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Abstract 

Virtually all telecom providers need to upgrade their networks cost-efficiently to accommodate the 

ever-increasing data traffic. Particular effort is being undertaken to upgrade these existing optical 

wavelength division multiplex transmission systems with a channel spacing of 50 GHz and a 

channel data rate of 10 Gb/s to a channel data rate of >100 Gb/s, while at the same time achieving 

superior signal-to-noise performance and robustness against optical dispersions. 100 Gb/s per 

channel or above can be reached by coherent receivers with digital signal processing by now. In 

recent years QPSK was the preferred modulation format because of its robustness on long-haul 

links. But for transmission over less than ultimate distance, higher-order quadrature amplitude 

modulation (QAM) is attractive, namely 16-point QAM which doubles spectral efficiency 

compared to QPSK. Simulations and offline experiments have recently been published, but real-

time investigations are essential for progress towards commercial applications. The core element of 

such a transponder is a DSPU capable to recover clock, IF carrier and data in real-time. Field 

programmable gate arrays (FPGA) enable evaluating digital receiver algorithms in real-time 

experiments before being implemented as CMOS circuits. 

In this dissertation the first published real-time implementation of a 16-QAM transmission system 

with FPGA-based DSP is presented. 2.5 Gb/s coherent 16-QAM data has been optically transmitted 

over 20 and 100 km and synchronously received by heterodyning in a real-time I&Q receiver, with 

BER below the threshold of a state-of-the-art FEC (7% overhead). Two techniques of feed-forward 

carrier phase recovery (Blind Phase Search (BPS) and QPSK partitioning (QPSKP)) were tested in 

a real-time transmission experiment and compared with each other. The influence of the required 

resolution of the analog-to-digital converter (ADC) has been investigated, which is a challenge of 

real-time coherent transmission systems. The influence of phase noise in 16-QAM, which is mainly 

contributed from laser sources, optical amplifiers, and nonlinear effects in optical fibers is also 

shown. Moreover, different operation points of a 16-QAM modulator were tested in real-time and 

an optimal condition is found which minimizes the BER.   

 



 

 

Zusammenfassung 

Um den ständig wachsenden Datenverkehr zu bewältigen, müssen praktisch alle 

Telekommunikationsanbieter die Überragungskapazitäten ihrer Netzwerke kosteneffizient 

erweitern. Existierende WDM-Übertragungssysteme (wavelength divistion multiplex) mit 10 Gb/s 

Kanaldatenrate und 50 GHz Kanalabstand werden zur Zeit mit großem Aufwand aufgerüstet, um 

Kanaldatenraten von >100 Gb/s zu erreichen. Dabei soll gleichzeitig ein größtmöglicher Signal-

Rausch-Abstand und Robustheit gegenüber Dispersion erreicht werden. Kanaldatenraten von über 

100 Gb/s werden inzwischen auch von kohärenten Empfängern mit digitaler Signalverarbeitung 

erreicht. Dabei hat sich QPSK wegen seiner Robustheit in den letzten Jahren als das bevorzugte 

Modulationsverfahren auf Langstrecken bewährt. Für Übertragung auf weniger langen Strecken 

scheint auch ein noch höherwertiges Quadratur-Amplituden-Modulationsverfahren (QAM), 

nämlich 16-QAM, interessant zu sein. 16-QAM verdoppelt die spektrale Effizienz gegenüber 

QPSK. Viele Ergebnisse aus Simulationen und offline-Datenverarbeitung wurden bereits 

veröffentlicht, aber für den Fortschritt in Richtung kommerzieller Anwendung sind Experimente 

mit einem Echtzeit-Übertragungssystem unerlässlich. Das Kernelement eines geeigneten 

Echtzeitempfängers ist die Einheit für die digitale Signalverarbeitung (DSPU), die Takt, Daten und 

IF-Carrier in Echtzeit zurückgewinnt. Feldprogrammierbare Logikbausteine (FPGAs) ermöglichen 

die Erprobung der notwendigen Algorithmen in Echtzeitexperimenten bevor sie als feste CMOS-

Schaltungen implementiert werden.  

Diese Dissertation stellt die erste Echtzeitübertragung von 16-QAM mit FPGA-basierter DSPU 

vor. 2.5 Gb/s wurden dabei über 20 und 100 km übertragen und kohärent (heterodyn) in Echtzeit 

empfangen. Die Bitfehlerquote (BER) lag dabei unterhalb der Schwelle moderner 

Fehlervorwärtskorrekturverfahren mit 7% Overhead. Mit BPS (Blind Phase Search) und QPSK 

partitioning (QPSKP) wurden zwei unterschiedliche Techniken zur Phasenrückgewinnung 

implementiert und durch Echtzeitmessung verglichen. Der Einfluss der Auflösung der 

erforderlichen Analog-Digital-Umsetzer (ADC) wurde ebenfalls untersucht, welche ebenfalls eine 

Herausforderung für kohärente Echtzeitübertragung darstellt. Der Einfluss von Phasenrauschen 

wird hier auch gezeigt, welches vorwiegend von den verwendeten Lasern, optischen Verstärkern 

und nichtlinearen Effekten in den optischen Fasern abhängt. Darüber hinaus wurden verschiedene 

Arbeitspunkte des 16-QAM-Modulators in Echtzeit getestet und die optimalen Bedingungen für 

eine minimale Bitfehlerquote gefunden.  
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Chapter 1: 

 Introduction 

1.1 Traffic evolution in data network  

Optical components, systems and networks have evolved enormously since the beginning 

of the eighties to satisfy the traffic evolution in the data networks. With the creation of next 

generation optical communications systems exhibit single channels data rates of    and 

         for long haul [1]. Therefore, before talking about technology lets talk about the 

motivation, why we are looking into all of this. The reason started from our human 

fundamental desire to interact. The information is of little use if we keep it to ourselves, 

and it is by very nature needed to be transmitted or communicated in order to be useful in 

order to make sense and that is the fundamental thing, or in other words no information 

means there is no modern life. It is expected that data traffic will increase exponentially 

due to the rapidly increasing use of high speed online services and broadband applications, 

such as cellular telephone, YouTube, Facebook, grid computing, data storage, 

teleconferencing, upcoming high definition video communication, and others [2, 3]. One of 

the best examples today is Panasonic life wall which is essentially a giant TV screen that 

filled the entire wall of a living room with the motivation to immerse yourself into the 

living room of another family; if we want this technology or not that is a secondary 

question because people will make us believe what we wanted. Today, we cannot live 

without smartphones anymore; so the same will happen when these advanced real-time 

applications that consume a huge amount of bandwidth, also we can expect that down the 

road    to    years we all have something like that in our homes. But going back to the 

evolution of data traffic so far, if we look into some statistics, what can be found from 

services is that we all know and love like Internet, YouTube, Facebook and so on; that is 

what fuels the historic capacity growth in network. Therefore it is no exaggeration to say 

that we cannot live without information, where we cannot live without optical fiber 

communication. 

Figure 1.1 shows the growth of traffic capacity in the US network and it shows that 

network traffic is growing very fast [4]. The whole thing is true for the whole geographic 
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region, while the slopes might be slightly different maybe between    to     per year and 

all of these rates depend on the nature and penetration of services offered by network 

operators in different geographic regions [5, 6]; but in general we have very fast growth of 

traffic capacity. This yearly growth rate is close to     or            which is    , as 

shown in Figure 1.1 in the US network. So we have          traffic growth fueled by 

human desires into interact. 

 

Figure 1.1: Network traffic growth [5, 6]. 

Now interestingly not just humans want to talk but computers also want to talk, and there 

is a very fundamental rule which is called ‘‘Amdahl’s rule of thumb’’ in computer 

engineering [7]. It shows that one floating operation that is processor can handle (flop) 

triggers           of transport; this factor of proportionality might differ between 

applications (what the computer are used for and what programs are running). But the 

important point is the linear proportionality [7, 8]. So this floating point operation triggered 

bandwidth is usually going over the printed circuit board (PCB) linking the ram chip with 

another chip with the processor, linking all I/O devices, and all storage devices on the 

PCB. I introduce this because we are now entering cloud computing and cloud services. 

The cloud services are giant distributed computer, where we have I/O processes, memory 

and storage going on everywhere in the network, and the role of these printed circuit board 
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traces is now probably being taken over by the transport network. So whatever we see from 

the scaling of the bandwidth in the PCB we should expect to take place in cloud services in 

the network as well. So as we move more and more into cloud services, this driver 

‘‘Amdahl’s rule of thumb’’ will drive network traffic and if we look to the evolution of 

floating point operations per second of top     supercomputers, we will see a very nice 

exponential scaling which is about          or           , as shown in Figure 1.2 [9]. 

 

Figure 1.2: Fastest 500 supercomputers [9]. 

An important question come to our mind is that (do we know that this is driving data traffic 

in networks at that rate?), and the answer is No. This is because cloud services are only 

starting to catch on now, but with very high confidence one should expect growth of data 

network of about           . Furthermore, most companies that run data services like 

Google, and others are expect growing rates somewhere around that (like           ) and 

not          but something stronger [10]. So now the workhorse to make all that happen, 

to satisfy the demand for the exponentially growing bandwidth, has to be the optical 

network, and this fact is true since the nineties or even earlier. 

Figure 1.3 shows a generic picture of how optical networks look like. Packet routers are 

used because everything is IP, where the data gets dumped into the network then the router 

is usually hooked up into the WDM system through a client interface which is a short-

reach very cheap interface and runs today at          or              . We have heard 

about         Ethernet standard but in fact there is no         flow anywhere in the 

network, it is             on the client interface on four different wavelengths or 

             on multimode fiber. The WDM system will convert that data into a very 

high speed quality. The WDM interface can go for very long distances. One can pack a lot 

of those signals onto one optical fiber, and this known as the line interface [10]. The line 
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interface currently also runs at about         . Then the data is dropped into fiber through 

add/drop multiplexers. Maybe there are 100 wavelengths going over one single optical 

fiber, so that one can get        , and this goes into the network through various optical 

add/drop modes to route the wavelengths to different points in the network. On the other 

side the exact same happen in reverse order. 

 

Figure 1.3: Optical networks: workhorse of the internet. 

It is important to know how to increase the capacity of the line interface and the WDM 

system to meet the exponentially growing bandwidth demands of future data application. 

The next chapter shows how to scale the bandwidth of those line interfaces and how to 

make them faster, as routers want to process and put more data.       

1.2 Outline of the thesis  

In this chapter, a description of the current situation of traffic growth and a short 

presentation of the optical network is given; Later the social demand is described and how 

to meet the exponential bandwidth growth for future applications. 

Chapter 2 shows the evolution of digital optical modulation, from on-off Keying (OOK) 

with direct detection receivers to multi-level modulation formats using coherent 

transmission. Also, the recent results of capacity limitations of single-mode fibers are 

shown and how to increase the spectral efficiency by comparing different modulation 

formats and how to provide a cost-effective transport infrastructure.  
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Chapter 3 explains the general principle of the 16-point quadrature amplitude modulation 

(16-QAM) transmitter. It provides all information which is relevant of the modulator 

function and includes the selection of optimal operation points in optical and electrical 

transmitter parts. Moreover, the electrical field of the optical transmitter signals has been 

derived analytically, and differences of signal characteristics have been emphasized.  

Subsequently, chapter 4 illustrates different receiver concepts which can be employed to 

detect optical higher-order modulation signals, starting with optical frontends and ending 

with electrical data recovery. Furthermore, various feed-forward phase recovery algorithms 

for 16-QAM systems have been presented as the QPSK partitioning (QPSKP) and the 

blind phase search (BPS). Finally, the algorithmic and technological requirements for real-

time 16-QAM transmission have been presented.  

Chapter 5 presents the hardware implementation and the measurement results of a 16-

QAM transmission system with feed-forward real-time synchronous demodulation and 

data recovery based on a field-programmable gate array (FPGA) for digital signal 

processing. Furthermore, the two techniques of carrier phase estimation (CPE) have been 

implemented and investigated in a real-time transmission, where the performance of them 

is presented.  

Finally, the achieved results are discussed by a summary. 



Chapter 2: The evolution of optical transmission technologies 

 6 

Chapter 2:     

The evolution of optical transmission technologies 

2.1 High-speed interface using coherent detection  

The age of direct detection was the age until the middle of the       where everything 

was OOK. The first          interface was made in      where still OOK was used so 

they switched a laser on and off by very fast electronics using very fast modulators [11–

13]. Then coherent detection came and stayed. So it really is driving everything in optical 

communications at least on line interface side but not on the client interface. A lot of 

groups, very often in industry, have jumped onto this train and the University of Paderborn 

was the first to achieve real-time quadrature phase shift keying (QPSK) transmission with 

digital feed-forward carrier recovery [14, 15]. But the first report for that which 

demonstrated          very impressively is by C. Fludger [16] and that marks the 

transitions for          to move to coherent detection and to higher spectral efficiency 

(SE). Therefore, the real motivation to go to coherent detection was to put          

channels on a        WDM grid without too much problems and allowing for a long haul 

reach; so QPSK and polarization multiplex using both polarization of light traveling 

through the fiber, that has made coherent so attractive. Furthermore, coherent has a couple 

of other very nice benefits, and people who operate optical networks might say this is the 

most important, but the fundamentally most important thing is the SE. Furthermore, for 

planning, operation and management, linear impairments can now be very easily 

compensated, because the coherent receiver translates the entire of optical field (electrical 

field of optical signal) into the electronic domain and then can do all kinds of polarization 

mode dispersion and chromatic dispersion compensation. An interesting thing is that 

coherent receiver which are introduced can be a little worse concerning speed because this 

first          interface that is shown in Figure 2.1 is on two polarizations, and for one 

polarization, there is just a         interface, and in the electrical domain, real and 

imaginary part of the optical field or I and Q component are needed and they are both on 

        (or         with overhead). Now, electrically this is a             interface 

and it is the same as client interface. The symbol rate of QPSK signal has been moved up 
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to          and later to         , and it was the highest one with all electronic 

processing. Figure 2.1 shows that technology is almost back to where it was in     , 

where switches and electronics moved at          , but the best change happen is now 

the transmission has been done in multilevel and coherent.  

 

Figure 2.1: Optical transmitters, direct detection vs. coherent detection [17, 18]. 

The highest bit rate with a single wavelength interface that has been shown is          for 

dual polarization or          per polarization, as shown in Figure 2.2 [19–25]. Therefore, 

coherent detection with quadrature amplitude modulation is now on track to scale the 

interface rates to higher levels. 

 

Figure 2.2: Higher interface rates via higher-order modulation using off-line signal processing. 

Today, the age of 100 Gb/s has officially arrived because this coherent system now offered 

by many manufacturers. In 2008 and later in 2010, there are commercially available 

           and          QPSK line interface products based on custom designed 

CMOS ASICs to handle the massive required DSP functions for adaptive polarization 
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tracking, chromatic dispersion compensation, and forward-error correction (FEC) [10]. 

This PDM-QPSK          interface with a very powerful ASIC has more than     

gates. In 2012, Ciena announced new generation coherent optical chipset (WaveLogic 3) 

[26] the industry’s first software-programmable coherent technology that scales to 

        . This coherent optical processor can support multiple coherent modulation 

formats BPSK, QPSK and 16-QAM (i.e. DP 16-QAM for          at metro and regional 

distances (             waves in a single        space) also dual-channel DP 16-QAM 

for          at metro and regional distances).  

Again, electrically what they did is not a          but a          , and this parallelism, 

what is seen here, started actually in the microprocessor industry. The clock speed could 

not cranked up for very different reasons, but the microprocessor went to parallel 

architectures (i.e. multi-core processor architectures) and that is the parallelism which is 

exact the same thing what happened in Figure 1.3, because one cannot do a          in a 

viable fashion but easily can go to           by exploiting I&Q (real and imaginary part 

of the field) and exploiting the two polarizations that propagate in a single mode fiber. 

Therefore, that theme of parallelism will stick, so there can be scaled but more and more 

parallelism is needed. 

2.2 The evolution of coherent optical multilevel formats 

There are several options to increase interface rates: (i) one can just go to highest speeds 

(just try to switch faster and faster) which can be seen in the baud rate or symbol rate (the 

rate at which the symbols are sent one after the other) could go higher and higher, (ii) 

another solution is to go to multiple carriers to create an effective super channel, or (iii) 

one can pack more bits into one symbol and go to higher density of QAM, as shown in 

Figure 2.3. 

 

Figure 2.3: Three levers to increase data rates. 



Chapter 2: The evolution of optical transmission technologies 

 9 

Looking into the constellation maps in Figure 2.2, there can be seen that the dots in the 

complex plane of the optical field represent many bits, for QPSK, there are    bits per point 

and per polarization that can be sent. For 64-QAM there will be   bits per point per 

polarization. Therefore, the more points one have the more bits are packed into one 

symbol. In addition, an interesting thing that can be seen from all of these off-line 

experimental demonstrations shown in Figure 2.2 is that the highest speed has been 

achieved by sticking to relative moderate constellation size at high symbol rates. For the 

very high order modulation at low symbol rates, the aggregate interface rate is not that 

high, and there is a very fundamental reason for that which is the scaling. Increasing the 

speed to twice the symbol rate leads to twice the bit rate, so it’s a linear scaling; Increasing 

the constellation size into double number of points, just one bit per symbol more is got, so 

there is a logarithmic scaling. So a very different scaling that rules here and it turns out that 

16-QAM is a pretty good choice. 

2.3 Technology scaling of ADC 

There are certain factors that also favor the choice of a relatively low order modulation 

format. The higher-order modulation requires a higher effective number of bits (ENoB) in 

digital-to-analog and analog-to-digital conversion (DAC, ADC) [27]. In [28], the increase 

in ADC requirements for M-ary quadrature amplitude modulation (M-QAM) is shown. 

Furthermore, in [29, 30], Walden has made many observations about technology for 

scaling of analog-to-digital converters, and all these higher-order modulation formats have 

a lot to do with analog-to-digital conversion, because  symbols have to be generated which 

afford several levels at the transmitter and the receiver. So, Walden shows in [29, 30] that 

for every bit of higher analog-to-digital resolution (for every bit reduced from the ADC), 

the ADC bandwidth is halved. The number of amplitude levels and quantization levels in 

M-QAM increases by a factor of                . The difficulty of building a high-speed 

analog-to-digital converter rises linearly with the number of quantization levels. Usually, 

one is much better to go to a higher speed combined with lower resolution than going to 

lower speed with higher resolution aiming to interface rates and not to SE. 

2.4 SE of multilevel modulation format and Shannon Limit 

In M-QAM the number of points in the grid is usually a power of   (       ), which is 

called       . Figure 2.4 shows the constellation diagrams for a variety of modulation 

formats: conventional OOK, differential phase-shift keying (DPSK), duobinary (DB), 
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       and       . Figure 2.4 shows the advantage of using        which is 

able to carry m bits per symbol, so it can do m times the SE compared to binary intensity 

modulation. Table 2.1 shows that the transmission rate will increase if higher m values are 

selected.  

 

Figure 2.4: Constellation maps for OOK, DPSK, DB (a),        (b), and        (c). 

Table 2.1: Bit rates of different forms of QAM and conventional OOK. 

 

The bit error rate (BER) formula for coherent synchronous detection systems and square 

M-QAM signals is shown in equation (2.1), more details can be found in [31–33].  

           

 (  
 

√ 
)

       
       (√

     

      
) 

(2.1) 

Figure 2.5 shows the BER of square M-QAM as a function of energy to noise power per 

bit     ⁄  which is signal-to-noise ratio (SNR) per bit. Figure 2.5 also shows that higher 

order modulation requires larger SNR per bit to achieve the same BER. 
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Figure 2.5: BER of M-QAM as a function of SNR per bit. 

Another important thing is the SNR, so equation (2.2) computes the ultimate SE and the 

required     ⁄ , this equation known as Shannon-Hartley theorem [34]: 

 

 
     (  

  

  

 

 
) (2.2) 

The plot in Figure 2.6 shows the very fundamental Shannon limit and it shows a trade-off 

between SE and the required SNR per bit. The     ⁄  is plotted for a          by 

assuming synchronous detection. The SE comes at a fundamental cost for M-QAM, where 

high SNR is required as the value of M is increases, and it becomes closer to Shannon 

limits than other formats. 

 

Figure 2.6: Spectral efficiency versus sensitivity of M-QAM. 
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From Figure 2.6 the QPSK (4-QAM) signal with four constellation points has a certain 

SNR to operate and SE about         . To double the capacity in the optical network, one 

should go to 16-QAM, and that comes by the cost of more SNR. In reality, approximately 

7 dB more SNR required for doubling the capacity. To achieve these more SNR, better 

amplifiers are needed, lower fiber loss, more launch power and a fiber with less 

nonlinearity. So there are several options to vary to get these more SNR out of the system, 

and that means optical line design (i.e. optical line design is very important here). To 

double the system capacity again we should go to 256-QAM and to do this we need more 

SNR, there one will reach the point of diminishing returns, also we cannot get these more 

SNR easily. That is far beyond just tweaking the line; in this case the region distance has to 

be shortened. Furthermore, to increase symbol rate and/or number of bits within one 

symbol, this may affect the signal launch power to the fiber without generating excessive 

nonlinear signal distortions [35, 27]. So from this sense 16-QAM is a pretty good 

compromise between the required SNR and the SE. 
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Chapter 3:  

16-QAM transmitter design 

The Square 16-QAM constellation was introduced for the first time by Campopiano and 

Glazer in 1962 [36]. Today, it has become a well-known modulation format and widely 

used in electrical systems, while for optical transmission systems, this format was still very 

distant from a commercially practical implementation until 2012 when Ciena showed a 

real-time coherent technology that scales to 400 Gb/s over metro and regional distances 

[26]. In the later sections, the fundamental key components of optical transmitter for 16-

QAM modulation are shown. 

3.1 Concepts of optical modulation 

The first part in the optical system is the transmitter, which is used to convert the electrical 

signal into the optical form and launch it into the optical channel. The technology of 

optical transmitter can be divided into two categories: (i) direct modulation and (ii) 

external modulation, as shown in Figure 3.1. 

 

Figure 3.1: Optical transmitters, direct modulation (top) vs. external modulation (bottom). 
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In the direct modulation scheme, the data signal is modulated on the laser drive current. 

This type of modulation is simple and low cost but has a limited application in modern 

communication due to the narrow modulation bandwidth of lasers and the generation of 

frequency fluctuations by time, called laser chirp. To avoid this effect, an external 

modulation can be employed to produce higher-quality optical pulses where a combination 

of a laser which acts as continuous wave (CW) light source followed by an external 

modulator which switches the optical power on or off according to the data stream. 

Furthermore, in external modulation all data can be transferred from optical domain into 

electrical domain, where optical equalization of chromatic dispersion (CD) and 

polarization mode dispersion (PMD) in the electrical domain become possible. 

Two kinds of external modulators are commonly used, Mach-Zehnder modulators (MZM) 

and electro-absorption modulators (EAM) [37]. MZMs have better transfer characteristics 

where the electrical drive voltage is used to control the frequency chirp. On the other hand 

EAMs can be easily integrated together with the laser source on the same chip which 

requires careful characterization, but they have an intrinsic chirp. In addition, the 

characteristics of EAMs have nonlinear transmission-voltage and voltage-dependent chirp 

[38]. An important parameter for the transmitter is the launch power, since more launch 

power means more spacing between the preamplifiers. Furthermore, various nonlinear 

effects limits will appear when the input power is increased. Figure 3.2 shows different 

optical modulator structures and the complex amplitude diagrams [3]. 

 

Figure 3.2: Types of optical modulators. 
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3.2 System performance parameters on signal degradation 

There are several limitations of the system performance which forces us to migrate to 

higher-order modulation formats. Tendencies regarding relevant electrical and optical 

components, also system parameters such as laser phase and amplitude noise, laser 

linewidth requirements, transmitter chirp and fiber propagation effects have to be taken 

into account. For high-speed data transmission large signal bandwidths have to be handled 

which will increase the requirements on electrical drivers and electrical to optical 

interconnects. The electrical components will generate signals with noise, time jitter, and 

imbalance between rise and fall time. The electrical to optical components are limited by 

their maximum driving speed where any difference between electrical and optical 

velocities leads to some distortions of the signal [39].   

In practical systems, laser noise has to be taken into account. Due to spontaneous emission 

taking place inside semiconductor optical light sources, photons with intensity fluctuations 

and random phase fluctuations are added to the coherent output field. The relative intensity 

noise (RIN) can lead to significant degradation in optical system performance, especially 

for coherent detection with local oscillators (LO) and absence of balanced detection [40, 

41]. The amount of RIN is independent of attenuation along optical channel as both signal 

and noise powers are attenuated equally. Furthermore, transmission capacity and carrier to 

noise ratio are limited by RIN. In the simple system level modeling approach, the intensity 

fluctuations can be modeled with Gaussian statistics and a white noise spectrum [42, 43]. 

The spectral linewidth of a laser is defined as the full-width at half-maximum bandwidth of 

the CW spectrum. However, phase fluctuations will increase with the increase of the 

spectral linewidth of a laser. Furthermore, laser phase noise is critical for higher-order 

modulation with a high number of bits per symbol especially when the symbol rate is 

reduced. 

During fiber transmission, there will be interactions between transmitter chirp and fiber 

degradation effects (linear and nonlinear effects) which can have a strong impact on 

transmission system performance. Most of the degradation of a fiber link results from (i) 

fiber attenuation, (ii) Kerr nonlinearities, (iii) chromatic dispersion, (iv) polarization mode 

dispersion, (v) nonlinear scattering effects and (vi) nonlinear phase noise. However, the 

combination of frequency chirp with CD has a critical effect on channel transmission 

performance. Optical amplifiers are used to compensate for the attenuation of transmission 

system; this means for long distance one need several cascaded sections (fiber link with 
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optical amplifier) which add noise of the amplifiers. All impairments induced by nonlinear 

effects depend on the type of the transmitted signal. The Kerr effect of an optical fiber 

implies all the nonlinear response creating from the intensity dependence of the refractive 

index. Kerr nonlinearities have three propagation effects depending on the transmission 

scenario. Firstly, self-phase modulation (SPM) which means phase variation depending on 

the power variation over time. Secondly, cross phase modulation (XPM) where the phases 

of the propagating channels are shifted because of power fluctuations of the neighboring 

channels and this has double of effect than SPM. The third one is four wave mixing 

(FWM) where spurious frequencies are generated by the interaction of two or more 

propagating wavelengths with high power. Two other nonlinear scattering effects of the 

fiber channel are Raman and Brillouin scattering where both phenomena mean an 

intensity-dependent attenuation of the signal wave [44].   

3.3 Transmitter configurations for square 16-QAM 

The constellation diagram of square 16-QAM shows that 4 bits are mapped to one symbol, 

and the symbols have 12 phase and 3 amplitude states. There are several possible 

transmitter configurations for square 16-QAM (see Appendix). These methods can be 

categorized according to electrical driving signals to the optical modulator: i) electrical 

multilevel drive signals, and ii) electrical binary drive signals. Figure 3.3 shows possible 

implementations for an optical square 16-QAM transmitter. 

 

Figure 3.3: Optical square 16-QAM transmitters, more details are shown in the Appendix. 
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The common structures from these several possible implementations are presented in 

Figure 3.4. The optical part is composed of one or more fundamental external optical 

modulator structures. 

 

Figure 3.4: Optical square 16-QAM transmitters; serial MZM with PM (a), monolithically integrated IQ 

modulator (b), conventional IQ setup (c), and quad-parallel MZM setup (d). 

The serial square 16-QAM transmitter contains a MZM and a phase modulator (PM) in 

series shown in Figure 3.4(a). This structure features a simple optical part, but phase 

modulation requires a 12-ary electrical driving signal. High-speed DAC with high-

resolution are required to perform electro-optical (E/O) interfacing. Using separate serial 

structures for I and Q modulation displayed in Figure 3.4(b) leads to a higher optical 

complexity and necessitating integration, but allows binary input levels. Phase modulators 

in the 16-QAM transmitter structure temporarily yield to high optical power, where 

phasors with amplitudes greater than one are possible during the symbol transitions [45]. In 

contrast pure IQ transmitters shown in Figure 3.4(c) are composed of two arms, leading 

also to a bigger optical complexity, but the electrical driving signals manage with four 

levels. Combining two IQ transmitters to a quad-parallel MZM proposed in [46] and 

presented in Figure 3.4(d) allows again binary driving signals at the costs of the highest 

optical complexity of all four structures but provides the best performance for high baud 

rates with respect to E/O interfacing. In pure IQ transmitters there will be symbol 



Chapter 3: 16-QAM transmitter design 

 18 

transitions through zero in the constellation diagrams. Conventional IQ setup will be used 

in all experiments of this dissertation because it has lower electrical and optical 

complexity. 

3.4 Optimal transmitter condition  

3.4.1 Quadrature modulator 

In digital optical communication with square 16-QAM modulation, the constellation points 

are usually arranged in a square grid with equal vertical and horizontal spacing. Section 3.3 

shows that the most commonly structure used for optical QAM modulation is the IQ-

modulator. This modulator is composed of a Mach-Zehnder interferometer which contains 

two MZMs which operate in the push-pull mode at the minimum transmission point [47] 

[48], one MZM in each arm, and a PM that introduces a phase difference between the two 

arms. The incoming light is equally split into two arms, the in-phase (I) and the quadrature 

(Q) one.  

Figure 3.5 shows two different MZM operation principles. Firstly, to achieve a modulation 

in intensity the MZM should operate at the quadrature point, since the DC bias is set to 

     ⁄  and get    peak-to-peak modulation. Secondly, the MZM will operate at the 

minimum transmission point when the DC bias is set to     and we will get     peak-to-

peak modulation, a phase skip of   occurs when crossing the minimum transmission point. 

This becomes more clearly from the field transfer function shown in Figure 3.5. By this 

way, the MZM can be implemented for binary phase modulation and for modulation of the 

field amplitude in each branch of an optical IQ-modulator [43]. 

                                        

 

Figure 3.5: MZM operation points. 
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Figure 3.6 shows optical square 16-QAM transmitter structure. The incoming light is 

equally split into two arms (I and Q). It is assumed that the input into the IQ-modulator is 

an unmodulated optical wave which can be expressed in complex notation as  

       √    
            

 (3.1) 

where    is the average optical power,     ⁄  the frequency,    is the initial phase and    

the polarization of transmitted laser. In equation (3.1) the effect of intensity and phase 

noise of the laser has been neglected. The optical output signal of the IQ-modulator Eout(t) 

can be written as a function of the unmodulated input electric field Ein(t): 
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where                 are driving voltage and              are the half wave voltages of 

the two MZMs and the phase shifter, respectively. All MZMs operate in push-pull mode 

and the voltage of the phase shifter is set at          ⁄ , in order to introduce the phase 

difference of     between the two arms. 

The ideal multilevel in-phase and quadrature driving voltages can be describe by 
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where    is the needed radio frequency voltage for phase shift  ,      is the amplitude 

pulse shape, and    and    are the unity scale of the in-phase and the quadrature coordinate 

of a symbol, respectively [45]. One of the 16th symbols will map into symbol interval 

(denoted by the integer  ) of one symbol length   .  

3.4.2 Optimum driving voltage for IQ-modulator 

For the generation of 16-QAM a field programmable gate arrays (FPGA) was used with 

modulator drivers, attenuators and resistive summers as illustrated in Figure 3.6 [49]. 

Firstly, four pseudo-random binary sequence (PRBS) signals are generated by an FPGA 

with output voltage levels of   . One in each pair experiences a loss of (             ) 

to have voltage amplitudes    and             and is combined with the other 
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unattenuated signal using resistive summers. As a result, two four-level signals with the 

amplitudes of         and         are generated. The four-level signals are applied 

to both MZMs in the IQ-modulator. 

 

Figure 3.6: 16-QAM signal generation scheme with an IQ-modulator. 

Figure 3.7 shows the characteristic response of the MZM when a driving voltage is applied 

and the DC bias voltage (Vbias) is set to null position. The transfer characteristic equation as 

a function of the applied voltage is 

|    |
 

|   | 
     (

     

   
 ) (3.5) 

where       is the electrical driving voltage waveform,    is the voltage to turn the 

modulator from minimum to maximum transmission. The voltage amplitude can be 

defined as                    , the output intensity of the MZM shown in Figure 

3.7 can be described by 
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Figure 3.7: MZM transmittance for 16-QAM. 

3.4.3 Extinction ratio of IQ-modulator 

In optical transmitters, no matter of modulation type, some power is emitted when a zero is 

transmitted. This unwanted effect is defined as extinction ratio (  ): 

   
    

    
 (3.8) 

where      and      are the power levels corresponding to the ‘‘one’’ and ‘‘zero’’, 

respectively. For ideal transmitters the    is infinite. Normally in modulator datasheet the 

   is expressed in     where (               (  )). The    should be high enough 

to achieve a large separation between the power of the ‘‘one’’ and ‘‘zero’’, and ensure that 

very low power appears in the signal when a ‘‘zero’’ is transmitted [50].  Choosing a lower 

   value leads to a swing decrease in the optical signal, even if the average power      

            ⁄  stays constant as shown in Figure 3.8(a&b). To overcome this problem 

(i.e. to recover the original signal swing), the average transmitted power can be increased 

as shown in Figure 3.8(c). If we assume that the receiver is limited to thermal noise, then 

power penalty can be derived as [44] 
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Figure 3.8: Eye diagram after optical transmitters for      (a),       (b), and         and 

increased average power. 

In practical transmission systems, reducing the    of the modulator will increase the 

received noise, because      is not zero so it will add more noise on the zeros, and also a 

lot of noise will be added onto the zeros and the ones due to optical amplifiers to restore 

the transmitted signal swing, necessitating to put more power to compensate for this noise. 

Therefore, power penalty of the    becomes larger than given in equation (3.9). For the 

case that receiver noise is dominated by photo detector or preamplifier noise like electric 

noise power proportional to the received signal current [51], the power penalty can be 

written as 

             (
√    

√    
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Figure 3.9: Characteristic response and the output optical phase of MZM when driving voltage is applied for 

different    [52]. 

For example, two different IQ-modulators have been tested in an amplified lightwave 

system with       and         , and these cause a power penalty of up to           and 
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         , respectively. Figure 3.9 shows phase transfer function of MZM for different 

   values [52]. Kawanishi investigate in [53] the impact of parasitic phase modulation at 

MZMs on advanced modulation formats and he showed that phase error in the optical 

output increases with the    of the modulator also he proved that          is required 

for advanced modulation formats, such as 256-QAM. Due to unequal amplitude 

distribution of the two Mach-Zehnder arms the phase error becomes significant when the 

ER is small or the modulation signal amplitude is small [53]. Today, lithium niobate 

(LiNbO3) MZM technology has an    in the range of 20 ~ 50 dB. For a limited    value 

(ie.          ) the optical phase of the MZM deviates from the ideal optical phase of 

(      ) [52], as shown in Figure 3.9. The 12 phases and the 3 amplitudes of the square 16-

QAM signal are affected by the characteristics of MZM. 

3.4.4 Effect of MZM to 16-QAM  

The influence of linear and nonlinear effects related to the IQ-modulator of a 16-QAM 

coherent transmission system has been investigated in a real-time transmission, as shown 

in Figure 3.10 [49]. The amplitudes of the MZM in the IQ-modulator need to be carefully 

adjusted to obtain a good pattern and to avoid phase distortions. Two different IQ-

modulators with       and          have been tested. The          signal was 

transmitted through        of standard single-mode fiber (SMF). The characteristic 

response of the MZM is a nonlinear sinusoidal due to the applied driving voltage. 

Furthermore, a finite value of    causes unwanted phase distortion in the optical output 

[53, 54]. All the MZMs are identical and the amplitudes of the electrical signals applied to 

the MZMs are the same. All receiver components will explain later in the next chapters. 

 

Figure 3.10: Self-homodyne          16-QAM transmission setup. 

Figure 3.11 shows typical constellation maps and the eye diagrams of the 16-QAM 

patterns in the transmitter (electrically before the modulator) for different attenuators 
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values. The amplitude of the constellation map is affected severely when   is changed 

[49]. In Figure 3.12 the optical signal before transmission is plotted for different   and 

  values. 

 

Figure 3.11: Electrical eye diagrams and constellation maps of           16-QAM. (a&b)        ; (c&d) 

        and (e&f)         . 

 

Figure 3.12: Intensity patterns of           16-QAM behind DPMZM. (a)                ; (b) 

             ; (c)                 ; (d)                ; (e)                ; (f) 

             ; (g)                and (h)                 . 

Figure 3.13 shows the received constellation maps after optical transmission over        

of SMF for         preamplifier input power for different   and   values [49]. Using 

the parameters         and        , the constellation is aligned properly as shown in 

Figure 3.13(a), and this gives the best BER. As    is increased to  , the constellation shows 

severe phase distortions as shown Figure 3.13(b). In Figure 3.13(c-h), the amplitude and 

the phase deviate from the values needed for ideal constellation. 
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Figure 3.13: 16-QAM constellation after optical transmission for        . (a)                ; (b) 

             ; (c)                 ; (d)                ; (e)                 ; (f) 

             ; (g)                and (h)                 . 

Figure 3.14 shows the Q-factor dependence from the parameter α for different launched 

and received fiber preamplifier input power. For MZMs with    of       and      , the 

transmission performance of Q-factor at each α is plotted while the parameter   varied in 

each curve. Equation (3.11) shows how we can obtain the Q-factor from the BER, where 

the Q factor increases as BER improves.  

    
 

 
    (

 

√ 
)  (3.11) 

 

Figure 3.14: Q-factor dependence with the variation of the parameter   for: (a)        ,        , 

        ; (b)        ,         ,         ; (c)        ,         ,         ; (d) 

       ,                  ; (e)        ,         ,         ; (f)        , 

        ,         ; (g)        ,         ,         ; (h)        ,         , 

        . 
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Chapter 4:  

16-QAM receiver design 

4.1 Coherent receiver 

Figure 4.1 shows the subsystems of a synchronous digital coherent receiver. The 

functionality of the first three subsystems is to produce the synchronized channel, and the 

next sections will focus on it. 

 

Figure 4.1: Key subsystems of digital coherent receiver. 

4.1.1 Distinguishing of coherent detection 

Two fundamental kinds of receivers with coherent (heterodyne and homodyne) detection 

can be distinguished. These two schemes were intensively studied in the 1980s [55–57] 

and prior to the advent of the erbium-doped fiber amplifier in the early 1990s because of 

their excellence to direct detection, especially in terms of sensitivity and frequency 

selectivity. As illustrated in Figure 4.2, the carrier frequencies of signal laser and LO laser 

can be identical or different. If they are identical, then there will be coherent homodyne 

detection where the optical spectrum will be directly converted to the electrical baseband. 

In the second case, coherent heterodyne detection, the field information of the optical 
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signal wave is transferred onto an electrical carrier at an intermediate frequency (IF) given 

by     |      |. If the carrier frequencies of the optical signals are different by a 

fraction of the symbol rate (  ), the intermediate frequency will be placed somewhere 

within the signal band, this case is named by coherent intradyne detection [3]. 

 

Figure 4.2: Optical signal spectra (a) and coherent detection options (b). 

4.1.2 Receiver effort 

The suitability and feasibility of a practical receiver scheme must be chosen according to 

the received modulation format. IQ receivers for direct detection which are identical for all 

higher-order phase modulation formats, have simple optical complexity because carrier 

synchronization is not necessary. The general coherent detection shows higher optical 

frontend complexity because a LO is required. Furthermore, to implement a coherent 

receiver one needs to control frequency and polarization of the signal. In case of 

differential detection, carrier phase synchronization is not important because differential 

demodulation is needed to implement on the electrical side, so laser phase noise is not so 

important. When performing synchronous detection for high-order modulation format, 

carrier phase synchronization becomes necessary and a challenge for practical 

implementation. Furthermore, progress in digital signal processing technology allows to 

implement carrier synchronization digitally. Direct detection shows less complexity in 

electrical data recovery comparing to coherent detection. Despite of their higher 

complexity, coherent receivers have the advantage to translate the electrical field of optical 

signal into electrical domain, this makes coherent receiver more sensitive to carrier phase 

and state of polarization (SOP) of the incoming signal. In addition, all transmission 
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impairments can be mitigated in electronic domain. All these things above make coherent 

synchronous detection more suitable for arbitrary modulation formats. 

4.2 Coherent optical to electrical converter  

Phase-diversity receivers are based on optical hybrids, which combine the fields of the 

received modulated signal and the LO, introducing various phase shifts between the two, 

followed by multiple identical p-i-n photodiodes to detect the combined optical signal [39]. 

As the receiver uses two photodiodes in each branch, it is called a balanced receiver. The 

phase-diversity receiver with a 90º hybrid is shown in Figure 4.3(left). In high-order 

modulation, 2×4 90º optical hybrids are used to separately recover the in-phase and 

quadrature components of an optical signal. The viability and different possibilities to 

implement the 2×4 90º hybrid are discussed in [58]. One option to implement the 2×4 90º 

hybrid is by using four      couplers and a     phase shift in one branch.  

 

Figure 4.3: Configuration of optical down converter with optical to electrical convertor (left) and phasor 

diagram of the signal and LO for phase-diversity homodyne detection (right). 

An integrated form is fabricated in LiNbO3 to achieve IQ balance [59]. The device became 

available commercially with six adjustable electrodes [60]. Four independent electrodes 

(IC1, IC2, OC1, OC2) to control power difference of the      couplers and two electrodes 

to set the phase difference between upper and lower branches (PS1, PS2) [61], as shown in 

Figure 4.4. 

 

Figure 4.4: 90º hybrid with six adjustable electrodes. 
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Assuming that the normalized electrical field of the optical signal at the received side of 

the 90º hybrid is 

   √                                      (4.1) 

and the continuous wave light of the LO is 

    √                               (4.2) 

where     and     are the continuous wave powers,     and     are signal laser and LO 

angular frequencies, respectively.    and     are the initial phases,        and         

represent the laser phase noise,      is the normalized modulation amplitude,      is the 

modulation phase, and    and     are the polarization unit vectors of signal and LO light 

[43]. The polarizations of the received signal and LO laser are assumed to be the same 

(       ). The received analytical electrical field from the two inputs    and     is   , 

where   is the number of each output 

    
 

 
        , 

    
 

 
        , 

    
 

 
         , 

    
 

 
         . 

(4.3) 

These four output fields illuminate two pairs of two identical p-i-n photodiodes, and the 

photocurrents are 

           
      (4.4) 

where    represents the responsivity of the photodiodes [44], and asterisk denotes the 

adjoint matrix.     represent the shot-noise photocurrents of the photodiodes. 

   
   

   
 (4.5) 

where              is the charge per electron,      ⁄  is the energy per photon with 

Planck’s constant               ,   is the quantum efficiency of the photo diode. In 

case of            , the outputs of the photodiodes within the balanced detectors 

are then subtracted, resulting in a combined in-phase and a quadrature photocurrent: 
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            √                   [                 ]     
(4.6) 

and 

            √                   [                 ]     (4.7) 

where    is the angular frequency offset between signal laser with    and LO with    . A 

fixed phase offset    will appear because of the difference between the initial phases of 

signal and LO (         ). The overall laser phase noise which is defined as 

(                    ) and will lead to a random walk of the phase which causes a 

rotation of the received constellation diagram.    and    represent some additive noise in 

each branch. If the receiver is shot-noise limited then    and    will represent the overall 

shot-noise photocurrents of the two balanced photodetectors, and can be substituted by 

     and     , respectively. If the optical amplifier in the system is limited to LO-ASE 

noise, then the two parameters will be explained as        and       . This noise is 

Gaussian for the case of neglecting the LO laser phase noise. In coherent detection the LO-

ASE noise is dominant to other noise components like signal-ASE noise and ASE-ASE 

noise [43]; as for direct detection systems the signal-ASE noise is dominant because it 

depends on the power of the detected symbols. The influence of thermal noise of the 

receiver can be neglected if the LO power is somehow high and the system becomes a 

shot-noise limited receiver [43]. For long-haul optical transmission the influence of shot-

noise can be neglected because the receiver is limited by amplifier noise. Moreover, the 

polarizations of signal laser and LO should be aligned exactly to obtain maximum 

interference. Using two polarizations provide an auxiliary degree of freedom for optical 

transmission systems and double the spectral efficiency of the modulated signal. One can 

determine the complex amplitude (    ) using in-phase and quadrature photocurrents 

which is the same as the complex amplitude of the optical information signal except for the 

phase noise. Also it shows that the signal is down-converted into the baseband.      in 

equation (4.8) represent the normalized complex modulation envelope (          

      ), and    is the complex shot-noise (          ).  

                 √                 
 (                 )      (4.8) 

4.3 Receiver with polarization and phase diversity  

It has been assumed up to here that the SOPs of the incoming signal and LO were identical. 

However, in real systems, the SOP of the incoming signal is unlikely to remain aligned to 
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the SOP of LO because of fluctuations of transmission fiber birefringence. The output 

signals from balanced photodetectors depend on the SOP of the incoming signal and LO 

light. Polarization diversity should be used to avoid outages; it contains two polarization 

beam splitters (PBS) and two phase diversity receivers as shown in Figure 4.5. The optical 

information signal has an arbitrary SOP and is separated into a couple of liner polarization 

with PBS. Two 90º hybrids are used to generate eight electric fields for balanced 

photodiodes. Receivers employing polarization diversity have been extensively 

investigated in [62, 63]. 

 

Figure 4.5: Configuration of a polarization diversity receiver. 

The final expression of the photocurrents in the upper and lower branch, in the absence of 

noise, are given by 

       √        ⁄         [                    ] (4.9) 

 

       √        ⁄         [                    ] (4.10) 

 

       √        ⁄         [                    ] (4.11) 

 

       √        ⁄         [                    ] (4.12) 
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where      and      are the power of the optical signal in the x- and y-polarization, 

respectively.    and    are the phase noise emerging from the polarization mismatch 

between the signal and local oscillator in the upper and lower branch, respectively. 

4.4 Signal-to-noise ratio of a modulated signal  

The performance of telecommunication systems depend on the SNR associated with the 

demodulated signal and the so called carrier-to-noise ratio (CNR). The CNR is defined as 

the RMS power of the received modulated carrier signal to the RMS received noise power 

after the receive filters. 

    
                    

           
 (4.13) 

The complex phasor describes the received amplitude and phase in IQ-plane given by 

equation (4.8). The total noise output from each double balanced photodiodes mainly 

consist of three sources: (i) LO shot noise    , (ii) amplified spontaneous emission (ASE) 

LO beta noise     , and (iii) circuit noise    [64]: 

  
 ̅̅ ̅̅    

 ̅̅ ̅̅ ̅     
 ̅̅ ̅̅ ̅̅      

 ̅̅ ̅̅ ̅̅ ̅    
 ̅̅ ̅̅̅ (4.14) 

where the LO shot noise variance is given by 

   
 ̅̅ ̅̅ ̅̅     

   

 

  

 
  (4.15) 

In this equation,    ⁄  represents the noise bandwidth and    is the receiver bandwidth, 

where the LO power is divided by two by the phase diversity process. The ASE-LO beat 

noise variance is given by 

    
 ̅̅ ̅̅ ̅̅ ̅     

         

 

   

 

  

 
  (4.16) 

where   is optical amplifier gain and     denotes the amplifier spontaneous emission 

factor. The circuit noise variance is given by  

  
 ̅̅ ̅̅̅   

      

   

  

 
  (4.17) 

where    is the Boltzmann constant,      is the absolute temperature, and     is the input 

load resistor. 

The total noise appearing in     is 
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 ̅̅ ̅̅ ̅̅    

 ̅̅ ̅̅    
 ̅̅ ̅̅ ̅   (   

 ̅̅ ̅̅ ̅̅      
 ̅̅ ̅̅ ̅̅ ̅    

 ̅̅ ̅̅̅) (4.18) 

When the LO shot noise dominates the circuit noise with sufficient LO power, there is no 

need to rely on the optical preamplifier (i.e. Letting preamplifier gain     and      ). 

The mean square of the signal photocurrent for heterodyne receivers is |    | ̅̅ ̅̅ ̅̅ ̅̅ ̅  

         and for homodyne receivers is |    | ̅̅ ̅̅ ̅̅ ̅̅ ̅         . The receiver bandwidth at the 

baseband is 
  

 
 

 

  
 for homodyne signal and at the intermediate frequency    

 

  
 for 

heterodyne signal (i.e. minimum bandwidth);   is symbol duration [3]. 

The shot-noise limited CNR of the heterodyne signal becomes 

              
|    | ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ⁄

        
 

   

   
. (4.19) 

In case of homodyne when reconstructing the complex amplitude, shot noise due to LO 

power of     ⁄  has to be added because of homodyne receivers from both ports. The CNR 

of the homodyne signal is given as 

            
|    | ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

       
 

   

   
, (4.20) 

which is the same as heterodyne receiver, even when two polarizations are introduced [3]. 

4.5 Digital processing in coherent detection  

The recent advances in high-speed digital signal processing to optical coherent detection 

makes more phase estimation options available, compared to earlier generation where 

Phase-locked loops (PLLs) were always deployed [65]. After O/E conversion, the analog 

signals are converted to digital signals using ADCs [14] [66] [67]. The outputs from ADCs 

are processed by a digital signal processing unit (DSPU), resulting in the complex 

amplitude of the signal in a stable manner in spite of a permanently changing carrier phase 

and signal polarization. The digital signal processing structure is typically composed of a 

sequence of operations to recover the information of the received signal as shown in Figure 

4.6. The subsystems give some indication to the design of digital coherent receiver. 

Furthermore, recent progress in high performance, speed, and reliability of integrated 

circuits make digital signal processing technology attractive to recover the complex 

amplitude from the received baseband signal. 

 ADCs and DSPU will be integrated within a single chip to ease the interface, reduce 

footprint size and energy consumption. FPGAs can be employed to verify and evaluate 
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DSP algorithms in real-time experiments, but they are insufficient for commercial 

implementation in terms of available performance and energy efficiency. 

 

Figure 4.6: Typical functional sequence of digital coherent receiver.  

4.5.1 Digital coherent receiver 

Figure 4.7 shows a simplified block diagram of an optical transmission system with 

coherent detection and polarization multiplex. The intradyne receiver signal is generated 

by an unmodulated LO laser and two 90° hybrids for the optical demodulation and 

separation. The DSPU contains several subsystems to overcome static and dynamic 

channel impairments as well as laser phase noise and inadequate receiver setups in the 

digital domain [68]. Digital coherent receiver techniques can compensate for linear 

distortions such as CD and PMD [69], as well as nonlinear distortions such as SPM [70]. 

The concept of linear optical communication systems become very clear in Figure 4.7, 

where a vector in the complex plane drives the quadrature modulator with two electric 

fields.   

 

Figure 4.7: Simplified block diagram of an optical transmission system with coherent detection and digital 

signal processing 
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The complex envelope of the modulated electric field at the output of the quadrature 

modulator is mapped on the phasor of the optical carrier. This vector is perfectly restored 

by the digital coherent receiver. This combination of optical transmitter and optical 

receiver is a linear optical transmission system, where complex envelope is protected even 

with E/O and O/E conversion process. 

At the receiver end, the signal is passed through a linear homodyne synchronous detection 

polarization diversity receiver. After phase and polarization diversity optical circuit, the 

entire of optical field (i.e. amplitude, frequency, phase and polarization) can be obtained. 

After photodetection, in-phase and quadrature parts of the electric fields are low-pass 

filtered and fed into the ADCs. The ADCs asynchronously sample the in-phase and 

quadrature signals with a frequency equal or greater than twice the symbol rate. The 

amplitude of the output signal will pass through a quantizer which will take 2
ADC resolution bits

 

discrete values to restore the complex amplitudes [31]. Such complex amplitudes are 

equalized in the time or frequency domain by equalizers which compensate for the main 

part of CD having been accumulated along the fiber channel [43]. Carrier recovery is used 

to compensate for the distortion by laser phase noise, frequency offset and initial phase 

offset; it will also rotate the constellation diagram to a suitable position by correcting the 

received phase. After CD equalization and clock recovery, PMD can be compensated 

within separating both polarizations. Frequency and phase estimations are performed on 

both channels before the received symbols are finally decoded. High baud rates of optical 

transmission links require M-fold parallelization of the digital signal processing to meet 

technology parameters. This results in several constraints for algorithm structure and 

computational complexity [71]. 

The following paragraphs skip timing recovery and equalization, but in detail describe 

carrier synchronization by digital phase estimation for the single polarization receiver 

depicted in Figure 4.7. Here, a single polarization is used with an ideal clock recovery. The 

in-phase and quadrature signals at the output of optical quadrature photodetection, defined 

by equations (4.6) and (4.7), are sampled by an ADC once per symbol at the sampling 

instant    which is located in the middle of the symbols [43].  

Electrical filters have been neglected, the in-phase and quadrature samples (       ) at the 

k-th symbol interval are 

    √           [              ]      (4.21) 
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and 

    √            [              ]     
 (4.22) 

where   ,    and     represent the samples of the modulation amplitude, the modulation 

phase, and the overall laser phase noise respectively. The vector on the complex plane after 

sampling is given by 

           √                   
 (4.23) 

where the samples of the normalized complex envelop   , the phase error   , and the 

complex noise     
 are defined as 

         ,                 ,       
        

  (4.24) 

4.5.2 Carrier recovery classes and categories 

Carrier phase estimation is a key challenge in coherent transmission systems in order to 

optimize the laser linewidth tolerance. A large number of frequency and phase recovery 

algorithms have been proposed in the previous years [72, 28, 73, 74] to estimate the phase 

error    from the received signal. The goal of these algorithms is to compensate for the 

complex noise impairment. Carrier recovery can be classified into three main classes: (i) 

data-assisted (DA), (ii) decision-directed (DD) and (iii) non-decision-aided (NDA). DA 

carrier recovery methods require training sequences, so the effective link capacity will be 

reduced. In order to avoid lowering the capacity blind carrier recovery methods must be 

employed. Although Ip analyzed in [75] that DD carrier recovery methods are optimal for 

high SNR compared to NDA methods, [65] proved that they are not feasible in a practical 

systems with parallel signal processing because of the internal delay in the feed-back loop. 

Alternatively, a NDA algorithm can be designed as a pure feed-forward approach, and it 

has just a marginal worse performance than the maximum a posteriori phase estimator 

which was found out to be the optimal solution in coherent optical communication system 

[65]. Nowadays NDA phase error estimators are state-of-the art in coherent optical 

systems. 

In addition to the aforementioned classes one can further broadly categorize the phase and 

frequency synchronization techniques according to the receiver concepts into: (i) Closed-

loop (or decision feedback) and (ii) Open-loop (or feed-forward) schemes, such as Viterbi-

&- Viterbi or M
4
 techniques. Decision feedback technique involves a feedback path within 

the system to make corrections for errors. The basic design of such a system is illustrated 
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by using PLL. In contrast to decision feedback, feed-forward schemes do not contain a 

feedback path. Closed-loop synchronization has a very diverse history at the eighties and 

the beginning of nineties [43]. Today’s, open-loop estimation has a rich literature as well, 

also has only more recently been applied to the task of carrier recovery. Digital coherent 

receivers also allow new techniques for phase and frequency synchronization. PLLs are no 

longer required for optical receivers as frequency mismatch between the transmitter and 

the LO laser only results in a constant rotation of the received constellation. Recent 

investigations have shown that feed-forward carrier synchronization techniques are more 

tolerant to laser phase noise than PLL based receivers. 

4.5.3 Feed-forward square 16-QAM carrier phase estimation schemes 

Even the unmodulated IF signal contains a phase noise corresponding to the sum linewidth 

of TX and LO lasers. If there is no automatic LO frequency control then the IF generally 

will differ from zero. A non-zero IF leads to a deterministic phase slope on adjacent 

samples which can be employed for frequency estimation [76]. The random phase noise 

has to be tracked by a phase estimation stage that also removes residual frequency offsets 

due to imperfect frequency estimation or LO frequency control. The effort for phase 

estimation (calculation of a time series of angles, real numbers within a limited range) 

depends on the modulation format. 

For star constellations (BPSK, QPSK, 8-PSK and certain QAM formats) it is obviously 

advantageous to convert the received symbols to polar coordinates and demodulate them 

by a simple subtraction of signal and carrier phase angles [77]. In contrast, higher-order 

square QAM formats require a rotation in the complex plane for demodulation to adjust 

them to non-radial decision boundaries. While for M-PSK modulation CPE can efficiently 

be performed by using, e.g., the Viterbi and Viterbi phase estimation (VVPE) method [78] 

or the multiplier-free estimator proposed in [79]. Square QAM modulated systems require 

an increased DSP complexity because only a small set of the symbols have equidistant 

phases (       ), cf. Figure 4.10. To recover the carrier phase with a sufficient tolerance 

against phase noise, information of all received symbols should be used for CPE. The feed-

forward phase noise estimation technique uses N successive samples of    to produce an 

estimate of the average phase noise during the N symbol interval. 

               
(4.25) 
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    √          (4.26) 

where    is the amplitude value at the kth symbol, and     is the additive white Gaussian 

noise (AWGN) with zero mean and variance    ⁄  per dimension.  

Phase noise is a Wiener process [80] as follows: 

   ∑  

 

   

 (4.27) 

where the       are independent and identically distributed (i.i.d.) random Gaussian 

variables with zero mean and a variance of 

  
            (4.28) 

where         is the laser-sum-linewidth-times-symbol-interval-product. Carrier recovery 

techniques first estimate the value of    and then remove it from equation (4.25). 

In this work two efficient NDA carrier phase estimation methods [73, 28] have been tested 

in a real-time transmission experiment and compared with each other. Feed-forward phase 

estimators (PE) using the QPSKP scheme [81, 73], require less computational effort in 

comparison to minimum distance PE concepts [82, 83], but they are more sensitive against 

noise effects, especially for higher order QAM constellations due to the laser linewidth 

tolerance and limited computational resources. The algorithms are described in the 

following subsections. 

4.5.3.1 Blind phase search (BPS) technique 

This subchapter showed Pfaus’s results for carrier recovery. Recently, T. Pfau et al., 

introduced the BPS technique (or minimum distance method) which was firstly proposed 

for more general synchronous communication systems in [84] and [85] to optical coherent 

systems [28]. The developed BPS estimator features good tolerance to laser linewidth, 

blind feed-forward manner, and universally to arbitrary M-QAM format. For 16-QAM, the 

estimator simultaneously tries a fixed set of different carrier phase angles and determines 

the most likely one of them [28]. Figure 4.8 shows a block diagram of the employed carrier 

recovery module. The input signal    of the coherent receiver is sampled at the symbol 

rate. For the theoretical description, perfect clock recovery and equalization are assumed 

[28]. The phase estimator rotates the received symbols    into the first quadrant. Then they 



Chapter 4: 16-QAM receiver design 

 39 

are rotated within the quadrant in parallel by   test carrier phase angles    which are 

equally spaced: 

   
 

 
 
 

 
 ,   {         } (4.29) 

Afterwards, all rotated symbols are fed into a decision circuit and the squared distance 

|    |
 
 to the closest constellation point is calculated in the complex plane: 

|    |
 
 |   

    ⌊   
   ⌋

 
|
 

    |   
     ̂   |

 
 (4.30) 

In order to reduce the influence of channel noise distortions, the distances of      

consecutive symbols rotated by the same carrier phase angle    are summed up to a mean 

square error quantity      : 

 

Figure 4.8: BPS Feed-forward carrier recovery [28]. 

     ∑ |      |
 

 

    

 (4.31) 

The optimum value of the filter half width   depends on the product of the laser linewidth 

multiplied by the symbol rate. A value of          turned out to be a fairly good 

choice in simulation [28]. After filtering, the optimum phase angle is determined by 

searching the minimum sum of distance values. As the decoding was already executed in 
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equation (4.30), the decoded output symbol  ̂  can be selected from the  ̂    by a switch 

controlled by the index        of the minimum distance sum. 

Due to the 4-fold ambiguity of the recovered phase in the square M-QAM constellation the 

first two bits which determine the quadrant of the complex plane should be differentially 

Gray-encoded. The differential encoding and decoding process is the same as for QPSK 

and is presented in detail in [86]. It can be described by the following formula 

     (                )     

               {       } 
(4.32) 

where      is the differentially decoded quadrant number,      is the received quadrant 

number and      is the jump number. The only required modification of the decoding 

process compared to [86] is that quadrant jumps are detected according to the following 

formula: 

     {

                      ⁄

                       ⁄

          

 (4.33) 

For all other bits that determine the symbol within the quadrant of the complex plane, 

normal Gray-coding is sufficient and no differential encoding/decoding is required. 

Figure 4.9 illustrates the bit to symbol assignment including differential encoding/decoding 

for square 16-QAM. The resulting constellation diagram is not any longer Gray-encoded. 

This multiplies the BER by a factor of   for 4-QAM (QPSK),      for 16-QAM, and less 

(approaching 1) for high order QAM constellations [87]. 

 

Figure 4.9: Partial differential encoding for a square 16-QAM constellation [28]. 
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4.5.3.1.1 Hardware efficient carrier recovery implementation 

The rotation of a symbol in the complex plane normally requires a complex multiplication, 

consisting of four real-valued multiplications with subsequent summations. This leads to a 

large number of multiplications to be executed. The hardware effort would therefore 

become prohibitive, especially for higher order constellations. Applying the CORDIC 

(coordinate rotation digital computer) algorithm [88] can dramatically reduce the necessary 

hardware effort to calculate the   rotated test symbols. This algorithm can compute vector 

rotations simply by summation and shift operations. As for the calculation of the   rotated 

copies of the input vector intermediate results can be reused for different rotation angles, 

the number of shift and add operations required to generate the   test symbols is given by 

    ∑     

     

   

 (4.34) 

For     , the CORDIC algorithm requires only 60 shift and add operations whereas 

complex multiplication of    with 16 test phasors would require 64 real multipliers and 32 

adders. To determine the closest constellation point  ̂    the rotated symbols are fed into a 

decision circuit. The square distance (4.30) can be written as 
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where  [ ] and  [ ] denote the real and the imaginary parts, respectively. Implementing 

this formula literally into hardware would lead to two multipliers and three adders, but a 

closer examination of (4.30) and (4.35) reveals that the results of the subtractions are 

relatively small because the distance to the closest constellation point is calculated. 

Therefore, the most significant bits (MSBs) of the subtraction result will always be zero 

and can be discarded to reduce the hardware effort. Due to the moderate resolution 

required for   , the squared distance (4.31) can be determined by a look-up table or basic 

logic functions more efficiently than by multipliers.  

Parallel systems allow a very efficient implementation of the summation of      

consecutive values. The adders can be arranged in a binary tree structure where 

intermediate results from different modules are reused in neighboring modules leading to a 

moderate hardware effort. 
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In the experimental setup with the FPGA implementation used in [89, 90] and presented in 

Section 5.2.5, hardware effort is reduced by a suboptimal number of test carrier angles 

within the test interval, which reduces the precision of carrier recovery and thus receiver 

sensitivity. Using a two-stage carrier recovery is another possibility to reduce the hardware 

effort of the test interval. This is done by preprocessing the data in a first carrier recovery 

stage that provides a rough estimate of the carrier phase. The first estimator stage can be a 

standard fourth-power estimator or a simple decision directed estimator with feedback 

from the second stage [82]. Both first stage topologies allow reducing the size of the 

angular interval, and hence, the number of required test carrier phase angles   for the 

QAM feed-forward carrier recovery in the second stage. Feed-forward QAM phase 

estimation with multiple stages is also proposed by Zhou [83]. 

4.5.3.2 QPSKP technique 

The constellation diagram for Square-16-QAM is shown in Figure 4.10. The symbols can 

be classified into three rings Class I, Class II and Class III according to their amplitudes. 

Class I and Class III symbols have equidistant phases, so the modulation can be removed 

by using a      operation. In contrast Class II symbols contain a modulation-dependent 

phase offset    that will not be removed by the 4th-power operation.  

 

Figure 4.10: Square-16-QAM constellation. 

To compensate for this offset a two stage CPE method has been proposed [91, 92, 73], 

shown in Figure 4.11. In the first stage the received symbols Zk are classified by their 

amplitudes. Class II symbols are rotated by     to get rid of the modulation. In parallel a 

mean estimation of the residual symbols is done after the      operation. At the end of 

stage one the rotated Class II sample close to the mean estimate in the     -domain is 
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selected. The aligned symbols | ̃ |
 
are passed to the second stage where a VVPE scheme 

is used to calculate the precise carrier phase angle  ̂ . Compared to pure VVPE designed 

for QPSK modulation the computational complexity is increased by the second filter stage, 

two complex multiplications for   -compensation and one comparator to determine the 

right    rotation. The required classification of the received Class II symbols leads to an 

increased sensitivity against ASE noise and results to a larger filter half-width  . 

 

Figure 4.11: QPSKP Feed-forward carrier recovery. 

4.6 Receiver implementation constrains 

Real-time operation imposes constraints on coherent optical receivers [93]: (i) Elaborate 

digital signal processors cannot be clocked at the same multi-Gb/s rate as analog-to-digital 

converters. Time division demultiplexing is required and permits data processing, 

including synchronous carrier and data recovery, in M parallel modules at a lower clock 

frequency. (ii) Digital signal processing must be implemented efficiently in hardware 

because complicated algorithms boost chip area, power consumption and cost. The design 

should therefore not only be optimized by performance, but also by hardware aspects. (iii) 

Feedback delay can hardly be tolerated. Carrier recovery by decision-feedback is 

impossible at multi-Gbaud symbol rate. Feedback loops must therefore be avoided in the 

carrier recovery process, especially for 16- and higher-order QAM constellations where 

phase noise is very critical. Feed-forward design is the method of choice. 
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Chapter 5:  

Real-time transmission system  

This chapter presents the implemented 16-QAM transmission system with real-time 

synchronous demodulation and data recovery. Two efficient feed-forward carrier phase 

estimation methods [73, 28] have been tested in a real-time transmission experiments and 

compared with each other to present the performance against phase noise, sensitivity of the 

receiver phase angle resolution and the required receiver filter length. Also the influence of 

the required resolution of the ADCs, which is a challenge of real-time coherent 

transmission systems, is presented. The influence of linear and nonlinear effects related to 

the IQ-modulator of a 16-QAM coherent transmission system has been investigated in a 

real-time transmission. The VHDL code for the FPGA was developed in cooperation 

between Bielefeld University/CITEC and Paderborn University/ONT. CITEC developed 

the core program describing the carrier & data recovery according to the specifications 

provided by ONT. 

5.1 Synchronous 16-QAM optical transmission setup 

In July 2010 the worldwide first real-time synchronous optical 16-QAM transmission 

experimental results [94, 89] were presented for           and          16-QAM 

modulated optical signal using standard external cavity laser (ECL), as shown in Figure 

5.1.  

 

Figure 5.1: Worldwide first real-time synchronous 16-QAM transmission setup. 

The results from these experiments showed that the implementation of a real-time digital 

coherent 16-QAM receiver was feasible and the error achieved was below the threshold of 
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a state-of-the-art FEC (   overhead). All TX and RX signals were digitally processed in 

real-time by an FPGA and commercially available ADCs, as this approach does not require 

an expensive and time consuming IC design. In the following subsections different 

components were described in more detail. 

5.1.1 16-QAM signal generation 

The transmitter comprises a commercial ECL having a linewidth of approximately 

        and an IQ-modulator driven by two           quaternery data streams which 

are generated by an FPGA. The 16-QAM data is generated with a Xilinx Virtex-II Pro™X 

Platform FPGA characterization board (MK325) using XC2VP70X. This FPGA offers 20 

RocketIO X Multi Gigabit Transceivers ranging from            to          per channel, 

and provides a seamless migration path for higher performance serial applications. To 

reduce the symbol rate of the transmission system, parallel processing of the data has to be 

applied inside the FPGA (i.e. I/O Multi Gigabit Transceivers). The number of parallel 

modules depends on the target symbol rate, for          an amount of 16 parallel modules 

will be sufficient. The serial transceivers were reduced from          to          by 

selecting each four bits into one, and this will help to reduce the symbol rate and to 

synchronize the output data. The multi-gigabit transceivers are used for parallel to serial 

conversion. The transmission clock is generated from one of the multi-gigabit transceiver 

by transmitting an alternating “     ” sequence at twice the symbol rate of the system.  

 

Figure 5.2: Block diagram for the implemented 16-QAM signal in an FPGA 

The block diagram of 16-QAM signal generator inside a Virtex-II FPGA is shown in 

Figure 5.2. Four pseudo-random bit sequences of different lengths (           

     ) were generated at a data rate of         . The data were first mapped to the 
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constellation points before the quadrant number was differentially precoded to cope with 

quadrant phase slips during receiver-side carrier synchronization. To resolve the fourfold 

ambiguity of the estimated optical phase within the receiver, the quadrant numbers of the 

in-phase and quadrature data streams are modulo 4 differentially encoded. All four 

subchannels (I1, Q1, I2 and Q2) are amplified with four modulator drivers (TriQuint). The 

generated waveforms are passively combined to form two 4-level           electrical 

waveforms for in-phase and quadrature modulation. The levels of the most and least 

significant bit (MSB, LSB) are coarsely set using fixed      attenuators in one path. The 

IQ-modulator is a double-nested MZM based on LiNbO3. An external dip switch in the 

FPGA is used to control the system for synchronization and data mode, selecting the length 

of the PRBS sequence, and to select data type between QPSK and 16-QAM mode for 

driving a dual-parallel MZM (DPMZM) setup. ECLs are employed in a self-homodyne or 

a heterodyne arrangement. For self-homodyne detection the signal passes an EDFA and is 

then split optically by a      coupler. One signal portion is fed into an IQ-modulator for 

transmission (TX) while the other portion replaces the local oscillator (LO) laser for 

coherent reception. Figure 5.3 shows a  photograph of the implemented transmitter. 

 

Figure 5.3: 16-QAM transmitter with conventional IQ setup. 

5.1.2 Coherent optical receiver frontend 

Figure 5.1 shows the experimental setup. After transmission through    or        of 

standard SMF, the signal is fed to a variable optical attenuator (VOA), followed by an 

EDFA and a         wide bandpass filter for noise filtering. Then the received signal 
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was fed into a LiNbO3 optical 90° hybrid, where it was superimposed with the LO signal 

provided from optical switch which can change the setup between self-homodyning with 

the signal laser and heterodyning with an additional ECL. The polarizations of the LO and 

received signals were matched manually by using quarter-wave plate arrays. The outputs 

of the optical 90° hybrid were detected by two differential photodiode pairs. Their output 

currents were converted to voltage signals by resistive loads and amplified by two        

bandwidth amplifiers. Figure 5.4 and Figure 5.5 show the implemented component in the 

coherent receiver testbed. 

         

 Figure 5.4: LiNbO3 optical 90° hybrid and associated control unit (left), and differential photodiode 

pairs and amplifiers (right). 

       

Figure 5.5: Commercially available ADCs (left), and PI controller (right). 

5.1.3 Digital signal processing unit 

After photodetection and linear amplification the signals are converted into the digital 

domain. In the receiver a MAX105 evaluation kit was used for analog-to-digital 

conversion with dual channel,       (       ), and it can process differential or single-

ended analog inputs, as shown in Figure 5.5(left). Therefore for          16-QAM signal, 

the electrical I&Q signal components are amplified before being sampled in two ADCs at 



Chapter 5: Real-time transmission system 

 48 

the symbol rate of        . Interconnections between the dual ADC board and the FPGA 

are implemented in low-voltage differential signalling (LVDS) that provide digital outputs 

with an internal      demultiplexer to reduce the received data rate to one half the sample 

clock rates. This allows easier interfacing with the subsequent DSPU, as shown in Figure 

5.6. Data are output from ADCs in two's complement format. Two types of FPGAs with 

Xilinx Virtex 4 FPGA (XC4VSX35) and Xilinx Virtex 6 FPGA (XC6VML605) were 

employed to verify and evaluate DSP algorithms in real-time experiments, where two 

different electronic carrier and data recovery methods are implemented. In both cases 

signals are processed in       demultiplexed parallel streams, thereby reducing the 

internal clock frequency to           . Due to pure feed-forward approaches in both 

carrier recoveries the DSP can hence be adapted to any transmission rate by increasing  . 

An external PI controllers are needed for clock recovery (not shown in Figure 5.1) and for 

heterodyne experiments, as shown in Figure 5.5(right) [95, 66]. 

 

Figure 5.6: FPGA based coherent receiver. 

5.2 Real-time transmission 

The following subsections discuss the performance of a real-time 16-QAM transmission 

system.          16-QAM data was transmitted over     and        of standard single-

mode fiber. The individual strengths and drawbacks of most dominant feed-forward carrier 
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recovery algorithms [93, 73] have been investigated in relation to important system 

parameters such as noise performance, optimal phase estimation filter length, laser 

linewidth, external quantization limitation by ADC resolution and the effect of test phase 

angle resolution. Moreover, the influence of different four-level driving voltage ranges to 

the IQ modulators has been tested. 

5.2.1 Nonlinear effect of IQ modulator experiment 

In this experment, the influence of linear and nonlinear effects related to the IQ-modulator 

of a 16-QAM coherent transmission system has been investigated in a real-time 

transmission [49].  

To evaluate the effects of the MZMs to a 16-QAM signal, two nonideal DPMZMs with 

different extinction ratio have been tested. Each modulator design is based on dual parallel 

structure of two MZMs embedded in a Mach Zehnder super-structure, implemented on a 

proven and high stability x-cut substrate. Both MZMs within the same IQ-modulator are 

identical and they have the same values of input amplitudes of the electrical signals. The 

two parallel MZMs are integrated on a LiNbO3 substrate. The first DPMZM was from 

Photline (QPSK_LN_40) with maximum           maximum optical transmission, while 

the second one was from Avanex (SD50-DP) with           maximum optical 

transmission. Both modulators are based on dual high bandwidth; supported with low 

MZM power transfer function (         and         ) and an extinction ratio (   

       and          ), respectvely.  

From the optical transmission system shown in Figure 3.10, the bit error ratio (BER) 

versus received power is measured for      PRBS data and over a distance of        of 

SMF. All amplitudes of the MZMs need to be carefully adjusted to obtain a good pattern 

and avoid phase error [53, 54].        and        optical launch power was selected 

where the nonlinear effect becomes clear for comparison. After optical transmission, the 

received electrical signals are amplified and sampled with       ADCs, where the outputs 

are connected to a Xilinx Virtex 4 FPGA that contains the digital carrier and data recovery. 

Phase estimation was implemented as BPS with        test carrier phase angles and 

      temporal samples before and after the current sample are processed to recover the 

carrier. Figure 5.7 shows the BER of all I&Q subchannels versus preamplifier input power 

for various   and   values. From the BER curves, the dependences on   and   are 

deduced. The lowest BER values were measured for         and        . A BER floor 
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was observed, below the threshold of a state-of-the-art FEC (   overhead). For a given 

       , corresponding   was varied with steps of     . The BER changed as a function 

of   in the given range, especially when   is far away from the optimal condition (i.e. 

     ). The reason for this is that the nonlinear transmittance of the MZM is affected 

severely when   is increased. 

 

Figure 5.7: 16-QAM BER curves for various   and   values for           (left), and for           

(right); averaged over all 4 subchannels (I1, Q1, I2 and Q2). Fiber length was        and        fiber 

launch power. 

Figure 5.7 shows that the case of optimum parameters          and         are almost 

independent from the   . The necessary preamplifier input power for reaching the 

threshold (      ) of state-of-the-art FEC (   overhead) is shown in Table 5.1 for both 

modulators.   

Table 5.1: Fiber input power at FEC threshold (      ) for          and         . 
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From the Q-factor dependence from the parameter   in Figure 3.14, the best received 

values of Q-factor are measured when the optimal values of the parameters are applied 

(Figure 5.8). The maximum required Q-factor becomes monotonically decreasing when   

is far away from optimal value in the given range, especially when (   ). This is because 

of the nonlinear transmittance of MZM is affected severely when   is increased. The 16-

QAM transmission system with             shows a better performance comparing to 

           when launch and receive powers are reduced. The overall performance is 

better with larger   . 

 

Figure 5.8: Q-factor dependence with the variation of the parameter   for different fiber input power and 

different received preamplifier input power. 

According to the results, the parameter   should be in the range of      to     . In this 

case variations of   can be tolerated in the range of           for a BER less than the FEC 

limit (   overhead) at receiver input power below        . 

5.2.2 Real-time phase-noise-tolerant experiment  

This experiment presents the implementation of a phase-noise-tolerant, hardware-efficient 

feed-forward carrier recovery [94, 96]. The setup of the          16-QAM transmission 

system is shown in Figure 5.9. The drive signals are generated using FPGA. The signals 

are determined using for copies of a PRBS of length      which mutually have been 

delayed. Two sequences are considered the most significant bits (MSBI, MSBQ). They are 

differentially encoded and define the quadrant of the square 16-QAM constellation. The 

other two sequences are considered the least significant bits (LSBI, LSBQ) and are used 

without further encoding to select the in-phase and quadrature amplitude levels within the 

quadrant. The levels of the most and least significant bits (MSB, LSB) are coarsely set 

using fixed      attenuators in one path. The resultant approximately         4-level 
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signal is applied to the single-drive I and Q arms of an integrated LiNbO3 double-nested 

MZM with a      bandwidth of        and a    of approximately      . As light source a 

tunable ECL with a power of         and a specified linewidth of         is used. The 

optical intensity eye diagram with its three intensity levels corresponding to the three rings 

that make up a square 16-QAM constellation, cf. also in Figure 5.9. The fiber launch 

power at the TX-EDFA output is       . After transmission through        of SMF, the 

signal is fed into a VOA and is amplified by an EDFA, followed by a         wide 

bandpass filter for noise filtering. A manual polarization controller is used to control the 

SOP entering the optoelectronic receiver frontend. There the signal and the local oscillator 

laser are superimposed by a LiNbO3 90° optical hybrid and detected in two differential 

photodiode pairs. The outputs of the photodetectors are connected through amplifiers to the 

ADC.  

 

Figure 5.9: 16-QAM transmission setup with real-time synchronous coherent digital I&Q receiver. 

The ADCs sample the input signals at the symbol rate of         and a nominal 

resolution of      . The ADCs interface with a Xilinx Virtex 4 FPGA where carrier and 

data are recovered electronically. For clock recovery a second time-interleaved ADC pair 

is used to provide the required oversampling [66]. To obtain a clock phase error signal the 
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signs of adjacent input samples are correlated [95] and fed out to an external PI controller 

which controls a voltage-controlled oscillator and closes a phase-locked loop. For BPS 

carrier recovery the primary received I&Q samples are combined as a symbol pointer in 

the complex plane and rotated into the first quadrant. Then they are rotated within the 

quadrant in parallel by        test carrier phase angles [28]. The squared distance 

between the recovered 16-QAM symbol and the closest constellation point are filtered over 

     consecutive symbols. That test phase angle where the filtered squared distance is 

minimum yields the correct constellation point within a quadrant, i.e. data bits I2, Q2. Data 

bits I1, Q1 are obtained by differential modulo 4 decoding of the quadrant number. This 

prevents occurring quadrant phase jumps of the recovered carrier from falsifying all 

subsequent data, but results in some deviations from ideal Gray coding (Figure 4.9). For 

signal processing, the FPGA is configured into       parallel modules. The internal 

clock frequency is therefore           . Carrier recovery does not contain any feedback 

loop, so it can be adapted to any transmission rate by increasing  . The optimum response 

halfwidth N of the squared-distance filter depends on the laser-sum-linewidth-times-

symbol-interval-product (    ). For this experiment, there has been chosen      , 

which worked best. For BER measurement, appropriate patterns are programmed into the 

BER tester. While the hardware effort for carrier recovery is on the order of        times 

larger than for QPSK, capacity is all the same doubled. Also, equalizers typically consume 

much more silicon floorspace than QPSK carrier recoveries. In the future, a two-stage 

version [82] of the implemented concept could reduce hardware effort further. 

 

Figure 5.10: Electrical spectra in one quadrature with either aligned (top) or orthogonal (bottom) signal and 

LO polarizations, showing signal and noise, for         (a) and         (b) preamplifier input power. 
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Electrical data transmission was error-free. A SNR of       was measured at one ADC 

input, using electrical noise power in a           band and the total electrical signal 

power. Corresponding spectra are shown in Figure 5.10. 

Figure 5.11 shows BER versus received power for            with self-homodyne 

detection and over distances of    and       . Clock was either supplied directly from 

the transmitter or recovered in the receiver. The BER deviations between the receiver 

setups with and without clock recovery show the influence of timing jitter depending on 

transmission distance. The best measured BERs were at           and          for 

     , and          and           for        of fiber, for direct clock and clock 

recovery, respectively. All measurements were repeated several times and turned out to be 

stable. The total capacity of the conducted           experiment is            or 

        . 

 

Figure 5.11: Measured BER vs. optical power at the preamplifier input, averaged over all 4 subchannels (I1, 

Q1, I2 and Q2) at          data rate. 

Figure 5.12 shows the measured BERs versus preamplifier input power, averaged over 

I&Q but separated for inter-quadrant bits (IQ1), Gray-encoded as in [28], and intra-

quadrant bits (IQ2). The distance was       . Intra-quadrant decoding is limited more 

strongly than inter-quadrant decoding, presumably by intersymbol interference (ISI) in the 
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non-ideal electrical transmitter. This is seen from the fact that the BER of I2 and Q2 (inside 

quadrant) is higher than the BER of the quadrant numbers I1 and Q1. Based on simulations 

without ISI the ideal estimated BER floor is at      for the tested             .  

Averaged over all 4 subchannels (I1, Q1, I2 and Q2) at received powers larger than 

       , the measured BER was less than the FEC limit (      ) for all cases. FEC 

was not applied within this experiment.  

 

Figure 5.12: Measured BERs of 16-QAM bits 1 and 2, each averaged over I&Q, vs. optical power at 

preamplifier input. Fiber length was       . 

For heterodyne experiment a second ECL was added and used as LO source. Laser 

linewidths were specified as         . The field information of the optical signal will 

transferred to electrical carrier at an intermediate frequency (IF) which is corresponds to 

the frequency difference between signal and LO. The IF should be less than    of the 

symbol rate. R. Noé employed in [97] a delay line frequency discriminator to detect the 

frequency offset. Therefore an automatic frequency control for the LO laser is 

implemented inside the FPGA [66]. The observed carrier phase jumps between subsequent 

symbols are output from the FPGA and fed into a PI controller. The resulting signal 

controls a portion of the LO bias current [66]. Two techniques of feed-forward carrier 

phase recovery BPS with     and QPSKP with     and   were implemented.  
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Figure 5.13 shows the BER characteristics for heterodyne setup with clock recovery. After 

transmission over distance of 20 km the best measured BER result is           for BPS 

while          and          for QPSKP with      and  , respectively. For        

the measured BER floors were          for BPS while for QPSKP the BER floors were 

         and          for     and  , respectively. A similar performance for BPS 

and QPSKP with a filter-half width of     can be observed for all experiments. The 

power penalty was approximately      between BPS and QPSKP for the same filter half-

width  . 

 

Figure 5.13: Measured BER vs. optical power at the preamplifier input, for heterodyne detection and with 

clock recovery. 

According to simulation [28], the experimental response half-width       of BPS carrier 

recovery is optimum for a single-polarization 16-QAM system with good receiver 

sensitivity and phase noise tolerance. This is important because a high received power 

would always tolerate much phase noise, simply by lowering  . The implemented carrier 

recovery algorithm is compatible with all kinds of equalizers for polarization control, 

chromatic dispersion and polarization mode dispersion. 

5.2.3 Optimal receiver filter length 

In order to remove noise distortions, different filter half-width   were tested. The amount 

of filter half-width value depends on     . To reduce the hardware effort inside the 

FPGA, the amount of filter half-width should be carfully selected. If the value of the filter 
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half-width is sizeable, then the usable slice inside the FPGA become unfeasible. In these 

experments [98, 99] different filter lengths (half-width  ) were evaluated for both feed-

forward carrier recovery techniques. Figure 5.14 shows an optical transmission system 

where          data  are transmitted over       and        of SMF and received in a 

real-time I&Q self-homodyne setup with standard ECL, clock was supplied directly from 

the transmitter. 

 

Figure 5.14: 16-QAM transmission setup with constellation and optical intensity eye diagram before and 

after optical transmission over       and       , for        TX launch power and         RX 

preamplifier input power. 

5.2.3.1 PE filter length tolerance using QPSKP experiment 

In this experment QPSKP is implemented with different filter response half-widths which 

has been selected with           and    [99]. These values were selected to meet 

system performance for laser-linewidth-times-symbol-rate product               . 

The BER floors versus received power are discussed for the different setups.  

Figure 5.15 shows the BER behavior for PRBS data length of     . A        penalty 

can be observed in the BER curve between filter-half width of        and     to the 

RX input power for      . As phase noise increases, the filter-half width of     shows 
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better performance to      with        and        penalty in the BER curve to the RX 

input power for    and        of single-mode fiber, respectively. This is due to strong 

phase noise which needs a smaller filter-half width to achieve a lower mean squared phase 

estimation error. The filter with     allows reaching a lower BER floor than the filter 

with      .  A filter with     is not efficient for               .  

 

Figure 5.15: Measured BER for the average I&Q subchannels vs. optical power at preamplifier input for 

PRBS length       . Fiber lengths was       and       . 

The necessary received fiber input power for reaching the threshold (      ) of state-of-

the-art FEC (   overhead) is shown in Table 5.2 for different filter-half width. 

Table 5.2: Fiber input power at FEC threshold (      ) for different filter-half widths. 
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5.2.3.2 PE filter length tolerance using BPS experiment 

In this experment [98], the phase estimator rotates the received symbols into the first 

quadrant. Then they are rotated within the quadrant in parallel by    test carrier phase 

angles. The squared distance of the recovered 16-QAM symbol and the closest 

constellation point (in whichever quadrant) is filtered over a number of consecutive 

symbols. That test phase angle where the filtered squared distance is minimum yields the 

correct constellation point within a quadrant. 

 The carrier recovery bandwidth was chosen to be optimum for a single-polarization 16-

QAM system with good receiver sensitivity and phase noise tolerance. This is important 

because a high received power would always allow tolerating much phase noise, simply by 

increasing the carrier recovery bandwidth. Figure 5.16 shows the measured BER versus 

optical power at preamplifier input over distances of    and        SMF and for different 

filter half-width   values. In case of       the BER floors were below the FEC limit (   

overhead) until the preamplifier input power was set below         for      . Up to 

          received preamplifier input power and       yielding BERs below FEC 

limit. For        the optimal received fiber preamplifier input power was located till 

          for      . Up to           received preamplifier input power and       

the BER of 16-QAM signal were below FEC limit(dotted line). The BER for        are 

higher than for      , this is because of direct clock from the transmitter are used in these 

experiments. 

 

Figure 5.16: Measured BER vs. optical power at preamplifier input for different filter half width  , for 

      (left) and        (right). Pattern length      . 

Finally,       will be a fairly good choice for             . These experimental 

results are in accordance to the simulation [28]. 
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5.2.4 Phase noise effects  

The phase noise in 16-QAM transmission is mainly contributed from laser sources, optical 

amplifiers and non linear effects in optical fibers. The amplified spontaneous emission 

(ASE) noise itself induced phase noise well behaves as AWGN. Therefore, the 

expermental investgations are separated into two parts including laser phase noise and 

transmisson phase noise, respectively [100]. The experimental setup is shown in Figure 

5.9. 

5.2.4.1 Laser phase noise tolerance  

The laser phase noise is characterized by its linewidth. The requirement for the laser 

linewidth in M-QAM systems becomes much more stringent as   increases. Therefore, it 

is important to take laser linewidth into account. The output of a single-frequency laser is 

not perfectly monochromatic but rather exhibits some phase noise. This leads to a finite 

linewidth of the laser output. To investigate laser linewidth effects, two commercial ECLs 

with     and         laser linewidth were used. In this work, for experimental 

convenience, PRBS ( ,   , and   ) were used as modulator driving data. BPS and QPSKP 

carrier phase estimation methods have been tested and compared by each other to present 

the performance against phase noise. Data throughputs of            and             were 

achieved in an FPGA-based coherent receiver with self-homodyne detection with direct 

clock from transmitter. Different laser-sum-linewidth-times-symbol-interval-products 

             ,         ,         and         ) have been tested.  

 

Figure 5.17: Constellation maps of 16-QAM signal affected by phase noise after       of optical 

transmission at a SNR of       for                (a),          (b),         (c) and          (d). 



Chapter 5: Real-time transmission system 

 61 

Figure 5.17 shows the observed                          (upper) and           

                  (lower) constellation diagrams with an ECL of         spectral 

linewidth (left side) and with an ECL of         spectral linewidth (right side), 

respectively. The constellation diagrams showing phase changes for different levels of 

phase noise (low noise, medium noise, high noise and very high noise) for each     , 

respectively. The results show that the phase noise can be squeezed by reducing the 

amount of     . A back-to-back electrical test, where I&Q electrical data were connected 

to the I&Q ADCs, turned out to be error-free. Optical receiver sensitivity is limited by 

thermal and shot noise. The signal power at the photodiodes is therefore chosen so high 

that imperfect receiver balance can result in significant direct detection of signal and 

amplified spontaneous emission. To evaluate the BER performance of the self-homodyne 

phase-diversity receiver for different     , the received I&Q samples are recovered by 

performing the BPS with        test phase angles and       filter half-width.  

 

Figure 5.18: BER after       of optical transmission for                (a),          (b),         (c), 

and          (d); using BPS with     , AV IQ1 and IQ2. 

Figure 5.18 shows measured BERs versus preamplifier input power, averaged over I&Q 

but separate for inter-quadrant bits (IQ1) and intra-quadrant bits (IQ2). Intra-quadrant 

decoding is limited more strongly than inter-quadrant decoding, presumably by 
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intersymbol interference (ISI) in the non-ideal electrical transmitter. This is seen from the 

fact that the BER of I2 and Q2 (inside quadrant) is higher than the BER of the quadrant 

numbers I1 and Q1. 

Figure 5.19 shows the BER versus received power of the averaged over all 4 subchannels 

(I1, Q1, I2 and Q2). The best measured BERs were at          ,         ,           

and          for      PRBS data;          ,         ,           and           

for       PRBS data; and         ,           ,          and           for 

      PRBS data; for              , 0.      ,         and         , 

respectively. The received power is           at FEC limit (   overhead) for       

         and PRBS-7. This result shows an increasing in the FEC BER limit about       , 

       and         for the same PRBS data length and for               ,         

and         , respectively. FEC was not used in the experment. The             16-

QAM is strongly limited by the laser phase noise and has an apparent BER floor especially 

when         laser linewidth is used. 

 

Figure 5.19: Measured BER vs. optical power at the preamplifier input, averaged over all 4 subchannels (I1, 

Q1, I2 and Q2) for different     . Fiber length was 20 km. 

From Figure 5.13, the averaged I&Q channel BERs of BPS with      and filter half-

width     shows the same results as for QPSKP with      and    . Therefore, 
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these two techniques are compared with each other and by using the same values of test 

phase angles     . Figure 5.20 shows the BER floors of various receiver input power 

levels and laser linewidth after transmission over       of SMF, using      PRBS data.  

 

Figure 5.20: BER after 20 km of optical transmission for                vs.                 using 

BPS with (        ) and QPSKP with (        ). Fiber length was      . 

The best measured BER for the setup with         laser linewidth was          and 

         for BPS (     and    ) and QPSKP (     and    ), respectively. 

Both DSP setups could be detected until the preamplifier input power was set below 

       . The BER floors for         laser linewidth are slightly higher than for 

       ,           and           for BPS and QPSKP techniques, respectively. Up to 

        received preamplifier input power a      performance penalty between BPS and 

QPSKP can be observed for         linewidth, while the penalty increases to        for a 

linewidth of        . The tested         linewidth BER curves are closer to each other 

comparing to the         ones. The main reason is that the tested         linewidth 

lasers include less frequency jitter, so called     frequency noise. This kind of noise leads 

to overestimation of the laser linewidth but does not degrade BER in high bit rate systems 

[101]. On the other hand, BPS demonstrates the best phase noise tolerance comparing to 

the rest of feed-forward carrier recovery algorithms but comes with an expense of high 
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complexity [28]. This problem can be relieved by reducing the number of test carrier phase 

angles. The reduction of the symbol rate makes the laser phase noise more critical.  

5.2.4.2 Phase noise from optical fiber transmissions 

The phase noise from the optical transmission affects the carrier phase estimation and the 

recoverd signal constellation. In this experiment the phase noise from real-time          

16-QAM system include two scenarios: (i) short transmission       SMF and (ii) long 

distance transmission with        SMF. High launched optical power is applied in both 

experiments [100]. The optical transmission system with coherent detection and optical 

amplification is limited by amplifier noise, where ASE noise is the dominant noise 

component. The ASE noise is responsible for energy fluctuations which make the decision 

between zero and one level difficult. Also it reduces the signal to noise ratio at the receiver. 

Dependencies on fiber launch power were analyzed for two different receiver input power 

values. The intensity patterns were recorded at the receiver input after    and        

SMF as shown in Figure 5.21.  

 

Figure 5.21: 16-QAM intensity eye diagram for                and after       (top) or        

(bottom) of SMF for:          ,             (a);          ,            (b);    

       ,            (c);           ,            (d);          ,            (e); 

         ,            (f);           ,            (g) and           ,            

(h) input power. 

Figure 5.22 shows the received constellation maps of 16-QAM with self-homodyne 

detection after optical transmission for        and         fiber launch power and 

        and         received preamplifier input power.  
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Figure 5.22: 16-QAM constellation maps for                and after       (top) or        (bottom) 

of SMF for:          ,             (a);          ,            (b);           , 

           (c);           ,            (d);          ,            (e);          , 

           (f);           ,            (g) and           ,            (h) input 

power. Self-homodyne experiment 

Figure 5.23 shows the constellation maps of the received 16-QAM signals after optical 

transmission for heterodyne experiment over    and        of SMF at a SNR of      .  

 

Figure 5.23: 16-QAM constellation for heterodyne experiment after 20 km (a) and 100 km (b). 

Figure 5.24 depicts the influence of transmission phase noise for for BPS with (     

and    ) versus QPSKP with (     and    ) by using a self-homodyne with direct 

clock and a heterodyne with clock recovery configrations, it shows the Q-factor versus the 

launched power for various transmission lengths. A similar performance for both CPE 

algorithms with RX=         preamplifier input power can be observed for both 

transmission distances, while for RX =         the QPSKP shows a penalty of about 
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     comparing to the BPS. Optimal fiber input power was located till        for 

different fiber lengths. 

 

Figure 5.24: Q-factor vs. Fiber input power for different received preamplifier input power and CPE 

algorithms, using      PRBS data with self-homodyne (a) and heterodyne (b) detections. 

The Q-factor has a small change for launched powers from    to       despite the 

variation of the received OSNR. This is because the system performance is limited by 

imperfection of the electrical components. For launch powers higher than       the phase 

drift increases and the Q-factor decreases. The difference between BPS and QPSKP Q-

factors is obvious but both show the same tendency. It is apparent that the transmission 

system is corrupted by AWGN when the launch power is less than        and        

for    and        SMF, respectively. During fiber propagation, an optical signal is 

distorted by an intensity dependent SPM induced nonlinear phase shift. The symbols of 16-

QAM have different intensity levels. Therfore, the intensity dependent nonlinear phase 

shift causes a strong deformation of the received 16-QAM signal constellation. The effect 

of SPM is not shown so clear for high launch power because it is difficult to obtain a 

meaningful BER at this transmission distance. In Figure 5.24, the optimum launch power is 

about       for       SMF with negligible fiber nonlinearity. In        long-haul 

transmission, the launch power into the SMF is       . Even when       of attenuation 

is added to the received signal, the optimal launch power is still the same. By comparing 

BPS with QPSKP carrier phase estimation, the Q-factor of QPSKP is considerably 

reduced. QPSKP demonstrates worst phase noise tolerance than BPS, this is because 

QPSKP is more sensitive to ASE-based fluctuation in the amplitude. Although  the  

QPSKP method is slightly simpler, its performance is noticeably worse than BPS 
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technique. It is observed that QPSKP is strongly affected by SPM induced mean nonlinear 

phase shifts from Q-factor plot for received data after       , shown on the right side. 

5.2.5 BPS angle resolutions effect  

As real-time realization of DSP for coherent systems has become an important topic [102], 

feed-forward carrier recovery algorithm for M-QAM system offered in [28], where authers 

demonstrate the minimum distance estimator (MDE) which provides sufficient 

performance for M-QAM with laser linewidths [83]. The proposed scheme which was later 

named BPS in optical communication literature, achieves the best phase noise tolerance 

but comes with an expense of hardware effort [28]. This problem had relieved by reducing 

number of test phase angles to 16. This number is a crucial quantity for BPS algorithm. If 

the required resolution is too large (i.e. more than 32), the hardware effort will become 

unfeasible. 

 

Figure 5.25: Measured BER vs. optical power at the preamplifier input, for different  . 

Figure 5.25 shows the influence of    and    test phase angles on the receiver sensitivity 

[90]. The test of the system was conducted with      PRBS data as a hetrodyne 

experiment at data rate of         . The large test phase angle with      yields a better 

system performance with a BER floor of           and a sensitivity of           for a 

BER below the threshold of a state-of-the-art FEC (   overhead) for       SMF. The 

receiver with      achieves a BER floor           and a sensitivity of          . 

The BER floors for        distance are          and          for        and 



Chapter 5: Real-time transmission system 

 68 

      , respectively. Due to the high laser-sum-linewidth-times-symbol-interval-product 

             , the large test phase angle with      now outperforms the smaller 

number of test phase angle with      by      in terms of receiver sensitivity for       

and      for        of fiber length. These results underline the excellent robustness of 

BPS with    test carrier phase angles in the square 16-QAM modulation format. In 

general, an acceptable BER floor can be seen for      for high laser-sum-linewidth-

times-symbol-interval-product and high phase noise. Increasing number of test phase angle 

causes an improvement but at a price of hardware effort. 

5.2.6 External quantization limit by ADC resolution 

In these experiments [103] and [90], BPS with (     ,     ) versus QPSKP with 

(      and  ,      ) have been tested and compared with each other to investigate the 

influence of ADCs, which is a challenge in real-time coherent transmission systems. The 

system is tested firstly by using self-homodyne detection with direct clock and later by 

using heterodyne detection with clock recovery, as shown in Figure 5.9. Transmission 

distance was over       of SMF. To determine the influence of quantization noise 

induced by the ADCs all measurements are performed for     and   bit data converters at 

the symbol rate of        . Figure 5.26 shows the Q-factor dependence on fiber input 

power for different ADC resolutions.  

 

Figure 5.26: Q-factor vs. fiber input power for different ADC resolutions and two carrier-phase-estimation 

schemes, with self-homodyne (a) and heterodyne (b) detections. 

For self-homodyne experiment a similar performance for BPS and QPSKP with a filter 

half-width of       can be observed for   bit ADC resolution, whereas it shows a penalty 

of      for   bit ADC resolution. For QPSKP with       and   bit ADC resolution it 
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shows a penalty of        and it is lower than the Q-factor limit for 5 bit ADC resolution. 

An ADC resolution of     bit will be a good choice for               . This 

experiment showed that QPSKP with N = 9 and      is comparable to BPS with N = 6 

and      over       SMF. In heterodyne experiment and   bit ADC resolution, the 

QPSKP technique shows a penalty of        and        for     and  , respectively. For 

      ADC resolution, the Q-factor of BPS at fiber input power of        were higher 

than the Q-limit of        (dotted line) yielding BERs below FEC limit (   overhead) 

while QPSKP are below the Q-limit for both     and  . 

Figure 5.27 shows the Q-factor dependence on fiber input power over        of optical 

transmission for different ADC resolutions, and using BPS with    and    test carrier 

phase angles. Up to         received preamplifier input power a        performance 

penalty between       and        can be observed for   bit ADC resolutions, while 

the penalty is increased for decreased ADC resolution. 

 

Figure 5.27: Q-factor vs. fiber input power for different ADC resolutions and BPS with different test phase 

angle numbers and with heterodyne detection. 
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Chapter 6: 

Results discussion and summary 

6.1 Discussion  

Cost pressure and increasing optical bandwidth usage make it necessary to maximize both 

the transmitted symbol rate per optical channel and the spectral efficiency, while leaving 

the deployed fiber infrastructure unchanged. In the recent years QPSK was the preferred 

modulation format because of its robustness in long-haul links. However, for metropolitan 

area networks, higher-order quadrature amplitude modulation is permissible namely 16-

QAM, which doubles spectral efficiency. Till the beginning of 2012, the experimental 

results with true real-time measurement setups were still rare to find due to the high 

complexity in the implementation of real-time coherent receivers, offline DSP was used in 

many experiments. It is a very useful way to investigate efficient algorithms without the 

need to do extensive hardware development. FPGAs enable evaluating digital receiver 

algorithms in real-time experiments before being implemented as CMOS circuits. The 

flexibility provided by FPGA implementation to develop and test signal processing 

algorithms in real-time comes at the expense of a reduced bit rate. 

The research work described in this thesis investigates phase noise tolerant feed-forward 

carrier recovery algorithms (BPS and QPSKP) which become most important for the 

implementation of 16-QAM modulation format. The presented experiments demonstrate 

for the first time the real-time implementation of a synchronous 16-QAM transmission 

system with a digital receiver for clock, carrier and data recovery.          (         ) 

16-QAM data have been transmitted over    and        of SMF by a self-homodyne and 

heterodyne configurations. The influence of ADC, laser linewidth and phase noise which is 

a challenge in real-time coherent transmission systems was investigated and presented for 

the two basic recovery techniques. Moreover, different operation points of a 16-QAM 

modulator have been tested in real-time and an optimal condition is found to minimize the 

BER. The implemented carrier recovery algorithm is compatible with all kinds of 

equalizers proposed for polarization control, chromatic dispersion and polarization mode 

dispersion compensation.   
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6.2 Summary 

16-QAM is the format most likely to complement or replace QPSK as the next step to 

high-order-formats with increased information content per symbol. For all higher 

constellations, the phase noise problem becomes sharply increased in comparison to 

QPSK. Based on this a real-time heterodyne and self-homodyne detections were presented 

in this research work. To this purpose, a phase-noise-tolerant, hardware-efficient feed-

forward carrier recovery was implemented. The influence of linear and nonlinear effects 

related to the IQ-modulator of a 16-QAM coherent transmission system has been shown. 

The amplitudes of the MZM in the IQ-modulator need to be carefully adjusted to obtain a 

good pattern and to avoid phase distortions. The electrical driving voltage of the IQ-

modulator were investigated in a real-time transmission and optimized to minimize the 

required OSNR. Two non-ideal IQ-modulators with different extinction ratio have been 

tested and found that optimal operating conditions are almost independent of the extinction 

ratio. 16-QAM signal is prone to the extinction ratio of the modulator especially in the case 

of low transmitted and received power. Two techniques of carrier phase estimation have 

been tested and the performances are presented and compared. The QPSKP phase 

estimator scheme require less computational effort in comparison to BPS, but it is more 

sensitive against ASE noise effects, especially for higher order QAM constellations. 

Different filter lengths (half-width  ), test carrier phase angles, and ADC resolution have 

been investigated. For the BPS phase estimator scheme,       will be a fairly good 

choice for               , while for the QPSKP scheme filter with     allows to 

reach a lower BER floor than the filter with       for        of SMF. In addition, 

implementation of QPSKP with     is not efficient for               . 

Furthermore, an ADC resolution     bit is a good choice for               . These 

results underline the excellent robustness of BPS with    test carrier phase angles, and an 

acceptable BER floor can be seen for    for                and for high phase noise. 

Increasing the number of test phase angles would cause an improvement but at the price of 

hardware effort. This dissertation has particularly shown that a BER floor was observed 

below the threshold of a state-of-the-art FEC (   overhead). Also it showed a successful 

16-QAM transmission system in real-time with FPGA-based coherent receiver processing 

     of data. 
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Appendix : 16-QAM optical transmitter 

There are several possible transmitter configurations for square 16-QAM. These methods 

can be categorized according to electrical driving signals to the optical modulator: i) 

electrical multilevel drive signals and ii) electrical binary drive signals. The next 

subsections illustrate different optical square 16-QAM transmitter options. 

7.1 Electrical multilevel drive signals  

For electrical multilevel drive signals three different transmitter configurations can be used 

to generate square 16-QAM. 

7.1.1 Single dual-drive MZM  

One way to generate any arbitrary quadrature signals with multilevel electrical driving 

signals is to use one dual-drive modulator [104]. This paper proved that that any arbitrary 

quadrature signals can be generated using one dual-drive modulator. Figure 7.1 shows a 

basic structure of a dual-drive MZM (DDMZM). The modulator consists of two 

independent phase modulators. The constellation points of 16-QAM can be generated 

based on these modulators. These types of linear amplification using nonlinear components 

(LINC) transmitters are very popular in wireless communications [105].  

     
   

 
[ 

  
  
    

  
  
  ] (7.1) 

   is the voltage to provide a   phase shift of each phase modulator. The MZM can operate 

as a phase modulator for      . So, any quadrature signals can be generated by choosing 

   and    properly. The normalized form of input and output relationship of (equation 7.1)  

     
    

 
[         ] (7.2) 

where     
  

  
  and      

  

  
. The difference between the two vectors in the circle have 

a radius of    ⁄      
 
and the output electric field is     

 
. The M-ary signal constellation 

can be represented as complex numbers of 

      
                                            (7.3) 

The maximum amplitude is         {            } and the two phases of [106] are 
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            (
  

    
) (7.4) 

and 

            (
  

    
)      (7.5) 

Figure 7.1 shows the corresponding phases     and     of all 16 points according to the 

separation of 16-QAM constellation. Instead of representing all 16 constellation points in 

the same figure, Figure 7.1 separates the 16-QAM signal into two QPSK and one 8-PSK 

signals. From Figure 7.1, the generation of a 16-QAM signal using a dual-drive MZM 

requires a 16-ary driving signals and thus a big electrical effort to enable the simplicity of 

the optical part. 

 

Figure 7.1: Square 16-QAM transmitter using single DDMZM. 

7.1.2 Serial configuration  

Another transmitter configuration with only two consecutive optical modulators capable to 

generate any QAM constellation is shown in Figure 7.2. This coherent optical transmitter 

is called serial configuration [45].  

 

Figure 7.2: Serial square 16-QAM transmitter contains a MZM and a PM in series. 

The MZM is used to adjust the amplitude and the PM to set the phase. This modulator has 

a simple optical part but necessitates very complicated drive circuits for the electrical part, 

since 3 amplitude levels and 12 electrical driving signals are needed for the phase 
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modulation for 16-QAM. Again the complexity to generate multilevel driving signals is 

one of the difficulties for practical implementation especially for high data rates. 

Therefore, this type of transmitter is not helpful for square 16-QAM. 

7.1.3 Pure IQ transmitters  

To reduce the complexity of electrical driving circuits a pure IQ transmitter (or 

conventional IQ setup) can be used, where number of electrical states of the driving signals 

is much lower as shown in Figure 7.3. In [45], it was shown that in pure IQ transmitters 

there will be symbol transitions through zero in the constellation diagram. If we consider 

chirp, the best transmission setup will be a conventional IQ transmitter, where chirp and 

normalized intensity is comparatively small. The chirp characteristics of the other 

transmitters are more disadvantageous because chirp appears simultaneously with high 

power levels. For that reason the common IQ transmitter is used here.  

 

Figure 7.3: Conventional IQ setup. 

7.2 Electrical binary drive signals  

To generate square 16-QAM with electrical binary drive signals, a combination of multiple 

optical modulators can be used. 

7.2.1 Monolithically integrated IQ-modulator 

A 16-QAM transmitter using a monolithically integrated IQ-modulator was tested by [45, 

107]. Figure 7.4 shows that the optical 16-QAM signal could be synthesized by addition of 

two mutually orthogonal and independent signals encoded as four-level amplitude-shift 

keying (4-ASK). The monolithically integrated IQ-modulator consists of four sub-MZMs 

arranged within an IQ superstructure [107], where each arm contains two sub-MZMs 

which are cascaded in series, cf. Figure 7.4 (right). Another option is by replacing one 

MZM in each arm with a PM [45] cf. Figure 7.4 (left). The two streams will be combined 
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by quadrature addition of the optical fields to generate a 16-QAM signal. The 

monolithically integrated IQ-modulator has a simple bias control, stable performance, and 

is easy to fabricate. 

 

Figure 7.4: IQ-setup with MZM and PM (left), quad mach-zehnder IQ modulator (right). 

7.2.2 IQ-modulator with PM in serial setup  

The diagram of this scheme is shown in Figure 7.5, which consists of a DPMZM followed 

by a PM [108]. The structure of the transmitter can be divided into two stages. In the first 

stage, both sub-MZMs of the DPMZM are biased at a quadrature point and driven by U1 

and U2 with the same amplitude to generate two 2ASK signals with equal ER. By adjusting 

the bias of main MZM, the two ASK signals achieve a 90° phase difference and are then 

combined to obtain an offset QPSK signal with its origin biased in the first quadrant, as 

shown in Figure 7.5. In the second stage, the generated offset QPSK signal is further 

QPSK modulated by a PM, which is driven by a 4-level electrical signal to realize square 

16-QAM signal. 

 

Figure 7.5: Serial square 16-QAM transmitter, DPMZM and PM in series.  

7.2.3 Triple cascaded modulators 

Another transmitter also requiring electrical binary drive signals to generate square 16-

QAM is shown in Figure 7.6. By this scheme, three cascaded modulators are used [109–
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111]. The MZMs within the IQ-modulator achieve a modulation within the first quadrant, 

while the two consecutive PMs apply phase shifts of   and   ⁄ , respectively. The driving 

voltages for the three cascaded modulators can be optimized to reduce the influence of the 

modulation bandwidth limitation. In [109], it was shown that this scheme shows more 

inter-symbol interference comparing to single-IQ-modulators. It also indicates that the 

discrete transmitter schemes, especially the triple cascaded transmitter, are more sensitive 

to bandwidth limitations of the electronics. One benefit of this transmitter is the possibility 

of inserting an amplifier in-between the stages. 

 

Figure 7.6: IO-modulator followed by: two consecutive PMs (left), MZM and PM(right).  

7.2.4 Serial combination of DDMZM and DPMZM 

This transmitter scheme is based on a combination of a DDMZM and a DPMZM with 

electrical binary drive signals, as depicted in Figure 7.7. The two arms of DDMZM are 

independently driven by two different binary data, and consequently, the DDMZM 

produces an offset square 4-QAM of the 16-QAM constellation. This 4-QAM signal is 

then switched over the other quadrants by a typical QPSK modulation scheme using the 

following DPMZM, resulting in 16-QAM [112]. Each modulator is driven by electrical 

binary data (     ) where             denote the binary data values between     and 

    , and       represent their amplitudes. 4-QAM can be yielded in the first quadrant if 

the DDMZM driven with            , cf. Figure 7.7(bottom). Another solution to 

drive DDMZM by            , cf. Figure 7.7(top). In both cases the bias voltage of 

DDMZM is equal to      . This technique has a frequency chirp induced by DDMZM, but 

this impact can be removed if we use RZ pulse carving [112].  
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Figure 7.7: Serial combination of DDMZM and DPMZM. 

7.2.5 Two cascaded IQ-modulators 

A 16-QAM optical signal can be generated by two cascade IQ-modulators, driven by four 

separate binary electrical signals [109, 113]. A general scheme for the transmitter is shown 

in Figure 7.8. The two cascaded IQ-modulators are cascaded without any relative phase-

stability control. Each IQ-modulator has a nested MZM structure, with an MZM on each 

arm. Each MZM is operated in push-pull and is designed to have zero chirps.  

 

Figure 7.8: Two cascade IQ-modulators.   

The transmitter adopts quadrant differential encoding and employs only two-level 

electrical driving signals. The input sequence of binary data at a bit-rate of    is converted 

to four binary sequences at     , and these are subsequently encoded to obtain the four 

binary sequences to form the sequence of symbols to be transmitted out of the 16-QAM 

constellation. This optical modulation scheme is effective for the implementation of 

quadrant differential encoding; also it has some other interesting characteristics. The two 

cascaded IQ-modulators are completely independent, meaning that they can be either 

integrated on a single chip or separated since relative phase stability between them is not 
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required. This scheme has more inter-symbol interference comparing to single IQ-

modulator [109]. 

7.2.6 Conventional dual-drive IQ-MZM 

This 16-QAM optical transmitter can be categorized into two types. In the first type, each 

DDMZM in the optical modulator is driven by two binary electrical signals with different 

amplitudes [114] as shown in Figure 7.9(left). To generate square 16-QAM, four 

equidistant and collinear signal points should be generated in parallel with the axis both in 

the I and Q arm. The MZM operate in push-pull mode and are biased at the null point. 

Figure 7.9(right) shows the second type, where an unbalanced power splitting ratio of each 

input coupler of the two MZMs (one placed on the I arm, the other placed on the Q arm) is 

optimized to allow for offset-free 16-QAM generation from four equal amplitude binary 

signals [115]. Four equal amplitude binary signals are applied to generate a square 16-

QAM constellation. The structure is similar to the first type, but with a fundamental 

difference in the design: The splitter of the first and the second DDMZM is designed to be 

unbalanced, with a power-splitting ratio equal to      , corresponding to an amplitude 

ratio of  . Due to the unbalanced splitter, the optical field propagating in the first arm will 

be twice in amplitude with respect to the optical field propagating in the second arm. Later, 

I and Q arms will produce a four-level amplitude and PSK (4-APSK) constellation. 

 

Figure 7.9: Single dual-drive IQ-modulator.  

7.2.7 Quad-parallel MZM setup 

Another transmitter also requiring electrical binary drive signals for square 16-QAM is 

denoted as quad-parallel MZM transmitter [116, 46]. Square 16-QAM can be realized from 

two QPSK signals with different amplitude, as shown in Figure 7.10. The large amplitude 

QPSK determines the quadrant where the symbol is mapped, while the small-amplitude 
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QPSK fixes the position of the mapping within the quadrant. After combining the QPSK 

signals, the output of the      coupler shows totally 16 symbols which are mapped with 

equal spacing in a constellation map. The authors in [109] investigate between three types 

of modulators which use electrical binary drive signals: the quad-parallel MZM, the two 

cascade IQ-modulators and the three cascade modulators. They compared the constellation 

diagrams of these schemes and show that the quad-parallel MZM transmitter has the best 

performance, and the largest penalty was observed for the case of the triple-cascaded 

modulators scheme. Also they show that the constellation with two cascaded IQ-

modulators has worse performance than the quad-parallel MZM setup, but on the other 

hand, it outperforms the triple-cascaded modulators scheme, regarding tolerance to 

modulation bandwidth limitations and chromatic dispersion.   

 

Figure 7.10: Quad-parallel MZM setup. 

7.2.8 Simple optical signal generator 

In this simple scheme, a delay interferometers (DI) is used to generate square 16-QAM, as 

shown in Figure 7.11. Firstly, the IQ-modulator is used to generate DQPSK, and then the 

signal is launched into a     DI, which consists of two     couplers, a phase shifter 

and a delay line [117]. The power splitting ratios of the first and second coupler of     

DI are adjusted to      (amplitude ratio of the optical signals in upper and lower arm 

becoming    ) and    , respectively. The optical signal in the upper arm is introduced a 

    phase shift, while the optical signal in the lower arm is delayed for   bits. A 16-QAM 

signal is yielded after the second coupler. 

 

Figure 7.11: Square 16-QAM transmitter.  
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