holds in (c), we obtain a smooth map

f : B3(0)×Bσt(0)×Bσt(0)→ Bε(0), f(x, y, z) := b(x, φφx(y)(z)).

Proof. (a) The set B4(0)×{0} is a compact subset of D. Lemma D.2 yields an open neighborhood
B4(0) × {0} ⊆ W ⊆ D, such that exp(x, ·) restricts to is a diffeomorphism on W ∩ TxM for
each x ∈ πTB5(0)(W ). An application of Wallace Lemma [21, 3.2.10] yields ε > 0 such that
B4(0)×Bε(0) ⊆W holds.

(b) For fixed x ∈ B4(0), we have d2 exp(x, 0; ·) = idRd (cf. [41, Proof of Theorem 1.6.12]). Apply
the parameter dependent Inverse Function Theorem [30, Theorem 5.13] to the exponential
map on B4(0) × Bε(0). By compactness of B4(0), this yields some δ > 0 which satisfies the
assertion of (b). Note thatWδ is relatively open in B4(0)×Rd and thus a locally convex subset
of Rd × Rd with dense interior.

(c) By uniform continuity of exp on B4(0)×Bε(0), we may choose σt with the desired properties.
If t ≤ δ

2 holds, we obtain φφx(y)(z) ∈ Bδ(x) for each (x, y, z) ∈ B3(0)×Bσt(0)×Bσt(0). The
assertion now follows from (b).

The mappings defined in the last lemma will be used to obtain estimates for the growth of metric
balls if certain maps are applied to these balls. We are interested in the composition of suitable vector
fields on B5(0) with the Riemannian exponential map. Recall that canonical lifts of orbisections
are vector fields and lifts of the Riemannian orbifold exponential map are typically Riemannian
exponential maps of the charts. Hence the following estimates describe the local behavior of a
composition of such lifts. Moreover, the computations will enable us to control the composition of
orbisections and the Riemannian orbifold exponential map.
In the proof of the next Lemma we use the space L(Rd) of linear and continuous endomorphisms
of Rd. For the rest of this section we endow the space L(Rd) with the operator norm ‖·‖op with
respect to ‖·‖∞.
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D.4 Lemma Consider B5(0) as Riemannian manifold with arbitrary Riemannian metric and ex-
ponential map exp. Let ε, δ, and D be as in Lemma D.3, and ρ > 0. There exists an open C1-
neighborhood N of the zero map in C∞(B5(0),Rd) such that each ξ ∈ N satisfies

(a) (idB5(0), ξ)(B3(0)) ⊆ B3(0) × Bε(0) ⊆ D and the estimate ‖exp(x, ξ(x))− x‖∞ ≤ min
{

1
8 ,

δ
2

}
holds for each x ∈ B3(0),

(b) the map Fξ := exp ◦(idB3(0), ξ|B3(0)) is an étale embedding,
(c) for y ∈ B3(0), the following estimates are available:

B 3
4 s

(Fξ(y)) ⊆ Fξ(Bs(y)) ⊆ B 5
4 s

(Fξ(y)), s ∈]0, 3− ‖y‖] (D.4.1)

B 6s−1
8

(0) ⊆ Fξ(Bs(0)) ⊆ B 10s+1
8

(0), s ∈]0, 3] (D.4.2)

B 8r−1
10

(0) ⊆ F−1
ξ (Br(0)) ⊆ B 8r+1

6
(0), r ∈

]
0, 2 + 1

8

]
(D.4.3)

(d) there is a map ξ∗ ∈ C∞(ImFξ,Rd) such that (Fξ)
−1 = exp ◦(idImFξ , ξ

∗) is satisfied,
(e) ‖ξ∗‖

B2(0),1
< ρ holds for each ξ ∈ N and if ξ ≡ 0, then ξ∗ ≡ 0,

(f) the map
I : N → C∞(B2(0),Rd), ξ 7→ ξ∗|B2(0)

is smooth.

Proof. We need preparatory estimates to control the derivatives of all relevant maps.
Since ε, δ were chosen as in Lemma D.3, we may consider the smooth map

a : B4(0)×Bδ(0)→ Bε(0), a(x, y) := b(x, x+ y) = φ−1
x (x+ y).

Since exp(x, 0) = x holds, we derive a(x, 0) = 0 for each x ∈ B4(0). Thus d1a(x, 0; ·) = 0 holds for
all x ∈ B4(0). The set B3(0)×{0} ⊆ a−1(Bρ(0)) is compact, whence the Wallace Lemma [21, 3.2.10]
allows us to choose 0 < t ≤ min

{
1
8 ,

δ
2

}
with

a(B3(0)×Bt(0)) ⊆ Bρ(0) and (D.4.4)

‖d1a(x, y; ·)‖op <
ρ

2
for(x, y) ∈ B3(0)×Bt(0). (D.4.5)

Set m := sup
{
‖d2a(x, y; ·)‖op

∣∣∣x ∈ B3(0), y ∈ Bt(0)
}
<∞. It is well known that the invertible ma-

trices form an open subset L(Rd)× of L(Rd) and inversion is continuous on this set (cf. [30, Propo-
sition 1.33]). Hence there is 0 < γ < 1

4 such that for A ∈ L(Rd) with ‖A− idRd‖op < γ and thus
A ∈ L(Rd)×, we have

∥∥A−1 − idRd
∥∥

op <
ρ

2·(m+1) .
By Lemma D.3, we may choose σt > 0 with respect to ε and δ such that ε > σt and φx(Bσt(0)) ⊆
Bt(x) ⊆ Bmin{ 1

8 ,
δ
2}(x) for each x ∈ B4(0). We obtain an open neighborhood of the zero-map

bB3(0), Bσt(0)c ⊆ C(B5(0),Rd)c.o and by construction each ξ ∈ bB3(0), Bσt(0)c satisfies the asser-
tions of (a). We shrink bB3(0), Bσt(0)c to construct N :
For ξ ∈ bB3(0), Bσt(0)c ∩ C∞(B5(0),Rd), we define the smooth maps Fξ := exp ◦(idB3(0), ξ|B3(0))
and gξ := Fξ − idB3(0). Our goal is to apply a quantitative version of the Inverse Function Theorem



158 D RIEMANNIAN GEOMETRY: SUPPLEMENTARY RESULTS

for Lipschitz continuous maps (cf. [30, Theorem 5.3]). From [23, Lemma 1.9], we deduce that the
assignment B3(0)→ L

(
Rd
)
, x 7→ dgξ(x, ·) is well defined and continuous. Since the domain of gξ is

convex, an estimate for ‖dgξ(z, ·)‖op will yield a Lipschitz constant for gξ:

dgξ(z; ·) = d(Fξ − idB3(0))(z; ·) = dFξ(z; ·)− idRd

= d1 exp(z, ξ(z); ·)− idRd︸ ︷︷ ︸
TI(z)

+ d2 exp(z, ξ(z); dξ(z; ·))︸ ︷︷ ︸
TII(z)

, z ∈ B3(0).

The map F : B4(0) × Bε(0) → L(Rd), (z, w) 7→ d1 exp(z, w; ·) − idRd is continuous by [30, Lemma
3.13] with F (x, 0) = 0 for x ∈ B3(0). Using the Wallace Lemma as above, we find s ∈]0, ε] such
that F (B3(0) × Bs(0)) ⊆ B

‖·‖op
γ
2

(0). Then W1 := bB3(0), Bs(0))c ⊆ C(B5(0),Rd)c.o. is an open

neighborhood of the zero-map. For each ξ ∈ bB3(0), Bσt(0)c ∩W1 ∩ C∞(B5(0),Rd) and x ∈ B3(0),
we derive ‖TI(x)‖op ≤

γ
2 ≤

1
8 .

Since B3(0)× Bε(0) is compact, there is an upper bound ‖d2 exp(x, y; ·)‖op ≤ C <∞ independent
of (x, y) ∈ B3(0)×Bε(0). For each ξ ∈ bB3(0), Bσt(0)c ∩W1 and x ∈ B3(0) we obtain the estimate
‖TII(x)‖op ≤ C ‖dξ(x; ·)‖op.
The topology on C∞(B5(0),Rd) is initial with respect to the family of mappings (d(k))k∈N0

by
Definition C.2.2. Thus we obtain an open C1-neighborhood of the zero-map in C∞(B5(0),Rd) via

W2 :=
{
ξ ∈ C∞(B5(0),Rd)

∣∣∣ d(1)ξ ∈ bB3(0)×B1(0), B γ
2C

(0)c
}
.

Define the C1-neighborhood N as N := bB3(0), Bσt(0)c∩W1∩W2. For each ξ ∈ N , the construction
shows Lip(gξ) = sup‖z‖∞≤3 ‖dgξ(z; ·)‖op ≤ γ ≤

1
4 .

Since Lip(gξ) < 1 = 1

‖idRd‖op
, the Lipschitz Inverse Function Theorem [30, Theorem 5.3] yields: For

ξ ∈ N , the map Fξ is a homeomorphism onto its image and (D.4.1) is satisfied. Specializing (D.4.1)
to y = 0 together with (a) yields (D.4.2). Apply F−1

ξ to (D.4.2) to obtain (D.4.3). We claim that Fξ
is an étale embedding. If this is true, (b) holds. To prove the claim, note that for each z ∈ B3(0),
one has 1

4 ≥ ‖dgξ(z; ·)‖op = ‖dFξ(z; ·)− idRd(·)‖op. Hence dFξ(z; ·) is in L
(
Rd
)× for each z ∈ B3(0).

The Inverse Function Theorem (see [45, I,4 Theorem 5.2]) implies that Fξ is a local diffeomorphism
and since it is already a homeomorphism onto its image, Fξ is an étale embedding.
We now prove the assertions (d)-(f). To this end, observe that by (c), the image of Fξ satisfies
B2+ 1

8
(0) ⊆ ImFξ ⊆ B4(0). Choose x ∈ ImFξ and set y := F−1

ξ (x) ∈ B3(0). By construction of N ,
we have ξ(y) ∈ Bσt(0), whence

x = Fξ(y) = φy(ξ(y)) ∈ Bt(y) ⊆ B δ
2
(y) (D.4.6)

and thus y ∈ Bt(x) holds. We may thus define ξ∗(x) := b(x, F−1
ξ (x)) and obtain a smooth

map ξ∗ : ImFξ → Rd with Im ξ∗ ⊆ Bε(0). From the above estimates, we deduce that hξ∗ :=
exp ◦(idImFξ , ξ

∗) is defined. A computation with z ∈ B3(0) then shows

hξ∗ ◦ Fξ(z) = exp(Fξ(z), ξ
∗(Fξ(z))) = φFξ(z)(ξ

∗Fξ(z)) = φFξ(z)(φ
−1
Fξ(z)

F−1
ξ (Fξ(z))) = z.
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Hence (d) holds. Notice that by construction ξ∗(x) = a(x, (Fξ)
−1(x) − x) for x ∈ ImFξ. In

particular, if ξ ≡ 0, then Fξ = idB3(0), whence ξ∗(x) = a(x, F−1
ξ (x) − x) = a(x, 0) = 0. To obtain

the estimate for (e), we computes the derivative:

dξ∗(x; ·) = d1a(x, (Fξ)
−1(x)− x; ·) + d2a(x, (Fξ)

−1(x)− x; d(F−1
ξ )(x; ·)− idRd(·)). (D.4.7)

By construction, we have d(F−1
ξ )(x; ·) = (dFξ(y; ·))−1 with y := F−1

ξ (x). By definition of N ,
‖dFξ(y, ·)− idRd‖op ≤ γ and we derive

∥∥(dFξ(y; ·))−1 − idRd
∥∥

op <
ρ

2·(m+1) .

Let x ∈ B2(0). Since F−1
ξ (x) − x ∈ Bt(0) by (D.4.6), the operator norm of the second summand

in (D.4.7) is smaller than m · ρ
2(m+1) <

ρ
2 . Likewise, a combination of (D.4.6) and (D.4.5) yields

that the operator norm of the first summand is less than ρ
2 . Summing up, ‖dξ∗(x; ·)‖op < ρ holds

for each x ∈ B2(0). As the operator norms on the compact set B2(0) were constructed with respect
to ‖·‖∞, we derive sup|α|=1 ‖∂αξ∗‖B2(0),0

≤ sup
x∈B2(0)

‖dξ∗(x; ·)‖op < ρ. Moreover, by (D.4.6) and
(D.4.4) the estimate ‖ξ∗(x)‖∞ = ‖a(x, F−1

ξ (x) − x)‖∞ < ρ follows. In conclusion, ‖ξ∗‖
B2(0),1

< ρ

and thus (e) holds.
Recall that ξ∗(x) = a(x, (F−1

ξ |B2+ 1
8

(0) − idB
2+ 1

8
(0))(x)) for x ∈ B2+ 1

8
(0) ⊆ ImFξ (cf. (D.4.3)). By

construction of N , we obtain F−1
ξ |B2+ 1

8
(0) − idB

2+ 1
8

(0) ∈ bB2(0), Bδ(0)c∞ ⊆ C∞(B2+ 1
8
(0),Rd). Let

a∗ be the map a∗ : bB2(0), Bδ(0)c∞ → C∞(B2(0),Rd) defined via a∗(η)(x) := a(x, η(x)). This map
is smooth by [26, Proposition 4.23 (a)] and since C∞(B2+ 1

8
(0),Rd) is a topological vector space,

α : C∞(B2+ 1
8
(0),Rd)→ C∞(B2+ 1

8
(0),Rd), f 7→ f − idB

2+ 1
8

(0) is smooth. We claim that

h : N → C∞(B2+ 1
8
(0),Rd), ξ 7→ F−1

ξ |B2+ 1
8

(0)

is smooth. If this is true, the assertion of (f) follows, since I = a∗ ◦ α ◦ h. Remark C.2.3 (a)
implies that the space C∞(B5(0),Rd) is metrizable. Hence by [26, Proposition E.3], h is a smooth
map if and only if the map h ◦ c is smooth for each smooth curve c : R → N . By the Exponential
Law (see, e.g. [26, Proposition 12.2]), the map h ◦ c : R → C∞(B2+ 1

8
(0),Rd) will be smooth if

(h ◦ c)∧ : R × B2+ 1
8
(0) → Rd, (τ, x) 7→ h(c(τ))(x) is smooth. To verify this, we adapt an argument

from [44, p. 455]: Consider the map

H : R×B2+ 1
8
(0)×B3(0)→ Rd, (τ, x, y) 7→ exp(y, c∧(τ, y))− x = Fc(τ)(y)− x

which makes sense by construction of N . Furthermore, H is smooth, as c∧ : R × B5(0) → Rd is
smooth by [2, Theorem 3.28]. Since Fc(τ) ◦ h(c(τ))(x) = x holds for each τ ∈ R and x ∈ B2+ 1

8
(0),

we obtain the identity H(τ, x, (h ◦ c)∧(τ, x)) = 0. A computation yields the following estimate for
the derivative of H:

‖d3H(τ, x, y; ·)− idRd‖op = ‖d1 exp(y, c∧(τ, y); ·) + d2 exp(y, c∧(τ, y); d2c
∧(τ, y; ·))− idRd‖op

≤ ‖d1 exp(y, c∧(τ, y); ·)− idRd‖op + ‖d2 exp(y, c∧(τ, y); d2c
∧(τ, y; ·))‖op

≤ γ

2
+
γ

2
≤ 1

8
+

1

8
< 1.
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Here we used the estimates for TI and TII obtained above, which apply because c(τ) ∈ N holds
for each τ ∈ R. We deduce that d3H(τ, x, y; ·) is invertible for each (τ, x, y) ∈ R×B2 1

8
(0)×B3(0).

Furthermore, for fixed (τ, x) ∈ R×B2+ 1
8
(0), the map H(τ, x, ·) = Fc(τ)(·)− x is injective on B3(0).

Using the injectivity, we deduce with the Implicit Function Theorem [30, Theorem 5.2] that (h ◦ c)∧
is smooth. In conclusion, (f) holds.

D.5 Lemma ([45, II.3 Theorem 3.3]) Let M be a finite dimensional paracompact manifold of
dimension d. Given an open cover O of M , there exists a locally finite manifold atlas V(O) :=
{(V5,k, κk)}k∈I with the following properties:

(a) the cover V(O) is subordinate to O and each chartdomain V5,k is precompact,
(b) for each k ∈ I, one has κk(V5,k) = B5(0) ⊆ Rd,
(c) for each τ ∈ [1, 5], the open sets Vτ,k := κ−1

k (Bτ (0)) cover M for k ∈ I.

If M is σ-compact, then every atlas with properties (a) - (c) is countable.

Proof. The manifold M is locally compact and paracompact. Apply [21, Lemma 5.1.6] together
with local compactness of M to obtain a refinement O′ of the covering O, such that the closure of
each of the open sets in O′ is compact and contained in some open set in O. By Proposition 1.4.2
each component of M is second countable and thus we may apply [45, II.3 Theorem 3.3] to obtain
a (countable) locally finite manifold atlas subordinate to O′ for each component. Thus the closure
of any chart domain in this atlas is compact as a closed subset of a compact set. Taking the union
of the atlases for the components, we obtain an atlas V(O) for M with the desired properties. If M
is σ-compact, say M =

⋃
n∈NKn with compact sets Kn, then each Kn meets V5,k for only finitely

many k. Hence I =
⋃
k∈N {k ∈ I |V5,k ∩Kn 6= ∅} is countable.

We shall combine our considerations to construct special neighborhoods of the zero-section in
X (M) for a paracompact Riemannian manifold (M,ρM ). Consider some atlas {(V5,k, κk) | k ∈ I}
for M as in Lemma D.5. For each chart (V5,k, κk), we define the pullback Riemannian metric ρk on
B5(0) with respect to κ−1

k . Then κ−1
k becomes a Riemannian embedding. In particular,

Tκ−1
k (Bρk(0κk(x), r)) = Bρ(0x, r) r > 0 (D.5.1)

holds for x ∈ V5,k. Moreover, the Riemannian exponential map expk associated to the Riemannian
pullback metric ρk satisfies Tκ−1

k (dom expk) ⊆ dom expM and

expM Tκ−1
k |dom expk = κ−1

k expk . (D.5.2)

For the remainder of this section, we endow the image of a manifold chart with the pullback Rie-
mannian metric just described. Whenever the constructions require a Riemannian metric on a
chartdomain, we use the induced metric without further mention. In the next lemma, we use
notation as in Definition C.3.1.

D.6 Lemma Let (M,ρM ) be a d-dimensional paracompact Riemannian manifold with Riemannian
exponential map expM and some open cover O of M . Choose via Lemma D.5 an atlas V(O) :=
{(V5,k, κk) | k ∈ I} with respect to O. There are νk > 0 for k ∈ I such that
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(a) for each y ∈M , the map expM is injective on Ny :=
⋃
n∈Iy Tκ

−1
n ({κn(y)} ×Bνn(0)) ⊆ TyM ,

where the index set is defined as Iy :=
{
k ∈ I

∣∣ y ∈ V4,k

}
.

(b) Tκn(Ny) ⊆ dom expn, expn |Tκn(Ny) is an étale embedding and expn Tκn|Ny = κn expM |Ny
for each n ∈ Iy.

If J ⊆ I is finite, we may choose ν > 0 such that (a), (b) hold for each k ∈ I with respect to νk = ν.
Moreover, in this case there exists open C1-zero-neighborhoods Nk ⊆ C∞(V5,k,Rd) for k ∈ J such
that for each X ∈ θ−1

κk
(Nk) ⊆ X (V5,k)

(c) the map expM ◦X|V3,k
is defined, with Im expM ◦X|V3,k

⊆ V5,k

(d) the following estimates are available: expM ◦X(V 5
4 ,k

) ⊆ V2,k, V 5
4 ,k
⊆ expM ◦X(V2,k) ⊆ V3,k

and B4(0)×Bν(0) ⊆ dom expk.
(e) the map F kX := expM ◦X|V3,k

is an étale embedding,
(f) for each x ∈ V3,k, we have Xκk(x) ∈ Bν(0).

Proof. For each k ∈ I, Lemma D.3 allows us to choose ν′k > 0 such that expk(x, ·) restricts to an étale
embedding of Bν′k(x) for each x ∈ B4(0). Since V4,k is compact and the cover V is locally finite, there
is a finite subset Fk ⊆ I such that V5,i∩V4,k 6= ∅ if and only if i ∈ Fk. By compactness of V4,k ∩V4,j

for j ∈ Fk, there is some νk > 0 such that for each j ∈ Fk, one has T (κk ◦κ−1
k )({κk(x)}×Bνj (0)) ⊆

{κk(x)}×Bν′k(0) for all x ∈ V4,k ∩V4,j . The choice of ν′k together with (D.5.2) shows that the open
sets Nx induced by the family (νk)k∈I satisfy the assertion of (a). Since Tκn(Nx) ⊆ {κn(x)}×Bν′n(0)
holds for each n ∈ Ix by construction, the set Tκn(Nx) is contained in the domain of expn for each
n ∈ Ix. Hence (D.5.2) yields expM |Nx = expM Tκ−1

k |dom expkTκk|Nx = κ−1
k expk Tκk|Nx . We

deduce that (b) must hold.
If J ⊆ I is finite, choose ν := min {νk | k ∈ J}. We are left to construct the open sets Nk. Fix k ∈ J
and consider the chart (V5,k, κk). Reviewing Lemma D.4, the construction of N ′k ⊆ C∞(B5(0),Rd)
may be carried out using arbitrarily small ε, since by hypothesis ε must have the same properties
as in Lemma D.4, where it may be chosen arbitrarily small. The map κk is a diffeomorphism,
whence the pullback C∞(κk,Rd) : C∞(B5(0),Rd) → C∞(V5,k,Rd), f 7→ f ◦ κk is linear bijective
and continuous by a combination of [26, Lemma 4.11] and [6, Proposition 7.4]. Define the open C1-
neighborhood Nk := C∞(κk,Rd)−1(N ′k) ⊆ C∞(V5,k,Rd). The Riemannian exponential map expk
is related to expM via (D.5.2) and the identity in (b). Hence the properties obtained via Lemma
D.4 for vector fields with Xκk ∈ Nk imply (c) - (f).

D.7 In the setting of Lemma D.6, consider a compact subset K ⊆ M . As V(O) is locally finite,
there is a finite subset F5(K) :=

{
(V5,kj , κkj )

∣∣ 1 ≤ j ≤ N} of V(O) such that V5,k ∩K 6= ∅ holds if
and only if (V5,k, κk) ∈ F5(K). Notice that F5(K) induces a family of open neighborhoods of K via

K ⊆ Ωr,K :=

N⋃
l=1

Vr,kl , r ∈ [1, 5]

The set F5(K) is finite, whence the set K5 :=
⋃N
l=1 V5,kl is compact. Again, we define a finite

subset F5(K5) := {(V5,n, κn) |n ∈ I, V5,n ∩K5 6= ∅} of V(O) as the set of charts which intersect the
compact set K5. As above, one defines open neighborhoods Ωr,K5

of K5 for r ∈ [1, 5].
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We will now construct a neighborhood of the zero section such that the composition of sections in
this neighborhood with the Riemannian exponential map yields an étale embedding. The arguments
in the proof of the following lemma are inspired by [38, 2. Theorem 1.4].

D.8 Lemma Let K ⊆ M be a compact set and F5(K) = {(V5,k, κk) | 1 ≤ k ≤ N} as above.
Construct for each 1 ≤ k ≤ N a C1-zero-neighborhood Nk ⊆ C∞(V5,k,Rd) as in Lemma D.6
(c)-(f) applied with the finite set J = {1, . . . , N}. Furthermore, consider the continuous maps
θ

Ω5,K
κk : X (Ω5,K) → C∞(V5,k,Rd), X 7→ Xκk . There are open C1-zero-neighborhoods Mk ⊆ Nk
such that, setting E5,K :=

⋂N
k=1(θ

Ω5,K

k )−1(Mk) ⊆ X (Ω5,K) and E := (resMΩ5,K
)−1(E5,K) ⊆ X (M)

(cf. Notation C.3.3), the map FX := expM ◦X|Ω2,K
is an étale embedding for each X ∈ E, and

FX(Ω1,K) ⊆ Ω2,K holds.

Proof. By Lemma D.6 for each X ∈ θ−1
κk

(Nk) the map expM ◦X|V2,k
is defined and its image is

contained in V3,k for each (V5,k, κk) ∈ F5(K). The manifold M is locally compact, hence a regular
topological space. Thus by [21, Theorem 3.1.6], we may separate the compact set V2,k from the closed
set M \V3,k. We obtain disjoint open sets Ak, Bk ⊆M such that V2,k ⊆ Ak and M \V3,k ⊆ Bk hold
for each (V5,k, κk) ∈ F5(K).
Claim: There are open neighborhoods Mk ⊆ Nk of the zero-map, 1 ≤ k ≤ N , such that for
X ∈ E5,K the following holds: FX(V2,k∩Ω2,K) ⊆ Ak and FX(Ω2,K \V3,k) ⊆ Bk for each 1 ≤ k ≤ N .
If this is true, then the proof may be completed as follows:
Let X be contained in E5,k. Observe that the construction of E5,k implies that for each 1 ≤ k ≤ N
the map FX |V3,k∩Ω2,K

= F kX |V3,k∩Ω2,k
is an étale embedding by Lemma D.6 (e). Consider distinct

x, y ∈ Ω2,K and choose 1 ≤ k ≤ N with x ∈ V2,k. If y ∈ V3,k we must have FX(x) 6= FX(y) since
the map is an étale embedding on V3,k ∩ Ω2,K . On the other hand, if y ∈ Ω2,K \ V3,k ⊆ M \ V3,k,
by the above FX(x) ∈ FX(V2,k ∩ Ω2,K) ⊆ Ak and FX(y) ∈ FX(Ω2,K \ V3,k) ⊆ Bk. Since Ak and
Bk are disjoint, again FX(x) 6= FX(y) follows, whence FX must be injective. Thus each X ∈ E
yields an injective local diffeomorphism expM ◦X|Ω2,K

, i.e. expM ◦X|Ω2,K
is an étale embedding.

Furthermore, FX maps V1,k into V2,k by Lemma D.6 (d). Hence the definition of Ω1,K and Ω2,K

yield FX(Ω1,K) ⊆ Ω2,K .

Proof of the claim: For k 6= j, we obtain a sets

Kkj := κk(V2,k ∩ (M \ V3,j)) ⊆ B2(0) and Bkj := Tκk(TV5,k ∩ exp−1
M (Bj ∩ V3,k)).

By construction each set Kkj ⊆ B5(0) is compact and each set Bkj is an open subset of TB5(0).
Define Akk := Tκk(TV5,k ∩ exp−1

M (Ak)) for 1 ≤ k ≤ N . Recall the identity expM ◦0M = idM ,
where 0M ∈ X (M) is the zero section. This yields the inclusions Kkj × {0} ⊆ Bkj for each pair
(k, j) ∈ {1 ≤ k, j ≤ N | k 6= j} and B2(0)×{0} ⊆ Akk. Hence, the Wallace Lemma [21, 3.2.10] yields
constants εkj > 0 for 1 ≤ j ≤ N which satisfy Kkj ×Bεkj (0) ⊆ Bkj and B2(0)×Bεkk(0) ⊆ Akk for
each pair (k, j) ∈ {1 ≤ k, j ≤ N | k 6= j}. Moreover, for 1 ≤ k ≤ N we obtain an open neighborhood

Mk := bB2(0), Bεkk(0)c ∩
N⋂
j=1
j 6=k

bKkj , Bεkj (0)c ⊆ C∞(B5(0),Rd)
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of the zero-map. Define the C1-open set Mk := C∞(κk,Rd)−1(Mk) ∩ Nk ⊆ C∞(V5,k,Rd). By
construction, each vector fieldX ∈ E5,K (defined as in the statement of the lemma) may be composed
on Ω3,K with expM . With the identities (D.5.2) and Lemma D.6 (b), the mapping FX may be
evaluated locally on V2,k in the chart (V5,k, κk) ∈ F5(K). For any X ∈ E5,K , we note that Xκk ∈
C∞(κk,Rd)−1(bB2(0), Bεkk(0)c) holds. Observe that B2(0) × Bεkk(0) ⊆ Akk and the definition
of Akk imply FX(V2,k) ⊆ Ak. Furthermore, each element y ∈ Ω2,K \ V3,k is contained in V2,n

for some 1 ≤ n ≤ N . Thus κn(y) is contained in Knk by construction. Furthermore, Xκn ∈
C∞(κn,Rd)−1(bKnk, Bεnk(0)c) and Knk×Bεnk(0) ⊆ Bnk hold. By definition of Bnk, a computation
in the chart (V5,n, κn) yields FX(y) ∈ Bk. As y ∈ Ω2,K \ V3,k and k were chosen arbitrarily,
FX(Ω2,K \ V3,k) ⊆ Bk holds for each 1 ≤ k ≤ N .

We are interested in vector fields which yield, after composition with the Riemannian exponential
map, an inverse for FX (respectively, the composition FY ◦ FX). In the rest of this section, we
construct C1-neighborhoods of the zero-section, whose elements permit such vector fields. Further-
more, the mappings sending a vector fields to the vector field which induces FX ◦ FY respectively
F−1
X should be smooth on these neighborhoods. The leading idea is to construct these fields locally

in a cover of charts, which will enable us to obtain them as global objects from the local data. For
reasons which are explained in Section 5, we construct a neighborhood of the zero-section depending
on an open C1-neighborhood of the zero-section chosen in advance and on a positive constant R.

D.9 Construction Consider the setting of Lemma D.8: Let K ⊆ M be compact and E5,K ⊆
X (Ω5,K) an open neighborhood of the zero-section as in Lemma D.8. Fix R > 0 and an arbitrary
open C1-neighborhood of the zero-section P ⊆ X (Ω5,K). By construction of the manifold atlas,
Ω5,K ⊆ Ω1,K5

holds by Lemma D.5 (c). As the family F5(K5) is a manifold atlas for Ω5,K5
, the

topology on X (Ω1,K5
) is initial with respect to the family

{
θκk|V1,k

∣∣∣ (V5,k, κk) ∈ F5(K5)
}
by Defini-

tion C.3.1. Thus there is a family of open C1-neighborhoods of the zero-mapWk ⊆ C∞(B1(0),Rd) ∼=
C∞(V1,k,Rd), (V5,k, κk) ∈ F5(K5) with

(res
Ω1,K5

Ω5,K
)−1(E5,K ∩ P ) ⊇

⋂
F5(K5)

(θκk|V1,k
◦ C∞(κk|V1,k

,Rd))−1(Wk).

Here C∞(κk|V1,k
,Rd) : C∞(B1(0),Rd) → C∞(V1,k,Rd) denotes the pullback f 7→ f ◦ κ|V1,k

, which
is continuous by [26, Lemma 4.4]. Since B1(0) ⊆ B5(0) = κk(V5,k) holds, Remark C.2.6 (a) implies
that we may choose τ > 0 such that for f ∈ Bkτ :=

{
f ∈ C∞(B5(0),Rd)

∣∣∣ ‖f‖B1(0),1
< τ

}
the

condition f |B1(0) ∈Wk is satisfied. Shrinking τ if necessary, we may assume τ < R. Define the open
C1-neighborhood of the zero-section

E′ :=
⋂
F5(K5)

(θ
Ω5,K5
κk ◦ C∞(κk,Rd))−1(Bkτ ) ⊆ X (Ω5,K5

) .

Then, the inclusions E′ ⊆ (res
Ω5,K5

Ω5,K
)−1(E5,K ∩ P ) and (resMΩ5,K5

)−1(E′) ⊆ E ∩ (resΩM5,K
)−1(P ) hold.
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Step 1: A vector field inducing the composition expM ◦X ◦FY : Since the family F5(K5) is finite,
we may fix a constant ν > 0 with ν < R as in Lemma D.6. Consider arbitrary (V5,n, κn) ∈ F5(K5)
and shrink the C1-open set Bnτ : Choose εn > σ δn

2
> 0 and 1 > δn > 0 with properties as in Lemma

D.3, such that εn < min {τ, ν} holds. Set σn := σ δn
2

and ρn := min {ν, τ}. Apply Lemma D.4 with
the constants εn, δn, ρn taking the roles of ε, δ, ρ to obtain a C1-neighborhood Nn of the zero-map in
C∞(B5(0),Rd). Then each X ∈ C∞(κn,Rd)(Nn) ⊆ C∞(V5,n,Rd) satisfies the assertions of Lemma
D.6 (c)-(e) with respect to ν. By choice of the constants (cf. Lemma D.3), there is a smooth map
fn : B3(0)×Bσn(0)×Bσn(0)→ Bεn(0) with

fn(x, 0, 0) = 0, fn(x, y, 0) = y and fn(x, 0, z) = z, (x, y, z) ∈ B3(0)×Bσn(0)×Bσn(0). (D.9.1)

Hence the partial derivative satisfies d1fn(x, 0, 0; ·) = 0, for all x ∈ B3(0). The continuous map
B3(0)× Bσn(0)× Bσn(0), (x, y, z) 7→ ‖dfn(x, y, z; ·)‖op is bounded on B2(0)× Bσn

2
(0)× Bσn

2
(0) by

some tn ≥ 1. As the partial derivative with respect to x vanishes in B2(0)×{0}×{0}, a compactness
argument yields 0 < µn < min

{
ν, σn2 ,

τ
6dtn

}
such that for all (x, y, z) ∈ B2(0) × Bµn(0) × Bµn(0)

the estimate ‖d1fn(x, y, z; ·)‖op <
τ
3 holds. Define the open C1-zero-neighborhood

H′n := Nn ∩
{
f ∈ C∞(B5(0),Rd)

∣∣∣ ‖f‖B3(0),1
< µn

}
⊆ C∞(B5(0),Rd)

Since µn < τ holds, we deduce H′n ⊆ Bnτ . Set H′ :=
⋂
F5,K5

(θ
Ω5,K5
κn )−1C∞(κn,Rd)(H′n) ⊆ X (Ω5,K5)

to obtain a C1-neighborhood of the zero-section contained in E′.
Let ξ, η be elements of H′n. By Lemma D.4, Fξ(B2(0)) ⊆ B3(0) holds, whence the composition
Fη ◦ Fξ|B2(0) is defined. Since µn < σn, we have FηFξ(x) ∈ Bδn(x) for each x ∈ B2(0) by definition
of σn = σ δn

2
(cf. Lemma D.3). Therefore, for each x ∈ B2(0),

η � ξ(x) := φ−1
x (FηFξ(x)) = fn(x, ξ(x), η(Fξ(x))) ∈ Bεn(0) ⊆ Bτ (0) (D.9.2)

is defined and yields a smooth map η � ξ : B2(0) → Bεn(0) ⊆ Bτ (0). Observe that η, ξ ≡ 0 implies
η�ξ ≡ 0 by (D.9.1). For (V5,n, κn) ∈ F5(K5) and X ∈ H′, set X[n] := Xκn ◦κ−1

n . Moreover, for ∈ H′
the composition FX := expM ◦X|Ω3,K

is defined. Consider y ∈ V3,n and X ∈ H′. By construction
X[n] ∈ H′n, whence X[n](κn(y)) ∈ Bµn(0) ⊆ Bν(0). Since {κn(y)} ×Bν(0) ⊆ Tκn(Ny), Lemma D.6
(b) yields for FX[n]

as in Lemma D.4

κ−1
n FX[n]

(κn(y)) = κ−1
n expn(κn(y), X[n](κn(y))) = κ−1

n expn Tκn ◦X(y)

= expM Tκ−1
n Tκn ◦X(y) = expM ◦X(y) = FX(y).

Furthermore, a combination of Lemma D.6 (b) and (c) allows us to compute the identity

Tκn(expM |Ny )−1κ−1
n |expn(Tκn(Ny)) = (expn |Tκn(Ny))

−1
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for y ∈ V3,n. Set x := κn(y) with y ∈ V2,n. Since εn < ν, we conclude {x} × Bεn(0) ⊆ Tκn(Ny).
This yields the following identity:

(idB2(0), X[n] � Y[n])(x) = (x, fn(x, Y[n](x), X[n](FY[n]
(x)))) = (expn |{x}×Bεn (0))

−1FX[n]
FY[n]

(x)

=(expn |Tκn(Ny))
−1FX[n]

FY[n]
(x) = Tκn(expM |Ny )−1κ−1

n |expn(Tκn(Ny))FX[n]
FY[n]

(x)

=Tκn(expM |Ny )−1κ−1
n FX[n]

FY[n]
(x) = Tκn(expM |Ny )−1 expM Xκ−1

n FY[n]
(x)

=Tκn(expM |Ny )−1 expM X expM Y (y) = Tκn(expM |Ny )−1 expM X(FY (y)). (D.9.3)

This assignment is defined and smooth on V2,n, by (D.9.2). Hence for X,Y ∈ H′, we can define
X �Y : Ω2,K5

→ TM, x 7→ (expM |Nx)−1(expM ◦X ◦ expM ◦Y )(x), which is an element of X (Ω2,K5
).

The identity (D.9.3) yields X � Y ≡ 0 for X,Y ≡ 0. Define for X,Y ∈ H′ the map (X � Y )[n] :=
(X � Y )κn|V2,n

◦ κ−1
n |B2(0). Then the above computation (D.9.3) yields (X � Y )[n] = X[n] � Y[n] on

B2(0). From (D.9.2), we deduce∥∥(X � Y )[n]

∥∥
B 3

2
(0),0

=
∥∥X[n] � Y[n]

∥∥
B 3

2
(0),0

< εn < min {τ, ν} < R. (D.9.4)

Step 2: A vector field inducing F−1
X : By construction, each H′n for (V5,n, κn) ∈ F5(K5) is con-

tained in a set Nn as constructed via Lemma D.4 such that the assertions of Lemma D.6 (c) -(e)
hold for C∞(κn,Rd)(Nn). In particular, we may apply Lemma D.8 with K = K5, the open cover
F5(K5) and the open sets (H′n)(V5,n,κn)∈F5(K5): For each chart in F5(K5), we obtain an open C1-
zero-neighborhood Hn ⊆ C∞(κn,Rd)(H′n) ⊆ C∞(V5,n,Rd). Then define

HΩ5,K5

R :=
⋂

(V5,n,κn)∈F5(K5)

(θ
Ω5,K5
κn )−1(Hn) ⊆ H′.

By Lemma D.6 (e) for each X ∈ HΩ5,K5

R the mapping expM ◦X|Ω2,K5
is a étale embedding. Consider

X ∈ HΩ5,K5

R and (V5,n, κn) ∈ F5(K5). By construction of H′n in Step 1, we deduce with Lemma D.4
(c) that B 5

4
(0) ⊆ FX[n]

(B2(0)) holds. We already established the identities FX(y) = κ−1
n FX[n]

(κn(y))

and Tκn(expM |Ny )−1κ−1
n |expn(Tκn(Ny)) = (expn |Tκn(Ny))

−1 for y ∈ V3,n and X ∈ HΩ5,K5

R . Further-
more, Lemma D.4 (c)-(e) yield a mapX∗[n] ∈ C

∞(ImFX[n]
,Rd) with FX∗

[n]
:= expn(idImFX[n]

, X∗[n]) =

F−1
X[n]

. This map satisfies
∥∥∥X∗[n]

∥∥∥
B2(0),1

< ρn = min {ν, τ} < R. Hence by choice of ν, we deduce

X∗[n](y) ∈ Tκn(Ny) and thus FX∗
[n]

(y) ∈ expn(Tκn(Ny)) for each y ∈ V 5
4 ,n

. Combining these facts
we compute for (V5,n, κn) ∈ F5(K5) and y ∈ V 5

4
:

Tκ−1
n (expn |Tκn(Ny))

−1FX∗
[n]

(κn(y)) = (expM |Ny )−1κ−1
n (FX[n]

)−1(κn(y))

= (expM |Ny )−1(κ−1
n FX[n]

κn)−1(y)

= (expM |Ny )−1F−1
X (y) = (expM |Ny )−1(expM X|Ω2,K5

)−1(y).

By the computation, we obtain a section of the tangent bundle on Ω 5
4 ,K5

via

X∗ : Ω 5
4 ,K5

→ TM,X∗(y) := (expM |Ny )−1 ◦ (expM ◦X)−1(y).
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Let (V5,n, κn) ∈ F5(K5) and y ∈ V 5
4 ,n

. Observe that expn |Tκn(Ny) is injective. Furthermore,
FX∗

[n]
(κn(y)) = expn(κn(y), X∗[n](κn(y))) and (κn(y), X∗[n](κn(y))) ∈ Tκn(Ny). These identies imply

(expn |Tκn(Ny))
−1FX∗

[n]
(κn(y)) = (κn(y), X∗[n](κn(y)), whence the local identity above yields

X∗(y) := (expM |Ny )−1 ◦ F−1
X (y) = Tκ−1

n (idB2(0), X
∗
[n])κn(y) for each y ∈ V 5

4 ,n
. (D.9.5)

As X∗[n] is a smooth map by Lemma D.4, (D.9.5) shows that X∗ is smooth. Hence X∗ ∈ X
(

Ω 5
4 ,K5

)
follows. In addition for each (V5,n, κn) ∈ F5(K5), by choice of ρn∥∥∥X∗[n]

∥∥∥
B2(0),1

< ρn = min {ν, τ} < R. (D.9.6)

Define HR := (resMΩ5,K5
)−1(HΩ5,K5

R ) and observe that the estimates obtained in Step 1 and 2 remain
valid for sections in this set.

Conclusion: We have constructed C1-neighborhoods of the zero-section

HΩ5,K5

R := Γ−1

 ∏
(V5,n,κn)∈F5(K5)

Hn

 ⊆ X (Ω5,K5
) ,

HR := (resMΩ5,K5
)−1(HΩ5,K5

R ) ⊆ X (M)

where Γ: X (Ω5,K5
) →

∏
(V5,n,κn)∈F5(K5) C

∞(V5,n,Rd) is the embedding defined in C.3.1 and each
Hn ⊆ C∞(V5,n,Rd) is an open C1-neighborhood of the zero map.
By construction, HR is contained in the zero-neighborhood E ∩ (resMΩ5,K

)−1(P ) chosen in advance.
Here E is a neighborhood as in Lemma D.8 and P ⊆ X (Ω5,K) is an open C1-neighborhood of the
zero-section. In particular, Lemma D.8 implies that each element of HR satisfies the assertions of
Lemma D.6 (d), i.e.:
For (V5,n, κn) ∈ F(K5) and X ∈ HR, we have Xκn(V1,n) ⊆ Bν(0) with B2(0)×Bν(0) ⊆ dom expn.
For a pair (X,Y ) ∈ HR × HR there are vector fields X � Y ∈ X (Ω2,K5

) and X∗ ∈ X
(

Ω 5
4 ,K5

)
,

respectively, such that the following identities are satisfied:

expM ◦(X � Y ) = expM X expM Y |Ω2,K5 (D.9.7)

expM ◦X∗ = (expM ◦X|Ω2,K5
)−1|Ω 5

4
,K5
. (D.9.8)

We note that if X and Y are the zero section, then the local formulas (D.9.3) and (D.9.5) (with
Lemma D.4 (e)) prove that X � Y and X∗ are the zero section in X (Ω2,K5

) and X
(

Ω 5
4 ,K5

)
, respec-

tively.

The neighborhood HR constructed in this section is used in Section 5 to obtain symmetric neigh-
borhoods in the space of compactly supported orbisections. The argument in Construction D.9
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depends only on a finite atlas. Hence the sets constructed are open in X (M) with the topology
introduced in Definition C.3.1. Unfortunately, the vector fields X � Y and X∗ will thus in general
not be defined on all of M . Because of this, we are not able to prove a statement of the following
kind: If X,Y ∈ HR, then X �Y ∈ E and X∗ ∈ E. At the moment, we can only prove the following:

D.10 Corollary Consider the setting of Construction D.9 and let H′n, (V5,n, κn) ∈ F5(K5) and
HR be as constructed there. For each pair η, ξ ∈ H′n, the map η � ξ : B2(0) → Bτ (0) satisfies
‖η � ξ‖

B1(0),1
< τ < R. Hence, by (D.9.3), for any pair (X,Y ) ∈ HR × HR and each chart

(V5,n, κn) ∈ F5(K5), we derive
∥∥(X � Y )[n]

∥∥
B1(0),1

< τ .

In Section 5, we consider a setting, which allows X � Y to be extended uniquely to all of M . In
this case, Corollary D.10 will imply the result mentioned above (cf. Proposition 5.1.8).

Proof of Corollary D.10. By (D.9.2), it suffices to prove that the norm of the derivative is bounded
by τ . To do so, we recall the estimates from Step 1 of Construction D.9: Let x ∈ B1(0), y ∈ B2(0)

and consider ξ ∈ H′n. Then Fξ(x) ∈ B2(0) and ‖ξ‖
B3(0),1

< µn with 0 < µn < min
{
ν, σn2 ,

τ
6dtn

}
.

Recall that ‖d1fn(y1, y2, y3; ·)‖op <
τ
3 holds and tn is an upper bound for ‖dfn(y1, y2, y3; ·)‖op with

(y1, y2, y3) ∈ B2(0)×Bµn(0)×Bµn(0). As H′n ⊆ Nn for an open neighborhood Nn constructed via
Lemma D.4, we deduce from the proof of the lemma that 1

4 ≥ ‖dFξ(x; ·)− idRd‖op ≥ ‖dFξ(x; ·)‖op−1

for ‖x‖∞ < 3. For each (x, y) ∈ B1(0)×B1(0) we obtain the estimate ‖dξ(x; y)‖∞ ≤ ‖dξ(x; ·)‖op <
τ

6tn
. Choose tn large enough such that ‖dξ(x; y)‖∞ < 2 on B1(0)×B1(0). Using the rule on partial

derivatives and the chain rule with these estimates, we compute for (x, y) ∈ B1(0)×B1(0):

‖d(η � ξ)(x; y)‖∞
(D.9.2)

= ‖dfn(x, ξ(x), η(Fξ(x)), y, dξ(x, y), dη(Fξ(x), dFξ(x, y)))‖∞
≤ ‖d1fn(x, ξ(x), η(Fξ(x)), y)‖∞ + ‖dfn(x, ξ(x), η(Fξ(x)); ·)‖op · ‖dξ(x; y)‖∞

+ ‖dfn(x, ξ(x), η(Fξ(x)); ·)‖op · ‖dη(Fξ(x); ·)‖op · ‖dFξ(x; y)‖∞
<
τ

3
+ ‖dfn(x, ξ(x), η(Fξ(x)); ·)‖op︸ ︷︷ ︸

≤tn

(‖dξ(x; y)‖∞︸ ︷︷ ︸
≤dµn

+2 ‖dη(Fξ(x); ·)‖op︸ ︷︷ ︸
≤dµn

)

≤ τ

3
+
τ

6
+
τ

3
≤ τ.

We derive
∥∥∥ ∂
∂xj

(η � ξ)(x)
∥∥∥
∞
< τ for x ∈ B1(0) and j ∈ {1, 2, . . . , d} and thus ‖η � ξ‖

B1(0),1
< τ .

D.11 Lemma Consider the open zero neighborhoods HΩ5,K5

R as in Construction D.9. The maps

c : HΩ5,K5

R ×HΩ5,K5

R → X (Ω2,K5
) , (X,Y ) 7→ X � Y

ι : HΩ5,K5

R → X
(

Ω 5
4 ,K5

)
, X 7→ X∗

are smooth.



168 D RIEMANNIAN GEOMETRY: SUPPLEMENTARY RESULTS

Proof. Let I be the finite set indexing F5(K5). Following Definition C.3.1 and the definition of
Ωr,K5

, the topology on X (Ωr,K5
) , r ∈ [1, 5] is defined via the linear embedding with closed image

Γr : X (Ωr,K5)→
∏
k∈I

C∞(Vr,k,Rd) =
⊕
k∈I

C∞(Vr,k,Rd).

Therefore the maps prk := X (Ωr,K5
) → C∞(Vr,k,Rd), prk(X) := Xκk |Vr,k , k ∈ I define a patchwork

for X (Ωr,K5) indexed by I. Define

p : X (Ω5,K5
)× X (Ω5,K5

)→
⊕
k∈I

C∞(V5,k,Rd)× C∞(V5,k,Rd), (X,Y ) 7→ ((p5
k × p5

k)(X,Y ))k∈I .

Recall that finite products coincide with direct sums in the category of locally convex vector spaces.
The universal property of the direct sum therefore assures that the map

L :
⊕
k∈I

C∞(V5,k,Rd)× C∞(V5,k,Rd)→

(⊕
k∈I

C∞(V5,k,Rd)

)
×

(⊕
k∈I

C∞(V5,k,Rd)

)
(Xk, Yk)k∈I 7→ ((Xk)k∈I , (Yk)k∈I)

is an isomorphism of locally convex spaces. Furthermore, L ◦ p = Γ5 × Γ5 holds. As Γ5 is an
embedding with closed image, the map Γ5×Γ5 is a linear embedding with closed image (identifying
the domain of Γ5 via the embedding with a closed subspace of the codomain of Γ5 this follows
from [11, II, No. 6 Proposition 8]). We conclude that p is an embedding with closed image and the
family (p5

k × p5
k)k∈I yields a patchwork for X (Ω5,K5

)× X (Ω5,K5
).

We claim that the maps c and ι are patched mappings which are smooth on the patches. If this is
true, then the assertion follows from Proposition C.3.8. Proceed in two steps and prove the claim
first for the map c:
Recall from Construction D.9 that HΩ5,K5

R =
⋂
n∈I(θ

Ω5,K5
κn )−1(Hn) holds. Here each of the sets Hn

is an open neighborhood of the zero-map with Hn ⊆ C∞(κ−1
n ,Rd)−1(H′n) = C∞(κn,Rd)(H′n) and

H′n ⊆ C∞(B5(0),Rd). We define maps

hn : H′n ×H′n → C∞(B2(0),Rd), (η, ξ) 7→ η � ξ
cn : Hn ×Hn → C∞(V2,n,Rd),

(X,Y ) 7→ C∞(κn|V2,n ,Rd) ◦ hn ◦ (C∞(κ−1
n ,Rd)× C∞(κ−1

n ,Rd))(X,Y ).

Observe that by Step 1 in Construction D.9, each map cn maps the zero map (0, 0) ∈ Hn ×Hn to
0 ∈ C∞(V2,n,Rd). From the definition of c and the identity (D.9.3), a trivial computation yields the
identity cn ◦ (p5

n × p5
n) = p2

n ◦ c for each n ∈ I. Therefore c is a patched mapping whose compatible
family is (cn)n∈I . By Proposition C.3.8, the first part of the claim will hold if each cn is a smooth
map. However, cn will be smooth if and only if hn : H′n × H′n → C∞(B2(0),Rd), (η, ξ) 7→ η � ξ is
smooth, since C∞(κ−1

n ,Rd) and C∞(κn,Rd) are mutually inverse isomorphisms of topological vector
spaces by [26, Lemma A.1]. Fix n ∈ I and prove that hn is a smooth map:
To this end, recall the constants εn, δn obtained in Construction D.9. By Lemma D.3, we may
consider the smooth maps

en : B4(0)×Bεn(0)→ Rd, (x, y) 7→ expn(x, y)

an : B4(0)×Bδn(0)→ Bεn(0), an(x, y) := bn(x, x+ y).
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By [26, Proposition 4.23 (a)], these maps induce smooth push-forward maps

en∗ : bB3(0), Bεn(0)c∞ → C∞(B3(0),Rd), en∗(γ)(x) := en(x, γ(x))

an∗ : bB2(0), Bδn(0)c∞ → C∞(B2(0),Rd), an∗(η)(x) := an(x, η(x)),

where bB3(0), Bεn(0)c∞ ⊆ C∞(B4(0),Rd) and bB2(0), Bδn(0)c∞ ⊆ C∞(B 21
10

(0),Rd) are open sets.
Recall from Construction D.9 thatH′n is a subset of an open setNn which has been constructed by an
application of Lemma D.4. Hence η ∈ H ′n satisfies Lemma D.4 (a), whence η(B3(0)) ⊆ Bεn(0) holds.
In other words, H′n ⊆ bB3(0), Bεn(0)c∞ is satisfied (after restricting to B4(0), which we suppress in
the notation). By definition, en∗(η) = Fη with Fη as defined in Lemma D.4. Furthermore, applying
the estimate (D.4.2), we obtain en∗(η) ∈ bB2(0), B3(0)c∞. By [26, Lemma 11.4], there is a smooth
composition map

Θ: C∞(B3(0),Rd)× bB2(0), B3(0)c∞ → C∞(B 21
20

(0),Rd), (f, g) 7→ f ◦ g|B 21
20

(0),

where bB2(0), B3(0)c ⊆ C∞(B3(0),Rd). Hence, we conclude that we may compose Θ and (en∗×en∗)
to obtain a smooth map Θ ◦ (en∗ × en∗) : H′n × H′n → C∞(B 21

20
(0),Rd). By definition of H′n,

we derive for η ∈ H ′n the estimate Fη(x) ∈ B δn
2

(x) for x ∈ B3(0) (see Lemma D.4 (a)). Thus

Θ(en∗(η), en∗(ξ))(x)− x ∈ Bδn(0) holds for x ∈ B2(0), η, ξ ∈ H′n.
Combine the identity (D.9.2) with the definition of fn in Lemma D.3 (c) to deduce the identity

hn(η, ξ) = an∗(Θ(en∗(η), en∗(ξ))− idB 21
20

(0)).

We conclude that hn is smooth as composition of smooth maps. Summing up, this proves the first
part of the claim.
As a second step, we construct a compatible family for ι. To this end, define maps

in : H′n → C∞(B 5
4
(0),Rd), ξ 7→ ξ∗|B 5

4
(0)

ιn : Hn → C∞(V 5
4 ,n
,Rd), X 7→ C∞(κn|V 5

4
,n
,Rd) ◦ in ◦ C∞(κ−1

n ,Rd).

From the identity (D.9.5), we derive p
5
4
n ι = ιnp

5
n. Hence ι is a patched mapping and we have to

prove that each ιn is smooth. Again ιn will be smooth if in is smooth.
Recall that H′n ⊆ Nn holds for an open set Nn ⊆ C∞(B5(0),Rd) with the properties of the set N in
Lemma D.4. Hence the map In : Nn → C∞(B2(0),Rd), ξ 7→ ξ∗|B2(0) is smooth by Lemma D.4 (f).
Let λ : B 5

4
(0) ↪→ B2(0) be the canonical inclusion. The pullback C∞(λ,Rd) is continuous linear,

hence smooth. Finally, the identity in = C∞(λ,Rd) ◦ In|H′n assures that in is smooth.





E. Maps of orbifolds

In this section, we recall the notion of an orbifold map in local charts which was introduced in [56]
(cf. Section 1.3 for details on orbifolds). Our exposition follows [56] and we repeat basic facts for the
readers convenience. Orbifold maps in the sense discussed here correspond to maps in a category of
groupoids. Our notion of orbifold map developed here is thus equivalent to other types of orbifold
maps which are equivalent to maps in the associated groupoid category (cf. [14] for the so called
Chen-Ruan good map and [1] for the Moerdijk-Pronk strong map, respectively).

E.1. (Quasi-)Pseudogroups

In this section we let M be a smooth manifold.

E.1.1 Notation (Transitions) A transition on M is a diffeomorphism f : U → V , where U , V are
open subsets of M . Notice that the empty map ∅ → ∅ is a transition on M .
The product of two transitions f : U → V , g : U ′ → V ′ is the transition

f |f(U∩V ′) ◦ g|g−1(U∩V ′) : g−1(U ∩ V ′)→ f(U ∩ V ′), x 7→ f(g(x)).

The inverse of f is the inverse of f as a function. If f : U → V is a map, we denote by dom f the
domain of f and cod f the codomain of f . For x ∈ dom f we denote by germx f the germ of f at x
and the set of all transitions of M by A(M).

E.1.2 Definition (Pseudogroup) A pseudogroup onM is a subset P ⊆ A(M) which is closed under
products and inversion of transitions. We call P a full pseudogroup, if for every open subset U ⊆M
the transition idU is contained in P . A full pseudogroup is called complete if it satisfies

(Gluing Property) If f ∈ A(M) and there is an open cover (Ui)i∈I of dom f such that f |Ui ∈ P for
all i ∈ I, then f is an element of P .

The pseudogroup P is closed under restrictions, if for any f ∈ P and open set U ⊆ dom f , the map
f |f(U)
U : U → f(U) is in P . For example, every full pseudogroup is closed under restrictions.

E.1.3 Definition (Quasi-Pseudogroup) A subset P of A(M) is called a quasi-pseudogroup on M
if the following properties are satisfied:

(a) For each f ∈ P and x ∈ dom f , there exist an open set U with x ∈ U ⊆ dom f and g ∈ P
together with an open set V such that f(x) ∈ V ⊆ dom g and

(f |U )−1 = g|V .

(b) If f, g ∈ P and x ∈ f−1(cod f ∩ dom g), then there exists h ∈ P and an open neighborhood
U ⊆ f−1(cod f ∩ dom g) ∩ domh of x with g ◦ f |U = h|U .



172 E MAPS OF ORBIFOLDS

Thus inversions and compositions of elements in a quasi-pseudogroup are only required to corre-
spond locally to other elements in the quasi-pseudogroup. For pseudogroups, inverses and composites
globally belong to the pseudogroup. Quasi-pseudogroups are designed to work with the germs of
their elements. In general, quasi-pseudogroups may be thought of as generators for pseudogroups
in the following sense:

E.1.4 Definition Let P be a pseudogroup on M which satisfies the gluing property and is closed
under restrictions. The pseudogroup P is generated by a set A ⊆ A(M) if A ⊆ P holds and for
each f ∈ P and x ∈ dom f there exists g ∈ A and an open set U ⊆ dom f ∩ dom g with x ∈ U and
f |U = g|U . Then P is uniquely determined by A.
Consider a subset B of A(M). If there exists a unique pseudogroup Q on M which satisfies the
gluing property, is closed under restrictions and generated by B, then we say that B generates Q.

E.1.5 Remark (a) The set A(M) is a pseudogroup. Each pseudogroup is a quasi-pseudogroup.
(b) Each quasi-pseudogroup generates a unique pseudogroup which satisfies the gluing property

and is closed under restrictions. Vice versa each generating set for such a pseudogroup is
necessarily a quasi-pseudogroup.

E.2. Charted orbifold maps

In this section, we let (Q,U) and (Q′,U ′) be orbifolds. Morphisms of orbifolds will be constructed
in several steps, since they arise as equivalence classes of certain objects:

E.2.1 Definition Let V := {(Vi, Gi, πi) | i ∈ I} be a representative of U . We abbreviate the disjoint
union of the the chart domains of elements in V with

V :=
∐
i∈I

Vi and define π : V → Q, x 7→ πi(x) for x ∈ Vi.

Then the subset
Ψ(V) := {f ∈ A(V ) |π ◦ f = π|dom f}

of the set of all transitions on V is a complete pseudogroup on V which is closed under restrictions.

The last definition may be used to associate to each orbifold an étale Lie groupoid (as is explained
in [56, 2.9 and 2.10]). Since we are not interested in the correspondence of orbifolds and Lie
groupoids, we will not pursue this relation any further. However this relation was invaluable to
derive the notion of orbifold map introduced in this section. We refer to [56] for further details.

E.2.2 Definition Let f : Q→ Q′ be a continuous map. Consider two orbifold charts (V,G, π) ∈ U
and (V ′, G′, π′) ∈ U ′. A smooth map fV : V → V ′ is called local lift of f with respect to (V,G, π)
and (V ′, G′, π′) if π′ ◦ fV = f ◦ π holds. In this case, fV is also called a local lift of f at q for each
q ∈ π(V ).
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E.2.3 Definition (Representative of an orbifold map) A representative of an orbifold map from
an orbifold (Q,U) to an orbifold (Q′,U ′) is a tuple

f̂ := (f, {fi}i∈I , P, ν)

where

(R1) f : Q→ Q′ is a continuous map,
(R2) for each i ∈ I, the map fi : Vi → V ′i is a local lift of f with respect to orbifold charts

(Vi, Gi, πi) ∈ U , (V ′i , G
′
i, π
′
i) ∈ U ′ such that⋃

i∈I
πi(Vi) = Q

and (Vi, Gi, πi) 6= (Vj , Gj , πj) holds for i, j ∈ I, i 6= j,
(R3) P is a quasi-pseudogroup which consists of changes of charts of the orbifold atlas

V := {(Vi, Gi, πi) | i ∈ I}

of (Q,U) and generates Ψ(V),
(R4) Set F :=

∐
i∈I fi : V =

∐
i∈I Vi →

∐
i∈I V

′
i , x 7→ fi(x) if x ∈ Vi. Choose any orbifold atlas

V ′ ∈ U ′ which contains the set {(V ′i , G′i, π′i)}i∈I . Then ν : P → Ψ(V ′) is a map which assigns
to each λ ∈ P a change of charts

ν(λ) : (W ′, H ′, χ′)→ (V ′, G′, ϕ′)

between orbifold charts in V ′ such that the following properties are satisfied
a) F ◦ λ = ν(λ) ◦ F |domλ for all λ ∈ P ,
b) for all λ, µ ∈ P and all x ∈ domλ ∩ domµ with germx λ = germx µ we have

germF (x) ν(λ) = germF (x) ν(µ),

c) for all λ, µ ∈ P and all x ∈ λ−1(codλ ∩ domµ) we have

germF (λ(x)) ν(µ) · germF (x) ν(λ) = germF (x) ν(h)

where h is an element of P such that there is an open set U with

x ∈ U ⊆ λ−1(codλ ∩ domµ) ∩ domh

and µ ◦ λ|U = h|U ,
d) for all λ ∈ P and x ∈ domλ such that there is an open set x ∈ U ⊆ domλ with λ|U = idU

we have germF (x) ν(λ) = germF (x) idU ′ where U ′ :=
∐
i∈I V

′
i .

The orbifold atlas V is called the domain atlas of the representative f̂ , and the set {(V ′i , G′i, π′i) | i ∈ I}
is called the range family of f̂ . Note that the range family is not necessarily indexed by I. Moreover,
the mapping ν does not depend on the choice of V ′ since it takes its values in

⋃
(i,j)∈I×I ChV ′i ,V ′j

(cf. Notation E.2.4 below). The continuous map f will sometimes be called the underlying map of
the representative f̂ . The map f may not be chosen arbitrarily. As [56, Example 4.5] shows, it is
not even sufficient to require that f be a homeomorphism, to assure that there is a representative
f̂ with underlying map f .
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The technical condition in (R2) that two orbifold charts in V be distinct is required, because in
several places I is used as an index set for V (cf. property (R3)).
In view of Definition E.2.3, it is useful to have a shorthand for the changes of charts associated to
a given orbifold atlas. We fix the following notation.

E.2.4 Notation Let V = {(Vi, Gi, ψi) | i ∈ I} be a representative of U . Recall the notation for the
set of all changes of charts between two orbifold charts (first introduced in Lemma 3.1.4 (b)):

ChVi,Vj := {λ : Vi ⊇ domλ→ codλ ⊆ Vj |λ is a change of charts}

We define the set of all changes of charts of the atlas V via

ChV := {λ : Vi ⊇ domλ→ codλ ⊆ Vj |λ is a change of charts and i, j ∈ I} =
⋃

(i,j)∈I×I

ChVi,Vj .

Observe that ChV is a (quasi-)pseudogroup, which generates Ψ(V).

E.2.5 Definition Let f̂ := (f, {fi}i∈I , P1, ν1) and ĝ := (g, {gi}i∈I , P2, ν2) be two representatives
of orbifold maps with the same domain atlas V representing the orbifold structure U on Q and both
range families being contained in the orbifold atlas V ′ of (Q′,U ′). Set F :=

∐
i∈I fi. We say that f̂

is equivalent to ĝ if f = g, fi = gi for all i ∈ I and

germF (x) ν1(λ1) = germF (x) ν2(λ2)

holds for all λ1 ∈ P1, λ2 ∈ P2, x ∈ domλ1 ∩ domλ2 with germx λ1 = germx λ2. This defines an
equivalence relation. The equivalence class of f̂ will be denoted by

(f, {fi}i∈I , [P1, ν1]).

By abuse of notation, we denote by f̂ the equivalence class [f̂ ] of the representative f̂ , if it is clear
that we refer to equivalence classes. The equivalence class of the representative f̂ is called orbifold
map with domain atlas V and range atlas V ′, in short orbifold map with (V,V ′) or, if the specific
atlases are not important, a charted orbifold map. Define Orb(V,V ′) to be the set of all orbifold

maps with (V,V ′). To shorten our notation we denote an element ĥ ∈ Orb(V,V ′) by V ĥ−→ V ′.

E.2.6 Remark

(a) The results of [56] apply to the class of second countable orbifolds and the wider class of
paracompact orbifolds. We only required orbifolds to be paracompact. Second countability of
all spaces seems to be a standard requirement in the theory of groupoids (cf. [51]). However,
[13, 34] and the survey article by Lerman [46] outline the theory of Lie-groupoids for non
second countable manifolds. In particular, the article by Lerman indicates that all desirable
properties on the groupoid side are preserved for paracompact orbifolds and manifolds. Hence
we require only the weaker condition.
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(b) In Definition E.2.3 we used quasi-pseudogroups instead of the pseudogroups ChV or Ψ(V) since,
in general, a quasi-pseudogroup P will be much smaller (sometimes even finite). Observe the
following facts, whose proofs we omit here:

i. Let (f, {fi}i∈I , P, ν) be a representative of an orbifold map. Replacing P with a quasi-
pseudogroup P ′ whose elements arise as restrictions of maps in P (if necessary reducing
them to open neighborhoods which are stable with respect to the group action), one may
replace ν with a map ν′ which maps each element in P ′ to an open embedding in the range
family. The pair (P ′, ν′) may be chosen such that (f, {fi}i∈I , P, ν) and (f, {fi}i∈I , P ′, ν′)
are in the same equivalence class.

ii. Consider a representative of an orbifold map f̂ : (Q,U) → M, where M is a con-
nected manifold (without boundary) and range family of the charted map is the atlas
(M, {idM} , idM ). The map ν may then be chosen as the map taking each h ∈ P to idM.

E.3. The identity morphism

In this section, we construct the identity morphism in the category of reduced orbifolds.

E.3.1 Definition Let f : Q→ Q′ be a continuous map between orbifolds (Q,U), (Q′,U ′). Suppose
fV is a local lift with respect to the orbifold charts (V,G, π) ∈ U and (V ′, G′, π′) ∈ U ′. Consider
embeddings of orbifold charts in U and U ′,respectively,

λ : (W,K,χ)→ (V,G, π) and µ : (W ′,K ′, χ′)→ (V ′, G′, π′),

such that fV (λ(W )) ⊆ µ(W ′) holds. Then the map

g := µ−1 ◦ fV ◦ λ : W →W ′

is a local lift of f with respect to (W,K,χ) and (W ′,K ′, χ′). We say fV induces the local lift g with
respect to λ and µ and call g induced lift of f with respect to fV , λ and µ.

E.3.2 Proposition ([56, Proposition 5.3]) Let (Q,U) be an orbifold and fV be a local lift of idQ with
respect to (V,G, π), (V ′, G′, π′) ∈ U . For each v ∈ V there exists a restriction (S,GS , π|S) of (V,G, π)
with v ∈ S and a restriction (S′, G′S′ , π

′|S′) of (V ′, G′, π′) such that fV |S
′

S is diffeomorphism which
is a change of charts from (S,GS , π|S) to (S′, G′S′ , π

′|S′). In particular, fV |S induces the identity
idS with respect to the embeddings of orbifold charts idS and (fV |S

′

S )−1.

Proposition E.3.2 shows that every local lift of the identity idQ is a local diffeomorphism (but in
general it need not be a global diffeomorphism as [56, Example 5.4] shows).

E.3.3 Proposition ([56, Proposition 5.5]) Let (Q,U) be an orbifold and {fi}i∈I a family of lo-
cal lifts of idQ which satisfies (R2). Then there exists a pair (P, ν) such that (idQ, {fi}i∈I , P, ν)
is a representative of an orbifold map on (Q,U). The pair (P, ν) is unique up to equivalence of
representatives of orbifold maps.
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E.3.4 Proposition ([56, Proposition 5.6]) Let Q be a topological space and suppose U and U ′ are
orbifold structures on Q. Consider a charted orbifold map

f̂ = (idQ, {fi}i∈I , [P, ν])

such that the domain atlas V is a representative of U and the range family V ′, which is an orbifold
atlas, is a representative of U ′. If fi is a local diffeomorphism for each i ∈ I, then U = U ′ holds,
i.e. the orbifolds coincide.

E.3.5 Definition Let (Q,U) be an orbifold and f̂ = (f, {fi}i∈I , [P, ν]) be a charted orbifold map
whose domain atlas is a representative of U . The representative f̂ is called lift of the identity id(Q,U)

if f = idQ holds and fi is a local diffeomorphism for each i ∈ I. We also say that f̂ is a representative
of id(Q,U). The set of all lifts of id(Q,U) is the identity morphism id(Q,U) of (Q,U).

E.4. Composition of charted orbifold maps

E.4.1 Construction Let (Q,U), (Q′,U ′) and (Q′′,U ′′) be orbifolds, and

V := {(Vi, Gi, πi) | i ∈ I} , V ′ :=
{

(V ′j , G
′
j , π
′
j)
∣∣ j ∈ J}

be representatives of U and U ′, respectively, where V is indexed by I and V ′ by J . Furthermore, let
V ′′ ∈ U ′′. Consider charted orbifold maps

f̂ = (f, {fi}i∈I , [Pf , νf ]) ∈ Orb(V,V ′)

and
ĝ = (g, {gj}j∈J , [Pg, νg]) ∈ Orb(V ′,V ′′).

Define α : I → J to be the unique map such that for each i ∈ I, fi is a local lift of f with respect
to (Vi, Gi, πi) and (V ′α(i), G

′
α(i), π

′
α(i)). We define the composition of ĝ and f̂ :

ĝ ◦ f̂ := ĥ = (h, {hi}i∈I , [Ph, νh]) ∈ Orb(V,V ′′)

is given by h := g◦f and hi := gα(i)◦fi for all i ∈ I. To construct a representative (Ph, νh) of [Ph, νh]
fix representatives (Pf , νf ) and (Pg, νg) of [Pf , νf ] and [Pg, νg], respectively. Consider µ ∈ Pf with
domµ ⊆ Vi, codµ ⊆ Vj for the orbifold charts (Vi, Gi, πi) and (Vj , Gj , πj) in V. Property (R4a)
assures

fj ◦ µ = νf (µ) ◦ fi|domµ,

where νf (µ) is a change of charts in V ′. For x ∈ domµ set yx := fi(x) ∈ dom νf (µ). Since Pg
generates Ψ(V ′) we may choose ξµ,x ∈ Pg such that there is an open set yx ∈ U ′µ,x ⊆ dom ξµ,x ∩
dom νf (µ) and the following is satisfied:

ξµ,x|U ′µ,x = νf (µ)|U ′µ,x .
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We may choose an open set x ∈ Uµ,x ⊆ domµ such that fi(Uµ,x) ⊆ U ′µ,x holds. By adjusting choices
one may achieve that for µ1, µ2 ∈ Pf and xk ∈ domµk, k ∈ {1, 2} we have

µ1|Uµ1,x1
6= µ2|Uµ2,x2

or ξµ1,x1
= ξµ2,x2

. (E.4.1)

Define the quasi-pseudogroup

Ph :=
{
µ|Uµ,x

∣∣µ ∈ Pf , x ∈ domµ
}

and observe that it generates Ψ(V) as Pf generates Ψ(V). As property (E.4.1) holds, we obtain a
well defined map

νh : Ph → Ψ(V ′′), νh(µ|Uµ,x) := νg(ξµ,x).

Since νg and νf satisfy the properties (R4a) - (R4d), the same holds for νh. Furthermore, the
equivalence class of (Ph, νh) does not depend on the choices in the construction of Ph and νh.

So far, we have only explained the composition of charted orbifold maps in Orb(V,V ′) and
Orb(V ′,V ′′). Obviously we need the composition of maps in Orb(V,V ′) and maps in Orb(V ′′,V ′′′)
for arbitrary V ′′,V ′′′. The leading idea is to construct a common refinement of the range family and
the atlas V ′′ together with induced maps, which may then be composed as in Construction E.4.1.
Before we introduce the general construction, we define the notion of induced charted orbifold maps:

E.4.2 Lemma and Definition ([56, Lemma and Definition 5.11]) Let (Q,U) and (Q′,U ′) be
orbifolds. Consider representatives

V = {(Vi, Gi, πi) | i ∈ I} of U indexed by I
V ′ = {(V ′l , G′l, π′l) | l ∈ L} of U ′ indexed by L, and a charted map

f̂ = (f, {fi}i∈I , [Pf , νf ]) ∈ Orb(V,V ′).

Define β : I → L to be the unique map such that for each i ∈ I, fi is a local lift of f with respect to
(Vi, Gi, πi) and (V ′β(i), G

′
β(i), π

′
β(i)). Suppose there are

• a representative W = {(Wj , Hj , ψj) | j ∈ J} of U , indexed by J ,
• a subset

{
(W ′j , H

′
j , ψ
′
j)
∣∣ j ∈ J} of U ′, indexed by J (not necessarily an orbifold atlas),

• a map α : J → I,
• for each j ∈ J , an embedding of orbifold charts

λj : (Wj , Hj , ψj)→ (Vα(j), Gα(j), πα(j))

and an embedding of orbifold charts

µj : (W ′j , H
′
j , ψ
′
j)→ (V ′β(α(j)), G

′
β(α(j)), π

′
β(α(j)))

such that fα(j)(λj(Wj) ⊆ µj(W ′j) holds.
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For each j ∈ J we define the smooth map

hj := µ−1
j ◦ fα(j) ◦ λj : Wj →W ′j .

Then the following assertions hold

(a) ε := (idQ, {λj}j∈J , [Pε, νε]) (with [Pε, νε] provided by Proposition E.3.3) is a lift of id(Q,U).
(b) The set

{
(W ′j , H

′
j , ψ
′
j)
∣∣ j ∈ J} and the family (µj)j∈J may be extended to a representative

W ′ = {(W ′k, H ′k, ψ′k) | k ∈ K}

of U ′ and a family {µk}k∈K of embeddings of orbifold charts such that

ε′ := (idQ′ , {µk}k∈K , [Pε′ , νε′ ]) ∈ Orb(W ′,V ′)

(with [Pε′ , νε′ ] provided by Proposition E.3.3) is a lift of the identity id(Q′,U ′).
(c) There is a uniquely determined equivalence class [Ph, νh] such that

ĥ := (f, {hj}j∈J , [Ph, νh]) ∈ Orb(W,W ′)

and f̂ ◦ ε = ε′ ◦ ĥ holds.

We say that the charted orbifold map ĥ is induced by f̂ .

E.4.3 Definition Let (Q,U) and (Q′,U ′) be orbifolds. Further let V1,V2 be representatives of U
and V ′1,V ′2 be representatives of U ′. Suppose that f̂i ∈ Orb(Vi,V ′i), i = 1, 2. We call f̂1 and f̂2

equivalent (f̂1 ∼ f̂2) if there are representativesW of U andW ′ of U ′ together with lifts of the identity
εi ∈ Orb(W,Vi) and ε′i ∈ Orb(W ′,V ′i), respectively (for i ∈ {1, 2}) and a map ĥ ∈ Orb(W,W ′) such
that the following diagram commutes

V1
f̂1 // V ′1

W ĥ //

ε1

>>~~~~~~~~

ε2

  
AA

AA
AA

AA
W ′

ε′1

``BBBBBBBB

ε′2~~}}
}}

}}
}}

V2
f̂2 // V ′2

Let (Q,U) and (Q′,U ′) be orbifolds. The notion of equivalence of charted maps induces an
equivalence relation on the set of all charted orbifold maps whose domain atlas is contained in U
and whose range family is contained in U ′. To prove this fact, in [56] the following lemmata clarify
the relation of induced lifts and induced charted orbifold maps.
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E.4.4 Lemma ( [56, Lemma 5.13]) Let (Q,U) and (Q′,U ′) be orbifolds and

f̂ := (f, {fi}i∈I , [P, ν]) ∈ Orb(V,V ′)

be a charted orbifold map, where V and V ′ are representatives of U and U ′, respectively. Assume that
there are orbifold charts (Vα, Gα, πα) ∈ V, α = a, b and points xα ∈ Vα with πa(xa) = πb(xb). Then
there are arbitrarily small orbifold charts (i.e. for each open set Ω ⊆ Q we may choose charts, which
are contained in Ω) (W,K,χ) ∈ U , (W ′,K ′, χ′) ∈ U ′ and embeddings λα : (W,K,χ)→ (Vα, Gα, πα),
µα : (W ′,K ′, χ′)→ (V ′α, G

′
α, π

′
α) of orbifold charts with xα ∈ λα(W ), α = a, b such that the induced

lift g of f with respect to fa, λa, µa coincides with the one induced by fb, λb, µb. In other words, we
obtain a commutative diagram

Va
fa // V ′a

W
g

//

λa

>>}}}}}}}}

λb

  
@@

@@
@@

@@
W ′

µa

``BBBBBBBB

µb
~~}}

}}
}}

}}

Vb
fb // V ′b

E.4.5 Lemma ([56, Lemma 5.14]) Let (Q,U) and (Q′,U ′) be orbifolds, V a representative of U ,
and V ′ one of U ′. Further let f̂ ∈ Orb(V,V ′). Assume that ĥ ∈ Orb(W1,W ′1) and ĝ ∈ Orb(W2,W ′2)

are both induced by f̂ . There are representatives W of U and W ′ of U ′ together with lifts of the
identity εi ∈ Orb(W,Wi), i = 1, 2 and ε′i ∈ Orb(W ′,W ′i), i = 1, 2 such that a charted orbifold map
k̂ ∈ Orb(W,W ′) exists, making the following diagram commutative.

W1
ĥ // W ′1

W k̂ //

ε1

>>||||||||

ε2

  B
BB

BB
BB

B W ′
ε′1

aaCCCCCCCC

ε′2}}{{
{{

{{
{{

W2
ĝ
// W ′2

(E.4.2)

If the orbifolds are second countable, we may choose W and W ′ to be countable.

E.4.6 Definition It follows from the last lemma that the relation ∼ introduced in Definition E.4.3
is indeed an equivalence relation. For details we refer to the exposition in [56].
Denote the equivalence class of a charted orbifold map f̂ with respect to the equivalence relation
∼ introduced in Definition E.4.3 by [f̂ ]. It will be clear from the context whether f̂ is a charted
orbifold map and [f̂ ] denotes its equivalence class, i.e. the orbifold morphism, or f̂ is a representative
of the charted orbifold map and [f̂ ] is the equivalence class of representatives, which by abuse of
notation is also abbreviated as f̂ .
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E.5. The orbifold category

We have explained how to construct orbifolds and morphisms of orbifolds. Now we introduce the
category of orbifolds, which is isomorphic to a full category of certain Lie groupoids (cf. [56] for
details on this topic).

E.5.1 Definition The category Orb is defined as follows: The class of objects Ob Orb is given by
the class of all paracompact Hausdorff orbifolds (as defined in Definition 1.3.1). For two orbifolds
(Q,U) and (Q′,U ′), the morphisms, i.e. orbifold maps from (Q,U) to (Q′,U ′) are the equivalence
classes [f̂ ] of all charted orbifold maps f̂ ∈ Orb(V,V ′) where V is a representative of U and V ′ is a
representative of U ′, that is,

Orb((Q,U), (Q′,U ′)) :=
{[
f̂
] ∣∣∣ f̂ ∈ Orb(V,V ′),V representative of U ,V ′ representative of U ′

}
.

The composition in Orb is induced by the following construction: Let

[f̂ ] ∈ Orb((Q,U), (Q′,U ′)) and [ĝ] ∈ Orb((Q′,U ′), (Q′′,U ′′))

be orbifold maps. Choose representatives f̂ ∈ Orb(V,V ′) of [f̂ ] and ĝ ∈ Orb(W,W ′) of [ĝ]. Then find
representatives K,K′ and K′′ of U ,U ′ and U ′′, respectively, and lifts of the identity ε ∈ Orb(K,V),
ε′1 ∈ Orb(K′,V ′), ε′2 ∈ Orb(K′,W ′), ε′′ ∈ Orb(K′′,W ′′) together with charted orbifold maps ĥ ∈
Orb(K,K′), k̂ ∈ Orb(K′,K′′) such that the diagram

V
f̂
// V ′ W ′

ĝ
// W ′

K ĥ //

ε

??�������
K′

ε′1

``AAAAAAAA ε′2

==||||||||
k̂ // K′′

ε′′

aaCCCCCCCC

commutes. Define the composition of [ĝ] and [f̂ ] as

[ĝ] ◦ [f̂ ] := [k̂ ◦ ĥ].

E.5.2 Proposition ([56, Lemma 5.17 and Proposition 5.18]) It is always possible to compose two
orbifold maps in Orb((Q,U), (Q′,U ′)) and Orb((Q′,U ′), (Q′′,U ′′)) and the composition in Orb is
well-defined.

All equivalence classes of lifts of the identity coincide for a given orbifold (Q,U). Hence the
“identity morphism” introduced in Definition E.3.5 is the identity morphism of (Q,U) in Orb.

E.5.3 Proposition ([56, Proposition 5.19]) Let (Q,U) be an orbifold and ε a lift of id(Q,U). Then
the equivalence class [ε] of ε consists precisely of all lifts of id(Q,U). Hence the “identity morphism”
id(Q,U) is the equivalence class [ε].



F. Orbifold geodesics: Supplementary Results

In this section, we supply proofs for some of the more technical assertions in Section 4.1.

F.1 Lemma (Lemma 4.1.4) Let [ĉ] ∈ Orb (I, (Q,U)) be an orbifold path and [a, b] ⊆ I some
compact sub-interval. There exists a charted orbifold map ĝ = (c|]x,y[, {gk}1≤k≤N , [Pg, νg]) with
x < a < b < y, ]x, y[⊆ I, and N ∈ N such that:

1. [ĉ]|]x,y[ = [ĝ],
2. dom gk =]l(k), r(k)[ for each 1 ≤ k ≤ N , such that

x = l(1) < l(2) < r(1) < l(3) < r(2) < · · · < l(N) < r(N − 1) < r(N) = y

3. Pg =
{

id]l(N),r(N)[

}
∪
{

id]l(k),r(k)[, ι
k+1
k , (ιk+1

k )−1
∣∣ 1 ≤ k ≤ N − 1

}
, where ιk+1

k is the canonical
inclusion ]l(k), r(k)[⊇]l(k + 1), r(k)[↪→]l(k + 1), r(k + 1)[ .

Proof of Lemma 4.1.4. Consider a representative ĉ = (c, {ci}i∈I , [Pc, νc]) of [ĉ] whose domain atlas is
contained inAI . As [a, b] ⊆ I is compact, there is a finite subset F ⊆ I such that [a, b] ⊆

⋃
i∈F dom ci

and dom ci ∩ [a, b] 6= ∅ for all i ∈ F hold. Set x := inf
⋃
i∈F dom ci and y := sup

⋃
i∈F dom ci

and consider ĉ|]x,y[. By construction, for i ∈ F the set dom ci is contained in ]x, y[. Consider
the representative ι̂]x,y[ of the orbifold map [ι̂]x,y[] whose lifts are given by the family {iddom ci}i∈F .
Following Construction E.4.1 the composition ĥ := ĉ◦ι̂]x,y[ is a representative of [ĉ]|]x,y[ := [ĉ]◦[ι̂]x,y[].
By construction, the family of lifts of ĥ is {ci}i∈F . As F is finite, we can choose and fix a
partition of ]x, y[ by real numbers l(k)′, r(k)′, 1 ≤ k ≤ N ∈ N which are ordered as in 2., such that
]l(k)′, r(k)′[⊆ dom cik holds for some ik ∈ F . Note that each inclusion ιk : ]l(k)′, r(k)′[↪→ dom cik is
a change of orbifold charts. Apply Lemma E.4.2 with respect to the family of pairs (ιk, idcod cik

),
k ∈ {1, . . . , N} to obtain a representative ĝ′ = (c]x,y[, {g′k}1≤k≤N , [Pg′ , νg′ ]) induced by ĥ.
Choose ιk+1

k ∈ Pg′ with dom ιk+1
k ⊆]l(k)′, r(k)′[ and cod ιk+1

k ⊆]l(k + 1)′, r(k + 1)′[. Set ιkk+1 :=

(ιk+1
k )−1, l(1) := x, r(N) := y and

r(k) := sup dom ιk+1
k , l(k + 1) := inf dom ιk+1

k for each 1 ≤ k ≤ N − 1.

By construction ]l(k), r(k)[⊆]l(k)′, r(k)′[ holds for 1 ≤ k ≤ N . The numbers l(k), r(k) are ordered
as in 2., since the l(k)′, r(k)′ were ordered in this way. Furthermore, ]x, y[=

⋃
1≤k≤N ]l(k), r(k)[ is

satisfied. With this choice of ιk+1
k , the quasi-pseudogroup Pg as defined in 3. generates the changes

of charts for {]l(k), r(k)[ | 1 ≤ k ≤ N}. Define

νg(λ) :=


idcod cik

if λ = id]l(k),r(k)[)

νg′(ι
k+1
k ) if λ = ιk+1

k

νg′(ι
k+1
k )−1 if λ = (ιk+1

k )−1

to obtain a map νg : Pg → Ψ(A), where A ∈ U contains the range family of ĝ′.
Apply Lemma E.4.2 with respect to the pairs (]l(k), r(k)[↪→]l(k)′, r(k)′[, idcod cik

) for 1 ≤ k ≤ N to
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obtain a representative ĝ = (c|]x,y[, {gk}1≤k≤N , [P, ν]) induced by ĝ′. Reviewing the construction
of νg, we see that by construction and property (R4) (d) of Definition E.2.3 the germs of ν(λ) and
νh(µ) must coincide at gk(x) if germx λ = germx µ holds for x ∈ dom gk. Thus (Pg, νg) ∼ (P, ν)
follows, whence we may replace the pair (P, ν) with (Pg, νg). Observe that in each step, we have
only applied Lemma E.4.2. Thus [ĝ] = [ĉ]|]x,y[ holds.

Clearly the definition of the restriction of an orbifold map yields the following Lemma:

F.2 Corollary If [ĉ] ∈ Orb (I, (Q,U)) is an orbifold geodesic and [a, b] ⊆ I compact, then the
restriction [ĝ] = [ĉ]|]x,y[ with x < a < b < y constructed in Lemma 4.1.4 is an orbifold geodesic.

Proof. Simply choose in Lemma 4.1.4 an atlas contained in AI .

F.3 Lemma Consider representatives ĉ = (c, {ck}k∈A , [P, ν]), ĉ′ = (c′, {c′r}r∈B , [P ′, ν′]) of orbifold
geodesics in Orb (I, (Q,U)), whose domain atlases are contained in AI . Assume that the lifts satisfy
cod ck = Uk for (Uk, Gk, ψk) ∈ U , respectively cod c′r = Wr for (Wr, Hr, ϕr) ∈ U . The following
conditions are equivalent:

(a) [ĉ] = [ĉ′],
(b) For all k ∈ A, r ∈ B and t ∈ dom ck ∩ dom c′r, there is a change of charts λk,rt : Uk ⊇

domλk,rt →Wr with Tt(λ
k,r
t ck)(1) = Ttcr(1) (i.e. the initial vectors coincide),

(c) for any t ∈ I, there is a pair (k, r) ∈ A × B and a change of charts λt : Uk ⊇ domλt → Wr

such that t ∈ dom ck ∩ dom c′r and Tt(λtck)(1) = Ttcr(1),
(d) there are representatives ĝ = (c, {ck}k∈I , [Pg, νg]) of [ĉ] and ĝ′ = (c, {ck}k∈I , [Pg, ν′g]), respec-

tively, of [ĉ′] whose domain atlases are contained in AI .
In particular, a geodesic arc in Q is uniquely determined by the initial vector.

Proof. “(a) ⇒ (b)” is a reformulation of Lemma 4.1.3 for orbifold geodesics. “(b) ⇒ (c)” is trivial.
To check “(c) ⇒ (d)” , we construct representatives induced by ĉ and ĉ′: The chart domains of the
domain atlases of ĉ and ĉ′ are intervals Ik := dom ck, k ∈ A, respectively Jr := dom c′r, r ∈ B.
Pick some t0 ∈ I together with a pair (k, r) ∈ A × B satisfying the hypothesis of (c). There
is λt0 ∈ ChUk,Wr

with Tt0(λt0ck)(1) = Tt0c
′
r(1). Shrinking domλt0 , we may assume that the set

t0 ∈ domλt0 is Gk-stable. Thus it induces an orbifold chart (domλt0 , Gk,domλt0
, ψk|domλt0

) ∈ U .
As ck is a geodesic, we may choose εt0 > 0 with ck([t0 − εt0 , t0 + εt0 ]) ⊆ domλt0 and [t0 − ε0, t0 +
ε0] ⊆ Jr. The change of charts λt0 is a Riemannian isometry, since (Q,U , ρ) is a Riemannian
orbifold. In particular, λt0 maps geodesics of domλt0 ⊆ Uk to geodesics of Wr. Thus λt0 ◦ ck : ]t0 −
εt0 , t0 + εt0 [→ Wr is a geodesic. Uniqueness of geodesics in Riemannian manifolds implies that
λt0 ◦ ck|]t0−εt0 ,t0+εt0 [ = c′r|]t0−εt0 ,t0+εt0 [, as their derivatives coincide in t0. For the trivial orbifold I
the set Ct0 :=]t0−εt0 , t0+εt0 [⊆ Ik∩Jr induces an orbifold chart via the inclusion of sets. Set α(t0) :=
k and β(t0) := r and define changes of orbifold charts µt0,α : Ct0 → Iα(t0), µt0,β : Ct0 → Jβ(t0) and
νt0,α : domλt0 → Uα(t0) via the inclusion of sets. Furthermore, set νt0,β := λt0 . Reviewing the
construction, we see that cα(t0)µt0,α ⊆ Im νt0,α and c′β(t0)µt0,β ⊆ Imλt0 = Im νt0,β . This implies

ν−1
t0,αcα(t0)µt0,α = ν−1

t0,β
c′β(t0)µt0,β . (F.3.1)
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With respect to the pair (Ct0 ,
{

idCt0
}
, Ct0 ↪→ I) and (domλt0 , Gk,domλt0

, ψk|domt0
) the lifts of ĉ and

ĉ′ coincide. The construction did not depend on t0 and may be repeated for each t ∈ I. In this way
we obtain a (possibly infinite) subset R ⊆ I such that

⋃
t∈R Ct = I and Ct 6= Cs if t 6= s. Since these

sets cover I, the construction yields an orbifold atlas C ⊆ AI for I. It may happen that the charts
(domλt, Gα(t),domλt , ψα(t)|domλt) and (domλs, Gα(s),domλs , ψα(s)|domλs) coincide for s 6= t. To
satisfy the requirement (R2) in Definition E.2.3, we redefine the charts: Take domλs×{s} instead of
domλs and redefine the group actions, changes of charts etc. in the obvious way. Recall that this does
not change the equivalence class of ĉ and ĉ′ by virtue of Lemma E.4.2. Without loss of generality we
may thus assume (domλt, Gα(t),domλt , ψα(t)|domλt) 6= (domλs, Gα(s),domλs , ψα(s)|domλs) for s 6= t.
Using Lemma E.4.2, the charted maps ĉ and ĉ′, induce representatives ĥ and ĥ′ with respect to C
and an atlas W ∈ U which contains

{
(domλt, Gα(t),domλt , ψα(t)|domλt))

∣∣ t ∈ R}. From (F.3.1) we
deduce that the lifts of ĥ and ĥ′ coincide. Choose a refinement of the domain atlas of ĥ as follows:
There is a sequence of real numbers in I

· · · < l(−1) < r(−2) < l(0) < r(−1) < l(1) < r(0) < l(2) < r(1) < · · ·

such that ]l(n), r(n)[ is contained in some chart of the domain atlas of ĥ for each n ∈ Z. Apply an
argument as in the proof of Lemma 4.1.4 (cf. Lemma F.1) to obtain a cover of I by intervals Ik
indexed by Z, such that the following is satisfied:

1. Ik ∩ Ij 6= ∅ if and only if j ∈ {k − 1, k, k + 1}, k, j ∈ Z,
2. ĥ induces a representative ĝ = (c, {gk}k∈Z , [Pg, νg]) of [ĉ] and ĥ′ induces a representative ĝ′ =

(c′, {g′k}k∈Z , [P
′
g, ν
′
g]) of [ĉ′] such that Pg = Pg′ and Pg =

{
id]l(k),r(k)[, ι

k+1
k , (ιk+1

k )−1
∣∣ k ∈ Z

}
,

where ιk+1
k , (ιk+1

k )−1 are defined as in Lemma 4.1.4.
3. As the lifts of ĥ and ĥ′ coincide, for each k ∈ Z the lifts gk, g′k are given as restriction
gk = g′k = hs|]l(k),r(k)[ : ]l(k), r(k)[→ Vk, (Vk, Gk, ψk) ∈ U of a lift hs of ĥ.

Shrinking the sets ]l(n), r(n)[, n ∈ Z, we assume that gk(]l(k+ 1), r(k)[) and gk(]l(k), r(k− 1)[) are
contained in stable subsets of dom νĝ(ι

k+1
k )∩dom νĝ′(ι

k+1
k ) and dom νĝ((ι

k
k−1)−1)∩dom νĝ′((ι

k
k−1)−1),

respectively, for each k ∈ Z. Restricting the changes of charts to these stable subsets, by Defini-
tion E.2.5 the pairs (Pg, νĝ) and (Pg, νĝ′) may be replaced by equivalent pairs such that the maps
νĝ(λ), νĝ′(λ) are embeddings of orbifold charts with dom νĝ(λ) = dom νĝ′(λ) for each λ ∈ Pg. Un-
fortunately, νĝ and νĝ′ need not coincide. However, since the lifts coincide we obtain

νĝ(ι
k+1
k ) ◦ gk|]l(k+1),r(k)[ = gk+1 ◦ ιk+1

k = νĝ′(ι
k+1
k ) ◦ gk|]l(k+1),r(k)[.

Hence both geodesic arcs coincide. As νĝ(ιk+1
k ) and νĝ′(ιk+1

k ) are embeddings of orbifold charts with
the same domain, for each k ∈ Z there is some γk+1 ∈ Gk+1 with νĝ(ιk+1

k ) = γk+1.νĝ′(ι
k+1
k ).

“(d) ⇒ (a)“ Consider representatives ĝ of [ĉ] and ĝ′ of [ĉ′] as constructed in Step “(c) ⇒ (d)” . We
claim that [ĝ] = [ĝ′] holds. To prove the claim, consider the case that the geodesic arc Im c contains
non-singular points. Hence there are k ∈ Z and z ∈ I such that c(z) = ψkck(z) is non-singular.
For each subset Hk ⊆ G the components of

⋂
g∈Hk Σg are totally geodesic submanifolds of (Vk, ρk)

by [42, II. Theorem 5.1]). Assume that there is a an open, non-empty set U such that Im ck ∩ U
is contained in a component jointly fixed by the elements of some subset Hk ⊆ Gk, which contains
elements different from the identity idVk ∈ Gk. Then the image Im ck is contained in this component
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(cf. [41, Proof of Theorem 1.10.15]). This contradicts the choice of ck(z), whence the non-singular
points must be a dense subset of Im ck with respect to the subspace topology. Changes of charts
preserve non-singular points. Hence the same argument may be repeated to prove that the non-
singular points must be dense in the image of each ck, k ∈ Z. In conclusion, we have to consider two
cases:

Case 1: The geodesic arc of [ĉ] (or equivalently the arc of [ĉ′]) contains a non-singular point. The
preparatory considerations show that the non-singular points are dense in the image of each lift.
Hence γk+1.νĝ(ι

k+1
k ) = νĝ′(ι

k+1
k ) implies γk+1 = idVk+1

,∀k ∈ Z as Im ck+1 contains non-singular
points. We deduce νĝ = νĝ′ , whence ĝ = ĝ′ follows.

Case 2: The geodesic arc of [ĉ] (or equivalently the arc of [ĉ′]) is contained in the singular locus of
Q. We construct a representative of [ĉ] which coincides with ĝ′. Apply Lemma E.4.2 with suitable
changes of charts to ĝ and ĝ′, such that (Vk, Gk, ψk) 6= (Vj , Gj , ψj) holds if k 6= j. Observe that
for each choice (ηk)k∈Z ∈

∏
k∈ZGk the pairs

{
(id]l(k),r(k)[, ηk)

}
k∈Z induce another representative ĥ

of [ĉ] by Lemma E.4.2. Recall from the construction12 of ĥ = (c, {ηk ◦ ck}k∈Z , Ph, νh) the following
details: As ηk ∈ Gk is defined on Vk, we may choose Ph = Pĝ and νh is uniquely determined by the
identity

νh(ιk+1
k ) = η−1

k+1νĝ(ι
k+1
k )η−1

k |ηk(dom νĝ(ιk+1
k )). (F.3.2)

We claim that it is possible to inductively (starting from 0 and consider the cases N0 and Z−0
independently) choose the family (ηk)k∈Z, such that ηkck = ck and νh = νĝ′ . Begin with k = 0.
Since dom νĝ(ι

0
−1) = dom νĝ′(ι

0
−1) holds (and these maps are embeddings of orbifold charts by Step

“(c) ⇒ (d)” ), by Proposition 1.2.2 (d) there is γ0 ∈ G0 with νĝ(ι0−1) = γ0.νĝ′(ι
0
−1). The situation is

visualized in Figure 8, where we depict the lifts together with the embeddings of orbifold charts.

The isometry γ0 fixes the geodesic c0 pointwise on the set Im c0 ∩ cod νĝ′(ι
0
−1) since

γ0c0|]l(0),r(−1)[ = γ0νĝ′(ι
0
−1)c−1|]l(0),r(−1)[ = νĝ(ι

0
−1)c−1|]l(0),r(−1)[ = c0|]l(0),r(−1)[. (F.3.3)

Hence γ0.c0 = c0 follows. Set η0 := γ−1
0 and η−1 := idV−1 to obtain η0.c0 = c0 and η−1.c−1 =

c−1. Furthermore, (F.3.2) yields νh(ι0−1) = η0νĝ(ι
0
−1) idV−1

= γ−1
0 νĝ(ι

0
−1) = νĝ′(ι

0
−1). Proceed by

induction on k ≥ 1: Consider k ≥ 1 such that for 0 ≤ l < k elements ηl ∈ Gl have been chosen with

ηl.cl = cl and νh(ιll−1) = ηl.νĝ(ι
l
l−1)η−1

l−1|dom νĝ(ιll−1) = νĝ′(ι
l
l−1).

We have to choose ηk with ηk.ck = ck and νh(ιkk−1) = ηkνĝ(ι
k
k−1)η−1

k−1|dom νĝ(ιkk−1). Argue as in
the case k = 0: Since the embeddings of orbifold charts share the same domain, there is γk ∈ Gk
with γk.νĝ(ιkk−1) = νĝ′(ι

k
k−1). A computation as (F.3.3) shows that γk fixes Im ck pointwise. Since

12Unfortunately, these details are not apparent from the mere statement of Lemma E.4.2. However, the proof of this
Lemma in [56, p. 21] readily entails these facts: Notice that we may choose Ph = Pĝ , since we applied Lemma
E.4.2 to the pairs

{
(id]l(k),r(k)[, ηk)

}
k∈Z. Here the first embedding of each pair is an identity, whence we need not

restrict the elements of Pĝ as in [56, p. 21]. Moreover, the identity (F.3.2) then follows directly from the proof.
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Figure 8: Lifts of orbifold geodesics in the singular locus related by pairs of embeddings.

dom νĝ(ι
k
k−1) is Gk−1-stable and ηk−1 fixes Im ck−1 pointwise, ηk−1(dom νĝ(ι

k
k−1)) = dom νĝ(ι

k
k−1)

follows. Thus we consider the embedding of orbifold charts λ := νĝ(ι
k
k−1)η−1

k−1|dom νĝ(ιkk−1). Since
domλ = dom γkνĝ′(ι

k
k−1), Proposition 1.2.2 (d) yields a unique hk ∈ Gk with λ = hk.γk.νĝ′(ι

k
k−1).

Define ηk via the formula ηk := (hk · γk)−1 ∈ Gk. We compute the following identities:

νh(ιkk−1) = ηk.νĝ(ι
k
k−1)η−1

k−1|dom νĝ(ιkk−1) = ηkλ = ηk.η
−1
k .νĝ′(ι

k
k−1) = νĝ′(ι

k
k−1)

ηk.ck|]l(k),r(k−1)[ = ηk.νĝ′(ι
k
k−1) ◦ ck−1|]l(k),r(k−1)[ = νĝ(ι

k
k−1)η−1

k−1.ck−1|]l(k),r(k−1)[

= νĝ(ι
k
k−1) ◦ ck−1|]l(k),r(k−1)[ = ck|]l(k),r(k−1)[.

Thus the isometry ηk fixes the geodesic ck pointwise on Im ck ∩ cod νĝ′(ι
k
k−1), whence ηk fixes all of

Im ck pointwise. We may thus inductively choose elements in Gk, k ≥ 1, with the required properties.
Observe that by (R4) (c) and (d) of Definition E.2.3, νĝ(ιk−1

k )|Im νĝ(ιkk−1) = νĝ(ι
k
k−1)−1. Instead of

choosing ηk for k < 0 such that ηk+1νĝ(ι
k+1
k )η−1

k |dom νĝ(ιk+1
k ) = νĝ′(ι

k+1
k ), it suffices to choose ηk with

ηkνĝ(ι
k
k+1)η−1

k+1|dom νĝ(ιkk+1) = νĝ′(ι
k
k+1). If we require that ηk fixes ck pointwise, then an argument

as in the case k ≥ 1 allows us to inductively choose ηk for k < −1 with the desired properties.
Summing up, there is a family (ηk)k∈Z such that ĥ = ĝ′ holds, where ĥ was constructed via Lemma
E.4.2 with respect to the pairs

{
(id]l(k),r(k)[, ηk)

}
k∈Z. By Lemma E.4.2 ĝ ∼ ĥ = ĝ′. Hence in both

cases [ĉ] = [ĝ] = [ĝ′] = [ĉ′] follows from Definition E.4.3.

The next lemma is a restatement of Lemma 4.1.9 together with a detailed proof. We shall
demonstrate that two orbifold geodesics whose initial vectors coincide in some point induce a well
defined join, i.e. an orbifold geodesic defined on the union of their respective domains.
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F.4 Lemma (Lemma 4.1.9) Consider an orbifold geodesic [ĉ] ∈ Orb (I, (Q,U)) together with an
orbifold geodesic [ĉ′] ∈ Orb (I ′, (Q,U)) such that for some x0 ∈ I ∩ I ′ their initial vectors coincide.
There is an unique orbifold geodesic [ĉ ∨ ĉ′] ∈ Orb (I ∪ I ′, (Q,U)) such that [ĉ ∨ ĉ′]|I′ = [ĉ′] and
[ĉ ∨ ĉ′]|I = [ĉ].

Proof of Lemma 4.1.9. As a first step, we construct an orbifold geodesic on I ∪ I ′, with the same
initial vector at x0: If I ⊆ I ′ holds, we set [ĉ ∨ ĉ′] := [ĉ]. If I ′ ⊆ I holds set [ĉ ∨ ĉ′] := [ĉ]′. For
these cases, the assertion follows from Proposition 4.1.8 (b). Interchanging the roles of [ĉ] and [ĉ′]
if necessary, it suffices to consider the case I =]a, b[ and I ′ =]x, y[ with a < x < b < y.
Fix t0 ∈]x, b[ with t0 > x0. We construct an orbifold geodesic by gluing several pieces: Choose
representatives ĉ = (c, {ck}k∈A , [Pĉ, νĉ]) of [ĉ] and ĉ′ = (c′, {c′r}r∈B , [Pĉ′ , νĉ′ ]) of [ĉ′] such that the
lifts are defined on charts, which are contained in AI and AI′ , respectively. Since the initial vectors
of [ĉ] and [ĉ′] at x0 coincide, they coincide at each point in I ∩ I ′ =]x, b[ by Proposition 4.1.8. By a
combination of Lemma F.3 (d) and Lemma E.4.2 we may thus assume that there are kt0 ∈ A, rt0 ∈ B
with t0 ∈ dom ckt0 = dom c′rt0 ⊆]x, b[, such that c′rt0 = ckt0 holds. Proposition 4.1.8 implies that

c ∨ c′ : ]a, y[→ Q, t 7→

{
c(t) t ∈]a, b[

c′(t) t ∈]x, y[

is a continuous map. Restricting the lifts (cf. proof of Lemma F.1), we obtain representatives ĉ|]a,t0[

induced by ĉ and ĉ′|]t0,y[ induced by ĉ′:
The lifts of these mappings are precicsely the restrictions of lifts ck, c′r such that the intersections
dom ck∩]a, t0[ and dom c′r∩]t0, y[ are non-empty. As these intersections may coincide, we choose
new index sets R,S for these atlases. Since the domain atlases of ĉ and ĉ′ are contained in AI an
AI′ , respectively, the domain atlas of ĉĉ|]a,t0[ is contained in A]a,t0[ and the domain atlas of ĉ′|]t0,y[

is contained in A]t0,y[. By construction, ĉ|]a,t0[ = (c|]a,t0[, {gk}k∈R , [P]a,t0[, ν]a,t0[]) is obtained by
restriction of all data to the open set ]a, t0[, i.e: There is a map α : R→ A such that the lifts satisfy
gk = cα(k)|dom cα(k)∩]a,t0[. Each element in P]a,t0[ is constructed as the restriction of an element in
Pĉ to an open subset of its domain and ν]a,t0[(µ|domµ∩]a,t0[) := νĉ(µ). As Ut0 := dom ckt0∩]a, t0[6= ∅
holds, this chart is contained in the domain atlas W]a,t0[ of ĉ|]a,t0[. Let i : Ut0 → dom ckt0 be the
inclusion of sets. Define change of charts as follows: For λ ∈ P]a,t0[ and (W,G,ψ) ∈ W]a,t0[ ∈ A]a,t0[,

λt0 :=


λ ◦ (i|Im i∩i(domλ))−1 if λ ∈ ChUt0 ,W
i ◦ λ if λ ∈ ChW,Ut0
i ◦ λ ◦ (i|Im i∩i(domλ))−1 if λ ∈ ChUt0 ,Ut0 .

Each of these changes of charts is well defined and λ 6= µ implies λt0 6= µt0 . Thus we may define
νt0(λt0) := ν]a,t0[(λ). Furthermore, set νt0(iddom ckt0

) := idVkt0
, νt0(i) := idVkt0

and νt0(i−1) :=

idVkt0
. We obtain a set of changes of charts

Ct0 :=
{
λt0
∣∣λ ∈ ChUt0 ,W ∪ChW,Ut0 ∪ChUt0 ,Ut0 , W ∈ W]a,t0[

}
∪
{

iddom ckt0
, i, i−1

}
.

Since P]a,t0[ is a quasi-pseudogroup, the construction implies that C := Ct0 t P]a,t0[ is a quasi-

pseudogroup which generates Ψ(W]a,x[ ∪
{

(dom ckxt0
,
{

iddom ckxt0

}
,dom ckxt0

↪→]a, sup dom ckxt0
[)
}

).
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Our previous observations imply that for an atlas B ∈ U containing the codomains of the lifts
{gk}k∈R, the map

νC : C → Ψ(B), λ 7→

{
νt0(λ) if λ ∈ Ct0
ν]a,t0[(λ) if λ ∈ P]a,t0[

is well defined. Consider ĉa,t0 := (c|]a,sup dom ckt0
[, {dom gk}k∈R ∪

{
ckt0

}
, C, νC). The map ν]a,t0[

satisfies property (R4) of Definition E.2.3. Together with the definition of λt0 and νC , this implies
that νC satisfies the property (R4). Hence ĉa,t0 is a representative of an orbifold map such that each
lift is a geodesic defined on a chart in A]a,sup dom ckt0

[. In other words, [ĉa,t0 ] is an orbifold geodesic
whose initial vector at any point in its domain coincides with the corresponding one of [ĉ].
Note that in the domain atlas of ĉa,t0 , only (dom ckt0 ,

{
iddom ckt0

}
,dom ckt0 ↪→]a, sup dom ckt0 [)

intersects [t0, b[. We may thus interpret this chart as an “adhesive joint” .
Repeat the construction for ĉ′: We obtain ĉt0,y := (c′|] inf dom cr′t0

,y[, {hk}k∈S∪
{
c′rt0

}
, D, νD). Again

only the chart with domain dom c′rt0 = dom ckt0 in its domain atlas intersects ]a, t0].
We will glue the geodesics ĉa,t0 , ĉt0,y at their “adhesive joints” to obtain a geodesic on ]a, y[: With
the exception of iddom ckt0

= iddom crt0
, the quasi-pseudogroups C and D contain only changes of

charts, whose domains are contained in ]a, t0[ (for C) respectively in ]t0, y[ (for D). In particular,
C ∩D =

{
iddom ckt0

}
holds, whence we obtain a disjoint union:

C ∪D =
{

iddom ckt0

}
t C \

{
iddom ckt0

}
tD \

{
iddom ckt0

}
.

Consider λ, µ ∈ C ∪ D. If λ ∈ C \ D and µ ∈ D such that the composition is defined on some
open subset of their domains, then µ = iddom ckt0

∈ C. Vice versa, an analogous condition holds
for elements in D \ C. Thus any pair in (C \ D) × (D \ C) may not be composed on any open
subset of their respective domains. As both sets C,D are quasi-pseudogroups, P ? := C ∪ D is a
quasi-pseudogroup which generates the changes of charts of the atlas whose domains are given by
{domhs | s ∈ S} ∪ {gk | k ∈ R} ∪

{
dom c′rt0

}
. Define

ν?(λ) :=

{
νD(λ) if λ ∈ D
νC(λ) if λ ∈ C.

As νC(idckt0
) = idVkt0

= idVrt0
= νD(idckt0

) holds, the map ν? is well defined. Since νC and
νD satisfy condition (R4), the same holds for ν? with respect to the lifts {hs | s ∈ S} ∪

{
ckt0

}
∪

{gk | k ∈ R}. Hence ĉ? := (c ∨ c′, {hs | s ∈ S} ∪
{
ckt0

}
∪ {gk | k ∈ R} , P ?, ν?) is a representative of

an orbifold geodesic on ]a, y[.
Observe that the initial vector of ĉ? at x0 coincides by construction with the initial vector of [ĉ] at
x0. As the initial vector of [ĉ] coincides with the one of [ĉ′] in x0, [ĉ ∨ ĉ′] := [ĉ?] satisfies the first
assertion by Proposition 4.1.8.
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