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Abstract

A major challenge in applying state-of-the-art density functional theory (DFT) simulation tools
on real materials is that they have been originally designed to predict ground-state properties.
Since finite temperature effects are crucial for practically all real-world applications, extending DFT
capabilities towards finite temperature predictions is indispensable. Within the last few years it has
been shown that a careful consideration of different temperature induced excitation processes such as
lattice and electronic contributions can provide extremely accurate finite-temperature predictions
for nonmagnetic materials. However, for the vast variety of materials, such as metallic alloys,
magnetic shape memory alloys, or diluted magnetic semiconductors, where magnetic interactions
and excitation processes are critical and cannot be neglected, the nonmagnetic approaches are not
sufficient. So far practically no theoretical concepts to include magnetic excitations and to bridge
between (i) the complexity of real structural materials, (ii) magnetic theories which are designed to
describe very particular model systems, and (iii) DFT calculations exist.

In this work we have closed the gap between these three fields. A key challenge is that highly
accurate techniques such as Spin Quantum Monte Carlo work best for frustration-free spin systems,
whereas practically all real world materials show an oscillatory and long-range magnetic interac-
tion resulting into spin frustration when being mapped onto model Hamiltonians. Therefore, finite
temperature magnetism of real systems is commonly described using classical approaches such as
classical Spin Monte Carlo. These methods work well for temperatures well above the critical (Curie,
Néel) temperature, but fail for low temperatures, where spin-quantization becomes crucial. A key
concern in this work is the correct incorporation of quantum effects into our models which turned
out to be mandatory even up to the critical temperature. We, therefore, developed a hierarchy
of numerically exact quantum Monte Carlo based methods and analytical (Green’s functions) ap-
proaches to treat the magnetic free energy of complex magnetic materials. The proposed approach
allowed us to describe the free energies with a hitherto not achievable accuracy for a wide range
of materials. Successful applications include key materials in steel manufacturing like ferrite and
cementite as well as various magnetic metals (e.g., nickel and cobalt). A careful analysis of these
results allowed us for the first time to evaluate the relevance of spin quantum effects on thermody-
namic properties. In contrast to common belief, we could show that spin quantum effects have a
dramatic impact on various quantities such as free energies, heat capacities, and magnetizations, all
the way up to the critical (Curie, Néel) temperature. The presented methodologies also provide a
clear and systematic separation of different physically relevant contributions and are even applicable
to phases which are not or only hardly accessible by experiment (such as, e.g., metastable phases),
or systems where experimental input simply does not exist.
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Chapter 1

Introduction

The development and improvement of functional materials, such as, e.g., steels, is a key concern since
thousands of years. To give an example, the earliest known production of steel (i.e., iron with a small
amount of carbon) is about 4000 years old [1]. Today, steel is one of the most important materials in
our daily life (buildings, ships, tools, cars, etc.) with more than 1300 million tons produced annually
worldwide, see Fig. 1.1. Along with the production, the demand on new structural materials with

1900 1925 1950 1975 2000
Year

0

500

1000

1500

W
or

ld
 S

te
el

 P
ro

du
ct

io
n 

[m
ill

io
n 

tp
a]

2008: 1329 million tons    Annual growth rate
of Steel production in [%]
       1950 - 60:  6,2
       1960 - 70:  5,5
       1970 - 75:  1,6
       1975 - 80:  2,2
       1980 - 85:  0,1
       1985 - 90:  1,4
       1995 - 00:  2,4
       2000 - 05:  5,9
       2005 - 10:  3,8

Figure 1.1: World Steel production for 1900-2008. Data taken from Refs. [2] and [3].

well defined properties (e.g., ultra-light weight steels) has also significantly increased. Every new
steel generation goes along with new and more complex physical mechanisms often increasing the
involved number of parameters (constituents) as well. A typical example of a modern manganese
steel is given by [4]

Fe77.98Mn20.98C0.71Si0.17Ni0.04N0.02Cr0.02Nb0.02Mo0.01Al0.01Cu0.01Co0.01... (in wt.%)

with 16 ingredients in total. Refinement of such compositions by pure experimental approaches
becomes not only time-consuming, but more and more economically expensive. To cope with this

1



2

Figure 1.2: The temperature driven structural phase transitions of pure iron. Details are given in
the text.

large configurational space, approaches such as calphad (calculation of phase diagrams) have
been developed, which are based on experimental input and sophisticated interpolation schemes.
However, in absence of experimental input, such approaches can fail dramatically.

A very recent approach has attracted a lot of attention starting from the most elementary
microscopic level - quantum mechanics. This approach is only based on the fundamental physical
constants such as nuclei and electron mass and charge, and allows completely parameter-free and
unbiased materials properties prediction without any experimental input. This method is, therefore,
called first principles or, using the Latin term, ab initio technique.

A major challenge in applying state-of-the-art density functional theory (DFT) simulation tools
to real materials is that they have been originally designed to predict ground-state properties (T =

0 K). Since finite-temperature effects are crucial for practically all real-world applications, extending
DFT capabilities towards finite-temperature predictions is indispensable. Fortunately, nowadays
sophisticated combined concepts exist (e.g., the so-called quasiharmonic approximation and finite
temperature DFT), which allow a highly accurate prediction of properties of nonmagnetic materials
even up to the melting temperature [5]. As shown recently [6], such an approach is, however, not
sufficient for the main ingredient of steels and the most famous magnetic material, namely iron.
Iron shows a complex and untypical order of structural phase transitions, illustrated in Fig. 1.2.
At low temperatures iron crystalizes in the bcc structure called α-iron or ferrite. Above the Curie
temperature TC = 1043 K, the paramagnetic bcc Fe (β-iron) transforms at 1184 K into the more
close-packed fcc lattice, also called γ-iron or austenite. At 1673 K Fe undergoes a second structural
transition and becomes bcc again (δ-iron) until it melts at about 1800 K. It is known that in
particular the magnetic excitations are of fundamental importance for the structural transitions
and phase stability [7, 8]. However, the theoretical concepts to predict magnetic contributions to
thermodynamic properties based on DFT input is still in its infancy.

The reason for this is that so far practically no theoretical concepts to include magnetic exci-
tations and to bridge between (i) the complexity of real structural materials, (ii) magnetic theories
which are designed to describe very particular model systems, and (iii) DFT calculations exist. Start-
ing from the microscopic theory, the extension of DFT towards the spin-polarized DFT (SDFT),
first introduced by von Barth and Hedin [9], is nowadays well established for the computation of
ground-state properties of magnetic systems [10]. To investigate finite-temperature properties it is,
however, indispensable to recourse to model considerations. Besides the Ising model and effective
theories such as the Weiss mean field theory for ferromagnets, more realistic theoretical descriptions
have become possible by the quantum-mechanical Heisenberg model [11]. In the last two decades a
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number of techniques (such as the frozen-magnon approach [12]) emerged, which allow to extract
realistic Heisenberg model parameters from SDFT methods. A key challenge is that highly accurate
techniques to solve the model such as Spin Quantum Monte Carlo work best for frustration-free spin
systems, whereas practically all real world materials show an oscillatory and long-range magnetic
interaction resulting into spin frustration when being mapped onto model Hamiltonians. Therefore,
finite-temperature magnetism of real systems is commonly described using classical approaches such
as classical Spin Monte Carlo [13–17]. These methods work well for temperatures well above the
critical (Curie, Néel) temperature, but fail for low temperatures, where spin-quantization becomes
crucial.

A key concern in this work is the correct incorporation of quantum effects into our models. We,
therefore, developed a hierarchy of numerically exact quantum Monte Carlo based methods and
analytical (Green’s functions) approaches to treat the magnetic free energy of complex magnetic
materials. The proposed approach allowed us to describe the free energies with a hitherto not
achievable accuracy for a wide range of materials. Successful applications include key materials in
steel manufacturing like ferrite and cementite as well as various magnetic metals (e.g., nickel and
cobalt). A careful analysis of these results allowed us for the first time to evaluate the relevance
of spin quantum effects on thermodynamic properties. The presented methodologies also provide a
clear and systematic separation of different physically relevant contributions and are even applicable
to phases which are not or only hardly accessible by experiment (such as, e.g., metastable phases),
or systems where experimental input simply does not exist.

This work is organized as follows: After introducing the theoretical fundamentals (Chap. 2), we
focus in Sec. 3.1 on the pressure dependence of the critical temperature TC(p) of pure iron. We
show that the experimentally observed weak dependence on pressure for iron (T exp

C (p) ≈ 0) can
be understood by a competition between two mechanisms. These investigations revealed that in
particular the RPA provides a promising approach to study magnetic properties. The theory, which
was originally designed for predicting the magnetization as well as TC [18], is therefore extended
to compute also quantities such as free energies and heat capacity capacities. The results of the
derived theory are finally combined with vibronic and electronic contributions (Sec. 3.2.1) in order
to achieve a fully ab initio framework for the thermodynamic properties of bcc iron.

A shortcoming of the analytic RPA treatment is, by construction, the neglect of magnetic short-
range order. A numerically exact Quantum Monte Carlo (QMC) simulation appears as the ideal
candidate for this purpose. We show, however, that this technique is not applicable for a realistic
system such as bcc iron due the negative sign problem. In an extensive comparison between the
numerically exact quantum and classical results of the Heisenberg model for various thermodynamic
properties, the advantages and disadvantages of a classical approach to the quantum Heisenberg
model become apparent (Sec. 3.2.2). Based on the results of the model calculations, a semi-empirical
rescaling function is derived. The rescaling method allows an ad hoc inclusion of quantum effects in
the classical description and its application to bcc iron is discussed in comparison with experimental
data.

The fcc phase of iron is in the focus of Sec. 3.3. Fcc iron constitutes a challenging task for the
theoretical modeling: Recent theoretical calculations reveal a non-collinear spin-spiral ground state
[19], which is a particular challenge for analytic treatments such as the RPA, typically requiring
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a global quantization axis (as given for ferro- or antiferromagnets). Working in a locally rotated
coordinate system allows us to generalize the RPA theory, which is developed for bcc iron, to non-
collinear magnetic spin system. We apply both, the generalized RPA as well as the classical Monte
Carlo method to fcc iron, and combine the results with vibronic and electronic contributions.

Particularly, a model study (Sec. 3.2.2) shows that the thermodynamic properties are robust
with respect to the specific magnetic configuration or the range of magnetic exchange interaction,
if considered on a reduced t = T/TC temperature scale. This encourages a decoupling of TC from
other thermodynamic properties such as the specific heat capacity. Based on this insight we propose
a nearest-neighbor model, which can be solved quantum-mechanically and numerically exact using
QMC (Sec. 3.4). The shortcomings and advantages of this ansatz are critically evaluated on the
three prototype ferromagnets Fe, Co, and Ni.

Finally, the thermodynamic properties of cementite, the most common precipitate phase in Fe-C
steels (see Fig. 1.2), are investigated in Sec. 3.5. The impact of magnetic contributions for selected
properties such as the specific heat capacity or formation enthalpy are discussed. This example
highlights that the developed methods in this work not only allow insights into fundamental aspects
of pure elementary magnets such as iron, cobalt, or nickel, but could be employed to address even
properties of complex magnetic materials.



Chapter 2

Theoretical Background

The first-principles thermodynamic description of magnetic materials is the central aim of this work.
A key quantity in the thermodynamic description is the thermodynamic potential. In principle its
knowledge provides access to all thermodynamic equilibrium properties. For the methodologies in
this work it is convenient to start with the Helmholtz free energy (Helmholtz potential) F (T, V ),
with temperature T and volume V as natural variables. It is completely determined by the partition
sum Z(T, V ) = Tr e−βH as

F (T, V ) = −kBT lnZ(T, V ). (2.1)

The key challenge in order to access F (T, V ) is the computation of the trace in Z. This requires
the solution of the Schrödinger equation

HΨν = EνΨν , (2.2)

where Ψν ≡ Ψν({riσi
}, {RI}) represents the many-particle wave function, {riσi

} and {RI} denote
the complete set of coordinates for the electrons with spin σi = (↑, ↓) and nuclei respectively, and
Eν represents the ν’s energy levels of the system. However, although the microscopic eigenvalue
problem (2.2) can be readily formulated, a direct solution is in general impractical. Describing a
solid involves a many-body problem of an immense number of particles (the number of nuclei Nn

and electrons Ne are in the order of ∼ 1023 particles per cm3). A direct treatment of Eq. (2.2) is
therefore not feasible and simplifications are mandatory.

One of the most important approximations is the adiabatic decoupling of the ionic, electronic,
and magnetic degree of freedom. This is justified by considering the different time scales of the
underlying physical excitations. For the d-metals considered in the present study, the electronic
excitations are inherently connected to the d-band width Wd revealing the underlying excitations
in the order of ~/Wd ∼ 10−15 s. The characteristic time of spin-waves are inverse proportional to
their excitation energy, 1/ωSW ∼ 10−13 s, and vibronic excitations are characterized by their inverse

5
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Debye temperature ∼ 10−12 s.1 As sketched in Fig. 2.1 the adiabatic decoupling for the Helmholtz
free energy results in

F (T, V ) = F el(T, V ) + F vib(T, V ) + Fmag(T, V ) + . . . , (2.3)

where the “ . . .” symbolize higher order terms (such as, e.g., coupling terms or vacancy contributions)
and F el, F vib, and Fmag denote the electronic, vibronic, and magnetic contribution, respectively.

In a similar way the adiabatic decoupling can be employed on the microscopic level for the
Schrödinger equation (2.2). Regarding the energy scale, the fastest degree of freedom is realized
for the electronic subsystem. Its solution involves still a huge number of particles Ne. A very
elegant and powerful method to solve the electronic subsystem in its ground state was introduced in
1963 by W. Kohn, the reformulation of the many-body problem Eq. (2.2) in terms of the electronic
density, namely the development of the density functional theory (DFT). Although the DFT is
in principle an exact theory, for a practical implementation an approximation for the so called
exchange-correlation (xc) functional is required. For the xc-functional well established and carefully
tested approximations exist nowadays so that DFT has become the most common applied first-
principles approach in theoretical solid state physics for the prediction of properties at T = 0 K.

The extension towards finite temperatures is a challenging and nontrivial task. In order to
address T > 0 K properties, and in particular to determine the free energy contributions, the
knowledge of ground-state properties alone is not sufficient. At T > 0 K the number of possible
microstates increases dramatically making the usage of statistical concepts in combination with DFT
mandatory. In the last decades, the quasiharmonic approximation and the finite temperature DFT
have been proven to provide a very accurate and realistic approach for F el and F vib respectively,
see Fig. 2.1. Although the principle concepts behind were known since long time, the practical
implementation in combination with DFT turns out to be a highly nontrivial and challenging task
itself [5]. The inclusion of magnetic excitations into a full thermodynamic description is, however,
still in its infancy. This is inter alia caused by the fact that even model Hamiltonians capturing the
main underlying excitations are in general not exactly solvable.

This chapter is structured as follows: We start with the formulation of the microscopic many-
body problem Eq. (2.2) and the introduction of the spin-polarized DFT. This provides the funda-
mentals for the further analysis at finite temperatures. The concepts to determine the electronic
and vibronic contributions based on the DFT input are shortly discussed in Sec. 2.2.4.

In Sec. 2.2 an introduction into the different magnetic treatments at finite temperatures is
given. In particular the Heisenberg model, chosen for the further analysis, is discussed in detail.
Different analytic and numerical solution techniques are introduced. The section is concluded with
the adiabatic spin dynamics. It is shown how spin-wave energies and effective exchange coefficients
for the Heisenberg model can be determined by DFT.

1The decoupling of the electronic motion and that of the nuclei (Born-Oppenheimer approximation) is a priori

backed up by the different masses of both particles. Note that a similar mass argument for the decoupling of the
magnetic degree of freedom does not exist.
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Thermodynamics
F (T, V ) = −1/β ln Tre−βH

F vib F el Fmag
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Adiabatic decoupling

Dynamical
matrix

Single-particle
energies

Effective
exchange coefficients

Adiabatic decoupling

Figure 2.1: Sketch of the integrated ab initio approach to access thermodynamic properties of mag-
netic materials. The adiabatically decoupled free energy contributions as well as the adiabatically
decoupled treatment via spin density functional theory are shaded in light green. The statistical
concepts to capture the vibronic and electronic contributions are shaded in yellow, whereas the
Heisenberg model, accounting for the magnetic degree of freedom, is highlighted in orange.
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2.1 Many-Body Problem and Density Functional Theory

2.1.1 The Many-Body Problem

In principle, the many-body problem of interacting electrons and nuclei is completely determined
by Eq. (2.2) as

HΨν({riσi
}, {RI}) = EνΨν({riσi

}, {RI}). (2.4)

Defining the solid as a system of localized ions (nuclei) and a specific number of electrons, the
full Hamiltonian2

H = He + HI + HeI + Hz (2.5)

is given by the following contributions:
The Hamiltonian of the electronic subsystem He is split into the kinetic energy T e and the

electron-electron repulsion term V ee:

He = T e + V ee = −
Ne∑

i

~
2

2me
∇2

i +
1

2

Ne∑

i

Ne∑

j 6=i

e2

4πǫ0|riσi
− rjσj

| . (2.6)

Here ~ denotes the reduced Planck constant, me the electron mass, e the elementary charge, ǫ0 the
electric constant (vacuum permittivity) and Ne the total number of electrons.

Analogously the operator of the ionic subsystem HI can be decomposed into a kinetic T n and a
repulsion term V nn as

HI = T n + V nn = −
Nn∑

I

~
2

2MI
∇2

I +
1

2

Nn∑

I

Nn∑

J 6=I

ZIZJe2

4πǫ0|RI − RJ |
, (2.7)

where MI denotes the mass and ZI the number of protons of the I-th of the Nn nuclei.
The interaction of the electrons with the nuclei HeI(repulsion term) and the (possible) interaction

with an (external) magnetic field Hz (Zeeman term) are defined as

HeI + Hz = −
Ne∑

i

Nn∑

I

ZIe
2

4πǫ0|riσi
− RI |

+ 2µB

Ne∑

i

B(r)σi ≡ υext({riσi
}), (2.8)

where µB denotes the Bohr magneton, B an external field, σi = (σix, σiy, σiz) the spin operator,
and σi,(xyz) being the Pauli matrices. As already mentioned, the huge number of involved particles
rules out a direct solution of the eigenvalue problem and several simplifications have to be accepted,
which will be discussed in the following.

The Born-Oppenheimer Approximation

In 1927 Born and Oppenheimer suggested to decouple the electronic and ionic motion. Such an
approximation is justified due to the huge unbalance between the mass of the electron and of the
nucleus, me ≪ mI , yield different time scales of electronic and nuclei motion. Consequently, the

2This is the non-relativistic formulation of the Hamiltonian. It does not account for relativistic effects such as
spin-orbit coupling. These contributions are, however, not relevant for this work and are neglected in the following.
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electronic systems could be solved for a fixed (given) set of nuclei coordinates {R̃I}. Physically, this
corresponds to the situation where the electrons follow the nuclei motion almost instantaneously
or saying differently: the nuclei move on the energy surface EBOS

ν defined by the energy of the
electronic subsystem Ee

ν({RI}) and the nuclei-nuclei-repulsion V nn({RI}). The energy surface on
which the nuclei move,

EBOS
ν = Ee

ν({RI}) + V nn({RI}), (2.9)

is called Born-Oppenheimer surface. It determines together with the kinetic energy the ionic con-
tribution of Eq. (2.4),

H̃I({RI})Θµν =
(
T n({RI}) + EBOS

ν ({RI})
)
Θµν = EI

µν({RI})Θµν , (2.10)

providing the EI
µν , where µ is running over all eigenenergies for a given potential surface ν. In prac-

tice, one usually considers out of the various potential energy surfaces EBOS
ν only the energetically

lowest one corresponding to the electronic ground state (T = 0 K), i.e., EBOS
ν ≡ EBOS

0 .
In principle, however, an analogous adiabatic decoupling could also be derived for finite tempera-

tures using the same mass argument as for the derivation of the equation above. It is straightforward
to show [20] that for T > 0 K the Born-Oppenheimer approximation leads to

(
T n({RI}) + FBOS({RI}, T )

)
Θ̃µ = ẼI

µ({RI}, T )Θ̃µ, (2.11)

where the temperature dependent Born-Oppenheimer surface is defined as

FBOS = −kBT ln
∑

ν

e−βEBOS
ν . (2.12)

It turns out, however, that ẼI
µ({RI}) ≈ EI

µ0({RI}), resulting in a negligible impact of applying
Eq. (2.11) compared to Eq. (2.10) for the vibronic free energy.3 In this work Eq. (2.10) is used in
combination with the T = 0 K energy surface EBOS

ν0 .
Employing the Born-Oppenheimer approximation, the electronic eigenvalue problem for a given

set of nuclei coordinates ({RI}),

H̃eΦ{RI}
ν ({riσi

}) =
(
He + υext

)
Φ{RI}

ν ({riσi
}) = Ee

ν({RI})Φ{RI}
ν ({riσi

}), (2.13)

remains to be solved, involving a gigantic number of particles though.
The density functional theory, introduced next, allows an enormous reduction of the involved

degrees of freedom.

2.1.2 Density Functional Theory

In this section we briefly discuss the fundamental aspects of the density functional theory and the
most important involved simplifications and techniques.

The introduction of the density functional theory (DFT) in 1965 by W. Kohn, is certainly one

3In Ref. [5] it is shown on the specific example aluminum that incorporation of the electronic temperature for the
derivation of F vib results in energy corrections which are in magnitude smaller compared to the contribution of the
quasiharmonic approximation or its higher order corrections (explicit anharmonic contributions).
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of the fundamental breakthroughs in condensed matter physics in the last century. Since magnetic
systems are in the focus of the present study we directly discuss the extension of DFT to spin-
polarized systems, the so called spin-polarized DFT (SDFT), introduced by von Barth and Hedin
[9] in 1972. The main concepts of both versions are, however, very similar.

The basic idea of the SDFT is to express the eigenvalue problem Eq. (2.13) not in terms of the
many-body wave function Φ = Φ({riσi

}), but instead in terms of the electronic density

n(r) = 〈Φ|
Ne∑

i

δ(r − ri)|Φ〉, (2.14)

and the magnetization density

m(r) = −2µB〈Φ|
Ne∑

i

σiδ(r − ri)|Φ〉. (2.15)

Both are for convenience often combined in the compact 2 × 2 spin-density matrix as

n(r) =
1

2
(n(r) + σm(r)) . (2.16)

The original version of the First Hohenberg Kohn theorem states that for a nonmagnetic, nonde-
generate electronic system in a given external potential vext (in absence of external fields), this
potential is uniquely defined (within a trivial constant) by the ground-state electron density n0(r).
Since by definition the kinetic and electron-electron interaction operators in He (see Eq. (2.6)) are
fully determined by the total number of electrons Ne (which can be derived from the electronic den-
sity n as well), the complete eigenvalue problem Eq. (2.13) can be expressed as a functional of n. A
similar unique correspondence in the SDFT between the spin density matrix n and a given external
potential does, however, not exist. This was already recognized a long time ago by von Barth and
Hedin [9], and formally shown independently by Capelle and Vignale [21] and Eschrig and Pickett
[22]. The nonuniqeness is a generic feature of multidensity DFTs (as the spin-polarized DFT or the
current-DFT) and the consequences are still under investigation [23–27]. There are indications that
the non-invertibility is restricted to exceptional and rather artificial cases [24]. This assumption
is empirical substantiated by the fact that the SDFT is the most widely used formulation of DFT
in practical applications. If provided that the first theorem holds for SDFT as well, the external
potential vext, and hence the total ground-state energy and all ground-state properties could be
expressed as a functional of the ground-state spin density n0. Evidently, this yields a substantial
reduction of the degrees of freedom (from the many-body wave function Φ towards the 2 × 2 spin
density matrix n having 12 degrees of freedom).

The Second Hohenberg-Kohn theorem states that the total energy for a given density n is always
greater or equal to the true ground-state energy defined by the corresponding ground-state density
n0. It is based on the Rayleigh-Ritz variational principle [28], according to which for any given
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Hamiltonian H (and in particular H̃e in Eq. (2.13)) and any trial wave function Φtrial, the expectation
value of 〈H〉Φtrial

is always greater than the ground-state energy E0:

Etot[Φtrial] ≡
〈Φtrial|He|Φtrial〉
〈Φtrial|Φtrial〉

≥ Etot
0 . (2.17)

The theorem allows by virtue of the minimization above a straightforward way to find the ground-
state energy by minimizing the functional Etot[Φtrial] with respect to Φtrial. Since the ground-state
density n0 uniquely determines the ground-state wave function n0 → Φ0, Etot

0 is completely defined
by n0 as well,

Etot[Φ0] ↔ Etot[n0] ≡ Etot
0 , (2.18)

and can be determined by minimizing (2.17).

The energy functional

Etot[n(r)] = F [n(r)] +

∫

n(r)υext(r)dr (2.19)

contains, however, an unknown (yet universal, i.e., not depending on υext though) functional

F [n(r)] = min
Φtrial→n(r)

〈Φtrial| (T e + V ee) |Φtrial〉, (2.20)

including T e and V ee given by the electronic subsystem Eq. (2.6).

The Hohenberg-Kohn theorems provide a major simplification by transferring the problem of
dealing with the many-body wave function to the much simpler ground-state density. A (practical)
route to treat the functional F [n] was proposed by Kohn and Sham in 1965.

Kohn-Sham Equations

In order to determine the functional F [n], Kohn and Sham introduced a fictitious auxiliary system
of non-interacting electrons. The “trick” is to map the complex problem of interacting electrons in
a given external potential υext onto a system of non-interacting electrons in an effective, so called
Kohn-Sham potential V KS [29]. The potential V KS of the auxiliary system is constructed in such
a way that the electronic density of the non-interacting electron system equals the density of the
interacting electronic system, i.e., n≡nKS.4 This allows to reformulate the functional F [n] as

F [n] = TKS[n] + J [n] + Exc[n], (2.21)

where the kinetic energy functional TKS[n] of the non-interacting electrons defined by the single-

particle wave functions ϕKS
iα could be expressed in a comparable simple form5

TKS[n] ↔ TKS[
{
ϕKS

iα

}
] = −

∑

α=↑,↓

∑

i

1

2
〈ϕKS

iα |∇2
i |ϕKS

iα 〉, (2.22)

4There is no exact proof that this mapping is always possible, see e.g. [10].
5Provided that the

˘

ϕKS
iα

¯

are orthonormalized.
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where the sum runs over all Ne occupied eigenstates. The Hartree term J [n] (classical electrostatic
electron-electron interaction) in Eq. (2.21) is defined as

J [n(r)] = J [n(r)] =
e2

4πǫ0

1

2

∫ ∫
n(r)n(r′)

|r − r′| drdr′. (2.23)

Apart from J [n] and TKS[n], which are explicitly known [see Eqs. (2.22) and (2.23)], the (unknown)
correction including the kinetic energy difference of the non-interacting and interacting electronic
system in Eq. (2.21) and the nonclassical contribution of the electron-electron repulsion is defined
as the exchange-correlation energy

Exc[n] ≡ T e[n] − TKS[n] + V ee[n] − J [n]. (2.24)

Although the explicit formulation for the functional dependence of Exc[n] is unknown, successful
approximations exist (some are discussed in the next section). On the other hand, we gain (due to
the mapping) a much more convenient situation: The many-body problem in Eq. (2.13) is reduced
to the problem of solving the single-particle Schrödinger equation6

[(

−1

2
∇2 +

∫
n(r′)

|r − r′|dr′

)

 + V KS(r)

](

ϕKS
i↑ (r)

ϕKS
i↓ (r)

)

= ǫi

(

ϕKS
i↑ (r)

ϕKS
i↓ (r)

)

. (2.25)

The effective Kohn-Sham potential V KS of the one-particle electron system is given by the 2×2

matrix
V KS

αβ (r) = υext
αβ (r) + V xc

αβ(r), (2.26)

including the known contributions υext and α, β representing the spins ↑, ↓. The unknown exchange-
correlation potential is derived from the corresponding energy, Eq. (2.24), as

V xc
αβ =

δExc[n(r)]

δnαβ(r)
. (2.27)

Due to the construction of the auxiliary system, the electronic density matrix Eq. (2.16) can be
expressed in terms of the introduced Kohn-Sham single-particle wave functions as

nαβ(r) =

Ne∑

i

ϕKS
iα (r)ϕ∗KS

iβ (r). (2.28)

Based on the variational principle Eq. (2.17), the Kohn-Sham formalism [Eqs. (2.21)-(2.28)] pro-
vides a practical recipe to compute the ground-state density and the total energy of the electronic
subsystem for a given set of nuclei positions {R̃I}.

In principle the whole formalism is very general and applicable even to non-collinear spin sys-
tems, i.e., systems where the spin density matrix n(r) in Eq. (2.28) is not diagonal for all r in space.
For these situations, the evaluation of Eq. (2.25) including Eq. (2.27) is not convenient for practical
implementation due to the non-diagonal elements in n. More important, the approximations for

6For the sake of clarity we use atomic units here.
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Exc, which enter (2.27), are commonly based on diagonal n. Following Sandratskii et al. [30], the
spin matrix can be locally diagonalized using the unitary transformation

∑

αβ

UiαnαβU+
βj = δijni, (2.29)

where U is given by the S = 1/2-rotation matrix

U = exp

(
1

2
iθσy

)

exp

(
1

2
iφσz

)

, (2.30)

and θ, φ represent the spherical angles. To express Eq. (2.27) in terms of the (locally) diagonal ni

one uses [31]
∂ni

∂nαβ
= UiαU+

βi. (2.31)

Employing the above relation, V xc
αβ in Eq. (2.27) can be expressed in terms of the locally diagonal

ni as

V xc
αβ =

δExc

δnαβ
=
∑

i=↑,↓

δExc

δni

δni

δnαβ
=
∑

i=↑,↓

δExc

δni
UiαU+

βi. (2.32)

The single-particle Schrödinger equation, Eq. (2.25), can be rewritten in terms of the diagonal and
non-diagonal part of the spin density. Therefore it is convenient to express the effective KS potential
V KS in terms of the rotated Pauli-matrix,

σ̃z = UσzU
+ =

(

cos θ e−iφ sin θ

eiφ sin θ − cos θ

)

, (2.33)

as
V KS = V0 + ∆V σ̃z (2.34)

with diagonal terms

V0 = υext +

∫
n(r′)

|r − r′|dr′ +
∑

i=↑,↓

δExc

δni
, (2.35)

and mixing terms

∆V =

(
δExc

δn↓
− δExc

δn↑

)

. (2.36)

This results in the general expression for the single-particle Schrödinger equation for non-uniform
magnetic systems7

[

(−1

2
∇2 + V0) + ∆V σ̃z

](

ϕKS
i↑ (r)

ϕKS
i↓ (r)

)

= ǫi

(

ϕKS
i↑ (r)

ϕKS
i↓ (r)

)

. (2.37)

7Practically, one usually coarse grain the space r in a discrete mesh containing atomic spheres ν, i.e., θ(r), φ(r) →
θν , φν . This is justified in most cases, where the spin density is almost collinear within the atomic sphere ν and is
vanishing outside.
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Since V0 as well as ∆V0 depend only on the (locally) diagonal spin density matrices Eq. (2.29), the
solution is much more straightforward [30] than solving Eqs. (2.25)-(2.27) directly.

Exchange-correlation Functionals

As pointed out above, the only remaining unknown part is the exchange-correlation (xc) functional
Exc, Eq. (2.24), for which several approximations have been proposed.

A well established approximation is the so called local-spin-density approximation (LSDA) which
is based on the homogeneous electron gas model. It is assumed that the exchange-correlation energy
per electron ǫxc at every coordinate r is a function of n↑(r) and n↓(r) at that point only, i.e.,
ǫxc
LSDA ≡ ǫxc

LSDA(n↑(r), n↓(r)) which results for the Exc in the LSDA in8

Exc
LSDA[n↑(r), n↓(r)] =

∫

n(r)ǫxc
LSDA(n↑(r), n↓(r))dr, (2.38)

where n↑,↓ represent the spin density of the spin-up/spin-down electrons and n = n↑ + n↓.

The xc-energy ǫxc
LSDA can be further split into the exchange and correlation energy:

ǫxc
LSDA = ǫx

LSDA + ǫc
LSDA. (2.39)

For the homogeneous electron gas model the ǫx
LSDA can be derived analytically via Hartree-Fock

theory [20] whereas for the remaining correlation part in ǫc
LSDA efficient parameterizations [32] based

on highly accurate Quantum Monte Carlo calculations of the homogeneous electron gas exist [33].9

Despite the simple character of Eq. (2.38), the LSDA provides (surprisingly) extremely accurate
results.

However, as it turned out, one of the most famous deficiencies of the LSDA is that it predicts
a nonmagnetic fcc ground state for iron (which is one of the key materials in the present study)
instead of the experimentally observed ferromagnetic bcc state [34]. This issue was resolved by the
introduction of the generalized gradient approximation (GGA) which accounts in addition for an
explicit dependence of ǫxc on ∇n(r):

Exc
GGA[n(r)] =

∫

n(r)ǫxc
GGA

(

n↑(r), n↓(r),∇n↑(r),∇n↓(r)
)

dr. (2.40)

Among the different proposed GGA parameterizations (PBE, PBE0, rPBE, PW91, etc.), the PBE-
GGA type is one of the most established ones and is employed in the present work.

Although the GGA turned out to improve various properties with respect to the LSDA, Eq. (2.40)
does not allow to quantify the introduced error as well it is not a priori clear if it improves LSDA
in principle. For selected applications in the present study, both functionals were used to estimate
the intrinsic error within the approximations of the xc-functional.

8For the sake of clearness we present here the representation of the LSDA for collinear spin polarization (e.g.
ferro-/anti-ferromagnets). The generalization to non-collinear spin polarization can be achieved by a local rotation
of the coordinate system similar to Eq. (2.29) [see e.g. Ref. [31]].

9The parameterization performed in [32] are performed for the polarized system ζ = (n↑ − n↓)/n = 1, the
unpolarized system (ζ = 0) and an interpolation in between as proposed by Barth and Hedin [9].
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Bloch Theorem, Periodic Boundary Conditions, and Plane Wave Approach

The DFT formalism discussed above maps the problem of solving a system of interacting electrons
onto an equivalent system of non-interacting electrons in an effective Kohn-Sham potential. Nev-
ertheless, the amount of the effective KS wave functions ϕKS for the description of solids (> 1023

per cubic cm) is much too high to be computationally handled. A drastic reduction of the required
wave functions is obtained by taking the crystal symmetries into account. According to Bloch’s

theorem, the periodicity of a (external) potential V ext(r + R) = V ext(r) with respect to a lattice
translation Rn =

∑

i niai in terms of multiple of the lattice unit vectors ai is reflected in the wave
functions of the electrons (also called Bloch functions):

ϕKS
ikα(r) = eik·ruikα(r). (2.41)

Here i denotes the band index, k a vector in the first Brillouin zone ΩBZ and uikα(r) = uikα(r+R)

the lattice periodic part of the wave function. Since the single-particle Hamiltonian, the wave
functions and hence all observables inhibit the translational invariance, solving the Schrödinger
equation in the unit cell spanned by the ai is sufficient to describe the whole translational periodic
system.

Formulated differently, the problem of solving an infinite number of electrons occupying a finite
number of states in an infinite crystal is transformed into the problem of solving a finite number of
electrons in a finite cell, but occupying an infinite number of states (k-points). This is reflected in
the computation of the density

n(r) =
∑

α=↑,↓

occ∑

i

|ϕKS
iα (r)|2 =

1

ΩBZ

∑

α=↑,↓

occ∑

i

∫

BZ
|ϕKS

ikα(r)|2dk. (2.42)

In practice, the integration over the infinite number of k-points in ΩBZ is replaced by a discrete
grid, and typically crystal symmetries are employed to reduce the computational effort. The explicit
chosen number of k-points for the numerical integration in Eq. (2.42) has to ensure the desired
convergence criteria and depends on the system under investigation.10

Although it is in principle possible to solve the unknown part of the wave function uikα(r)

directly numerically, it is more convenient to expand the latter first in an appropriate basis set.
One of the most common approaches in solid state physics is the so called plane-wave approach. It
is based on a plane-wave expansion of uikα(r) as

uikα(r) =
∑

G

ci,k+G,α exp[iG · r], (2.43)

where G denotes the reciprocal lattice vectors. The expansion coefficients ci,k+G,α can be calculated
by combining Eqs. (2.37), (2.41), and (2.43) as

∑

G′

[(

−1

2
|k + G|2 + V0(G,G′)

)

δGG′ + ∆V (G,G′)σ̃z

](

ci,k+G,↑

ci,k+G,↓

)

= ǫik

(

ci,k+G,↑

ci,k+G,↓

)

. (2.44)

10For each material system under investigation, the explicit chosen parameters are given in the corresponding
section.
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The coefficients with small kinetic energy ≤ 1
2 |k+G|2 are typically more important than those with

large kinetic energy [35]. In practice, the basis set Eq. (2.43) is therefore truncated at a certain
cutoff value 1

2 |k+G|2 ≤ Ecut. The increase of Ecut yields to a consistently better description of the
ground-state density. Therewith Ecut represents a very convenient convergence parameter to control
the basis set and the error introduced due to the truncation within the plane wave approach. The
controllability of the convergence parameters (i.e., in particular the cutoff energy) is one of the big
advantages of the plane-wave basis set.

Summary

Let us briefly summarize this section. For a feasible solution of the many-body problem for the bulk
system, Eq. (2.4), two major steps are required. First, the decoupling of the nuclei and magnetic
degrees of freedom from the electronic motion. In order to compute the ground-state energy for a
given (fixed) set of nuclei {R̃I} and/or a given magnetic configuration (direction of spin density m̃),
the electronic Hamiltonian H̃e in an effective potential, Eq. (2.13), has to be solved. This is possible
by the introduction of the DFT reducing the problem to a minimization procedure for the ground-
state spin density n0. The mapping onto an effective, auxiliary system of non-interacting electrons,
the Kohn-Sham approach, reveals a practical recipe to perform this energy minimization, yielding
n0 and the ground-state energy. The only remaining approximation is given by the treatment of
the (unknown) exchange-correlation functional Exc.

Ultimately, we are interested in a complete description of the Helmholtz free energy (2.3). In
the next sections we discuss how the DFT computed properties for given constraints can be used
as input data for finite temperature concepts.
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2.2 Extension to Finite Temperatures

The methodology discussed so far provides an efficient first-principles scheme to compute ground-

state properties at zero temperature. For the description of finite temperature properties, two chal-
lenges have to be accomplished:

(a) The description of finite temperature excitations within the Kohn-Sham DFT formalism.

(b) The contribution of these excitations to the thermodynamic properties.

Both tasks (a) and (b) represent a wide field of research on their own. We focus in the following
in particular on the magnetic excitations. In the beginning, a brief overview of the different types
of magnetic excitations (a) is given and several techniques to capture these excitations within the
framework of DFT are introduced. For this purpose we discuss in particular the so called adiabatic
spin dynamics.

The treatment of thermodynamic properties (b) is discussed afterwards. For this purpose the
Heisenberg model is introduced and discussed in detail followed by different solution strategies.
Finally, the concepts for the determination of vibronic and electronic excitations are shortly sum-
marized.

2.2.1 Magnetic Excitations from DFT

The dominant magnetic excitation in ferromagnets are the so called (single-particle) Stoner ex-
citations and the (collective) spin-wave excitations (see also Fig. 2.2). At low temperatures the

Figure 2.2: Sketch of Stoner continuum (shaded region) and spin-wave excitation spectrum (red
line) for a strong ferromagnet.

spin-waves dominate the magnetic contribution to the thermodynamic properties. They are for
instance responsible for the famous T 3/2 Bloch law for the magnetization in ferromagnets as well
as for their T 3/2 contribution to the specific heat capacity at low T .

Going to higher temperatures, in addition single-particle spin-flip processes take place which also
contribute to the thermodynamics of the system. These Stoner excitations are electron transitions
between bands of opposite spin. For q → 0 the energy of such excitation corresponds to the
exchange splitting energy (e.g., ∆ex = 1.5, 1.1, and 0.3 eV for Fe, Co, and Ni, respectively [36]). At
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high temperatures, the crossover of the spin-wave spectrum and Stoner continuum results in the
damping of spin-waves.

A rigorous way to describe both types of excitations starting from the microscopic many-body
problem is the determination of the dynamical spin susceptibility,

χαβ
ij (ri, ti; rj , tj) = gµB

∂mα(ri, ti)

∂Bβ(rj , tj)
, (2.45)

which describes the (time-dependent) response of the magnetization

mα(r, t) = gµB〈σα〉(r, t) (2.46)

under variation of a magnetic field Br(t). In the above equation, α, β = (x, y, z,+,−) denote
the index of the Pauli matrices including spin annihilation “ − “ and creation “ + “, and ri, rj

represent the real space coordinates at times ti, tj, respectively. The collective excitations (including
the interference with the Stoner continuum) can be readily obtained by the poles of the Fourier
transformed transversal spin susceptibility χ+−(q, ω).

A direct determination of the time-dependent response function Eq. (2.45) is, however, not
possible within the framework of the time-independent DFT formalism introduced above. Two
extensions to DFT turned out to allow a very accurate description of the dynamical susceptibility,
namely the linear-response DFT [37] based on the time-dependent DFT (TDDFT) formalism [38]
as well as the application of many-body perturbation theory (MBPT) (see e.g. [39]). Both methods
are, compared to the pure DFT formalism, conceptually and computationally much more complex
and expensive, respectively. We briefly expose in the following one of these concepts, namely the
MBPT, to illustrate how χαβ

ij can be in principle addressed within the DFT framework. For a
detailed review we refer to [40]. Starting point is the local spin density in Eq. (2.46),

〈σα
rm

(tm)〉 = −i
∑

ij

σα
ijGji(rm, tm; rm, t+m), (2.47)

where t+m indicates an infinitesimal increase of the time variable (to ensure proper time ordering).
The single-particle Green’s function is given by

Gij(r1, t1; r2, t2) = 〈〈ai(r1, t1); a
+
j (r2, t2)〉〉 ≡ Gij(1, 2), (2.48)

where a±i (rm, tm) denotes the creation (“+”) or annihilation (“−”) of an electron with spin i at time
tm and space rm. Using the short-hand notation introduced above, i.e., 1 = (r1, t1), the single-
particle Green’s function of the full system Gij(1, 2) is determined by the Dyson equation (see e.g.
[41]) as

Gij(1, 2) = G0
i (1, 2)δij +

∑

k

∫ ∫

G0
i (1, 3)Σik(3, 4)Gkj(4, 2)d3d4, (2.49)

where G0
i denotes the single-particle Green’s function of the free (non-interacting) system and Σ

the non-local and energy-dependent self-energy. The Kohn-Sham formalism directly provides via
construction as a byproduct the eigenenergies ǫi and eigenfunctions φKS

i of the auxiliary (non-
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Figure 2.3: Transversal spin susceptibility χ+−(q, ω) of fcc Ni for different q-vectors along the [1 1 1]-
direction. For small q-vectors the collective excitations are clearly dominating (sharp peaks). Due
to the interference with the Stoner continuum (see also sketch in Fig. 2.2) the spin-wave excitation
energies are smeared out at higher q. The data are taken from [39].

interacting) Kohn-Sham system. Although they are strictly speaking no physical observables, as a
first approximation a non-interacting DFT-KS Green’s function GKS can be defined. Therewith the
single-particle excitations can directly be studied. To determine the collective excitations, access
to the Green’s function Gij of the full, interacting system is, however, required. One of the key
ingredients within a many-body-perturbation approach is therefore the self-energy Σ in Eq.(2.49).
An established approach within the framework of DFT is the so called GW approximation [42]

Σij(1, 2) ≈ iGij(1, 2)W (1, 2), (2.50)

where W denotes the screened interaction. First-principles GW approaches have been successfully
carried out since thirty years [40]. The second ingredient within a MBPT is the treatment of the
electron-hole interaction which is well described by the Bethe-Salpeter equation via a functional
derivative of Σ [40]. As an example we show in Fig. 2.3 the computed χ+−(q, ω) for fcc Ni and
different q vectors. For small q, the collective excitations are clearly pronounced by the sharp
peak in χ+−(q, ω). For higher q and higher energies, the interference with the Stoner continuum
(see Fig. 2.2) results in a broadening of the excitation spectrum emphasizing the importance of
single-spin flip excitations in fcc Ni.

Considering the elementary ferromagnets Fe, Co, and Ni, very recent MBPT results by Şaşıoğlu
et al. [39] reveal that the single-particle excitations in Fe and Co are in a large energy window
negligible compared to the collective spin-wave excitations. These findings are in agreement with
employment of the TDDFT by Savrasov in Ref. [37].

On the other hand, Stoner excitations are found to be much more significant in case of fcc Ni
due to the much lower band-splitting [37, 39]. Focusing on the collective spin-wave excitations in
Fe and Co, it is found that both approaches (TDDFT and MBPT) [37, 39] nicely agree with the so
called adiabatic approximation [12, 43] which we discuss next.
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Adiabatic Spin Dynamics from DFT

In the last decade most of the theoretical studies of magnetic excitations were based on an adiabatic
treatment of the spin degree of freedom. The much slower motion of magnetic moments is separated
from the faster electronic motion by mapping the many-body problem onto an effective Heisenberg
model. In such an ansatz, the single-particle spin-flip excitations are neglected.

The derivation provided in the following is based on the adiabatic decoupling as given in [12,
43, 44]. We start by substituting ∆V σ̃z with σBeff in Eq. (2.37),

[

(−1

2
∇2 + V0) + σBeff

](

ϕKS
i↑ (r)

ϕKS
i↓ (r)

)

= ǫi

(

ϕKS
i↑ (r)

ϕKS
i↓ (r)

)

, (2.51)

which emphasizes an important point: The term σBeff indicates that the spin-dependent part of
the exchange-potential11 (i.e. ∆V ) acts like an effective magnetic field which is given by

Beff
r = Beff

r






cos φr sin θr

sin φr sin θr

cos θr




 , (2.52)

with Beff taking the role of ∆V i.e.
Beff

r := ∆Vr. (2.53)

The spin-waves are caused by the time-dependent motion of the magnetization mr(t) at each
point in space r as function of time t. To solve the equation of motion for the time-dependent
magnetization we have in principle to solve the full time-dependent Schrödinger equation to obtain
nr(t) and hence mr(t) = Tr (σnr(t)). A full time-dependent DFT would render the current study
to be infeasible.

Since the motion of mr(t) (spin-waves ∼ meV) is much slower than the electronic motion (∼ eV)
it is justified to use an adiabatic approach similar to the decoupling of the nuclei and electronic
motion (Born-Oppenheimer approximation in Sec. 2.1.1). This implies that the electrons follow the
time-dependent change of mr(t) instantaneously.

The main assumption is that the time-dependent Schrödinger equation holds also in the frame-
work of DFT in the adiabatic approximation [38], i.e.,

i
∂

∂t

(

ϕKS
i↑

ϕKS
i↓

)

=

[

(−1

2
∇2 + V0) + σBeff

](

ϕKS
i↑

ϕKS
i↓

)

. (2.54)

The equation above describes the time evolution of the spinor components ϕKS
i↑ and ϕKS

i↓ . Solving
this equation yields the spin density nr(t) and hence the time dependence of the magnetization
density via

∂

∂t
mr = Trσ

∂

∂t
nr. (2.55)

11We remind that V0 includes the spin-independent part of the exchange-correlation potential, see Eq. (2.35).
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Using Eq. (2.54) and some algebra (see e.g. [31]) one gets a rather simple form12,

∂

∂t
mr = −2mr × Beff

r , (2.56)

for the motion of the magnetization density.

Above equation could be identified with the famous (classical) Landau-Lifshitz Equation which
was introduced by Landau and Lifshitz already in 1935 to model the precessional motion of the
magnetization under an (effective) magnetic field Beff [45].13 In our case, the effective field Beff is
caused by the spin-dependent part of the exchange-correlation potential, Eqs. (2.52) and (2.53).

If we assume the z-axis as a global quantization axis θr ≡ θ (which is in absence of magnetic
anisotropy possible), an ansatz fulfilling the differential equation (2.56) is given by

mr(t) = mr






cos φr(t) sin θ

sin φr(t) sin θ

cos θ




 , (2.57)

where θ denotes the time- and location-independent polar (cone) angle and φr(t) the time-dependent
azimuthal angle at every point in the crystall r.

In principle, the magnetization direction mr(t)/|mr(t)| as well as the effective field Beff
r may

vary in every point in space r. However, for most practical calculations mr(t) is in a good ap-
proximation collinear within the atomic spheres Ων of each atom ν [31]. One can therefore proceed
by coarse graining mr(t) and introducing an effective point magnetic moment Mν located at the
position Rν of every atom ν,

Mν =

∫

Ων

mrdr. (2.58)

The above mapping of the magnetization onto effective local (point) moments allows one to define
the spin quantum number via

|Mν | = Mν = gµBSν (2.59)

with the Landé factor g ≈ 2 and the Bohr magneton µB.

By taking the lattice symmetry into account we can define φr(t) in Eq. (2.57) as

φr(t) → φν(t) = ωt + qRν . (2.60)

The so called spin spiral characterized by Eqs. (2.57)-(2.60) is illustrated in Fig. 2.4. All moments
Mν rotate with a fixed magnitude (projection) around the z-axis (determined by a fixed cone angle
θ). At each time t, the azimuthal angle φν(t) at atom ν is determined by a wave vector q, Eq. (2.60).
Since the situation sketched in Fig. 2.4 appears like a snapshot of a frozen spin-wave, this approach
is sometimes also referred to as frozen magnon approach.

The total energies of the such constructed spin spirals can be associated with the spin-wave
energy. To identify the total energy calculations with the spin-wave energy we assume a ferromag-

12Terms which can be related to the change of the orbital contribution of the magnetization are neglected since we
are interested in the spin part only [31].

13Actually, Landau and Lifshitz treated a more general case of Eq. (2.56) including a damping factor.
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Figure 2.4: Sketch of a spin spiral Eq. (2.57).

netic system, which is perturbed by a change of the direction of the magnetic moments Mν . The
resulting energy change ∆E can be expressed as

∆E =
∑

αβ

JCL
αβ MαMβ (2.61)

which is exactly the classical solution of the Heisenberg model (the model will be discussed in detail
afterwards). The perturbation ∆E gives rise to an effective field Bν in every atomic sphere ν,

Bν = − ∆E

∂Mν
= −2

∑

β

JCL
αβ Mβ. (2.62)

Assuming a small perturbation (θ → 0) and combining Eqs. (2.56) and (2.57)-(2.62), one ends up
with

ωDFT
q = 4

∑

β

JCL
αβ Mβ

(

eiq(Rα−Rβ) − 1
)

=
4

M
(J̃q − J̃0), (2.63)

where we assumed in the last step a homogeneous magnetization M ≡ Mβ and absorbed M in the
effective exchange coefficients JCLM2 = J̃ .14

For finite cone angles θ, ∆E is given as

∆E(q, θ) = sin2 θ(J̃q − J̃0). (2.64)

Thus the dispersion ωDFT
q Eq. (2.63) reads as [12, 31]

ωDFT
q =

4

M
lim
θ→0

∆E(q, θ)

sin2 θ
. (2.65)

This is one of the key expressions which links the total ground state energies of different spin spirals
(obtained employing the DFT formalism) with the magnetic spin-wave excitations. Furthermore,
Eqs. (2.64)-(2.65) allow one to extract directly effective exchange coefficients J̃ , which could be
further used to derive other (thermodynamic) magnetic properties.

Before concluding this section we note one important point for the practical evaluation of
Eq. (2.65). This concerns the choice of the cone angle θ. From a physical point of view, it should

14For the sake of simplicity the derivation is shown for single-species systems. The extension to multi-species
systems is, however, straightforward, see e.g. [12, 31].
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be as small as possible since spin-waves are small perturbations from the ground state. Because for
small cone angles the total energy ∆E goes to zero as sin2 θ [Eq. (2.64)], calculations are carried
out at a finite θ, which provides sufficient large energy differences ∆E within a reasonable choice of
technical convergence parameters (such as cutoff energy, k-point grid, etc). Apart from this rather
technical aspect, the “best” choice of the cone angle for some applications is still debated [46, 47].
For the determination of high temperature properties such as TC , some works suggest [47] to employ
larger cone angles since they may better mimic the situation at high T (paramagnetic regime). We
will discuss this point in more detail for a realistic material system (namely bcc iron) and also
the impact of the choice of θ on TC . However, we would like to note already here that for strong
ferromagnets (large exchange splitting) such as bcc iron, the actual choice of θ is rather uncritical.
This has been shown in Refs. [12, 48] and very recently by Kübler [44]. In fact, already the use of
planar spin spirals (the limit case θ = π/2), i.e.

ωDFT
q =

4

M
∆E(q, π), (2.66)

allows reliable predictions [43, 44].
Another point concerns the computation of incommensurable (wrt. the unit cell) spin spiral

structures. In this case, the “conventional” translational invariance (Bloch theorem) is broken for
translations non-orthogonal to q. However, the atoms separated by a lattice translation are still
equivalent apart from the rotated local moments (if we neglect the small lattice anisotropy due to
spin orbit coupling). Transformations combining a translation (by Rn) and a rotation (by q · Rn)
leave the spiral structure invariant and provide a very elegant way to treat spin spirals. Following
Sandratskii [49], this can formally be expressed by a generalized translation Tn which includes the
translation Rn and the spin rotation U [Eq. (2.30)], and commutes with the Hamiltonian:

TnH(r)ϕ(r) = H(r)U(−qRn)ϕ(r + Rn). (2.67)

In analogy to Bloch’s Theorem the eigenstates can be chosen as

Tnϕik(r) = U(−qRn)ϕik(r + Rn) = eik·Rnϕik(r). (2.68)

The lattice periodic part of the eigenstates above follows the chemical lattice (via Rn). This
implies that spin spirals can be computed in the chemical unit cell, which drastically reduces the
computational effort, or even makes the computation of incommensurable spiral structures possible
in first place. Further reduction of the computational effort is possible if the perturbation is small
(small q vectors and cone angles θ). In this limit, the magnetic force theorem [15] can be applied
allowing to reduce the computational costs as well.

The effective spin Sν (2.59) and the effective exchange coefficients J̃ (2.63)-(2.65) completely
determine the Heisenberg model which we discuss next. Therefore, we have all ingredients in hands
to study the thermodynamic properties of magnetic materials based on first-principles results.
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Figure 2.5: Sketch of the Heisenberg model Eq. (2.70). Exchange interaction JQM
ij between spins

Si and Sj localized at lattice sites Ri and Rj.

2.2.2 The Heisenberg Model

The frozen magnon approach based on the adiabatic spin dynamics discussed in the previous section
allows us to map the complex many-body problem onto a more simple, effective magnetic Hamil-
tonian. Explicitly, we have introduced in Eq. (2.61) the classical formulation of the Heisenberg

model.15

Originally, the model was proposed to study the magnetism caused by localized moments (e.g.
due to partially filled electron shells, such as e.g. EuO or EuS). The quantum-mechanical Hamilto-
nian is given by

H = −
∑

ij

JQM
ij SiSj, (2.70)

with exchange coefficients JQM
ij , which mediate the magnetic exchange between spins Si localized

at lattice sites i and j. The Si denote the spin operators obeying the usual commutator rules for
orbital moments and having discretized eigenvalues. The Heisenberg model should be interpreted
as an effective operator simulating the Coulomb interaction via the spin-spin interaction Si · Sj.
Although originally designed to describe the situation of ideal localized moments, the model has
been successfully16 applied to magnetic metals showing strongly (but not ideally) localized magnetic
moments (such as Fe and Co) see e.g. [15, 16, 43, 48, 54].

15For the sake of completeness we mention here also two other famous magnetic model Hamiltonians. The first one
is the so called Hubbard model which is supposed to describe in particular itinerant magnetic materials. These are
systems where both phenomena, conductivity and magnetism, are caused by the same group of (itinerant) electrons.
It is therefore in particular well suited to account for the single-particle Stoner excitations. The Hubbard model was
proposed in 1963 by Hubbard [50], Gutzwiller [51] and Kanamori [52]:

H =
X

ijσ

Tija
+
iσajσ +

UHub

2

X

iσ

niσni−σ. (2.69)

Here, a+
iσ (aiσ) denotes the creation-(annihilation-) operator of an electron having spin σ =↑, ↓. Tij is the hopping

integral between lattice sites Ri and Rj . The operator niσ = a+
iσaiσ denotes the occupation number operator and

UHub (also called Hubbard-U) represents a simplified version of the Coulomb interaction energy between the electrons,
which is reduced to a local, intra-atomic interaction. The lattice information is effectively included in the Tij . The
Hubbard model allows hence to study the interplay between kinetic energy, Coulomb interaction and lattice structure
under the Pauli principle.

Another famous magnetic model was proposed for systems where two different groups of electrons are responsible
for the magnetism and the conductivity. A prototype is the 4f-system Gd. Here, the itinerant electrons can interact
with the localized spin system. The appropriate model is called Kondo-lattice model [53].

16We note that this holds only true if one is interested in the magnetic properties of these materials and not in the
interplay of, e.g., conductivity and magnetism.
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The subscript “QM” underlies that the above representation is a quantum model. In fact, we
will show in Sec. 3.2.2 explicitly that the quantum effects, neglected by the classical formulation
(2.61), are mandatory for an accurate description of thermodynamic properties. The solution of the
quantum model is, however, not that straightforward.

Before discussing different solution techniques we use the opportunity to deepen the concept
of spin-waves. Up to now they were phenomenologically introduced as small perturbations (“spin
spirals”) from the ferromagnetic ground state. This results finally in the expression (2.65), which
combines the total energy calculations ∆E(q, θ) with the excitation energy ωDFT

q . We provide in
the following a more formal approach to the spin-wave concept.

Spin-waves

To show that spin-waves are the natural eigensolutions of the Heisenberg model it is convenient to
express Eq. (2.70) in terms of raising (lowering) operators S±

i = Sx
i ± iSy

i as

Si · Sj = Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j =
1

2
(S+

i S−
j + S−

i S+
j ) + Sz

i Sz
j , (2.71)

where the z-axis is chosen as the quantization axis.17

After Fourier transformation,

Sσ
q =

∑

i

e−iqRiSσ
i , (σ = +,−, z) (2.72)

JQM
q =

1

N

∑

ij

JQM
ij eiq(Ri−Rj), (2.73)

the Hamiltonian can be expressed in q-space as

H = − 1

N

∑

q

JQM
q

(
S+

q S−
−q + Sz

qSz
−q

)
− 1

~
gµBBz

0Sz
0. (2.74)

Denoting the ground state (ferromagnetic solution) as |0〉 one can show (see e.g. [56]) that

|q〉 =
1

~
√

2SN
S−

q |0〉 (2.75)

is a (normalized) eigenstate of (2.74) with an eigenenergy given by

Êq = E0 + Eq, (2.76)

where
E0 = −NJ0~

2S2 − NgµBBz
0 (2.77)

17In high symmetric 3D systems the magnetic lattice anisotropy due to spin-orbit coupling as well as the dipolar
anisotropy is at least one order of magnitude smaller than the exchange interaction J and is therefore neglected in
the present study. We note, however, that these anisotropies are crucial in low dimension, in particular to realize
finite magnetization in 2D films (Mermin Wagner theorem [55]).
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denotes the ground-state energy.
The energy

Eq = gµBBz
0 + 2S~

2
(

JQM
0

− JQM
q

)

(2.78)

is interpreted as the excitation energy of one magnon. From the Zeeman term one directly recognizes
that the total moment of the system is reduced by gµB . The quasiparticle has therefore the spin 1,
i.e. magnons are bosons.

The expectation value of the lattice site dependent magnetization,

〈q|Sz
i |q〉 = 〈Sz

i 〉 = ~

(

S − 1

N

)

, (2.79)

reveals an astonishing outcome: the spin deviation is lattice site independent! This directly implies
the concept of a spin-wave: The spin deviation Eq. (2.79) is uniformly distributed over the whole
lattice and characterized by a wave vector q. Expressed differently, the local spins at each lattice
site Si process around the z-axis with a fixed projection onto the z-axis. In the thermodynamic
limit N → ∞, the cone angle θ, determining the deviation from the z-axis in Eq. (2.65), goes to
zero.

Since at T = 0 K the classical and quantum solution of the ferromagnetic Heisenberg model are
identical, one can formally derive Eq. (2.65) by postulating JQMS2 ≡ J̃ and S ≡ 2M i.e. g ≈ 2 in
Eq. (2.59).

2.2.3 Thermodynamic Properties

Having introduced the magnetic model Hamiltonian (2.70) and underlying DFT methodology to
extract the required model parameters, we can proceed in deriving finite temperature properties.
For this purpose an important quantity is the internal energy U(T, V ) = 〈H〉(T, V ) of the system.
It is directly connected to the specific heat capacity via

CV (T ) =
dU

dT

∣
∣
∣
∣
V

, (2.80)

which is in turn related to the entropy via the integration

SV (T ) =

∫ T

0
CV (T ′)/T ′dT ′. (2.81)

Combining (2.80) and (2.81), one can derive an expression for the Helmholtz free energy solely18

depending on U(T, V ) [56]

Fmag(T, V ) = U(0, V ) − T

∫ T ′

0
dT ′U(T ′, V ) − U(0, V )

T ′2
. (2.82)

However, a numerical or analytical exact solution for 〈H〉(T, V ) is in general not feasible. Pro-
viding efficient approaches for 〈H〉(T, V ) is therefore one of the key concerns in the present study.

18Eq. (2.82) is, strictly speaking, only valid for systems providing a unique ground state, e.g., a perfect crystal
lattice.
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To prepare this we discuss next different solution techniques which are commonly used to determine
thermodynamic properties.

Analytic Approaches

We start by introducing two analytical approaches which are commonly used to determine the Curie
temperature TC .

For an analytical treatment it is convenient to start from the Heisenberg model in the formulation
of raising/lowering operators as in Eq. (2.74), i.e.

H = −
∑

ij

JQM
ij (S+

i S−
j + Sz

i Sz
j ). (2.83)

To obtain a solution for TC , we investigate the average magnetization, i.e. 〈Sz〉(T ), which
vanishes as the temperature approaches the Curie temperature, 〈Sz〉(TC) → 0.

A rather simple but often successful approach is the mean field (MF) or often called molecular
field approximation. Essentially, fluctuations of the observables A,B around their mean values
〈A〉, 〈B〉 are neglected in MF, i.e. explicitly

(A − 〈A〉)(B − 〈B〉) → 0. (2.84)

Therewith Eq. (2.83) becomes:

HMF = JQM
0

〈Sz〉2MF(T ) − BMF(T )
∑

i

Sz
i . (2.85)

Physically, spin operator products are now decoupled reducing the Hamiltonian to the one of an
ideal paramagnet [56] under an “effective” (mean) field

BMF(T ) := 2JQM
0

〈Sz〉MF(T ), (2.86)

caused by the exchange interaction JQM
ij between all spins, JQM

0
= 1/N

∑

ij JQM
ij according to

(2.73).
Based on Eq. (2.85) it is straightforward to derive the reduced magnetization (see A.1 for a

detailed derivation):

mMF(T ) = 〈Sz〉MF/S = BS

(

2S2JQM
0

kBT

〈Sz〉MF

S

)

, (2.87)

where the Brillouin function BS(x) is defined as

BS(x) :=
2S + 1

2S
coth

(
2S + 1

2S
x

)

− 1

2S
coth

( x

2S

)

. (2.88)

The limit T → TC implies x ∼ 〈Sz〉 → 0 in Eq. (2.88) and we can expand the Brillouin function:

BS(x)
x→0−→ S + 1

3S
x + O(x3). (2.89)
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Combining Eqs. (2.87) and (2.89) we obtain the expression for the mean field critical temperature:

kBTMF
C =

2

3
S(S + 1)JQM

0
=

2

3
J̃0. (2.90)

In Eq. (2.90) we have introduced the effective exchange parameter for the quantum model, i.e.

S(S + 1)JQM = J̃ . (2.91)

One has to note that there is no “strict” mapping between the classical and quantum model [57].
Another choice would be S2JQM = J̃ similar as done for the classical formulation which does,
however, not account for the quantum nature of the spins. In contrast to this, the definition above
is rooted in the quantum nature of the spin operators Ŝ, i.e. due to the eigenvalue relation of angular
momentum operators Ŝ2|S〉 = S(S + 1)|S〉. Such a definition of effective exchange coefficients is
useful in particular when results of the classical and quantum solution are compared [57, 58], since
thermodynamic quantities approximately scale in the quantum case as S(S + 1).19

Obviously, the simple character of the MF approximation reveals some shortcomings. Having
spin conservation at each lattice site in mind, i.e. 〈Si+〉 = 〈Si−〉 ≡ 0, the spin flip terms in the
Hamiltonian (2.83) were neglected by the mean field ansatz

〈S+
i S−

j 〉 MF−→ 0. (2.92)

This means that also the fundamental spin-wave excitations are suppressed in the MF ansatz. In
addition short-range order is fully neglected since in the paramagnetic regime T ≥ TC (where the
total magnetization goes to zero 〈Sz〉 → 0), the MF Hamiltonian Eq. (2.85) vanishes, HMF → 0.
Although it is well known that the mean field solution Eq. (2.90) overestimates TC , it usually
provides (at least qualitatively) a good prediction of some physical trends [17, 60].

A more sophisticated approach, which includes the collective (spin-wave) excitations, is given
by the following Green’s function (GF) based formalism. The main idea is to use appropriate GFs
to access correlation functions which determine the magnetization. We now discuss a first order GF
decoupling procedure which is known to provide a reliable prediction of TC , even on a quantitative

level. We start with the following operator identity

〈S−
i S+

i 〉 = ~
2S(S + 1) + ~〈Sz

i 〉 − 〈(Sz
i )2〉. (2.93)

In order to compute the magnetization 〈Sz
i 〉 on the right hand side of this equation, we need to

determine the correlation function 〈S−
i S+

i 〉 as well as the higher order moment 〈(Sz
i )2〉. Following

the formalism proposed by Callen in 1963 [61], both can be obtained by the following GF

G
(a)
ij = 〈〈S+

i ;B
−(a)
j 〉〉 := 〈〈S+

i ; eaSjz S−
j 〉〉. (2.94)

19The critical temperature within the quantum case does not strictly follow TC(S) ∼ JQMS(S + 1) as was, e.g.,
recently shown using high temperature series expansion [59]. The complex dependence of TC(S) is, however, beyond
the scope of this work and we use (2.91) instead.



2.2 Extension to Finite Temperatures 29

The above introduced parameter a allows in a very elegant way to determine 〈(Sz
i )n〉 for various n.

The equation of motion for G
(a)
ij is given by

EG
(a)
ij (E) = ~〈[S−

i ;B
+(a)
j ]−〉 + 〈〈[S−

i ,H]−;B
+(a)
j 〉〉E . (2.95)

A direct solution of G
(a)
ij is impractical due to the higher order GFs on the right hand side, which

appear due to the commutator [S−
i ,H]−. To overcome this, the higher order GFs are typically

decoupled on a certain level. The Tyablikov decoupling, as proposed by Tyablikov in 1959 [18], or
also called random phase approximation (RPA), is given by the first order decoupling of the higher
order Green’s function on the right hand side. Explicitly, the GFs are decoupled such as

〈〈S+
mSz

i ;S−
j 〉〉E RPA−→ 〈Sz

i 〉〈〈S+
m;S−

j 〉〉E (2.96)

〈〈S+
i Sz

m;S−
j 〉〉E RPA−→ 〈Sz

m〉〈〈S+
i ;S−

j 〉〉E . (2.97)

Physically, this corresponds to the assumption that the z-component of the magnetization 〈Sz
i 〉 is

not strongly correlated to the surrounding and hence its fluctuations are small. This holds true
at very low temperatures (close to the ground state) as well as at very high temperatures where
the thermal induced randomization dominates over the correlation due to the exchange interaction.
An important outcome is that the results of the RPA agree with non-interacting spin-wave theory
at low temperatures as well as statistical theory at high temperatures (series expansion technique)
[18, 62]. For this reason, the RPA is assumed to provide a reasonable description also between these
limits. Indeed it is found that despite the simple character of the approximation, the RPA procedure
describes the transversal correlation function 〈S+

i S−
j 〉 satisfactory over the entire temperature range

[63].

Using above decouplings [Eqs. (2.96) and (2.97)] it is possible to solve Eq. (2.95) and to derive
the magnetization (a full derivation is given in A.2) as

〈Sz〉RPA =
(1 + ϕ)2S+1(S − ϕ) + ϕ2S+1(S + 1 + ϕ)

(1 + ϕ)2S+1 − ϕ2S+1
, (2.98)

with the effective magnon occupation number

ϕ =
1

N

∑

q

1

eβE(q) − 1
(2.99)

and effective magnon energies

Eq = 2~〈Sz〉RPA(JQM
0 − JQM

q ). (2.100)

The critical temperature is obtained by the limit of vanishing magnetization, i.e. for 〈Sz〉RPA → 0

in Eq. (2.98) resulting in [18]

kBTRPA
C =

2

3
S(S + 1)

(
∑

q

1

J0 − Jq

)−1

=
2

3

(
∑

q

1

J̃0 − J̃q

)−1

. (2.101)
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Together with the MF result (3.2), the above expression for TC is standardly used in combination
with DFT derived input parameters [13–17, 58].

Numerical Approaches

In principle, there are different methodologies to solve the Heisenberg model exactly by using
numerical approaches. Generally, the most straightforward way would be an exact diagonalization
of the Hamiltonian (2.83) in its matrix representation. However, due to the fast increase of the
Hilbert space, which scales as ∼ (2S+1)N with the number of spins N , these methods are restricted
to small systems (N ∼ 10− 100) and are usually applied to study small magnetic clusters [64]. The
magnetic interaction in bulk systems such as in the 3d ferromagnets Fe, Co, or Ni are typically very
long-ranged (usually not negligible below at least twenty neighboring shells) and show RKKY-type20

oscillating (ferromagnetic/antiferromagnetic) interactions.

The Quantum Monte Carlo (QMC) technique allows one to study much larger system sizes
(N ∼ 104) [65]. For spin systems as the Heisenberg model,21 the standard methods are employing
so called loop algorithms (loop [67] or direct loop [68]) based on different representations of the
partition function (e.g. stochastic series expansion (SSE) [69] or path integral representation).22 A
detailed discussion of these methods goes beyond the scope of this work. We briefly discuss the main
idea behind the QMC method and the main inherent limitations and refer for a detailed overview
to Ref. [67].

For calculating the phase space average of a quantity O in a classical Monte Carlo (cMC)
simulation, the direct evaluation of the sum

〈O〉 =
1

Z

∑

c∈Ω

O(c)p(c), (2.102)

where Z =
∑

c∈Ω p(c) denotes the partition sum, over the high-dimensional phase space Ω is circum-
vented by choosing a subset of configurations {ci} from Ω according to the probability distribution
p(ci). The average is afterwards approximated as the mean value

〈O〉 ≈ O =
1

Nsteps

Nsteps∑

i

O(ci). (2.103)

Typically in statistical physics, p(c) = e−βE(c) is the Boltzmann weight and E(c) is the energy of
the configuration c.

20RKKY stands for Ruderman-Kittel-Kasuya-Yosida and was originally proposed to describe the indirect exchange
coupling between nuclear spins via the conducting electrons. The ferromagnetic/antiferromagnetic oscillation of the
exchange coupling depending on distance is one prediction of the RKKY theory.

21In presence of very strong magnetic fields, the so called Worm algorithm provides an alternative treatment [66].
22A very recent methodology is the so called Quantum Wang-Landau method (QWL) [70]. It is the analogon of the

classical Wang-Landau technique [71] and was very recently implemented in the ALPS package [72] for the special
case of a nearest-neighbor S = 1/2 model. Since our attention is to study also the spin-dependence S ≥ 1/2 and the
impact of long-range interactions we do not discuss the method in the present work.
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For a quantum system described by a quantum-mechanical Hamiltonian H, a thermal average
requires the solution of an operator expression

〈O〉 =
Tr
(
Oe−βH

)

Tre−βH
. (2.104)

The main problem for solving expressions as the one above is the exponential e−βH in the trace.
A direct calculation requires the complete diagonalization of H. As pointed out above, this is
computationally not feasible for larger systems due to the huge configuration space. Monte Carlo
techniques can again be applied, but require the mapping of the quantum problem onto a classical
one. A common approach is to rewrite the exponent in a Taylor expansion23

ZQM = Tre−βH =

∞∑

n=0

(−β)n

n!
TrHn =

∞∑

n=0

∑

{α}

(−β)n

n!
〈α|Hn|α〉 (2.105)

in the basis {α} = {|Sz
1 , Sz

2 , . . . , Sz
N 〉}.

This procedure is called stochastic series expansion (SSE) technique [69]. The effective weights
p(c) are defined by the product of matrix elements Hn and the factor (−β)n/(n!). The reformulation
of Eq. (2.104) in terms of p(c) allows one to employ (classical) Monte Carlo schemes. The main
limitation is, however, that by construction the effective weights p(c) for some configurations c can
be in principle negative, i.e. p(c) < 0. This is the famous “negative sign problem” in QMC methods
[73, 74]. These situations occur in the Heisenberg model when magnetic frustration is present (e.g.
in the antiferromagnetic fcc lattice [75]). A prototype example to illustrate magnetic frustration is
the antiferromagnetic triangular Ising model

HIsing
Triangular = J(σ1σ2 + σ2σ3 + σ3σ1) (2.106)

with σ =↑, ↓ as sketched in Fig. 2.6. Explicitly, negative weights arise due to matrix products such
as

p(c) ∼ (−1)3〈↑↓↓ |H| ↓↓↑〉〈↓↓↑ |H| ↓↑↓〉〈↓↑↓ |H| ↑↓↓〉 < 0 (2.107)

where three spin flips occur, yielding a factor (−J)3.

There is up to now no general solution for the sign problem.24 In principle, simulations can still
be performed by taking the absolute value of p(c)

〈O〉 =

∑

c O(c)p(c)
∑

c p(c)
=

∑

c O(c)sgn(p(c))|p(c)|/∑c |p(c)|
∑

c sgn(p(c))|p(c)|/∑c |p(c)| =
〈Osgn〉|p|
〈sgn〉|p|

. (2.108)

Unfortunately, the statistical errors increase exponentially with increasing particle number N and
inverse temperature β. To show this we consider the mean value of the sign 〈sgn〉|p| = ZQM/ZQM

|p| in

above equation being the ratio of the partition function ZQM =
∑

c p(c) and the auxiliary function

23Alternatively the exponent can also be discretized in imaginary time τ (inverse temperature) β = M∆τ and
e−βH = (1 − ∆τH)M + O(∆τ ). This representation is usually referred to as world line representation.

24In fact one can show that a generic solution of the sign problem would solve all problems in the complexity class
NP (nondeterministic polynomial) in polynomial time [76].
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J<0

?

Figure 2.6: Sketch for the antiferromagnetic (J < 0) triangular. There is no configuration which
minimizes the energy of all three bonds, causing magnetic frustration.

ZQM
|p| =

∑

c |p(c)| used for the sampling. Since the partition functions are exponentials of the free
energies, this ratio is exponential proportional to the free energy difference ∆F

〈sgn〉|p| = ZQM/ZQM
|p| = exp(−βN∆F ). (2.109)

Consequently, the relative error ∆sgn/〈sgn〉 increases exponentially with increasing particle number
N and inverse temperature β:

∆sgn

〈sgn〉 =

√

(〈sgn2〉 − 〈sgn〉2)/Nsteps

〈sgn〉 =

√

(1 − 〈sgn〉2)
√

Nsteps〈sgn〉
∼ exp(βN∆F )

√
Nsteps

. (2.110)

Similar the error in the numerator in (2.108) increases exponentially [76] and hence the computa-
tional time needed to achieve a certain relative error scales exponentially with inverse temperature
β and spins N .

As mentioned in the beginning of this section, in real materials such as Fe, Co or Ni, the interac-
tions are typically long-ranged and show RKKY-type oscillating (ferromagnetic/antiferromagnetic)
interactions. As we will show explicitly in Sec. 3.2.2, these type of interactions cause a negative sign
problem and limit therewith the application of QMC to these materials. Considering the shortcom-
ings of the quantum methods, it is not surprising that for properties of magnetic systems addressed
in the present work (e.g. ab initio derived TC), apart from the analytic methods [13–17], only
classical cMC calculations are commonly employed [13, 43, 48, 54].
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2.2.4 Vibronic and Electronic Free Energy

So far, the magnetic contribution to the free energy is considered. In order to accurately describe the
transversal spin degree of freedom we recourse to the Heisenberg model, where the single-particle
excitations (spin-flips) were neglected. Increasing the temperature does not only induce single-
particle excitations between bands of opposite spins. It goes without saying that due to the Fermi
distribution the electrons also occupy states above the Fermi energy ǫF in the same bands (without
spin-flips). In the framework of finite temperature DFT this contribution is usually referred to as
electronic contribution. The other main mechanism contribution to the free energy is driven by the
motion of atoms, the so called vibronic contributions. In the following we briefly outline how both
contributions can be effectively captured within the DFT framework.

Electronic Free Energy

For convenience we separate the electronic free energy F el into the T = 0 K ground-state energy
Etot and the finite temperature entropy term Sel,

F el(T, V ) = Etot(T = 0 K, V ) − TSel(T, V ). (2.111)

A very common and accurate parameterization of Etot(T = 0 K, V ) is given by the Murnaghan
equation of state which will be used for the further evaluation [77].

To derive Sel(T, V ) we employ the finite temperature formulation of DFT given by Mermin [78].
The key idea to simulate the electronic excitations is to combine the Fermi function25 fFermi(ǫi) =

[1 + exp (βǫi)]
−1 with the single-particle electron energies ǫi [Eq. (2.25)]. The approach employs the

analytically known (see e.g. [79]) expression for the electronic entropy of an ideal, non-interacting
Fermion gas (e.g., the auxiliary Kohn-Sham particles)

Sel(T, V ) = −kB

∑

i

{[1 − fFermi(T, ǫi(V ))] ln[1 − fFermi(T, ǫi(V ))]

+ fFermi(T, ǫi(V )) ln fFermi(T, ǫi(V ))}. (2.112)

Physically, the first expression on the right-hand side of above equation originates from the con-
tribution of unoccupied states (holes) whereas the second term originates from the occupied states
(particles). In practice, both contributions were computed on a finite mesh26 of temperatures T

and volumes V . Eq. (2.112) is widely used to compute DFT based electronic free energies and has
been successfully applied to various materials (see e.g. [80, 81]).

Vibronic Free Energy

A major contribution to the free energy in solids is given by the thermally driven nuclei motion, the
vibronic excitations. Thermal energy induces collective lattice vibrations which can be described by
Bose quasiparticles, called phonons. It turns out that the so called quasiharmonic approximation

25For the ideal Fermi gas (of the electrons) at T = 0 K, the chemical potential µ is equal to the Fermi-energy EF .
For convenience the single-particle energies are shifted such that µ ≡ 0.

26The explicit technical parameters ensuring a convergence of less than 1meV per atom is system dependent. The
chosen parameters are therefore explicitly given in the text at the corresponding place.
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(qh) is able to predict the vibronic contribution to a large extent whereas explicit27 anharmonic
contributions (which go beyond the qh) are in magnitude smaller [80, 81].

To derive the qh contribution to F vib one can employ constrained DFT calculations for a fixed
(given) set of nuclei positions {RI}. Within the adiabatic approximation the nuclei move in an
effective potential given by the Born Oppenheimer surface EBOS, Eq. (2.9). The harmonic approx-
imation is derived by a Taylor expansion of EBOS . Defining the ionic equilibrium positions {R0

I}
and ionic displacements {∆I} we can expand EBOS({R0

I + ∆I}) for small {∆I}:

EBOS({R0
I + ∆I}) = EBOS({R0

I}) +
∑

Iα

ΦIα∆Iα +
1

2

∑

Iα,Jβ

ΦIα,Jβ∆Iα∆Jβ + O(∆3). (2.113)

Here,

ΦIα =
∂EBOS

∂RI,α

∣
∣
∣
∣
R0

I

≡ 0, (2.114)

denotes the derivative of EBOS with respect to the displacement of nuclei I in direction α at R
0
I ,

which vanishes by definition (equilibrium position). Analogously, one defines the so called force
constant matrix as

ΦIα,Jβ =
∂2EBOS

∂RIα∂RJβ
= −∂FHF

Iα

∂RJβ
. (2.115)

FHF
Iα represent the Hellmann-Feynman forces which can be very conveniently computed within a

plane-wave approach using the Hellmann-Feynman theorem [82].
Neglecting the higher order terms O(∆3) in Eq. (2.113) is called harmonic approximation.

Eq. (2.113) is therewith reduced to the problem of a harmonic oscillator with energies ωi for which
the known analytic expression for the free energy is given by

F vib(T, V ) =
1

Nn

3Nn∑

i

(
1

2
~ωi + kBT ln

[

1 − exp

(

− ~ωi

kBT

)])

, (2.116)

where the sum runs over the 3Nn phonon states of the Nn atoms in the unit cell.28 The first
summand corresponds to the zero-point vibrations and the second represents the entropy of the ideal,
non-interacting Bose-gas (here phonon gas) [79]. There are in principle two, nowadays standard
approaches to obtain the phonon frequencies ωi. Starting point is the construction of the dynamical
matrix DIα,Jβ = 1

M ΦIα,Jβ which can be done in real space (direct-force method) or in reciprocal
space employing typically perturbation theory (linear-response methods).29 For a detailed overview
we refer to [83]. The eigenvalues of D provide eventually the squared frequencies ω2

i . In practice,
crystal symmetries are usually employed to reduce the number of required atom displacements {∆I}
to a minimum set.30

27Anharmonic contributions are (partially) implicitly included in the quasiharmonic approximation due to the
volume dependence of the frequencies. The remaining part, which is not included in the qh approximation, is usually
called explicit anharmonic contribution.

28For convenience we outline here the approach for one-species unit cell. The extension to multi-species systems is
straightforward.

29Both are complementary and should yield in principle to the same results. We restrict ourselves in the present
study, therefore, to the direct-force method.

30In the present work, the SxPhonons add-on of s/phi/nx [84] has been employed to fully automatically determine
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In principle the phonon frequencies can depend on temperature and volume respectively, i.e.
ωi = ωi(T, V ). However, as it turned out, the explicit dependence on temperature is rather small
[81] whereas the major contribution is included in the volume dependence. Therefore, one conven-
tionally assumes ωi ≡ ωi(V ), which is known as the quasiharmonic (qh) approximation. The qh
approximation has been proven to provide reliable results for a large range of metals [80] and will
be also used in this work whenever the vibronic contribution is computed.

Summary

In this section it was shown, how finite temperature properties can be obtained by first principles
by combining statistical concepts with DFT input data. It was discussed how electronic and vi-
bronic contributions to the Helmholtz free energy are commonly calculated based on first-principles
methods. To account for magnetic excitations, the concept of adiabatic spin dynamics and the
Heisenberg model were introduced. Theoretical concepts to derive the input data from first princi-
ples and different ways to solve the magnetic model were presented.

the set of minimum displacements and to compute the frequencies based on the ab initio calculated Hellmann-Feynman
forces.
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Chapter 3

Results

In the previous chapter the magnetic Heisenberg model was derived based on the adiabatic spin
dynamics. We remind that strictly speaking this magnetic model is only well defined for a localized
spin system while single spin-flip transitions are neglected. Despite many successful applications
(see e.g. [15, 16, 48]), employing the Heisenberg model for itinerant magnetic systems is, therefore,
in particular for iron, still critically discussed in literature [48, 85].

In addition, as already indicated in the previous section, there is no numerically exact solution
to the quantum Heisenberg Hamiltonian, Eq. (2.70), with realistic exchange parameters available. A
more detailed discussion in Sec. 3.2.2 shows that the most promising approach for an exact solution,
the QMC, suffers from the negative sign problem caused by the long-ranged magnetic interactions.
Therefore, one has to choose between

(a) an approximate solution to the full Hamiltonian, or

(b) an exact solution to a simplified Hamiltonian.

Based on the general concepts explained in the previous chapter, we have developed for both
choices promising and reliable methods. The ultimate aim of these efforts is to describe and predict
thermodynamic properties such as, e.g., the specific heat capacity or the free energy for magnetic
materials. In order to achieve a full description, the magnetic contribution will be combined with
other excitation processes such as vibronic contributions. To large extend the magnetic free energy
of a metal depends on its magnetic state. Therefore, we first focus on the determination of TC .
This also gives us the chance to prove the applicability of our chosen magnetic model Hamiltonian.

3.1 Determination of TC(p) for Bcc Iron:

Performance and Robustness of Different Approaches

We introduce the approximate solution (a) on a question of high relevance for applications: The
pressure dependence of the Curie temperature TC of iron. Apart from the impact for technological
applications, we will later identify TC as the crucial quantity for building up a simplified model
Hamiltonian ((b) above). This will be discussed in more detail in Sec. 3.4.

In Chapter 1 we pointed out the need of parameter free approaches in particular for supplement-
ing/complementary data within the well known and heavily used calphad (calculation of phase

37
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diagram) approach. We remind that the calphad methodology allows to compute phase diagrams
of multi-component alloys on the basis of fitting thermodynamic data. Indeed, TC is a crucial quan-
tity within the calphad ansatz since it is one of the few fitting parameters entering the empirical
free energy expression [86, 87]. Since in particular the description of pressure dependent quantities
is still limited in calphad (most of experimental input is given for ambient pressure), predicting
pressure dependent TC(p) is a very important task for the proposed ab initio ansatz.

For one of the key materials in the present study, bcc iron, the experimentally known weak de-
pendence of TC(p) has by now not been understood from first principles and a key question remains
still unanswered: What is the physical origin of the experimentally observed negligible change of
TC with applied pressure (∆TC(p) ≈ ±2K for p up to 20 kbar [88])?

In a recent work [89] it is claimed that the Heisenberg model itself (which we have chosen for
our analysis) is inapplicable for a meaningful description of TC(p) in iron. This is despite the fact
that the model performs well even for more complex magnetic systems such as, e.g., Fe-Co-alloys
[54], Heusler alloys [90], or diluted magnetic semiconductors [91]. This raises the question: what is
the reason behind this selective failure?

The following section is devoted to these questions. At the same time the analysis offers an
ideal opportunity to test the introduced methods. We would like to address explicitly the following
points:

(1) How accurate is the DFT method including the necessary approximations such as for the xc-
functional (LDA/GGA) to describe the spin-wave spectra (and hence the exchange coefficients)
of magnetic systems?

(2) Is the combined method (DFT based Heisenberg model+analytic approximation) able to
reproduce the experimental findings for bcc iron, in particular the pressure independence
of the Curie temperature TC(p) ≈ 0?

(3) What is the physical mechanism behind this pressure independence?

In order to make sure that the performance of our ab initio approach is not limited by the
numerical convergence, the total energy differences are converged within less than 1 meV per atom
which corresponds to uncertainties for the calculated TC of less than 10 K. This accuracy limit
has been achieved by using the following parameters: a density of the k-points generated with the
Monkhorst-Pack scheme of ≈ 5000 per atom, a plane-wave energy cutoff of Ecut = 450 eV, and
≈ 3000 q-points for the magnetic integration in Eqs. (3.2) and (3.3). All calculations are performed
employing the VASP [92, 93] package and using the projector augmented wave method (PAW) [94]
within LDA and GGA (Perdew-Burke-Ernzerhof parameterization [95]).

We start the analysis with total energy calculations of spin spirals (2.57) for different volumes
V , where the energy difference between the unperturbed (collinear) ground state (q ≡ 0) and the
spin spiral with wave vector q is denoted as ∆EV (q, θ), according to Eq. (2.64). We remind that
the ∆EV (q, θ) are directly connected to the spin-wave energy ωV (q) via Eq. 2.65:

ωq(V ) =
4

M
lim
θ→0

∆E(q, θ)

sin2 θ
. (3.1)
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Since all calculations were performed using fully relaxed non-collinear calculations1, the choice of
the θ angle is restricted to the two local minima at θ = π/2 and θ = 0. We, therefore, determine
the magnon energies at θ = π/2 but we will discuss the impact of the cone angle by comparing
the magnon spectra with previous calculations which employ a perturbation theoretical ansatz for
θ → 0 as well as by employing a “cutoff-analysis” for ωq.

In order to check the stability of our approach with respect to the inherent approximation of the
DFT formalism (i.e. the treatment of the xc-functional), the magnon spectrum ωDFT

q (V ) of bcc iron
is computed for both, the LDA and the GGA-PBE functional. All calculations are carried out for
different volumes V ∈ (11.39Å3

, 12.45Å3
) to obtain eventually the volume dependence TC(V ). The

experimental volume at the Curie temperature under ambient pressure is V exp(TC) ≈ 12.1 Å3. The
results for ωDFT

q (V ) at two different volumes, V = 11.21 Å3 and V = 12.45 Å3, are shown in Fig. 3.1
in comparison to experimental and previously published theoretical data from Refs. [15] and [89].
The equilibrium lattice constants at T = 0 K are given by V GGA

0 = 11.39 Å3 , V LDA
0 = 10.31 Å3,

and is extrapolated to V exp
0 = 11.69 Å3 from experiment, respectively.

The agreement between the experiment and the calculated frequencies is remarkable for both
LDA and GGA functionals, indicating that the choice of the xc-functional is probably not the
limiting factor. In fact both functionals provide a similar accurate description of the magnetic
excitations in the system. The agreement between the previously and presently calculated magnon
spectra for experimentally accessible magnon energies is also good. For magnon energies higher than
≈ 0.25 eV there exist qualitative differences between these results, particular around the H-point.
As was shown by Shallcross et al. in Ref. [46], these differences can be traced back to different spin-
wave cone angles θ (see Eqs. (2.64) and (2.65)) used for the calculation of the magnon spectrum.
Since the differences for bcc iron are only at relative high magnon energies (0.25 eV corresponds to
≈ 3000 K) they can be safely neglected. We will show this explicitly by introducing a cutoff-analysis
for the magnon energy.

It should be mentioned that, as discussed in Sec. 2.2.2, spin-waves are only small perturbations
from the ground state. From a principle point of view, a cone angle θ → 0 seems to provide the most
reasonable description [12]. For the extracted exchange coefficients (which are directly connected to
ω(q) via Eq. (2.64)), such a principle physical argument does not hold and the appropriate choice
of θ for other systems (such as Nickel) at high temperatures is still debated in literature [46, 47]. In
Ref. [47] it is argued that a larger cone angle may better mimic the situation at high temperatures
(paramagnetic regime). In particular in case of bcc iron the choice of θ is, however, not crucial.
This is consistent with previous calculations of planar spirals θ = π/2 (as used in this work) which
yield satisfactory results for the magnon spectra and the critical temperature [43, 44] of bcc Fe.

Considering the first point (1) we raised in the beginning, we can conclude that the DFT
formalism in combination with the adiabatic spin dynamics, the so called frozen magnon approach,
indeed allows a reliable and accurate description of the collective magnetic excitations (spin-waves).

1In principle vasp offers the possibility to add a penalty contribution to the total energy expression in order
to force the direction of the local magnetic moments into a given direction via the flag i_constrained_m. This
contribution is controlled via a parameter lambda.
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We now closer investigate the critical temperature. Combining Eqs. (2.63)-(2.65) with Eqs. (2.90)
and (2.101), the analytic solutions for mean field are given as

kBTMF
C (V ) =

M(V )

6

∑

q

ωq(V ), (3.2)

and for RPA as

kBTRPA
C (V ) =

M(V )

6

(
∑

q

1

ωq(V )

)−1

. (3.3)

To compare the theoretical values for TC(V ) with the experimental T exp
C (p) we transformed the

experimentally measured T exp
C (p) to T exp

C (V ) employing experimental data for V exp(p, T = TC).2

In order to elucidate the sensitivity of the Heisenberg model with respect to the quality of the
model input data, we investigate the volume dependence of the Curie temperature employing three
different DFT data sets. Specifically, we compare the qualitative behavior of TC(V ) obtained on the
basis of the DFT calculations (i) with the PAW basis set and LDA functional, (ii) with the PAW
basis and the GGA-PBE xc-functional, and (iii) with the tight-binding linear-muffin-tin-orbital
(TB-LMTO) basis set within the atomic sphere approximation (ASA) and LDA xc-functional with
the experimental results (see Fig. 3.2). Comparison of the solutions (i) and (ii) allows to figure
out the effect of the xc-functional, while comparison of solutions (i) and (iii) allows us to identify
possible uncertainties related to the use of different DFT basis sets and methodologies for extracting
the magnetic exchange constants (frozen-magnon vs frozen-magnon-torque method [97]).

Figure 3.2 highlights that TC(V ) of the Heisenberg model is, apart from a constant shift, very
insensitive with respect to the choice of the xc-functionals for both, the RPA and the MF solution,
when the same basis set is used. Even more noticeable, the use of the same exchange-correlation
functional but different basis sets in the DFT calculations might lead to dramatic changes in the
theoretical predictions for TC(V ), as can be seen, e.g., on Fig. 3.2(b). The comparison with experi-
ment reveals that all theoretical approaches evaluated in this work, i.e., GGA-PBE/LDA input with
RPA/MF, are in good qualitative agreement with experiment showing a very weak dependence of
the Curie temperature on the volume.

In order to figure out whether the use of different spin-wave cone angles θ (discussed above) might
be responsible for the observed changes in the calculated volume-dependent Curie temperature, we
have calculated TC according to Eqs. (3.2)-(3.3) by introducing a cutoff magnon energy ωcut =

0.25 eV 3 for the magnon frequencies, i.e. we set ωq ≡ ωcut for ωq > ωcut. This treatment is
motivated by the pronounced changes of the magnon spectrum at high energies (not accessible by

2In order to derive V exp(p, T = TC) we have parameterized the experimental dependence of the total energy
E(V,T = TC) on the crystal volume V employing the Murnaghan equation of state. [77] The parameters of the
Murnaghan equation at TC (the bulk modulus Bexp

0 = 119 GPa, its derivative B′exp
0 = 5.3, and the equilibrium

lattice constant V exp
0 = 12.1 Å

3
) are taken from experiment performed by Zhang and Guyot. [96] The minimum

of the enthalpy H(p, V ) = E(V ) + pV at the Curie temperature and a given pressure p determines the equilibrium
volume V exp(p, T = TC) and the corresponding lattice constant V exp(p, T = TC).

3The threshold value ωcut is an energy above which the magnon spectra calculated employing θ = π/2 and θ → 0
start to significantly (by more than 45 meV) deviate. The value ωcut = 0.25 eV is deduced from the comparison of
our results with the corresponding data of Ref. [15] (see Fig. 3.1). A similar threshold value applies for the different
spin spirals calculated in Ref. [47].
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Figure 3.1: Calculated magnon spectra using planar spin spirals for two lattice constants, a = 2.82 Å
(dashed lines) and a = 2.92 Å (solid lines), within GGA-PBE (black lines) and LDA (blue lines).
For comparison the spectra obtained using a small cone angle taken from Ref. [89] (orange lines)
and Ref. [15] (red line) are shown. The spectra taken from Refs. [15] and [89] were calculated using
TB-LMTO employing GGA-PBE and TB-LMTO+ASA within LDA respectively. Experiments:
Ref. [98], measured at 10 K (open squares), and Ref. [99], Fe(12-at.% Si), measured at 300 K (open
circles).
Inset: spin-wave stiffness D obtained by using a least square fit of the low energy branch up to
|q| = 0.4 (2π/a0).

experiment) due to the different cone angles and allows to estimate the resulting uncertainty of the
calculated Curie temperatures.

The comparison of the Curie temperatures evaluated from the magnon spectrum with and with-
out the cutoff energy are shown in Fig. 3.2. The introduction of the cutoff ωcut results in an
essentially volume-independent shift of the Curie temperature to smaller values over the complete
range of the studied volumes. This already justifies that the choice of the spin-wave cone angle θ

is not essential for a qualitative analysis of the volume dependence of the Curie temperature in bcc
Fe. We notice, however, that quantitatively such shifts differ for the MF and RPA solutions of the
Heisenberg Hamiltonian. The most pronounced change of the calculated Curie temperatures occurs
for the MF solution (Eq. (3.2)), independent on whether LDA or GGA exchange-correlation func-
tionals are used. Within the RPA theory, however, an accurate description of the high-temperature
magnons is not decisive for the evaluation of the Curie temperature since those energies entering the
approximation for the Curie temperature have a lower weight [Eq. (3.3)]. Indeed, the maximum er-
ror introduced by the approximative treatment of the spin spirals for the RPA solution in this work
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Figure 3.2: The Curie temperatures within the RPA (left panel) and the MF (right panel) approx-
imation, for both LDA (blue lines) and GGA (black lines) exchange-correlation functionals. For
comparison the results of Ref. [89] (LDA, orange curves), and the experimental Curie tempera-
tures T exp

C (a) for different lattice constants a (open green circles) are shown. The transformation
of T exp

C (p) [88] to T exp
C (a) is described in the text.

is less than 10 K for LDA, and 20 K for GGA. The assumption of the planar spin spirals within
RPA only marginally affects the overall accuracy of our calculations. Since the frozen-magnon-
torque method [97] should be comparable with the frozen-magnon-approach used in this work, the
remaining differences between our results and Ref. [89] are likely related to the different basis sets
(plane-wave vs. LMTO basis) used within the DFT calculations.

Since the PAW basis set used in this work allows for consistent convergence with respect to the
quality of the basis set, in contrast to the LMTO basis employed in Ref. [89], we focus on the DFT
calculations obtained with the PAW basis set in the following. As the scatter of the theoretical
predictions for TC(V ) is still significant, we identify the best theoretical model for the prediction of
the Curie temperature in bcc iron by comparing the theoretical data with the experiment. Regarding
the qualitative behavior we find that all combinations (GGA-PBE/LDA input with RPA/MF)
provide a reasonable agreement with experiment by showing a very weak dependence of the Curie
temperature on the volume. The combination GGA-PBE and RPA provides moreover a quantitative
agreement with experiment. The open debate in Ref. [89] if the model is applicable for bcc Fe is
therewith resolved. The different results obtained in [89] can be traced back either to the employed
basis set (tight-binding LMTO within ASA) or the frozen-magnon-torque method [97].4

Our analytic solutions Eqs. (3.2) and (3.3) allow us to obtain a deeper physical insight into
the dependence of the critical temperature on pressure. The two physical quantities determining

4In fact, in the description of the method [97] the authors clearly state that their approximation is “reasonable
fast and semiquantitative” and “certainly superior to model descriptions like the Debye model”. Our PAW approach
together with a full self-consistent treatment of the spin-waves goes one step further and allows to systematically
overcome some of the approximations necessary in Ref. [89].
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Table 3.1: Derivatives of the Curie temperature TC with respect to lattice constant a and pressure
p. ∂TC/∂a is obtained by using a linear fit over the entire volume range from a = 2.82 Å up to
a = 2.92 Å. The values in brackets are obtained by the linear fit in a volume range from a = 2.88 Å
to a = 2.9 Å, which corresponds to the pressure range applied in experiment (≈ 20 kbar). The
procedure of transforming TC(V ) to TC(p) is described in the text.

GGA LDA

∂TC/∂V ∂TC/∂p ∂TC/∂V ∂TC/∂p
(

K/10−2Å3
)

(K/kbar)
(

K/10−2Å3
)

(K/kbar) Ref.

MF 1.63(1.25) -0.14(-0.11) 5.35(3.04) -0.60(-0.34) this work
MF+ωcut 1.79(1.58) -0.13(-0.11) 5.26(2.93) -0.48(-0.27) this work
MF+LMTO - - -24.1 1.6 Ref. [89]
RPA -3.81(-3.30) 0.32(0.28) -5.60(-11.51) 0.61(1.26) this work
RPA+ωcut -4.57(-4.79) 0.31(0.33) -6.96(-14.31) 0.62(1.27) this work
RPA+LMTO - - -27.4 1.8 Ref. [89]
Experiment 0.0 ± 0.04 0.0 ± 0.03 0.0 ± 0.04 0.0 ± 0.03 Refs. [88], [96]

its behavior are the spin-wave energies ωq as well as the local magnetic moments M . To analyze
in the following the reason for the weak volume (pressure) dependence of the calculated Curie
temperature we consider first the corresponding changes of the magnon spectra. The results are
shown in Fig. 3.1 and we observe that the magnon branches become softer with increasing volume
of the atomic cell, i.e., the energies of the corresponding magnons become smaller. This can be
interpreted as a decrease of the magnetic coupling between the localized magnetic moments. To
quantify this effect we show in the inset of Fig. 3.1 (upper panel) the volume-dependent spin-wave
stiffness D, derived in the low wavelength limit ωDFT

q→0 ≈ Dq2. According to Eqs. (3.2) and (3.3) the
decrease of the magnon energies leads to a decrease of the Curie temperature. For both functionals
GGA as well as for LDA the decrease is apparently compensated by another mechanism, since the
Curie temperature remains essentially constant with pressure (see Tab. 3.1).

The reason for the stability of TC versus the applied pressure can be understood recalling that
the increase of the atomic volume does not only weaken the magnon excitation energies, but also
changes the magnitude of the local moments. We show the local magnetic spin moment M(V )

at different atomic volumes in Fig. 3.3 for both DFT functionals. At the theoretical ground-state
volumes, i.e. V LDA

0 and V GGA
0 , LDA underestimates the local spin moment while GGA slightly

overestimates the experimental findings M exp(T = 0 K) = 2.14µB [100].5 (The small contribution
to the local magnetic moment due to spin orbit coupling (< 0.1µB) is neglected.) Both function-
als show a smoothly increasing local magnetic spin moment with increase of the atomic volume,
which is due to the increasing distance between the atoms and a consequent enhancement of the
localization of the 3d-electrons that form the local magnetic moments. According to Eqs. (3.2) and
(3.3) the Curie temperature is directly proportional to the magnitude of the local magnetic moment
M(V ), i.e., the increase of the local moments with increase of the volume should lead to a corre-

5At the experimental volume the situation is reversed and MLDA(V exp) comes closer to the corresponding exper-
imental value.
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Figure 3.3: The local magnetic spin moment of ferromagnetic bcc iron as function of the volume
calculated within GGA (solid orange line) and LDA (dashed blue line) xc-functionals.

sponding increase of the Curie temperature. Therefore, two coupled volume-dependent magnetic
effects determine the behavior of the Curie temperature: The increase of the volume (decrease of
the pressure) leads to a weakening of the spin-wave energy (reflecting the strength of the magnetic
coupling) and simultaneously leads to an increase of the local magnetic moments. The sensitive
interplay between these two effects determines the actual dependence of the Curie temperature on
the volume (pressure) for a particular material. All calculated volume and pressure dependencies6

are summarized in Tab. 3.1. The volume dependence is obtained by using a linear fit over the
entire atomic volume range from V = 11.21 Å3 up to V = 12.45 Å3. Since the pressure applied in
experiment (≈ 20 kbar) corresponds to a change of the volume of only ≈ 0.25 Å3 (see Refs. [96]
and [101]), we also fit the volume dependence of TC in a volume range starting from V = 11.94 Å3

to V = 12.19 Å3. The corresponding results are also shown in Tab. 3.1 (shown in brackets). Us-
ing the smaller fit-range the volume and pressure dependencies are only slightly changed, except
for the combination of LDA-RPA where the volume dependence is more pronounced. Regarding
the quantitative agreement between theory and experiment, GGA appears to be closer to exper-
iment with respect to the Curie temperature. The constant shift between LDA and GGA is a
direct consequence of the higher calculated magnetic moment since the calculated magnon spec-
tra within both GGA and LDA are almost similar. In overall the Curie temperatures calculated
with both functionals do not significantly depend on the volume (see Tab. 3.1), and we get within
GGA (∂TRPA

C /∂V ) ≈ 4.7 K/10−2 Å3. This corresponds to a change of the Curie temperature of
∆TC ≈ 5 K for the pressure range investigated in the experiment [88] (up to 17.5 kbar).

6The pressure dependence of the Curie temperature TC(p) can be obtained from the corresponding volume de-
pendence TC(V ) via ∂TC/∂p = (∂TC/∂V )(∂V/∂p)|V =V (TC), where (∂V/∂p)|V =V (TC ) = −[V/B0(TC)] is obtained by
calculating7 the temperature dependent bulk modulus B0, as described in Refs. [16, 80] in detail.
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Conclusion

Based on DFT input, the critical temperature can be accurately determined by approximative
solutions of the Heisenberg model. This has important consequences: As will be discussed in more
detail in Sec. 3.4, TC can be identified as a key quantity for constructing an alternative, simplified
model. A main advantage of the employed analytic access is that the different physical mechanisms
which determine TC can be discriminated. Both analytic approaches provide a promising way for
the next step which is consequently the extension of the approach for thermodynamic quantities
such as the free energy or the specific heat capacity.
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3.2 Thermodynamics of Magnetic Metals: Free Energy and Specific

Heat Capacity

A central concern of this work is the study of temperature dependent quantities such as the free
energy or the specific heat capacity. These quantities are not only determined by magnetic con-
tributions but require also the incorporation of other excitation mechanisms such as vibronic and
electronic excitations.

For this purpose, the Helmholtz free energy surface F (T, V ) as a function of the temperature T

and the crystal volume V is considered in the adiabatic approximation, see Eq. (2.3):

F (T, V ) = F vib(T, V ) + F el(T, V ) + Fmag(T, V ), (3.4)

that treats the vibrational F vib, the electronic F el (including the energy of the static lattice) and the
magnetic Fmag contribution separately (see also Fig. 2.1). For bcc iron, the adiabatic approximation
is well justified since the underlying excitation mechanisms, i.e. phonon, electron and magnon exci-
tations, reside on different time scales [102]. The validity of the adiabatic approximation is further
supported by recent explicit ab initio calculations of the magnon-phonon coupling in iron [103].

The contributions F vib and F el are calculated within the quasiharmonic approximation and finite
temperature DFT [78], respectively, as discussed in Sec. 2.2.4. As the first step, we have therefore
calculated the phonon dispersion of ferromagnetic bcc iron which serves as an input to the partition
function needed for computing F vib, see Eq. (2.116). The comparison with the experimental phonon
spectrum shows a good agreement (Fig. 3.4). The small difference between experimental and our
theoretical phonon energies of 5 meV is due to the xc-functional. Using a Born-von Kármán fit to
the experimental as well as to the theoretical phonon dispersions we estimate the difference in the
free energy to be around 5 meV/atom at 1300 K. Such differences are consistent with the findings
in [80] where the uncertainty due to the treatment of the xc-functional on the vibronic free energy
was empirically found for a large range of materials to be in the order of 10 meV up to 1000 K.

The electronic contribution F el, Eq. (2.111), is obtained by computing the total energies Etot

and the band occupations determined by the Fermi distribution function at a given temperature T ,
see Eq. (2.112). The resulting combined vibronic and electronic free energy (F vib + F el) is shown
in Fig. 3.5 (orange line) and compared to calphad data. Clearly, the deviation between ab initio

(F vib +F el) and calphad data increases rapidly with temperature. For instance, at 1200 K, which
corresponds to the experimental bcc to fcc transition temperature, the difference is ≈ 45 meV.
An even more sensitive physical quantity that allows to check the predictive accuracy of the T

dependent ab initio calculations is the heat capacity, CP , which is the second derivative of the
free energy surface with respect to temperature. Figure 3.6 shows that the combined vibronic and
electronic heat capacity agrees well with experimental data only up to ≈ 300 K, in agreement with
previous results [6]. At higher temperatures, however, Fig. 3.6 clearly reveals that it cannot account
for the rapid increase of the experimental heat capacity. It is therefore obvious that an accurate
determination of the free energy contribution from magnetic excitations is crucial.

For this purpose we first employ the analytic approximations, which already showed accurate
results for the critical temperature in the previous section. We discuss the known MF solution for
the magnetic free energy Fmag which we employ in an integrated approach (including F vib and F el).
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Figure 3.4: Ab initio phonon (red dashed line, left axis) and magnon (black line, right axis) spectrum
of ferromagnetic bcc iron. The results are respectively compared with available neutron scattering
data [98, 99, 104].

In contrast to MF, no consistent RPA solution for Fmag existed previous to our work for the case
of a general spin system. Consequently, apart from TC predictions, the RPA has not been applied
up to now for Fmag predictions of realistic materials systems. The extension and application of the
RPA theory is therefore a major subject of the next section.

3.2.1 Analytic Approaches

The key quantity for deriving the magnetic free energy

Fmag(T ) = U(0) − T

∫ T ′

0
dT ′U(T ′) − U(0)

T ′2
(3.5)

is the internal energy U of the system. Therefore, the expectation value of the magnetic Hamiltonian
Eq. (2.83), i.e. 〈H〉 ≡ U , has to be calculated.

We start with the MF ansatz: HMF is given by Eq. (2.85) from which we can directly derive the
internal energy UMF(T ). It is proportional to the square of the magnetization,

UMF(T ) = JQM
0 〈Sz〉2MF =

S

S + 1
J̃0m

2
MF(S, T ), (3.6)

where the reduced MF magnetization mMF is given by Eq. (2.87). Inserting Eq. (3.6) into (2.82)
yields straightforwardly the MF magnetic free energy Fmag

MF .

The exchange coefficients (discussed in the previous section) and the spin quantum number S

which enter (3.6) can be derived employing SDFT. The spin number S is connected to the local
magnetic moment M by (2.59). For iron, M is almost entirely determined by the strongly localized
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Figure 3.5: Ab initio free energy F at zero pressure as a function of temperature T including various
combinations of the vibrational (vib), electronic (el), and magnetic contribution. The latter has been
calculated within the mean field (MF), improved mean field (iMF), random phase approximation
(RPA), and improved RPA (iRPA). The calphad data has been obtained with the thermocalc
program and the SGTE unary database [105]. Inset: The calphad data is taken as the reference
at each temperature.

3d-electrons and is therefore given by the total magnetization scaled by the number of atoms and a
Landé factor of g ≈ 2. Our T = 0 K PBE result of the total magnetic moment gives8

M ≈ 2.2 µB → S ≈ 1.1 . (3.7)

Using the computed spin quantum number and the corresponding exchange coefficients, we calculate
the internal energy UMF(T ) and obtain Fmag by integration, Eq. (2.82). The MF free energy and
specific heat capacity are shown in Figs. 3.5 and 3.6 (violett dashed lines), respectively. Up to
≈ 700 K both quantities are reasonably improved with respect to the pure vibrational and electronic
contributions, but MF fails to reproduce the qualitative behavior of the heat capacity at the Curie
temperature. In addition, as also shown in Fig. 3.2, the calculated TMF

C is ∼ 1.5 times higher than
the experimental T exp

C = 1044 K.

As discussed in Sec. 3.1, the RPA is known to give more accurate Curie temperatures than
MF. We remind that within RPA we obtained a value much closer to experiment: TRPA

C =

2
[
∑

q 1/(J̃0 − J̃q)
]−1

/(3kB) = 1082 K (see also Fig. 3.2). However, in contrast to MF there is
no RPA Hamiltonian which can directly be used. Instead the expectation value of the full Heisen-
berg model Eq. (2.83) needs to be calculated in order to derive the expression for the internal
energy URPA = 〈H〉. We need two correlation functions, namely the transversal 〈Si+Sj−〉 and
the longitudinal 〈SizSjz〉 one. Via the corresponding Green’s function Gij , an expression for the

8We remind that at the theoretical ground-state volumes LDA underestimates the local spin moment while GGA
slightly overestimates the experimental findings Mexp(T = 0 K) = 2.14µB
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Figure 3.6: Heat capacity CP in units of the Boltzmann constant kB at zero pressure p as a function
of temperature T . The experimental data is from [106, 107].

transversal correlation function 〈Si+Sj−〉 has already been derived (Sec. 2.2.3) and has been proven
[18, 62, 63, 108] to yield a reasonable description for low (limit of spin-wave theory) as well as high
temperatures. However, an expression for 〈SizSjz〉 is not directly given within the original theory
proposed by Tyablikov [18]. In fact, the few years later derived expressions for 〈SizSjz〉 based on
similar decoupling techniques [108] reveals inconsistencies with respect to rotational invariance.9

The underlying reason is that established Green’s function truncation techniques (as e.g. the RPA
decoupling) treat the transversal and longitudinal correlation function on a different level of approx-
imation [108]. Therefore, the accuracy of any given approximation can be in general different for
the spin-correlation function of the transverse and longitudinal components [108]. Many different
schemes were proposed to obtain an improved description for 〈SizSjz〉 (e.g. [62, 108–110]) yielding,
however, a huge increase of complexity in the formalism.

However, as we will show in the following, it is still possible to obtain an accurate estimation of
the longitudinal correlation with reasonable effort! In the special case of spin S = 1/2, exact rela-
tions to express the challenging correlation function 〈SizSjz〉 in terms of 〈Si+Sj−〉 can be employed
and a S = 1/2 solution for the internal energy can be derived as was, e.g., shown by Tyablikov
[63].10 Therefore the RPA solution for TC is available for S ≥ 1/2, whereas the internal energy
(mandatory for deriving the free energy) is only derived for S = 1/2 (see also Fig. 3.7). However,
since we are interested in systems such as bcc iron, a pure S = 1/2 theory is of course insufficient
(see Eq. (3.7)). To overcome this issue a rescaling factor in the S = 1/2 theory can be introduced
affecting the exchange coefficients JQM [16].

To obtain the rescaling factor we compare the known expressions for TC . Regarding the spin
dependence within the RPA, the spin dependence within TC(S) can be transferred to the exchange

9For example, above TC the xx, yy and zz correlation functions are not equivalent.
10We present a more general derivation in the Appendix A.3.2.
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Figure 3.7: Sketch of the RPA solution for S = 1/2 and general spin S ≥ 1/2. The unknown
S ≥ 1/2 solution for the inner energy (grey) is obtained by rescaling the S = 1/2 solution for U(T ).
The rescaling factor is determined by the known scaling of TC with S.

parameters as J̃ = S(S + 1)JQM, see Eq. (2.101). Employing the TC formula, Eq. (2.101), for
S = 1/2 yields:

kBT
S=1/2
C = S

(
∑

q

1

J
S=1/2
0

− J
S=1/2
q

)−1

. (3.8)

Comparing Eq. (3.8) with the S ≥ 1/2 expression

kBTRPA
C =

2

3
S(S + 1)

(
∑

q

1

J
S≥1/2
0

− J
S≥1/2
q

)−1

(3.9)

we find the following expression for the effective exchange coefficients

J̃ = S(S + 1)JQM
S≥1/2 = SJQM

S=1/2/γ (3.10)

with the scaling factor γ = 2/3. Using Eq. (3.10) within the S = 1/2 solution for the internal
energy [63] we finally end up with

URPA
mag (T ) = Umag

T=0 +
M0

2

∑

q

2m(T )[m(T ) + 1]γ
[

J̃ − J̃q

]

exp
[

2βm(T )γ
(

J̃ − J̃q

)]

− 1
(3.11)

where the magnetization is given by Eq. (2.98) for S = 1/2:

m(T ) =

{

1 +
2

N

∑

q

exp[2βm(T )γ(J̃ − J̃q)]

}−1

(3.12)
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Figure 3.8: Comparison of several theoretical approximations for the magnetization M(T ) =
M0m(T ) in comparison with experimental data [100] and Monte Carlo calculations [43]. The results
are plotted as a function of the reduced temperature T/TC.

and the T = 0 contribution is given by

Umag
T=0 = M0/2γJ0. (3.13)

Employing (3.11), the description of the heat capacity is quantitatively and qualitatively im-
proved as compared to MF indicating that RPA allows a more accurate prediction of the disconti-
nuity of the heat capacity (second order phase transition) at TC (see Fig. 3.6). Being proportional
to the magnetization dUmag/dT vanishes within both theories, MF and RPA, above TC, which, in
contrast to experiment, yields a vanishing magnetic contribution to the heat capacity CP . Both
approximations, MF and RPA, are not constructed for describing the region above TC because these
approximations do not capture the local magnetic order which is still present in this temperature
region. This restriction does not, however, affect the absolute free energy as strongly as it affects its
second derivative, the heat capacity. Figure 3.5 indeed reveals that the integrated RPA free energy
together with F vib and F el deviates from the calphad data by less than 15 meV at 1200 K.

Since the magnetization shape m(T ) is the central quantity entering the internal energies of
both theories, the description of the specific heat is inherently connected with the description
of m(T ). Therefore, we investigate next whether the remaining differences between ab initio and
experimental data can be decreased by using an improved description of the temperature-dependent
magnetization m(T ). The RPA relation between the magnetic internal energy URPA

mag (T ) and the
magnetization m(T ) follows from Eq. (3.11). The fact that m(T ) is the central quantitiy appearing
in Eq. (3.11) is related to the important role of 〈Sz〉 ∼ m(T ) within the RPA decoupling, see also
Eqs. (2.96) and (2.97). In Fig. 3.8, we show the magnetization curves obtained with MF and RPA
and compare them with experimental results. The classical solution found by numerically exact
Monte-Carlo simulations [43] and a Langevin function are also shown for comparison. Clearly, both
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approximations, MF and RPA, are not able to accurately reproduce the experimental data. Aiming
at a better description of the free energy and specific heat capacity for fm bcc iron, we, therefore,
use an improved magnetization curve

mimp(T ) =
(

1 − s(T/TC)
3
2 − (1 − s)(T/TC)4

) 1
3
, (3.14)

that was empirically derived from a detailed analysis of the experimental m(T ) data for several
ferromagnetic systems [111], and fulfills Bloch’s famous T 3/2-law for low temperatures. The only
free parameter s in Eq. (3.14) can be calculated using ab initio input [112].11 The obtained shape
of the magnetization describes perfectly the experimental data, as shown in Fig. 3.8 (black line).

The improved magnetization given by Eq. (3.14) is now used as input to Umag in MF and RPA
(labeled iMF/iRPA).12 For the improved MF, the calculated specific heat capacity (violet solid line
in Fig. 3.6) shows the correct qualitative behavior and comes significantly closer to experiment.
Please note that for the improved MF we not only correct for m(T ) but also for the critical temper-
ature TC being significantly overestimated in MF. For the free energy, however, the deviation from
experiment becomes more pronounced and even undergoes a sign reversal (Fig. 3.5). Therefore,
we conclude that even an application of the improved temperature-dependent magnetization is not
sufficient to account for the magnetic contribution to the free energy within MF approximation.
In contrast, a noticeable improvement of both, CP and F , is obtained for the improved RPA. The
experimental heat capacity is now nearly perfectly predicted up to TC. The difference between
the theoretical integrated free energy with a magnetic contribution calculated with iRPA and the
corresponding calphad data decreases to less than 10 meV at 1200 K.

Conclusion

The big advantage of analytic approaches such as MF or RPA is that they allow physical insights into
the different mechanism contributing to the magnetic contribution to the thermodynamic properties.
We were, e.g., able to quantify the relation between the magnetization shape and the free energy
and specific heat capacity.

However, it is also found that RPA as well as MF do not capture the short-range order above
TC properly. Reminding that the structural transition of pure iron at about 1200 K takes place just
above the critical temperature TC = 1043 K of bcc Fe, a careful treatment of the short-range order
in iron is of particular importance. The inclusion of the short-range order in our concepts will be
the content of the next sections.

11The calculated s=0.41 is close to the empirical value s=0.35 found by fitting Eq. (3.14) to experimental data [111].
The ab initio values used to calculate the theoretical s are: The ground state magnetization M0 = 2.23 µB; the spin-
wave stiffness D = 249 meVÅ2 obtained from the low excitation spectrum ω(q → 0) ≈ Dq2 (which agrees with other
theoretical works [15]); TRPA

C = 1082 K.
12We note that replacing m(T ) within MF and RPA yields to internal inconsistency of the theories. However, such

an ansatz can be useful to figure out routes for improved theoretical descriptions.
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3.2.2 Numerical Approaches

In the previous section two different analytic approximate solutions for the Heisenberg model were
discussed. It was thus possible to get a combined ab initio concept, which allows a very accurate
prediction of thermodynamic properties of magnetic systems up to the critical temperature. In this
section we extend the methods and focus on the thermodynamic description in particular above
the critical temperature. In the paramagnetic regime, i.e. T > TC , the analytic approximations
discussed so far (MF/RPA) are limited due to the neglect of short-range order. Consequently,
one important point we would like to address in this section is to obtain a reliable prediction in
particular at high temperatures. A second issue is fundamentally rooted in the approximate nature
of the analytic approaches: The error due to the approximations are not known a priori. Clearly, a
numerically exact solution to overcome these issues would be highly desirable.

The QMC introduced in Sec. 2.2.3 is a promising candidate for this purpose. However, as already
discussed, its main limitation is the negative sign problem accompanied by an increase of statistical
error occurring if magnetic frustration is present. As shown in Sec. 2.2.3, the effective weights p(c)

of these configurations c become negative. QMC simulations can still be performed by employing
the absolute value |p(c)| to obtain the expectation value, e.g. for the heat capacity (2.108):

CV ≡ 〈CV 〉 =

∑

c CV (c)p(c)
∑

c p(c)
=

∑

c CV (c)sgn(p(c))|p(c)|/∑c |p(c)|
∑

c sgn(p(c))|p(c)|/∑c |p(c)| =
〈CV sgn〉|p|
〈sgn〉|p|

. (3.15)

The statistical error ∆sgn|p| on 〈sgn〉|p| increases, however, exponentially with decreasing temper-
ature T , Eq. (2.110). To illustrate this, we employ QMC calculations using realistic exchange
parameters taken from Ref. [15]. Indeed, as shown in Fig. 3.9 (a), we observe a negative sign
problem reflected in 〈sgn〉|p| approaching zero for decreasing temperature, if we include more and
more interaction shells. This goes along with a dramatic increase of the statistical error on 〈sgn〉|p|
resulting consequently in a large statistical error on CV , Eq. (3.15), shown in Fig. 3.9 (b).

Employing (2.110)

∆sgn|p|

〈sgn〉|p|
=

√

〈sgn2〉|p| − 〈sgn〉2|p|
√

Nsteps

≈ 1
√

Nsteps〈sgn〉|p|
, (3.16)

we can estimate how much computational time a “brute force” method would take (i.e. by simply
running the simulation longer and increasing the number of iteration steps Nsteps) to achieve conver-
gence within a reasonable statistical error. Estimating the computational time needed to reduce the
statistical error given in Eq. (3.16) to less than 1% (typically needed for an accuracy of < 1 meV of
free energy calculations), we end up with infeasible long calculation times in the order of thousands
of years on a conventional PC (see Fig. 3.9 (c)).13 We therefore conclude: A numerically exact
quantum solution of the Heisenberg Hamiltonian using realistic exchange parameters (e.g. for bcc
iron) is not feasible with the present techniques!

The question arising from the fact is, of course: If we do not have access to the numerically

13Conventional PC means here explicitly a computer having 2×AMD Opteron DP 250 2.4 GHz and 4 GB RAM.
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Figure 3.9: (a) Expectation value of the sign 〈sgn〉|p| for increasing number of interaction shells. (b)
Corresponding heat capacity CV . (c) Estimated CPU time on a conventional PC for 1% statistical
error on 〈sgn〉|p|. The exchange parameters are taken from [15].

exact quantum solution, how much do we gain from deriving a numerically exact classical solution
instead? In the classical description, the total energy is directly given by

ECL = −
∑

ij

J̃ijeiej (3.17)

where J̃ij = JCL
ij S2 are the effective exchange parameters including the length S = |S| of the

(continues) spin vectors Si = Sei on lattice site i and ei denoting the unit vectors. Hence, for
each configuration of spins the energy (3.17) can be straightforwardly computed. The classical
expectation values can be readily obtained via

〈O〉CL =

∑

i Oie
−βECL

i

∑

i e
−βECL

i

, (3.18)

where the sum runs over all i possible configurations. To tackle the above equation, cMC techniques
are nowadays well established. Typically, the configuration space is sampled using Metropolis
importance sampling i.e. a series of configurations is generated following usually the Boltzmann
statistics.

The introduced error for a classical treatment is, however, not known in advance. The critical
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discussion of the limits of a classical treatment as well as the impact of quantum effects on various
thermodynamic properties are in the focus of the next section.

Rescaled Classical Monte Carlo Approach

In the following we propose an alternative scheme to calculate the thermodynamic properties of
magnetic Heisenberg systems where magnetic frustrations are weak or absent. The essence of the
approach is a numerically exact classical Monte Carlo (cMC) solution of the (classical) Heisenberg
model [Eq. (3.17)]. The quantum-mechanical effects which are neglected in the classical treatment of
the originally quantum-mechanical Heisenberg model are afterwards approximately included. This
inclusion is divided into two parts: On the one hand, we ensure the quantum-mechanically correct
high temperature limit of the free energy by aligning the calculated classical entropy to the analyt-
ically known quantum solution. On the other hand, the impact of the neglected low temperature
quantum effects is estimated by a careful comparison of model systems for which the numerically
exact quantum solution via QMC calculations is also accessible (no negative sign problem). The
comparison allows to formulate a semi-empirical rescaling approach (in the following denoted as
rMC), which modifies the classical solution towards the quantum-mechanical counterpart. To show
the performance of the method we finally combine the rMC approach with the ab initio computed
exchange coefficients of Sec. 3.1 as well as ab initio vibronic and electronic free energy contributions
and compare with the results obtained in the previous section.

The use of DFT based input parameters in Eq. (2.70) and the subsequent solution of the model by
means of classical cMC is nowadays a standard and successful approach [13, 43, 48, 54]. Nevertheless,
having in mind that quantum effects are not accounted for within the cMC approach, a number
of crucial questions arises: (i) How significant are quantum effects for thermodynamic properties
like, e.g. the heat capacity CV (T ), the internal energy U(T ) or the magnetic free energy Fmag(T )?
(ii) Above which temperatures T and for which spin numbers S are classical calculations sufficient?
(iii) Is there a practical scheme to estimate the magnitude and influence of quantum effects without

having the quantum solution available, i.e. based solely on the classical results?
In order to tackle these questions we have evaluated the thermodynamic properties for a set

of carefully selected magnetic systems using the exact QMC data as a reference and comparing
them with the corresponding data obtained employing the cMC approach. This comparison pro-
vides direct insight into the importance of quantum effects as function of spin quantum number and
temperature. The choice was limited to magnetically unfrustrated systems to avoid the negative
sign problem in the QMC approach. We included both kinds of magnetic interactions (ferromag-
netic/antiferromagnetic) for various 3D bulk lattice types (sc, bcc, fcc) and used different numbers
of interaction shells (one and two shells).

To allow for a convenient comparison of the results for various spins S, and in particular for the
classical limit S → ∞, we use common effective exchange parameters J̃ = S(S + 1)JQM = S2JCL,
where JQM and JCL are the nearest-neighbor exchange integrals respectively in the quantum and
classical case. In the following we express all energies in units of J̃ and temperatures in units of
J̃/kB .

All cMC and QMC calculations were performed using the ALPS code [72]. For both calculations,
cMC and QMC (the Loop algorithm [67] in the stochastic series expansion method is used), cluster
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Figure 3.10: Heat capacity vs. temperature for a 8x8x8 bcc lattice with ferromagnetic nearest-
neighbor coupling solved using cMC (spin-independent) and QMC for various spin quantum numbers
S. For comparison the rMC data (explained in the text) is shown.

updates were employed to calculate at least 2 · 105 steps for equilibrating the system and 2 · 106

steps for thermal averaging. All supercells contained 512 atoms. For each configuration ≈ 400

temperatures were evaluated. These settings ensure statistical errors of less than 0.01kB on CV in
the considered temperature range except for the region close to the critical temperature. Increasing
the supercell to 1728 atoms results in a more pronounced peak in CV at the critical temperature,
but has only a marginal effect on the formalism discussed below. In the following we illustrate
our findings on the example of a bcc lattice with ferromagnetic nearest-neighbor coupling. The
other investigated systems yield very similar dependencies and conclusions and will be therefore not
discussed in detail here.

Within the ALPS code, the specific heat capacity CV for cMC and QMC is calculated by virtue
of the fluctuation-dissipation theorem (see, e.g. Ref. [113]) and shown in Fig. 3.10. The critical
temperature TC was determined by the position of the peak in CV . For all considered spin quantum
numbers (S = 1/2, 1, 3/2, 7/2), the classical and quantum solutions for CV agree well for sufficiently
high temperatures (T & 3J̃/kB). Apart from the lower spin quantum numbers, i.e. for S > 1, the
classical approach provides even a good description of the quantum solution for temperatures above
T cMC

C ≈ 2J̃/kB implying that the short-range order (dominating in the paramagnetic regime) is
well captured by the cMC approach and quantum effects have a minor impact in this temperature
regime. At the same time the quantum solution of TC(S) is rapidly approaching the classical one
(indicated by a dashed line in Fig. 3.10) with increasing spin: TC(S → ∞) = T cMC

C ≈ 2J̃/kB . For
a detailed discussion of the dependence of TC(S) we refer to Ref. [114]. The fact that the classical
solution for the heat capacity does not vanish for T → 0 (giving rise to a diverging magnetic
entropy), is a direct consequence of the classically non-discretized spectrum of magnetic excitations
in the Heisenberg model.
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Figure 3.11: Internal energy vs. temperature for a 8x8x8 bcc lattice with ferromagnetic nearest-
neighbor coupling solved using cMC and QMC for various spin quantum numbers S. For comparison
the rMC data is shown.

From the numerical calculations we further obtain the internal energy shown in Fig. 3.11. The
cMC and QMC results agree again for temperatures larger than T & 3J̃/kB . For lower temperatures
(T . 2J̃/kB) there are dramatic differences between the classical and quantum solutions for the
internal energy, which increase with decreasing spin quantum numbers. The largest difference occurs
at T = 0 and is equal to

UQM
T=0(S) − UCL

T=0 = −(J̃0S/(S + 1) − J̃0) = J̃0/(S + 1) (3.19)

with J̃0 =
∑

i,j J̃ij .

The magnetic entropy Sm can be directly calculated from the heat capacity via integration either
starting from low temperatures (T = 0), or, if the maximum entropy Smax

m = Sm(T → ∞) is known,
from the high temperature limit:

Sm(T ) =

∫ T

0
CV (T ′)/T ′dT ′ (3.20)

= Smax
m −

∫ ∞

T
CV (T ′)/T ′dT ′. (3.21)

For the quantum spin system represented by Eq. (2.70), the maximum entropy is spin dependent,
Smax

m (S) = kB ln(2S + 1), reflecting that in the high temperature limit all 2S + 1 spin states are
equally occupied.

Due to the above-mentioned non-vanishing classical heat capacity at T = 0, the corresponding
magnetic entropy is not well defined for T → 0. To compare the classical results with the quantum
results, we therefore align the classical maximum entropy to the quantum one using (3.21). The
corresponding calculated entropies are shown in Fig. 3.12. With decreasing temperature the entropy
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Figure 3.12: Magnetic entropy vs. temperature for a 8x8x8 bcc lattice with ferromagnetic nearest-
neighbor coupling solved using cMC and QMC for various spin quantum numbers S. For comparison
the rMC data is shown.

decreases from the paramagnetic limit given by Smax
m (S) for fully disordered spins. Due to the treat-

ment of spins as continues vectors, the classical solution overestimates the change in the magnetic
entropy with temperature and yields a negative entropy at temperatures below a spin-dependent
offset value T off(S). The range of temperatures T < T off(S) where cMC predicts a qualitatively
wrong physical behavior of the system is shaded in Fig. 3.13 with light-grey color. Nevertheless,
the alignment of the classical entropy to the quantum limit ensures that the free energy obtained
with cMC for high temperatures (T > 2J̃/kB) accurately reproduces the quantum solution.

Despite the aligning scheme, the cMC approach still suffers from the neglect of the quantum
effects, which turn out to significantly influence the free energy data even at moderate temperatures
(up to TC). Having the importance of the classical approach for realistic materials science problems
in mind, one of the central points of the present study is, therefore, the improvement of the cMC
scheme in this temperature regime.

To achieve this goal we develop a mean field-based semi-empirical approach, which provides on
the one hand a practical and efficient way to account for quantum effects and on the other hand
keeps the full flexibility of the cMC scheme. We concentrate on CV since all other thermodynamic
quantities can be easily calculated once the heat capacity is known [115]. The two main deviations
between the classical and quantum solution are a) the shape of CV and b) the spin-dependence
of the critical temperature. Since the latter would increase the complexity of our approach, we
introduce a normalized temperature t = T/TC and focus on the deviations regarding the shape as
a function of temperature and spin quantum number. These can be expressed in a compact form
by introducing

f(t, S, σ) := CQMC
V (t, S, σ)/CcMC

V (t, σ), (3.22)

where σ includes other dependencies apart from S and t, such as, e.g. the lattice and/or magnetic
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Figure 3.13: Free energy vs. temperature for a 8x8x8 bcc lattice with ferromagnetic nearest-neighbor
coupling solved using cMC and QMC for various spin quantum numbers S. For comparison the
rMC data is shown. The range where the magnetic entropy of the aligned cMC and the rMC data
becomes negative is highlighted by light and dark grey shading, respectively.

configuration (e.g. number of interaction shells). In principle, if f were known, CQMC
V could be

computed solely based on the classical CcMC
V solution. A numerical estimate of f can be obtained

for the model systems such as those considered in Fig. 3.10, but is not available for configurations
present in realistic material systems such as bcc iron.

To analyze the shape and functional dependence of the scaling function f we compute this
ratio between the quantum-mechanical and the classical heat capacity for an extensive set of model
systems for which QMC results are accessible. The set of chosen configurations σ includes different
lattice structures (sc, bcc, fcc) with nearest-neighbor ferromagnetic configurations (J1 > 0) as well
as antiferromagnetic configurations (J1 < 0) for bcc and sc [116]. To check the robustness of
the approach, we additionally included ferromagnetic configurations with second-nearest-neighbor
interactions taking J2 = 2.5J1 > 0 and J2 = 5J1 > 0. The numerical results of Eq. (3.22) for two
different spins, S = 1 and S = 7/2, are shown in Fig. 3.14. They show a significant scatter for high
temperatures, where the quantum and classical solution should coincide, f(t ≫ 1) → 1. This is due
to CV (t ≫ 1) → 0 [see Eq. (3.22)] and the connected increase of the statistical errors. For the more
important regime below t = 1, however, the influence of σ on the function f is surprisingly weak
and significantly smaller as compared to that of S and t.

The observed weak dependence of the function f on the specific configuration σ that includes
besides the crystal structure and magnetic state, also the range of interaction, is a central insight
of this study and allows to neglect the σ dependence in first order. For a practical realization
of this scheme we determine the averaged scaling function f(t, S) that averages over all considered
configurations. This function is expected to provide a good approximation also for realistic material
systems, which have not been included in the current set of structures (e.g. due to the not accessible
QM solution). A practical example will be given in Sec. 3.2.2 for the material system bcc iron. For
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an easy implementation of this approach an analytical expression for f(t, S) is desirable. In the
following we discuss an empirical ansatz for this function, and test its accuracy/limits by comparing
the rescaled cMC data based on the empirical ansatz with numerically exact results.

We start this discussion by considering the mean-field approximation of the Heisenberg model,
which is known to describe thermodynamic properties at low temperatures reasonably well (see,
e.g. Figs. 3.5- 3.8). An advantage of this approximation is the availability of analytical expressions
for the magnetization in the quantum (Brillouin function) and in the classical (Langevin function)
case. The resulting ratio of heat capacities, fMF(t, S), can therefore straightforwardly be computed.
The shape of fMF(t) is in good agreement with that of f in the low temperature regime except of a
scaling factor due to the well known overestimation of TC in the MF approximation. To elaborate
this in more detail we analytically expand the low temperature MF ratio (see Appendix A.1.3) and
obtain

fMF(t ≪ 1, S) ≈
(

2tS/t

exp(tS/t)

)2

(3.23)

with the spin-dependent temperature

1/tS = α(S + 1). (3.24)

α is a proportionality factor. Its MF value is αMF ≡ 2/3.
For temperatures above the critical temperature (t > 1) MF predicts CV ≡ 0 due to the neglect of

short-range order. Therefore, the analytic function Eq. (3.23) needs to be extended by an additional
term, such that the resulting empirical function fapprox fulfills the following boundary conditions:
First, for high temperatures both solutions (quantum and classical) should coincide, i.e. fapprox(t →
∞, S) → 1. Second, the same should hold for an infinite spin quantum number, i.e. fapprox(t, S →
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∞) → 1, reflecting that the classical model converges to the QM model in the limit of an infinite
spin S. The choice

fapprox(t, S) :=

(
2tS/t

exp(tS/t) − exp(−tS/t)

)2

(3.25)

obeys both conditions and provides a good fit of the data as will be discussed next.
In a second step we fit the numerically exact scaling data Eq. (3.22) to the functional dependence

of Eq. (3.25), using tS as fit parameter. This procedure has first been performed for each of the
investigated spin quantum numbers S, each structure (sc, bcc, fcc) and magnetic configuration
(J > 0, J < 0, J2 = 2.5J1 > 0, J2 = 5J1 > 0) individually. As can be seen from Fig. 3.15 (b), the
used fitting function again appears to be remarkably independent of the configuration σ. Regarding
the dependence on S, the parameter 1/tS turns out to be nearly linearly proportional to the spin
quantum number, similarly to MF in Eq. (3.24). This is consistent with the observation that the
characteristic temperature above which the cMC and the QMC solution agree is inverse proportional
to S. Performing a linear regression over all calculated datasets for different systems yields

1/tS ≈ 0.54(1)S + 0.54(2), (3.26)

close to the mean field value as given by Eq. (3.24). The mean deviation on the last digit is shown
in brackets.

The quality of the analytical expressions for the rescaling functions Eqs. (3.25) and (3.26), is
demonstrated in Fig. 3.15 (a). Here, we observe for all considered parameters a fair agreement
between f(t, S) and fapprox(t, S), with the smallest deviations for low temperatures t and high
spin values S. In order to test the accuracy of this approach, we apply the rescaling scheme to the
previously discussed cMC data of model systems. This allows a direct comparison of the temperature
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dependences obtained by the two-step procedure (fitting+linearizing 1/tS) resulting in fapprox(t, S)

with the numerically exact QMC results. In contrast to Fig. 3.15 (a), it has been performed for all σ

individually and would only be trivial if the rescaling function f(t, S, σ) were used. Since in practice
the quantum solution is usually not known a priori, we also do not align the classical and quantum
solution with respect to the temperature, i.e. we do not enforce T rMC

C = TQMC
C . As an example we

show the heat capacity for the bcc, ferromagnetic nearest-neighbor case (black line in Fig. 3.10).
For all spin quantum numbers the classical results are found to be significantly improved. A similar
accuracy is found for all other considered systems.

Based on the rescaled heat capacity we compute, similar to Eq. (3.21), the internal energy

U rMC(T ) = U cMC(TH) −
∫ TH

T
CrMC

V (T )dT. (3.27)

Here we have used that U cMC(TH) ≈ UQMC(TH) and CV (TH) ≈ 0 for sufficiently high cutoff
temperatures TH > TC . The rescaled internal energy Eq. (3.27) and the rescaled entropy Eq. (3.21)
are compared in Figs. 3.11 and 3.12 with the cMC and QMC results. Altogether, the classical de-
scription is again improved for all considered spin quantum numbers and thermodynamic properties.
As expected, deviations are larger for small spin quantum numbers (e.g. S = 1/2) (see Fig. 3.10).
A major source for the remaining discrepancies are the deviations between the Curie temperatures
for small spins and in the classical limit S → ∞ [114]. In general, with increasing spin number the
predictive accuracy of rMC improves and already for S ≥ 3/2 the results are very close to the full
QMC calculations. A similar behavior is found for the internal energy and magnetic entropy.

Generally we find that the rescaling approach consistently improves the problematic low tem-
perature regime. For integrated quantities such as the entropy, internal, and the free energy, the
remaining errors accumulate in the low temperature region due to the backward integration from
high to low temperatures by virtue of Eqs. (3.21) and (3.27). A consequence is the presence of
unphysical negative entropies at low temperatures (dark shaded temperature range in Fig. 3.13)
similarly to the purely classical approach (light shaded temperature range in Fig. 3.13), despite the
good description of the rescaled heat capacity both at low and high temperatures with the largest
deviations close to the critical temperature.

To quantitatively evaluate the accuracy achievable by the rescaling approach we summarize
in Tab. 3.2 the mean deviation in percent (standard deviation of the various structures shown
in brackets) between the rMC (first rows) and the cMC (second rows) with the QMC data for
different temperature ranges and averaged over all model structures σ considered in this study.
For low temperatures (below the critical temperature) the aligned cMC approach is not sufficient
to describe the quantum system whereas the rMC approach provides already for S ≥ 1 a good
approximate prediction of the quantum-mechanical free energy with an error of less than 4%. For
higher temperatures (above the critical temperature) the rMC reduces the deviations between the
cMC and the QMC data for all thermodynamic quantities by almost a factor of two. The fact
that the scatter between the different structures, as reflected in the standard deviation shown in
Tab. 3.2, is almost always smaller than the mean deviation and that it consistently decreases with S,
indicates that the rescaling approach works equally well for all investigated lattice types, magnetic
configurations, and number of included interaction shells. We, therefore, expect a similar accuracy
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Table 3.2: Mean value of the mean deviation between the rMC/cMC and the QMC calculations for
the heat capacity, internal energy, entropy, and free energy in percent using ∆A = 1/Nσ

∑

Nσ
∆Aσ

with ∆Aσ = 1/N
∑

ti

∣
∣
∣(A

rMC/cMC
σ (ti) − AQMC

σ (ti))/A
QMC
σ (ti)

∣
∣
∣ with N = 100 in two temperature

regimes for all structures σ (sc, bcc, fcc; fm, afm, J2 = 2.5J1 (fm), J2 = 5J1 (fm)). The standard
deviation of the different structures is shown in brackets.

0.1 < T/T cMC
C < 1

∆A S = 1/2 S = 1 S = 3/2 S = 7/2

A = CV rMC 41.2(7.1) 21.9(4.3) 15.8(2.9) 5.5(2.0)
cMC 1897.3(951.9) 885.5(413.8) 533.3(171.4) 112.3(12.1)

A = U rMC 32.2(11.9) 9.8(5.4) 4.3(3.4) 1.0(1.2)
cMC 125.5(17.9) 53.9(6.2) 31.5(3.4) 9.(1.0)

A = Sm rMC 226.2(81.0) 48.9(42.8) 28.2(32.7) 9.3(10.3)
cMC 3630.(1614.4) 1810.3(646.4) 1087.4(343.0) 223.1(57.0)

A = F rMC 12.8(5.0) 3.9(2.2) 1.7(1.4) 0.7(0.7)
cMC 49.3(6.2) 20.8(2.3) 11.9(1.3) 3.4(0.6)

1 < T/T cMC
C < 2

∆A S = 1/2 S = 1 S = 3/2 S = 7/2

A = CV rMC 49.8(25.9) 15.2(9.7) 7.1(5.2) 2.2(3.4)
cMC 99.7(34.8) 33.4(11.3) 16.9(5.6) 3.7(1.4)

A = U rMC 14.1(9.5) 5.2(4.2) 2.7(2.6) 1.1(1.8)
cMC 25.7(10.4) 10.7(4.2) 5.9(2.3) 1.5(0.6)

A = Sm rMC 3.7(3.1) 1.3(1.3) 0.8(0.8) 0.7(0.5)
cMC 6.5(3.3) 2.2(1.4) 1.1(0.8) 0.6(0.5)

A = F rMC 1.1(0.8) 0.5(0.3) 0.5(0.3) 0.6(0.4)
cMC 1.5(0.9) 0.7(0.4) 0.6(0.4) 0.7(0.4)

of the proposed rescaling approach for other lattice geometries and if interaction shells beyond
second-nearest-neighbors are included.

Application of the rMC Approach to FM Bcc Iron

In the following we employ the rMC approach to compute the magnetic contribution of bcc iron as
an example of a realistic magnetic material system. Despite its predominant ferromagnetic coupling,
positive (i.e. antiferromagnetic) exchange integrals occur in higher-order shells. These exchange
integrals cannot be neglected due to the very long-ranged character of the interactions [15] and lead
to weak magnetic frustrations which rule out the use of the QMC approach (see also Fig. 3.9) [117].

To compute the thermodynamic properties we use the adiabatic approximation (3.4). In Fig. 3.16
we show once more the sum of Fvib and Fel and compare it with calphad [86, 87] data. The strong
deviations between the calculated and the experimental free energy and heat capacity (Fig. 3.17)
above room temperature highlight the significance of magnetic contributions, as we already discussed
in Sec. 3.2.1 [16].

In order to evaluate the magnetic contribution, we start with the comparison of the classical
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Figure 3.16: The free energy of bcc iron as a function of temperature. Inset: Difference between
the different theoretical and the calphad data is shown. For comparison the theoretical MF and
RPA results of Sec. 3.2.1 are also shown.

Monte Carlo calculations and the rMC data for the specific heat capacity (Fig. 3.17). Classical Monte
Carlo calculations were performed using a 12x12x12 supercell (containing 1728 atoms) including
magnetic interactions of up to 25 neighbor shells. The effective real-space exchange coefficients J̃ij

entering the Heisenberg model have been obtained by performing a Fourier transformation of the
reciprocal-space exchange integrals, which we have already extensively discussed in Sec. 3.1. The
magnetic heat capacity is calculated assuming that the magnetic moments of Fe do not significantly
change due to the thermal volume expansion and temperature, resulting in CV (T ) ≈ CP (T ). We
now add the magnetic contribution to CP (T ) (Fig. 3.17). The peak in the heat capacity (Fig. 3.17)
reflects the magnetic transition from the ferromagnetic to the paramagnetic state. The resulting
critical temperature is T cMC

C ≈ 1060 K which is close to the experimental value T exp
C = 1044 K

and similar to the analytic result TRPA
C = 1083 K (Sec. 3.1). In the paramagnetic regime the cMC

approach reproduces the experimental behavior very well, confirming our finding in the previous
section that magnetic short-range order is well captured within the cMC calculations (for S > 1)
and that quantum effects are not critical in this temperature regime (see also Fig. 3.10).

To obtain F cMC
mag we use the calculated cMC internal energy U cMC and the classical entropy ScMC

m

aligned to the maximum entropy Smag
m (S) for the quantum spin system at high temperatures [see

Eq. (3.21)]. The effective spin quantum number S = 1.1, which corresponds to the ab initio calcu-
lated ground-state magnetic moment 2.2 µB , is used. In order to obtain the magnetic excitation
energies (the T = 0 K-energy is already included in Fel), the T = 0 K contribution UQM

T=0(S) is sub-
tracted from the calculated F cMC

mag after the alignment of F and the calphad data.14 The resulting
free energy F cMC is shown in Fig. 3.16. The obtained agreement at high temperatures is excellent.

14As discussed above, the classical treatment of the quantum Heisenberg Hamiltonian fails in particular at low
temperatures where, however, the computed free energies are typically aligned to calphad data (i.e. 200 K) for
comparison. After the alignment we, therefore, subtract the deviation caused by the neglected quantum effects
employing ∆FDFT−calphad(200 K) = FDFT

cMC (200 K)−F calphad(200 K) := UQMC(200 K)−UcMC(200 K) ≈ J̃0/(S+1),
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Above the critical temperature, the aligned cMC free energy provides a very good description of the
magnetic contribution to the free energy of bcc iron. At lower temperatures, however, the deviations
are clearly visible and increase in magnitude with decreasing the temperature. Below ≈ 700 K the
aligned cMC entropy becomes negative (highlighted by light grey color), which leads to a wrong
asymptotic behavior of the calculated free energy. This region is, therefore, not properly described
within the cMC ansatz, although quantitatively the deviations of F cMC from the experimental data
remain moderate even at temperatures below 700 K.

We use now the rescaling framework and multiply the cMC data for CP (T ) with the rescaling
function given by Eqs. (3.25)-(3.26). The results are shown in Fig. 3.17 (black diamonds) and
reveal a significant improvement over the cMC results below the room temperature, yielding an
overall excellent agreement of the calculated heat capacity with the available experimental data.
The largest deviations occur close to the critical temperature where the finite size effects in the
MC calculations hinder an accurate description of the heat capacity in the thermodynamic limit
of infinite system size L → ∞ [118]. Applying our rescaling ansatz to the cMC entropy and
internal energy we derive the rMC free energy (black straight line in Fig. 3.16). As can be seen,
our rescaling approach provides an accurate agreement with the experiment with an error bar of
less than 10 meV/atom over the whole temperature range of thermodynamically stable bcc iron.
We note that the temperature below which the rMC entropy becomes negative (indicating the
breakdown of this approach) is significantly shifted by ≈ 300 K to lower temperatures (marked by
the dark shaded region) when compared to the aligned cMC. The results show that the rescaling

see (3.19). In the last step UQM
T=0 K ≈ UQM

T=200 K is assumed due to the negligible contribution of CP (T < 200K) ≈
0 = dU/dT .
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procedure is indeed able to correct for the cMC deficiencies in the low temperature (T < TC) regime
and lead to a significant decrease of the errors in the calculated thermodynamic properties.

Conclusion

Classical MC calculations employing realistic magnetic exchange coefficients can be used to accu-
rately determine the Curie temperature TC as well as to account for magnetic short-range order
above TC . The numerical treatment provides therewith a complementary approach in particular to
the analytic RPA method (accurate description in the ferromagnetic regime below TC) enabling us
to describe bcc iron over the whole temperature range. Below TC , the cMC method is not sufficient
to describe the quantum Heisenberg model. This implies that quantum effects are important even
up to TC , which is in case of bcc Fe already above 1000 K!

The almost universal behavior of the derived rescaling function for the different tested model
systems indicates that the overall shape of thermodynamic quantities, such as the specific heat
capacity, are largely independent on the specific magnetic configuration if considered on a reduced
temperature scale. This insight provides the basis for an effective model discussed in Sec. 3.4.

Having tested and verified the developed methods for bcc iron we proceed in the next section
with the investigation of fcc iron. A major aim is to resolve the fundamental question of the
underlying driving forces of the bcc - fcc phase transitions.
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3.3 Structural Phase Transitions in Iron

So far we have concentrated our discussion in particular on the magnetic transition in bcc iron,
i.e., the transition from the ferromagnetic to the paramagnetic regime at the Curie temperature TC

(lower part in Fig. 3.18). We have developed highly efficient methods to incorporate the magnetic
entropy contribution into a combined ab initio framework for a parameter-free prediction of the free
energy F (T ). Since this procedure can be applied to several phases, it now provides the possibility
to investigate even structural phase transitions.
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Figure 3.18: The calphad [119] free energy difference ∆F tot between the bcc and fcc phase is
shown (red line). For ∆F tot < 0 the bcc phase is more stable than the fcc phase and for ∆F tot > 0
vice versa.

The structural transitions in pure iron have been intensively investigated from experimental
as well as theoretical sides for more than half a century [7, 8, 120–123]. However, due to the
complexity involved in the magnetic degrees of freedom, a full theoretical understanding is still
lacking. One of the key issues is the detailed balance between the various entropy contributions
and their impact on the structural stability of the bcc and fcc phase, resulting in questions such
as: are phonon excitations the driving force of the bcc to fcc transition [120] or are magnetic
contributions playing the more significant role [8]? Based on pure geometry one could argue that
phonon excitations in a more open structure are softer than in a more close packed lattice structure
and that consequently the vibronic entropy should stabilize the bcc structure at high T . If we
accordingly assume that vibronic contributions are the driving force for the second transition (γ →
δ), the magnetic contributions are consequently responsible for the first one (α → γ). However,
a solely geometric argumentation (“more open structure”) does not necessarily apply to magnetic
systems, where for instance the amplitude of phonons sensitively depends on the magnitude of the
local magnetic moments [124].

As mentioned in the beginning, the bcc-fcc phase transitions in iron were investigated by many
authors over the last fifty years: In 1956, within a calphad-type assessment of experimental data,
Weiss and Tauer [120] demonstrated the importance of vibronic contributions for the stabilization
of the fcc phase. Later, in 1963, Kaufman et al. [7] suggested the existence of two spin states in
fcc Fe (called ferromagnetic high-spin and low-spin state), which yield an additional entropy con-
tribution which is responsible for the stabilization of the fcc phase (sometimes also denoted as the
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phenomenological two-state-hypothesis).15 Twenty years later, Hasegawa and Pettifor [8] proposed
a purely theoretical ansatz based on a mean field single-band Hubbard model. In this way they
were able to show that both phase transitions could be explained qualitatively solely by magnetic
contributions. However, the proposed theory included a number of approximations (no spin-wave
contributions, ignoring short-range order, etc.) and a final answer regarding the impact of magnetic
contributions compared to the vibronic ones was not possible. Instead, a few years later, Zarestky
and Stassis reanimated the discussion of the impact of vibronic contributions by performing neutron
scattering experiments for annealed fcc iron [122]. Based on these experiments, the Debye temper-
ature of fcc Fe was estimated to be about 25% below the bcc Fe Debye temperature strengthening
the initial calphad evaluation of Weiss and Tauer. In 2010, Lavrentiev et al. [125] employed a
newly developed magnetic cluster expansion [126] to investigate the phase transitions in iron. The
authors combined the computed magnetic entropy with empirically derived vibronic contributions16

and were able to reproduce the experimentally observed phase transitions. Their approach relies,
however, on a number of assumptions as well as experimental input.17 Furthermore, important
contributions such as the electronic entropy were neglected. A fully theoretical understanding of
the impact of different contributions (electronic, vibronic, and magnetic) on the phase transitions
is obviously not yet established.

The following section is divided into two parts: The first part is devoted to the treatment of
the fcc phase. Previous DFT calculations reveal a non-collinear spin spiral ground state for fcc iron
(see e.g. Ref. [19]). In this case, the developed RPA theory in Sec. 3.2.1 needs to be extended
and generalized to non-collinear magnetic configurations. We apply the more general analytic
expression as well as the rescaled Monte Carlo approach from Sec. 3.2.2 to fcc Fe and compare
them with each other. The results are further combined with vibronic and electronic entropy
contributions and compared with the results obtained by the calphad approach. Having obtained
a reliable prediction of the fcc phase, we discuss in the second part in detail the temperature
dependent free energy difference of both phases, ∆Fbcc−fcc, as well as the impact of the various
entropy contributions.

3.3.1 Thermodynamics of γ-Iron

The experimental investigation of the fcc phase of iron is complicated due the fact that it is ther-
modynamically stable only in a rather high and narrow temperature window between 1184 K and
1673 K, see Fig. 3.18. Experimentally fcc iron is stabilized mostly in combination with fcc Cu,
e.g., by annealing Fe alloys in Cu (forming Fe precipitates of the parent (fcc Cu) lattice structure)
[128–130] or by epitaxial growth of thin Fe layers on Cu(001) (up to a critical layer thickness)
[131–138].

15We note that although the existence of the two spin states is nowadays well established by electronic structure
calculations, see e.g. Ref. [121], it is usually not considered as an additional source of entropy.

16The contribution of bcc Fe is derived from experimental elastic constant measurements at 1173 K [127]. For fcc
Fe, a force-constants model is employed to fit experimental inelastic neutron scattering data taken at 1428 K [122].

17Concerning the magnetic model, the long-ranged exchange interactions are ignored and only the first two (three)
nearest-neighbor exchange coefficients for bcc (fcc) Fe are included. The error introduced due to the classical treatment
of the magnetic Hamiltonian is not known and also not discussed by the authors. The vibronic contribution is
determined by fitting experimental data at fixed temperature which is even not the same for the bcc and fcc phase.
The dependence of the vibronic contribution on volume and temperature is not included. Finally, the electronic
entropy is completely neglected.



3.3 Structural Phase Transitions in Iron 69

For precipitates sizes up to 150 Å, a simple type-I antiferromagnetic (afm) structure is found
[139]. In the ultrathin films, a nonmonotonous variation of the magnetization was found, which
was assigned to the formation of a helical spin-wave (characterized by Qexp = 2π/a(0.1, 0, 1)) in
the deeper layers being close to an afm configuration Qafm = 2π/a(0, 0, 1) in (001)-direction. The
experimental results (for the precipitates as well as the layered structures) show a strong tendency
of antiferromagnetic order accompanied with potential distortions (modulations) depending in a
crucial way on the external constraints (e.g. the experimental film growing technique or precipitate
size).

To investigate the magnetic ground state of fcc iron, several DFT studies have been performed,
see e.g. Ref. [19] and references therein. Regarding collinear magnetic configurations [121], ferro-
magnetic high-spin and low-spin phases are found to be energetically more stable than the non-
magnetic (nm) phase. The lowest energies are found for antiferromagnetic phases, in particular for
the antiferromagnetic single-layer (afm) and antiferromagnetic double-layer (afmd) configurations
in (001)-direction. In a previous work [19], which includes different spin spiral configurations in the
total energy calculations, two local energy minima are found for spin spirals Q1 = 2π/a(0.2, 0, 1)

(close to the experimental one found in ultrathin films, see above) and Q2 = 2π/a(0, 0, 0.6). At
rather low volumes (about 7% lower than the experimental volume) the spin spiral state Q1 turns
out to be more stable than Q2, whereas for larger volumes the latter is found to be energetically
more favorable.

To compute the magnetic entropy we employ in the following a theory similar to bcc Fe, which
covers the full Q-space, i.e., the energies corresponding to all possible spin spiral configurations.
Therefore, similar calculations as in [19] are performed. Regarding the vibronic entropy, phonon
calculations for different spin spirals may become computational very expensive18. We, therefore,
perform phonon calculations in two representative collinear phases, i.e., the afm and afmd phase
discussed above.

Ground-state Properties

We first consider the T = 0 K total energy calculations for various magnetic phases (including the
above introduced afm and afmd phase) of fcc Fe in Fig. 3.19. For the considered collinear magnetic
phases, the afmd phase represents the energetically lowest magnetic structure. We performed in
addition total energy calculations for different non-collinear spin spiral structures Q and find that the
Q2 structure is lower in energy than the collinear phases in the considered volume range. We note,
however, that all magnetic phases are very close in energy indicating that the specific magnetic
arrangements of the magnetic moments in fcc Fe have only small influence on the total energy
compared to bcc Fe, see Fig. 3.19. Since the energy difference ∆E between the fm and afm phase
is in first order approximation19 proportional to the nearest-neighbor exchange coefficient J̃12, the
magnetic exchange in fcc Fe (∆E ≈ 50 meV≈ 580 K·kB) is about one order of magnitude smaller
than in bcc Fe (∆E ≈ 450 meV≈ 5200 K·kB).

18For the spiral state Q2 = 2π/a(0, 0, 0.6) at least 10 atomic layers in the (0,0,1)-direction are required to construct
the unit cell. In addition, the symmetry breaking in non-collinear calculations renders such calculations to be at least
one order of magnitude more expensive than common collinear phonon calculations.

19For a classical Heisenberg system defined by the energy E = 1/N
P

ij Jij~ei~ej , the energy difference at T = 0 K
between the fm and afm configuration is ∆E =

P

j
J1,2j ≈ J1,2.
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for various magnetic phases. The energy difference between the different magnetic configurations is
much larger in bcc than in fcc Fe indicating a smaller magnetic exchange in the latter, see text for
details.

We included in the ground-state search the tetragonal distorted fct structure. Allowing in
addition relaxations (internal coordinates as well as cell shape) in the total energy calculations, the
afmd fct structure (breaking the axial symmetry) shown in Fig. 3.19 is pronounced as the lowest
magnetic phase resulting in c/a ≈ 1.09.

To illustrate that in the ideal fcc structure the Q2 state provides the lowest spin spiral structure
of all possible q-spirals, we show in Fig. 3.20 (b) the computed spin spiral spectra at two volumes
V = 10.61 Å3 and V = 11.19 Å3. As mentioned above, a second local minimum occurs at Q1 =

2π/a(0.2, 0, 1) close to the experimental as well as previous theoretical findings [19]. Comparing
the spin spiral spectra for fcc Fe (Fig. 3.20 (b)) with the previously obtained spectra for bcc Fe
(Fig. 3.20 (a)) we directly observe that the effective magnetic exchange coefficients J̃q are indeed
about one order of magnitude smaller in the fcc than in the bcc phase. This is consistent with the
various magnetic phases in Fig. 3.19 being close in energy. Also the Γ -point (ferromagnetic phase)
represents no longer the energetic minimum, which reflects the fact that the system is magnetically
unstable in the ferromagnetic phase. At both considered volumes the spin spiral with the wave
vector Q2 represents the magnetically most stable configuration.
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Analytic Approximations

We start the investigation of the magnetic entropy and the magnetic critical temperature of fcc Fe
by considering analytic approaches, i.e., the RPA and the MF solution. In the context of the RPA,
the main difficulty for a system showing a non-collinear spin spiral ground state arises from the fact
that there is no global quantization axis available anymore (see Fig. 3.21). A common approach
for analytic approaches in such a case is to express the Hamiltonian in a locally rotated coordinate
system which allows eventually again to work with one global quantization axis. As proposed in
Ref. [140], we rotate the local coordinate system Σi of each spin Si into a new one Σ

′

i parallel to
the z-axis. The spins in the unrotated system Σi can be expressed in the rotated coordinates via






Six

Siy

Siz




 =






cos(QRi)S
′
ix + sin(QRi)S

′
iz

S′
iy

− sin(QRi)S
′
ix + cos(QRi)S

′
iz




 , (3.28)

where S
′

ik is the k-component of the spin S
′

i at lattice site i in the rotated system and Ri is the
lattice vector. We remark that such a general solution naturally includes the ferromagnetic solution
Q = (0, 0, 0) which we already applied in Sec. 3.2.1. The Heisenberg Hamiltonian (2.83) in this
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Figure 3.21: Sketch of non-collinear spin spiral state.

(locally rotated) coordinates reads as [140]

H′ = −
∑

ij

(
KijS

′
ixS′

jx + LijS
′
iyS

′
jy + MijS

′
izS

′
jz

)
+ 2

∑

ij

NijS
′
ixS′

jz, (3.29)

with anisotropic exchange constants

Kij = Mij = Jij cos [Q(Ri − Rj)] , (3.30)

Nij = Jij sin [Q(Ri − Rj)] , (3.31)

Lij = Jij . (3.32)

Analogously to the case of the ferromagnet, the free energy Fmag we are interested in can be obtained
by deriving the internal energy U and integrating it afterwards, see Eq. (2.82).

The key idea is exactly the same as for the ferromagnet, i.e., to rescale a S = 1/2 RPA solution.
For the sake of clarity we will discuss the main results for the non-collinear RPA solution. The
intermediate steps are discussed in the appendix in detail. We proceed in a similar way as in
Sec. 3.2.1:

In the first step we derive a rescaling factor γ which allows to rescale the RPA internal energy
solution for S = 1/2 into a general spin solution. For this purpose we consider first the expression
for the critical temperature TN of a non-collinear magnet for S = 1/2 as well as S ≥ 1/2 and obtain
(see Sec. A.3.1 for a detailed derivation):

S ≥ 1/2 kBTN =
4

3
S(S + 1)

(
∑

q

[
1

K − Kq

+
1

K − Jq

])−1

, (3.33)

S = 1/2 kBTN = 2S

(
∑

q

[
1

K − Kq

+
1

K − Jq

])−1

. (3.34)

Comparing the solutions of TN , the rescaling factor γ for the normalized exchange coefficients J̃ is
deduced as

S(S + 1)J ≡ J̃ ⇒ SJ =: γJ̃, (3.35)
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with γ = 1/(S + 1) = 2/3 for S = 1/2. We want to point out that the known expression for the
critical temperature above in terms of commonly employed effective exchange coefficients J̃ ,

kBTRPA
Néel =

4

3

(
∑

q

[

1

K̃ − K̃q

+
1

K̃ − J̃q

])−1

, (3.36)

has already been derived and successfully applied to europium [140, 141] and is consistent with
the conventional solution Eq. (2.101) of the ferromagnet (Q = (0, 0, 0), i.e., K̃q ≡ J̃q), which we
employed to investigate the pressure dependence of TC(p) in the bcc phase in Sec. 3.1. The major
task for the next step is to derive a S = 1/2 expression for the internal energy and replace all SJ

by γJ̃ .

To compute the magnetic entropy, we need in the second step an expression for the RPA internal
energy for S = 1/2 within the rotated coordinate system (3.29), which could be afterwards combined
with Eq. (3.35). We want to stress that such a theory is not available in the literature. In principle
our derivation is similar to the one for the ferromagnet, but involves a more lengthy derivation due
to the rotated coordinate system. For the sake of readability we present here the final results only
and provide the full derivation in the appendix A.3.2. For the internal energy U we obtain

URPA(T ) = U0 +
M

2
m(T )

∑

q

(
A+

q + A−
q + B+

q + B−
q

)
, (3.37)

where A±
q and B±

q are given by

A±
q = χq±

±ωq + 2γ(K̃ − J̃q)

exp(±βωq − 1)
, (3.38)

B±
q = ±2γm(T )(±ωq − 2γJ̃q)(K̃ − J̃q)

4Eq exp(±βωq − 1)
, (3.39)

and with anisotropic exchange coefficients

K̃q = 1/2(J̃Q+q + J̃Q−q). (3.40)

Here, the reduced magnetization is given by

m
S=1/2
RPA (T ) =

1

1 + 2ϕ
, (3.41)

with the effective magnon occupation

ϕ(T ) =
1

N

∑

q

(
χq+

eβωq − 1
+

χq−

e−βωq − 1

)

. (3.42)

The effective magnon excitation energies are given by

ωq = 2γm
S=1/2
RPA

√
(

K̃ − K̃q

)(

K̃ − J̃q

)

(3.43)
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and

χq± =
1

2

(

1 ± aq

ωq

)

(3.44)

represent the weights for magnon creation (“+”) and annihilation (“-”) respectively with

aq = 2γm(T )(K̃ − 1/2(K̃q + J̃q)). (3.45)

Eqs. (3.37)-(3.45) form a closed system of equations which can be solved self-consistently. It rep-
resents the generalization of the theory proposed in Sec. 3.2.1 and is equivalent to the latter for
Q = (0, 0, 0) (ferromagnetic ground state).

For comparison we also employ a known MF theory for non-collinear spin systems, where the
internal energy is given as [31]

UMF(T ) = M0〈S′
z〉2 =

S

S + 1
M̃0m

2
MF(T ) =

S

S + 1
J̃Qm2

MF(T ). (3.46)

The reduced magnetization mMF(T ) can be determined in full analogy to (2.87), resulting in a
Brillouin function which is characterized by the MF critical temperature

kBT ′MF
Néel =

2

3
J̃Q. (3.47)

The Néel Temperature of Fcc Iron

Before discussing the different entropy contributions (vibronic, electronic, and magnetic) we consider
first the Néel temperature by employing the derived expressions within MF and RPA, Eq. (3.47) and
(3.36). Similar to fm bcc Fe, we employ the effective exchange coefficients J̃ obtained at the ground-
state volume. As discussed above, there are many, nearly degenerate, energetically metastable
magnetic phases. We consider, therefore, in the following two representative structures, i.e., the
afm and the afmd case and perform the spin spiral calculations at the corresponding ground-state
volumes, which are V afm

0 = 10.61 Å3 and V afmd
0 = 11.19 Å3. Within MF, TMF

Néel is only determined by
the lowest spin spiral energy, Eq. (3.47), and we obtain TMF,afm

Néel = 183 K and TMF,afmd
Néel = 235 K. We

recall that an experimental measurement of TNéel for pure bulk fcc iron is not possible because it is
not stable at low temperatures. Fcc iron is often stabilized by alloying it with manganese (Mn). For
this reason, we compare in Fig. 3.22 the MF results with the phenomenological calphad prediction
as well as experimental data for fcc Fe-Mn alloys and different Mn-concentrations. Consistent with
our findings for ferromagnetic (fm) bcc iron, the MF approximation provides an upper limit for
TNéel being slightly above the calphad estimation.

The RPA approximation provided a very reasonable estimation of TC for the ferromagnetic
systems. Employing (3.36), we obtain TRPA

Néel = 141 K/199 K for the exchange coefficients extracted
at the ground-state volumes of the afm and afmd phase, respectively. Due to the weaker J̃ij in fcc
iron compared to the bcc phase, both approximations (MF/RPA) provide very similar predictions.
The much lower critical temperature in the austenite compared to the ferrite is a direct consequence
of the much flatter spin spiral dispersion in Fig. 3.20. The results for TRPA

Néel are smaller than
the corresponding MF values and also closer to the calphad prediction, see Fig. 3.22. Apart
from the analytic methods, the classical Monte Carlo approach provided for bcc iron also a very
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Figure 3.22: Computed Néel temperature in fcc iron in comparison with experimental data [142]
for different Mn-concentrations. The empirical calphad estimation [142] is shown for comparison.

reasonable estimation of the critical temperature. As a crosscheck, cMC calculations were also
carried out for fcc20 based on the computed exchange coefficients in real space (obtained by a
Fourier transformation). The critical temperatures we obtain are, as in the bcc case, similar to the
ones obtained using the analytic RPA approach. Explicitly, we obtain T cMC

Néel = 122 K/159 K for the
afm/afmd phase. To estimate the theoretical uncertainty on the TNéel prediction we average over
the three approximations and the two magnetic structures and obtain

T γ,theo
Néel ≈ 173 ± 41 K, (3.48)

where 41 K denotes the standard deviation.

The Helmholtz Free Energy of Fcc Iron

After achieving a reliable description of the magnetic phase transition temperature we pass over
to the Helmholtz free energy, Eq. (3.4). For this purpose we identify first the afmd tetragonal
distorted fct structure as the energetically lowest collinear magnetic phase from the the total energy
calculations in Fig. 3.19. To estimate the uncertainty due to the chosen magnetic ground-state
configuration, we performed (similarly to the determination of the critical temperature) each of the
steps for the afm phase as a crosscheck as well.

To derive the vibronic contribution to the total free energy within the quasiharmonic approx-
imation (Sec. 2.2.4), phonon calculations were carried out at different volumes for both magnetic
phases (afm/afmd). Since there are different atom types in the unit cell (spin-up and spin-down),
optical branches appear in addition to the acoustic ones.21 We show in Fig. 3.23 the phonon density

20The cMC calculations involve 4 × 106 steps including thermalization and thermal averaging. The calculations
are performed for a system containing N = 1728 spins and taking into account up to 25 interaction shells.

21For the afm structure, a small part of the phonons were imaginary (less than 3%), ruling out the direct use of the
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Figure 3.23: Phonon DOS of fcc iron deduced from the antiferromagnetic single- (red shaded areas)
as well as double-layer phase (blue shaded area). The DOS of the fm bcc phase is shown for
comparison. The vertical dotted line corresponds to the thermal energy at room temperature
(300 K kB ≈ 25 meV).

of states (DOS) deduced from the fcc afm and afmd phases (inset) as well as the integrated phonon
DOS. We directly observe that the DOS of the afm phase are shifted to lower energies compared
to the afmd phase indicating a higher vibronic contribution. In order to quantify the impact of
the chosen magnetic phase (afm or afmd) on the vibronic free energy contribution, we compare in
Fig. 3.24 the results of the qh approximation with calphad data. Within the qh approximation
the impact of the chosen magnetic phase (solid and dashed green line) is in the order of 10 meV.
This indicates the robustness of the approach with respect to the chosen magnetic ground-state
configuration. Regarding the absolute agreement strong deviations (∼ 150 meV at 1800 K) between
the vibrational analysis and the empirical calphad data are found. Based on our previous inves-
tigations for bcc Fe, a considerable amount of entropy stems from the electronic degree of freedom
which has to be taken into account for free energy considerations.

After calculating the electronic contribution, we also compare the free energy of both (phonon
+ electronic) contributions in Fig. 3.24 with the calphad data. It is worth mentioning that with
respect to the starting configuration (afm or afmd) the difference of the total free energy between
the two considered phases is less than 30 meV at 1800 K which corresponds to a relative deviation
of less than 3%. However, in contrast to the bcc phase, the missing magnetic contribution to the
total free energy compared to the calphad data is already visible at relatively low temperatures.
This is consistent with the computed Néel temperature, Eq. (3.48), being in the order of the room
temperature.

To compute the magnetic contribution to the free energy we apply the derived expressions for the

qh approximation (negative argument of logarithm in Eq. (2.116)), and indicating that the afm structure is unstable
for certain distortions. Since only a small part of the computed phonon frequencies are affected, we apply a common
first order approximation and ignore such phonon modes for the evaluation of the vibronic free energy.
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Figure 3.24: Free energy of fcc iron vs. calphad data for different treatments of the magnetic
contribution. Inset: The calphad data is taken as the reference at each temperature.

MF and RPA, Eqs. (3.47) and (3.36), and employ in addition the developed rMC ansatz (Sec. 3.2.2)
based on the cMC data (which has been employed to derive T cMC

Néel ). For the latter, the spin quantum
numbers derived from the ground-state moments M fcc,afm

0 = 1.39µB and M fcc,afmd
0 = 1.67µB are

used for the rescaling function f(S, t) provided in Eq. (3.25). The computed total free energies
including the magnetic contributions are also shown in Fig. 3.24. For both considered phases the free
energy significantly improves with respect to the experimental data. It is interesting to note that,
in contrast to bcc iron, even the MF approximation allows an excellent estimation of the magnetic
entropy contribution. This is related to the much lower critical temperature of fcc compared to bcc
iron and the fact, that MF reproduces the high temperature limit of fully disordered spins.

We can conclude that the developed methodologies allow a promising (even quantitative) pre-
diction of the full Helmholtz free energy of γ-iron. Starting the analysis from two representatives
(afm and afmd phase), the total computed free energies provide a confidence interval for the true
experimental energy with an energy window of about ∼ 20 meV per atom. Starting from other
(magnetic) phases (e.g. paramagnetic phase) should therefore not change the obtained results cru-
cially. We proceed in the next section with the discussion of the relative difference between the bcc
and the fcc phase and the discussion about the different impact of vibronic, magnetic, and electronic
contributions on the phase stability of these phases, respectively.

3.3.2 Impact of Vibronic, Electronic, and Magnetic Contributions on the Struc-

tural Phase Transition in Iron

In thermodynamic equilibrium the phase transitions between bcc and fcc correspond to a double
crossing of the underlying Helmholtz free energies of Fe, i.e., of the bcc phase, Fbcc(T ), and the fcc
phase, Ffcc(T ). Defining the free energy difference ∆F tot = Fbcc − Ffcc, a positive value ∆F tot > 0

corresponds to a stabilization of the fcc phase whereas a negative value ∆F tot < 0 indicates a stable
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bcc structure. We show in Figs. 3.18 the free energy difference ∆F tot obtained by the calphad

method [119]. It provides very important information for our further analysis: the observed differ-
ence clearly shows that the theoretical accuracy needed to reproduce the experimental findings is
in the order of ∼ 1 meV for temperatures up to 2000 K.

Regarding the thermodynamic methods to capture the magnetic entropy contributions we have
developed so far, a numerical accuracy of ∼ 1 meV is indeed feasible (accompanied with extremely
accurate and expensive calculations though). With the term "numerical accuracy" we specifically
denote all errors which can be controlled ensuring sufficiently high convergence parameters, for
instance for the DFT calculations the chosen k -point grid, cutoff energy or supercell, or for the
Monte Carlo simulations the total number of measurement steps, number of included interaction
shells and chosen supercell. All these parameters can be chosen such that the required convergence
criterion (∼ 1 meV) is fulfilled.

We denote the remaining source of uncertainty as methodological errors which can not be de-
creased by choosing "better" convergence parameters. Regarding the treatment of the magnetic
entropy, this includes the error due to the simplification of the magnetic system (mapping onto an
effective Heisenberg Hamiltonian) as well as the necessary approximations to solve the model (rMC,
MF or RPA). In addition, on the DFT level, the potential error due to the approximative treatment
of the xc-functional. For bcc and fcc iron we found empirically that the methodological errors are
at the considered high temperatures in the order of ∼ 10 − 20 meV. Regarding the DFT input,
similar methodological limits are found for the quasiharmonic and electronic entropy considerations
(see e.g. [5, 80]). We, therefore, do not aim at a quantitative agreement with the calphad data in
the following but rather concentrate on balance and impact of the different entropy contributions
which is still a open question in the literature.

Different authors [120, 122, 143] suggested that the vibronic contribution of the fcc phase has
an important impact on the stabilization of the fcc phase and hence on the bcc-fcc transition (at
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Figure 3.26: Left side: Impact of magnetism on the stabilization of the bcc and fcc phase of iron for
different treatments of the magnetic contribution. Right side: Magnetic entropy obtained within
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1200 K). On the other hand, as mentioned above, from purely geometric arguments, the atoms in
the more open bcc structure should have more space to vibrate and hence it should be easier to
excite phonons. However, as shown in Fig. 3.23, the bcc phonon DOS is in fact altogether higher
in energy than the DOS of the fcc phase. This finding is consistent with recent fixed spin moment
phonon calculations for bcc iron [124]. It is shown that the magnetic moment of bcc iron has an
considerable impact on the phonon spectra. As a consequence, the computed phonon modes for bcc
iron decrease in energy with decreasing moment [124]. Since the bcc phase has a higher magnetic
moment than the fcc phase, one can conclude that the smaller vibronic contribution to the total
free energy of the bcc phase can be attributed to its larger magnetic moments.

In order to elucidate its quantitative impact on the phase transition, we show in Fig. 3.25 the
difference of the vibronic contribution ∆F vib = F bcc

vib −F fcc
vib. For both considered magnetic phases of

the fcc structure, the vibronic contribution is indeed larger than for the bcc phase, i.e., it stabilize the
fcc phase. This is consistent with the obtained phonon densities shown in Fig. 3.23 and strengthens
again the fact that a geometric argumentation is not sufficient in case of magnetic systems. The
impact of the electronic contribution on the phase transition is similar as found for the vibronic one,
stabilizing the fcc phase with increasing temperature (also shown in Fig. 3.25). Considering the
impact of both contributions on the phase stability leads us to a very important conclusion: Vibronic
and electronic contributions definitely drive the transition bcc→fcc, but neither the vibronic nor
the electronic contribution can explain the observed second transition (fcc → bcc). This clearly
shows the importance of magnetic contributions which have to be taken into account.

To clarify their role, we show in Fig. 3.26 the difference of the magnetic contribution of the bcc
and fcc phase, ∆Fmag = F bcc

mag − F fcc
mag. All theoretical treatments show qualitatively the same be-

havior, i.e., both transitions could be explained on qualitative level solely by taking into account the
magnetic contributions, which is in agreement with the results of Ref. [8]. The qualitative behavior
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can be understood as follows: In general, the magnetic entropy of both phases increases rapidly
when approaching the critical temperature (maximum entropy for full disorder). However, since
the critical temperature of the fcc phase is much lower than that of the bcc phase (TNéel ≪ TCurie),
the contribution of the fcc phase dominates the difference up to ≈ TC . At these high temperatures
the fcc phase already reached its maximum entropy while in the bcc phase a substantial amount of
magnetic entropy is still conserved in the magnetic order (shown in Fig. 3.26 for the MF result).
At very high temperatures, however, the bcc phase finally overcomes the magnetic contribution
of the fcc phase due to the higher magnetic moment, i.e., higher maximum entropy. Therefore,
the magnetic contributions tend to stabilize the fcc phase at low temperatures (due to the lower
critical temperature) and hence support (in combination with the vibronic contribution) the first
phase transition (bcc→fcc). For higher temperatures the stronger local magnetic moments of the bcc
phase are responsible for the, in the end, higher magnetic contribution as well as the weaker vibronic
contribution of the bcc phase, both being responsible for the second phase transition (fcc→bcc).
We note that the quantitative impact of these effects differs for the different theoretical approaches
(MF, RPA and rMC), since the latter provide slightly different magnetic entropy contributions.

We finally compare in Fig. 3.27 the absolute free energy differences with the calphad data.
Since errors in the theoretical prediction accumulate with increasing temperature, the spread be-
tween different methods increases at high temperatures. Overall, the theoretical calculations are
in fair agreement with experiment and correctly describe the first transition from the bcc to the
fcc phase (apart from the fcc RPA afm result). However, regarding the second transition, a final
conclusion whether the transition back to the bcc phase takes place or not, is - solely based on the
theoretical predictions - not possible. In fact, the error bar provided by the different methods allows
either a transition back to the bcc phase as well as a stabilization of the fcc phase within an energy
window consistent with the methodological accuracy limits of the employed schemes.
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Conclusion

The scatter between the results of the different theoretical treatments for the magnetic entropy
contribution of fcc Fe is much smaller compared to bcc Fe. The reason is that the critical temperature
and effective spin moment of iron in the fcc lattice is much lower than in the bcc lattice. As a
consequence, a mean field treatment already provided a reasonable description of the magnetic free
energy of the austenite above room temperature.

Regarding the impact of magnetism on the structural transitions, the two most important factors
are (again) the effective spin quantum number (determining the high temperature entropy limit)
as well as the critical temperature. Both quantities were sufficient to understand qualitatively the
phase transitions in iron.
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3.4 Nearest-Neighbor Approach: Application to Fe, Co, and Ni

In the beginning of Chapter 3 we discussed two possibilities for solving the Heisenberg model for
realistic systems namely (a) approximative solutions for a full (long-ranged) Hamiltonian and (b)
an exact solution of an effective (simplified) one. In the previous sections we developed and applied
different approaches for (a). In doing so we learned that, apart from the crystal structure and the
spin quantum number, also the critical temperature critically affects many aspects of the underlying
magnetic model Hamiltonian. In addition, we observed a universal behavior of the thermodynamic
properties of the Heisenberg model in Sec. 3.2.2, if the critical temperature is kept fixed. In the
following we employ this insight to propose an appropriate ansatz (b), which is more convenient
than solving the full Hamiltonian and provides a similar accuracy. For this purpose we introduce an
auxiliary, effective nearest-neighbor Hamiltonian. The model is characterized by a nearest-neighbor
exchange parameter J , as well as the crystal structure and spin S of the system, and can be
solved numerically exact by QMC. The previously discussed negative sign problem does not apply
here, since magnetic frustration does not occur for a nearest-neighbor ferromagnet. The effective
J parameter is constructed such that it contains the long-ranged interactions22 Jij in a mean field
manner. Our previous investigations in Sec. 3.2.2 have revealed that the critical temperature TC is
the decisive quantity in this context and it needs to be ensured that it does not alter during the
mapping. Such an approach has the big advantage of decoupling the evaluation of TC (for which
the approximative methods such as RPA and the cMC work very well) from the computation of the
other thermodynamic properties, see Fig. 3.28.

If the critical temperatures are provided, such an approach is computational much less expensive
(due to the reduction to just one J-parameter) compared to a full cMC simulation (including
long-ranged exchange parameters). To test the transferability of the approach we include in the
following all 3d ferromagnets, namely Fe, Co, and Ni. Finally, the computed magnetic contribution is
combined with ab initio derived vibronic, and electronic contributions to access the full free energy
and heat capacities. To account for the full free energy we employ the adiabatic approximation
and separate the electronic, vibronic and magnetic contributions as in the previous sections. As
for bcc iron, electronic and vibronic contributions have been determined using the quasiharmonic
approximation and finite temperature DFT respectively, as in [6, 16, 58]. All QMC calculations
are done employing the direct-loop algorithm in the stochastic series expansion as implemented in
the ALPS code [72]. Monte Carlo calculations involve 2.5× 106 steps including thermalization and
statistical averaging.

The theoretical ground-state magnetic moments23 M0 are used to define the spin quantum
number S̃ = M0/(gµB) where g ≈ 2 denotes the Landé factor, see Eq. (3.7). We note that in
systems containing itinerant electrons the value of M0 and hence of S̃ is not restricted to those of
the (ideally localized) quantum spin model (S = 1/2, 1, 3/2, · · · ), i.e., S̃ could be any real number
S̃ ∈ ℜ. In practice we compute the exact solutions for both neighboring spin numbers of a given S̃,

22Since by construction the exchange interactions are reduced using a single parameter (i.e. TC), the extension
to multi-magnetic alloys (systems containing different magnetic species in the unit cell and hence several effective
parameters) is not straightforward.

23The computed ground-state moments are: 2.21 µB (Fe), 1.64 µB (Co), and 0.63 µB (Ni).
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Figure 3.28: Sketch of the effective nearest-neighbor approach. The DFT data is used as input
for the full Hamiltonian which is solved approximately to obtain TC . Alternatively, the critical
temperature can be taken from experiment. The effective nearest-neighbor exchange parameter J
is chosen as such that it reproduces the provided TC . Based on this, the effective Hamiltonian is
solved exactly providing the thermodynamic properties.

S1 ≤ S̃ ≤ S2 (S2−S1 = 1/2). The physical quantities f̃(T, S̃) (e.g. heat capacity or magnetization)
are computed employing a linear interpolation afterwards, i.e.,

f̃(T, S̃) = αf(T, S2) + (1 − α)f(T, S1), (3.49)

with α = 2(S̃ − S1). In practice we performed calculations for S = 1 and S = 3/2 for bcc Fe, and
for S = 1/2 and S = 1 for fcc Co and fcc Ni. For the latter a linear extrapolation instead of an
interpolation is used in order to estimate the solution for S̃ = 0.3.

Apart from S̃ the remaining input parameters for Eq. (2.83) are the crystal structure and the
critical temperature TC . As explained above, the latter is used to determine the effective nearest-
neighbor exchange coupling J . TC could be taken either from a theoretical estimation [15, 48] or
from experiment. Here, the experimental24 TC is chosen (T exp

C → J). In practice, we first perform
the model calculations for an arbitrary J start parameter. The results of the specific heat capacity
CP are subsequently fitted to the given TC by the position of the peak in CP .

We start the discussion by investigating CP . Its computed temperature dependence is shown in
Fig. 3.29 in comparison with experimental data obtained under ambient pressure. We first focus on

24We use the experimental values: 1044 K (Fe), 1388 K (Co), and 631 K (Ni).
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Figure 3.29: The specific heat capacity CP (T ) vs. temperature in comparison with experimental
data [107, 144–146]. The magnetic contribution is computed in a QMC calculation for N = 5832
spins.

the sum of the vibronic and electronic contributions (orange line). The fact that this sum reproduces
the experimental heat capacities very well up to ≈ 300 K nicely indicates that the systems are still
close to the magnetic saturation in this temperature regime. However, above room temperature the
importance of the magnetic contribution is clearly visible for all three magnets in agreement with
our previous findings for bcc iron. Please note that the first peak in the case of Co at ≈ 700 K
occurs due to the hcp-fcc transition, which is not accounted for in the present approach (since both
phases are very similar [147] and the fcc phase is the dominant one at TC , we only consider fcc Co
here). It is worth mentioning that the electronic contribution increases from Fe to Co and is highest
for Ni. This is inherently related to the smallest band splitting in case of Ni (∼ 0.2 − 0.3 eV),
which is in the order of the thermal energy at the considered temperatures. In this case, electrons
of both 3d sub-bands (spin-up and spin-down) can be thermally activated and contribute to the
total electronic entropy.

Within the QMC calculations the magnetic contribution to the heat capacity is directly com-
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Fe, the results obtained by the rMC approach are shown.

puted employing the fluctuation-dissipation theorem. All three ferromagnets are well described,
both below and above TC (see Fig. 3.29). Compared to Fe and Co, the magnetic contribution to CP

is smallest in the case of Ni due to the smallest spin quantum number (S̃ ≈ 0.3), see Fig. 3.29. The
most significant deviations from experiment are observed close to the critical temperature and are
most pronounced for bcc Fe. Increasing the system size in the QMC calculations yields a more pro-
nounced peak in CP (see inset in Fig. 3.29) but has only marginal influence on the overall shape.25

We note that from the numerical point of view it is challenging to estimate the maximum peak via
a finite size scaling ansatz (see e.g. Refs. [148–151]).26 At the same time the experimental scatter
is strongest around TC due to the rapid change in CP around the critical point [144].

25The impact of the system size N on the free energy turns out to be negligible (i.e. well below 1 meV) for the
considered N and temperatures T .

26There is a long-standing debate whether the heat capacity of the 3D Heisenberg model shows a finite cusp or
diverges. This is inherently connected to the critical exponent α for which different signs (cusp/divergent) have been
found. [148–151] However, even if the heat capacity shows a finite cusp, finite-size scaling approaches are very difficult
in practice [148].
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Figure 3.31: The reduced magnetization m(t) = M(t)/M0 vs. the reduced temperature t = T/TC

for Fe, Co, and Ni in comparison with experimental data [152]. The numerical calculations are
carried out for three different system sizes (N = 512, 1728, 5832).

We now turn to the discussion of the Helmholtz free energy Eq. (3.4). The results are shown in
Fig. 3.30 in comparison with calphad data. In order to compare the calphad with the ab initio

derived values we align them at 200 K as before. Similarly to the behavior of the heat capacity, the
electronic contribution to the total free energy increases from Fe to Co and reaches its maximum
for Ni (≈ 70 meV at 1800 K) due to the smallest band splitting in Ni as discussed above. The
remaining differences to the calphad free energy (lower orange line in insets of Fig. 3.30) clearly
reveal the necessity to account for the magnetic contribution Fmag.

The quantitative impact of Fmag on F is reversed compared to the electronic contribution F el

(see Fig. 3.30). The strongest magnetic contribution is obtained in the case of bcc Fe (≈ 100 meV
at 1800 K) due to the highest spin quantum number (S̃ ≈ 1.1). Although Co has a larger spin
quantum number than Ni, the magnetic contributions in these systems is comparable. The reason
for this is that the lower TC renders the Ni spin system close to the fully disordered state at the high
temperatures considered here, whereas in Co a noticeable amount of magnetic free energy remains in
the magnetic short-range order. Comparing the total free energies (including all contributions) with
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the calphad values we observe a very good agreement for all three ferromagnets. The strongest
deviations are observed for bcc Fe (≈ 30 meV at 1800 K) due to the poor description of CP

around TC (see Fig. 3.29) whereas a nearly perfect quantitative agreement is obtained for Co and
Ni (≈ 10 meV at 1800 K).

In Sec. 3.2.1 it has been shown that even sophisticated approaches like the RPA which give a
very good qualitative description of CP and F , can fail to accurately describe the magnetization
shape. We made similar observations for classical MC approaches [58]. It is therefore remarkable
that our effective model, which reduces the long-ranged magnetic interactions responsible for the
magnetization to nearest-neighbor interactions only, also performs very well for m(t). The results
are shown in Fig. 3.31 for different system sizes (N = 512, 1728, 5832) in comparison with exper-
imental data. The overall shape is in very good agreement for all three ferromagnets. For low
temperatures the exact solution of the quantum Heisenberg model ensures that the Bloch T 3/2-law
for M(T ) is fulfilled in agreement with experiment. For T → TC finite size effects are responsible
for the remaining tail in M(T ) in the numerical results whereas the second order phase transition
(spontaneous symmetry breaking) is obtained in the thermodynamic limit of N → ∞ only. Increas-
ing the system size N reveals a steeper decrease of M(T → TC) (similar to the more pronounced
peak in CP in Fig. 3.29) but has only marginal effect on the overall shape.

The fact that classical MC fails to accurately describe the magnetization shape indicates that
finite temperature magnetization is substantially affected by spin quantization effects. By perform-
ing classical MC calculations using a nearest-neighbor Hamiltonian, which reproduces the same TC ,
we have a unique opportunity to quantify the quantum effects. As can be seen in Fig. 3.31, the
magnetic contributions (light blue regions) are substantial even at high temperature (i.e. close to
TC) where quantum effects are often assumed to be negligible.

Conclusion

The approach provides a straightforward mapping procedure that transforms the full magnetic
Hamilton operator of realistic systems (with long-ranged and oscillating interactions) onto an ef-
fective Hamiltonian with nearest-neighbor effective interactions only. It allows to decouple the
estimation of TC - for which approximative methods (e.g., RPA or cMC) work very well - from
the determination of other thermodynamic properties. Particular important, the scheme provides a
high degree of transferability and performs equally well for Fe, Co, and Ni. This indicates that not
only the magnetization shape follows in a wide temperature window an universal behavior [111],
but also other thermodynamic properties such as, e.g., the specific heat capacity.

Whereas the considered systems are experimentally well studied, the proposed approach can also
be employed to study more complex magnetic systems for which experimental data is missing. In
the next section we apply our approach to such a system, i.e., cementite [153, 154], an industrially
important ferromagnetic Fe-C alloy.
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3.5 Impact of Magnetism on the Phase Stability of Cementite

In the previous section we employed a nearest-neighbor Heisenberg model to compute the mag-
netic entropy. In combination with the quasiharmonic approximation (vibronic entropy) and finite-
temperature DFT (electronic entropy), this approach provided accurate predictions of thermody-
namic data for (simple) ferromagnetic systems. In addition, the transferability of the method was
shown (all 3d ferromagnets were well described). The approach becomes therewith an ideal candi-
date to study even more complex ferromagnetic systems. In the following we employ this method
to gain a deeper insight into the phase diagram of Fe-C by investigating cementite (Fe3C).

Fe3C is one of the key structures which appears in the Fe-C phase diagram, being the predom-
inant carbide in carbon steels [155]. Among others, it allows to control the mechanical properties
of steels by mixing the hard and brittle cementite phase with the soft and ductile phase of α − Fe

(ferrite). Fe3C has also attracted significant attention in geophysics due to a recent suggestion
that it can be contained in the Earth core [156, 157]. An experimental evaluation of the cementite
properties is, however, non-trivial since at ambient pressure it is a metastable phase up to ∼1000 K
[158], and experimental samples are typically contaminated with ferrite and bulk carbon phases
[159]. This leads to a sizable scatter of the measured data between different experimental studies
when considering thermodynamic properties of cementite, such as the thermal volume expansion,
the heat capacity, and the heat of formation. Consequently, an unambiguous parametrization of
thermodynamic databases within calphad concept becomes cumbersome. In this situation, sup-
plementing experimental datasets, which cannot be easily characterized with existing experimental
setups, with results of the first-principles calculations becomes particularly important. So far, how-
ever, published first-principles studies are focused on the T=0 K properties only [160–164], and do
not take temperature effects into account.

We employ in the following the nearest-neighbor approach to study the thermodynamic prop-
erties of cementite. Afterwards we compare our results with a recent thermodynamic assessment
of Fe3C, with an emphasize on the accurate description of the free energy. In addition we discuss
the thermodynamic stability of cementite versus the spinodal decomposition into bulk carbon and
iron phases by calculating the T -dependent heat of formation of Fe3C with a particular focus on
the magnetic contribution.

3.5.1 Thermodynamic Properties of Fe3C

To compute the free energy F we apply the adiabatic approximation as we did to compute the
thermodynamic properties of bcc and fcc Fe, Co, and Ni. The convergence parameters are chosen
such that they ensure a convergence of the final contributions to F to less than 1 meV per atom.27

In contrast to experimental data for quantities such as the heat capacity, the critical temperature
of Fe3C is experimentally well known [165]. These preconditions for Fe3C allow us to employ the
nearest-neighbor approach, i.e., it is not necessary to calculate the exchange coefficients for the
real system. However, this requires additional approximations for the considered system: Since the

27The convergence of the calculated vibrational contribution is ensured by using a supercell consisting of 2x2x2
Fe3C unit cells (128 atoms), a plane-wave energy cutoff Ecut = 400 eV, ∼ 13000 k-points per atom in homogeneous
Monkhorst-Pack sampling of the Brillouin zone. For the electronic contribution the k-point mesh with ∼ 40000
k-points per atom was used.
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Figure 3.32: Dependence of the simulated Fe3C magnetization on temperature as compared to the
experimental data from Ref. [159]. The experimental data are acquired at a magnetic field of 5 kOe
for a mixture of Fe3C nanoparticles of size 40±10 nm with residual carbon and about 2 wt% α-Fe.

approach is developed for systems containing single magnetic species only, we neglect the magnetic
contribution of C atoms. This is justified since their local magnetic moments are much smaller
(≤ 0.01µB) compared to that of Fe species (≈ 2µB). The effective nearest-neighbor Heisenberg
model contains therefore Fe-type atoms only. Further, we assume that the Fe atoms are magnetically
indistinguishable (carry the same spin).28

To employ the nearest-neighbor approach three parameters are needed: the positions of the
effective spins, the effective nearest-neighbor exchange parameter J , and the effective spin quantum
number. The cell geometry and the atomic positions are taken from the DFT calculations and
a model containing a 6x6x6 supercell (3456 atoms) is build up. The effective nearest-neighbor
exchange parameter J is determined by ensuring the correct experimental value of T exp

C = 483 K
[165]. From the DFT calculations the equilibrium local magnetic moments of Fe atoms are computed
as M0

Fe ≈ 1.9 µB providing an effective spin S̃ ≈ 0.95 of the Fe3C system. According to (3.49) the
QMC simulations are performed using the spin quantum number S = 1 and S = 0.5 and an
interpolation afterwards.

The theoretical temperature dependence of the magnetization in comparison with the corre-
sponding experimental data is shown in Fig. 3.32. Please note the different scales on the right and
left axis. A quantitative comparison of the theoretical and the experimental data is hindered by
the presence of a mixture of Fe3C and carbon in the experiments. Figure 3.32 shows, however, that
qualitatively the magnetization in Fe3C is well reproduced consistent with the results for the pure
ferromagnets Fe, Co, and Ni (see also Fig. 3.31).

28Strictly speaking, there are two types of Fe-atoms in the unit cell which differ in the local magnetic moment by
less than 0.1µB .
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In Fig. 3.33 the calculated specific heat capacity, the corresponding available experimental data
and the results of different empirical assessments are presented. The theoretical heat capacity is
further split into the vibronic, electronic and magnetic contributions.29 As for the other studied
systems (Fe, Co, Ni), we find that the dominating contribution originates from the vibronic ex-
citations showing a typical Debye behavior at low temperatures (∼ T 3) and a linear increase at
high temperatures. We also observe a significant contribution due to electronic excitations which
is due to the high density of electronic states close to the Fermi level in Fe3C [160]. The magnetic
contribution of the heat capacity is largest at TC due to the break down of the long-range magnetic
order. Below 200 K (close to ferromagnetic saturation) as well as high temperatures (paramagnetic
state), it smoothly vanishes to zero. We can conclude that for temperatures larger than ≈ 1000 K,
the electronic and vibronic contributions are responsible for the linear increase in the theoretical
CP .

Comparing our results with the available measurements of the heat capacity at constant pressure
(Fig. 3.33) below the Curie temperature we find that our predicted theoretical curve falls within
the scatter interval between different measurements30. Above TC , our curve is located practically
on-top of the measurements of Naeser [166], and reproduces the presence of a local minimum at
T ∼ 600 K and the increase at higher temperatures. These results are also consistent with the
empirical calphad assessments by Chipmann [158] and Darken et al. [167]. There is a strong
deviation between the above described behavior and the recent measurements by Umemoto and
coworkers where CP steeply increases with the temperature above TC [165]. The latest empirical
assessment of CP by Hallstedt et al. [153], where the heat capacity above 600 K is assumed to be
constant and which is on-top of the experiments by Seltz et al. [168] below the Curie temperature,
is within the 10 J mol−1K−1 from first-principles results up to T=1500 K.

In Fig. 3.34 we compare the calculated free energy FFe3C(T ) with the calphad data of Hallst-
edt et al. [153].31 Due to the different description of CP for the computed data and the empirical
assessment (Fig. 3.33), both datasets slightly and linearly deviate above ≈ 200 K. Considering the
magnetic free energy of Fe3C, substantial differences in the balance exist compared to our results
of pure bcc Fe. In the considered temperature window (up to 1500 K) the magnetic contribution
in pure iron is weaker than the one of Fe3C. Although both systems exhibit a similar maximum
magnetic entropy Smax

mag (due to the similar magnetic moments), Smax
mag in Fe3C is reached at lower

temperatures due to the significantly lower TC when compared to that of bcc iron. In general we
obtain an excellent agreement of the theoretical and the experimental free energies with deviations
below 15 meV/atom up to T=1500 K.

29Data for vibronic and electronic contributions for Fe3C and diamond are taken from Alexey Dick.
30The large discrepancy at T > TC of the measured heat capacity in Ref. [165] is unclear and is likely to do with

the quality of the samples and/or their preparation procedure.
31We note, that due to the large scatter in the experimental data that underlies the Hallstedt et al. assessment,

these results which we use as benchmark are subject to an uncertainty that should be reduced in the future by
improved experimental setups.



92 3.5 Impact of Magnetism on the Phase Stability of Cementite

0 500 1000 1500
Temperature (K)

0

50

100

150
H

ea
t C

ap
ac

ity
 (

J 
m

ol-1
 K

-1
)

vib+el+mag
vib+el
vib
Chipmann 1972
Hallstedt 2010
Darken 1951
Gustafson 1985
Seltz 1940
Naeser 1934
Mazur 1969
Andes 1936
Umemoto 2001

T
C

Figure 3.33: Calculated heat capacity of cementite in comparison with available experimental data
(open black symbols) and thermodynamic assessments (filled green symbols). The different the-
oretical contributions are indicated by shaded areas (vibronic grey, electronic orange, magnetic
blue).
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Figure 3.34: Calculated free energy for Fe3C in comparison with the available thermodynamic
assessment from Ref. [153]. The first-principles (blue line) and the calphad curves (open black
squares) are aligned at T = 200 K. The calculated electronic and magnetic contributions to the free
energy are indicated by shaded orange and blue areas correspondingly. Inset: Difference between
ab initio and calphad result.
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Figure 3.35: Calculated free energy of formation of cementite from α-Fe and diamond as a function
of temperature. For comparison the calphad assessment as given in [153] is shown. For an easier
comparison of the temperature dependence, the present theoretical curves aligned to the empirical
value at T = 0 K are also shown. The calculated electronic and magnetic contributions to the free
energy are shown as shaded orange and blue areas correspondingly.

3.5.2 Phase stability of Fe3C

In order to analyze the stability of Fe3C versus bulk iron and carbon phases, and to compare it
with available calphad assessments, we consider the free energy of formation of Fe3C:

∆FFe3C
f (T ) = FFe3C(T ) − (3FFe(T ) + FC(T )) . (3.50)

Here, FFe(T ) is the free energy of bcc Fe taken from Sec. 3.4. FC(T ) in the above equation de-
notes the free energy of bulk carbon. Typically, in experimental and empirical models only the
thermodynamically stable phase of graphite is considered [153]. It is well known, however, that
conventional exchange-correlation functionals used in DFT calculations fail to accurately describe
the weak correlation forces of van de Waals type present in graphite. Therefore, instead of graphite
only the diamond phase is considered here. The results obtained using graphite as reference reveal,
however, qualitatively the same findings. For a detailed discussion we refer to [154].

Employing (3.50) we analyze now the phase stability for Fe3C. A positive formation energy
indicates that Fe3C is thermodynamically unstable versus spinodal decomposition into bulk Fe and
C phases. The resulting calculated heat of formation ∆FFe3C

f (T ) is shown in Fig. 3.35. At T = 0 K
the predicted energy of formation is significantly lower (by ≈ 250 meV per formula unit) than
the empirical assessment. The calculations predict Fe3C to be thermodynamically stable at all
temperatures.32

In order to separate the accuracy of describing ground-state properties from the finite tempera-
ture effects, we align the theoretical ∆Hf with the empirical curves at T=0 K. The aligned curves

32In [154] it is shown that the results are not improved by taking all-electron methods into account. The failure
can be traced back to the used xc-functional which performs particular bad for the cohesive energies of Fe and Fe3C.
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are also shown in Fig. 3.35. We separate the magnetic and electronic contributions in order to
illustrate their impact on the stable-unstable transition temperature ∆TFe3C.

Considering the aligned ∆Hf and taking only vibronic contributions into account, we observe
a stabilization of Fe3C at about 1300 K which is significantly larger than the empirical predicted
∆T emp

Fe3C = 860 K. The electronic excitations are almost vanishing for ∆Hf and have practically
no influence on ∆TFe3C. This is due to the almost compensating contributions for α-Fe and Fe3C,
whereas the diamond phase has a negligible electronic contribution.33 In contrast to the electronic
excitations, a strong impact of the magnetic entropy contribution can be expected, since the critical
temperatures of α-Fe and Fe3C strongly differ. Adding the magnetic excitations to the vibronic
and electronic heat of formation leads to a significant decrease of the transition T by more than
∼ 350 K and we obtain ultimately a theoretical predicted temperature ∆T theo

Fe3C = 950 K at which
the cementite becomes thermodynamically stable over the α-Fe and bulk carbon.

Conclusion

Using our developed combined ab initio approach employing the nearest-neighbor ansatz (Sec. 3.4)
it is possible to calculate the thermodynamic properties of Fe3C with a high degree of accuracy.
The quantitative deviations from the available experimental measurements are found to be smaller
than 0.1% and 10 mol−1K−1 for temperatures up to 1500 K for the atomic volume and the heat
capacity, respectively. Noteworthy, that the magnitude of these deviations is comparable with the
one between different experimental data themselves. Comparing the results for the free energy
with the recent empirical assessment shows that up to T=1500 K these energies differ by less than
10 meV/atom over the whole considered temperature range.

To investigate the impact of magnetic contributions on the thermodynamic stability of Fe3C

against decomposition into bulk Fe and C phases the free energy of formation is calculated. Align-
ing the heat of formation at T=0 K to the corresponding experimental value we show that the
thermal excitations are accurately described within the present theory, providing a prediction of
the transition temperature ∆TFe3C only ∼100 K above the corresponding empirical value. Such an
agreement is remarkable when taking into account the uncertainty which persists in the empirical
assessment.

The calculations further indicate that the largest deviation from the empirical assessment occur
for the zero-temperature heat of formation (in the order of 200 meV per formula unit). On the
other hand the T -dependence of the theoretical heat of formation is described with a high degree
of accuracy. A similar result was found in Ref. [80] by investigating a large set of non-magnetic
materials employing similar methods for vibronic and electronic excitations. It shows that the
accuracy of the existing exchange-correlation functionals for prediction of the heat of formation
at T=0 K should be improved in the first place. For complex ferromagnetic systems, when the
temperature-dependent properties and trends are of importance, the existing approach can already
be used as complementary (or substituting) method to existing empirical and experimental schemes.
An incorporation into the calphad approach is planned.34

33Since diamond is an insulator, the electronic entropy contribution is much smaller than for α-Fe and Fe3C.
34Private discussions with Dr. B. Hallstedt, RWTH Aachen.



Chapter 4

Summary and Outlook

In the present work a major challenge in computationally guided materials design has been addressed
and to a large part solved: the ab initio prediction of finite-temperature properties of magnetic

materials. The accurate description of the magnetic contribution makes an interplay of various
theoretical treatments mandatory. For this purpose, a careful and profound analysis of different
solution techniques of the Heisenberg model has been performed. The developed methods have been
evaluated for a well studied magnetic material, namely bcc iron, but have been also extended to
more complex magnetic materials like cementite. The presented techniques build up a firm basis to
compute the magnetic entropy contribution from first principles and to address present questions
in materials design.

For iron-based materials, the Heisenberg model has proven to yield a numerically efficient yet
sufficiently accurate description of magnetic excitations. It provides an elegant way to couple ground
state ab initio calculations, which are used to determine the exchange integrals, with concepts of
many-body theory to describe the full temperature dependence of excited magnetic states and
to predict critical temperatures (Sec. 3.1). Beyond efficiency, the big advantage of the analytic
solutions is that they allow to decouple the different physical mechanisms contributing to the Curie
temperature TC . Utilizing this, we revealed that the dependence of TC on pressure results from
an interplay between two competing pressure-dependent mechanisms: the increase of the magnetic

coupling between the localized magnetic moments and the simultaneous decrease of their magnitude
under the increase of the external pressure. While the first mechanism tends to increase the Curie
temperature, the second mechanism acts against it. In the particular case of bcc iron they nearly
completely compensate each other. It is expected that such a nearly perfect compensation for
bcc iron is not an universal feature of all ferromagnetic materials, but is, likely, an exception.
Nevertheless, the proposed picture of two competing magnetic mechanisms can be used for an
intuitive interpretation of the physical reasoning underlying different behaviors of the pressure-
dependent Curie temperature in other ferromagnetic materials.

In order to use the combination of DFT and the Heisenberg model for realistic materials, a
number of analytical and numerical approaches have been implemented and carefully checked with
respect to numerical efficiency and predictive power. In this context, the specific heat capacity
Cp has been identified as a critical quantity, which provides also a close link to experiments and
in addition to empirical calphad simulations. An analytical approach to the free energy of the
Heisenberg spin system (Sec. 3.2.1), which is based on the random phase approximation (RPA), in

95



96

combination with vibronic (quasiharmonic approximation) and electronic (finite temperature DFT)
contributions, has allowed us to obtain a remarkably accurate description of Cp below the critical
temperature. For a proper description of the region above the critical temperature, however, short
range correlations are critical and needed to be taken into account. Therefore, various Monte Carlo
(MC) schemes have been explored. Classical MC calculations that neglect quantum effects, yield
significant short comings below the critical temperature (Sec. 3.2.2). This implies an important
(and surprising) conclusion: Quantum effects are important even at temperatures up to TC , which
is for bcc iron already about 1000 K!

Therefore, a rescaling scheme has been derived from an extensive set of quantum and classical
Heisenberg model systems, which provides the accuracy of quantum MC calculations, yet keeping
the full flexibility of the classical MC approach. The proposed analytic rescaling function fulfills
exact high-temperature and high-spin limits and transforms at low temperatures into an analytic
mean field solution. Employing the rescaling function significantly improves the deficiencies of the
original classical MC data at low temperatures even for realistic systems such as bcc iron. Due
to its straightforward applicability, it could be used whenever classical MC calculations are carried
out and allows a good estimation of the expected quantum effects. In contrast to the analytic RPA
as well as the classical MC results, the rescaled MC approach has proven to allow a complete and
consistently good description of the magnetic entropy at temperatures below as well as above TC .

Applying the methods to antiferromagnetic fcc iron, classical MC calculations and the analytic
RPA method have provided similar predictions for the Néel temperature. Combining the derived
magnetic entropy contribution with electronic and vibronic excitations, a free energy of fcc iron
is obtained similar to the results provided by the calphad approach. Due to the possibility of
deriving free energies of single phases (here, bcc and fcc iron), the investigation of phase transitions
has become feasible. The impact of different entropy contributions on the phase transitions of iron
has been analyzed. It was thus possible to settle down a long standing debate regarding the impact
of vibronic contributions. They are (together with electronic contributions) equally important for
the stabilization of the fcc crystal phase as magnetic contributions. Based on the magnetic entropy
contributions, an intuitive explanation of the phase transitions could be provided: on the one
hand, the austenite is stabilized at intermediate temperatures due to the lower critical temperature
compared to ferrite. At high temperatures, on the other hand, the backward transition from the
austenite to the paramagnetic δ-iron is driven by the larger magnetic entropy of bcc iron due to the
larger spin moment compared to the fcc phase.

Analyzing the classical and quantum results for various model systems of the previous compar-
ison in more detail (Sec. 3.2.2), a universal behavior of the thermodynamic properties with respect
to the kind of the interaction (long- vs. short-ranged, ferro- vs. antiferromagnetic) and the lattice
structure has been discovered for the Heisenberg model. This universality has motivated the defi-
nition of an effective nearest-neighbor Heisenberg model with just one interaction parameter. The
latter is, e.g., related to TC , which can be either determined by ab initio calculations (Sec. 3.1) or
taken from experiment. Treating this effective model with quantum MC has provided for bcc Fe
an excellent agreement with experimental Cp data and free energies (Sec. 3.4). The application of
the same approach to the 3d ferromagnets cobalt and nickel has demonstrated its excellent trans-
ferability to other magnetic systems containing a single magnetic species. Therefore, the developed
methodology has been applied to more complex systems, such as, e.g., cementite (Fe3C), which is
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a highly relevant phase for steel design (Sec. 3.5). Due to a large scatter in the experimental Cp(T )

an unambiguous thermodynamic assessment (e.g., calphad) of this system is challenging. As it
has been demonstrated in Sec. 3.5, the method has not only provided a clear prediction of Cp(T )

particularly in the high temperature regime, it also has provided a hitherto not achieved insight
into the impact of magnetic contributions to the phase stability of Fe3C.

In conclusion, the set of ab initio based methodologies developed in this work has allowed a
reliable and parameter-free prediction of the magnetic contribution to the free energy of materials, a
systematic separation from other physically relevant contributions to the thermodynamic properties,
and can be applied to a wide range of materials.

The developed methods in this study open up a huge number of potential investigations which
can now be tackled. Still, several aspects of the developed methodologies can be improved or
extended. In order to give a flavor of the possible next steps we summarize in the following the
most important issues:

Multi-magnetic species systems:

In order to treat systems containing more than one kind of magnetic atom (such as FeMn-compounds),
the developed theories have to be extended. Concerning the analytic approaches, a corresponding
theory for obtaining TC based on the RPA scheme already exists [169]. To extend the developed
theory to describe thermodynamic properties such as free energy and heat capacity, principally
a similar approach as in Sec. 3.2.1 could be used. Such an extension should be straightforward,
although likely requiring a considerably longer analytic derivation.

Regarding the rescaled Monte Carlo approach, the model calculations should be extended to the
case of multi-spin lattices in the first place. After a detailed model comparison between the classical
and quantum results, a modified rescaling ansatz may be derived. In order to apply the nearest-
neighbor approach to a multi-magnetic-species system, most likely an additional effective exchange
coefficient is needed. This could be problematic regarding that the mapping of the long-ranged onto
the effective nn-model is currently done by just one conserving parameter i.e. TC . As a first order
approximation one could assume that the exchange between different kind of magnetic atoms as
well as the different spin moments can be described by one effective (averaged) exchange parameter
and one effective spin quantum number, respectively. Under this assumption, both methods can be
straightforwardly applied without further methodological extensions, and are equally well suited to
treat such systems.

Noteworthy, that regarding the DFT input, the computation of exchange-parameters for multi-
component-systems is already well established [169].

Inclusion of longitudinal spin fluctuations:

The impact of longitudinal spin fluctuations, i.e., the change of the magnitude of the local magnetic
moments, is not clarified. One should distinguish between the explicit and implicit temperature
dependence of the local moments and exchange coefficients. The first one is determined by explicit
temperature dependent excitation processes such as, e.g., single-spinflip processes of electrons or
flip processes of electrons between different bands. Their inclusion into the proposed Heisenberg
model ansatz is conceptually difficult and requires most likely band-model based theories (Hubbard
model) [39, 170] and an additional mapping onto effective exchange coefficients. The extension
to multi-magnetic material systems is expected to be rather difficult. A straightforward first step
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could be, to employ the already developed methods using different electronic temperatures (Fermi
smearing) within the DFT formalism.1

The implicit dependence of the local moments and effective exchange coefficients, i.e., their
change due to volume expansion or magnetic disorder, can be simulated by DFT calculations di-
rectly. Different methodologies are nowadays available (e.g., the so-called disordered local moment
method [171]) to simulate the paramagnetic state at T = 0 K. Based on these calculations, effective
and implicitly temperature dependent (via the coupling of the local moment to the magnetic state)
exchange coefficients can be computed. A recent incorporation of the latter into the classical Heisen-
berg model reveals promising results for Fe and Ni [48]. The inclusion of these implicit LSF could
be straightforwardly done in the rescaled MC approach (via the spin-dependent rescaling function).
Based on the findings in [48], it is expected that incorporating the LSF into the methodologies
might be potentially important for systems showing small band splitting like Ni, but should not
have significant impact on results of strong-moment systems such as Fe.

Coupling terms:

In the present study, the different types of excitations are treated in an adiabatic approximation.
In addition, the electronic and vibronic contributions were performed for the magnetic ground-state
configuration, e.g., for the ferromagnetic state of bcc Fe. This implicitly ignores the dependence of
vibronic excitations on the magnetic state.

To account for this coupling (phonons in different magnetic states etc.), a very promising route
was very recently proposed by Shang and Liu [172]. They propose to perform total energy and
phonon calculations for a number of different magnetic states and to average afterwards following
a Boltzmann statistic. Physically, this corresponds to the situation that the system at a given tem-
perature is determined by the occupation of different (magnetic) micro states. Naturally, coupling
terms between electronic-magnetic and vibronic-magnetic contributions are in such an approach
implicitly included. Whereas the recent approach ignores the explicit magnetic contributions [172],
a complete approach can be immediately employed using our developed methods.

Impurity dependent trends of the critical temperature:

Since TC is taking an important role in the developed methods, it would be interesting to investigate
how it is affected by different impurities such as, e.g., carbon. This would thus provide the next
step towards a complete theoretical prediction of the Fe-C phase diagram. For the study of the
thermodynamic properties of cementite for example, the ab initio determination of TC , which here
has been taken from experiment, is a natural next step to achieve a fully first-principles Fe3C

prediction. This itself would be already an important issue since very little is known about the
dependence of TC of Fe3C on different impurities, particularly, considering the fact that the different
critical temperatures of ferrite and cementite play a crucial role for the stabilization of Fe3C. Since
the underlying methods have been developed, such a study could be immediately started.

1This could only simulate the different occupations within the spin bands. However, such an ansatz can not
account for temperature induced electronic intra- or inter-band flips.
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Pressure-temperature phase diagrams:

Although an absolute quantitative agreement be-

0 2 4 6 8 10 12 14 16 18
Pressure (GPa)

0

400

800

1200

1600

2000

2400

2800

T
em

pe
ra

tu
re

 (
K

)

α-iron

γ-iron

δ

ε-iron

tween theory and experiment for total free ener-
gies of pure Fe is not achieved, an investigation
of physical trends is possible such as, e.g., the
dependence of different physical mechanisms on
pressure. Regarding the rather complex depen-
dencies for the stability of different Fe crystal
phases on pressure, a simple mean-field ansatz
could in principle already provide important in-
sights. Employing MF, the required ingredients
for the different crystal phases λ are the critical
temperatures T λ

C(V ) as well as the local magnetic
moments Mλ(V ) (both may depend on volume).
Assuming as a first order approximation T λ

C(V ) ≈ T λ
C , the MF free energy Fmag

MF (T, V, λ), Sec. 3.2.1,
can be straightforwardly employed and combined with the ground state energies Eλ(V ). Preliminary
results are already available and shown in the figure above. The dashed line indicates the theoretical
ferrite to austenite transition temperatures. Further development in this direction is planned, in
particular to elucidate the impact of the different contributions with respect to pressure.
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Appendix A

Appendix

A.1 Mean Field Approximation for Ferromagnets

The employed mean field (MF) theory is derived as, e.g., found in Ref. [56].

A.1.1 The Mean Field Hamiltonian

The mean field approximation is realized by the following treatment for operator products AB

AB = A〈B〉 + 〈A〉B − 〈A〉〈B〉 + (A − 〈A〉)(B − 〈B〉) (A.1)

→ A〈B〉 + 〈A〉B − 〈A〉〈B〉. (A.2)

Within MF, fluctuations of A and B are neglected, i.e.

(A − 〈A〉)(B − 〈B〉) → 0. (A.3)

Thus, the Heisenberg Hamiltonian transforms into

H = −
∑

ij

JijSiSj (A.4)

= −
∑

ij

Jij(S
+
i S−

j + Sz
i Sz

j ) (A.5)

MF−→ −
∑

ij

Jij(〈Sz
i 〉Sz

j + Sz
i 〈Sz

j 〉) +
∑

ij

Jij〈Sz
i 〉〈Sz

j 〉. (A.6)

Due to spin conservation at each lattice site, 〈S+
i 〉 = 〈S−

i 〉 ≡ 0, collective spin-wave excitations
(correlations) are supressed

〈S+
i S−

j 〉 MF−→ 0. (A.7)

Assuming homogeneous magnetization,

〈Sz
i 〉 ≡ 〈Sz〉, (A.8)
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the Hamiltonian reads as

HMF := J0〈Sz〉2(T ) − BEX(T )
∑

i

Sz
i , (A.9)

with an effective (mean field) exchange field,

BEX(T ) := 2J0〈Sz〉(T ), (A.10)

which is proportional to the magnetization 〈Sz〉.

A.1.2 The Mean Field Magnetization

Within mean field, the partition sum Z separates into one-spin partition sums z1, i.e.

Z = Tre−βH = zN
1 C, (A.11)

with

z1 =

+S∑

Sz
i
=−S

eβBEX(T )Sz
i (A.12)

and the constant

C =
+S∑

Sz
i =−S

e−βJ0〈Sz〉2(T ) = (2S + 1)e−βJ0〈Sz〉2(T ), (A.13)

which cancels when calculating observables (see derivation below).
The procedure is equivalent to Weiss theory of ferromagnetism (see e.g. [56]),

〈Sz
i 〉/S =

TrSz′
i e−βHMF

STre−βHMF (A.14)

=

∑+S
−S Sz′

i e−β(J0〈Sz〉2(T )−BEX(T )
P

i Sz′

i )

S
∑+S

−S e−β(J0〈Sz〉2(T )−BEX(T )
P

i Sz′

i )
(A.15)

=

∑+S
−S Sz′

i eβBEX(T )
P

i Sz′

i

S
∑+S

−S eβBEX(T )
P

i Sz′

i

(A.16)

= BS(
2S2J0

kBT

〈Sz〉
S

), (A.17)

where the Brillouin function BS(x) is given by

BS(x) :=
2S + 1

2S
coth(

2S + 1

2S
x) − 1

2S
coth(

x

2S
). (A.18)

A.1.3 Mean Field Solution of f(t, S) for Low Temperatures

Within mean field, the internal energy is proportional to the squared magnetization,

UMF(t, S) ∼ mMF(t, S)2, (A.19)
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where the latter is given by

mMF(t, S) ∼ BS

(
3S

S + 1

m(t, S)

t

)

, (A.20)

including the Brillouin function

BS(x) =
2S + 1

2S
coth

(
2S + 1

2S
x

)

− 1

2S
coth

(
1

2S
x

)

. (A.21)

For S → ∞, above function transforms into the Langevin function

BS→∞(x) = L(x) = coth(x) − 1

x
. (A.22)

For low temperature, i.e. x ≫ 1, one obtains

BS(x ≫ 1) = 1 − exp (−x/S)

S
(A.23)

L(x ≫ 1) = 1 − 1/x. (A.24)

Combining Eqs. (A.19)-(A.24), one obtains straightforwardly the low temperature expansion for the
heat capacity,

CMF(t, S) = −3

2
kB

S

S + 1

dm2(t, S)

dt
, (A.25)

as

CMF(t → 0, S) ≈ kB

(
2tMF

S /t

exp(tMF
S /t)

)2

(A.26)

CMF(t → 0, S → ∞) ≈ kB

2

(

1 +
1

√

1 − 4/3t

)

, (A.27)

with the spin-dependent variable
1/tMF

S ≡ 2/3(S + 1). (A.28)

Therewith, the ratio of the quantum and classical (S → ∞) heat capacity in the low temperature
limit t → 0,

lim
t→0

fMF(t, S) = lim
t→0

CMF(t, S)/CMF(t, S → ∞), (A.29)

can be readily computed and we obtain

fMF(t → 0, S) =

(
2tMF

S /t

exp(tMF
S /t)

)2

. (A.30)
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A.2 Random Phase Approximation for Ferromagnets

The magnetization is derived as in Ref. [61] employing the random phase approximation (RPA) and
using a parametrized Green’s function.

We start with the following identity:

〈S−
i S+

i 〉 = ~
2S(S + 1) + ~〈Sz

i 〉 − 〈(Sz
i )2〉. (A.31)

The operator product (Sz
i )2 on the right site of the equation above requires a Green’s function which

provides the relation between the expectation values of the power set of (Sz
i )n. For this purpose,

we employ a parametrized Green’s function and follow a procedure proposed by Callen [61].
To determine the magnetization we introduce the following retarded Green’s function:

G
(a)
ij = 〈〈S+

i ;B
−(a)
j 〉〉 = 〈〈S+

i ; eaSz
j S−

j 〉〉. (A.32)

Thus, we obtain for the equation of motion

EG
(a)
ij (E) = ~〈[S+

i ;B
−(a)
j ]−〉 + 〈〈[S+

i ,H]−;B
−(a)
j 〉〉E . (A.33)

For the solution we need the inhomogeneity

〈[S+
i ;B

−(a)
j ]−〉 = 〈

[
S+

i , eaSz
i S−

i

]

−
〉δij = η(a)δij , (A.34)

as well as the commutator [S+
i ,H]−. Employing the RPA yields

1

~

1

N

∑

i

eiqRi [S+
i ,H]− =

[
S+

q ,H
]

−

RPA−→ 2 (J0 − Jq) 〈Sz〉 =: Eq. (A.35)

With Eqs. (A.34) and (A.35) we can write down the equation of motion

1

~
G

(a)
q =

η(a)

E − Eq

. (A.36)

The spectral density, S
(a)
q = − 1

πℑG
(a)+−
q , can be written as a delta-function:

S
(a)
q = ~η(a)δ(E − Eq). (A.37)

Using the spectral theorem and Eq. (A.37) we can determine the expectation value

p(q, a) =
1

N

∑

ij

eiq(Ri−Rj)〈eaSz
j S−

j S+
i 〉 (A.38)

=
η(a)

eβE(q) − 1
. (A.39)
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We sum over all wave vectors q and end up with:

p(a) =
1

N

∑

q

p(q, a) = 〈eaSz

S−S+〉 =: η(a)ϕ, (A.40)

where we define the effective Magnon occupation number

ϕ =
1

N

∑

q

1

eβE(q) − 1
. (A.41)

We obtain the desired Eigenvalue 〈Sz〉 using a differential equation

Ω(a) = 〈eaSz〉 (A.42)

〈Sz〉 =
d

da
Ω(a)

∣
∣
∣
∣
a=0

. (A.43)

To derive the relation between p(a), η(a) and a we use the identity (proof by induction)

[
S+

i , (Sz
i )n]

−
= ((Sz

i − ~)n − (Sz
i )n) S+

i (A.44)

which yields

[
S+

i , eaSz
i

]

−
=

∑

n

1

n!
an
[
S+

i , (Sz
i )n
]

−
(A.45)

=
∑

n

1

n!
an ((Sz

i − ~)n − (Sz
i )n) S+

i (A.46)

=
(

e−a~ − 1
)

eaSz
i S+

i . (A.47)

We can now write down η(a)

η(a) = 〈
[
S+

i , eaSz
i S−

i

]

−
〉 (A.48)

= 〈eaSz
i

[
S+

i , S−
i

]

−
+
[
S+

i , eaSz
i

]

−
S−

i 〉 (A.49)

= 2~〈eaSz
i Sz

i 〉 +
(

e−a~ − 1
)

〈eaSz
i S+

i S−
i 〉. (A.50)

Using the identity
~Sz

i = ~
2S(S + 1) − (Sz

i )2 − S−
i S+

i (A.51)
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it follows

η(a) =
(

e−a~ − 1
)

〈eaSz
i 〉~2S(S + 1) +

+ 〈eaSz
i Sz

i 〉
(

2~ + ~e−a~ − ~

)

−

−
(

e−a~ − 1
)

〈eaSz
i (Sz

i )2〉 (A.52)

= ~
2S(S + 1)

(

e−a~ − 1
)

Ω(a) + (A.53)

+ ~

(

e−a~ + 1
) d

da
Ω(a) −

(

e−a~ − 1
) d2

da2
Ω(a). (A.54)

With (A.51) its possible to write (A.40) as a function of Ω(a):

p(a) = 〈eaSz

S−S+〉 (A.55)

= ~
2S(S + 1)Ω(a) − ~

d

da
Ω(a) − d2

da2
Ω(a) = η(a)ϕ (A.56)

Using (A.54) we can set up a differential equation for Ω(a) :

[

−
(

e−a~ − 1
)

ϕ + 1
] d2

da2
Ω(a) +

[

~

(

e−a~ + 1
)

ϕ + ~

] d

da
Ω(a)+

+
[

~
2S(S + 1)

(

e−a~ − 1
)

ϕ − ~
2S(S + 1)

]

Ω(a) = 0 (A.57)

⇒ d2

da2
Ω(a) − ~

(
e−a~ + 1

)
ϕ + 1

(e−a~ − 1) ϕ − 1
− ~

2S(S + 1)Ω(a) = 0. (A.58)

The solution of this differential equation of second order requires two limiting conditions. One
follows directly from the definition (A.42)

Ω(0) = 1. (A.59)

With Sz = −~S, . . . , ~S we obtain the second condition

+S∏

ms=−S

(Sz − ~mS) = 0 ⇒
+S∏

ms=−S

(
d

da
− ~mS

)

Ω(a)

∣
∣
∣
∣
a=0

= 0. (A.60)

Having the limiting conditions (A.59) and (A.60) we finally derive the solution (see e.g. [56]):

Ω(a) =
ϕ2S+1e−a~S − (1 + ϕ)2S+1e~(S+1)a

(ϕ2S+1 − (1 + ϕ)2S+1)((1 + ϕ)e~a − ϕ)
. (A.61)

We now obtain the desired expectation value 〈Sz〉

〈Sz〉 =
d

da
Ω(a)

∣
∣
∣
∣
a=0

=
(1 + ϕ)2S+1(S − ϕ) + ϕ2S+1(S + 1 + ϕ)

(1 + ϕ)2S+1 − ϕ2S+1
, (A.62)
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with
ϕ =

1

N

∑

q

1

eβE(q) − 1
. (A.63)

A.3 Random Phase Approximation for Noncollinear Magnets

A.3.1 Magnetization and Néel temperature

In analogy to the ferromagnetic case we set up the equation of motion for the Green’s function
G+−

ij , but now in the locally rotated coordinate system Σ′. Therefore, the following commutators
have to be solved for the higher order Green’s functions:

[
S+′

m ,H′
]

−
= −~

∑

j

{Kjm(Sz′
mSx′

j + Sx′
j Sz′

m) + iLjm(Sz′
mSy′

j + Sy′
j Sz′

m)

− Mjm(S+′
m Sz′

j + Sz′
j S+′

m ) − 2
∑

j

Njm(−Sx′
j S+′

m + Sz′
mSz′

j )}. (A.64)

Applying the random phase approximation (RPA)

[
S+′

m ,H′
]

−

RPA−→ −2~〈Sz〉
∑

j

{

KjmSx′
j + iLjmSy′

j − MjmS+′
m

}

(A.65)

= −~〈Sz〉
∑

j

{

Kjm(S+′
j + S−′

j ) + Ljm(S+′
j − S−′

j ) − 2MjmS+′
m

}

. (A.66)

Analogously one obtains:

[
S−′

m ,H′
]

−

RPA−→ −~〈Sz〉
∑

j

{

−Kjm(S+′
j + S−′

j ) + Ljm(S+′
j − S−′

j ) + 2MjmS−′
m

}

. (A.67)

Equation of Motion: Writing down the equation of motion for Green’s functions G+−
ij and

G−+
ij , and employing a Fourier transformation, e.g. 1

N

∑

i e
iqRiSi+′ = S+′

q , one ends up with the
following coupled system of equations:

1

~

(

G+−
q G−−

q

G++
q G−+

q

)

=

(

2〈Sz′〉 0

0 −2〈Sz′〉

)
(

EI − Ω
)−1

, (A.68)

where the excitation energies of the system are determined by the eigenvalues of the matrix

Ω(q) = 〈Sz′〉
(

2M − Kq − Lq Kq − Lq

−(Kq − Lq) −(2M − Kq − Lq)

)

=

(

A B

−B −A

)

, (A.69)

and explicitly given by

Eq± = ±2~〈Sz′〉
√

(M − Kq) (M − Lq) ≡ E±. (A.70)
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Here, the exchange coefficients are given by

Kq = Mq =
1

2
(Jq+Q + Jq−Q) (A.71)

and
Lq = Jq. (A.72)

Magnetization and critical temperature:

The magnon excitation energies and corresponding weights directly determine the effective magnon
occupation number ϕ [56], given by

ϕ(T ) =
1

N

∑

q

χq+

eβEq+ − 1
+

χq−

eβEq− − 1
, (A.73)

where the first term describes magnon creation and the second magnon annihilation, respectively.
The weights χq+ are determined by the eigenvectors of (A.69) and given by

χq± =
1

2

(

1 ± a

b

)

, (A.74)

with

a := M − 1/2Kq − 1/2Lq (A.75)

b :=
√

(M − Kq)(M − Lq). (A.76)

Eq. (A.73) can be rewritten as

ϕ(T ) =
1

2

1

N

∑

q

(a

b
coth [1/2βEq] − 1

)

, (A.77)

which turns out to be faster and more efficient for numerical evaluation. The magnetization for the
general spin system (S ≥ 1/2) is given by

〈Sz′〉 =
(1 + ϕ)2S+1(S − ϕ) + ϕ2S+1(S + 1 + ϕ)

(1 + ϕ)2S+1 − ϕ2S+1
, (A.78)

with ϕ as defined in (A.73).
For S = 1/2 above equation simplifies to

〈Sz′〉 =
S

1 + 2ϕ
. (A.79)
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Critical temperature:
For T → Tcrit, the magnetization vanishes and ϕ → ∞. Hence we can expand the right-hand site
of Eq. (A.78) in terms of O(ϕ−n) and obtain:

〈Sz〉 =
1

3
S(S + 1)ϕ−1 + O(ϕ−2) (A.80)

〈Sz〉→0−→ 1

3
S(S + 1)

(
∑

q

1

β4〈Sz〉

[
1

M − Kq

+
1

M − Lq

])−1

(A.81)

⇒ kBTcrit =
4

3
S(S + 1)

(
∑

q

[
1

M − Kq

+
1

M − Lq

])−1

(A.82)

=
4

3

(
∑

q

[

1

M̃ − K̃q

+
1

M̃ − L̃q

])−1

, (A.83)

which corresponds to the Néel temperature TN employed in Ref. [140, 141]. In the last step we have
absorbed the factor S(S + 1) into the exchange constants.

A.3.2 Internal energy

To derive the internal energy we use, similar as for the ferromagnetic case, exact S = 1/2 relations.
In the first step we rewrite the Hamiltonian (2.70) in terms of correlation functions, which we access
by the Green’s function matrix Eq. (A.68).
From Eq. (A.68) we obtain:

1

~

(

G+−
q G−−

q

G++
q G−+

q

)(

E − A −B

+B E + A

)

=

(

2〈Sz′〉 0

0 −2〈Sz′〉

)

(A.84)

Yielding:

G+−
q =

E + A

E2 − (A2 − B2)
2〈Sz〉 =

E + A

(E − E+)(E + E+)
2〈Sz〉 (A.85)

= 2〈Sz〉
(

1/2[1 + A/E+]

E − E+
+

1/2[1 − A/E+]

E + E+

)

(A.86)

From the matrix solution (e.g. first row times second column) we obtain:

G+−
q B = (E + A)G−−

q (A.87)

and with (A.85):

G−−
q = 2〈Sz〉 B

2E+

(

− 1

E − E+
+

1

E + E+

)

(A.88)

and

G++
q = −2〈Sz〉 B

2E+

(

− 1

E − E+
+

1

E + E+

)

. (A.89)



110 A.3 Random Phase Approximation for Noncollinear Magnets

The internal energy

In order to rewrite the internal energy in terms of the correlation functions 〈Si±Sj±〉, we replace all
operators Sik (k = x, y, z) in the Hamiltonian Eq. (3.29),

H′ = −
∑

ij

(
KijS

′
ixS′

jx + LijS
′
iyS

′
jy + MijS

′
izS

′
jz

)
+ 2

∑

ij

NijS
′
ixS′

jz, (A.90)

by creation and annihilation operators:

H = −
∑

ij

{1/4(Kij − Jij)S
+′
i S+′

j + 1/4(Kij − Jij)S
−′
i S−′

j + 1/2(Kij + Jij)S
+′
i S−′

j +

+ KijS
z′
i Sz′

j − NijS
+′
i Sz′

j − NijS
−′
i Sz′

j }. (A.91)

Please be aware of the definitions of the N,K, J , i.e.

Jij = Jji Kij = cos(φi − φj)Jij = Kji Nij = sin(φi − φj)Jij = −Nji. (A.92)

For S = 1/2, the longitudinal correlation function can be expressed in terms of the transversal
correlation function:

S−′
i

[
S+′

i ,H
]

−
= −

∑

m

{1/2(Kim − Jim)S−′
m S−′

i + 1/2(Kim + Jim)S+′
m S−′

i −

2KimSz′
m(S − Sz′

i ) + NmiS
+′
m (S − Sz′

i ) + NmiS
−′
m (S − Sz′

i ) − NimSz′
mS−′

i } (A.93)

and

−
∑

im

Kim〈Sz′
mSz′

i 〉 =
1

2

∑

i

〈S−′
i

[
S+′

i ,H
]

−
〉 +

∑

im

{1/4(Kim − Jim)〈S−′
m S−′

i 〉+

+ 1/4(Kim + Jim)〈S+′
m S−′

i 〉 − Kim〈Sz′
m〉S − 1/2Nmi〈S+′

m Sz′
i 〉 − Nmi〈S−′

m Sz′
i 〉}. (A.94)

Inserting above relation into U = 〈H〉, only the term 1/2
∑

im Nmi〈S+′
m Sz′

i 〉 remains unknown. We
derive the missing correlation function using

S+′
i

[
S+′

i ,H
]

−
= −

∑

m

{−1/2(Kim − Jim)S−′
m S+′

i − 1/2(Kim + Jim)S+′
m S+′

i + NimSz′
mS+′

i }. (A.95)

and obtain (please be aware of Nij = −Nji)

1/2
∑

im

Nmi〈S+′
m Sz′

i 〉 = −1/2
∑

i

〈S+′
i

[
S+′

i ,H
]

−
〉+

∑

im

{1/4(Kim − Jim)〈S−′
m S+′

i 〉 + 1/4(Kim + Jim)〈S+′
m S+′

i 〉}. (A.96)
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Now we are able to express the internal energy purely in terms of the correlation functions 〈S±′S±′〉
and 〈S±′S∓′〉:

U = 〈H〉 =
∑

ij

−1/4(Kij − Jij)〈S+′
i S+′

j 〉 − 1/4(Kij − Jij)〈S−′
i S−′

j 〉 −

− 1/2(Kij + Jij)〈S+′
i S−′

j 〉 − Kij〈Sz′
i Sz′

j 〉 + Nij〈S+′
i Sz′

j 〉 + Nij〈S−′
i Sz′

j 〉
(A.94)
︷︸︸︷
=

1

2

∑

i

〈S−′
i

[
S+′

i ,H
]

−
〉 +

∑

ij

{−1/4(Kij + Jij)〈S+′
j S−′

i 〉 − Kij〈Sz′
j 〉S +

+
∑

ij

−1/4(Kij − Jij)〈S+′
i S+′

j 〉 + 1/2Nij〈S+′
i Sz′

j 〉

(A.96)
︷︸︸︷
=

1

2

∑

i

〈S−′
i

[
S+′

i ,H
]

−
〉 +

∑

ij

{−1/4(Kij + Jij)〈S+′
j S−′

i 〉 − Kij〈Sz′
j 〉S +
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With 〈Sz′
i 〉 = 〈S − S−′

i S+′
i 〉, and using S = 1/2, we finally end up with:
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i 〉, (A.97)

where the ground-state energy E0 is defined as

E0 = −K0S
2. (A.98)

To compute terms such as 1
2

∑

i〈S−′
i

[
S+′

i ,H
]

−
〉, we employ that for the non time-dependent Hamil-

ton operator H the derivative S+′
i (t) can be written as:

i
∂

∂t
S+′

i (t) =
[
S+′

i ,H
]

−
(t). (A.99)
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Using above, the first term on the right-hand site of Eq. (A.97) can be reformulated as (see e.g.
Ref. [28]):

1

2

∑

i

〈S−′
i

[
S+′

i ,H
]

−
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i

2
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(A.100)

=
1

2
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. (A.101)

Analogously one obtains

−1

2

∑
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[
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i ,H
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−
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2
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dE

ES++
q (E)
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(A.102)

and finally an expression for the internal energy of the noncollinear magnet as:

U = U0 +
1

2

∑

q

∫ +∞

−∞
dE

(
E + 2S(K − Jq)

eβE − 1
S+−

q (E) +
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q (E)
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. (A.103)

The spectral densities are given as

S+−
q (E) = 2〈Sz′〉

(
χ+−

1 δ(E − E+) + χ+−
2 δ(E + E+)

)
, (A.104)

S++
q (E) = 2〈Sz′〉
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χ++

1 δ(E − E+) + χ++
2 δ(E + E+)

)
, (A.105)

with

χ+−
1,2 =

1

2

(

1 ± K − 1/2Kq − 1/2Jq
√

(K − Kq)(K − Jq)

)

, (A.106)

χ++
1,2 = ±1

2

1/2Kq − 1/2Jq
√

(K − Kq)(K − Jq)
, (A.107)

E+ = 2〈Sz′〉
√

(K − Kq)(K − Jq). (A.108)

For the ferromagnetic solution, i.e. Q = (0, 0, 0), Eq. (A.103) transforms into the known ferromag-
netic solution [28].
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