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Zusammenfassung

Quantenpunkte (QDs) sind Halbleiter-Nanostrukturen mit atomartigen optischen
und halbleiterspezifischen elektronischen Eigenschaften. Die einzigartigen physika-
lischen Eigenschaften und potentielle Anwendungen, wie etwa in Quanteninfor-
mations und Festkörperlaseranwendungen, machen Quantenpunkte seit der ver-
gangen 20 Jahre zum Gegenstand der Forschung. Quantenpunkte in optischen
Resonatoren erfahren erhöhte Licht-Materie Wechselwirkung und eignen sich de-
shalb hervorragend für quantenelektrodynamische Experimente in Festkörpern.
Zu den neuen Anwendungsgebieten zählen auch schwellenlose Quantenpunktlaser
und Einzelphotonenquellen.

Es wurden viele Mikroresonator-Geometrien vorgeschlagen und untersucht, hi-
erbei stellte sich heraus, dass 2D photonische Kristall-Resonatoren am Erfolg ver-
sprechendsten sind. Sie besitzen sowohl sehr hohe Q-Faktoren als auch kleine
Modenvolumen im Bereich der Lichtwellenlänge (λ/n)3 und lassen sich leicht und
kompatibel mit der monolithischen on-chip Integration herstellen.

Die vorliegende Arbeit behandelt das Design, die Herstellung und Charakter-
isierung photonischer Kristall-Resonatoren mit eingebetteten InGaAs QDs. Der
Schwerpunkt liegt auf der Untersuchung der H2 Kavität, die durch Entfernen von
sieben Löchern im Zentrum eines hexagonalen 2D photonischen Kristalls gebildet
wird. Zusätzlich wurden andere Resonatortypen, wie H1, L3 und L5 behandelt.
Zur Optimierung der Güte und Berechnung der Modenverteilung wurde die Finite-
Differenzen-Methode im Zeitbereich (FDTD) angewandt. Es konnte bestätigt wer-
den, dass geschicktes Verzerren der Kristallstruktur um den Resonatrodefekt den
Q-Faktor sehr stark erhöhen kann.

Die QD-Proben wurden mit Molekularstrahlepitaxie gewachsen. Anschließend
wurden photonische Kristalle mit Hilfe von Elektronenstrahllithografie und reak-
tivem Ionenätzen hergestellt. Der Fertigungsprozess wurde für GaAs photonische
Kristall-Resonatoren hoher Qualität entwickelt und optimiert.

Die Proben wurden mit der Photolumineszenz Methode bei kryogenen Temper-
aturen charakterisiert. Mit Hilfe polarisationsabhängiger Messungen konnten Res-
onatormoden anhand der Simulation identifiziert werden. Die experimentellen und
theoretischen Ergebnisse stimmen gut überein. Abschließend wurden p-Schalen
Rabi-Oszillationen am Quantenpunkt im photonischen Kristall-Resonator unter-
sucht.





Abstract

Semiconductor nanostructures, known as quantum dots, have been extensively
investigated in the last two decades due to their interesting electronic and optical
properties. The importance of these systems comes from not only their exciting
physics, but also the potential applications in interdisciplinary fields like quantum
information processing and solid-state lasers. Incorporation of quantum dots in
optical cavities enhances light-matter interaction, and therefore allows for cavity
quantum electrodynamics experiments in solid-state systems. It will also possibly
lead to new applications as thresholdless lasers and quantum information devices.

So far, many types of cavities have been introduced. Among them, 2D photonic
crystal cavities are considered to be the most promising systems. They support
high quality factor and very small mode volume, i.e., comparable with the wave-
length of light (λ/n)3. Moreover, owing to their planar nature, they are easy to
fabricate and compatible for monolithic on-chip integration.

This thesis discusses the design, fabrication, and characterization of photonic
crystal cavities with embedded InGaAs quantum dots. Cavities with different
geometries are investigated, including H1, H2, L3 and L5. The main focus is on
H2 type, consisting of a defect formed by omitting seven air holes in the center of a
triangular lattice. The design and simulation of the cavities are performed by using
the Finite-Difference Time-Domain method. It is found that by engineering the
air holes surrounding the cavity, the quality factor can be increased significantly
by the gentle mode confinement method.

The quantum dot samples are grown by using molecular beam epitaxy tech-
nique. Then, the photonic crystals are produced by using electron beam lithogra-
phy and etching techniques. The fabrication process is developed and optimized
in order to obtain high quality GaAs photonic crystal membranes.

The cavities are characterized by using photoluminescence technique at low
temperature. Polarization-dependent measurements are also performed in order to
identify the cavity modes. The results are in good agreement with our theoretical
calculations. Finally, the p-shell Rabi oscillations of a single quantum dot in a
modified H2 photonic crystal cavity are investigated.
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Chapter 1

Introduction

The interest in the study of the physical properties of low-imensional semiconduc-

tor structures is driven by their unusual properties that are promising for appli-

cations in interdisciplinary fields. In the beginning of 1970s, the progress in the

semiconductor technology allowed the production of semiconductor heterostruc-

tures, known as quantum wells (QWs) [1]. In such structures, the charge carriers

are confined in a two-dimensional plane. The confinement results in new funda-

mental effects, for example the discovery of the integer quantum Hall effect [2].

Nowadays, QWs are widely used in many optoelectronic devices, like diode lasers

and infrared photodetectors.

By shrinking the size of crystalline semiconductor in all three dimensions, the

charge carriers are completely confined, and we obtain the so-called quantum

dots (QDs). The most prominent technique for fabricating these systems is self-

assembled epitaxial growth. The complete confinement leads to the characteristic

δ-like density of states, making QDs interesting from both a basic physics and

an application point of view. For fundamental research, QDs are attractive sys-

tems since they allow investigation of few-particle interactions. Concerning the

application, QDs have been proposed for many applications, like QD-based lasers

[3], single photon emitters [4, 5], and quantum information processing, including

quantum computing [6], quantum cryptography [7], and quantum teleportation

[8].

Owing to the high refractive index of the host material surrounding the QDs, the

light extraction efficiency is very low. This in not advantageous because for many

applications, like in lasers and single photon emitters, high extraction efficiency

is needed. Fortunately, the extraction efficiency can be enhanced by embedding

QDs in photonic nanowires [9] or in optical cavities [10] like micropillars [11, 12],

microdisks [4], and 2D photonic crystals (PhCs) [13, 14]. Among optical cavities,

2D PhCs are considered as the most attractive systems since they offer very small
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mode volumes (Vm) and high quality factors (Q). Moreover, their planar feature

enables the fabrication by utilizing the well-established fabrication processes, and

make them compatible for monolithic on-chip integration [15–17]. In addition,

metal pads can be easily introduced in PhCs for electrical control [18, 19].

Photonic crystals [20–24] are systems in which the dielectric constant is modu-

lated periodically on a length scale of the optical wavelength, resulting in a pho-

tonic band gap. The cavity in such systems is formed by perturbing the periodicity

of the dielectric material.

The quality factor of PhC cavities can be significantly improved by properly

designing the neighborhood of the cavity without inducing a meaningful increase in

the mode volume. Consequently, the ratio of Q/V is enhanced [25–31]. In addition

to their importance in potential applications, PhC cavities with embedded QDs

have allowed the observation of cavity quantum electrodynamics effects in solid-

state systems, like the Purcell effect in the weak coupling regime [13] and vacuum

Rabi splitting in strong coupling regime [32].

In this thesis, different types of photonic crystal nanocavities with embedded

InGaAs quantum dots are investigated. Chapter 2 provides a general overview of

quantum dots and the effect of embedding them in optical cavities. The basics of

photonic crystal cavities are introduced in Chapter 3. In Chapter 4, the fabrication

process of photonic crystal membrane structures is described. Chapter 5 includes

the experimental setup used for optical characterization in this work. Chapter

6 is devoted to the discussion of H2 cavity design, improvement of Q-factor and

characterization. The simulations for the photonic crystal cavities are performed

by using the Finite-Difference Time-Domain method, while photoluminescence

technique is used for the characterization. Chapter 7 investigates the p-shell Rabi

oscillations of a QD exciton in photonic crystal cavity, where the s-shell is near

to resonance with a cavity mode. Finally, Chapter 8 concludes the content of this

work and presents an outlook for possible future work.



Chapter 2

Semiconductor Quantum Dots:

An Overview

2.1 Introduction

Semiconductor quantum dots (QDs) [33–36] are nanostructures which confine

charge carriers in all three directions. This confinement results in discrete en-

ergy levels, similar to those of single atoms. Therefore QDs are frequently referred

to as artificial atoms. Typically, the dimensions of the QDs range from a few to

tens of nanometers. QDs are typically based on the use of direct bandgap mate-

rials, where the generated electrons and holes are both confined within the dot,

like InGaAs/GaAs QDs. This kind of dots is known as type-I QDs. In type-II

QDs, either the electron or the hole is confined in the dot, while the other carrier

remains in the barrier, like InP/GaAs QDs. In this type, usually the electrons are

located in the matrix near the interface to the QD, while the holes are confined in

the dot.

In the last three decades many types of QDs have already been developed. The

first and the most straightforward method to produce quantum dots was reported

by Reed et al. [37] in 1986. In this method, electron beam lithography technique

was used to define nano-patterns on a quantum well structure followed by reac-

tive ion etching. The advantage of this method is the ability to produce QDs with

predefined positions and dimensions. This ability is crucial for QDs device applica-

tions. The main disadvantage in the QDs prepared by this method is the relatively

small photoluminescence yield. This is due to non-radiative recombination centers

introduced in the dot structure during the fabrication process.

Currently, there are various methods to produce QDs such as naturally formed

quantum dots [38], colloidal nanocrystals [39], electrically gated QDs [40], and self-

assembled quantum dots [41–43]. The latter is considered as the most promising
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for technological applications due to the quasi-perfect crystal structure of the

obtained QDs and their excellent optical activities. Figure 2.1 shows images of

different QD systems. As only self-assembled QDs have been investigated in this

thesis, this chapter includes the properties of this type.

(a) (b) (c)

2.5 5.0 7.5

µm
0

0

10.0

7.5

5.0

2.5

10.0

Figure 2.1: (a) SEM image of a gate defined QD [40]. (b) AFM micrograph of self-
assembled QDs [44]. (c) AFM micrograph of QDs grown epitaxially on a pre-patterned
substrate [45].

2.2 Growth of Self-Assembled Quantum Dots

In self-assembled QDs (SAQDs), the dots are formed during Stranski-Krastanov

(SK) growth mode [46] of a material on a crystalline substrate. When growing

SAQDs, one has to consider the following. The material from which QDs will be

produced must have a band gap smaller than that of the host material, while the

lattice constant has to be larger.1 The material deposition is achieved by one of

the epitaxial growth techniques, such as molecular beam epitaxy (MBE) or metal-

organic chemical vapor deposition (MOCVD).2 For research intentions, MBE is

normally used owing to its flexibility. On the other hand, the MOCVD technique

is favored for production purposes due to its faster growth process and the ability

to grow uniform films over large substrate areas.

Initially, the lattice constant of the deposited material changes to accommodate

to the lattice of the substrate. This introduces a strain in the deposited layer,

known also as the wetting layer. With increasing the layer thickness, the strain

energy increases until a critical thickness is reached, then it becomes favorable to

relax the strain by forming three dimensional islands, i.e., quantum dots. Later,

the dots are overgrown by the host material to passivate their surfaces and ensure

optimal electronic and optical properties. Figure 2.1(b) shows a typical atomic

1 Usually, the lattice mismatch is a few percent. For example, it is about 7% for InAs/GaAs
and 3% for InGaAs/GaAs

2 In this thesis, the QDs are grown by MBE.
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force microscope (AFM) image of self-assembled InGaAs/GaAs QDs grown by

MBE technique.

Typical InGaAs dots grown on GaAs via SK growth mode have lateral width of

about 25 nm, height of a few nm, and density of 1× 109 − 1× 1011 per cm2. The

size and density of dots can be controlled by controlling the growth conditions.

The most crucial growth parameters are the temperature of the substrate, the

layer thickness, the material deposition rate, and the composition. Depending

on the growth conditions, SAQDs can be grown into different geometries like

pyramids [47], disks [48] and lens-shape [49]. The latter is the most commonly

grown geometry.

The small size and high density of the SAQDs, aside from the perfect crystal

structure, are the main useful characters of this type of nanostructures. An im-

portant advantage of this method is the ease of fabrication, since the growth of the

dots is a natural process with no need for additional processing like lithography.

The main disadvantages of SAQDs are the inherent fluctuation in the QD size and

the random distribution of the dots.

The former results in emission at different energies, and consequently in what

is called inhomogeneous line broadening. Hence, the full width at half maximum

(FWHM) of the photoluminescence spectrum of a QD ensemble gives an indication

about the homogeneity of the dots. The more homogeneous the size, the narrower

the FWHM. The non-uniformity in the dot size is an unavoidable issue. It is

only weakly dependent on the fabrication method of QDs. For a typical SAQD

ensemble, the inhomogeneous broadening linewidth is 10-100 meV.

Concerning the random spatial distribution, which is crucial for QD-device

applications, various attempts have been devoted to achieve site control of SAQDs.

An epitaxial growth on a pre-patterned substrate surface has been shown to be

the most promising (see Fig. 2.1(c)) [45]. Another approach is to use a focused

ion beam (FIB) to define shallow holes on a substrate followed by epitaxial growth

of the dot material [50]. Details of these methods are beyond the scope of this

thesis, therefore they will not be discussed here.

2.3 Quantum Confinement

In bulk semiconductor crystals, the charge carriers move freely in all three direc-

tions. Their de Broglie wavelength (λde) is given by

λde = h/
√

3m∗e,hkBT , (2.1)



6 Chapter 2 Semiconductor Quantum Dots: An Overview

where h and kB are the Planck’s and Boltzmann’s constants, m∗e,h is the effective

mass of the charge carriers, and T is the absolute temperature. If one or more of

the dimensions of semiconductor crystal is limited to a length scale of the order

or less than λde, the motion in that direction will be quantized. This phenomenon

is known as the quantum confinement . A one dimensional confinement potential

produces quantum well (QW), while quantum wire (QWR) is achieved by two

dimensional confinement. The confinement in all directions results in the formation

of QDs.

From equation (2.1), it is clear that quantum confinement depends on the ef-

fective mass of the charge carriers and temperature. Usually, m∗e is much smaller

than the free electron mass me. For example, it is 0.06 me in GaAs. Thus, the

required length scale to observe quantum confinement effects at room temperature

is about 10 nm. Usually, spectroscopic measurements on QDs are performed at

low temperature (several K) to avoid the thermal excitation of electrons. At low

temperature, the quantization can be observed for a larger length scale (up to 100

nm).

As a consequence of the quantum confinement, the density of states (DOS) is

affected to a great extent, as illustrated in Fig. 2.2. The DOS for bulk semicon-

ductor is proportional to
√
E, while it is a step function for QW, and proportional

to 1/
√
E for QWR. For QDs, the DOS consists of a series of δ-functions, like those

for atoms. This is one of the most attracting peculiarities of QDs. Owing to the

discrete nature of the DOS, lasers based on QDs [51] are expected to have weaker

temperature dependence in comparison to QW lasers.

Figure 2.2: Schematic representations (top) and density of states in the conduction
band (bottom) for semiconductor bulk (3D), quantum well (2D), quantum wire (1D),
and quantum dot (0D). After [34].
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2.4 Energy States in Self-Assembled Quantum

Dots

Along with the advances in the growth of SAQDs, last decades have witnessed

development of sophisticated techniques that allow for measurement of the optical

and electronic transport properties of these QDs. To understand the physics and

to explain the experimental observations in terms of the underlying energy states

of the QDs, theoretical models are needed. An exact theoretical calculation of the

energy states in SAQDs is a challenge, because slight variations in QD geometry

and confinement potential strongly affect these states. Even for the same geometry,

the small fluctuations in size and composition affect the confinement potential. So,

all of spectroscopic investigations of single QDs suffer from exact comparison with

the real parameters. Fortunately, various models succeeded in obtaining results

that are in a good agreement with the experimental measurements. As discussed

in Section 2.2, SAQDs can be grown in different geometries like pyramids, disks

and lens-shape. Only the latter will be discussed here as it is the most common

geometry and the only one investigated in this work.

In lens-shaped SAQDs the height in the growth direction z is significantly

smaller than the lateral dimension xy , thus the confinement in the z direction

is much stronger. Consequently, the quantization energies in z direction are large

enough so that only the lowest subband (ground state) needs to be considered,

while higher subband (excited states) can be neglected. On the other hand, the

lateral confinement of the charge carriers in the in-plane (xy) is much weaker and

determines the shell structure of the dot. Thus, SAQDs can be considered as

quasi two dimensional systems. It was found that energy states in SAQDs can be

understood by considering an effective parabolic potential in the in-plane and a

box-like along the growth direction [52, 53].

Considering a general case, with an external magnetic field B applied normal

to the plane of the dot, the single-particle levels for electrons correspond to the

levels of two-dimensional harmonic oscillators [53]3:

Ee
mn =~ [Ωe

+(n+ 1/2) + Ωe
−(m+ 1/2)], (2.2)

where m and n are the quantum numbers of the two harmonic oscillators rep-

resenting the corresponding eigenstates |mn〉. The frequencies of the oscillators

3 Here, the potential in the xy plane is assumed to be symmetric, while in reality it is not.
This asymmetry leads to the fine structure splitting in the energy levels and equation (2.2) can
be written as [54]: Enx,ny (δ) = ~ω [(n + 1/2)

√
δ + (m + 1/2)/

√
δ], where the ratio δ = ωx/ωy

defines the asymmetry of the lateral confinement potential.
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are given by Ωe
+/− = (

√
ω2
c + 4ω2

o ± ωc)/2, where ωc = eB/(m∗c) is the cyclotron

frequency, B is the external magnetic field, c is the speed of light, m∗ and e are

the effective mass and the charge of an electron, respectively. In the absence of a

magnetic field, where Ωe
+ = Ωe

− = ωo is valid, the energy levels are 2(N + 1)-fold

degenerate4, with the principal quantum number N = n+m = 0, 1, 2, ... . The fac-

tor 2 comes from the spin degeneracy. Thus, fully occupied shells can be reached

for occupancies of 2, 6, 12, 20, ..., where the s-shell is filled with two electrons (spin

up and spin down), p-shell with four electrons, and so on.

Similarly, the energy levels of the holes can be obtained by replacing the electron

frequencies Ωe
+ with the hole frequencies Ωh

+ (ignoring the semiconductor gap) in

equation (2.2). The angular momentum is given by: Lmn = ±(m − n), where

the plus and minus signs are for electrons and holes, respectively. In analogy to

atomic physics, levels with total angular momentum L = |m− n| = 0, 1, 2, ... are

labeled as s , p, d , ... shells, respectively. The optical interband transitions are

allowed only for electrons and holes with the same quantum numbers n and m, as

illustrated in Fig. 2.3.

s-shell
p-shell
d-shell

VB

CB

m+n=0
m+n=1
m+n=2

s-shell
p-shell
d-shell

VB

CB

m+n=0
m+n=1
m+n=2

s-shell

p-shell

d-shell

m+n=0

m+n=1
m+n=2

VB

CB

m+n=0

m+n=1
m+n=2

10 01

00

00 (mn)

10 01

00 (mn) s

s

p

p

10 01

00

00 (mn)

10 01

s

s

p

p

10 01

00

00 (mn)

10 01

00 (mn) s

s

p

p

Figure 2.3: Scheme of the s- and p-shell in a QD. The vertical arrows indicate the
allowed interband transitions.

2.5 Few Particle States in Self-assembled Quan-

tum Dots

As discussed in the last section, QDs have energy levels (shells) analogous to real

atoms. Depending on the given confinement potential, different numbers of shells

are observable in the QD. In all InGaAs/GaAs QD samples studied in this work,

the confinement potential is weak due to the relatively low band gap offset between

4 For a strong magnetic field (ωc >> ωo), the degeneracy breaks and the energy levels are
separated by the cyclotron energy ~ωc ≈ ~Ωe

+ .
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the QD and host material. Thus, usually only s- and p-shell are present. Owing

to the compressive strain in the dot structure of SAQDs, the heavy and light holes

(HH and LH) are splitted at the Γ-point (k = 0) by several tens of meV. Thus,

only HH states are relevant for the lowest energy levels of a QD, while LH states

lie in the continuum and can be neglected within the scope of this work.

Normally, QDs are unoccupied (empty) at low temperature, i.e., there are no

electrons in the conduction band shells. Charge carriers can be generated in the

dot for example by photoinduced process or by charge injection.

The most basic occupancy is the ground state exciton (X ).5 It is the lowest

possible energy state formed by an electron-hole pair in the s-shell of the conduc-

tion and valence bands, as illustrated in Fig. 2.4(a). In comparison with bulk, the

exciton binding energy in a QD is significantly enhanced (up to five times larger

as reported in M. Bayer et al. [55]) due to the stronger Coulomb interaction of the

electron-hole pair. Excitons in QDs are of great interest as they can be treated as

two-level systems, whose state can be set by resonant optical pulses [56].
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Figure 2.4: Schematic illustration of different QD occupations: (a) exciton (X ), (b)
biexciton (2X ), (c) p-shell exciton (Xp), (d) negatively charged exciton (X−) and (e)
positively charged exciton (X+).

An exciton can also be created in the excited states by resonant excitation, for

instance in the p-shell (Fig. 2.4(c)). In this case, the exciton will rapidly relax

into the ground state (X ) on a ps time scale, before it recombines and emits a

photon. Thus, it can be utilized as a single photon source [57]. This case will be

discussed in Chapter 7.

If two excitons are captured in the dot, we get a biexciton (2X ) (Fig. 2.4(b)).

The biexciton emission energy is red shifted with respect to the exciton emis-

sion by the biexciton binding energy. This is generally true, but in some cases

biexcitons are unbound and their energy are larger than that of the exciton [58].

Typical values for the biexciton binding energy in InGaAs QDs are 2-3 meV. The

emission intensity of the biexciton transition exhibits a quadratic dependence on

5 For simplicity, the ground state exciton is abbreviated to exciton.
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the excitation power, whereas the emission intensity of the exciton recombination

depends linearly.

Besides neutral excitons (X and 2X ), charged excitons can also be present in

QDs. Figures 2.4(d) and (e) show illustrations of a single negatively and positively

charged excitons, respectively. In comparison with ground state exciton, the for-

mer has a lower transition energy (∼ 5 meV), while the latter has a higher energy

(∼ 3 meV). This shift is due to the modified few-particle Coulomb interactions

(e-e repulsion and e-h attraction).

For above band gap excitation, the number of the created excitons in the dot can

be controlled by the optical excitation density (P ). For weak optical excitation

(P = 0.1 W/cm2), each QD captures at maximum one exciton at a time (each

exciton recombines before the capture of the next one). Since the relaxation times

to the ground state (s-shell) are much shorter than the radiative time, almost

all excitons relax to the s-shell before the recombination, and a single peak is

observed in the PL spectrum. For high excitation power (100P ), more excitons

are captured in the dot and thus higher shells (p, d, f) are filled. Consequently,

besides the ground state emission, peaks with higher energy appear in the PL

spectrum.

For optical dipole transitions, the selection rule is given by ∆l = ±1. The total

angular momentum for the heavy hole band and conduction band are j = 3/2

(mj = ±3/2) and j = 1/2 (mj = ±1/2), respectively [58]. The optical interband

transitions are only allowed between levels with the same angular momentum

(∆m = ∆n = 0), as illustrated in Fig. 2.3. Considering the electron and hole

spin, the transition is optically allowed only for configurations where the resulting

total spin of the electron and hole is ±1, while it is forbidden for total spin of

±2. The former is called bright exciton and can be generated by circular polarized

light, while the later is referred to as dark exciton as it cannot couple to light.

2.6 Electric Field Effects: Quantum Confined

Stark Effect

The response of the eigenstates of low dimensional semiconductor structures to a

static electric fields is described by what is called quantum confined Stark effect

(QCSE). This is a well-known effect in quantum wells [59, 60], quantum wires

[61, 62], as well as quantum dots [63–65]. Here, we consider only the effect of

electric field on QDs.

The energy shift is dependent on the orientation of the electric field. As men-

tioned above in Section 2.4, the dot height in SAQDs is much smaller than its
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lateral extension. Hence, the response of the eigenstates to lateral electric fields

is expected to be much higher than vertical ones. However, the electric field is

usually applied in the vertical direction due to simplicity. Here, only the influence

of electric fields applied in the vertical direction (z ) of the QDs is discussed.
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Figure 2.5: Schematic presentation of the quantum confined Stark effect (QCSE). The
transition energy of the exciton is decreased and the overlap between the electron and
wave function is reduced.

For low electric fields, the energy shift ∆E of the QD eigenstates exhibits a

quadratic dependence on the applied electric field F :

∆E = µelF + αF 2, (2.3)

where µel and α are the permanent dipole moment and the polarizability, respec-

tively [66]. For high electric fields, the displacement of the dipole moment is

limited by the size of the QD. Therefore, the energy shift shows a linear behavior

with increasing electric field. Despite being simple, this approximation (equation

(2.3)) describes the behavior of the QCSE very well. For a more accurate descrip-

tion, the reduction of the Coulomb interaction (due to the increased electron-hole

separation) and the change of the quantization energy have to be considered.

The QCSE allows for a fine and very accurate tuning of the transition energy

with an accuracy better than 1 µeV. This kind of tuning is important for example

to bring the exciton transition energy into resonance with a cavity mode [18].

At low electric fields (∼ 30 kV/cm for InGaAs used in our group), the optical

recombination processes are dominant so that the QCSE can be observed by the

photoluminescence measurements. At higher fields, the photoluminescence signal

vanishes since the tunneling probability of the charge carriers out of the dot in-

creases. Alternatively, the transition energy of the exciton can be measured then

by photocurrent spectroscopy [67].
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2.7 Quantum Dot Spectroscopy

2.7.1 Photoluminescence Spectroscopy

Photoluminescence (PL) spectroscopy is the most common technique used to char-

acterize QDs. Since the PL spectra give a wealth of information, especially when

performing measurements at different temperatures or with different excitation

intensities, this is the first step in the studies of QDs. In a PL experiment, a

laser of an appropriate energy generates electron-hole pairs above the bandgap of

the host material surrounding the QDs. Subsequently, these pairs relax into the

discrete levels in the QD within a ps time scale, and then recombine radiatively

by spontaneous emission with a typical lifetime of about 1 ns.

As discussed in Section 2.2, the small fluctuation (inhomogeneity) in the size

and compositions of SAQDs give rise to inhomogeneous broadening. Thus, QD

ensembles always exhibit relatively broad PL spectra. Typically, the full width at

half maximum (FWHM) of the optical emission of the ground state transitions of

an InGaAs QD ensemble is about 100 meV.6 Figure 2.6(a) shows a photolumines-

cence spectrum of an InGaAs ensemble measured at 4.2 K with FWHM of about

50 meV. Usually, PL measurements are performed at low temperature to avoid

thermal excitation.
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Figure 2.6: Photoluminescence spectrum of (a) an InGaAs QD ensemble, and (b) a
single InGaAs QD.

6 Narrower inhomogeneous linewidth down to 18.4 meV have been achieved for InGaAs QDs
[68].
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The PL spectra of single QDs consist of very sharp lines associated with each

dot, with typical linewidths of a few µeV. These lines are attributed to the ground

state exciton and higher occupied states as discussed in Section 2.5.

The PL technique has also some drawbacks. For example, as it relies on off-

resonant excitaion, it cannot be used for coherent experiments. Moreover, due

to the fast relaxation process into the ground state, the luminescence of an ex-

cited state of a single QD can be observed only if the ground state is occupied.

Instead, higher energy states can be investigated by using absorption techniques

like photoluminescence excitation (PLE) and photocurrent spectroscopy. In these

experiments, the bare energy levels of an empty QD can be determined without

renormalization of the energy levels due to few particle interactions [69].

In the PLE technique, the luminescence intensity is detected at the exciton

ground state, while the energy of the excitation laser is scanned through the ex-

cited states. When the laser energy is on resonance with a higher exciton state,

an exciton will be generated and then relaxes into the ground state where it re-

combines.

2.7.2 Photocurrent Spectroscopy

Photocurrent (PC) spectroscopy is an absorption technique used to characterize

QDs. The high resolution and the coupling of the QD states to electrical signal are

the main advantages of this method. Moreover, resonant optical excitation can be

used to investigate the ground state because the detection in the PC experiments

is done electrically, and thus stray light problems can be avoided (see Section

5.2). Owing to the technological difficulties to have an electrical access to single

QDs, the earliest photocurrent experiments on SAQDs have been performed only

on ensembles [70, 71]. Later, single QDs have been investigated via PC method

[67, 72].

For PC measurements, two contacts above and below the QD layer are needed.

This can be achieved by incorporating the QD into a photodiode structure (fre-

quently either an n-i -Schottky diode or a p-i-n diode). This allows for applying

an electric field and tuning of the transition energy via the QCSE, as well as PC

detection.

Figure 2.7 shows the band structure of an n-i -Schottky diode under reverse

bias.7 The QDs embedded in the intrinsic region above the highly n-doped back

contact. The AlGaAs barrier in the intrinsic region above the QDs is introduced

to prevent current flow and leakage in forward direction.

7 A reverse bias is used to ensure that no electrons tunnel from the back contact into the QD.
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Figure 2.7: Band structure of an n-i -Schottky diode with QDs embedded in the in-
trinsic region under reverse bias. Figure is modified from reference [44].

In PC measurements, the energy of a tunable laser is tuned to an energy slightly

lower (due to the QCSE) than the exciton transition energy which is already

measured by PL. The resonance condition is achieved by applying an appropriate

reverse bias voltage (electric field) and an electron-hole pair is created in the QD.

Depending on the strength of the applied field, the exciton can decay by either

radiative recombination or tunneling. At low electric fields, the radiative life time

is shorter than the tunneling time of the charge carriers out of the QD and hence

radiative recombination is the dominant decay mechanism. By increasing the

field strength, the confinement energy is reduced and the tunneling probability

increases. At a certain field (∼ 30 kV for InGaAs QDs), the tunneling time

becomes shorter than the radiative time and the tunneling decay is dominant.

Thus, each resonance of the laser energy with a QD level results in tunneling of

electron out of the dot, and subsequently an absorption peak appears in the PC

spectrum. The PC is detected by using a high resolution current measurements.

For an n-i -Schottky diode with a highly doped contact, the electric field can be

approximated to be linear as

F =
Vbuild−in + Vbias

dintrinsic
, (2.4)

where dintrinsic is the length of the intrinsic region and Vbuild−in and Vbias are the

build-in and bias voltage, respectively. For a GaAs Schottky diode Vbuild−in is
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typically in the range of ∼ 0.8 V and only weakly dependent on the metal used

for the contact. Electric fields |F | > 150 kV/cm can be applied before electrical

breakdown occurs in the reverse direction [44].

2.8 Quantum Dot as Two Level System

Two-level system is the most basic approximation used to investigate the inter-

action between light and QDs. Despite its simplicity, it can be used to explain

many of the quantum effects in QDs, like excitonic Rabi oscillations, single photon

emission, and cavity effects like vacuum Rabi plitting. If the investigaed system

includes many possible energy levels, only a specific transition is considered in

two-level approximation, while other possible transitions are neglected. In QDs,

usually the ground state exciton is treated as two-level system. Also, the p-shell

excitons can be treated as two-level systems, as the relaxation time to the s-shell

is extremely small (see Chapter 7).

The Schrödinger equation can only describe the pure states (no interaction

with environment), but in reality two-level system interacts with the environment.

The interaction leads to some effects like dephasing, which cannot be included in

the Schrödinger equation. The density matrix formalism allows for treating open

quantum systems (interact with environment) and describing the quantum state

of two-level systems.

The density matrix of a two-level system is a 2 × 2 Hermitian matrix with a

unit trace

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
. (2.5)

The diagonal terms ρ00 and ρ11 represent the population of the lower and upper

levels of the system, respectively. They are clearly real and satisfy ρ00 + ρ11 = 1.

The off-diagonal terms ρ01 and ρ10 define the coherence of the system; therefore

they are usually referred to as the coherence elements. They have non-zero values

only when the system is in coherent superposition states. These terms become

zero when the phase between the two-level system and the light field is lost. They

are generally complex and satisfy the relation ρ01 = ρ∗10.

The density matrix of a two-level system can be represented by Bloch sphere

(Fig. 2.8). The Bloch vector R = (u, v, w) can be written in terms of the matrix

density elements as:
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u = ρ01 + ρ10 = 2Re (ρ10) , (2.6a)

v = i (ρ10 − ρ01) = 2Im (ρ10) , (2.6b)

w = ρ11 − ρ00 , (2.6c)

where w corresponds to the population inversion of the system, u and v are the

dispersive and absorptive components of the dipole moment, respectively. For pure

states, the Bloch vector remains on the surface of the sphere with radius equal to

unity: u2 + v2 +w2 = 1, whereas it lies inside the sphere when damping processes

are present (mixed states).

w
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Figure 2.8: Bloch sphere representation of two-level system. The Bloch vector can
span the whole sphere by an appropriate pulse area Θ and detuning δ. Points on the
surface of the sphere correspond to pure states, while points inside the sphere represent
mixed states.

In the interaction picture, the time evolution equation of the density matrix is

given by the quantum Liouville equation

i~
∂

∂t
ρ (t) = [H (t) , ρ (t)] . (2.7)

Solving this equation for all terms of the density matrix by using dipole and

rotating-wave approximations, one obtains the so called optical Bloch equations in

terms of Bloch vector components [73]:
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u̇ = −δv , (2.8a)

v̇ = δu+ Ω0 (t)w , (2.8b)

ẇ = −Ω0 (t) v , (2.8c)

with Ω0(t) being the Rabi frequency which is given by

Ω0 (t) =
µE (t)

~
. (2.9)

As the Rabi frequency directly proportional to the electric field strength, the

QD exciton in optical cavities is expected to show a higher Rabi frequency in

comparison to bulk QD excitons.

At resonance (δ = 0), the probability to find an electron in the upper level of

a two-level system (or equivalently forming an exciton in a QD), is obtained by

solving the optical Bloch equations as8

ρ11 = sin2 (Ω0t/2) = sin2 (Θ/2) . (2.10)

Here, Θ is the pulse area representing the angle by which Bloch vector R is rotated

under application of an external field. Usually, pulsed lasers are used in coherent

experiments, therefore the electric field amplitude is time dependent and Θ is

defined as:

Θ =

∫ t

0

Ω(t)dt. (2.11)

For example, an exciton in a single QD can be prepared by a π-pulse, while a

2π-pulse returns the system into the ground state. To observe Rabi oscillations,

we need a control over the pulse area. The pulse area can be manipulated by

changing either the pulse length continuously or the intensity of the pulse. The

latter is usually preferred as it is much easier (see Chapter 7).

When the frequency of the laser is close to resonance (δ 6= 0), the transition

probability is modified to

ρ11 =
Ω2

0

Ω2
sin

2

(Ωt/2) , (2.12)

where Ω2 = Ω2
0 + δω2.

8 For the derivation see references [74, 75].
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Figure 2.9(a) shows Rabi oscillations for different values of detuning calculated

by using equation (2.12). It is obvious that the frequency of the oscillations in-

creases, while the amplitude decreases with increasing the detuning.

So far, we considered only an ideal case where the two-level system exhibits

no relaxation. In reality, two-level system is not isolated. It interacts with its

surrounding. The interaction leads to a disturbance in the phase coherence of the

system. These interactions can be classified into processes with energy relaxation

and phase relaxation. The former includes processes resulting in a change in

the population occupancy of the system, like optical recombination and phonon

emission (or absorption), and is characterized by the longitudinal lifetime (T1).

The latter corresponds to processes that change the phase of the induced dipole

moment of the system without changing its occupation, like elastic scattering with

phonons and charge carriers, and is characterized by the transverse lifetime (T2).

For SAQDs, the decay rate is dominant over the non-radiative decay due to

the quasi-perfect crystal structure of the dots. Thus, the latter can be ignored

and the decay rate is given accordingly by γrad = 1/T1. For coherent phenomena

like Rabi oscillations, the damping processes disturb the coherence of the system

manifested in a damped oscillation behavior. Even the population decay leads to

loss of the phase coherence since it undergoes a relaxation. Therefore, the total

dephasing rate can be written as

1

T2
=

1

2T1
+

1

T ∗2
, (2.13)

where T ∗2 is called the pure dephasing that corresponds to the phase decoherence

without changing the population. At low temperatures (a few K), there is no pure

dephasing for the QD exciton. Consequently, the last equation is reduced to

1

T2
=

1

2T1
, (2.14)

The homogeneous linewidth of the QD exciton transition can be written in

terms of T2 as

Γ = 2~/T2. (2.15)

Typical values for T2 are some hundreds of ps. Thus, to observe coherent

phenomena in QDs, like Rabi oscillations, a laser with pulse width much smaller

than the T2 is needed. Usually, ps lasers are used for this purpose. The lifetime

constant T2 can be measured by some techniques like quantum beat experiments

[76, 77] and four-wave mixing [78]. On the other hand, the ground state QD exciton
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Figure 2.9: Time evolution of the occupation probability of the upper level ρ11 for (a)
different values of detuning in terms of Rabi frequency (without damping), and for (b)
different damping rates (without detuning).
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has a typical value of T1 of ∼ 1 ns, which corresponds to a linewidth on the order

of µeV. The T1 lifetime can be measured by time-resolved PL measurements.

In order to see the effect of damping on the dynamics of two level system, the

relaxation terms T1 and T2 have to be included in the optical Bloch equations:

u̇ = −δv − u

T2
, (2.16a)

v̇ = δu+ Ω0 (t)w − v

T2
, (2.16b)

ẇ = −Ω0 (t) v − w − w0

T1
. (2.16c)

In this case, the occupation probability for the upper level is given by [74]:

ρ11 =
1

2 (1 + 2ξ2)

{
1−

(
cos Ώt+

3ξ

(4− ξ2)1/2
sin Ώt

)
e−

3γt
2

}
, (2.17)

where ξ = γ/Ω0 and Ώ = Ω0

√
1− ξ2/4.

Figure 2.9(b) shows Rabi oscillations for a two-level system in the presence

of damping according to equation (2.17). For weak damping (γ/Ω0 = 0.1), a few

damped oscillations are observed before reaching a limit where the probabilities for

the upper and lower levels are equal at high excitation intensities (ρ00 = ρ11 = 0.5).

For strong damping (γ/Ω0 = 1), Rabi oscillations are not observed anymore as

the coherence of the system is totally lost.

Please note that equation (2.17) is valid only when the electric field is assumed

to be time independent. In our experiments, the laser has a hyperbolic secant

envelope, and thus for an accurate description this has to be included in the

calculation.

2.9 Quantum Dots in Optical Cavities

Due to the large refractive index contrast between III-V semiconductors and air,

the extraction efficiency of light from QDs is very small. For example, the theoret-

ical calculations show that the extraction efficiency of QDs in GaAs is about 2%

[79]. The experimentally measured efficiency was shown to be even much lower,

only 0.01% [9]. This could hinder experiments on QDs or at least make it become

more difficult. Also, this limits potential applications that require high output in-

tensity like light emitting diodes (LEDs). Fortunately, embedding QDs in optical
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cavities can significantly increase the light extraction efficiency by forcing direc-

tional emission [29]. Also, this can find applications in low the threshold lasers as

the spontaneous emission which is not coupled to the cavity mode is strongly sup-

pressed [80]. Moreover, embedding single QDs in cavities allows the observation

of important cavity quantum electrodynamics (cQED) effects, like tailoring the

spontaneous emission rate (Purcell effect) in the weak coupling regime, and vac-

uum Rabi splitting in the strong coupling regime. These effects will be discussed

briefly in this section.

When studying the interaction between a QD exciton and the cavity field, there

are important time-scale parameters determining the strength of the QD-cavity

interaction to be considered. This includes the non-resonant decay rate of the QD

dipole γ, the cavity decay rate γcav, and the coupling rate g. The decay rate in

a cavity gives rise to a finite linewidth of the cavity mode (γcav = ∆ω = 1/τcav),

which can be expressed in terms of quality factor γcav = ω/Q. The exciton-photon

coupling constant g is given by:

g =
1

~
|〈d · E〉| , (2.18)

where d is the electric dipole moment of the QD and E is the magnitude of the

electric field at the dot position in the cavity [81]. By assuming that the QD is

located at the field maximum, we can express the coupling constant in terms of

the oscillator strength9 f as [82]:

g =

√
1

4πεrε0

πe2f

m0Vm
, (2.19)

with εr and ε0 being the relative and vacuum permittivity, e the electron charge,

m0 the free electron mass, and Vm the effective mode volume. From this equation,

it is clear that the interaction strength has larger values for small mode volumes.

Therefore, PhCs are ideal systems for light-matter interaction as they provide very

small mode volumes which is comparable with the wavelength of light (λ/n)3.

Depending on the ratio between the coupling factor g and the decay rates of

the QD-cavity system (γcav and γ), the interaction in cQED can be classified into

weak and strong coupling regimes.

2.9.1 Weak Coupling Regime

Weak coupling occurs when the QD-cavity coupling rate g is smaller than any of

the loss rate in the system, i.e., g < γcav or γ. In this case, the photons leakage rate

9 The oscillator strength of an electric dipole is f = 2mΩ0d
2

e2~ [82].
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out of the cavity is larger than the characteristic interaction time between the dot

and the cavity. Therefore, the spontaneous emission (SE) process is irreversible.

In comparison with vacuum, the photon density of states (DOS) is increased for

the cavity resonances and decreased for other frequency ranges away from the

cavity modes. As a consequence of the DOS modification, the SE rate of a QD is

enhanced on-resonance with a cavity mode and suppressed for the off-resonance

case.10 This phenomenon is called Purcell effect. The enhancement of the SE rate

(reduction of the life time) results in a higher single photon pulse repetition rate,

i.e., single photon emitters working at higher frequency.

Due to the broad spectra of solid-state emitters (like bulk semiconductors and

quantum wells), it has not been possible to observe Purcell effect in these systems.

However, the first demonstration of the Purcell effect in solid-state system was

achieved in QD ensemble embedded in micropillar cavities [11]. After that, the

Purcell effect has been observed for single QDs in microdisks [83], micropillars

[84], and photonic crystal [13].

To show the effect of the cavity on the SE, we compare the SE rate of a QD

transition in a homogeneous surrounding medium and in a cavity. The transition

rate for SE of an electric dipole is given by the Fermi’s golden rule:

γSE =
1

τSE
=

2π

~2
ρ (ωe) |〈d · E〉|2 , (2.20)

where ρ (ωe) is the photon density of states at the energy ~ωe of the emitter,

and 〈d · E〉 is the transition matrix element. In a homogeneous medium with a

refractive index n, the photon density of states (DOS) is given by:

ρ0 (ω) =
ω2V n3

π2c3
, (2.21)

where V is a normalization volume.

As mentioned earlier, the local DOS in a cavity will be increased at the reso-

nance frequencies and will be suppressed elsewhere. In this case, the DOS have a

normalized Lorentzian function [81]:

ρcav =
2

π∆ωcav

∆ω2
cav

4 (ωe − ωcav)2 + ω2
cav

. (2.22)

By using the Fermi’s golden rule and taking the ratio of equations (2.21) and

(2.22), we obtain the so-called Purcell factor. It describes the amount of enhance-

ment or suppression of the SE rate of an emitter in a cavity in comparison with

10 The suppression for the off-resonance case is due to the absence of the photon modes as a
result of the photonic band gap.
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its vacuum value:

FP =
γcav
γ0

=
3Q (λcav/n)3

4π2Vm

∆ω2
cav

4 (ωe − ωcav)2 + ω2
cav

|E (r)|2

|Emax|2

(
d · E (r)

dE

)2

. (2.23)

The first term includes the cavity parameters Q and Vm. The second term

considers the spectral overlap between the emission of the emitter and the cavity

mode. The third term gives the magnitude of the electric field at the location of

the emitter relative to the maximum field in the cavity. The last term describes the

orientation matching between the dipole and the field in the cavity. A maximum

value of FP can be achieved for the resonance case with the dipole orientated along

the cavity field direction and located at the electric field maximum. In this case,

FP is given by:

FP =
3Q (λcav/n)3

4π2Vm
. (2.24)

From this equation, it is clear why it is important to realize cavities with max-

imized figure of merit Q/Vm. PhCs support both high Q-factor and very small

mode volume Vm, which leads to a large Purcell factor and significantly enhances

light-matter interaction.

The Purcell factor is a characteristic parameter for the cavity: SE rate en-

hancement occurs when FP > 1, while suppression of the SE rate is observed for

FP < 1. Another parameter used to characterize the cavity is the SE coupling

factor β, which is defined as the fraction of the total SE that is coupled into a

single cavity mode [74]:

β =
FP

1 + FP
. (2.25)

This is typically below 10−5 in bulk laser, but it can approach unity in optimized

cavities [13, 85].

2.9.2 Strong Coupling Regime

In contrast to the weak coupling, the dissipation of energy is strongly reduced

in the strong coupling regime. The strong coupling can be observed only when

the exciton-photon coupling rate is larger than other loss rates in the system

(g > γcav, γ). This can be understood as follows: by increasing the Q of the cavity,

the lifetime of the dot is decreased according to Purcell effect, while the cavity

photon lifetime is increased. When we reach a case where both of these time-scales

are approximately equal, the photon emitted by the dot can be reabsorbed. In
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this case, the SE is a reversible process, and the QD and the cavity exchange the

energy forth and back coherently with a rate known as Rabi frequency (Ω), and

the system is said to be strongly coupled. In this case, the exciton-photon system

can be considered as a quasi-particle, known as cavity polariton.

In this limit, equation (2.24) is not applicable anymore. Further increase in Q

will not decrease the dot lifetime. Instead the coupling strength (Rabi frequency)

is increased. In this regime, the QD-cavity system is characterized by one lifetime

which is set by the Q, and by Rabi frequency Ω. In practice, high-Q cavities are

not perfect, thus QD-cavity coupling sustains for a finite amount of time and a

damping of the Rabi oscillations is observed.

Strong coupling was demonstrated in quantum wells [86] and even in wavelength-

thickness layers of bulk semiconductors [87]. For single QDs, strong coupling to a

cavity mode has been realized in optical cavities like microdisks [94], micropillars

[88], as well as photonic crystals [32, 89].

At the resonance condition, the QD-cavity system exhibits an anti-crossing

behavior, known as vacuum Rabi splitting. According to the coupled harmonic

oscillators model [90], the energy difference between the QD exciton and the cavity

mode at resonance is given by:

∆E = 2~Ω = 2~
√
g2 − (γcav − γX)2

16
, (2.26)

where Ω is the Rabi frequency. According to this equation, a splitting occurs only

if the square root has a real value. Thus, the strong coupling can be observed only

when

g2 >
(γcav − γX)2

16
. (2.27)

Typically, the linewidth of a QD exciton is on the order of a few µeV at low

temperatures, whereas it is considerably larger for high-Q cavities (∼ 100 µeV)

[91]. Therefore, the condition in equation (2.27) can be approximated to

g >
γcav

4
. (2.28)

This equation represents the threshold condition for observing strong coupling.

By considering equation (2.19) and using Q = Ecav/γcav, we note that the figure

of merit Q
√
f/Vm has to be maximized to observe strong coupling [92].
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2.10 Types of Cavities

Incorporation of low dimensional semiconductor nanostructures, especially QDs,

in cavities is of great interest not only for basic research, but also for possible

applications like lasers or single photon sources. So far, several kinds of cavities like

planar distributed Brag reflectors, micropillars, microdisks and two-dimensional

photonic crystals have been utilized for these purposes. A brief description for

each type will be given here.

(a) (b) (c) (d)

Figure 2.10: Schematic illustration of (a) planar distributed Brag reflector (DBR)
cavity (b) microdisk, (c) micropillar, and (d) two-dimensional photonic crystal cavity.

Planar distributed Brag reflector (DBR) cavities: The cavity is build

up by two Bragg mirrors, which are formed by thin layers of dielectrics with high

refractive index contrast, as depicted in Fig. 2.10(a). DBR cavity is also called

one-dimensional photonic band gap cavity as the optical confinement exists only

in one dimension (perpendicular to the DBRs). The highest achievable reflectivity

with Bragg mirrors is obtained for layer thickness of λ/4. Usually the bottom

Bragg mirror is thicker than the top one, in order to couple the light out. This

type of cavities can be produced easily by using epitaxial growth of the Bragg

reflectors. High Q-factors, up to 10 000, have been realized [93] whereas the mode

volume is relatively large.

Microdisks: The microdisk cavity consists of a thin semiconductor disk of high

refractive index on a post structure, as illustrafted in Fig. 2.10(b). The fabrication

process is usually a combination of reactive ion etching, which etches the layer

forming the disk, and selective wet etching of a sacrificial layer underneath. The

cavity modes, called whispering gallery modes (WGM), are usually present at the

circumference of the disk. The light is confined in the disk by the total internal

reflection at the interfaces. High Q-factors up to 100 000 and small mode volume

∼ 6(λ0/n)3 can be obtained [94]. The main disadvantage of microdisks that they

do not provide directional emission.

Micropillars: Dry etching of a planar DBR cavity results in what is called

micropillar (Fig. 2.10(c)). The optical confinement in the vertical direction is
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achieved by the DBR mirrors, and in the plane direction via total internal reflec-

tion due to the high refractive index contrast between the semiconductor and air.

Micropillars offer relatively high Q and small cavity volume on the order of a few

cubic wavelengths. Q-factors up to 165 000 have been achieved for micropillars

with diameters of 4 µm by increasing the number of mirror pairs in the DBR and

an optimized etching process [95].

This kind of cavities provides highly directional emission in the vertical direc-

tion, and therefore high extraction efficiency [12]. Thus, they are interesting for

single photon source experiments.

Two-dimensional photonic crystal cavities: This type of cavities is pro-

duced by introducing a defect at the center of photonic crystal structure, as illus-

trated in Fig. 2.10(d). Light is trapped in the in-plane direction via the photonic

band gap, due to multiple reflections at the sidewalls-air interfaces, and in the ver-

tical direction by the total internal reflection. Photonic crystal cavities support

both high Q-factors and extremely small mode volume comparable to, or even

smaller than, (λ/n)3. For example, H1 cavity with Q-factor up to 50 000 and

mode volume of ∼ 0.43(λ/n)3 was reported by Y. Ota et al. [96].

Among the types of cavities mentioned above, photonic crystal cavities are the

most promising for potential applications, for example they are compatible for

on-chip integration [97]. A detailed description of the basic properties of two-

dimensional photonic crystal cavities will be discussed in the next chapter.



Chapter 3

Basics of Photonic Crystlas

3.1 Light Propagation in Photonic Crystals

All of macroscopic electromagnetism, including the propagation of light in a pho-

tonic crystal, is governed by the Maxwell’s equations.1 Under the assumptions

of linear, isotropic, low-loss, nondispersive, non-magnetic medium, and with the

absence of free charges and electric current, the Maxwell’s equations are given by:

∇ · [ε(r)E(r, t)] = 0, (3.1a)

∇ ·H(r, t) = 0, (3.1b)

∇× E (r, t) = −µ0
∂

∂t
H (r, t), (3.1c)

∇×H (r, t) = εε0
∂

∂t
E (r, t), (3.1d)

where E and H are the harmonic complex electric and magnetic fields, respectively.

By assuming an infinite periodic structure and using Bloch theorem, it can be

shown that the Maxwell’s equations are simplified to an eigenvalue problem [22],

known in literature as the master equation:[
(ik +∇)× 1

ε (r)
(ik +∇)×

]
uk (r) =

(
ω (k)

c

)2

uk (r) , (3.2)

with uk(r) being the periodic Bloch function of the magnetic field Hk = uk(r)e
ik.r.

This method is called plane wave approximation.

In general, photonic crystals exhibit discrete translational symmetries. This

means that the structure (dielectic) is invariant for only a multiple of a certain vec-

tor. This discrete symmetry implies that uk(r) = uk(r+R) and ε (r) = ε (r + R),

1 Major part of this chapter is based on reference [22].
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where R is an integer multiple of the lattice constant a (R = na). Therefore,

only the magnetic field in the unit cell needs to be determined. As in solid state

physics, a unit cell in photonic crystal can be defined by the primitive lattice vec-

tors a1, a2, and a3. To plot the dispersion relation of the light propagation in

periodic structure, the reciprocal space is used. The primitive reciprocal lattice

vectors are given by:

b1 = 2π(a2×a3)
a1·(a2×a3)

, b2 = 2π(a3×a1)
a1·(a2×a3)

, b3 = 2π(a1×a2)
a1·(a2×a3)

. (3.3)

The reciprocal lattice vector G is defined as: G = l1b1 + l2b2 + l3b3. The unit

cell in the reciprocal lattice, the first Brillouin zone, is a subset of wave vectors k

and it contains all information about the dispersion relation. Since the dispersion

relation is periodic, there is no need to examine the wave vectors k which are

outside the Brillouin zone.

By solving equation (3.2) numerically as a function of k, we obtain the band

structure of the system. Also, the magnetic field distribution for a given frequency

can be obtained by solving this equation. Once the modes Hk are known for a

given frequency, the electric field distribution Ek can be obtained directly from

the Maxwell’s equations.

This method is applicable for only an infinite periodic structure, therefore it

is not suitable for calculations of PhC cavities. It is also inapplicable for compli-

cated structures and dynamic characteristics. Therefore, other methods such as

the Finite-Difference Time-Domain method are usually used for PhC cavities cal-

culations (see Section 3.7). This method allows the simulation of electromagnetic

field distribution of complicated structures, as well as many other properties like

transmission and reflection coefficients.

3.2 One-Dimensional Photonic Crystals

The one-dimensional (1D) PhC consists of periodic layers of two materials with

different dielectric constant ε. The system exhibits periodic modulation in one

direction (z ) with period determined by the lattice constant a, whereas it is homo-

geneous in the xy plane. Thus, the structure has a discrete translational symmetry

in the z -direction. According to Bloch theorem, the mode solution can be written

in the form:

Hn,kz ,k‖(r) = eik‖·ρeikzzun,kz ,k‖(z), (3.4)
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where n is the band number, ρ represents a vector in the xy plane, k‖ and kz are

the wave vectors in the plane and in the z -direction, respectively. The function

u(z) is periodic in z : u(z) = u(z+R), where R is an integer multiple of the lattice

constant a. Due to the continuous translational symmetry in the plane, the wave

vector k‖ may have any value. On the other hand, since the system has discrete

translational symmetry in the z -direction, the Bloch state with kz and kz + G are

identical and therefore the mode frequency must be the same: ω(kz) = ω(kz +G).

Here, the reciprocal lattice vector is defined as G = mb, where m is an integer

and b = 2π/a is the primitive lattice vector. Because of this periodicity, it is

sufficient to plot the dispersion relation (band diagram) only for wave vectors in

the Brillouin zone, i.e., −π/a < kz < π/a.

Origin of the Photonic Band Gap: The origin of the PBG in 1D PhC

structures can be understood by investigating the propagation of light in the z -

direction (k‖ = 0) at three different cases. In the first case, the system consists

of layers of the same material; the medium is homogeneous in all three directions.

The dispersion relation of light propagating in a homogeneous medium exhibits a

linear behavior:

ω(k) =
ck√
ε
. (3.5)

Since k repeats itself outside the Brillouin zone, the light line folds back into the

zone by the reciprocal lattice vector when it reaches an edge, as depicted in Fig.

3.1(a). In the second case (Fig. 3.1(b)), alternating layers with a small dielectric

constant contrast is introduced. The photonic band structure is similar to that

for homogeneous medium, except that a frequency gap appears between the upper

and lower branches of the lines. This gap is called photonic band gap (BPG), in

which no modes are allowed to propagate in the system (i.e., there are no Bloch

wave solutions). The PBG shows a significant widening for high dielectric contrast

medium, as illustrated in Fig. 3.1(c).

To explain why the PBG appears, we have to consider the electric field mode

profiles at the folding points for the states above and below the gap. The gap

occurs at the edge of the Brillouin zone (π/a). At the edge of the Brillouin zone

(π/a), the modes are standing waves with a wavelength of 2a. Due to the symmetry

of the system, there are only two possible distributions for such modes; the nodes

can be positioned either in low-ε layers or in high-ε layers.

According to electromagnetic variational theorem, the low-frequency modes

concentrate their energy in the high-ε regions (pulling its frequency down be-

low the bulk value), whereas the high-frequency modes tend to concentrate their

energy in the low-ε regions (pushing its frequency above the bulk value). Thus,
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a PBG appears due to the frequency difference between the two cases. The low-

frequency mode, just under the gap, concentrates most of its energy in the GaAs

layer (ε = 13), while energy of the high-frequency mode above the gap is mostly

concentrated in the GaAlAs layer (ε = 12).

Since the low-ε region is often air, especially in two-dimensional PhC, the band

above the PBG is called the air band, while the band below the dielectric band.

Even though there are no extended states in the PBG, when a light wave with a

frequency in the PBG is incident at the face of the crystal from outside, it will

exponentially decay into the crystal. In this case, the wave vector is complex and

the modes are evanescent. We should note that a PBG appears as far as the light

is propagating in z -direction. When a light in other directions is considered, no

band gap appears since there are no periodic regions.2
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Figure 3.1: Photonic band structures for light propagation in the z -direction of three
different structures. (a) Homogeneous GaAs (no dielectric contrast). (b) Periodic a/2
thick layers of GaAs (ε = 13) and GaAlAs (ε = 12). A band gap is formed when the
dielectric contrast is introduced. (c) Alternating a/2 thick layers of GaAs and air. The
band gap increases with the dielectric contrast. After [22].

3.3 Two-Dimensional Photonic Crystals

In 2D PhC, the dielectric constant varies periodically in two directions while it is

homogeneous in the third, giving rise to a PBG in the plane of periodicity. The

general aspects of the light propagation in 1D structure, like Bloch states and

the formation of band structure, are applied well for the 2D case, but with more

2 An exception of this is the omnidirectional multilayer mirror, as it reflects plane waves from
any angle.
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complexity. A variety of lattice symmetries are available for 2D crystals, the most

common are the square and the triangular lattice of air holes in dielectric medium.

The latter is usually preferred as it exhibits a much wider band gap.3 This can

be attributed to the greater symmetry and smoother Brillouin zone compared to

square lattice structure.

The real space lattice is defined by the two lattice vectors a1 and a2, whereas

the lattice in reciprocal space is set by the reciprocal space vectors b1 and b2, as

illustrated in Fig. 3.2. The 2D system exhibits discrete translational symmetry

in the xy plane: ε(r) = ε(r+R), where R is any linear combination of a1 and a2.

As in the 1D case, the Bloch states (solutions) can be written in the form:

Hn,kz ,k‖(r) = eik‖·ρeikzzun,kz ,k‖(ρ), (3.6)

where ρ denotes a vector in the xy plane and u(ρ) is a periodic function: u(ρ) =

u(ρ + R).
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Figure 3.2: A triangular 2D photonic crystal lattice. (Left) Real space representation
showing the unit cell. (Right) First (gray) and irreducible (yellow) Brillouin zones in
the reciprocal space.

We restrict ourselves to modes that propagate only in parallel to the xy plane

(kz = 0). In this case, due to the mirror symmetry the modes in 2D PhC can

be classified into two distinct polarizations: transverse electric (TE), in which

the electric field is parallel to the plane, and transverse magnetic (TM), in which

the magnetic field is parallel to the plane. These polarizations have different band

structures, and therefore their band gaps do not overlap except for carefully chosen

lattice dimensions. For example, as shown in Fig. 3.3, a 2D PhC with triangular

3 For some applications, like in narrow-band filters, narrow bandgaps are preferred.
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lattice of air holes in dielectric has a complete PBG4 for both TE and TM modes,

while a square lattice of dielectric columns in air has a PBG only for the TM

polarization.
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Figure 3.3: Photonic band structure for the eigenmodes of a 2D photonic crystal with
(a) triangular lattice of air holes in a dielectric material (ε=13 and r = 0.48a), and (b)
square lattice of dielectric in air (r = 0.2a). After [22].

Since the dispersion relation in PhC is periodic, ω(k) = ω(k+G), it is sufficient

to calculate the band diagram only for wave vectors in the Brillouin zone. However,

the presence of rotation and mirror symmetry in 2D triangular lattice allows for

restricting the calculation to a smaller region, the irreducible Brillouin zone. Note

that the wave vectors k in the band diagram are plotted only along the boundaries

of this zone. This is due to the fact that the band minima and the maxima mostly

occur along the boundaries of the irreducible zone.5

As discussed in the last section, a PBG arises when a refractive index (dielectric)

contrast is introduced. However, in 2D PhC the refractive index contrast should

be high. For example, a complete PBG in triangular lattice of air holes in dielectric

requires a minimum index contrast of 2.63 [22]. The filling factor, which determines

the spectral position and the width of the PBG, is a crucial parameter to realize a

complete 2D band gap. A complete PBG can be achieved only for a specific range

of filling factors, which are determined by the r/a ratio.

For the out-of-plane propagation, kz > 0, there are no band gaps for propagation

in z -direction due to the homogeneity of the PhC in that direction. Moreover, since

the mirror symmetry is broken for kz 6= 0, a distinct decoupling of the TE and

TM polarizations is no longer possible.

4 Note that the TE mode has a wider band gap than the TM mode. The band gaps of the
two polarizations are partly overlapping. A complete photonic band gap (yellow area) is the
overlap of the gap for both polarizations.

5 Although this is not guranteed for all structures, it is true in the case of triangular lattice.
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The bands near to the Brillouin zone edges become flatter, as shown in Fig.

3.3. Hence, the group velocity, which is given by the slope of the dispersion curve:

vg = ∂ω/∂k, goes to zero at the band edges. These band edges modes are used,

for instance, in low threshold photonic band-edge lasers [98].

3.4 Photonic Crystal Slabs

In 2D PhC, the system has infinite length in the z -direction. In practice, however,

this is not always suitable or possible to achieve. For most applications, it is

required to confine the light in the third direction. The only exceptions are the

PhC fibers in which the light propagates almost parallel to the z -direction. A PhC

slab is made of a thin dielectric material clad in a lower index material, which is

usually air. These slabs impose periodicity in two dimensions, whereas the third

has a finite height which is usually on the order of half a wavelength [99]. This

value is chosen to be thick enough for the fundamental mode to be well confined,

while simultaneously thin enough to prevent existence of high-order modes within

the slab. In slab structures, the confinement of light in the vertical direction is

achieved by the means of total internal reflection (TIR), whereas the in-plane

propagation is similar to that in a 2D PhC. Only PhC slabs with a triangular

lattice will be discussed here.

Owing to lack of translational symmetry in the vertical direction, the guided

modes are no longer pure TE and TM as in 2D case. Instead, the modes can be

classified into even (TE-like) and odd (TM-like) modes with respect to reflection

through the mirror symmetry plane of the slab [99]. The electric field in the

TE-like mode is mostly parallel to the mirror plane, whereas the magnetic in the

TM-like mode is mostly parallel to the mirror plane.

The band structure of a PhC slab with air hole radius r = 0.2 a and slab

thickness 0.6 a is shown in Fig. 3.4. Each point in the red (blue) curves represents

a TE-like (TM-like) mode propagating along the plane of the slab. Unlike the 2D

case where a band gap appears for both polarizations, the slab structure exhibits

a band gap only for the guided (TE-like) modes.

A key feature that distinguishes the band structure of slabs from that of 2D

crystals is the light cone, which is a continuum of states indicated by the violet

shaded region in Fig. 3.4. The boundary between the guided and radiated modes

is described by the light line, ω = c
∣∣k‖∣∣.

To understand this band diagram we consider the photonic modes in the slab

and in the surrounding free space. The dispersion relation of a plane-wave in air

is given by ω = c |k| = c
√

k2
‖ + k2z .
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Outside the slab k2z > 0, then there is a continuum of extended states propa-

gating in air for ω > c
∣∣k‖∣∣, which referred to as leaky modes or radiative modes.

These continuum states form what is called the light cone, and are correspond to

the main radiation losses in the slab. On the other hand, when ω < c
∣∣k‖∣∣, then

kz is imaginary and light decays exponentially away from the slab. Thus, modes

cannot couple to vertical radiation and are guided within the slab. The boundary

between the leaky and guided modes is given by the light line, ω = c
∣∣k‖∣∣.
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Figure 3.4: Photonic band structure for the eigenmodes of a GaAs PhC slab suspended
in air with hole radius r = 0.2a and thickness 0.6a. The light cone is presented by the
violet shaded region above the light line (solid black line), in which all of the extended
modes propagating in air. The guided bands localized in the slab appear below the light
cone. The blue bands represent TM-like modes whereas the red bands represent TE-like
modes. A band gap exist only for TE-like modes (shaded rose region). The insets show
the PhC geometry and the irreducible Brillouin zone (blue). After [22].

3.5 Nanocavities in Photonic Crystal Slabs

Point defects, usually known as microcavities or nanocavities, can be formed in

PhC slabs via disrupting the symmetry of the photonic lattice by adding or remov-

ing an amount of dielectric material. These cavities allow for one or more localized
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modes whose spectral positions lie in the PBG of the unperturbed PhC. The local-

ized states, standing waves formed in the cavity, are confined to the defect region

and decay exponentially into the PhC walls.

In general, the cavity modes can be classified into donor and acceptor type

modes [100]. The former results from the addition of dielectric material into a

PhC unit cell, and behaves like a donor level in semiconductors. This kind of

modes exists close to the air band of the PhC. The latter is formed in close to the

dielectric band when removing dielectric material from a unit cell, and it is similar

to an acceptor level in semiconductors.

In an ideal PhC cavity free of any structural imperfections, light leakage is

restricted to the vertical direction. A cavity mode of a given frequency can couple

to radiative (leaky) modes in the light cone with the same frequency. For practical

applications, like lasers and QED experiments, it is necessary to minimize these

losses. This can be achieved by carefully designing the cavity to minimize the

coupling to the light cone [25, 27, 101]. The figure of merit for characterization

optical losses in cavities, the quality factor Q, can be expressed as the decay rate of

the electromagnetic field energy stored in the cavity in units of the optical period

T [102]:

Q ≡ 2π
τph
T
, (3.7)

where τph is the time in which the energy decays to 1/e of its initial value. A more

convenient definition of Q is given by the relative width of the resonance:

Q =
ω0

∆ω
, (3.8)

where ω0 is the resonant frequency and ∆ω = 1/τph is the full width at half

maximum (FWHM).

The quality factor Q of a cavity can be separated into two parts according to

in-plane (Q‖) and out-of-plane (Q⊥) losses: 1/Q = 1/Q‖ + 1/Q⊥. As the number

of the PhC layers surrounding the cavity is increased, the lateral leakage can be

minimized to a value where Q‖ saturates, and therefore the Q factor is limited by

Q⊥ [26].

The simplest PhC cavities like H1, formed by omitting one air hole, result in a

relatively low Q values in the range of a few hundred. To improve the Q-factor,

usually either the position or the size (or even both) of the air holes surrounding

the cavity have to be modified (see Section 6.2).
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3.6 The Finite-Difference Time-Domain Method

In Section 3.1, it was shown that the plane wave method can be used to cal-

culate the eigenmodes for infinite periodic structures. This method also allows

the calculation of the corresponding field distributions of these modes. However,

this method is inapplicable in complicated structures or for dynamic characteris-

tic investigation. Nevertheless, it is a very useful for PBG calculations of periodic

structure. Other methods can be used in case of complicated PhCs to investigate

the field distribution as well as other properties like transmission and reflection

spectra. Among those, the Finite-Difference Time-Domain (FDTD) method is the

most commonly used one due to its flexibility to treat almost all problem with high

accuracy. The main disadvantage of this method is the long computational time

and the need for a large memory capacity.
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Figure 3.5: Positions of the electric (red) and magnetic (blue) field components in the
Yee cell.

The Finite-Difference Time-Domain (FDTD)6 simulation is the most common

computational method used in designing PhC structures. It exploits the fact that

in the Maxwell’s equations the temporal change in the electric field E depends on

the spatial variation of the magnetic field H , and vice versa. In the FDTD method,

the simulation space is discretized into a grid, with a grid points with spatial

dimensions of ∆x, ∆y, and ∆z. In this method, the Maxwell’s curl equations

(3.1c) and (3.1d) are solved by replacing the temporal and spatial derivatives by

6 Here, the FDTD method is briefly discussed. For more detail discussion see reference [104].
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finite differences. The electric and magnetic components are calculated at each

grid point on the Yee cell (cube), as depicted in Fig. 3.5 [103].

The discretization in time is done by a leap frog scheme, where the E-fields at

time t are calculated from the E-fields at t − ∆t together with the H-fields at

t − ∆t/2, and vice versa for H-fields at t + ∆t/2, where ∆t is the discretization

step in time.

To obtain accurate simulation results, the spatial grid must be small enough to

resolve the smallest feature of the simulated field, and the time step is estimated

from the Courant condition:

c∆t ≤ 1√
1/(∆x)2 + 1/(∆y)2 + 1/(∆z)2

(3.9)

The FDTD method gives results in the time domain which are usually Fourier

transformed into the frequency domain to get information about the response of

the system as a function of frequency. Thus, a wide frequency range is obtained

in a single simulation run.

In addition to discretization in FDTD method, boundary conditions are applied

at the boundary of the computation region. For PhC simulations, usually the

perfect matched layer (PML) is utilized. The incident electromagnetic fields decay

exponentially in this layer. Therefore, if the absorption coefficient is set correctly,

no radiation reflected to the computation region.





Chapter 4

Fabrication Basics of

Two-Dimensional Photonic

Crystals

To produce high quality photonic crystal (PhC) nanocavities, some issues have to

be considered like the verticality and smoothness of the sidewalls of the air holes.

Imperfections in the PhC structure can lead to a significant reduction of the quality

factor of the cavity [105]. For example, non-vertical sidewalls leads to coupling to

radiative modes (see ref. [106]), and rough sidewalls lead to optical scattering at

the surfaces. Therefore, a considerable time was spent to obtain and improve the

process conditions. This chapter provides an overview of the fabrication procedure

of PhC cavities with embedded quantum dots. Section 4.1 gives a brief view about

the InGaAs QD samples grown by molecular beam epitaxy technique, including the

growth conditions and the layer structure. A detail description of the fabrication

process of PhC cavities is provided in Section 4.2.

4.1 Growth of InGaAs Quantum Dot Samples

In this work, the InGaAs QDs samples were grown by molecular beam epitaxy

(MBE) using Stranski-Krastanov growth mode.1 All samples have been grown

on (100)n+-GaAs substrates. Figure 4.1(a) shows a schematic presentation of

the layer sequence. First, GaAs buffer layer of 50 nm is grown on the GaAs

substrate, followed by a 450 nm sacrificial layer of Al0.95Ga0.05As. The QDs are

embedded in a 180 nm (λ/2) thick layer which is composed of GaAs and two layers

of Al0.25Ga0.75As. The two 20 nm thick layers of Al0.25Ga0.75As are introduced

above and below the QD layer to confine the charge carriers in the active region.

1 The samples were grown by Prof. Dr. Dirk Reuter at Ruhr-Universität Bochum (RUB).
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The growth temperature was 520 ◦C for the QDs, while it was 600 ◦C for the

other layers. The diameter of the obtained QDs is ∼ 30 nm with a height of ∼ 5

nm. Figures 4.1(b)-(d) show SEM images of a grown sample before capping the

QDs by GaAs.
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2

500 nm 500 nm

~ 1 per µm
2~ 100 per µm

2

(d)(c)

n -GaAs substrate
+

450 nm Al Ga As0.95 0.05
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20 nm Al Ga As0.25 0.75
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Figure 4.1: (a) Scheme diagram of the MBE grown layer sequence with embedded QDs
(red triangles). (b)-(d) SEM images of InGaAs QD samples with different QD density.
The SEM images have been provided by Ashish K. Rai from Ruhr-Universität Bochum
(RUB).

Owing to the geometry of the MBE chamber, usually there is a gradient2 of the

In-atoms reach the wafer, and this leads to a gradient in the QD density in the

grown sample. For characterization of PhC cavity modes, we need a sample with

a high QD density like that in Fig. 4.1(b), where it provides a broad emission

bandwidth. Also, a sample with such density is suitable for experiments where

2 To achieve quasi-uniform density (high), the wafer is rotated during the growth process.
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high optical gain is required, like quantum-dot based laser. A sample with low

density, like Fig. 4.1(d) or even little higher, is needed for example for single

photon source experiments, as well as coherent experiments like excitonic Rabi

flopping in a cavity (see Chapter 7).

4.2 Fabrication of Photonic Crystal Nanocavi-

ties

Key fabrication steps for PhC consist of electron beam lithography, dry etching

and wet etching. A schematic overview of the fabrication procedures are shown

in Fig. 4.2. The fabrication process starts with deposition of a thin layer of SiO2

(50 nm) on the top of the wafer depicted Fig. 4.1(a). This SiO2 layer will serve

as a hard etch-mask during etching the GaAs slab. This is followed by a layer

of a PMMA resist. The PhC structure is then patterned in the PMMA using

electron beam lithography technique. Next, the patterned structure is transferred

into the SiO2 layer and subsequently into the GaAs layer by dry etching. Finally,

wet chemical etching is used to remove the AlGaAs layer and form a free standing

membrane structure. In this section, the fabrication procedure is described in

detail.

E-beam lithography

PMMA

SiO2

GaAs

AlGaAs
E-beam exposure

Development

RIE etching (CHF )3

RIE-ICP etching
(SiCl /Ar)4

Wet etching in HF

Free standing membrane

Dry-etching Wet-etching

Figure 4.2: Schematic representation of the fabrication process of GaAs PhC mem-
brane structures. The SEM image at the right down corner shows a free standing GaAs
membrane.

4.2.1 Preparation of SiO2 Hard Mask

As the selectivity of PMMA over GaAs is high, an additional hard-mask is usually

used. Silicon based materials, like SiO2 (see reference [107]), are excellent mask
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materials when using Chlorine based gas in etching. This enables us to have more

flexibility in the fabrication process as the hard masks have much lower selectivity

over GaAs.

In this work, a hard-mask of about 50 nm of SiO2 has been deposited by plasma

enhanced chemical vapor deposition technique (PECVD) in an Oxford PECVD 80

System. The thickness of the mask was optimized to not etch away during etching

in the GaAs. A gas mixture of (2 % SiH4 and 98% Ar) and (N2O) was used in this

process. The deposition recipe is as follows: SiH4/Ar flow = 400 sccm, N2O flow

= 400 sccm, process pressure = 1 Torr, RF power = 20 W, substrate temperature

= 300 ◦C. For these conditions, the deposition rate is 75 nm/min.3

4.2.2 Electron Beam Lithography

The first step in fabricating PhCs is to define the PhC pattern by using electron

beam lithography (EBL). The surface of sample was cleaned using Acetone and

Isopropanol solvents, then rinsed using distilled water and baked on a hotplate for

dehydration of the surface. In this work, a positive resist (PMMA with molecular

weight of 950 K) was spun on the sample at 5000 rpm for 60 seconds, providing

about 100 nm thick layer. The sample was then pre-baked on a hotplate at 192
◦C for 90 seconds. Then, the PhC patterns have been defined in the resist using

electron-beam writing in an SEM (JEOL JSM 5610LV) with 25 kV accelerating

voltage and 1.5 pA beam current. Finally, the resist was developed by a 1:3

mixture of Methylisobutylketone (MIBK): Isopropanol for 35 seconds, then rinsed

in Isopropanol to stop the developing process.

After the lithography step, the sample was post-baked at 100 ◦C for 60 seconds,

to improve the adhesion of the resist to the sample. To make the PMMA harder,

it was blank-exposed to an electron beam with accelerating voltage of 2 kV and

about 10 nA beam current. The magnification of the SEM was set to 700X to cover

the whole field of PhCs, which is about 200 µm × 200 µm. It is also important to

mention that the electron beam was defocused to ensure the exposure of the area

between the scanning lines of the SEM.

A main limiting factor for EBL accuracy is the proximity effect. It is caused by

secondary electrons that are produced in the resist layer (forward scattering) and

the substrate (backscattering). These electrons expose the vicinity of the desired

pattern. In the case of PhC structures, the holes at the center receive a higher

dose than the holes at the edge, because they have more surrounding holes, i.e.,

more build up dose. Although it is unavoidable effect, there are several ways to

3 The thickness was measured by using an elipsometer.
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reduce the proximity effect, like dose modulation and pattern biasing. Usually,

the former is used in case of PhC pattering where the e-beam dose is gradually

increased from the center to the edge of the PhC. Another simple and fairly rapid

method to reduce the proximity effect was introduced by K. Hennessy et al. [108].

In their work, they wrote extra structures around the PhC pattern to increase the

electron dose there, and hence increasing the size of the outermost holes. We have

noticed that increasing the PhC lattice periods results in negligible variation in

the size of the nearest hole periods around the cavity, which have more effect on

the cavity characteristics. In our case, we have increased the number of lattice

periods around the cavity, as seen in Fig. 4.3.

Figure 4.3: An SEM image of photonic crystal structure defined in PMMA resist.

The EBL step is of great importance, since it has a major influence on the

pattern transfer into the GaAs slab. So, any error will be transferred into the

next layers. Figure 4.3 shows an SEM image of patterned PMMA resist after the
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EBL step. The PhC structures were defined with high quality. The PMMA resist

serves now as a mask for etching the hard-mask SiO2.

4.2.3 Dry Etching

After defining the PhC patterns in the PMMA resist, reactive ion etching (RIE)

was used to transfer these structures into the underlining SiO2 etch-mask.4 RIE is

one of the most common plasma etching techniques used in semiconductor micro-

fabrication. It is a combination of physical and chemical processes (chemical reac-

tion and physical ion sputtering). Typical configuration of RIE system is shown

in Fig. 4.4(a). An RF voltage is applied between two electrodes where one is

powered and the other is grounded, which is usually the entire chamber wall. The

sample is sit on the RF powered electrode, which operates at a frequency of 13.56

MHz. The RF field ionizes the feeding gas molecules in the chamber, forming a

plasma.

Sample

RF source

Blocking capacitor

PlasmaSample

RF source

Blocking capacitor

Plasma

Ions

Sample

RF source

Blocking capacitor

Plasma

Coil
Plasma
generation
RF source

Plasma

(a) (b)

(a) (b)

Figure 4.4: Schematic illustrations of the operation of (a) reactive ion etching (RIE)
and (b) inductively coupled plasma (ICP). The black arrows represent the input of the
gases.

The plasma consists of ions, free electrons, free radicals and neutral molecules.

In contrast to the ions and the other contents, free electrons are much lighter and

can easily follow the AC voltage. In each cycle of the RF field, free electrons are

accelerated up and down in the chamber. The electrons which are absorbed by the

chamber wall are fed out to ground, since the chamber is earthed. On the other

hand, the electrons which are absorbed by the electrode are kept there, because it

4 The dry etching has been done by using the RIE-ICP system of the group of Prof. Dr.
Cedrik Meier.
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is coupled to a capacitor, and build up a negative charge. The heavy ions are not

able to follow the high frequency field, so the plasma has a higher concentration

of positive ions compared to free electrons and hence a positive charge. Owing to

the voltage difference between the plasma and the electrode, ions are accelerated

toward the electrode where they collide with the sample and sputter the material

of the surface (physical etching). Also, the free radicals react chemically with the

materials on the surface forming volatile compounds (chemical etching). Mostly,

reactive ions follow a vertical path when impinge the sample, providing a highly

anisotropic etch profile for optimized etch conditions.

An Oxford Plasmalab 100 Inductively Coupled Plasma Reactive Ion Etching

(RIE-ICP) system was used in the RIE process. Etching of SiO2 is usually done

by using fluorocarbon type gases like CF4 or CHF3. In this work, we have chosen

CHF3 gas because it provides high selectivity between PMMA and the SiO2 mask,

and the ability to achieve highly directional etching [109]. To enhance the etching

process and to get straight sidewalls, Argon gas has been added. Also, the chamber

pressure was kept low (3 mTorr) during the etching process in order to achieve

anisotropic etch profile. At low pressure, collisions between gas molecules and ions

are fewer and thus resulting in a more directional movement of ions toward the

sample. Moreover, the volatile products from the surface are moved away quickly,

because of the higher pumping speed, and hence improves the etching rate.

In the etching process, some parameters have to be optimized to obtain the

desired etch profile (which is normally vertical sidewalls), selectivity and etching

rates. The most critical parameters include the gas flow, the chamber pressure,

and the RF power. The etching parameters were optimized in our system and the

etching recipe is as follows: CHF3 flow = 8 sccm, Ar flow = 8 sccm, process pressure

= 3 mTorr, RF power = 75 W. The SiO2 mask and the PMMA have roughly the

same etch rate 20 nm/min (selectivity 1:1). Following this step, residual PMMA

was removed by oxygen plasma cleaning. This step is important because during

the etching process polymer can settle on the SiO2 mask and distort the process

and even the etching in GaAs. After etching the PhC structure in the SiO2 layer,

this layer serves as a mask in the GaAs etching step.

Next, etching in GaAs was performed by RIE-ICP process. Here, an RF coil is

introduced to produce the plasma, as shown in Fig. 4.4(b). An advantage of ICP

in comparison with conventional RIE is the higher plasma density, hence increase

the etch rate. In ICP, the ion density is controlled by the RF power applied to the

coil, while the ion energy is controlled by the RF power applied to the electrode.
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This independent control of the ions energy and density allows for using high ICP-

power, while keeping the RF-power relatively low. Consequently, less aggressive

etch, high etch rate, and anisotropy are expected.

(a) (b)

Figure 4.5: SEM images of pillar structures etched by RIE-ICP process (a) with our
optimized recipe, and (b) reduced RF power (23 W).

Etching of GaAs is usually carried out by using chlorine-based gases like SiCl4

and Cl2. However, it has been found that the SiCl4/Ar provide smoother and

more anisotropic surfaces [110]. In this work, we have used SiCl4/Ar for pattern

transfer into GaAs. The optimal conditions for etching through GaAs slab are:

SiCl4 flow = 4.5 sccm, Ar flow = 4.5 sccm, process pressure = 3 mTorr, RF power

= 150 W, ICP power = 60 W. The etch rate of GaAs is 575 nm/min, while it is

25 nm/min for SiO2 (selectivity 23:1).

Different etching profiles can be set by adjusting the etch parameters as shown

in Fig. 4.5. Figure 4.5(a) shows pillar structure etched in GaAs with our optimized

recipe. The etched profile is highly anisotropic. In Fig. 4.5(b), the RF power was

reduced to 23 W, resulting in isotropic etching. This is because the chemical

process becomes more dominant at low RF power.

Figure 4.6 shows an SEM micrograph of an H2 PhC microcavity after RIE-ICP

etching in GaAs. The PhC pattern is transferred with high quality and the air

holes are circular.
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Figure 4.6: An SEM image of an H2 PhC cavity with 14 lattice periods etched in
GaAs by SiCl4/Ar using RIE-ICP technique.

4.2.4 Selective Wet Etching

The last step in fabricating PhC cavities is to achieve free standing membrane

structure. This is done by selectively wet etch the underneath Al0.95Ga0.05As

sacrificial layer. Initially, diluted HCl was used to etch the AlGaAs layer. However,

we have found that etching in HCl results in non-smooth surface, as shown in Fig.

4.7(b). This reduces the Q-factor of the cavity modes as it introduces optical

scattering at the GaAs surface.

(a) (b)

Figure 4.7: (a) An SEM image of a free standing GaAs membrane structure etched in
HF. (b) Sample wet-eched in HCl. Note the non-smooth surface in the case of HCl.

Other chemical etchants, like H3PO4 and buffered HF, have shown much better

results. The latter is usually used to selectively wet etch AlGaAs over GaAs. HF

wet etch the AlGaAs layer as well as the residual of the SiO2 mask, while the

GaAs remains unaffected [111]. Figure 4.7(a) shows a sample that was wet etched

in diluted HF solution (1%). In contrast to etching in HCl, the surface of GaAs

is clearly clean and smooth. The lateral etching rate was estimated to be about 1

µm/min.
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Figure 4.8: Sample wet etched in HF acid, showing destroyed PhCs due to the high
Al content.

(a)

(b)

Figure 4.9: (a) SEM micrographs of a fully processed PhC cavity. (b) Microscope
image of a field of PhC cavities. The lattice constant a is kept fixed, while r/a ratio
is changed in the vertical direction by increasing the exposure time. The bright color
(light color) around the structures represents the wet etched areas.
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In the wet etching process, most of the PhCs have been collapsed. Figure 4.8

shows a sample after wet etching for 90 seconds, where PhCs are destroyed. Con-

siderable time was spent to solve this issue. We believe that the high Al contents

(95%) in the sacrificial layer is probably the reason of this damage. Fortunately,

it has been found that we can get rid of this problem by immersing the sample for

10 seconds in HF followed by 30 seconds in DI water. The second step is necessary

since it helps to remove the product of the reaction. This cycle was repeated six

times to obtain a fully released PhC membrane, and all of the PhCs were survived

(not destroyed), as seen in Fig. 4.9(b). The bright color surrounding the PhCs

indicate the boundaries of the removed sacrificial layer. Finally, SEM images of a

2D photonic crystal is shown in Fig. 4.9(a), where a precise pattern transfer into

GaAs is clearly seen.
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Experimental setup

5.1 Micro-Photoluminescence Setup

All measurements in this work were performed in a liquid helium dewar (4.2 K).

The objective lens and the nanopositioner, which together form the low tempera-

ture microscope, are enclosed in a stainless steel tube. Before inserting the tube

into the dewar, we evacuate it to avoid air condensation. Also, a small quantity

of He gas is inserted into the tube to ensure better heat transfer between the low

temperature microscope and the liquid He.

The optical characterization of the QD samples and the PhC cavities with

embedded QDs has been performed by a micro-photoluminescence (µ-PL) setup.

A schematic drawing of our setup is shown in Fig. 5.1. For first characterization,

we need a laser with energy above the bandgap of the GaAs in order to investigate

the QD states as well as the wetting layer. In our experiments, a HeNe laser

(λ = 632.8 nm, E = 1.96 eV) was used for this purpose. For resonant excitations

and PLE measurements, a tunable Ti:Sa laser was used (see Section 5.2).

In order to align the laser spot onto the cavity center, the sample was illumi-

nated via the objective lens by a white LED light, whereas the image is monitored

by a CCD camera. The sample was mounted at 4.2 K on the top of an XYZ

translational stage (nanopositioner), which can operate at low temperatures with

an accuracy as high as 250 nm.

The incident laser beam is divided into two parts at the beam splitter. The

reflected beam is directed to the sample, whereas the transmitted beam is exploited

to record the laser power by a power meter. The laser is focused on the sample by

means of a 100X microscope objective lens with a numerical aperture (NA) of 0.75.

The spot light has an area of 1 µm2. The PL signal from the sample was collected

by the same objective lens and focused on the entrance slit of the spectrometer1,

1 Acton SpectraPro-2500i.
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where it dispersed and detected by liquid nitrogen (LN) cooled Si-CCD detector.2

Also, the PL signal can be coupled into the spectrometer by an optical fiber. This

could be suitable for first characterization measurements as it is much easier, but

for high resolution, polarization, and PLE measurements the free beam bath is

preferred. Besides the PL emission from the sample, the reflected laser from the

sample follows the same path. Therefore, a filter is inserted before the spectrometer

to block the laser and to avoid high intensity into the spectrometer, which could

damage the CCD detector.
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Figure 5.1: Schematic illustration of the experimental setup for µ-PL spectroscopy.

The intensity of the laser is controlled by a set of neutral density (ND) filters

in front of the laser. For fine tuning of the laser power, a computer controlled ND

filter wheel is placed just in front of the ND filters.

The wavelength resolution of the spectrometer with 1200 groove/mm is about

50 pm at λ = 950 nm. This allows for measuring high-Q cavity modes up to

about 20 000. A linear polarizer is placed in the front of the spectrometer for

polarization-dependent PL measurements on cavity mode (see Chapter 6).

2 SPEC-10 400R/LN or SPEC-10 400BR/LN.
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5.2 Photoluminescence Excitation Technique

In PLE experiments, the excitation energy is tuned continuously above the QD

ground state, while the detection energy is kept fixed to the ground state. When

the laser energy matches the resonance of higher states, an exciton is created in

the QD, which relaxes rapidly into the ground state and consequently emits a

photon. Thus, a peak appears in the PLE spectrum. For PLE experiments and

resonant excitations of higher QD states, a commercial Ti:Sa laser3 was used.

Its wavelength is tunable in the range from 700 to 980 nm, covering the whole

spectral range of the QD states studied in this work. In the pulsed mode, the

system operates with a repetition rate of 80 MHz and pulse width of 1.5-4 ps.
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Figure 5.2: Schematic diagram for the PLE measurements setup. Note the extra
grating placed to separate the excitation laser and the QD luminescence.

In PLE measurements, usually the energy scan range of the laser starts by few

meV above the ground state and cover the higher energy states and the wetting

layer. Thereby, the monochromator cannot separate the excitation laser from the

PL signal efficiently, and too much stray light will be generated in the spectrom-

eter. Therefore, an effective stray light suppression is necessary. This can be

achieved by using an extra grating just before the spectrometer, as depicted in

Fig. 5.2. The PLE measurements performed by using this setup will be discussed

in Section 7.3.

5.3 Sample Temperature Control

As mentioned above, the sample temperature in liquid helium is 4.2 K. To perform

temperature dependent measurements or to tune the energy of the QD exciton

relative to a cavity mode, a heating mechanism is needed.

3 Coherent Mira optima 900-D.
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In our experiments, we used a copper plate to control the temperature of the

sample. The copper is chosen due its high thermal conductivity. The sample was

mounted on a ceramic plate on the top of the copper plate. The system was heated

by two 22 Ω parallel SMD resistors below the copper plate, while the temperature

is measured by using a silicon diode (LakeShore DT-670B-SD), as shown in Fig.

5.3. For more details see reference [112].

Figure 5.3: A backside view of the sample carrier showing the components of the
heater.



Chapter 6

Characterization of H2 Photonic

Crystal Nanocavities

In this chapter, the design and characterization of H2 PhC cavities are discussed.

Section 6.1 includes the cavity design using the Finite-Difference Time-Domain

method. In Section 6.2, the Q-factor improvement by shifting the nearest-neighbor

air holes around the cavity is described. The characterization of the cavities by

using photoluminescence technique is discussed in Section 6.2. Also, polarization-

dependent measurements have been performed to identify the cavity modes.

6.1 Cavity design

The first step in designing PhC cavities is to calculate the photonic band structure.

The photonic band gap (PBG) must match the resonance frequency of the emit-

ters to be embedded in the cavity. For this purpose, we used the block-iterative

frequency-domain method to calculate the photonic band structure of a triangu-

lar lattice PhC [113]. The result is illustrated in Fig. 6.1(Left). For our specific

choice of parameters (thickness t = 0.72a, and r = 0.25a) [114], the PBG spans

the spectral range between 0.24 and 0.28a/λ, which corresponds to 890 − 1040

nm. The emission spectrum of the QD ensembles used in this work extend from

910 nm to 990 nm (see Fig. 6.1(Right)), which is located completely in the PBG

region.

In this work, PhC cavities with various geometries have been investigated. The

cavity region of each type has been engineered to improve the Q-factor. In this

chapter, we consider only H2 cavity, which is formed by omitting seven holes at

the center of a triangular lattice PhC. The results of other geometries (H1, L3,

and L5) are discussed briefly in Appendix A.
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Figure 6.1: (Left) Photonic band structure of a PhC slab with r = 0.25a and thickness
t = 0.72a. The refractive index of GaAs was set to 3.4 [29] in the calculation. (Right)
Typical PL spectrum of an InGaAs QD ensemble. The emission of the QDs overlaps
spectrally with the PBG.

We chose to investigate the H2 cavity [30, 115–117], because it has the potential

to offer high Q-factors for larger defect regions. This will bring more degrees of

freedom for future designs of functionalized defect regions, for example with elec-

tric contact stripes to the center of the cavity region. Moreover, as we will see in

the next section, this type of cavities support modes with energy difference compa-

rable to that between p- and s-shell of a QD. Thus, using H2 would be helpful for

quasi-resonant excitation of a QD exciton via p-shell which is in-resonance with a

higher-order mode, while the exciton is in-resonance with a lower-order mode. Of

course, this relies on chance to find such situation. Figure 6.4(b) shows an SEM

image of a fully processed H2 cavity with the parameters as discussed above.

Simulations on H2 cavities were performed by a 3D Finite-Difference Time-

Domain (FDTD) method, using a commercial software package (Lumerical FDTD

Solutions) [118]. In the calculation, we used the following parameters: lattice

constant a = 250 nm, the grid dimensions ∆x = ∆z = a/15 and ∆y =
(√

3/2
)

∆x,

simulation time tsim = 1 ps, the dielectric constant of GaAs ε = 11.56 (n = 3.4).

We include a free space volume of thickness 2a above and below a membrane of

14 lattice periods. The simulation volume was surrounded by perfect matching

layers (PML).

A number of dipole sources are positioned throughout the cavity to excite its

modes. These sources are chosen to be magnetic dipoles which inject a short

TE-polarized pulse, with a broadband (850 − 1100) nm. Radiations with energy

matching the cavity resonances will be coupled into them and decay slowly, while

radiations with other frequencies will be scattered and rapidly exit the simulation

volume. In order to get the time domain data, the electric field inside the cavity
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is monitored as a function of time by introducing time monitors. The frequency

response at each time monitor is obtained by the Fourier transform of the time

domain data. After running the program and identifying the spectral position

of the cavity resonances, we set the resonant frequency values into the frequency

domain monitors and run the program again to calculate the mode profiles. By

exploiting the symmetry in the z -direction through the middle of the simulation

region, the simulation time is reduced by a factor of two.

Due to the C6v symmetry of the triangular lattice, some of its cavity modes are

expected to be doubly degenerate. Actually, our calculation confirms that as shown

in Fig. 6.2. According to the calculations, H2 with our parameters supports eight

modes. Four of them are non-degenerate and the others are degenerate modes, as

depicted in Fig. 6.2. Based on their mode shape, they are called hexapole (Fig.

6.2(a)), dipole-like modes (Figs. 6.2(b, c), (e, f), (h, i), and (k, l)), whispering-

gallery-like mode (Fig. 6.2(d)), and monopole-like mode (Fig. 6.2(g)).1

The non-degenerate and doubly-degenerate modes can be distinguished by us-

ing the symmetry boundary conditions.2 When no symmetry is applied, the x

minimum and y minimum boundaries are set to PML. Non-degenerate modes ap-

pear for only one combination of symmetry boundary, while degenerate modes

appear for two combinations of symmetry boundaries. Besides that, using sym-

metry conditions is necessary to view the doubly-degenerate modes, since only one

of the degenerated modes will be obtained when no symmetry condition is applied.

We will especially consider the mode in Fig. 6.2(g) for our investigations, as it

was found to respond very well for Q-factor optimization procedures. Furthermore,

this mode has energy separation with the doubly-degenerate mode (Figs. 6.2(e)

and (f)) that could allow for high efficiency quasi-resonant pumping [119]. For

simplicity, we call this mode as M-mode and the nearest degenerate modes as D1

and D2.

In order to experimentally test our theoretical calculation and to ensure that

M-mode lies spectrally in the area of interest, we fabricated cavities with lattice

constant of 250, 260, and 280 nm, while the r/a ratio was kept to 0.25. Figure

6.3 shows PL spectra for the M-mode measured at 4.2 K by using the µ-PL setup

discussed in Chapter 5. By increasing the lattice constant, the M-mode redshifts

from 925, to 944 and to 978 nm. The results in Fig. 6.3 demonstrate that a

proper choice of the lattice constant allows for spectral mode tuning into the

desired frequency.

1 The mode in Fig. 6.2(j) has no counterpart in literature, so we call it simply mode j.
2 This condition is set to symmetric or anti-symmetric.
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In our case, we chose lattice constant of 250 nm for two reasons. First, it was

experimentally observed that this value for lattice constant results in higher Q

in comparison with a = 260 and 280 nm. Second, when optimizing the Q-factor

(which will be discussed in the next section) the M-mode is redshifted (see Fig.

6.7(a)). Therefore, to let the mode locate spectrally at the center of the QD

emission, we should start the optimization process by an unmodified cavity with

a higher energy mode M. On the other hand, M-modes for lattice constant of 260

and 280 nm will be shifted far from the center of the QD emission.

Figure 6.2: Calculated electric field intensity profiles of H2 cavity modes with a = 250
nm, r = 0.25a, and t = 0.72a.
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Figure 6.3: Measured PL spectra for H2 cavities with lattice constants 250, 260, and
280 nm. The cavity mode M redshifts from 925, to 944 and to 978 nm with increasing
the lattice constant.

6.2 Improvement of the Quality Factor

In PhC cavities, Q-factor can be significantly increased without a remarkable

change in the modal volume. This is desirable for example to achieve high Purcell

factor as it is proportional to Q/Vm, and for high coupling strength as g ∝ Q/
√
Vm

(see Section 2.9). In the optimization process, usually the position and/or the size

of the inner air holes surrounding the cavity are modified.3

As discussed in Chapter 3, by increasing the number of lattice periods sur-

rounding the cavity, the in-plane losses are drastically suppressed. Therefore,

the radiation loss into the vertical direction is the main loss mechanism. In or-

der to increase the Q-factor of PhC cavities, these radiation losses need to be

suppressed. One method to improve the Q is what is called the cancellation mech-

anism [31, 101, 120]. In this method, the lowest-order term (usually the dipole

term) in a multipole expansion of the far-field radiation is eliminated by an appro-

priate cavity design. It is important to note that the mode pattern within the slab

is almost unchanged by this kind of tuning, while the far field pattern is drastically

altered [22].

3 Depending on the profile of the electric field, not only the tuning of the inner holes can
increase the Q, but also the adjacent lattice periods.
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Another way to improve the Q-factor by keeping the modal volume almost

unchanged is called the gentle confinement method [25]. In this method, the abrupt

decrease in the envelope of the electric field at the cavity edge is considered to

generate high field components inside the light cone. Therefore, it is possible to

reduce radiation losses by engineering the region around the cavity (usually the

nearest-neighbor holes) such that the spatial variation of the envelope at the cavity

edge is terminated smoothly. In other words, reducing the overlap between the

mode and the air regions minimizes the scattering at the cavity edge.

Here, we optimize the geometry of H2 cavity to increase the Q of the M-mode.

By looking carefully at the electric field profile of the M-mode (Fig. 6.2(g)), we see

that it is not perfectly matching the six-fold symmetry of the triangular lattice.

The field penetrates all of the inner air holes, with higher intensity for holes at

(0,±π
3
,±2π

3
) with respect to the x -axis. This distribution is not preferred as it

leads to high scattering at the cavity edges. In order to reduce the scattering at

the cavity edge, we have to reduce the overlap with air. Our idea to improve the Q

of the M-mode was to shift the position of the inner holes of the cavity outwards

radially along the lines of the lattice symmetry. A scheme diagram of the holes

displacement is depicted in Fig. 6.4(a).

(a) (c)(b)

Figure 6.4: (a) Schematic diagram of a modified H2 PhC microcavity. The tuning of
the cavity is achieved by shifting the position of the nearest-neighbor holes away from
the cavity center radially along the lines of the lattice symmetry (in the direction of the
dashed-lines). SEM images of (b) an unmodified H2 cavity and (c) a cavity with air
holes shift of s/a = 0.12.

The effect of the shift on the field pattern is shown in Figs. 6.5(a), (c), and (e).

The field intensity has less overlap with the air holes when s/a = 0.18 (Fig. 6.5(c)),

and consequently less light scattering expected in the vertical direction. By further

displacements, for example s/a = 0.28 (see Fig. 6.5(e)), the field penetrates into

the second lattice periods. This delocalization of the mode reduces the in-plane

confinement, and thus the Q drops to low values.

Another way to understand the influence of the air holes shift on the Q-factor

is to investigate the electric field in Fourier space. The Fourier transform (FT)
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of the electric field intensity is analyzed just above (at a distance of t/4 above

the surface of the membrane, where t is the slab thickness) and parallel to the

slab [27]. Figure 6.5 shows the electric field distribution and the corresponding

FT spectra for different air holes shift. The dashed white circles at the center of

the FT spectra in Figs. 6.5(b), (d), and (f) indicate the light line inside which

electric field components contribute to the out-of-plane radiation. The higher the

intensity of the field components inside the light line the larger the radiation loss

of that mode. Thus, in order to increase the Q, those components inside the leaky

region need to be minimized.

As shown in Fig. 6.5(b), the FT spectrum contains considerable field com-

ponents within the light cone. This means that a large out-of-plane radiation is

present, and therefore a low Q is expected. By a careful and an appropriate dis-

placement of the air holes (as in Fig. 6.4(a)), the components in the leaky region

are severely reduced when s/a = 0.18 (see Fig. 6.5(d)) in comparison with the

unmodified case. Further shifts increase the field components in the light line, as

shown in Fig. 6.5(f), and the Q is supposed to decrease again.

Now, we investigate the effect of air holes displacement on the degenerate dipole-

like modes at 904 nm (D1 and D2) (Figs. 6.2(e) and (f)). Only one of the

degenerate modes at 904 nm (Fig. 6.2(e)) will be considered here (D2), as the

other is likely to follow the same behavior. The electric field intensity in real and

Fourier space for D2 with s/a =0.0, 0.18, and 0.28 are presented in Fig. 6.6. For

the unmodified case, a noticeable amount of the field components appear inside the

light line. In contrast to the M-mode, shifting the inner holes by s/a = 0.18 has

almost no remarkable influence on the field components in the leaky region (Figs.

6.6(b) and (d)). Therefore, the Q is not expected to increase significantly. On the

other hand, further increase of the shift decreases slightly the field components

inside the leaky region as shown for s/a = 0.28 in (Fig. 6.6(f)).
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Figure 6.5: Electric field intensity profiles of the M-mode with air holes shift of (a)
zero, (c) 0.18a, and (e) 0.28a. The corresponding 2D Fourier transform of the electric

field intensity
(
|FT (Ex)|2 + |FT (Ey)|2

)
is plotted in graphs (b), (d), and (f). The

dashed white circles in graphs (b), (d), and (f) represent the light cone boundary (the
light line), which is defined by k2x + k2y = (ω/c)2. Note the reduction of the wavevector
components inside the light line for shift of 0.18a (graph (d)).
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Figure 6.6: Electric field intensity profiles of the degenerate dipole-like mode D2 with
air holes shift of (a) zero, (c) 0.18a, and (e) 0.28a. The corresponding 2D Fourier

transform of the electric field intensity
(
|FT (Ex)|2 + |FT (Ey)|2

)
is plotted in graphs

(b), (d), and (f). The dashed white circles in graphs (b), (d), and (f) represent the light
cone boundary (the light line), which is defined by k2x + k2y = (ω/c)2. In contrast to the
M-mode, the wavevector components is still large for shift of 0.18a (graph (d)), while
they are minimized for higher shift of 0.28a (graph (f)).



64 Chapter 6 Characterization of H2 Photonic Crystal Nanocavities

6.3 Experimental Results and Discussion

Based on the calculation results, we fabricated H2 cavities with various air hole

shifts. The GaAs membrane structure contains a QD ensemble at the center,

which serves as a broadband emitter to excite the cavity modes (see Chapter 4).

Figures 6.4 (b) and (c) show typical SEM images of an unmodified H2 cavity and

a modified cavity with air holes shift of s = 0.12a, respectively. The cavities

are surrounded by 14 lattice periods (not shown here) to enhance the in-plane

confinement, and consequently obtain higher Q-factor. The optical measurements

were performed at 4.2 K using the µ-photoluminescence (µ-PL) setup discussed in

Chapter 5. The pump power density was set to 2.5 KW/cm2 (25 µW).

Figure 6.7(a) shows the PL spectra of H2 cavity with various air holes shift

from zero to 0.28a, with a lattice constant of 250 nm and r = 0.25a. The emission

of the QDs is enhanced on-resonance with cavity modes and suppressed for the

off-resonance case due to the Purcell effect [121]. We identified five resonance

peaks for the unmodified H2. The other modes (Figs. 6.2(a), (d), (h), (i), (j), (k),

and (l)) are not observed in the PL spectrum for the unmodified cavity since their

spectral positions lie out of the QD emission range. We have demonstrated that

these peaks are cavity modes by measuring and comparing equivalent cavities on

the same sample.

The lower PL spectrum in Fig. 6.7(a) shows the mode structure for an H2 cavity.

The measured spectrum agrees well with the calculated resonance frequencies (see

Fig. 6.2). As mentioned above, M stands for the monopole-like mode (Fig. 6.2(g)),

whereas the D1 and D2 refer to the degenerate mode at 904 nm (Figs. 6.2(e) and

(f)). According to our calculation, the resonant peak at 925 nm corresponds to

the M-mode (Fig. 6.2(g)), whereas the two broader peaks at 906 nm and 908 nm

are identified as the degenerate modes at 904 nm (Figs. 6.2(e) and (f)).

By looking carefully at the field profiles in Fig. 6.2, D1 and D2 has an orthog-

onal feature, whereas M-mode shows no distinguished polarization dependence.

The dipole degeneracy is broken due to slight imperfections in fabrication, which

are caused by slightly different scaling of the x - and y-direction in the electron

beam lithography system. This assignment is consistent with our spectroscopic

data, which show that the modes D1 and D2 are orthogonally polarized with high

polarization degree, whereas the mode M exhibits almost no polarization depen-

dence (Fig. 6.8). A linear polarization degree up to 0.72 has been realized for the

D2 mode, where the polarization degree is given by (Imax. − Imin.)/(Imax.+min.).

The calculated results for the spectral position as well as the polarization behavior

are in good agreement with our experimental findings.
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Figure 6.7: (a) Measured PL spectra of H2 PhC microcavities with different inner air
holes shifts s, described by the parameter s/a. (b) Resonant wavelength position of the
high-Q mode (M) and dipole-like mode D2 versus s/a.
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Figure 6.8: Polarization-dependent PL spectra of a modified H2 cavity with s/a =
0.12. The spectrum was taken without polarizer, and with polarizer at different orien-
tations. D1 and D2 are dipole-like modes.

The small peak at 902 nm is one of the higher order dipole-like modes (Figs.

6.2(b) and (c)), while the other mode overlaps with D1 at 906 nm (lower spectrum

of Fig. 6.7(a)). When shifting the inner holes, D1 and the other mode become

separated as seen from the upper spectra, for example when s/a = 0.12. Therefore,

since the D1 mode is more spectrally separated from the higher order dipole-like

mode, the polarization dependent measurements were performed on a modified

cavity (s/a = 0.12) and not the original H2. For displacement of 0.16a, a new

mode appears in the spectrum at 917 nm. According to our calculation, we ascribe

this mode to a whispering-gallery-like mode (Fig. 6.2(d)).

With increasing the shift of the inner holes s, all resonances experience a red-

shift, which can be attributed to the increase of the effective cavity size. This is

an evidence that these resonances are the cavity modes. In Fig. 6.7(b), we present

the calculated and measured wavelength of the cavity modes as a function of the

tuning parameter s/a. The experimental results are in good agreement with our

calculations. The dipole-like modes D1 and D2 show stronger shift as compared to

the M-mode (only D2 is plotted here). Analyzing a large number of geometrically

equivalent cavities, we found an equivalent behavior for the shifts of the different

mode positions. Mode M appears to be less affected by residual imperfections
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induced by processing, whereas the dipole-like modes D1 and D2 show a more

pronounced scattering in spectral position. The reproducibility of the M-mode

resonance position for different processing batches is ±2 nm and even less than 1

nm for cavities within one batch.

Next, we plot the calculated and measured Q-factors of H2 cavities as a function

of s/a for different air holes shifts from zero to 0.28a. The theoretical Q values

obtained from the decay time of the energy stored in the cavity, while the measured

Qs are given by equation (3.8) (ω0/∆ω). The results are shown in Fig. 6.9.

Figure 6.9: Calculated and measured Q-factors of the M and D2 modes as a function
of the displacement of the air holes (s/a). A maximum Q value of 7230 has been realized
for the M-mode. The measurements have been performed with excitation power of 6µW.

The calculations show that the Q-factors of the M-mode increase from 1500 to

more than 50 000 by displacement of s/a = 0.18. Further displacements lead to

a reduction in the Q due to the increase of the field components inside the leaky

region. The measured Qs are plotted in the same figure. As the shift of the inner

holes s is increased, the Q-factor gets rapidly enhanced and reaches a maximum

of more than 7000 for s/a = 0.12 (resonance at 940 nm for this case), before it

decreases again. The highest obtained Q (7230) is five times higher than that of

the unmodified structure (1500).

The experimental values of the Q were lower than the calculated ones, and the

highest Q occurs at lower air holes shift. The difference between the experimental
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and theoretical Q-factors can be attributed to two reasons. First, the fabrication

imperfections, like the slight tilt of the holes sidewalls and the surface roughness

of the GaAs slab. Second, the absorption of the QD ensemble, as these cavities

are embedded with high QD density [122]. Nevertheless, the experimental results

follow the same behavior as the calculation.

For the D2 mode, the calculations show that the Q factor is slightly increased

with increasing the holes shift. However, the experimental results show that the

Q increases from around 700 to 1300 by displacement of 0.08a. For shifts be-

tween 0.08 and 0.24a, we observe almost no change in the Q-factor. By further

displacements (i.e., 0.28a), the Q drops again. The different behavior between

the calculation and experiment at 0.28a is probably originates from the slight dif-

ferent scaling in the x - and y-direction of the lithography system, as mentioned

earlier. Also, at this large shift, some holes are very close (or even connected) to

the adjacent holes, and therefore interrupting the in-plane mode localization.

It is important to note that the chosen modifications affect the Q-factor (Fig.

6.9) and the resonant frequency (Fig. 6.7(a)), but not the general ordering and

symmetry of the mode structure.



Chapter 7

p-Shell Rabi Oscillations of a

Quantum Dot in a Cavity

When a two-level system is excited resonantly by a strong light field, a periodic

oscillation in the population between these levels can occur. This oscillatory be-

havior is known as Rabi oscillations and requires coherence of the two-level system.

Rabi oscillations are one of the most fundamental phenomena observed in two-level

system and have no counterpart in classical physics. They have been observed in

many systems like atoms [123], free-carrier transitions in bulk [124], excitonic tran-

sitions in quantum wells [125] , as well as single QDs [72, 126, 127]. Besides its

importance for fundamental research, Rabi oscillations correspond to a qubit ro-

tation in single QDs, which is important in the context of quantum information

processing.

In this chapter, we investigate the p-shell Rabi oscillations of a single QD in a

PhC cavity. The system was characterized by PL and PLE techniques, and the

coherent experiments were performed by using a ps-pulse laser.

7.1 Sample Preparation

To perform coherent experiment on single QDs, we need a sample with low QD

density (as that shown in Fig. 4.1(d) or even slightly higher). This can be achieved

by wafer mapping. The wafer is scanned at 4.2 K by the PL technique, and then

the desired position with only small number of peaks is chosen. A PL spectrum

for the sample used in this chapter is shown in Fig. 7.1. The measurement was

performed at relatively low power (0.8 µW), to avoid higher states excitation. The

sharp resonance lines are attributed to single InGaAs QDs.
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Figure 7.1: A PL spectrum of low density QD sample investigated in this chapter.
The measurement was performed beside the photonic crystal structure (in bulk).

As it is difficult to obtain single QDs exactly on-resonance with a cavity mode,

it is desirable to tune either the dot or the cavity mode to achieve the resonance

condition. Cavity mode can be tuned by means of gas deposition [128] or digital

etching [129]. The former was difficult to apply in our setup as the size of the

sample holder is large, where the gas (nitrogen) will be mostly deposited on the

walls of the metal tube and not reaching the sample. The latter is applicable when

the sample contains only one PhC cavity. When more PhC cavities are present

on the same sample different tunings are needed, which is not possible in this

method. Moreover, this method is impractical as one has to take the sample out

of the sample holder, and it is irreversible process.

Alternatively, the QD emission line is usually tuned. One way to shift the

QD exciton energy is by utilizing the QCSE [130], as discussed in Section 2.6.

Other methods include Zeeman shift [131], strain tuning [132], and temperature

tuning [83]. In this work, the latter was used for tuning the QD relative to the

cavity mode. In this method, the resonance energy of the QD exciton is spectrally

shifted to lower energies as a consequence of the temperature dependence of the
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semiconductor energy gap. The temperature of the sample was controlled and

measured as discussed in Section 5.3.

For bulk In1−xGaxAs, the Varshni relation can be written as a function of T

and x as [133]:

Eg(x, T ) = 0.42 + 0.625x−
(

5.8

T + 300
− 4.19

T + 271

)
10−4T 2x

−4.19× 10−4

T + 271
T 2 + 0.475x2,

(7.1)

where x is the percentage of the Ga in the In1−xGaxAs alloy. Figure 7.2 shows the

behaviuor of a single InGaAs QD exciton as a function of the sample temperature

between 4.2 and 32.4 K. The measured data were fitted by using equation (7.1),

and show a good agreement. According to the fit, the content of the Galium is

86%, while it is 14% for the Indium.

By increasing the temperature, the QD emission was redshifted. We were able

to tune the QD by ∼ 0.6 nm (∼ 0.9 meV), while the linewidth broadened from

0.19 to 0.53 nm (0.25 to 0.75 meV). Further increase in temperature to 32.4 shifted

the QD by ∼ 1 nm (1.4 meV), but the PL intensity was washed out. This can

be attributed to a low confinement energy in this sample. The broadening of

the linewidth1 can be explained according to equation (2.15). By raising the

temperature, the dephasing of the QD exciton is increased (T2 is reduced) due

to the increased interaction with phonons, and consequently the linewidth gets

broader.

In order to investigate the effect of temperature on the cavity modes, we mea-

sured the spectral position of one of the modes as a function of temperature. A

high QD density sample was used for this purpose. The data are presented in

Fig. 7.3. The cavity mode is also redshifted by increasing the temperature, with a

similar behavior (quadratic) like the QD exciton, but with slower rate. This shift

is attributed to the increase in the index of refraction with temperature [134].

1 Please note that these data were measured by using optical fiber and with the spectrometer
grating set to 300 line/mm. Thus, the real values for the linewidths are expected to be much
smaller.
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Energy (meV) 

(a) 

Figure 7.2: (a) Position of a QD exciton energy as a function of temperature, with fit
to data using the Varshni functional form. The inset shows the measured spectra. (b)
The linewidth of the QD exciton as a function of temperature.
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Figure 7.3: Temperature dependence of an H2 cavity mode (M).

7.2 Photoluminescence Measurements

With our facilities, we were able to prepare PhC cavities with mode spectral

accuracy as low as some nanometers. As the QD used in this work are grown by

MBE, the dots are randomly distributed over the sample. Therefore, finding a

QD on (or close to) resonance with a cavity mode is not an easy task and relies

on coincidence.

In this part, a modified H2 cavity with s/a = 0.12 was used, which supports

a high-Q cavity mode at around 940 nm (1.319 eV), as discussed in Chapter 6.

Figure 7.4 shows a measured PL spectrum for the modified cavity with low QD

density at 4.2 K. The system was excited by a HeNe laser with excitation power

of 3.7 µW. Thus, the ground and excited states of the QDs as well as the cavity

modes can be observed. The PL exhibits two pronounced lines at about 907 nm

(1.367 eV) and 940 nm (1.319 eV). The former can be attributed to the whispering-

gallery-like mode, whereas the mode at 940 nm is ascribed to the monopole-like

mode (M).

The four peaks between 924 nm (1.342 eV) and 934 nm (1.328 eV) are the

dipole-like modes, and have weak intensities as they are probably uncoupled to
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QDs. The inset in Fig. 7.4 is a zoom of the resonance at around 940 nm, which

shows two resonances. We identify them as the ground-state exciton of a single

QD and the cavity mode M. The cavity mode is identified to be the lower energy

peak as it exhibits slower tuning with respect to temperature. The Q-factor of

the caviy mode is around 2100, i.e., the QD-cavity system is in the weak coupling

regime.

Figure 7.4: A detailed PL spectrum of a modified H2 PhC cavity embedded with low
density InGaAs QDs at 4.2 K. The inset is a zoom of the peak at around 940 nm (1.319
eV).

In order to reach the resonant case, temperature tuning has been used (see Fig.

7.5). The different energy shifts of the exciton transition and the cavity mode

with temperature give rise to a crossing of the two resonances. As these spectra

were measured with the spectrometer set to 300 line/mm grating, we can see only

one peak. The highest PL intensity corresponding to the crossing, as shown in

Fig. 7.5(a). The enhancement of the luminescence, which is an evidence for the

weak coupling, is a consequence of the Purcell effect (see equation (2.23)). Figure

7.5(b) shows the intensity of the cavity mode as a function of temperature. The

resonance condition, which corresponds to the highest PL intensity, is achieved at

21.3 K and the PL intensity of the system is increased by a factor of 3.7 compared

to its value at 4.2 K.
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Figure 7.5: (a) PL spectra of the QD-cavity system at different temperature values.
The enhancement of the PL signal at 21.3 K is due to the QD-cavity crossing. The red
and blue dashed lines are given as guides to the eye. (b) Change in the PL intensity of
the cavity mode with temperature tuning (Pexc. = 0.8 µW).
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7.3 Photoluminescence Excitation Measurements

In our approach for investigating Rabi oscillations, the ground state exciton is

close to resonance with a cavity mode (Section 7.5). Due to the spectral overlap

between the excitation laser and the emission of the QD exciton, it is difficult to

perform resonant excitation. Some methods have been introduced to overcome

this situation, like cross-polarized optical setup [135] and PL detection vertically

to the excitation direction [136]. Anyway, these methods are not yet implemented

in our setup. Therefore, for coherent state preparation we chose to perform quasi-

resonant excitation in the p-shell. As discussed in Section 2.5, the p-shell exciton

relaxes rapidly to the s-shell in a ps time scale, where it can interact with the cavity

mode in our case (see the inset of Fig. 7.4). Therefore, the spectral position of the

p-shell has to be identified. For this purpose, we performed photoluminescence

excitation (PLE) measurements to investigate the excited states.

Figure 7.6: PLE spectrum of the QD-cavity system. The sharp peak at around 921.3
nm (1345.9 meV) is assigned to the p-shell absorption and the other resonances corre-
spond to absorption via higher order modes.

The experimental setup discussed in Section 5.2 was used to avoid the stray

light from the laser. A tunable Ti:Sa laser in the cw mode was used to scan the
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energy region from 9.4 nm (13.3 meV) to 34.4 nm (50.2 meV) above the ground

state exciton, while the detection energy was kept fixed at the ground state energy

(939.4 nm (1.320 eV)).

Figure 7.6 shows the PLE spectrum of the investigated QD-cavity system (see

the inset of Fig. 7.4). The spectrum contains many resonance peaks. The sharp

peak at 921.3 nm (1.346 eV) locates spectrally 18.1 nm (26 meV) above the ground

state and is attributed to the p-shell. Other peaks at 907 nm (1.367 eV) and around

925 nm (1.341 eV) are assigned to the absorption via higher order cavity modes

[119, 137]. This assignment is based on their spectral position, which coincide with

the data presented in Chapter 6 (Fig. 6.7). Also, pulse experiments on-resonant

with these modes confirm our assignment, as we will see in the Section 7.5.

One important feature in the PLE spectrum is the absence of phonon absorp-

tion, which is usually observed at around 36 and 32 meV above the ground state

exciton, for GaAs and InAs LO phonons, respectively [57, 138]. This could be a

consequence of the photonic band gap.

7.4 p-Shell Saturation

The saturation behavior is an intrinsic property of a two-level system. In our

approach to study Rabi oscillations in a cavity, we treat the p-shell transition as

a two-level system. To confirm this, we investigated the power dependence of the

p-shell excitation detected via the s-shell emission.

Figure 7.7(a) shows the behavior of the QD-cavity system as a function of

the p-shell excitation power. The excitation power was gradually increased from

0.3−20 µW at 4.2 K. The power dependence measurements show a nonlinear

character for both the QD and the cavity mode. The QD exciton exhibit a clear

saturation behavior, which can be described by the fitcurve I = IsatP/(P + 1),

where I denotes the PL intensity, Isat its saturation value, and P corresponds to

a normalized excitation power.

The saturation behavior of the s-shell emission with increasing p-shell excitation

can be understood as follows. If the dot is occupied by one exciton, no further

absorption occurs due to the renormalization of the energy levels as a result of a

few particle interactions. At low power, the pump rate is so low that each captured

p-shell exciton relaxes to the s-shell and recombines before the capture of another

exciton. In this limit, the PL intensity is proportional to the excitation power. By

increasing the pump power, the pump rate becomes high enough so that the QD

is already occupied by one exciton. Thus, the PL intensity saturates at relatively

high power due to the state filling [139].
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Figure 7.7: (a) Power dependence of the PL intensity from the QD ground state and
the cavity mode for the resonant p-shell excitation. Both of the QD and the cavity mode
show a clear saturation behavior. The QD reaches saturation level at lower power and
has a lower PL intensity. The measured PL signal from the QD ground state is well
described by the formula I = IsatP/(P + 1), as expected for a two-level system. (b) PL
spectra of the QD-cavity system at different power values.
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In comparison with the cavity mode which saturates at about 35 µW (not shown

here), the QD saturates at a lower power with a smaller PL intensity. This could

be assigned probably either to the feeding of the mode by the emission of the

off-resonance QDs near to the cavity mode [136] or to the contribution of higher

states (biexciton and charged excitons).

7.5 Rabi Oscillations

As discussed in the last section, the p-shell transition can be treated as a two-level

system. By exploiting this property, P. Ester et al. [57] have reported a clean

single photon emission based on quasi-resonant excitation of the p-shell, and Rabi

oscillations were also observed. Here, we investigate the Rabi oscillations of the

p-shell exciton by probing the s-shell emission which is close to resonance with a

cavity mode (see the inset of Fig. 7.4).

cav

��pulse
phh

shh

se

pe
relaxation

photon
emission

Figure 7.8: A schematic representation of the p-shell Rabi oscillations experiment in a
cavity. A ps laser pulse is used for the p-shell excitation, followed by a relaxation of the
exciton into the s-shell which is near to resonance with the cavity mode. Subsequently,
a single photon is emitted and detected in the s-shell PL.

Figure 7.8 shows a schematic diagram of the experiment. Our system consists

of a single QD embedded in a modified H2 cavity with r/a = 0.12. The ground

state exciton is near to resonance with the cavity mode M. ps laser pulses (∼ 3

ps) have been used for the excitation. First, an exciton is created in the p-shell by

a π-pulse excitation. This is followed by a fast relaxation into the s-shell, which

is spectrally near to resonance with the cavity mode, followed by a single photon

emission. The pulse amplitude can be tuned by a neutral density filter wheel to

obtain the desired pulse area.
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In order to examine the peaks at around 925 nm (Fig. 7.6), we have per-

formed pulsed resonant excitation. The p-shell Rabi oscillations can be observed

for only the resonance condition. If the pulsed excitation is in resonance with one

of the higher order cavity mode (which are here off-resonant with the p-shell), no

oscillations can be observed due to the incoherent excitation.

Figure 7.9 (green curve) shows the Rabi oscillations of the p-state at 921.3 nm

(1.346 eV) detected in the ground state PL. A clear first maximum in the PL,

which corresponds to a π-pulse, is observed at around 2 (µW)1/2. Only the first

Rabi flop was observed due to the high damping, as it was reported by P. Ester

et al. [57]. The main dephasing mechanism is the relaxation to the s-shell.

Figure 7.9: (Upper) p-shell Rabi oscillation of a QD exciton in a cavity measured in
the s-shell. A clear maximum is observed, which corresponds to a π-pulse. (Lower)
Pulse excitation resonant with the cavity mode at 923.4 nm (1.343 eV).

We also performed pulsed resonant excitation at the peaks which are attributed

to the cavity modes around 925 nm (1.341 eV). Unlike the p-shell, they exhibit

no oscillatory behavior, which confirms our assignment. The black curve in Fig.

7.9 shows the measured data for pulse excitation via the cavity mode at 923.4 nm

(1.343 eV). The PL intensity is first proportional to the power before it saturates.

This is a characteristic behavior for an incoherent excitation, which is in this case

(923.4 nm) also non-resonant with the p-shell.
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We have performed pulsed excitation at the p-shell (921.3 nm) at different tem-

peratures and detected the PL emission in the s-shell. Heating of the sample for

energy tunings was achieved as discussed in Section 7.1. Data for this experi-

ment are shown in Fig. 7.10(a). They show signatures for temperature dependent

damping, PL intensity changes, and shift of the Rabi frequency. Raising the tem-

perature leads to a redshift of the p-shell relative to the laser2, and decreases the

detuning between the s-shell and the cavity mode. Therefore, we should distin-

guish here between effects which regard the p-shell and others which are important

for the s-shell. By increasing the temperature, we observe a change in the p-shell

Rabi frequency and the PL intensity of the s-shell. First, we discuss the origin of

the increase of the Rabi frequency. Then, propositions for the change of the PL

intensity are given.

The first observation was that the Rabi frequency increases with temperature,

i.e., lower pulse area is required for a Rabi flop. As discussed in Section 2.8, the

detuning from the resonant case gives rise to an increase of the Rabi frequency

and a reduction in the occupation probability [73]. Therefore, a possible reason

for the increase of the Rabi frequency could be the detuning between the laser

and the p-shell. In our experiment, the increase of the Rabi frequency manifests

itself in a decrease of the excitation amplitude required for Rabi flopping. At 17.3

K, the Rabi oscillation is drastically damped, and no oscillation behavior can be

observed for higher detunings. This could be attributed to the higher dephasing

rates at higher temperatures.

By increasing the temperature, the PL emission of the s-shell is first increased

before it decreases at higher temperatures. Figure 7.10(b) shows a PL spectrum of

the s-shell for p-shell resonant excitation. The lines under the spectrum indicate

the spectral position of the QD exciton with respect to temperature, which is

inferred from Fig. 7.2(a). At 4.2 K, the QD-cavity system is detuned by ∼ 0.3

nm (∼ 0.4 meV) and a clear Rabi flop is observed at 2.05 (µW)1/2 with a specific

PL intensity (∼ 1200 counts/s), as shown in Fig. 7.10(a).

2 The Ti:Sa laser can be tuned by ∼ 0.3 nm wavelength steps. Therefore, the laser wavelength
was kept at 921.3 nm when slightly raising the temperature.
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Figure 7.10: (a) p-shell Rabi oscillation for different detuning energies. The black
dashed lines serve as guides to the eye. (b) PL spectrum of the QD-cavity system excited
in the p-shell at 4.2 K with detuning of ∼ 0.3 nm (∼ 0.4 meV). The lines under the
spectrum indicate the spectral position of the QD exciton with respect to temperature.
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In a bare system without PhC cavity, the maximum PL intensity is expected

to decrease with increasing temperature as a result of the detuning between the

p-shell and the laser. However, when the s-shell is first slightly blue-shifted with

respect to the cavity mode, we observe the opposite. By tuning the temperature

from 4.2 K to 9.6 K, which corresponds to a tuning of the dot by 0.07 nm (0.1

meV) (red curve in Fig. 7.10(a)), the maximum PL intensity is increased by ∼
20%. This can be explained by a resonance effect: when the detuning between

the QD exciton and the cavity mode is reduced, the system is tuned toward the

resonance condition, and therefore the PL intensity increases. By further raising

the temperature to 14.0 K, the PL intensity decreases again and reaches a value

close to the 4.2 K case. Further increase of temperature results in suppression of

the PL signal. This can be assigned to the rather high exciton line broadening

with temperature of this sample, as the data in Fig. 7.2 show.

The analyses of our system have shown that our approach for observation of the

p-shell Rabi oscillations in a cavity, where the s-shell is close to resonance with a

cavity mode, is complicated. For further suggestions see Chapter 8 (Conclusion

and Outlook).





Chapter 8

Conclusion and Outlook

The work in this PhD thesis has been focused on the study of GaAs photonic

crystal (PhC) cavities with embedded InGaAs quantum dots (QDs). We achieved

a significant progress in developing the fabrication process to obtain high quality

samples. The effect of modifying the air holes surrounding the cavity on the quality

factor (Q) has been systematically investigated. Moreover, coherent experiments

have been performed on a QD exciton in a PhC cavity.

The Finite-Difference Time-Domain (FDTD) method was used in the calcu-

lation of the properties of resonant modes, including electric field distributions,

resonant frequencies, and Q-factors. The fabrication process of PhC cavities by

electron beam lithography and etching technique was developed. The optical prop-

erties of these cavities were investigated by micro-photoluminescence technique,

and the cavity modes were identified by polarization-dependent measurements.

The obtained results were in good agreement with the theoretical calculations

performed by using the FDTD method.

Different geometries of PhC cavities with have been investigated (see the Ap-

pendix), with focus particularly on H2 cavity. The large size of the H2 cavity, in

comparison with H1 and L3, offers more flexibility for future designs of functional-

ized defect regions, for example when introducing electrical contact to the center

of the defect region, or adopting a post beneath the cavity region. The cavity

region was optimized to increase the Q-factor of the monopole-like mode. By ra-

dially shifting the nearest neighbor air holes around the cavity, it was possible to

increase the Q-factor significantly (from 1500 to more than 7000), while keeping

the effective mode volume almost unchanged.

The p-shell Rabi oscillations have been investigated in a modified H2 cavity.

Pulsed laser excitation on-resonance with the p-shell have been used for state

preparation, while detecting the PL intensity in the s-shell which is close to reso-

nance with a cavity mode. We were able to observe the first p-shell Rabi flop of
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a QD exciton in PhC cavity. We have performed pulsed excitation at the p-shell

at different temperatures. The results show signatures for temperature dependent

damping, PL intensity changes, and shift of the Rabi frequency. The increase in

the Rabi frequency was attributed to the detuning between the laser and the p-

shell, while the change in the PL intensity of the s-shell was assigned to a resonant

effect.

For further confirmation of change in the PL amplitude, it would be better

either to tune the QD exciton electrically to avoid the high dephasing rate or

to tune the cavity mode by gas deposition. Concerning the Rabi frequency, it

would be preferred to have the p-shell in resonance with a cavity mode. But it

could be difficult to observe the Rabi oscillations as the dephasing rate is quite

high in the p-shell. Alternatively, resonant excitation is preferred from physical

point of view. For example, it was shown that incoherent excitation via an excited

state (p-shell) cannot simultaneously provide single photons with high degree of

indistinguishability and quantum efficiency [140]. The reason in this is the time-

jitter which is induced by the relaxation from the p-shell to the s-shell of the QD.

Therefore, resonant pumping of a QD in a cavity would be an advantageous.

Recently, many research groups have been able to perform resonance fluores-

cence experiments in single QDs in cavities, allowing coherent manipulation of the

ground state excitons [136, 141]. However, the integration of QD-cavity system

into an electrically driven circuit is more advantageous from a practical point of

view. By exploiting the well established photocurrent spectroscopy [72], resonant

pumping of QDs in cavity can be performed, allowing coherent control and state

preparation. Moreover, electrical contacts allow fast QD tuning.

Very recently, A. Faraon et al. [142] have reported fast electrical control of

strongly coupled QDs in PhC cavities. In their work, they introduced Schottky

contact electrode in the close vicinity to the cavity (750 nm from the center of

the cavity). We believe that utilizing thin stripes on the top of the cavity could

control the QD-cavity system more effectively. This will enable coherent electrical

experiments in cavities like s-shell Rabi oscillations, Ramsey fringes, and exciton

phase manipulation [143]. In our approach, a thin metal stripe is introduced on

the top of the cavity, forming an n-i -schottky contact.

Figure 8.1(a) shows primary results of an electrically contacted PhC cavity. The

photocurrent measurements were performed as discussed in Section 2.7.2. Both

the photoluminescence and photocurrent spectra are plotted for comparison. The

Q-factor of the mode at 938.5 nm is ∼ 1000, while it is ∼ 1800 for a non-contacted

cavity on the same sample (not shown here). Also, the spectral position of the

cavity mode is redshifted by a few nm when the metal stripe is introduced. Figure
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8.1(b) shows a typical SEM image of the system, where the stripe lies nicely over

the cavity.

To minimize the optical losses induced by the stripe, some issues have to be

considered. For example, the thickness, the width, and the material of the stripe

have to be investigated in this context. Also, by carefully considering the field

distribution in the cavity, it is possible to design a stripe in certain direction to

reduce the optical losses.
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Figure 8.1: (a) Photocurrent and photoluminescence spectra of an electrically con-
tacted H2 PhC cavity. (b) Typical SEM image of a contacted cavity showing the metal
stripe. These data have been provided by Wadim Quiring.





Appendix A

Cavities With Different

Geometries

This appendix summarizes the characteristics of H1, L3, and L5 PhC cavities. For

Q-factor optimization, these cavities are investigated by shifting the air holes sur-

rounding the cavity systematically. Both theoretical calculations and experimental

results are given here. Also, polarization-dependent measurements are provided.

We have used the same lattice parameters as discussed in Section 6.1 (a = 250

nm, r = 0.25a, thickness t = 0.72a).

A.1 H1

This type of cavities (H1) is formed by omitting a single hole in a triangular PhC

lattice, as shown in Fig. A.1(a). It can support a number of modes depending on

its design [144]. Figures A.1(b) and (c) show typical SEM images of an unmodified

H1 cavity and a modified cavity, respectively.

(a) (c)(b)

Figure A.1: (a) Modified H1 cavity structure. SEM images of (b) an H1 cavity and
(c) a modified cavity with air holes shift of s/a = 0.12.

For our parameters, only the degenerate dipole modes are exist within the

photonic band gap (at 940 nm (1.319 eV)). As the nearest-neighbor air holes are
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shifted away from the cavity, the hexapole mode appears at higher energy (near to

the band gap edge). In order to improve the Q-factor, the air holes surrounding

the cavity were shifted radially away from the center of the cavity, as depicted in

the red colored circles in Fig. A.1(a).

Figure A.2: Electric field intensity profiles of the degenerate dipole mode (D1) with air
holes shift of (a) zero, (c) 0.16a, and (e) 0.28a. The corresponding 2D Fourier transform

of the electric field intensity
(
|FT (Ex)|2 + |FT (Ey)|2

)
is plotted in graphs (b), (d),

and (f). The dashed white circles in graphs (b), (d), and (f) represent the light cone
boundary (the light line), which is defined by k2x + k2y = (ω/c)2. Note the reduction of
the wavevector components inside the light line for shift of 0.16a (graph (d)).
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Figure A.3: Electric field intensity profiles of the degenerate dipole mode (D2) with air
holes shift of (a) zero, (c) 0.16a, and (e) 0.28a. The corresponding 2D Fourier transform

of the electric field intensity
(
|FT (Ex)|2 + |FT (Ey)|2

)
is plotted in graphs (b), (d),

and (f). The dashed white circles in graphs (b), (d), and (f) represent the light cone
boundary (the light line), which is defined by k2x + k2y = (ω/c)2. Note the reduction of
the wavevector components inside the light line for shift of 0.16a (graph (d)).

In the same way as discussed in Section 6.1, we investigate the effect of the air

holes displacement on the electric field components inside the light cone. Figures

A.2(a), (c), and (e) show the distribution of the electric field intensity and the

corresponding FT spectra for different air holes shift for one of the degenerate
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dipole modes (D1). It is clearly seen that the field components are minimized at

shift of 0.16a, and consequently a maximum Q is expected. The second dipole

mode (D2) follows the same behavior, as shown in Fig. A.3.

Figure A.4: (a) Measured PL spectra of H1 PhC microcavities with different air holes
shifts s, described by the parameter s/a. (b) The spectral position of the resonant
wavelength of the D1 and D2 dipole modes as a function of the air holes shift s.
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Figure A.4(a) presents the experimental measurements on H1 cavities with

various air holes shifts. The two peaks are attributed to the degenerate dipole

mode, where the dipole degeneracy is broken due to the imperfections. With

increasing the shift of the inner holes, the resonance peaks are redshifted due to

the increase of the effective cavity size. The wavelengths of the cavity modes as a

function of the air holes shift are plotted in Fig. A.4(b).

Figure A.5 shows polarization-dependent PL measurements on an H1 cavity.

This figure reflects the orthogonality of the dipole modes. High linear polarization

degree up to 0.92 has been achieved for the lower energy mode. Finally, Fig. A.6

includes the calculated and measured Q-factors of H1 cavities as a function of s/a

for various air holes shifts from zero to 0.28a. A maximum Q value of 2800 has

been achieved for displacement of 0.12a.

Figure A.5: Polarization-dependent PL spectra of an unmodified H1 cavity.
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Figure A.6: Calculated and measured Q-factors of the D2 modes as a function of the
displacement of the air holes (s/a). A maximum Q value of 2800 has been achieved for
s/a = 0.12.

A.2 L3

The L3 PhC cavities are formed by omitting three holes in triangular PhC lattice,

as shown in Fig. A.7(a). Typical SEM images of an unmodified L3 cavity and a

modified cavity with s/a = 0.12 are depicted in Figs. A.7(b) and (c), respectively.

For our parameters, four modes are present where one is degenerate mode, as

shown in Fig. A.8.

(a) (c)(b)

Figure A.7: (a) Modified L3 cavity structure. SEM images of (b) an L3 cavity and
(c) a modified cavity with air holes shift of s/a = 0.12.
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The Q-factor of the fundamental mode (Fig. A.8(e)) can be improved by shift-

ing the air holes at both edges of the cavity, as illustrated in the red colored circles

in Fig. A.7(a).

Figure A.8: Calculated electric field intensity profiles of L3 cavity modes with a = 250
nm, r = 0.25a, and t = 0.72a.

Figures A.9(a), (c), and (e) show the distribution of the electric field intensity

and the corresponding FT spectra for different air holes shift for the fundamen-

tal mode. The same behavior as in H1 cavity is also observed here. The field

components are minimized at shift of 0.20a, and consequently a maximum Q is

expected. The experimental measurements on L3 cavities with different air holes
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shifts are plotted in Fig. A.10(a), where only the fundamental mode is shown.

With increasing the shift of the inner holes, the resonance peak is redshifted due

to the increase of the effiective cavity length. Figure A.10(b) shows the wavelength

of the cavity mode as a function of the displacement.

Figure A.9: Electric field intensity profiles of the fundamental mode of L3 PhC cavities
with air holes shift of (a) zero, (c) 0.20a, and (e) 0.28a. The corresponding 2D Fourier

transform of the electric field intensity
(
|FT (Ex)|2 + |FT (Ey)|2

)
is plotted in graphs

(b), (d), and (f). The dashed white circles in graphs (b), (d), and (f) represent the light
cone boundary (the light line), which is defined by k2x+k2y = (ω/c)2. Note the reduction
of the wavevector components inside the light line for shift of 0.20a (graph (d)).
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Figure A.10: (a) Measured PL spectra showing the fundamental mode of L3 PhC
microcavities with different air holes shifts s. (b) The spectral position of the resonant
wavelength of the fundamental mode as a function of the air holes shift.

Figure A.11 shows polarization-dependent PL measurements on an L3 cavity.

High linear polarization degree up to 0.68 has been achieved. Finally, Fig. A.12

includes the calculated and measured Q-factors of H1 cavities as a function of s/a
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for different displacement from zero to 0.28a. A maximum Q value of 5000 has

been realized for shift of 0.12a.

Figure A.11: PL spectra showing the polarization-dependent of the fundamental mode
of an unmodified L3 cavity.
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Figure A.12: Calculated and measured Q-factors of the fundamental mode of L3 cavity
as a function of the displacement of the air holes (s/a). A maximum Q value of 5000
has been achieved for s/a = 0.12.

A.3 L5

The L5 PhC cavities are formed by omitting five holes in triangular PhC lattice

(Fig. A.13(a)). Figures A.13(b) and c) show typical SEM images of an L5 cavity

and a modified cavity with s/a = 0.16 are depicted in Figs. A.13(b) and (c),

respectively. Owing to the large length of this type of cavities, electrically gated

structures can be introduced, for example, for coupling of two quantum dot spins

[145]. For our parameters, seven modes are present with one degenerate mode, as

depicted in Fig. A.14.

(a) (b) (c)

Figure A.13: (a) Modified L5 cavity structure. SEM images of (b) an L5 cavity and
(c) a modified cavity with air holes shift of s/a = 0.16.
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The Q-factor optimization of the fundamental mode (Fig. A.14(h)) can be

achieved by shifting the air holes at both edges of the cavity, as illustrated in the

red colored circles in Fig. A.13(a).

Figure A.14: Calculated electric field intensity profiles of L5 cavity modes with a = 250
nm, r = 0.25a, and t = 0.72a.
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Figures A.15(a), (c), and (e) show the distribution of the electric field intensity

and the corresponding FT spectra for different air holes shift for the fundamental

mode. As the other types of cavities, the same behavior is also observed here. The

field components are minimized at shift of 0.24a, and consequently a maximum Q

is expected.

Figure A.15: Electric field intensity profiles of the fundamental mode of L5 PhC
cavities with air holes shift of (a) zero, (c) 0.24a, and (e) 0.28a. The corresponding 2D

Fourier transform of the electric field intensity
(
|FT (Ex)|2 + |FT (Ey)|2

)
is plotted in

graphs (b), (d), and (f). The dashed white circles in graphs (b), (d), and (f) represent
the light cone boundary (the light line), which is defined by k2x + k2y = (ω/c)2. Note the
reduction of the wavevector components inside the light line for shift of 0.24a (graph(d)).
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Figure A.16: (a) Measured PL spectra showing the fundamental mode of L5 PhC
microcavities with different air holes displacements. (b) The spectral position of the
resonant wavelength of the fundamental mode as a function of the air holes displacement.
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The experimental measurements on L5 cavities with various air holes shifts

are shown in Fig. A.16(a), where only the fundamental mode is shown. With

increasing the shift of the inner holes, the resonance peak is redshifted due to

the increase of the effiective cavity length. The wavelength of the cavity mode is

plotted as a function of the displacement in Fig. A.16(b).

Figure A.17 shows polarization-dependent PL measurements on an L5 cavity.

High linear polarization degree up to 0.6 has been realized. Finally, Fig. A.12

includes the calculated and measured Q-factors of L5 cavities as a function of s/a

for different displacement from zero to 0.28a. A maximum Q value of 9000 has

been realized for shift of 0.16a.

Figure A.17: Polarization-dependent PL spectra of the fundamental mode of a modi-
fied L5 PhC cavity with s/a = 0.16.
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Figure A.18: Calculated and measured Q-factors of the fundamental mode of L5 cavity
as a function of the displacement of the air holes (s/a). A maximum experimental Q
value of 9000 has been achieved for s/a = 0.16.



Bibliography

[1] R. Dingle, W. Wiegmann, and C. H. Henry, Quantum States of Con-

fined Carriers in Very Thin AlxGa1−xAs-GaAs-AlxGa1−xAs Heterostruc-

tures, Phys. Rev. Lett. 33, 827 (1974)

[2] K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy

Determination of the Fine-Structure Constant Based on Quantized Hall Re-

sistance, Phys. Rev. Lett. 45, 494 (1980)

[3] Y. Arakawa and H. Sakaki, Multidimensional quantum well laser and tem-

perature dependence of its threshold current, Appl. Phys. Lett. 40, 939 (1982)

[4] P. Michler, A. Kiraz, C. Becher,W. V. Schoenfeld, P.M. Petroff, L. Zhang, E.
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tion and transfer of single photons on a photonic crystal chip, Opt. Express

15, 5550 (2007)

[98] H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, Very-low-

threshold photonic band-edge lasers from free-standing triangular photonic

crystal slabs, Appl. Phys. Lett. 80, 3476 (2002)

[99] S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A.

Kolodziejski, Guided modes in photonic crystal slabs, Phys. Rev. B 60, 5751

(1999)

[100] E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brom-

mer, and J. D. Joannopoulos, Donor and acceptor modes in photonic band-

structure, Phys. Rev. Lett. 67, 3380 (1991)

[101] K. Srinivasan and O. Painter, Momentum space design of high-Q photonic

crystal optical cavities, Opt. Express 10, 670 (2002)



114 Bibliography

[102] A. Korkin and F. Rosei, Nanoelectronics and Photonics, Springer (2008)

[103] K. S. Yee, Numerical solution of initial boundary value problems involving

Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14,

302 (1966)

[104] A. Taflove and S. C. Hagness, Computational Electrodynamics: The finite-

difference time-domain method, Third Edition, Artech House, (2005)

[105] T. Asano, B. Song, and S. Noda, Analysis of the experimental Q factors (∼
1 million) of photonic crystal nanocavities, Opt. Express 14, 1996 (2006)

[106] M-K. Kim, J-K. Yang, Y-H. Lee, and I-K Hwang, Influence of etching slope

on two-dimensional photonic crystal slab resonators, J. Korean Phys. Soc.

50, 1027 (2007)

[107] K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, and A. Y. Cho, Fabrica-

tion of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP

membranes, J. Vac. Sci. Technol. B 22, 875 (2004).

[108] K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoğlu, P. M. Petroff,
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