
Quality
Assurance
with
Dynamic
Meta
Modeling

Ph.D. Thesis
Christian Soltenborn

July 2013

Quality Assurance with
Dynamic Meta Modeling

Christian Soltenborn

A thesis submitted to the
Faculty of Computer Science, Electrical Engineering, and Mathematics

of the University of Paderborn
in partial fulfillment of the requirements

for the degree of Dr. rer. nat.

July 2013

In Memoriam
My Father,

Hans-Hermann Soltenborn (1945–2007)

Dedication

First of all, I would like to express my deepest gratitude to my doctoral advisor
Prof. Dr. Gregor Engels. Gregor, without your support, especially in the difficult
first year of my Ph.D. project, I might not have made it to this point today. I
sincerely hope that the flexibility you gave me resulted in solid work, not only
scientifically, but also in my teaching. Your fine eye for detail in proof reading of
texts and your insightful participation in our discussions enabled me to succeed
and is already sorely missed as I write this. . .

A Ph.D. project such as the one presented in this thesis does not rest solely on
the cooperation between a doctoral advisor and a doctoral candidate, it requires
the input of other dedicated individuals as well. It is for this reason that I would
also like to thank Prof. Dr. Heike Wehrheim, Prof. Dr. Reiko Heckel, and Prof.
Dr. Arend Rensink, to whom I owe large parts of my knowledge about model
checking and graph transformations. Working with all of you has always been
a pleasure, both professionally and personally.

I also would like to thank Prof. Dr. Hans Kleine Büning and Dr. Matthias
Fischer as well as the other members of my Ph.D. commission for their will-
ingness to look into my scientific work and for the generous evaluation of my
performance.

My Ph.D. project would not have been possible without the groundwork and
Ph.D. thesis of Dr. Jan Hendrik Hausmann, who also introduced me extensively
into the exciting world of Dynamic Meta Modeling. Another big thank you
goes to Dr. Markus Luckey, with whom I had many helpful discussions, and
who has acted quite often as moral support. I also owe much gratitude to my
former colleagues Svetlana Arifulina, Jan-Christopher Bals, Matthias Becker,
Dr. Fabian Christ, Dr. Christian Gerth, Barış Güldalı, Yavuz Sancar, Henning
Wachsmuth, and FriedhelmWegener. It will be difficult moving forward without
your positivity, ideas and critical feedback. . .

Due to the roller coaster like nature of most doctoral studies, I have been
through euphoric highs and depressing lows. This is why I am glad I had friends
I could rely on, to always keep things in perspective; Thank you, Jonas Gefele,
Malte Röhs and Guido Schaumann.

Finally, my thanks go to my father Hans, my mother Johanna and my
brother Thomas for always believing in me even if I would once more deviate
from the straight path. I would not be who I am today without the unwavering
support of a loving family.

Paderborn, August 2013
Christian Soltenborn

Abstract

One way to deal with the complexity of today’s software systems is model-driven
development (MDD), where the target software system is first modeled on a very
abstract level in a platform-independent way (e.g., by using UML use cases),
and then—step by step—refined. The final, platform-specific model contains
enough information to serve as input for code generation of the target system.

MDD has several benefits: For instance, the (usually visual) modeling lan-
guages allow for better communication with stakeholders, which is particularly
true when using domain-specific languages (DSLs), i.e., languages containing
concepts of the problem domain. Another advantage is that the modeler’s task
is simplified by the small complexity of getting from one to the next abstraction
level, some steps of which are even applied using automatic model transforma-
tions.

MDD is most beneficial if the modeling languages in use have a well-defined
syntax and semantics. This is often true for the syntax and static semantics part,
e.g. by using MOF metamodeling techniques as suggested by the Object Man-
agement Group. For the behavioral semantics, the situation is usually worse.
For instance, the UML has a MOF-based syntax definition, but its behavioral
semantics is defined with natural language, leaving room for ambiguities. The
same is true for many DSLs.

One reason for this is that semantics specification for behavioral modeling
languages is a difficult task. This is where Dynamic Meta Modeling (DMM)
comes into play. DMM is a semantics specification technique targeted at MOF-
based modeling languages, where a language’s behavior is defined by means of
graphical operational rules which change runtime models.

The DMM approach has first been suggested by Engels et al. in 2000 [63];
Hausmann has then defined the DMM language on a conceptual level within his
PhD thesis in 2006 [96]. Consequently, the next step was to bring the existing
DMM concepts alive, and then to apply them to different modeling languages,
making use of the lessons learned to improve the DMM concepts as well as the
DMM tooling.

The result of this process is the DMM++ method, which is presented within
this thesis. Our contributions are three-fold: First, and according to our ex-
periences with the DMM language, we have introduced new concepts such as
refinement by means of rule overriding, and we have strengthened existing con-
cepts such as the dealing with universal quantified structures or attributes.

Second, we have developed a test-driven process for semantics specification:
A set of test models is created, and their expected behavior is fixed. Then,
the DMM rules are created incrementally, finally resulting in a DMM ruleset
realizing at least the expected behavior of the test models. Additionally, we
have defined a set of coverage criteria for DMM rulesets which allow to measure
the quality of a set of test models.

Third, we have shown how functional as well as non-functional requirements
can be formulated against models and their DMM specifications. The former
is achieved by providing a visual language for formulating temporal logic prop-
erties, which are then verified with model checking techniques, and by allowing
for visual debugging of models failing a requirement. For the latter, the mod-
eler can add performance information to models and analyze their performance
properties, e.g. average throughput.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Current State of Dynamic Meta Modeling 2
1.3 Objectives of this Thesis . 3
1.4 Structure of this Thesis . 4

I Foundations 7

2 Eclipse Modeling Framework 9
2.1 Metamodeling and MOF . 9
2.2 Ecore Metamodel . 12
2.3 The Eclipse Modeling Framework 14

2.3.1 Features of EMF . 14
2.3.2 EMF-Based Tools and Frameworks 15

3 UML Activities 17
3.1 Overview . 17
3.2 Syntax . 19
3.3 Semantics . 21

3.3.1 Tokens and Offers . 21
3.3.2 Semantics of Language Elements 22

4 GROOVE 25
4.1 Graph Transformation in GROOVE 25
4.2 State Space Exploration . 30
4.3 Model Checking GROOVE Grammars 31

4.3.1 Temporal Logic . 31
4.3.2 The GROOVE Model Checker 32

4.4 Tool Support . 33

5 Dynamic Meta Modeling 37
5.1 Goals of and Requirements on DMM 37
5.2 Dynamic Meta Modeling . 38

5.2.1 Overview . 38
5.2.2 Language Definition . 43

5.3 Evaluation of DMM’s Current State 50

Summary 53

xi

CONTENTS

II Dynamic Meta Modeling ++ 55

6 Language Definition of DMM++ 57
6.1 Comparison of DMM and DMM++ 57

6.1.1 Conceptual Changes . 57
6.1.2 Pragmatic Changes . 58

6.2 Syntax . 59
6.2.1 Ruleset Structure . 60
6.2.2 Rule Hierarchy . 63
6.2.3 Internal Rule Structure 71
6.2.4 DMM Expression Language 79

6.3 Semantics . 87
6.3.1 Challenges . 88
6.3.2 Basic Transformation Concepts 89
6.3.3 Universal Quantified Structures 96
6.3.4 Attributes . 101
6.3.5 Rule Overriding . 105
6.3.6 Restrictions . 118

6.4 Related Work . 119

Summary 123

III Quality of DMM++ Specifications 125

7 Creating DMM Specifications 127
7.1 DMM and Model Transformations 128
7.2 From Syntax Metamodel to Runtime Metamodel 129

7.2.1 The “From Scratch” Approach 130
7.2.2 The Decorator Approach 139

7.3 Creating DMM Rulesets . 140
7.4 Related Work . 143

8 Test-driven Semantics Specification 147
8.1 Test-Driven Semantics Specification 147

8.1.1 Creating Example Models 148
8.1.2 Creating the Semantics Specification and Deriving Test

Cases . 154
8.2 Coverage Criteria for Tests of DMM Specifications 158

8.2.1 Covering DMM Specifications 159
8.2.2 Invocation Graph . 159
8.2.3 Coverage Criteria . 163
8.2.4 Hierarchy of Coverage Criteria 174

8.3 Related Work . 176

Summary 179

xii

CONTENTS

IV Quality of Models 181

9 Formulating and Verifying Requirements 183
9.1 Functional Requirements . 183

9.1.1 Example Requirement: Soundness 184
9.1.2 Pattern Process Specification Language 185
9.1.3 Generalizing (E)PPSL . 191
9.1.4 Formalizing and Verifying Soundness 193

9.2 Non-Functional Requirements . 195
9.2.1 Example: Process Improvement with Fixed Budget 196
9.2.2 Performance Evaluation Process Algebra 198
9.2.3 Modeling Performance Information in DMM 202
9.2.4 DMM goes PEPA . 207
9.2.5 Improving the Example Process 208

9.3 Related Work . 209
9.3.1 Functional Requirements 209
9.3.2 Non-Functional Requirements 213

10 Debugging Models 215
10.1 Visual Model Execution . 216

10.1.1 Visualizing Runtime Information 216
10.1.2 Defining the Steps of Executions 219
10.1.3 Controlling Execution Paths 222
10.1.4 Example: UML Statemachines 228

10.2 Model Examination . 230
10.2.1 Controlling Model Execution 230
10.2.2 Model Execution Process 232
10.2.3 Debugging Models . 234

10.3 Implementation . 234
10.4 Related Work . 237

Summary 239

11 Summary and Outlook 243

List of Figures 249

List of Listings 253

List of Tables 254

Bibliography 255

A Appendix 273
A.1 Custom OCL Operations . 273
A.2 DMM: Static Semantics . 275

xiii

1
Introduction

1.1 Motivation

Every computer scientist knows Moore’s Law, which basically states that the
complexity of CPUs (i.e., the number of transistors they are built of) will double
every two years [146]. Gordon E. Moore, one of the founders of Intel, has indeed
predicted this as soon as 1965, and the law still seems to hold (although we
seem to have reached some physical barriers which might make it impossible to
downsize transistors beyond a certain point).

Not surprisingly, the complexity of software has constantly increased in par-
allel to that of CPUs, making it more and more difficult to deal with that
complexity. One way to tackle this problem of overwhelming complexity is
abstraction: a set of elements is investigated for commonalities, and elements
being (more or less) similar to each other with respect to these commonalities
are grouped within classes. We then do not have to reason about all the single
elements; in contrast, it might suffice to reason about the classes of elements,
instead of the elements themselves. Since there are usually less classes of el-
ements than elements, this approach reduces complexity. Another benefit of
abstraction is that to define classes of elements, one has to really understand
what exactly these elements have in common and how they differ amongst each
others, therefore usually leading to a better understanding of the problem at
hand.

In software engineering, one particular abstraction technique has become
increasingly important within the last decade: The use of visual modeling lan-
guages in general and the Unified Modeling Language (UML) [158] in particular.
The UML provides 15 different sub-languages dedicated to modeling all aspects
of a software system, from identifying and structuring requirements with use
case diagrams up to the deployment of the finished software system onto an IT
infrastructure with deployment diagrams.

The UML provides two kinds of diagrams: structural and behavioral dia-
grams. The former is—as the name implies—used to describe structures, the
most important one being class diagrams. With the latter kind of diagrams, the
actual behavior of the system can be described; of particular importance is the
language of activities, which will also be used as an example language within
this thesis. UML activities can be used to describe workflows at a relatively
high level of abstraction, but they are also equipped to express more low-level
behaviors such as algorithms.

Another kind of languages has become rather important within the last

1

CHAPTER 1. INTRODUCTION

decade: Domain-specific languages (DSLs). A DSL is a language targeting a
particular, usually rather narrow domain, and it contains language elements
which directly refer to concepts from that domain. For instance, a DSL for the
domain of cellphone applications might contain an SMS element referring to an
actual SMS which can be either sent or received by a cellphone. This allows the
developer to directly use those concepts within the models she creates (instead
of needing to map the concepts to the language elements of a general modeling
language such as the UML), therefore reducing the semantic gap.

However, to make the most use out of behavioral models, their semantics
needs to be defined precisely and un-ambiguously. For instance, executing ac-
tivities within a workflow engine or generating executable code from activities is
only possible if the language’s semantics is well-understood by both the creator
of the workflow engine or code generator as well as the language user, i.e., the
person creating the activities to be executed.

Unfortunately, the UML specification does not fulfill this seemingly sim-
ple requirement: The semantics of the UML’s behavioral models is specified
by means of natural language accompanying the syntax specification (which is
provided by means of metamodels, i.e., models which describe the structure of
valid instances of the UML). The same is true for DSLs: In most cases, their
semantics is defined by means of natural language.

As such, the need for semantics specification techniques arose which over-
come the obvious drawbacks of such an informal language specification. One
promising candidate for such a technique is Dynamic Meta Modeling [63, 96].

1.2 Current State of Dynamic Meta Modeling

Dynamic Meta Modeling (DMM) is a semantics specification technique which
is targeted at behavioral languages whose syntax is defined by means of a meta-
model, as is the case for the UML. In a nutshell, DMM works as follows: In
a first step, the syntax metamodel is enhanced with concepts needed to ex-
press states of execution of language instances, resulting in a so-called runtime
metamodel. For instance, the UML specification states that “The semantics of
activities is based on token flow” [158, p. 326]. As such, the runtime metamodel
of UML activities introduces a Token concept; locations of tokens then refer to
states of execution of the activity at hand.

The second step of creating a DMM semantics specification contains of defin-
ing the actual behavior of the language. This is done by means of graph trans-
formation rules [177, 57] typed over the runtime metamodel. A graph trans-
formation rule is a formal means to describe changes on graphs; in the case of
DMM, these graphs are instances of the runtime metamodel. For instance, the
UML specification states that “. . . an action can only begin execution when it
has been offered control tokens on all incoming control flows. . . ” [158, p. 320].
As a result, the DMM specification for UML activities contains a graph trans-
formation rule which can be executed as soon as this is the case; it will then
start the execution of the according action.

Since a DMM specification is backed by the mathematical formalism of graph
transformations, it fulfills the requirement of being precise and un-ambiguous.
Furthermore, such a formal specification can be analyzed and processed auto-
matically, giving rise to the possibility of actually developing tool support with

2

1.3. OBJECTIVES OF THIS THESIS

explicit support for the language’s semantics.
However, a semantics specification should not only be understandable by

experts of the formalism used. Fortunately, this is not the case for DMM:
Graph transformation rules can be visualized as (annotated) object diagrams,
i.e., instances of the language’s metamodel. This allows advanced language users
(i.e., language users who are familiar with the language’s metamodel) to easily
understand such a semantics specification, and to use it e.g. as a reference of
the semantics.

In his Ph.D. thesis [96], Hausmann has thoroughly motivated the need for
DMM, presented a formal definition, and demonstrated it using a simplified
semantics of UML activities. However, his Ph.D. thesis is more about concepts
than applications, i.e., conceptual as well as practical approaches for actually
analyzing models equipped with DMM specifications have been out of scope of
his work. The Ph.D. thesis submitted herewith closes this gap.

1.3 Objectives of this Thesis

The objective of this Ph.D. thesis is to make DMM usable for language engineers
as well as language users, i.e., we will show how a language engineer can create
high-quality DMM semantics specifications, and how language users can use
such DMM specifications to create high-quality models. Additionally, we will
introduce the tool support we have developed to support those tasks.

Let us describe our goals in more detail. First of all, a DMM semantics spec-
ification is pretty much useless if it contains flaws. For instance, if a language
user wants to verify the actual behavior of one of her models, she can only rely
on the analysis results if the semantics specification is free of errors. Other-
wise, it will be very difficult or even impossible to distinguish between flaws of
her model and flaws of the specification itself. We tackle this problem by two
means: First, we provide tool support for creating DMM semantics specifica-
tions and for checking these specifications for syntactical correctness. Second,
we have developed the approach of Test-driven semantics specification [191], a
process for creating specifications following the approach of test-driven software
development [19].

Now, given a high-quality DMM specification, language users can use that
specification for improving the quality of their models. For this, we will de-
scribe how to formulate [190] and verify [65] safety and liveness properties such
as soundness [203]. Additionally, we will show how to derive a Performance
Evaluation Process Algebra (PEPA) [84] model from a DMM specification and
a user’s model, and how to use that PEPA model to verify the user’s model
for non-functional properties. Finally, we have developed a model-driven ap-
proach to visualize the execution of models equipped with a DMM specification
in their own language’s concrete syntax [12]. Such an animated visualization of
a model’s behavior can be used in two scenarios which will both help to improve
the model’s quality: First, the language user will get a better insight in what
the model actually does, and second, the described technique can be used to
understand and fix flaws of the model identified during analysis of functional
properties.

A number of publications have been the foundation of this thesis. In partic-
ular, the scientific contributions aggregated within this thesis are

3

CHAPTER 1. INTRODUCTION

• an extension of DMMwith concepts to refine DMM specifications [192, 62],

• a test-driven process for creating high-quality DMM specifications [191],

• coverage criteria for measuring the quality of tests of a DMM specification
[5],

• a visual language for describing functional requirements against models
and according DMM specifications [190],

• a means to verify functional requirements against models and according
DMM specifications using model checking [65], and

• a model-driven means to enhance existing DMM specifications for visual,
animated execution and the possibility to visually debug models, including
the usage of breakpoints and watchpoints [12].

As such, the result of this thesis are concepts and tools which nearly1 support
the complete lifecycle of behavioral languages, from specifying a language’s se-
mantics to analyzing and improving the quality of models.

1.4 Structure of this Thesis

From a high-level view, this Ph.D. thesis is structured into four parts which
will present foundations and preliminary work, introduce our enhanced notion
of DMM, show how to create high-quality DMM specifications, and discuss how
to analyze models equipped with a DMM specification.

Part I – “Foundations” The foundations start with an introduction to the
Eclipse Modeling Framework (EMF) in Chapter 2, which is the conceptual and
technical foundation not only for the DMM tooling which has been developed,
but also for the languages DMM is targeted at. We are showing the relation
of EMF to the OMG standard MOF [154], and give a brief overview of EMF’s
metamodeling language as well as the parts of EMF used by DMM.

Chapter 3 introduces the behavioral language of UML activities, which will
then serve as running example for the rest of the thesis. The syntax of the
activities will be defined by means of excerpts of the UML metamodel, and
we will give an intuition of the semantics of UML activities based on the text
accompanying the syntax definition within the UML specification [158].

Chapter 4 presents GROOVE, a set of tools around performing graph trans-
formation. GROOVE is crucial to DMM in that it serves as a graph transfor-
mation engine: DMM specifications and models are transformed into GROOVE
grammars, which then allows to explore their state space and perform model
checking.

Chapter 5 will then briefly present DMM as defined by Hausmann in his
Ph.D. thesis [96]. We will start by discussing the use cases and target users of
DMM, followed by a brief introduction to DMM’s syntax and semantics. Finally,
we point out areas where Hausmann’s definition of DMM can be improved to
support practical application of DMM.

Part II – “Dynamic Meta Modeling++”
1Exceptions are requirements specification and syntax definition.

4

1.4. STRUCTURE OF THIS THESIS

Chapter 6 introduces DMM++, the enhanced version of DMM in which
we implemented the necessary improvements as identified in chapter 5. We will
briefly present the metamodel of DMM++, which we have developed not only for
the sake of supporting the development of tooling, but also to make the abstract
syntax of DMM++ explicit. We give an introduction to the DMM language in
Sect. 6.2; additionally, Appendix A.2 on page 59 provides DMM++’s static
semantics, which we have defined using OCL expressions [155]. Finally, we will
define the semantics of DMM++ by describing our mapping of DMM++ into
GROOVE graph grammars in a precise way. During this chapter, we will also
present our extensions to the DMM formalism [62, 192].

Part III – “Quality of DMM++ Specifications”
Chapter 7 shows how a DMM++ specification can be created with the tool-

ing developed as part of this thesis. We will first introduce two approaches for
deriving a runtime metamodel from a syntax metamodel, both having its own
advantages and disadvantages. The second part of chapter 7 will deal with cre-
ating the DMM++ rules specifying the language’s semantics: We will introduce
the DMM++ Workbench which not only implements the metamodel and trans-
formation to GROOVE graph grammars as defined in part II, but also provides
a visual, easy-to-use editor for creating DMM++ specifications.

Chapter 8 will then introduce our approach of test-driven semantics speci-
fication [191, 64], which will help the language engineer to create high-quality
DMM++ specifications. The basic idea is that in a first step, example models
are created, each of which demonstrating the semantics of few language ele-
ments. In a second step, the expected semantics of these models is formalized
and verified against the DMM++ specification under creation. Finally, we will
define some coverage criteria which will allow us to reason about the quality of
our language’s tests [5].

Part IV – “Quality of Models”
Chapter 9 will cover the topics of formulating properties which should hold

for a language user’s model and analyzing if this is indeed the case. The first
section of chapter 9 deals with functional requirements: We show how states
can be formulated as instances of the language’s metamodel, and how temporal
properties over those states can be defined by means of a generalized version
of the existing pattern process specification language (PPSL) [190] and verified
using model checking techniques [65]. In the second section, we show how
to formulate performance properties for a DMM++ specification and a given
model, and how to transform them into a PEPA model [100] which can be
analyzed for non-functional properties such as average throughput.

Chapter 10 will then show how the DMM++ Player [12] can be used to
visualize counter examples gained from verifying models as described above,
and how the language user can benefit from such visualizations. We will see
that the DMM++ Player allows for the completely model-driven specification
of visualization information, which will at runtime be used to augment existing
visual editors, thus simplifying the development of such visualizations to a great
extend.

Finally, we will summarize the thesis’ contents and discuss conclusions and
further work in the context of DMM++.

5

Part I

Foundations

7

2
Eclipse Modeling Framework

The name Dynamic Meta Modeling implies that metamodeling is deeply in-
volved in the DMM++ approach. And indeed, not only are DMM++ rules
typed over metamodels, but the DMM++ language is also defined by means of
metamodels. In this chapter, we will introduce the Eclipse Modeling Framework
(EMF) [44, 194] which provides the metamodeling language Ecore, the language
of choice in case of DMM++. We first give an introduction to metamodeling
and MOF in the next section. Section 2.2 then discusses the Ecore metamodel.
Finally, Sect. 2.3 gives a brief overview of the Ecore-based technologies that are
used by DMM++.

2.1 Metamodeling and MOF

The idea of metamodeling is pretty simple: A metamodel is a model of models.
This means that a metamodel describes how “its” models “look like”; it is a
model for a whole set of models. In terms of computer science, a metamodel is
a formalization of the abstract syntax of the described set of models, just as a
grammar describes a set of textual sentences.

To better understand the concept of metamodeling, let us investigate an
example. Figure 2.1 shows a simple metamodel to the left and a corresponding
model to the right. Here, the metamodel is a UML class diagram. As such, its
semantics is that a VideoShop has a name, and that it owns Videos which
are characterized by their title. To the right, an instance of the metamodel can
be seen: a VideoShop instance which owns two Videos. Metamodels can
be rather precise: For instance, the metamodel of Fig. 2.1 clearly answers the
question whether all videos must be owned by a shop (which is true here, because
the 1 at the association states that every video must be owned by exactly one
shop).

The benefits of defining a data structure by means of a metamodel has a
number of advantages; see e.g. [154] for a discussion of this topic. The most
important advantage is that metamodels are a powerful and understandable
means to formally describe the abstract syntax of a set of models. However,
if this is best practice, shouldn’t then the syntax of the metamodel of Fig. 2.1
also be formally defined? And indeed, the answer is “Yes”; to formally describe
a metamodeling language such as UML class diagrams, a metametamodeling
language is needed. Additionally, we need to find another way to describe
that language formally (obviously, a metametametamodeling language is not an

9

CHAPTER 2. ECLIPSE MODELING FRAMEWORK

VideoShop

- na me :String

Video

- titl e :St ring

:Video

titl e = "Pulp Fictio n"

:Video

titl e = "T he B ig Le bowski"

:VideoShop

na me = "Vid eo20 00"

owner 1

ownedV ideo 0..*

owner

ownedV ideo

owner

ownedV ideo

Figure 2.1: A simple metamodel for a video shop, and an instance of the meta-
model.

option here).
The answer is OMG’s Meta Object Facility (MOF) [154] which “provides

a metadata management framework, and a set of metadata services to enable
the development and interoperability of model and metadata driven systems.”
[154, p. 5]. MOF is a language whose main purpose is to describe types, their
properties and relations. Basically, MOF consists of a core version of UML
class diagrams;1 however, it does not contain any other language elements of
the UML.

The formalization of MOF is then provided recursively: MOF is an instance
of MOF. E.g., as we will see in the next section, MOF contains the classes
Package and Class; the according MOF instance defining MOF will therefore
contain objects of type Class, two of which having the name attribute set to
“Package” and “Class”.

As such, MOF forms the “root” of the metamodel hierarchy, an example of
which is depicted as Fig. 2.2. The idea is to provide a metameta language at
the very top of the hierarchy (M3)– this is the role of MOF. Using MOF, the
metamodels of other languages can be defined as instances of MOF; this takes
place on level M2. The most prominent example of such a language is the UML.
Then, on M1, the language defined on M2 can again be instantiated, resulting
in actual models of that language. For instance, the definition of UML class
diagrams sits at level M2, and a concrete class diagram model is located on M1.
Finally, level M0 depicts the “reality”, i.e., concepts of the real world which are
represented by the models on M1. Note that the recursive definition of MOF is
not visualized in Fig. 2.2.

Note also that restricting ourselves to four metamodel levels can be confus-
ing: For instance, it is of course possible to use the UML to define a language
dedicated at defining the syntax of languages; in that scenario, MOF would be
M4, the UML would live on M3, the metamodel of the newly defined language
would live on M2, models of that language would live on M1, and finally, the
real world concepts on M0. The only important point are the instance-of re-
lations between the levels. Or as the MOF specification clearly states: “Suffice
it to say MOF 2.0 with its reflection model can be used with as few as 2 levels

1In fact, the MOF language elements are imported from other packages, and these packages
are—besides others—also imported by the UML; thus, MOF basically is the core of UML class
diagrams.

10

2.1. METAMODELING AND MOF

UML Infrastructure Specification, v2.3 19

.

Figure 7.8 - An example of the four-layer metamodel hierarchy

Class

Attribute Class

Video

+title: String

«instanceOf»«instanceOf»

: Video

title = "2001: A Space Odyssey"

«instanceOf»«instanceOf»

M3 (MOF)

M2 (UML)

M1 (User model)

Instance

«instanceOf»

«instanceOf»

classifier

«instanceOf»

M0 (Run-time instances) aVideo

«instanceOf»

«snapshot»

Figure 2.2: An example of the four-layer metamodel hierarchy (from [157,
p. 19]).

and as many levels as users define.” [154, p. 9] As such, Fig. 2.2 only depicts
a common case. See [8] for more information on metamodeling on and accross
different levels.

MOF has seen a high adoption in industry as well as academia. However,
implementing and actually making use of MOF revealed that it had a couple of
drawbacks; in particular, “One of the challenges the MOF 2.0 Core and MOF
2.0 XMI Mapping submissions face is to maintain a stable interchange model
(XMI) while MOF 2 and UML 2 are changing quite significantly. To accomplish
this, we [have identified] a very small subset of the modeling concepts in MOF.
We call this Essential MOF or EMOF which basically models simple classes
with attributes and operations to fix the basic mapping from MOF to XML and
Java.” [154, p. 6]

The most important and de-facto standard implementation of EMOF is
Ecore, the metamodeling language of the Eclipse Modeling Framework. In fact,
Ecore has influenced the redesign of MOF and the introduction of the EMOF
core. To quote [194, p. 40]: “With a focus on tool integration, rather than
metadata repository management, Ecore avoids some of MOF’s complexities,
resulting in a widely applicable, optimized implementation. MOF and Ecore
have many similarities in their ability to specify classes and their structural and
behavioral features, inheritance, packages, and reflection. They differ in the
area of life cycle, data type structures, package relationships, and complex as-
pects of associations. . . . Development experience from EMF has substantially
influenced this latest version of the specification, in terms the layering of the
architecture and the structure of the semantic core. Essential Meta-Object Fa-

11

CHAPTER 2. ECLIPSE MODELING FRAMEWORK

cility (EMOF) is the new, lightweight core of the metamodel that quite closely
resembles Ecore. Because the two models are so similar, EMF is able to support
EMOF directly as an alternate XMI serialization of Ecore.”. See also [81] and
[145] for transformations between MOF and Ecore.

Since Ecore is so similar to EMOF, we do not bother to show the EMOF
metamodel – instead, we turn our attention to Ecore in the next section.

2.2 Ecore Metamodel

The Ecore metamodel provides means to model object-oriented data structures.
For this, it provides concepts such as types, attributes, etc. A slightly simplified
Ecore metamodel is depicted as Fig. 2.3; the first thing to notice is that by
convention, all classes of the Ecore metamodel start with a capital “E”, therefore
clearly indicating their origin (which can be useful in practice when e.g. dealing
with both Ecore and UML models programmatically, since as we have seen
above, the UML also contains the Ecore language elements). In the following,
we will discuss the Ecore concepts.

The root class of Ecore’s inheritance hierarchy is the EModelElementmeta-
class, which is able to carry a set of EAnnotations – all other Ecore meta-
classes (transitively) inherit from EModelElement. One example is ENamed-
Element, which adds a name attribute and is again superclass of nearly all
Ecore classes.

Ecore models are organized in packages, the metaclass of which is EPackage.
Most importantly, the EPackage metaclass contains the nsUri attribute:
the namespace URI uniquely identifies an EPackage. Despite its subpack-
ages, a package contains an arbitrary number of EClassifiers and thus—
transitively—all other model elements.

EClassifiers come in two flavors: EDataType represents primitive data-
types such as integers, strings, or enumerations, and EClass represents complex
datatypes; the latter is the central class of the Ecore language. An EClass can
be abstract or represent an interface.2 The inheritance hierarchy is modeled by
the eSuperTypes reference (note that Ecore supports multiple inheritance).

Furthermore, an EClass owns a set of EStructuralFeatures, of which
again two kinds exist. EReference models references of other EClasses, and
EAttribute models attributes. Both metaclasses are subclasses of EStruc-
turalFeature and thus from ETypedElement, through which they inherit
quite a few features.

ETypedElement represents an element having some sort of type, be it
a complex or primitive type; the type reference is refined by the references
eReferenceType and eAttributeType of the subclasses. The metaclass
takes care of the cardinalities with the attributes lowerBound and upper-
Bound (where upperBound = -1 refers to an arbitrary number of elements),
from which many and required are computed (the former is defined as upper-
Bound > 1, the latter as lowerBound > 0). In the case of many elements,
features can be declared as ordered, meaning that the elements’ order will be
maintained, and unique, specifying whether a single element is prevented from
occuring more than once.3

2Consistency is dealed with by automatic validation of additional constraints.
3Note that according to [194, p. 107], “Currently, their use is limited. The behavior of a

12

2.2. ECORE METAMODEL

EEnumEReference

containment :boolean

EClass

abstract :boolean
interface :boolean

EAttribute

EPackage

nsUri :String
nsPrefix :String

ENamedElement

name :String

EDataType

serializable :boolean

EClassifierETypedElement

ordered :boolean
unique :boolean
lowerBound :int
upperBound :int
/many :boolean
/required :boolean

EStructuralFeature

changeable :boolean
volatile :boolean
transient :boolean
unsettable :boolean
derived :boolean

EEnumLiteral

value :int
literal :String

EModelElement

EAnnotation

details :String

EObject

eClass() :EClass
eContainer() :EObject
eGet(EStructuralFeature) :EObject
eSet(EStructuralFeature, EObject) :void

/eAttributeType

1

eSuperTypes 0..*

/eReferenceType

1

eOpposite
0..1

eSubPackages 0..*

eClassifiers

0..*

0..*

type

1

eStructuralFeatures

0..*

eLiterals

0..*

eAnnotations 0..*

Figure 2.3: Simplified Ecore metamodel.

13

CHAPTER 2. ECLIPSE MODELING FRAMEWORK

The EStructuralFeature metaclass adds attributes that determine how
elements are stored and accessed: changeable determines whether the fea-
ture can be changed by an external caller; derived defines whether a feature’s
value(s) are computed. A feature being declared transient will not be serial-
ized with the owning object. If a feature is unsettable, it has an additional
possible state: An object’s feature can either be unset or carry some value(s),
and this is distinguishable. Finally, volatile determines whether the feature’s
value(s) will be stored in the owning object at all; in the case of a derived
feature, this is often not necessary.

In addition to EAttribute, which only inherits the features of the above
classes, EReference provides two more features: an EReference can be de-
clared to be a containment, meaning that the according elements are not
only referenced, but stored within the referencing object. This is of particularly
importance for serialization: Objects will be serialized according to their loca-
tion witin the containment tree. Additionally, an EReference can reference
another EReference as its opposite. This is Ecore’s notion of bidirection-
ality: The feature can reference another EReference such that the two ref-
erences are type compatible. If the feature is set, it must always be true that
reference.opposite.opposite = reference.

Finally, the EObject metaclass is the class which will be the supertype of
all instances of EClasses, and through which these instances inherit the Ecore
reflection mechanisms. In other words: All objects contained in a model which
has been defined by (and is consistent to) an Ecore metamodel will inherit from
EObject, and are thus equipped with the according reflection mechanisms.
This e.g. allows to ask an object for its type using the eClass() operation, to
traverse the EClass’s EStructuralFeatures, and then to receive all values
of the object’s references and attributes by calling eGet(feature) with the
respective EReference or EAttribute.

2.3 The Eclipse Modeling Framework

The Ecore metamodel we have seen in the last section is the core of the Eclipse
Modeling Framework (EMF). However, EMF is much more; in this section, we
will give a brief introduction to the additional features EMF provides, many of
which DMM++ uses. The most important advantage of having a standardized
metamodeling infrastructure is easy tool integration; this has particularly been
proven by the success of EMF in the modeling community, which resulted in a
huge amount of tools, languages, and frameworks around EMF. Again, many of
these are used within the DMM++ tooling, as shown in Sect. 2.3.2.

2.3.1 Features of EMF
First of all, as we will see in Sect. 6.2, the syntax of DMM++ is defined by
means of an Ecore metamodel. Within that metamodel, despite the defined
concepts also Ecore concepts are used, allowing to reference other Ecore meta-
models from DMM++ models (i.e., instances of the DMM++ metamodel).

multivalued attribute depends on its uniqueness, but references always behave as if unique is
true. Moreover, ordered is ignored by all features, as a List-based implementation is always
used.”

14

2.3. THE ECLIPSE MODELING FRAMEWORK

DMM++ makes heavy use of different metamodeling levels as seen in Sect. 2.1.
For instance, we will see in Sect. 7.2.1 how a DMM++ model references the
DMM++ metamodel, the Ecore metamodel, and a third metamodel defined
by means of Ecore. In addition, DMM++ defines not only the core DMM++
metamodel, but also a couple of other metamodels which e.g. allow to describe
event traces (Sect. 8.1.1.5), performance information (Sect. 9.2.3.1), or visual
execution information (Sect. 10.1.1).

EMF provides sophisticated code generation support, i.e., an Ecore meta-
model can be transformed into Java code ready to be deployed and executed.
The first step of generating code consists of generating and potentially adjusting
the EMF generator model. The generator model allows to influence code gen-
eration in a varietly of ways: For instance, code for different runtime platforms
can be generated, including code ready to be deployed on RAP [45], a web-based
implementation of the Eclipse UI components. For DMM++, the Eclipse IDE
is the target runtime platform.

EMF not only generates model code which e.g. includes support for reflec-
tion, observation and notification, serialization and referential integrity, but also
components allowing for an easy integration of model editing capabilities, in-
cluding a tree-based editor which is ready to be used, but can be customized;
for instance, changing the icon associated with a model element is as easy is
replacing the according generated icon file. For usability reasons, the DMM++
tooling makes heavy use of these customization capabilities: As an example, the
resulting DMM++ tree editor as well as property editor can be seen in Fig. 7.14
on page 142.

Since all generated model classes inherit from EObject as seen in Sect. 2.2,
the generated model code supports Ecore reflection, allowing for a convenient as
well as efficient implementation of e.g. the bidirectional transformation between
Ecore models and graphs of the GROOVE toolset (we will ge to know GROOVE
in Sect. 4 and the transformation in Sect. 6.3).

2.3.2 EMF-Based Tools and Frameworks
As mentioned above, EMF has had a huge success in the modeling community,
resulting in a great number of tooling based on EMF/Ecore. In the following,
we briefly mention the components used within the DMM++ tooling:

• Due to Ecore’s de-facto standard status, many other modeling languages
have been implemented based on Ecore and EMF – all of these languages
play nicely with the DMM++ tooling. The most prominent example is the
Eclipse Foundation’s implementation of the UML metamodel [51], which
closely follows the specification of the UML as described in [157, 158],
including the definition of several basic packages which are then merged
to packages supporting the different UML compliant levels, following the
package merge semantics as described by the OMG.

• The static semantics of the DMM++ language has been defined by means
of OCL constraints [155], which was possible because of the Ecore imple-
mentation of the Eclipse OCL project [47]. The DMM++ editors support
powerful model validation including visual feedback which has been im-
plemented using the EMF Validation framework [48].

15

CHAPTER 2. ECLIPSE MODELING FRAMEWORK

• The visual editors allowing to intuitively edit DMM++ models (Sect. 7.3)
have been developed using the Graphical Modeling Framework (GMF) [90,
50], a framework which allows to generate basic visual editors in a model-
driven way which can then be customized through runtime extensions.

• For the transformations of DMM++ models into GROOVE grammars
(see Sect. 6.3), a number of unit tests exist, the most basic of which make
use of the EMF Compare framework [46] allowing for the comparison of
arbitrary Ecore based models.

• The textual language for describing event traces (Sect. 8.1.1.5) has been
developed on top of the XText framework [69, 54], which allows to gen-
erate a language’s Ecore metamodel and a text editor including syntax
highlighting and completion from a grammar.

Summarizing, the implementation of sophisticated tool support for working with
DMM++ would not have been possible without the extensive usage of the sev-
eral components available from EMF and the surrounding modeling community.
As such, DMM++ itself can be taken as a proof for the success of metamodeling
techniques.

16

3
UML Activities

The UML contains a number of diagram types, some of which deal with modeling
behavior. Of those, UML activities are used to model control and data flow.
In this thesis, we use UML activities as a running example; therefore, in this
chapter we will give an introduction to that language. We start with a general
overview of activities in the next section. Section 3.2 will then present the most
important activity contructs, and Sect. 3.3 will give a brief introduction to the
semantics of UML activities.

3.1 Overview

UML activities model the flow of control between actions, which are the places
where actual work is performed. They can be used at different abstraction
levels: activities can e.g. model workflows, where actions correspond to tasks
such as “Check claim probability”, but also algorithms, where an action might
increase the attribute value of the incoming object by 1.

An example UML activity from the UML specification [158] is depicted as
Fig. 3.1. It models a workflow and is thus on a rather high level of abstraction.
Its semantics is as follows: First, it is tried to record the problem. If this is
not succesful, the process ends. Otherwise, if the problem is rectified, we skip
to reporting (see below). Only if this is not the case, we try to reproduce the
problem. If we can not do this, the problem statement needs to be improved;
we skip to reporting. If we can however reproduce the problem, then we either
develop and test a solution, or we use a known solution. Finally, we report the
results of the process by communicating them to the reporter and by auditing
and recording the process – the latter two steps can be performed concurrently.

Now that we have an intuition of the semantics of UML activities, let us
investigate their definition a bit closer: The UML specification defines the ac-
tivities language by means of several packages which depend on each other. The
dependencies of these packages are depicted as Fig. 3.2. In the following, we
briefly introduce the package’s contents.

FundamentalActivities Defines an activity to consist of actions.

BasicActivities Introduces control and data flow constructs such as activity
edges.

IntermediateActivities The basic control flow constructs are defined here,
such as decisions and concurrency. The UML specification states that the

17

CHAPTER 3. UML ACTIVITIES

UML Superstructure Specification, v2.3 333

Figure 12.37shows another example activity for a process to resolve a trouble ticket.

Below is an example of using class notation to show the class features of an activity. Associations and state machines can
also be shown.

Rationale

Activities are introduced to flow models that coordinate other behaviors, including other flow models. It supports class
features to model control and monitoring of executing processes, and relating them to other objects (for example, in an
organization model).

Changes from previous UML

Activity replaces ActivityGraph in UML 1.5. Activities are redesigned to use a Petri-like semantics instead of state
machines. Among other benefits, this widens the number of flows that can be modeled, especially those that have parallel
flows. Activity also replaces procedures in UML 1.5, as well as the other control and sequencing aspects, including
composite and collection actions.

Figure 12.37 - Workflow example

Figure 12.38 - Activity class with attributes and operations

Record Reproduce
Problem

Correct
ProblemProblem

Audit and
Record

Verify
Resolution

Communicate
Results

[else]

[recorded]

Trouble Ticket

ID Problem
andResolution

[cannot
reproduce
problem]

[problem not solved]

[can
reproduce
problem]

[duplication
of another
problem]

[known
problem
and solution]

[not recorded]

[problem statement rectified]

«activity»
Fill Order

costSoFar : USD
timeToComplete : Integer

suspend ()
resume ()

Figure 3.1: Example UML activity modeling a workflow (from [158, p. 333].

UML Superstructure Specification, v2.3 305

12.2 Abstract Syntax
Figure 12.1 shows the dependencies of the activity packages.

Figure 12.1 - Dependencies of the Activity packages

CompleteActivi ties

ExtraStructuredActivi ties

Intermediat eActivi ties

CompleteStructuredActivi ties

Kernel

StructuredActivi ties

BasicActiv it ie s

BasicBehaviors

Be haviorSt at eMachine s

BasicActions

FundamentalActivi ties

<<merge> >

<<merge>>

<<merge>>

<<merge>>

<<import>>

<<merge>>

<<merge>>
<<merge>>

<<import>>

<<import> ><<merge>>

<<merge> >

Figure 3.2: UML activity packages and their dependencies (from [158, p. 305].

18

3.2. SYNTAX

package “supports modeling similar to traditional Petri nets with queuing”
[158, p. 303].

CompleteActivities Enhances the basic constructs, e.g. by introducing edge
weights and streaming.

StructuredActivities Introduces constructs representing traditional program-
ming structures such as loops and conditions.

CompleteStructuredActivities Adds support for data flow output pins to
the constructs introduced in StructuredActivities

ExtraStructuredActivities Introduces exception handling and dealing with
sets of values.

The formal semantics used within this thesis, in particular the one developed
by Hornkamp [105], basically realize the activity constructs up to the Interme-
diateActivities package, plus some additional features such as edge weights and
basic exception handling. In the next section, we will introduce the metamodel
of the IntermediateActivities package.

3.2 Syntax

As we have seen in Sect. 2, the syntax of the UML is defined by means of
a metamodel. Figure 3.3 shows a slightly simplified version of the UML ac-
tivities metamodel, i.e., the classes of the IntermediateActivities package. An
Activity consists of ActivityNodes and ActivityEdges which connect
ActivityNodes. There are two kinds of ActivityEdges: ControlFlows
model flow of control, and ObjectFlows model data flow.

In the case of ActivityNodes, several types exist, which can first of all be
grouped into Actions, ControlNodes, and ObjectNodes. Actions are
where the actual work is being performed; the UML provides several kinds
of Actions, which we do not show in Fig. 3.3 – note, however, that the
Action metaclass is abstract. Two important kinds of Actions are the
OpaqueAction—which basically allows to store a string within the Action—
and the CallBehaviorAction which allows to invoke other Behaviors.
Since the Activity class inherits from Behavior, this can be used to de-
compose an activity into subactivities to be performed if the according Call-
BehaviorActions are executed.

ObjectNodes are used to store objects for a limited amount of time; for
instance, an Action’s InputPin will store data which the Action consumes
as soon as it is executed. Another example are ActivityParameterNodes,
which can be used to provide input to an Activity. In contrast, Control-
Nodes can not store data. Instead, they are used to route the flow of control
and the data through the activity.

There are three basic kinds of ControlNodes, which are concerned with
the start and end of an Activity, decisions, and concurrency. For the former
kind, four ControlNodes exist: An Activity starts at its InitialNodes
and ActivityParameterNodes, and ends with either a FlowFinalNode or
ActivityFinalNode.

19

CHAPTER 3. UML ACTIVITIES

Behavior

Activity

ActivityNode

NamedElement

- name :String

ActivityEdge

Action ControlNode

ActivityFinalNode

InitialNodePin

ObjectNode

ControlFlow ObjectFlow

FinalNode

FlowFinalNode

ForkNode

JoinNode

DecisionNode MergeNode

OutputPinInputPin

ValueSpecification

ActivityParameterNode

nodes

0..*

edges

0..*

incoming 0..*

target 1

outgoing 0..*

source 1

output0..*input 0..*

guard

1

Figure 3.3: Simplified metamodel of UML activities.

20

3.3. SEMANTICS

Decisions are modeled by DecisionNodes and MergeNodes (which have
the same concrete syntax: a diamond). They differ in that a DecisionNode
has one incoming and several outgoing ActivityEdges; for the MergeNode,
it is vice versa. In the case of a DecisionNode’s outgoing edges, they can
be equipped with guards: At activity execution time, the guards are evaluated,
and the ActivityEdge whose guard has evaluated to true will be taken.

Finally, concurrency is modeled by means of ForkNodes, which start con-
currency, and JoinNodes, which are points of synchronization. Again, the two
elements have the same concrete syntax.

Now that we have a brief understanding of the syntax of UML activities, let
us discuss their semantics in the next section.

3.3 Semantics

As mentioned earlier, the behavioral semantics of UML activities is based on
token flow. However, this is only part of the truth: In fact, tokens flowing
through an activity are only offered to edges. In the next section, we will
explain the general idea of the token/offer semantics of UML activities, before
we define the semantics of each language element in terms of token/offer flow
in Sect. 3.3.2.

3.3.1 Tokens and Offers
We have seen above that the UML specification gives activities a “petri-like
semantics”. However, the semantics is in fact much more complicated, as we
will see in the next paragraphs. Let us first make our understanding of token
flow more precise: The basic idea is that if an activity is started, control tokens
are placed at the activity’s InitialNodes, and object tokens are placed on
the activity’s ActivityParameterNodes and associated with the parameter
objects; these tokens then start to flow along the activity’s edges.

Now, an Action can be executed as soon as its input requirements are ful-
filled: All incoming ControlFlows must carry at least one control token, and
all InputPins must carry an object token. If the Action executes, it con-
sumes the incoming tokens; after execution, it produces tokens on its outgoing
ControlFlows and OutputPins, which can then continue flowing through
the activity.

However, the situation is more complicated. The UML specification states:
“The object flow prerequisite is satisfied when all of the input pins are offered all
necessary tokens, as specified by their minimum multiplicity, and accept them all
at once up to their maximum multiplicity, precluding them from being consumed
by any other actions. This ensures input pins on separate actions competing
for the same tokens do not accept any the action cannot immediately consume,
causing deadlock or starvation as actions wait for tokens taken by input pins of
other actions but not used.” [158, p. 320].

In other words: Tokens stick at their places until an Action’s complete
prerequisites are fulfilled. If this is the case, all required tokens of an Action
are consumed at once. This concept is also called traverse-to-completion: A
token is offered all the way down, until it is accepted somewhere – it can not get
stuck at some intermediate control node. This has an important implication:

21

CHAPTER 3. UML ACTIVITIES

The semantics of activities is non-local. This means that the decision whether a
specific token moves might depend from elements which are far away from the
token’s location. E.g., consider the Action “Record problem” of the activity
shown as Fig. 3.1; after execution, the Action will offer a token on its outgoing
edge. However, in the extreme case (i.e., the problem is recorded, and the
statement is rectified) the token will stay at Action “Record problem” until
it is accepted by both “Communicate results” and “Audit and record”. More
on this topic can be found in [196], in which Störrle and Hausmann try to map
the token flow of UML activities to Petri nets – they conclude that traverse-to-
completion, but also other activity features such as exception handling are not
suitable for being expressed with Petri nets.

In the next section, we will define the semantics of the activity language
elements by means of token and offer flow.

3.3.2 Semantics of Language Elements
The UML specification states that an execution of an activity is controlled by an
activity execution; as such the activity execution handles the tokens and offers
flowing through the activity. In package IntermediateActivities, the Activity
metaclass receives the isSingleExecution attribute of type boolean. If the
attribute’s value is true, each execution of the activity will be handled by an
own activity execution; otherwise, more than one execution of the activity may
result in tokens competing with each other.

When an activity is started, an activity execution is created, a control token
is put on each of the activity’s InitialNodes, and an ObjectToken is put
on each of the activity’s ActivityParameterNodes and associated with the
object serving as parameter. Note that this is indeed possible: The UML spec-
ification states that “Tokens cannot “rest” at control nodes, such as decisions
and merges, waiting to move downstream. Control nodes act as traffic switches
managing tokens as they make their way between object nodes and actions,
which are the nodes where tokens can rest for a period of time. Initial nodes
are excepted from this rule.” [158, p. 327]

Then, the tokens are offered to the InitialNodes’ and ActivityPara-
meterNodes’ outgoing edges – if accepted, the tokens’ offers start flowing
through the activity until finally accepted at an action or consumed by a
FinalNode. This concept is also referred to as traverse-to-completion.

The semantics of Actions is defined as follows: “Except where noted, an
action can only begin execution when it has been offered control tokens on all
incoming control flows and all its input pins have been offered object tokens
sufficient for their multiplicity. The action begins execution by accepting all
the offers of control and object tokens allowed by input pin multiplicity. When
the execution of an action is complete, it offers control tokens on its outgoing
control flows and object tokens from its output pins.” [158, p. 320].

It remains to explain the other ControlNodes’ semantics. We start with
the FinalNodes, of which two types exist. The FlowFinalNode consumes
every offered token. The ActivityFinalNode does the same, but addition-
ally, it also consumes all other tokens flowing through the activity, therefore
ending the activity’s execution immediately.

DecisionNodes are used to route tokens according to their outgoing Ac-
tivityEdges’ guards – each ActivityEdge whose guard evaluates to true is

22

3.3. SEMANTICS

offered the token. MergeNodes just pass every token offer they receive to their
single outgoing edge. They are needed because of the “implicit join” semantics
of Actions: If the control flow is split by a DecisionNode, it can not be
joined by means of an Action, since an Action—as we have seen above—can
only execute if all its ControlFlows are offered a token. However, it will only
ever be offered a token on one of the ControlFlows originating from the split
of control.

Finally, the semantics for ForkNodes is that if they are offered a token on
their incoming edge, they will offer copies to all outgoing ActivityEdges; the
offers then start to flow concurrently. The semantics of the JoinNode is the
exact opposite: It will produce an offer on its single outgoing ActivityEdge
as soon as it has offers on all its incoming ActivityEdges. Note that the
semantics of concurrency has intentionally left rather vague by the OMG: For
instance, it is not clear what happens if offers arrive at a JoinNode which
belong to different ObjectTokens.

Summarizing, we have seen that UML activities are used to describe flow of
control and possibly data, and that the syntax of activities is defined by means
of the UML’s metamodel. The semantics of activities is only provided as natu-
ral language and is—due to the traverse-to-completion semantics of token and
offer flow—rather complex. As such, UML activities serve well as an example
language for demonstrating DMM++, as we will do in the remainder of this
thesis.

23

4
GROOVE

GROOVE is a set of tools for working with graphs and graph transformation.
It has been developed at the University of Twente by Arend Rensink and oth-
ers (see e.g. [166, 82]). GROOVE is an abbreviation of “GRaphs for Object-
Oriented software VErification”. The rational of GROOVE is that object-
oriented data structures consist of objects which keep primitive data and point
to other, referenced objects. Especially the latter implies that graphs would be
a suitable formalism for representing such data structures; as such, GROOVE
aims at providing modeling and verification techniques for graph transformation
systems.

Implementing the DMM++ approach involved the need to implement graph
transformation, which is far from being trivial. After careful consideration, we
decided not to implement an own graph transformation engine, but to use an
existing one. It turned out that from the available graph transformation tools,
GROOVE was the only one focusing on state space exploration and model
checking; additionally, many DMM++ concepts mapped nicely to GROOVE
concepts. Therefore, we are using GROOVE for this purpose.

In the next section, we will introduce the notion of graph transformation
GROOVE supports. Section 4.2 will then show how the state space of a graph
can be explored using different strategies, and 4.3 will investigate the model
checking capabilities of GROOVE. Finally, Sect. 4.4 will present the tool support
provided by GROOVE, of which DMM++ makes heavy use.

The following is based on the GROOVE version used by the DMM++ tool
support. In the meantime, GROOVE has seen quite some progress; for instance,
dedicated type graphs can now defined, and GROOVE provides support for
advanced abstraction techniques [172, 18, 169]. We do not explain those features
here; see [82] for a discussion of GROOVE’s current modeling and analysis
capabilities.

4.1 Graph Transformation in GROOVE

Graph transformation is a formalism where graphs are transformed by graph
transformation rules. The basic idea of graph transformation is pretty simple:
A graph transformation rule r consists of a left-hand graph GL and a right-hand
graph GR. Giving a host graph G, r matches G if a morphism from GL to G
can be found (i.e., if G contains GL as a subgraph). If this is the case, r can
be applied to G, basically meaning that the occurence of GL in G is replaced

25

CHAPTER 4. GROOVE

Figure 4.1: Example GROOVE host graph representing a Petri net.

by GR, resulting in a new graph G′. This implies that a node or edge which is
contained in both GL and GR will not be changed, a node or edge only contained
in GL will be deleted from G, and a node or edge contained only in GR will be
created in G.

The notion of host graphs GROOVE supports are directed graphs with bi-
nary, labeled edges. Nodes are not able to carry labels; however, they can
of course have self edges, and the labels of these edges can be displayed by
GROOVE as node labels for convenience.

Additionally, GROOVE nodes can be equipped with attributes. This is
modeled by special nodes which correspond to (primitive) attribute values such
as integers, booleans, or strings; an ordinary node n has an attribute with name
myValue and value 0 if n has an outgoing edge e with label myValue that has
as target node an attribute node representing the value 0. GROOVE supports
the datatypes String, int, real, and bool.

Let us consider an example GROOVE host graph, which is depicted as
Fig. 4.1. The graph represents a Petri net with three transitions and four places,
with two tokens on each of the very left places. Note that as mentioned above,
GROOVE displays a node’s self edges’ labels as node labels. The transition
nodes additionally have a name attribute of type string.

Let us now turn to the notion of graph transformation rules GROOVE sup-
ports. First of all, GROOVE does not use a left-hand and right-hand graph to
define a rule; instead, the single rule graph is annotated. For instance, let n
be a node which is contained only in the left-hand graph of a common graph
transformation rule, the effect being that this node will be deleted by the rule’s
application. In the case of GROOVE, node n will be contained in the (single)
rule graph and will be annotated del:. Similarly, a node annotated new: will
be created (corresponding to a node only being contained in the right-hand
graph).

GROOVE follows the Single-Pushout approach to graph transformations
[31] and supports non-injective matchings, but provides so-calledmerge-embargo
edges which will prevent the matching of two vertices connected with such an
edge to a single vertex in the state graph. Thus, GROOVE rules can be made to
match injectively by an exhaustive usage of merge-embargo edges. Additionally,
GROOVE allows to enable injective matching on the grammar level.

GROOVE allows to equip each rule of a GROOVE grammar with a priority:
If two rules with different priorities match the same state graph, only the rule
with higher priority can be applied to that graph.

26

4.1. GRAPH TRANSFORMATION IN GROOVE

Figure 4.2: Example GROOVE rule describing the semantics of a firing transi-
tion.

Within GROOVE rules, attributes can be used to influence a rule’s matching,
and attribute values can be computed. For the latter, a number of operations
on the above datatypes are provided.

The expressiveness of GROOVE rules is increased enormously by their sup-
port for universal quantified structures (UQS), which allow to define rules which
do not only treat the explicitly occuring nodes and edges, but all nodes and
edges matching a certain structure. The notion of UQS supported by GROOVE
is particularly powerful since it allows for nesting of UQS. See [168, 170] for more
details on GROOVE’s UQS semantics.

Our goal shall now be to give the Petri net model of Fig. 4.1 an execution
semantics. For this, we use a single graph transformation rule which is depicted
as Fig. 4.2 and defines the semantics of a firing transition. In the lower middle
of the rule, the static Petri net structure can be seen: a Transition with a
single source and target Place. Above the Places, Tokens can be seen which
differ in color and line shape. The colors and shapes are the concrete syntax of
GROOVE’s annotations: the Token to left (blue, thin dashed border) implies
that the node is to be deleted, and the Token to the right (green, thick solid
border) will be created by the rule. Of course, the same applies for the at edges
of those nodes.

The structures to the very left and very right of the rule indicate UQS: the
Places are annotated with ∀ and ∀>0, meaning that all source and target
places of the transition shall be matched. In addition, the Token nodes are
annotated with ∃, and that ∃ nodes are nested in their respective ∀ nodes. This
can be read as “For all Places, at least one Token must exist, and that token
will be deleted” (left side of rule).

Overall, the rule realizes exactly the desired semantics: It matches for
Transitions which carry at least one Token on all their source Places.
Application of the rule deletes one Token from each source Place and creates
one Token on each target Place of the Transition.

One of the main goals of GROOVE is to enable the analysis of systems of
graphs and graph transformation rules. Therefore, GROOVE allows to explore
the state space of a such a system; it is represented as a labeled transition system
(LTS), where host graphs are states, and transitions are applications of graph
transformation rules. This is of course also possible for the graph of Fig. 4.1 and
the rule of Fig. 4.2. However, since there only exists a single rule, the transition
system would not be very useful without investigating the graphs of the states.
Note that due to the overloading of “transition” in the context of Petri nets and
labeled transition systems, we will from now on only use the metaclass notation
Transition for the former.

We are now ready to explain the missing element of the rule of Fig. 4.2:

27

CHAPTER 4. GROOVE

Figure 4.3: Labeled transition system resulting from the graph of Fig. 4.1 and
the rule of Fig. 4.2.

the node labeled $1 is called a rule parameter : It results in the value of the
according node’s attribute (here: the name attribute of the Transition node)
to be displayed as part of the transition’s label. In our example, this means
that we can see from the transition system which transition has fired, without
inspecting the underlying state graphs.

The LTS resulting from our model and rule is depicted as Fig. 4.3. Due to the
concurrently flowing tokens, it is rather complex. As explained above, the tran-
sitions are labeled with the applied rule’s name, in which the Transition’s
name is encoded. The LTS has been computed by using the example graph as
the start graph. From that state on, the single rule has been applied for all
matches, resulting in new state graphs. That process has been repeated until
no new states are found.

Note that some transitions are labeled with more than one rule label. This
is because the according rule has been applied more than once for different
matches; however, all applications resulted in the same (i.e., isomorphic) state
graph.

The LTS of Fig. 4.3 shows all possible ways the Petri net of Fig. 4.1 can
execute. However, before we turn to the analysis of LTS in the next section, let
us introduce two more GROOVE constructs DMM makes use of.

First, besides the possibility of annotating nodes and edges to be deleted
or created, they can also be annotated with not:. This models a negative
application condition (NAC), i.e., structures which must not be contained in
the host graph for the rule to match. As a result, a rule graph matches a
graph if the non-NAC part matches the graph, and if the complete rule graph

28

4.1. GRAPH TRANSFORMATION IN GROOVE

Figure 4.4: Example GROOVE rule customFire describing the semantics of a
customized transition.

(including the NAC part) does not match that graph.
The second feature concerns typing. As mentioned above, the GROOVE ver-

sion used by the DMM tooling does not have explicit support for type graphs.
However, it provides limited typing support: A label can be prefixed with
type:, followed by the type’s name; this is possible in both host and rule
graphs. Additionally, a type hierarchy can be defined, which is a set of (unique)
type names and their inheritance relations to each other. The effect is that when
computing matchings, a rule node can not only be mapped to a node having
the exact same type, but also subtypes of the rule node’s type. For instance,
a type hierarchy could look as follows: A > B, C; B > C, D; E > F. The
semantics is that B and C are subtypes of A, C is a subtype of B, and F is a
subtype of E.

Let us complete our introduction to graph transformation in GROOVE by
extending the above Petri net example. We introduce a type CustomTransi-
tion as a subtype of Transition. Then, we define the semantics of the new
element by means of a second rule customFire, which is depicted as Fig. 4.4.

The new rule differs from the rule of Fig. 4.2 in three places. First, the
node in the very middle is now typed CustomTransition, making sure that
the node can not be mapped to an ordinary Transition. Second, the rule
contains a NAC: The left Token node (red, thick dashed) of the right Place
node makes sure that the rule can only match if the target Places of the
CustomTransition do not carry Tokens.

The third difference is more subtle: compared to Fig. 4.2, the node labels
of the customized rule of Fig. 4.4 are typed bold face. By that, GROOVE
indicates that these are not simple labels, but labels annotated type: (and
thus participating in the type hierarchy as explained above).

The new rule realizes the semantics of the new element. However, the basic
fire rule does also match if the new rule matches. This is because the new
rule’s graph is an extension of the basic rule’s graph. The only exception is the
CustomTransition type; however, due to the type hierarchy of Transition
and CustomTransition, the Transition node of the basic rule can also be
mapped to a state node typed CustomTransition.

In this example, the situation can be resolved by adding a NAC to the basic
rule which explicitly forbids to map the Transition node to a node typed
CustomTransition – the change is rather simple, and thus we do note show
the resulting rule. Note that we will use this mechanism later in this thesis to
realize rule overriding (Sect. 6.3.5).

Let us now make use of the two rules by changing the type of the “B”
Transition to the new CustomTransition. The resulting LTS is depicted
as Fig. 4.5. It is considerably smaller than the one of Fig. 4.3, the reason

29

CHAPTER 4. GROOVE

Figure 4.5: Labeled transition system resulting from the graph and rules as
described in the text.

being that some options of execution are not available any more. In particular,
CustomTransition “B” can not fire consecutively any more; Transition
“C” needs to fire before the second token can pass CustomTransition “B”.
This results in a smaller state space.

Now that we have a precise understanding of GROOVE and its notion of
graph transformation, let us investigate the analysis of the resulting LTS in the
next section.

4.2 State Space Exploration

We have seen above that GROOVE—given a start graph and a set of graph
transformation rules—can be used to compute the state space, i.e., all states
reachable from the start state by recursively applying the rules. It should be
noted that this is in fact a quite distinguishing feature: From the existing graph
transformation tools, only one other tool (AUGUR, see [121]) is capabale of
this task. The other tools can be used for linear exploration mainly. See [82]
for a comparison of existing graph transformation tools with special respect to
analysis capabilities.

GROOVE allows to explore a graph grammar’s state space in different ways.
The most simple ones are breadth-first and depth-first, which realize the well-
known graph exploration stategies. In the case of linear exploration, only one
transition will be followed per state. However, the resulting linear trace is deter-
ministic for a running instance of GROOVE; if the aim is to explore a random
path, the random linear exploration is the stratey of choice. Of particular in-
terest is the linear confluent exploration; the idea is that some rules can be

30

4.3. MODEL CHECKING GROOVE GRAMMARS

declared as being confluent (which roughly means that they will always result
in the same final graph, no matter in which order the rules are applied). Linear
confluent exploration follows each transition of every state found, except for
confluent rules: If more than one of those rules match a state, only one rule
is chosen and applied. Finally, a conditional exploration is available; here, a
certain rule is chosen as a termination criterion – states resulting from apply-
ing that rule will not be explored further, therefore restricting the size of the
explored state space.

Each of the above exploration strategies can be combined with an acceptor,
and the exploration can be configured to be interrupted as soon as the acceptor’s
condition has been fulfilled for a certain, configurable number of times. The
most simple acceptor is the final acceptor which accepts a state that does not
have any outgoing transitions. The check variant acceptor is bound to a certain
rule and accepts as soon as that rule is applicable; i.e., it stops exploration
before application of that rule, in contrast to the rule application acceptor which
accepts as soon as the bound rule has been applied.

4.3 Model Checking GROOVE Grammars

Using the exploration strategies and acceptors as described in the previous sec-
tion, GROOVE can compute the state space of a graph and transformation rules
in the form of a labeled transition system (LTS). In this section, we introduce
the model checking capabilities GROOVE offers for analyzing LTS. Before we
do that, let us give a brief introduction to temporal logic.

4.3.1 Temporal Logic
With software systems getting more and more complex, the need arose to verify
properties of such systems, for instance in the area of safety-critical systems. In
general, two kinds of such properties are of interest: safety properties ensure
that a system will never enter some (failure) state, whereas liveness properties
ensure that a system will—at some point in time—enter some desired state.

But how to formulate such properties? This is where temporal logic comes
into play, which has first been suggested by Pnueli [165]. Temporal logic allows
to express statements such as “I will always be hungry”, “I will eventually be
hungry”, or “I will be hungry until I eat something”.1

For this, temporal operators are defined. For instance, the G operator ex-
presses that something shall always be true (Generally), the F operator ex-
presses that something shall happen somewhere in the future (Future), and the
U operator expresses that some property p will be true until a property q holds.

Let us formulate our example properties in terms of temporal logic. For
doing this, we need to define two predicates: let h be true if I am hungry, and
let e be true if I eat something. Formulating the properties is then straight-
forward: The first translates to Gh, the second to Fh, and the last translates
to hUe.

Now, given an LTS we can use temporal logic to formulate properties about
the traces of the LTS, i.e., the possible pathes of execution through the LTS,
starting at the start state. The semantics of the above formulas is thus defined

1Examples from Wikipedia (http://en.wikipedia.org/wiki/Temporal_logic).

31

http://en.wikipedia.org/wiki/Temporal_logic

CHAPTER 4. GROOVE

on the traces. Let us again consider an example: A trace can be described
as a sequence of states, t := s0s1 . . . sn. An LTS gives rise to a number of
traces T , i.e., all traces through that LTS. Let p(s) be true if state s fulfills
property p (q similar). Now, the temporal logic formula Fp is true if and only
if ∀t ∈ T∃i ∈ {0, . . . , n} : p(si). The other two properties are formalized
similarly: Gp translates to ∀t ∈ T∀i ∈ {0, . . . , n} : p(si), and pUq is true if
∀t ∈ T∃i ∈ {0, . . . , n} : (j < i ⇒ p(sj)) ∧ q(si). Other temporal operators
(which we do not define here) are neXt (Xp if p holds in the next state) and
Release (pRq if q is either always true or until the first occurence of p). Note
that all above temporal operators consider the future; there are also operators
considering the past, which can however be expressed by combinations of the
future operators and are thus not considered here. Note also that X and U are
the fundamental operators of the above temporal logic, meaning that all other
operators can be expressed in terms of these two operators and the fundamental
operators of predicate logic ∨ and ¬.

We have seen that the above temporal logic operators are considering com-
plete traces, and that they only hold if all traces of an LTL fulfill the according
temporal logic formula. Therefore, the temporal logic dialect presented above
is called linear-time temporal logic (LTL). However, there are some interesting
properties which can not be expressed by LTL. For instance, sometimes we want
to express that from all states, a certain state can be reached. This can of course
be true for traces which do not actually reach that state. LTL is not able to
express such a requirement.

As a consequence, other temporal logic variants have been developed, an
important one being computation tree logic (CTL) [60]. Here, the idea is to
combine each temporal operator with a path quantifier, which can either be E
(there exists a path) or A (on all paths). This results in expressions such as
AGp, AFp, or A(pUq). In particular, we are now able to express the above
requirement: AGEFp is true if on all pathes, it is always true that there exists a
path such that finally p is true. Note, however, that as there are CTL expressions
which can not be expressed with LTL, the opposite is also true: for instance,
the LTL formula FGp can not be expressed by means of CTL.

Finally, the temporal logic CTL* unifies both LTL and CTL: all LTL and
CTL expressions can also be expressed by CTL*. See [61, 205] for in-depth
discussions of the relation of LTL and CTL.

4.3.2 The GROOVE Model Checker

The GROOVE tooling provides means to model check the labeled transition
systems representing the state spaces of start graphs and graph transformation
rules. Temporal properties can be expressed with both LTL and CTL.

However, GROOVE does not perform model checking about properties of
the state graphs of the LTS. Instead, temporal logic expressions are formulated
over the transition labels, i.e., about the applications of the rules. Note that
this indeed reveals knowledge about the states themselves: If an LTS contains
a transition (s, l, s′), we know that state graph s contains structures such that
the rule represented by label l has matched s.

Thus, we are now able to model check the labeled transition systems of
Figs. 4.3 and 4.5. For instance, let us make sure that Transition “C” fires

32

4.4. TOOL SUPPORT

Figure 4.6: Counter example for property AG(!fire(“A”)).

two times in both cases. The CTL expression to check is

AF(fire(“C”)&AXAF(fire(“C”)));

it makes sure that on all paths, transition label fire(“C”) occurs, and from that
state on, it occurs again on all paths.

Feeding the above CTL formula into GROOVE produces the same answer
for both LTS: “No counter example”. This is how GROOVE (and all model
checkers) answer a request for the validity of a temporal logic formula: If the
formula does not hold, the model checker provides a counter example, i.e. a
path starting from the start graph on which the property is violated. This
counter example can then be used to understand the reason for the system not
behaving as desired (assumed that the temporal logic expression is correct).
Since GROOVE did not find a counter example, we know that rule fire(“C”) has
indeed been applied two times, corresponding to the “C” Transition firing two
times.

Let us now model check the propertyAG(!fire(“A”)). Obviously, the property
does not hold for any of the two LTS, and GROOVE indeed reports counter
examples; the one for the LTS of Fig. 4.3 is depicted as Fig. 4.6. Note that all
states are marked which have an outgoing transition with label fire(“A”), which
indeed violate our property.

4.4 Tool Support

The GROOVE tool is developed at the University of Twente by Arend Rensink.
The implementation language is Java, thus, the tool can be run on basically any
platform. The pictures within this section have been created with the help of
GROOVE. GROOVE consists of the following components:

33

CHAPTER 4. GROOVE

Figure 4.7: Screenshot of the GROOVE simulator.

34

4.4. TOOL SUPPORT

• The GROOVE editor allows for the visual specification of GROOVE gram-
mars. In particular, state graphs as well as rule graphs can be edited.

• The GROOVE imager allows to automatically layout GROOVE graphs,
to display them (which is used in the editor), and to export those graphs
into various formats.

• The GROOVE generator takes a state graph s0 and a set of graph transfor-
mation rules r0, . . . , rn as input and computes a labeled transition system
(LTS), where s0 serves as the start state, and transitions are applications
of the rules (with which they are labeled).

• The GROOVE model checker component accepts LTL and CTL expres-
sions, evaluates them on the given LTS, and—if they do not hold–provides
a counter example.

• Finally, the GROOVE simulator combines all above components into a
single user interface which allows to explore transitions systems stepwise
by applying one of the (possibly many) currently matching rules and to
browse the resulting LTS.

Figure 4.7 shows a screenshot of the GROOVE Simulator. In the middle, an
LTS can be seen (it is the one of Fig. 4.3). To the bottom, some information
about the LTS is displayed. To the left, the rule and start state views are
located. The rule view shows the rules’ matches for the current state, which
is s3 (it is selected in the LTS view). To the right, the rule labels occuring in
the LTS are depicted; these can be emphasized or hidden for the sake of better
understandability of the LTS.

In addition to its graphical user interface, the GROOVE tool also provides
a Java API, which e.g. allows to load GROOVE grammars, generate LTS, and
model check temporal properties. The DMM++ tooling makes use of this API
at several places.

Summarizing, GROOVE is a powerful toolset for performing graph transfor-
mations with emphasis on computing the state spaces of graph grammars, i.e.,
a set of GROOVE graph transformation rules and an according start graph.
A state space can then be explored by means of model checking techniques,
for which GROOVE supports the temporal logic dialects LTL and CTL. The
DMM++ tooling makes heavy use of the GROOVE toolset as a graph transfor-
mation and model checking engine, which is achieved through GROOVE’s Java
API.

35

5
Dynamic Meta Modeling

The first paper concerning Dynamic Meta Modeling (DMM) has been published
as early as 2000 [63]. DMM has been inspired by Plotkin’s structural operational
semantics (SOS) paradigm [163]. Plotkin argued that the semantics of a com-
puter program can be expressed in terms of transition systems, where states are
states of execution of the program, and consecutive states of that program give
rise to transitions between the states of the transition system representing the
program’s semantics.

Plotkin suggested to express such semantics by means of operational rules
defined on the syntactic structure of the program as well as the data the program
works with: “The announced ’symbol-pushing’ nature of our method suggests
what is the truth; it is an operational method of specifying semantics based on
syntactic transformations of programs and simple operations on discrete data.”
[163, p. 20].

In [63], Engels et al. have incorporated this approach in the context of visual
languages whose syntax is defined by means of a metamodel (we have seen in
Sect. 3 that the UML is such a language). The idea is as follows: First, the syn-
tax metamodel is enhanced by concepts needed to express states of execution of
a model; the new metamodel is called runtime metamodel. Second, operational
rules are defined which work on instances of the runtime metamodel (i.e., run-
time models). A transition system representing a model’s semantics therefore
has runtime models as states and applications of operational rules as transitions.

This section is dedicated to pointing out the current state of DMM as defined
by Hausmann in his PhD thesis [96]. In the next section, we will explore the
goals and requirements put on DMM in more detail. Section 5.2 will then briefly
show the syntax and semantics of DMM specifications, and Sect. 5.3 will discuss
the benefits and drawbacks of the current state of DMM.

5.1 Goals of and Requirements on DMM

When using a visual modeling language such as the UML, every involved person
needs to have a clear understanding of the semantics (i.e., the meaning) of the
models created. Otherwise, the models will be source of misunderstandings,
and the benefits of using a visual modeling language will be nullified to a great
extent. However, the UML specification [158] does not foster such a clear un-
derstanding for a number of reasons: First, the UML’s semantics is expressed in
natural language which is obviously subject to human interpretation. Second,

37

CHAPTER 5. DYNAMIC META MODELING

the current version of the UML specification [158] consists of about 740 pages,
and the semantics information even of single language element is sometimes
spread over several parts (we have seen examples for this in Section 3.3).

Providing a language’s description in natural language has another severe
drawback: Such descriptions can not be processed automatically. This rules out
techniques such as automatic consistency checking of the semantics specification
or derivation of language implementations (e.g., a workflow engine executing
UML activities by means of interpreting the semantics description). Last but
not least, there is no way to prove that a manual language implementation is
consistent with the semantics specification.

Consequently, Hausmann requires that a semantics specification language
must be formal,1 precise, and analyzable, thus eliminating the drawbacks dis-
cussed above.

Additionally, the target audience of a semantics specification should obvi-
ously be able to understand that specification. In the case of the UML, Haus-
mann identifies two user groups: language engineers, e.g., the people who have
created the UML, and advanced language users, i.e., users who “have a deeper
interest in its [the UML’s] inner workings, e.g., academics, tool builders, writers
of UML books, UML consultants, and generally people who employed UML in
such a breadth and depth as to be aware of the detailed problems it comprises”
[96, p. 21].

As a result, Hausmann requires a semantics specification language to be
highly understandable for advanced language users.

One advantage of natural languages is their flexibility. For instance, some
parts of the UML specification are descriptive, while others are operational;
some explanations are on a rather abstract level, while others are much more
concrete. The actual usage of natural language depends on what is appropriate
in the particular context.

Accordingly, the resulting requirements are that a semantics specification
language must be adequate and universal.

5.2 Dynamic Meta Modeling

In this section, we will see how DMM is defined, and why its definition ad-
dresses the requirements stated above. We first provide an overview of DMM
in Sect. 5.2.1, followed by a more detailed investigation in Sect. 5.2.2.

5.2.1 Overview
According to [96], a DMM specification consists of three parts, each of which is
briefly discussed in the following sections. We start with the runtime metamodel
in Section 5.2.1.1, which adds runtime information to the metamodel defining
the language’s syntax. Section 5.2.1.2 then discusses the relation between syntax
and runtime metamodel, which can be defined by means of meta relations, and
Section 5.2.1.3 describes how the actual behavioral semantics of the language
is defined by means of operational rules. Finally, Section 5.2.1.4 shows how a
DMM specification can be used to compute transition systems which describe

1Note that we are only giving intuitions for the requirements Hausmann identified; for a
more thorough discussion, please refer to Sect. II.2.4 of [96].

38

5.2. DYNAMIC META MODELING

Syntax Definition

Metamodel

Semantics Definition
Runtime

metamodel
Graph trans‐

formation rules
typed
over

Expression

Model

instance of

semantic
mapping

Transition System
Runtime
model

instance of conforms to

M2

M1

conforms to

Figure 5.1: Overview of DMM (after [96, p. 42]).

the complete behavior of the according models. An overview of DMM is provided
as figure 5.1.

5.2.1.1 Runtime Metamodel

As we have already seen in Section 1.1, the syntax of the UML is defined by
means of the UML metamodel. However, that metamodel does not contain any
information concerning the execution of behavioral models. For instance, we
have seen in the last chapter that the semantics of UML activities is based on
the concept of token flow, but the UML metamodel does not contain a Token
concept. As such, instances of that metamodel can never contain tokens and
thus cannot express states of execution of an activity.

This is where the runtime metamodel comes into play – it contains all con-
cepts necessary to actually execute a model. An example runtime metamodel
which has been provided by Hausmann as part of a case study is depicted
as Fig. 5.2. It shows several concepts which are needed to describe states of
execution of an activity. For instance, to the bottom left we can see that two
kinds of Tokens exist: ControlTokens model simple flow of control, whereas
ObjectTokens are used in the case of object flow; consequently, the latter kind
of tokens has a relation to a single Object representing the actual data flowing
through the activity. The Offer concept is used to model the fact that “. . . a
source node can only offer tokens to the outgoing edges, rather than force them
along the edge” [158, p. 327].

The reader familiar with the UML metamodel of activities will notice that
the runtime metamodel of figure 5.2 contains the concepts of Node and Edge,
whereas in the UML metamodel, we have ActivityNode and ActivityEdge
classes [158, p. 307]. Moreover, in the UML metamodel, the class Activity-
Edge is abstract and is refined by classes ControlFlow and ObjectFlow,
which do not appear at all in the runtime metamodel. The reason for this is
that “semantically, . . . there is no difference in how the different kinds of edges
treat the passing tokens. We do thus integrate both concepts into a single class”
[96, p. 240].

Concluding, a DMM runtime metamodel contains all concepts needed to ex-
press states of execution of the target language’s models. It usually contains
concepts of the syntax metamodel and runtime enhancements, but is not nec-

39

CHAPTER 5. DYNAMIC META MODELING

Token
{abstract} Offer

Edge

ControlToken

ObjectToken

Node
{abstract}

ActivityElement
{abstract}

1

*

carries

ValueSpecification

guard0..1

target incoming
*1

source

outgoing
*

1

1..*
base *

Object
(from Core Structure)

content

reference*

1

Activity

*

1

OrderableElement
(from Ordering)

Root
(from Ordering)

Behavior
(from Core Behavior)

BehaviorExecution
(from Core Behavior)

ActivityExecution

*

1

**
spawnpoint

Figure 5.2: Excerpt of the runtime metamodel (from [96, p. 229]).

essarily an “enhanced version” of the syntax metamodel.2 Thus, in the next
section we will investigate how syntax and runtime metamodel are related to
each other by means of meta relations.

5.2.1.2 Meta Relations

In the last section, we have seen that instances of the runtime metamodel cor-
respond to states of execution of models (i.e., to instances of the syntax meta-
model). But how are the two metamodels related to each other? This question
is not only relevant on the type level, but also on the instance level. As such,
a technique is needed which allows to define relations between metamodel ele-
ments on the type level, and to instantiate these relations on the instance level.
This is what meta relations can be used for.

Let us make this more clear using our running example of UML activities. An
excerpt of the meta relations as defined by Hausmann [95] is depicted as Fig. 5.3.
In the last section, we have seen that the UML concept of ActivityEdges
is reflected by the runtime concept Edge. Now, we not only want to be able
to express this very fact, but, we also need to make sure that for a concrete
UML activity containing several ActivityEdge objects, we keep track of the
according Edge object. Relating the metaclasses happens on the type level, and
relating the actual instances of the metaclasses happens on the instance level.

To understand how this is achieved technically, let us briefly consider the
metamodel of meta relations which is depicted as figure 5.4, and which reveals
that the elements actually used to model relations (metaclasses Relation and
Tuple) both inherit from Classifier. As such, relations can be defined
on the type level by linguistically instantiating these concepts, and applied to
concrete models by ontologically instantiating them (see [8] for more information
on linguistic and ontological instantiation).

2In Section 7.2, we will show an alternative way to define a runtime metamodel by deco-
rating the syntax metamodel with runtime information.

40

5.2. DYNAMIC META MODELING

B.5. Package Core Activities 243

����

����

�	
���������	����

��������	

����

������ �

	 ������

��
���� �

	

��������

���	�������������
�������������������������������������

�����
����������

��������

������������

������������

�	
���������	����

�������	�����

������
�

�

������

�! "#$���
�!

	
�����

��

�

������� �

�

�����
�

�

������

�

�

����
 ������

	
����������� 	

	 �
����

���	����
��������������������

Figure B.22: Semantic mapping appings of the Core Activities package

B.5.11 Mappings

The mappings of the Core Activities package are depicted in Fig. B.22.

AtiRep - The Activity Replication Relation The Activity Replication Rela-
tion has no intrinsic details which haven’t been addressed by the more general
Behavior Replication Relation. It only serves to ensure that Activities are in-
deed mapped to Activities and to no other form of behavior.

NodeRep - The Node Replication Relation

context NodeRep

domain=scope.domelement.node

range=scope.ranelement.Node

inv::

domelement.name=ranelement.name

Note that the syntactic end of this Relations allows for Nodes without a corre-
sponding ActivityNode. This is necessary to account for differences between the
semantic and the syntactic domain (treatment of control inputs and implemen-
tation of fork behavior).

EdgeRep - The Edge Replication Relation

context EdgeRep

domain=scope.domelement.edge

range=scope.ranelement.Edge

inv:

frommap.domelement=self.domelement.source

Figure 5.3: Excerpt of the UML activity meta relations (from [96, p. 243]).

56
C
h
ap

ter
III.

M
eta

R
elation

s

Classifier
(from Core::Constructs)

RelationEnd

*

/source 1

*

/target1

-RelEnd*

-type

1

-relation

1

-domain 1

-relation

1

-range 1

DirectedRelationship
(from Core::Constructs)

NamedElement
(from Core::Constructs)

-lower:Integer

-upper:UnlimitedNatural

Multiplicity

(from Core::Constructs)

0..1

1

Tuple -tuple

*

-element

*

-/isOnto:Boolean

-/isTotal:Boolean
-/isFunctional:Boolean

-/isInverseFunctional:Boolean
-/isInjective:Boolean

-/isBijective:Boolean

Relation

-isComposite:Boolean

Property
(from Core::Constructs)

Association
(from Core::Constructs)

2..*

-memberEnd

0..1

*

0..1

F
igu

re
III.13:

M
eta

m
o
d
el

d
efi

n
in

g
th

e
ab

stract
sy

n
tax

of
M

eta
R

elation
s

Figure 5.4: Metamodel of the meta relations language (from [96, p. 56]).

41

CHAPTER 5. DYNAMIC META MODELING
B.6. Package Buffernodes 247

����������	
��	��	��	���	�����������	�������

���������	
�
���������	

����������
�
��
��

�������
�

��
��

�����
�
��
��

�����
�
��
��

���

��
��

�

�����������
������

��
��

Figure B.26: DMM rule describing creation of tokens on an initial node

createToken(ae:ActivityExecution) The rule shown in Fig. B.26 describes the pro-
cess of creating a new control token and a corresponding offer at an initial
node. This rule is invoked once for each initial node when an activity
execution starts. The ActivityExecution passed as the parameter forms
the context for the newly created token.

Semantics Initial nodes emit their offer into the activity graph, thereby ini-
tializing the behavior expressed by the activity.

Differences to standard UML No changes.

B.6.3 Class ParameterNode

Description A ParameterNode holds the tokens for objects which are passed
as parameters to the activity or which leave the activity as parameters.

Package ParameterNode is defined in the Buffernodes package.

Associations

Parameter [1] The parameter which the ParameterNode represents.

Constraints

context ParameterNode

inv:

not(self.type->isEmpty())

self.type=self.Parameter.type

ParameterNodes are always be typed. The type of a parameter node must be
the same as the type of the parameter it represents.

Figure 5.5: Example DMM rule initialNode.createToken() (from [96, p. 247]).

Note that meta relations can only be a base for an executable transfor-
mation from syntax models into runtime models – this can easily be seen
in Fig. 5.3: The meta relation Ati2AE connects the Activity metaclass
with the runtime concept ActivityExecution. However, the cardinality
of ActivityExecution in this relation is *. A language giving rise to an
executable model transformation would obviously need to be more precise at
this place.

Concluding, meta relations are a pragmatic and visual means to specify the
relations between elements of the syntax and the runtime metamodel. They can
be used to define these relations on the type as well as the instance level. Meta
relations are not executable.

5.2.1.3 Operational Rules

So far, we have defined the semantic domain of our language by means of the
runtime metamodel, and we have related the syntax and the runtime metamodel
by means of meta relations. The next step is to define the language’s behavior.
For this task, DMM uses operational rules. The idea is that each state of
execution of a model corresponds to an instance of the runtime metamodel; the
operational rules basically describe how these instances change through time
(and, thus, lead to new instances).

To get a first impression of DMM rules, let us again consider an example.
Figure 5.5 shows an example DMM rule. Note first that the rule’s concrete
syntax is visual, therefore making it relatively easy to understand the rule’s
semantics. In fact, Hausmann has re-used the visual appearance of UML com-
munication diagrams to further strengthen DMM’s understandability, as these
kind of diagrams is expected to be well-known to advanced language users.

However, some elements are annotated with the non-UML stereotype {new}.
This is the actual behavior of the rule: If it is applied, it will create Token and
Offer objects and associate them with the according elements. In other words:
After application of the rule, the InitialNode object will carry a Token and
an Offer which are now ready to flow through the activity.

42

5.2. DYNAMIC META MODELING

Technically, DMM rules are typed graph transformation rules as we have
seen them in Chapter 4. Just like GROOVE the concrete syntax of DMM rules
merges the two graphs into one single graph; DMM uses the stereotypes {new}
and {destroyed} to annotate the according nodes and edges.

Note that DMM does not provide a mechanism that allows to let one rule
refine another rule, be it within a single ruleset or across rulesets.

Concluding, DMM’s operational rules have a visual, communication-diagram-
like concrete syntax and are therefore precise yet easily understandable. They
manipulate instances of the runtime metamodel which correspond to states of
execution of the model at hand.

5.2.1.4 Labeled Transition Systems

One of the most important goals of creating a DMM specification for a visual
modeling language is to reason about models of that language in a formal and
thus automatable way. In this section, we will briefly discuss how this can be
done.

The first step consists of translating the abstract syntax of the model to be
analyzed into an instance of the runtime metamodel. For this, the meta rela-
tions are used: As we have seen above, they describe which syntax metamodel
concepts are mapped to which runtime metamodel concepts.

Now, a labeled transition system (LTS) is defined as follows: The runtime
model serves as the start state of the LTS. On that state, all matching rules are
applied, giving rise to a set of new states. These states are added to the LTS,
and they are connected to the initial state by means of a directed edge which
is labeled with the applied rule’s name. Then, the process is repeated with the
newly found states until no new states are found. The resulting LTS contains
the whole behavior of the model under consideration.

5.2.2 Language Definition
Now that we have a given a brief overview of the DMM approach, we will inves-
tigate the DMM semantics specification language in more detail. We have seen
above that the backing formalism of DMM are graph transformations; conse-
quently, in Section 5.2.2.1 we start with a discussion of the different types of
graphs DMM makes use of, followed by an introduction to the notion of typed
graph transformation rules of DMM. Section 5.2.2.2 will then investigate more
advanced features of DMM rules such as negative application conditions (NAC)
and universally quantified structures (UQS). Finally, Section 5.2.2.4 will present
Hausmann’s ideas on translating DMM specifications into graph grammars suit-
able for the graph transformation tool GROOVE [166]. This section basically
is a summary of parts of Chapters IV and VIII of [96].

Note that our goal is not to provide a comprehensive definition of DMM
within this section. The interested reader is pointed to either [96] or [189] (the
latter fixes a couple of minor flaws contained in Hausmann’s original definitions).

5.2.2.1 Graphs in DMM

DMM specifications employ three different, but related kinds of graphs: Type
graphs are used as a mathematical model for the representation of metamodels,

43

CHAPTER 5. DYNAMIC META MODELING

instance graphs represent instances of metamodels (i.e., models), and rule graphs
are used within the graph transformation rules.

DMM type graphs basically follow the well-known definitions of typed graphs
as can e.g. be found in [29, 9]: A type graph consists of a set of nodes, a set of
directed edges, an injective labeling function associating nodes with type names,
a set of inheritance edges, a set of abstract nodes, and a set of datatype nodes.

DMM instance graphs as well as DMM rule graphs both consist of a simple
graph and a typing morphism from the graph’s nodes into a DMM type graph’s
nodes.

Let us investigate some of Hausmann’s definitions for the sake of getting an
impression of how he defined DMM. We start with the DMM Type Graph:

Definition 1 (DMM type graph) A graph GT G = (V,E, lv, I, A,DT)
is called a DMM type graph, where V is the set of nodes, Σ is some alphabet,
E ⊂ V ×Σ×Σ×Σ×V is the set of labeled edges, lV ⊂ V → Σ is an (injective)
labeling function, I ⊂ V × V is the set of inheritance edges which must not
contain circles, A ⊂ V is the set of abstract vertices, and DT ⊂ V is a set of
datatypes.

This definition formalizes quite a few features of UML class diagrams: Data-
types are represented by DT , classes are represented by V \DT (and are addi-
tionally contained in A if they are abstract), and associations are represented by
E; class v2 ∈ V is a subtype of v1 ∈ V iff there exists an edge (v1, v2) ∈ I; a class
v has an attribute of datatype d ∈ DT if there exists an e ∈ {v}×Σ×Σ×Σ×{d}.
The three labels carried by an edge refer to the two roles and the name of the
according association or attribute.

A labeled graph can now be typed over a type graph by means of an edge-
label-preserving morphism or elp-morphism.

Definition 2 (Elp-morphism) An elp-morphism is a relation between two
graphs G,H:

G ∼elp H :⇔

∃m : V G → V H ∀(v1, l1, l2, l3, v2) ∈ EG : (m(v1), l1, l2, l3,m(v2)) ∈ EH

Sometimes the function m is also called elp-morphism.

The idea is that for every edge in G there is a corresponding edge in H which
connects “the same” vertices (i.e., the vertices of H to which the vertices of G
are mapped). This can now be used to define DMM rule and instance graphs.
We only show the (slightly simplified) definition of the DMM rule graph here:

Definition 3 (DMM rule graph) Let GT G be a DMM type graph. A DMM
rule graph GR = (G, type) is a graph G = (V,E, lV) with a typing elp-morphism
type between G and GT G.

The above definition abstracts from the fact that a type graph as defined
above distinguishes abstract from non-abstract types and additionally contains
inheritance relations. In Hausmann’s actual definition, this is dealt with by
flattening the type graph into an abstract (concrete) closure, over which the
rule (instance) graphs are typed.

Based on that, a DMM rule is defined as follows:

44

5.2. DYNAMIC META MODELING

Definition 4 (DMM rule) A DMM rule r = (L,R) consists out of two DMM
rule graphs L and R, where L and R are called left-hand and right-hand graphs.

At this definition, Hausmann slightly varies the common definition of graph
transformation rules, where a morphism is used to “connect” vertices being
contained in both L and R. Instead, he assumes that L and R are defined over
a common set of vertices.

Now, a DMM rule r = (L,R) is said to match a DMM instance graph G if
there exists an injective elp-morphism m from L to G. If a DMM rule matches
a DMM instance graph, the rule can be applied, giving rise to a new graph G′.
The basic idea is that for each vertex v ∈ L \R , m(v) is removed from G, and
for each vertex v ∈ R \ L, m(v) is added to G. Edges are treated similarly: if
one or both vertices of an edge are in L \R, the edge is removed, and if one or
both vertices of an edge are in R \ L, the edge is added. The resulting graph is
G′.

Finally, given a set of DMM rules r0, . . . , rn and an initial DMM instance
graph G0, a transition system can be computed as follows: every rule ri which
matches G0 is applied to G0, leading to new DMM instance graphs G1, . . . , Gm.
This is repeated for all newly found DMM instance graphs until no new graphs
are found. Note that the resulting transition systems can be of arbitrary size
(even infinite).

5.2.2.2 Advanced Features

In addition to the formalization of DMM rules, instance graphs etc., DMM
supports a number of additional features which we want to briefly present within
this section.

Negative Application Conditions In many situations it is useful to not
only describe which structures must exist in an instance graph for a DMM rule
to match, but also to describe structures which must not exist for that rule to
match. For this, DMM supports the concept of negative application conditions
(NACs). A NAC is an extension of the left-hand graph of a rule. A DMM rule
r = (L,R) can have several NACs N0, . . . , Nn. If this is the case, that rule will
only match an instance graph G if there exists an injective morphism from L
to G, and if for all NACs Ni, no injective morphism from Ni to G exists. More
information on NACs can be found in [96, p. 77].

Universally Quantified Structures Another quite common use case is that
one wants to treat all vertices of a certain kind in the same way. For instance,
the semantics of UML activities we have developed contains a rule that creates
a token on each InitialNode if the according activity is started.

In many cases, such behavior can be realized “manually”: In our example, we
could have provided a rule which would add a token to an InitialNode if that
node does not yet carry a token. That rule would match and be applied over and
over until all InitialNodes indeed carry a token. Another approach—which
gives more control to the language engineer—would be to use rule invocations
(see below) for that purpose. However, these approaches have two major draw-
backs: They unnecessarily increase the resulting transition systems, and they
tend to complicate the resulting DMM rulesets.

45

CHAPTER 5. DYNAMIC META MODELING

To cope with that, Hausmann has added basic support for universal quan-
tified structures (UQS) to DMM: Only vertices can be marked as UQS – the
vertices’ adjacent edges then implicitly belong to that UQS. A rule can have
more than one UQS. If vertices marked as UQS are directly connected by an
edge, they form a single UQS. A rule containing one or more UQS matches the
maximum number of elements of the graph under consideration which fulfills
the rules’ conditions.

Technically, rules containing UQS are unfolded to a number of plain graph
transformation rules, each rule matching a fixed number of elements. We will
explain this in more detail in section 5.2.2.4. More information on UQS can be
found in [96, p. 79].

Rule Invocation One challenge when creating DMM semantics specifications
is that many language engineers are not used to working with rule-based sys-
tems. The main difference is that in these systems, one for instance can not
specify an explicit order of execution of rules; instead, the rules need to be
designed such that they only match if it “makes sense”. DMM improves on
this situation by giving the language engineer a control mechanism called rule
invocation.

This means that DMM rules have the possibility to invoke other rules. These
(invoked) rules can only match if they are indeed invoked: Triggers3 are used
to activate them. DMM therefore provides two kinds of rules:

• Bigstep rules
These rules do not need to be invoked; they basically act as “traditional”
graph transformation rules, but may invoke smallstep rules.

• Smallstep rules
These rules need to be invoked by a bigstep rule or another smallstep rule.
They can not match without having been invoked.

The invocation mechanism of DMM enhances “normal” rules with a sequence
number (in case several rules are invoked within one rule), a context node on
which a rule is invoked, and a number of parameter nodes which can be passed
to the invoked rule. We will learn more about rule invocation in Sect. 5.2.2.4.

Premise Rules The concept of rule invocation can be seen as an extension
to the right-hand side of a rule: The effect of applying the rule is spread over
several rules, each of them being smaller and therefore easier to understand and
to maintain.

Premise rules are an extension to the left-hand side of a rule. If a rule r
invokes a premise Rule p, r can only match if the structures contained in r and
p do exist in the state graph. Thus, the premise rules invoked by r need to be
merged into r, resulting in a “plain” DMM rule r′. The advantages of premise
Rules are similar to those of smallstep rules: First, they allow for smaller left-
hand sides of rules; second, premise rules can be invoked by several other rules
and thus allow for decomposition in the object-oriented sense.

3A trigger is a vertex having a special purpose, e.g. enabling a certain rule; the rule can
only match if the trigger is contained in the graph. Triggers have been introduced in [80].

46

5.2. DYNAMIC META MODELING

fork.getOffer()*

in:Edge fork:
ForkNode e:Edge

o:Offer
{new}
carries{destroyed}

target

first
spawnOffer(e)

carries :Offer

carries

source

:Edge
P_canCarry(o)

Figure 5.6: Example DMM rule fork.getOffer()* (from [96, p. 261]).

5.2.2.3 Visual Representation of DMM Rules

We have seen above that DMM rules closely follow the visual appearance of
UML communication diagrams. However, the rule introduced as Fig. 5.5 on
page 42 did not contain any of the advanced features of DMM. In this section,
we want to briefly investigate the visual appearance of those features.

Fig. 5.6 shows a DMM rule which makes use of all of these concepts:

• Negative application conditions are annotated with a “stop sign”. An
example of this is the Offer node to the rule’s right bottom.

• Universal quantified structures are drawn as multi-objects (see the Edge
object to the rule’s upper right).

• Invocations of smallstep rules are drawn as arrows pointing to the invo-
cation’s target node, and labeled with the invoked rule’s name. Addi-
tionally, parameters can be passed to the invoked rule, which are refer-
enced by means of the parameter node’s name. See the arrow labeled
spawnOffer(e) pointing to the ForkNode object.

• Finally, Invocations of premise rules are drawn just like invocations of
smallstep rules, but their label contains the prefix “P_”.

5.2.2.4 Automatic Application of DMM Specifications

We have seen in the last sections that the DMM semantics specification language
is completely defined formally. This has the benefit that the semantics of DMM
specifications themselves is unambigiuos. A language engineer can therefore use
a semantics specification for a language such as UML activities as a reference
to figure out the precise behavior of UML activity models.

However, this usage has strong limitations – due to the complexity of the task
at hand (the semantics specification of UML activities a provided by Hausmann
contains 88 rules and still only covers about 60% of the language), only small
examples can thoroughly be investigated. Therefore, an automatic application
of DMM specifications is needed.

47

CHAPTER 5. DYNAMIC META MODELINGVIII.3. Translation of DMM Specifications into GROOVE Specifications 183

Concept DMM GROOVE

Node

Edge

Table VIII.1: Correspondence of graph concept in DMM and GROOVE

behavior, we need to explicitly disallow injective matchings in all GROOVE
rules: All nodes in a rule graph that have either identical types or where one is
a supertype of the other need to be connected by merge embargo edges.

Translation of Edges

Fundamentally, each DMM edge is translated into a corresponding GROOVE
edge, i.e., an edge which runs between the translated DMM nodes.

GROOVE does not support the threefold label structure as defined for DMM.
Encoding the DMM matching concept correctly would have necessitated a
tripling of edges, creating three separate GROOVE edges (if all label compo-
nents were used) for each DMM edge. We decided to use a simpler approach
and fixed a single label for each edge in the DMM type graph.

VIII.3.2 Encoding of Rules

The rule notions of GROOVE and DMM are very close, thus all elements of
rdel are marked with ”del:“ in GROOVE, elements from rnew with ”new:“, and
elements from NACs with ”not:“ (cf. Tab. VIII.2).

The rule signature of the DMM rule becomes the file name under which the
GROOVE rule is stored. As the asterix character ”*“, used in DMM to indicate
big-step rules, is not a legal character for filenames under Microsoft Windows,
it is replaced by the hash character ”#“.

Encoding UQS

Universally Quantified Structures pose big problems for the rule translation.
Similarly to the unfolding procedure formalized in Subsect. IV.6.7, a DMM
rule with a universally quantified elements needs to be translated to multiple

Figure 5.7: Graph concepts in DMM and GROOVE (from [96, p. 183]).

Since the backing formalism of DMM are graph transformations, Hausmann
provided the sketch of a translation of DMM specifications into GROOVE
grammars. The general idea of translation is straight-forward: each DMM
node (edge) is mapped to a GROOVE node (edge). However, the notion of
graph transformation used by DMM and GROOVE differs in quite a few de-
tails. Therefore, Hausmann needed to map certain DMM features to constructs
available in GROOVE.

The first and most important distinction is that GROOVE4 did not support
the typing of graphs and graph transformation rules. Therefore, the typing
information had to be added to state and rule graphs as follows:

• Each rule node carries a self-edge with the name of the node’s concrete
type.

• In the case of state graphs, each state node is equipped with self-edges for
each type of that node. This makes sure that a rule node can be matched
to a state node even if the state node’s type is a subtype of the rule node’s
type (see Fig. 5.7 for an illustration).

Despite that, the translation of the basic graph transformation features such
as node/edge creation and deletion is rather straight-forward: in GROOVE, the
labels of elements to be created/deleted are prefixed with new:/del:.

The translation of DMM’s negative application conditions is again simple:
the labels Nodes/edges belonging to a NAC are prefixed with not:. Also rather
straight-forward is the translation of invocations of premise rules: Since these
rules are an extension of the left-hand graph of the invoking rules, the premise
rules are merged into the invoking rules during translation.

Translating the universal quantified structures, however, is more compli-
cated. Since at the time of writing of Hausmann’s PhD thesis, GROOVE did
not provide any support for UQS, Hausmann decided to unfold those struc-
tures: For every UQS contained in a DMM rule, a number of GROOVE rules
are created, each of which taking care of a particular number of elements of

4At the time Hausmann was writing his PhD thesis.

48

5.2. DYNAMIC META MODELING

that UQS. Since there is no upper limit for the number of occurences of a par-
ticular structure, the maximum number of occurences has to be fixed during
translation.

Let us illustrate the latter with a simple example: The DMM rule fork.-
getOffer()* we have seen as Fig. 5.6 on page 47 contains a single UQS (the
Edge object in the rule’s upper right corner). The translation performed by
Hausmann as part of his PhD thesis results in four GROOVE rules handling
the cases where zero, one, two, and three occurences of edges would appear in
the state graph. In other words, the resulting GROOVE grammar has been
created with an upper limit of three for the treatment on UQS.

The drawbacks of this approach are three-fold. First, and most important,
the resulting DMM specification is not able to deal with models with more
than three edges. Second, the resulting GROOVE rules are rather difficult to
understand. Third, if a rule contains more than one UQS, all combinations of
numbers of elements have to be contained in the GROOVE grammar. As such,
if n is the upper limit for UQS treatment, and if a rule contains m UQS, the
translation of that single DMM rule will result in nm GROOVE rules.

Finally, the concept of invocation of rules has to be translated. For this,
Hausmann has introduced an explicit invocation stack which is part of the
GROOVE state graphs.

• Bigstep rules can only match if the stack is empty, i.e., if no smallstep
rules are currently to be executed. If a bigstep rule does not contain any
invocations, the invocation stack remains empty.

• A smallstep rule can only match if a node corresponding to that rule is
on top of the stack. If this is the case, application of the rule will (besides
the “actual” changes of the rule) remove that node from the stack.

• If a rule (be it a bigstep or smallstep rule) contains invocations, an In-
vocation node is pushed onto the stack for each of these invocations.

An example invocation stack is depicted as Fig. 5.8. In that state, a smallstep
rule with name “do” has been invoked. Since the invocation stack is not empty
(i.e., the invocation on top of the stack is not the “_bottom” invocation), no
bigstep rule can match; instead, only the “do” rule can match. The context
node of the invocation is connected to the invocation node by means of a self
edge, and the rule’s parameters are connected by means of param edges.

Fig. 5.9 gives an overview of the mapping of DMM application control con-
cepts to GROOVE rules. At the top, we see how a new invocation of rule
“make” is pushed on top of the stack. Below we see that a smallstep rule can
only match if its corresponding Invocation node is on top of the stack, and
that application of the rule will remove that node from the stack and activate
the next invocation on the stack (which might be the “_bottom” invocation).
A bigstep rule has an empty invocation stack in its application context. Finally,
the invocation of a premise rule results in a GROOVE rule where the premise
rule’s structure has been merged into the invoking rule.5

5Note that the premise rule translation contains an error: The R node is neither contained
in the invoking nor in the invoked rule.

49

CHAPTER 5. DYNAMIC META MODELING
VIII.3. Translation of DMM Specifications into GROOVE Specifications 185

Figure VIII.6: Example state of the invocation stack

The suitable construction here is the explicit modeling of the invocation stack
in the state graph. Each state graph contains a special singleton node called
DMMSystem. Attached to this node are a number of invocation nodes, each of
which signifies an open invocation in the system in this state. Each invocation
node carries three pieces of information: A label with the name of the operation
to be invoked, a self edge pointing to the node the rule was invoked upon,
and a (possibly empty) set of param edges to nodes which have been passed as
parameters at invocation time. Fig. VIII.6 illustrates the situation where the
operation a.do(b:B) has been called on the node a1 and the node b2 has been
passed as a parameter.

Invocation nodes form a linked list with the DMMSystem keeping a pointer to
the first element and each invocation linking to the next open invocation. The
bottom invocation is a special element which marks the empty stack and allows
for uniform handling of the stack (i.e., there is always an invocation to push
down).

When translating start graphs, a single DMMSystem node needs to be added to
the translated graph. Attached to this by a first edge is the bottom invocation
node. If the start state requires an open invocation to start (i.e., the state itself
is not sufficient to initiate the behavior) additional Invocation nodes can be
queued in the DMMSystem.

Rules manipulate the DMMSystem stack by either enqueuing new invocations
or fulfilling existing ones:

Translating Invocations

If a DMM rule specifies a rule invocation, the corresponding GROOVE rule must
ensure that an invocation node is being created and pushed on the DMMSystem

Figure 5.8: Example state of the invocation stack (from [96, p. 185]).

5.3 Evaluation of DMM’s Current State

We have seen in the last sections that DMM as defined by Hausmann certainly
has its benefits:

• It is defined completely formally, using the well-suited formalism of graph
transformations. This ensures that the semantics of DMM itself is well-
defined, which of course is an important requirement on semantics spec-
ification techniques. Additionally, DMM specifications can (at least in
theory, see below) be analyzed, and even proofs (e.g. about a certain
specification fulfilling some requirements) can be performed.

• By reusing UML communication diagrams, the concrete syntax for DMM
rules developed by Hausmann can be expected to be easily understand-
able for advanced language users, i.e., users familiar with the language’s
metamodel.

• The description of a translation of DMM specifications into GROOVE
grammars given in [96, Ch. 8] points the way towards tool support based
on the DMM concept.

As such, DMM has found quite some attention in the academic community.
For instance, O’Keefe [160] has investigated different possibilities for giving the
UML a formal semantics; he—remarkably—concludes that DMM might be the
most appropriate formalism for this task [160, p. 179]. Another example is
the work of Baresi et al. [14], which has—according to their own words— been
inspired by DMM. Finally we want to mention the work of Chiaradia and Pons
[26], who suggest to improve the definition of the OCL by means of applying
design patterns to the OCL metamodel, and by specifying the evaluation of OCL
constructs by means of sequence diagrams (which are formalized by means of
DMM).

50

5.3. EVALUATION OF DMM’S CURRENT STATE

188 Chapter VIII. Automatically Applying DMM Specifications

Concept DMM GROOVE

Invoc.

Small-
Step

Big-
Step

Premises

Table VIII.3: Correspondence of application control concepts in DMM and
GROOVE

Figure 5.9: Realization of application control concepts in GROOVE (from [96,
p. 188]).

51

CHAPTER 5. DYNAMIC META MODELING

However, the definition of DMM as provided by Hausmann focuses on con-
cepts, but not so much on applications. This is reflected in [96] in many ways:

• The basic graph transformation theory Hausmann used to define DMM
does not translate well into tool support. This is for a number of reasons:

– Hausmann did not provide an explicit abstract syntax for DMM spec-
ifications.

– The meta relations, which are used to relate syntax and runtime
metamodel, are not executable (see Section 7.2). As such, in many
cases they can only be a base for a model transformation which auto-
matically translates instances of the syntax metamodel into instances
of the runtime metamodel.

– Hausmann has only very briefly described the treatment of attributes.
– The description of translating DMM specifications into GROOVE

grammars is very informal and only gives an idea on how to perform
this automatically. Additionally, the issue of translating universally
quantified structures has only been adressed conceptionally by Haus-
mann.

– Additionally, to rely on the analysis results of GROOVE, one would
have to formally prove that the translation of DMM specifications
into GROOVE grammars is semantics preserving, i.e., that the result-
ing GROOVE grammars indeed realize the semantics of the source
DMM specifications.

• Hausmann claims that due to its formal nature, language engineers can
prove that their languages fulfill certain requirements. However, DMM
specifications tend to be too complex to tackle such proofs. In fact, our
experience has shown that even for very simple DMM specifications, such
proofs seem to be very difficult (see [106, 107, 186]).

• Hausmann also claims that DMM allows to do automatic analysis of a
model’s behavior with model checking techniques, but does not describe
how.

• The quality of DMM semantics specifications (which is absolutely crucial
for analyzing the quality of models equipped with such a specification) is
only addressed by means of pragmatic guidelines.

• The only way to reuse existing DMM specifications is by removing or
adding DMM rules. However, DMM does not support any kind of refine-
ment of rules.

• Finally, the formalization as presented by Hausmann in [96] contained a
few minor flaws, which is a clear sign that that formalization has not been
used in any of the above ways.

52

Summary of Part I

We have started the foundations of this thesis with an introduction to the Eclipse
Modeling Framework (EMF), a framework around the metametamodeling lan-
guage Ecore. We have seen that Ecore is an implementation of the OMG’s
EMOF standard, and we have investigated the Ecore metamodel with its core
metaclasses EPackage, ECLass, EReference, and EAttribute. Finally,
we have briefly investigated how the DMM tooling makes use of EMF and other
EMF-based frameworks such as GMF, Eclipse OCL, or XText.

In Chapter 3, we have then introduced the language of UML activities,
which serves as a running example within this thesis. Activities allow to model
workflows, algorithms and other process-based behavior and have a semantics
roughly comparable to Petri nets. The syntax of activities is defined by means
of the UML’s metamodel. However, the mentioned “Petri-like” semantics of the
language is described with natural language, which has many drawbacks, most
importantly:

• Natural language is subject of human interpretation. Therefore, the se-
mantics of UML activities (and many other behavioral languages, not only
the ones contained in the UML) is ambigious.

• Natural language can not be processed automatically by computers. As
such, it is not possible to analyze the quality of models with analysis
techniques such as model checking.

Chapter 4 has given an introduction to GROOVE, a toolset for perform-
ing graph transformation. GROOVE uses a notion of directed, labeled graphs
and allows to formulate graph transformation rules with powerful features such
as typing, full attribute support, negative application conditions, and nested
quantification. Given a graph grammar, i.e., a graph and a set of graph trans-
formation rules, the GROOVE toolset allows to generate the grammar’s state
space in terms of a labeled transition system (LTS), where states are graphs, and
transitions are rule applications (and are thus labeled with the applied rule’s
name).

Additionally, we have got to know the GROOVEmodel checker, a component
which allows to analyze an LTS by means of verifying temporal logic formulas
against that LTS. GROOVE supports both linear-time as well as computation-
tree temporal logic (LTL and CTL) and provides a counter example in case an
LTL or CTL expression does not hold for the LTS at hand. The expressiveness
of the expressions is increased by the fact that rule parameters allow to extend
the LTS’s labels with the runtime values of the source state graph’s nodes (e.g.,
the rule modeling the execution of a UML Action can display the value of the
actually executed Action’s name attribute as part of the transition label).

Finally, in Chapter 5 we have given a brief introduction to Dynamic Meta
Modeling as defined by Hausmann in his PhD thesis [96], a semantics specifi-
cation technique targeted at behavioral languages whose syntax is defined by
means of a metamodel. We have started by defining the requirements on DMM,
the most important of which are:

• For the sake of being unambigious and automatically processable, DMM
specifications shall be formal and analyzable.

53

SUMMARY OF PART I

• To make it as easy as possible to work with DMM specifications, they
shall be highly understandable.

We have shown how Hausmann meets these requirements by using graph trans-
formations as DMM’s underlying formalism, which are both formal and visual
(the latter resulting in semantics specifications which are relatively easy to un-
derstand). We have given a brief introduction to the three parts a DMM speci-
fication consists of:

• The runtime metamodel enhances the syntax metamodel with concepts to
express states of execution of models.

• Meta relations are used to relate concepts of the syntax and runtime meta-
model on the type as well as the instance level.

• Graph transformation rules are used to describe the actual behavior of the
models by formalizing how runtime models change through time.

We have concluded that although a great step into the right direction, DMM in
its current state is more about concepts than implementation of those concepts,
making it difficult to actually work with DMM specifications. For instance, due
to a couple of reasons, the graph transformation theory underlying DMM does
not translate well into tool support. It is also rather unclear how to create a
DMM specification of high quality, which is crucial when analyzing the quality
of models based on such a specification. Finally, it needs to be shown how a
given high-quality DMM semantics specification can be used for quality analysis
of behavioral models such as UML activities.

In this thesis, we will improve the DMM approach to overcome the practical
issues discussed in the last paragraph. We will make use of EMF to define
DMM’s syntax, and we will define the semantics of DMM by means of mapping
DMM specifications and according models to GROOVE grammars. We will
then show how to create high-quality semantics by means of applying test-
driven semantics specification, and we will briefly show the tool support we
provide for creating syntactically correct DMM specifications. Finally, we will
enable the formulation of functional and non-functional requirements against
models equipped with a DMM specification, and we will show how to analyze
and—if necessary—fix models using the DMM tool support.

54

Part II

Dynamic Meta Modeling
++

55

6
Language Definition of DMM++

In the last section, we have identified several potential improvements of the
current state of DMM. In this chapter, we will introduce our extended version
of DMM, which is a first step towards realizing those improvements.

In the next section, we will first give an overview of the changes we per-
formed. We will then define the new state of DMM—which we call DMM++—
by first giving an overview of DMM and its syntax in Section 6.2, followed by a
discussion of the semantics in Section 6.3.

6.1 Comparison of DMM and DMM++

The differences between DMM as defined by Hausmann and our extended ver-
sion of DMM can broadly be divided into two classes: conceptual and pragmatic
changes. The latter refers to changes which make it easier to actually work with
DMM specifications (remember from Chapter 5 that DMM had been defined
completely formally, which in many cases does not translate well into tool sup-
port), whereas the former class refers to changes which introduce new concepts
into the DMM language and therefore improve its expressiveness.

6.1.1 Conceptual Changes
One area where the current state of DMM can be improved is its handling of
attributes, which is somewhat restricted. Attributes can only be used in two
ways: to influence the matching of rules by specifying concrete values, and to
specify the concrete values of attributes in case a node is created by a DMM
rule. Note, however, that [96] does not provide any examples on these two cases:
All information concerning attributes is contained on pages 67 and 69 of [96].

As a result, we have extended DMM by means of dedicated support for
attributes which allows to

• influence the matching of a rule in a much more complex way. For this, we
have implemented several operations for comparison of attribute values.
See sections 6.2.3.10 and 6.3.4.2 for more information.

• compute new values for attributes. Again, we have defined several opera-
tions which can be used for this. See sections 6.2.3.11 and 6.3.4.3 for more
information.

57

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

• refer to other nodes’ attribute values when comparing or newly computing
attribute values.

• show the values of attributes at rule application time in the resulting
transition systems’ labels, which allows to refer to these values when doing
model checking. See sections 6.2.3.12 and 6.3.4.6 for more information.

The treatment of universally quantified structures (UQS) in the current state
of DMM is powerful. However, its semantics is based on the unfolding of rules
(see [96, p. 79]), the main reason being that GROOVE at that time did not
provide support for UQS. In the meantime, a powerful notion of UQS has been
added to GROOVE which we apply for re-defining the semantics of UQS in
Sect. 6.3.3.

The area of reusability of DMM specifications has been identified as a tar-
get of potential improvement: We have seen in the last chapter that DMM
only allows to add rules to a ruleset. To improve on this situation, we have
added support for overriding of rules [62, 192]: A rule can either completely or
softly override a given rule. See sections 6.2.2.12, 6.2.2.13, and 6.3.5 for more
information.

Finally, we will see in Sect. 9.1.2 that model checking properties of a certain
model is done against applications of DMM rules (recall from the last chapter
that in the transition system representing a model’s semantics, transitions are
labeled with applications of DMM rules). To also be able to reason about
arbitrary states of our model, we have therefore introduced a new type of DMM
rule called property rule. See Sect. 6.2.2.8 for more information.

6.1.2 Pragmatic Changes
The formal nature of the DMM definition as provided by Hausmann makes it
rather difficult to develop tool support. This is not only because the currently
available frameworks for creating (visual) languages do not support such for-
malisms; moreover, the resulting tool support must exactly reflect the formal
definitions, and this very fact must be proven by the language engineer.1 Since
our focus is the practical applicability of DMM, we have decided to take another
approach for language definition:

• Instead of implicitly defining the DMM language’s syntax by means of set
theory, we have chosen a metamodeling approach (see Sect. 2.1 on page 9).
The metamodel defining the DMM language’s syntax is presented in the
next section. OCL constraints defining the language’s static semantics are
provided in the appendix.

• Consequently, we have provided a compiler semantics for DMM, i.e., we
have defined DMM’s semantics by defining a transformation of DMM rule-
sets into GROOVE grammars (the semantics of which is well-defined).
This transformation is described in Sect. 6.3.

To further enhance the practical applicability of DMM, we have optimized
our transformation: While translating an Ecore model into a GROOVE state

1Recall that Hausmann claims that the formal definition of DMM does allow to formally
reason about DMM specifications. Such proofs would loose all reliability in practice if the
tool support behaves only slightly different to the formal definition of DMM.

58

6.2. SYNTAX

graph, we filter out model elements which will not influence the computation
of the transition system. The rational behind this filtering step is described in
Sect. 6.3.2.1.

Another, simpler change we have made is the introduction of a Package
element, which does not have any semantics, but still allows to structure DMM
specifications (which can easily consist of hundreds of DMM rules).

For the sake of improving readability, we will from now on refer to DMM++
as DMM unless explicitly stated otherwise.

6.2 Syntax

In this section, we will introduce the newly defined DMM language (formerly
referenced as DMM++). For each language element, we will show its role in
the DMM language’s metamodel and give a brief description of the element’s
properties.

The metaclasses are presented basically following the style of the UML spec-
ification [158] (which is expected to be known by many readers of this thesis).
In particular, this means that each metaclass is accompanied with a textual
description consisting of

• a brief description of the metaclass’s purpose,

• the super metaclasses,

• a more detailed description of the metaclass and its usage,

• its attributes,

• its associations,

• an intuition of the metaclass’s semantics (we will see more details in
Sect. 6.3 on page 87, and

• the notation, i.e., the concrete syntax of instances of the metaclass.

Since the DMM metamodel is rather complex, the class diagram represen-
tation is spread out accross different views. In Sect. 6.2.1 we show the general
structure of DMM rulesets, which contains of rules organized by packages. Sec-
tion 6.2.2 shows the hierarchy of the different types of DMM rules and rule
overriding relations, followed by a description of the internal rule structure of
nodes, edges, and rule invocations in Sect. 6.2.3. Finally, in Sect. 6.2.4 we intro-
duce the DMM expression language which is used to describe conditions over
and assignments to attributes.

To improve readability of the DMM language definition, we are differing
from the UML specification’s style of representation in the following ways:

• The metaclasses are neither organized in packages (since the DMM meta-
model consists of a single package) nor alphabetically. The metaclasses are
organized by means of the four views mentioned above, and within each of
the according sections, the classes are ordered by means of their relations
(e.g., metaclass Rule is explained before metaclass BigstepRule which
is a refinement of Rule).

59

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Ruleset Pa ckage Rule

- /un ique Name :St ring

Na medElement

- na me :String

OverridingRelation

EPacka ge

ove rridi ngRe lation

0..*

rul eset 1

ove rridi ngRe lation0..*

ove rridd enRu le1

ove rridi ngRe lation0..*

ove rridi ngRu le1
0..*

im porte dRule 0..*

im porte dRule set 0 ..*

0..*

0..*

me tamo del 1..*

chi ld
0..*

pa rent
0..1

1..*

pa ckage s

rul eset
0..1 rul e

0..*

pa ckage

1

Figure 6.1: Ruleset view of the DMM metamodel.

• In case a metaclass does not have any (additional) attributes, the UML
specification explicitly states this fact. In contrast, we have left out the
according paragraph in such cases. The same holds for all other parts of
the metaclasses’ descriptions.

• In the UML specification, the static semantics is presented as part of the
metaclass descriptions by means of OCL constraints. We have defined
the DMM language’s static semantics in the same way; however, we have
moved the actual OCL constraints into the thesis’ appendix.

• Some metaclasses appear in more than one class diagram. In these cases,
the section of the metaclass’s main view will contain the metaclass’s tex-
tual description, and the other sections will contain references to that
description.

6.2.1 Ruleset Structure
The view of the DMM metamodel described in this section contains the most
high-level structure of DMM rulesets: A Ruleset consists of Packages which
themselves can contain other Packages or DMM Rules. Additionally, a
Ruleset contains zero or more OverridingRelations – these relations are
stored within the Ruleset itself since they might be associated to Rules ac-
cross Packages. An overview of this high-level structure is depicted as Fig. 6.1.

6.2.1.1 NamedElement

An element with a name.
Description
NamedElement factors out the name attribute which is used by some DMM
metaclasses.
Attributes
• name: String [1]
The name of the element

60

6.2. SYNTAX

6.2.1.2 Ruleset

A Ruleset instance represents a complete DMM ruleset.
Generalizations

• NamedElement on page 60

Description
A Ruleset is a collection of DMM rules which are typed over the ruleset’s
associated metamodels. It usually describes the semantics of a particular mod-
eling language; other usages include the specification of property rules (see
PropertyRule on page 68) or the extension of an already existing ruleset.

A ruleset’s name should be distinct across different rulesets for better un-
derstandability.
Associations

• metamodel: EPackage [1..*]
The metamodels over which the ruleset’s rules (i.e., the rules’ nodes and
edges) can be typed

• package: Package [1..*]
The packages (transitively) containing the ruleset’s rules

• overridingRelation: OverridingRelation [0..*]
A set of OverridingRelations which model the overriding of rules by
other rules

• importedRuleset: Ruleset [0..*]
The rulesets which are imported by this ruleset – see semantics below for
use cases

• importedRule: Rule [0..*]
The rules which are imported by this ruleset – see semantics below for use
cases

Semantics
A (DMM) ruleset is a collection of rules which are designed for the sake of
manipulating models in a certain way. Basically, there are no restrictions on
how DMM can be used: For instance, in Section 7.2 we are using DMM rulesets
to transform syntax models into runtime models. However, the most common
use case for DMM is specifying the behavioral semantics of a certain language
which is syntactically defined by means of a metamodel.

In this latter scenario, there are basically three contexts in which DMM
rulesets can be used:

• As stand-alone semantics specification
Here, the rules contained in the ruleset describe the complete semantics of
a particular language. As such, the ruleset and a model of that language
can be transformed into a GROOVE grammar and executed.

• As an extension of an already existing ruleset
In this case, the ruleset is not executable as-is; instead, it imports another
ruleset, for which it defines extensions. We will see an example for this in
Section 6.3.5 on page 105.

61

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

• For defining properties
To verify certain properties against a model, so-called property rules need
to be defined (more on this in Section 9.1.4 on page 193). These rules
can be stored within their own ruleset (which usually imports the ruleset
describing the actual semantics).

Technically, a ruleset’s semantics is defined by transforming it into an (exe-
cutable) GROOVE graph grammar; the transformation is described in Sect. 6.3.
Notation
A ruleset does not have a dedicated notation, but is the sum of its packages (see
below).

6.2.1.3 Package

Packages within a DMM ruleset can be used to structure the rules of that
ruleset.
Generalizations

• NamedElement on page 60

Description
A Package is a collection of DMM rules which are typed over the ruleset’s
associated metamodels. Packages are only used to structure rules (and can
therefore contain other packages), but they do not have any semantics, e.g. by
defining some kind of namespace.

For better understandability, the name of a package should be distinct to
the names of all packages at the same level (i.e., all packages directly contained
in the ruleset or the same package should have distinct names).
Associations

• ruleset: Ruleset [0..1]
The ruleset containing this package (if any)

• parent: Package [0..1]
The package containing this package (if any)

• child: Package [0..*]
The packages contained in this package

• rule: Rule [0..*]
The rules contained in this package

Notation
A package is visualized as a rectangle containing nodes (representing rules) and
other packages. The package’s name is depicted in the left upper corner of a
package. An example package is shown as Figure 6.2: The package’s name is
“FundamentalActivities”, and it contains five rules.

6.2.1.4 Rule

See Section 6.2.2.2 on page 63.

62

6.2. SYNTAX

Figure 6.2: Example package with name “FundamentalActivities” and five con-
tained rules.

6.2.1.5 OverridingRelation

See Section 6.2.2.11 on page 69.

6.2.2 Rule Hierarchy
The view of the DMM metamodel described in this section shows the hierarchy
of the different types of DMM rules and overriding relations. An overview of
this hierarchy is depicted as Fig. 6.3.

6.2.2.1 NamedElement

See Section 6.2.1.1 on page 60.

6.2.2.2 Rule

A Rule describes certain structures contained in a model, which can (option-
ally) be manipulated.
Generalizations

• NamedElement on page 60

Description
DMM Rules contain the actual description of a language’s behavior. They
describe operationally how to modify a model, and under which circumstances
to do that modification. Technically, DMM rules are graph transformation rules.

There are four kinds of DMM rules, which we briefly describe below:

• Bigstep rules (see BigstepRule on page 66)
Bigstep rules are applied as soon as they match, i.e., if the described object
structure is found in the underlying model.

• Smallstep rules (see SmallstepRule on page 67)
Smallstep rules need to be explicitly invoked by bigstep or smallstep rules
to be applied.

63

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

BigstepRulePa rame terizedRule

Pre mis eRule

PropertyRule

- ma tchAsBigstepRule :boole an

Rule

- /un ique Name :St ring

SmallstepRule

Pa rame terizedEle ment

Gra phE lemen t

Node

OverridingRelation

CompleteOverridingRelationSoftOverridingRelation

Na medElement

- na me :String

ove rridi ngRe lation

0..*

ove rridd enRu le 1

ove rridi ngRe lation

0..*

ove rridi ngRu le1pa rame terize dEle men t1..*

pa rame ter 0..*
{ordered }

Figure 6.3: Rule hierarchy view of the DMM metamodel.

• Premise rules (see PremiseRule on page 67)
Premise rules can be used to “factor out” object structures common to
several other rules; they are merged into the invoking rules at execution
time. Premise rules do not manipulate the underlying models.

• Property rules (see PropertyRule on page 68)
Property rules are only used in the context of model checking a model’s
behavior. They do not modify the underlying model; instead, their match-
ing signals that the described object structure is found in the according
model state.

Note that each rule contains a dedicated node representing the context in which
a rule is applied – the type of this node can be seen to own the rule’s behavior
(and is thus comparable to the this object in Java code).

Note also that DMM rule names in general do not have to be distinct – in
contrast, it is often desirable to have rules with the same name in one ruleset.
This is because within a DMM rule we can not model alternative behavior;
however, we can achieve the same effect by providing rules of the same name
which each handle one of the different cases.
Attributes

• /uniqueName: String [1]
The unique name of the rule within the rule’s ruleset.

Associations

64

6.2. SYNTAX

• package: Package [1]
The package containing this rule

• overridingRelation: OverridingRelation [0..*]
The overriding relations in which this rule is overridden

• overriddenRelation: OverridingRelation [0..*]
The overriding relations in which this rule is overriding

• node: Node [0..*]
The nodes of this rule

• edge: Edge [0..*]
The edges of this rule

• invocation: Invocation [0..*]
The invocations of this rule

• emphasizedAttribute: EmphasizedNodeAttribute [0..*]
The emphasized attributes of this rule

• contextnode: Node [1]
The context node of this rule

Semantics
A (DMM) rule is the smallest unit of behavior specification provided by DMM. It
contains a number of nodes and edges, the former corresponding to objects, the
latter to references between those objects. A rule matches an object structure if
an occurence of the rule’s own structure of objects and references can be found
in that object structure. If this is the case, the rule is applied, i.e., the changes
described by the rule are performed on the found occurrence (e.g., objects and/or
edges can be destroyed or created, attributes can be manipulated etc.).
Notation
The graphical notation of DMM rules is shown at the concrete subclasses of
Rule. Additionally, a DMM rule also has a textual representation called signa-
ture. This is build as follows: the signature starts with the name of the rule’s
context node, followed by a dot “.” and the name of the rule. A rule’s signa-
ture ends with two brackets “()”. Some concrete subclasses slightly differ in the
definition of their signature – these differences will be pointed out where they
occur.

6.2.2.3 ParameterizedElement

A ParameterizedElement is an element which has nodes as parameters.
Description
DMM ParameterizedRules as well as Invocations have an ordered set of
nodes acting as parameters. This class factors out the parameter association.
Associations

• parameter: Node [0..*]
The ordered set of nodes acting as parameters for this element

65

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.4: Bigstep rule with name action.start()#.

6.2.2.4 ParameterizedRule

A ParameterizedRule is a rule which additionally has parameters.
Generalizations

• Rule on page 63

• ParameterizedElement on page 65

Description
DMM ParameterizedRules are rules which additionally inherit from Pa-
rameterizedElement, through which they inherit a set of nodes acting as
parameters.
Notation
In addition to a rule signature as defined in Sect. 6.2.2.2, the signature of a
parameterized rule also contains the names and types of the parameter nodes,
separated by commas “,”. The parameters are placed within the rule signature’s
brackets.

6.2.2.5 BigstepRule

A BigstepRule is a rule which can match without being explicitly invoked.
Generalizations

• Rule on page 63

Description
DMM bigstep rules are usually used to model some self-contained behavior – if
a bigstep rule is completely processed, then that behavior is completed. If the
behavior to be described is too complex for one rule, a bigstep rule can invoke
smallstep rules, which will be processed before the next bigstep rule can match
and be applied.
Semantics
DMM bigstep rules are the rules which are closest to normal graph transforma-
tion rules in the sense that they are applied as soon as they match (and there is
no smallstep rule which had been invoked and has not yet been applied). How
this behavior is realized will be shown in Sect. 6.3.
Notation
A bigstep rule is depicted as a rectangle with solid borders. In addition to a
rule signature as defined in Sect. 6.2.2.2, a bigstep rule’s signature always ends
with a hash sign “#”. An example bigstep rule is depicted as Fig. 6.4.

66

6.2. SYNTAX

Figure 6.5: Smallstep rule with name action.executes().

6.2.2.6 SmallstepRule

A SmallstepRule is a rule which must be explicitly invoked by a bigstep rule
or another smallstep rule to be applied.
Generalizations

• Rule on page 63

• ParameterizedRule on page 66

Description
Some behavior is too complex to be described by a single DMM rule. In this case,
smallstep rules can be used to divide that behavior into smaller steps, which
are then performed one by one. This gives the language engineer more control
over rule application – the alternative would be to carefully design bigstep rules
such that they can only match in a certain order, which is significantly more
difficult.

However, some care still has to be taken when designing smallstep rules: A
smallstep rule can only be applied if it is invoked and matches the current state
at that very point in time. Thus, a DMM specification giving rise to situations
where a smallstep rule is invoked but no smallstep rule matches the current
state is erronous.

In contrast to bigstep rules, smallstep rules can have parameter nodes.
Semantics
DMM smallstep rules can only be applied if they are invoked and match the
current state. This is realized by maintaining an invocation stack within the
state graph, and by adding structures to the GROOVE rule resulting from a
smallstep rule which make sure that the smallstep rule can only match if an
according invocation is on top of the stack. The details of this will be shown in
Sect. 6.3.
Notation
A smallstep rule is depicted as a rounded rectangle with solid borders. Addi-
tionally, a smallstep rule’s signature can be distinguished from that of a bigstep
rule because it does not end with a hash sign #. An example smallstep rule is
depicted as Fig. 6.5.

6.2.2.7 PremiseRule

A PremiseRule is a rule which describes some premises a state must fulfill for
a smallstep or bigstep rule to match.
Generalizations

• Rule on page 63

• ParameterizedRule on page 66

67

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.6: Premise rule with name inputPin.P_checkInput().

Description
In some cases, a certain structure must exist within several rules for these rules
to match. In this case, that structure can be factored out into a single premise
rule, and the according rules can invoke that premise rule. As such, a premise
rule can be used to improve the understandability and maintainability of a DMM
ruleset.

As smallstep rules, premise rules can have parameter nodes.
Semantics
DMM premise rules are not independent rules, but are merged into the invoking
rules – they act as an enhancement of the left-hand graphs of the invoking rules.
The details of this will be shown in Sect. 6.3.
Notation
A premise rule is depicted as a rounded rectangle with dotted borders. In
addition to a rule signature as defined in Sect. 6.2.2.2, in the case of premise
rules the rule’s name is prefixed with “P_”. An example premise rule is depicted
as Fig. 6.6.

6.2.2.8 PropertyRule

A PropertyRule is a rule which describes properties of a state.
Generalizations

• Rule on page 63

Description
DMM property rules describe a certain object structure; if a property rule
matches a state, then the rule’s structure must be contained in that state.
As such, property rules do not belong to the semantics of a language (they do
not change the state). Instead, they can be used to describe object structures
the language user is interested in: Matching of a property rule will result in
a self-transition of the according state, and that information can be used for
model checking. We will see examples for this in Sect. 9.1.
Attributes

• matchAsBigstepRule: Boolean [1]
Whether the property rule shall only match if no pending invocations of
smallstep rules exist (i.e., in states where bigstep rules can also match)

Semantics
DMM property rules are rules which have the same left-hand and right-hand
graph. The details of translating property rules into GROOVE rules will be
shown in Sect. 6.3.
Notation
A property rule is depicted as a rectangle with dashed borders. In addition to

68

6.2. SYNTAX

Figure 6.7: Property rule with name my.propertyRule()!.

a rule signature as defined in Sect. 6.2.2.2, a property rule’s signature always
ends with an exclamation mark “!”. An example property rule is depicted as
Fig. 6.7.

6.2.2.9 Node

See Section 6.2.3.5 on page 73.

6.2.2.10 GraphElement

See Section 6.2.3.4 on page 73.

6.2.2.11 OverridingRelation

An OverridingRelationmodels that one DMM rule overrides another DMM
rule.
Description
Rule overriding allows to refine DMM rules by introducing the ability for rules
to override other rules. A more thorough description is provided at the concrete
subclasses CompleteOverriding (see Sect. 6.2.2.13 on page 70) and Soft-
Overriding (see Sect. 6.2.2.12 on page 69).
Associations

• overriddenRule: Rule [1]
The rule overridden through this overriding relation

• overridingRule: Rule [1]
The rule overriding through this overriding relation

6.2.2.12 SoftOverridingRelation

A SoftOverridingRelation models that one DMM rule softly overrides
another DMM rule.
Generalizations

• OverridingRelation on page 69

Description
Soft overriding models a dynamic kind of rule overriding: If a rule r softly
overrides another rule r′, and if r does not match the current state, the execution
will be delegated to r′.
Semantics
If a rule r softly overrides rules r0, . . . , rn, it will first be checked whether r can be
applied. If this is not the case, rules r0, . . . , rn will be checked for applicability.

69

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.8: Rule inputPin.inputPinTest() softly overrides rule objectNode.input-
PinTest().

This process is repeated until an applicable rule is found, which will then be
applied. If no applicable rule can be found at all, a failure state is reached.
DMM specifications allowing for such states are considered to be erronous.

In a nutshell, the semantics of soft overriding relations is implemented by
means of some helper rules which will—one level after the other—activate small-
step rules until a matching one is found. In Sect. 6.3, we will see this process
in detail. Since application of the helper rules results in transitions within the
final transition system, we decided to not let bigstep rules participate in those
transitions. Otherwise, we would have to “try out” all levels of the bigstep
rule overriding relations whenever the invocation stack is empty, cluttering the
transition system to a huge extend.

Notation
Soft rule overriding is depicted with a dashed arrow as known from UML inher-
itance. See Fig. 6.8 for an example.

6.2.2.13 CompleteOverridingRelation

A CompleteOverridingRelation models that one DMM rule completely
overrides another DMM rule.

Generalizations

• OverridingRelation on page 69

Description
Complete rule overriding can be used to avoid that another rule matches at all
in the context of the overriding rule’s type.

Semantics
If a rule r completely overrides rules r0, . . . , rn, then r0, . . . , rn can never match
in the context of a node whose type is the same or a subtype of r’s context
node’s type.

Notation
Soft rule overriding is depicted with a solid arrow as known from UML inheri-
tance. See Fig. 6.9 for an example.

70

6.2. SYNTAX

Figure 6.9: Two versions of rule actionExecution.destroy() which both completely
override rule behaviorExecution.destroy().

Rule

- /uniqueName :String

Assignment

Condition

Edge

«enumeration»
ElementRole

 EXISTS
 NOT_EXISTS
 DESTROY
 CREATE

EmphasizedNodeAttribute

GraphElement

Invocation

- sequenceNumber :int
- invokedRule :String

NamedElement

- name :String

Node

ParameterizedElement

«enumeration»
Quantifier

 ONE
 ONE_TO_MANY
 ZERO_TO_MANY
 NESTED

EClassifier

EClass

EStructuralFeature

EReference

EStructuralFeature

EAttribute

Expression

AttributeExpression

- nextStateValue :boolean
- leftHandSide :boolean invocation

0..*

targetNode

1

contextnode

1

assignment

0..*

node1

condition

0..*

node 1

condition

1

expression
1

edge 0..*

rule

1

outgoing

0..*

source

1

incoming

0..*

target

1
0..*

reference

1

emphasizedAttribute

0..*
{ordered}

rule

1

emphasizedAttribute 0..*

node

1

0..*

attribute

1

0..*
role

1

parameterizedElement

0..*

parameter0..*
{ordered}

attributeExpression 0..*

targetAttribute 1

assignTo

1 assignment
1

expression

1

assignment

1

0..*
quantification 1

invocation

0..*

rule 1

0..*type

1

node

0..*

rule

1

Figure 6.10: Internal rule structure view of DMM metamodel.

6.2.3 Internal Rule Structure
This section presents the internal structure of DMM rules. A Rule basically
consists of Nodes (corresponding to objects), Edges (corresponding to links be-
tween objects), and Invocations (which model the operational part of DMM
rulesets by explicitly invoking other DMM rules). Nodes and Edges both ex-
tend the metaclass GraphElement from which they inherit an ElementRole
(modeling the action to perform for the element, e.g., deletion or creation)
and a Quantification (which describes the number of objects to which
an element is matched). In contrast to Edges, Nodes can additionally have
Conditions which must be true for a Node to be matched, Assignments
which are used to manipulate attribute values of the object a Node is mapped
to, and EmphasizedNodeAttributes which are used to make values of the
object’s attributes visible within a transition system. An overview of the inter-
nal structure of DMM rules is depicted as Fig. 6.10.

71

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.11: Internal structure of rule activityExecution.start()#.

Figure 6.12: Internal structure of rule action.start()#.

72

6.2. SYNTAX

6.2.3.1 NamedElement

See Section 6.2.1.1 on page 60.

6.2.3.2 Rule

See Section 6.2.2.2 on page 63.

6.2.3.3 ParameterizedElement

See Section 6.2.2.3 on page 65.

6.2.3.4 GraphElement

A GraphElement is an element having an ElementRole as well as a Quan-
tifier.
Description
Nodes as well as Edges have a role and a quantification. This class
factors out these associations.
Associations

• role: ElementRole [1]
The role of this graph element

• quantification: Quantifier [1]
The quantification of this graph element

6.2.3.5 Node

A Node is a graph node within a DMM rule and corresponds to an object.
Generalizations

• NamedElement on page 60

• GraphElement on page 73

Description
A Node represents an object within the object structure described by the rule
the node is contained in. It has a role which describes whether the node belongs
to the rule’s application context, is to be created, to be deleted, or belongs to a
negative application conditon of the rule (see Sect. 6.2.3.8). In addition, a node
has a quantification determining whether that node e.g. belongs to a universal
quantified structure (see Sect. 6.2.3.9).

Nodes may have a name which can be used to refer to them from the same
rule within conditions and assignments (see below).

A node may contain Conditions (see Sect. 6.2.3.10) which have to be ful-
filled for the state object – otherwise, the node can not be mapped to that object.
Additionally, a node may contain Assignments (see Sect. 6.2.3.11) which can
be used to manipulate the state object’s attribute values. Finally, a node can
be associated with EmphasizedNodeAttributes (see Sect. 6.2.3.12); if this
is the case, the value of the according attributes of the state object the node is

73

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

mapped to will be displayed in the transition system (and can e.g. be used for
model checking purposes).
Associations

• rule: Rule [1]
The rule owning this node

• type: ecore::EClass [1]
The type of this node

• incoming: Edge [0..*]
The edges having this node as the target node

• outgoing: Edge [0..*]
The edges having this node as the source node

• invocation: Invocation [0..*]
The invocations having this node as the target node

• parameterizedElement: ParameterizedElement [0..*]
The parameterized elements (i.e., invocations or parameterized rules) hav-
ing this node as at least one of its parameters

• condition: Condition [0..*]
The conditions of this node

• assignment: Assignment [0..*]
The assignments of this node

• emphasizedAttribute: EmphasizedNodeAttribute [0..*]
The attributes of this node which are shown at the transitions resulting
from applications of this node’s rule

Semantics
If a rule matches a state, each node of the left-hand graph of that rule is mapped
to one or more nodes of the state. The state nodes will then (optionally) be
modified, i.e., they will be deleted or created, or their attribute values will be
modified. The details of this are given in Sect. 6.3.
Notation
A node is basically depicted in object notation, i.e., as a rectangle carrying the
node’s type (and name, if any) at the rectangle’s top. In DMM, a node rectangle
has three additional (and potentially empty) compartments for the node’s con-
ditions, assignments (see node activityExecution:ActivityExecution
in Fig. 6.11 on page 72), and emphasized attributes (see node action:Action
in Fig. 6.12 on page 72). The colors of nodes are explained in Sect. 6.2.3.8, the
different node shapes in Sect. 6.2.3.9.

6.2.3.6 Edge

An Edge is a graph edge within a DMM rule and corresponds to a link (i.e., an
instance of an association) between two objects.
Generalizations

74

6.2. SYNTAX

• GraphElement on page 73

Description
An Edge represents a link within the object structure described by the rule the
edge is contained in. It has a role which describes whether the edge belongs to
the rule’s application context, is to be created, to be deleted, or belongs to a
negative application conditon of the rule.
Associations

• rule: Rule [1]
The rule owning this edge

• reference: ecore::EReference [1]
The association this edge is typed over

• source: Node [1]
The source node of this edge

• target: Node [1]
The target node of this edge

Semantics
If a rule matches a state, each edge of the left-hand graph of that rule is mapped
to one or more edges of the state. The state edges will then (optionally) be
modified, i.e., they will be deleted or created. The details of this are given in
Sect. 6.3.
Notation
An edge is basically depicted in UML notation, i.e., as an arrow carrying the
edge’s name (which is the name of the reference the edge is typed over). See
e.g. Fig. 6.11 on page 72 for examples. The colors of edges are explained in
Sect. 6.2.3.8, the different edge shapes in Sect. 6.2.3.9.

6.2.3.7 Invocation

An Invocation is used to invoke either a SmallstepRule (see Sect. 6.2.2.6)
or a PremiseRule (see Sect. 6.2.2.7).
Generalizations

• ParameterizedElement on page 65

Description
Invocations represents the operational part of DMM semantics specifica-
tions. They are used to explicitly invoke smallstep or premise rules – the former
being only able to match when explicitly being invoked, the latter being merged
into the invoking rule.

An invocation is perfomed on a target node, which will act as the context
node in the invoked rule. If a rule contains more than one invocation, the order
of execution of these invocations is determined by the sequence number of the
invocations.
Attributes

75

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

• sequenceNumber: Integer [1]
The sequence number determines the order of execution of invocations
within a rule

• invokedRule: String [1]
The name of the invoked rule

Associations

• rule: Rule [1]
The rule owning this invocation

• targetNode: Node [1]
The target node of this invocation

Semantics
The semantics of invocations is two-fold: invocations of premise rules result
in those rules being merged into the invoking rules at ruleset translation time,
i.e., the resulting GROOVE grammar will not contain premise rules at all, but
their structures are contained in the invoking rules. In contrast, invocations of
smallstep rules result in these rules being only able to match if they are indeed
invoked. Technically, the latter is achieved by maintaining an invocation stack
within the state graph, and by adding structures to the smallstep rules such that
they can only match if they are on top of that stack (in which case application
will remove them from the stack). The details of this are given in Section 6.3.
Notation
An invocation is depicted as an arrow, the arrowhead of which pointing to
the invocation’s target node. On the other end of the arrow, the name of the
invoked rule is printed, with the names of the parameter nodes within brackets.
The sequence number is found at the beginning of the invocation’s label, and is
separated from the invoked rule’s name by a colon “:”. If no sequence number
is provided, the sequence number is implicitly set to 0. See Fig. 6.12 on page 72
for an example invocation.

6.2.3.8 ElementRole

An ElementRole models whether a graph element belongs to the left-hand
graph, the right-hand graph, both, or a negative application of a rule.
Description
An ElementRole represents the different roles a graph element can take within
a rule. It has four literal values:

• EXISTS: The graph element needs to exist for the rule to match and will
not be deleted (application context).

• DESTROY: The graph element needs to exist for the rule to match and be
will deleted during the rule’s execution.

• CREATE: The graph element will be created during the rule’s execution.

• NOT_EXISTS: The graph element must not exist for the rule to match
(negative application condition).

76

6.2. SYNTAX

Semantics
Graph elements with role EXISTS exist in both the left-hand and the right-hand
graph of the graph transformation rule. Graph elements with role DESTROY
(CREATE) only exist in the left-hand (right-hand) graph of the rule. Graph
elements with role NOT_EXISTS belong to a negative application condition of
the rule. The details of this are given in Section 6.3.
Notation
The role of a graph element is depicted by the element’s color: elements with
role EXISTS are depicted in black, elements with role DESTROY are depicted in
red, and elements with role CREATE are depicted in green. The only exception
are elements with role NOT_EXISTS – these are annotated with a stop sign.2

6.2.3.9 Quantifier

A Quantifier models how many elements will be considered during matching
and application of a rule.
Description
An ElementRole represents cardinalities of a graph element within a rule. It
has four literal values:

• ONE: The graph element will be matched to exactly one element.

• ZERO_TO_MANY: The graph element will be matched to at least zero, but
as many elements as possible.

• ONE_TO_MANY: The graph element will be matched to at least one, but
as many elements as possible.

• NESTED: The graph element will be matched in conjunction with an el-
ement quantified ZERO_TO_MANY or ONE_TO_MANY. It can be used to
describe situations like “For all initial nodes, create one token” (where
the initial node is quantified ZERO_TO_MANY or ONE_TO_MANY, and the
token is quantified NESTED).

Semantics
Quantifications of a graph element are directly mapped to their GROOVE coun-
terparts. The details of this are given in Sect. 6.3.
Notation
A node with quantification ONE is depicted with solid borders. A node with
quantification ZERO_TO_MANY or ONE_TO_MANY is depicted in multi-object no-
tation, where the front rectangle has solid borders in the case of ONE_TO_MANY
and dashed borders in the case of ZERO_TO_MANY – the back rectangle always
has dashed borders. Finally, a node with quantification NESTED is depicted
with dashed borders.

Edges with quantification ONE and NESTED are depicted with a solid ar-
row.3 Edges with quantification ZERO_TO_MANY and ONE_TO_MANY are de-
picted with a dashed arrow, the latter starting with a solid part.

2Note that the DMM tooling we developed also supports the concrete syntax suggested by
Hausmann [96], where roles are modeled by the annotations {create} and {destroy}, and
the color scheme used by GROOVE [166] where elements to be deleted are blue, elements to
be created are green, and elements belonging to negative application conditions are red.

3We do not distinguish visually between these quantifications of an edge since an edge’s

77

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

6.2.3.10 Condition

A Condition of a node describes a predicate over attributes of that node.
Description
A Condition is a boolean expression over attributes of a node. A rule node
can only be mapped to a state node if the state node’s attribute values fulfill
the modeled condition.
Associations

• node: Node [1]
The node owning this condition

• expression: Expression [1]
The textual expression describing this condition

Semantics
A condition is described by a textual expression. Within that expression, at-
tribute values of the node owning the condition as well as of other nodes (refer-
enced by the nodes’ names) can be used, in conjunction with several operations
as described in Sect. 6.2.4. The details of mapping expressions to GROOVE
constructs are given in Sect. 6.3.
Notation
The textual expressions of conditions are contained in the upper compartment
of a node.

6.2.3.11 Assignment

An Assignment of a node allows to assign a newly computed value to an
attribute of a node.
Description
An Assignment is an expression over attributes of nodes. It will be evaluated
at runtime, and the result of the evaluation will be assigned to the according
attribute of the owning node.
Associations

• node: Node [1]
The node owning this assignment

• expression: Expression [1]
The textual expression describing this assignment

• assignTo: AttributeExpression [1]
The attribute expression representing the attribute the new value will be
assigned to

Semantics
An assignment is described by a textual expression. Within that expression,
attribute values of the node owning the assignment as well as of other nodes

quantification is obvious from the quantification of the nodes that edge has as source and
target nodes – if at least one of the nodes is quantified NESTED, then the edge also has that
quantification.

78

6.2. SYNTAX

(referenced by the nodes’ names) can be used, in conjunction with several op-
erations as described in Sect. 6.2.4. The details of mapping expressions to
GROOVE constructs are given in Sect. 6.3.
Notation
The textual expressions of assignments are contained in the middle compartment
of a node.

6.2.3.12 EmphasizedNodeAttribute

An EmphasizedNodeAttribute of a node makes sure that the value of the
according attribute is shown within the transition label when the rule is applied.
Description
An EmphasizedNodeAttribute is used to display an attribute value if the
according rule is applied. The transition labels carry those attribute values,
which can then e.g. be used in model checking.
Associations

• rule: Rule [1]
The rule owning this emphasized attribute

• node: Node [1]
The node of which an attribute value shall be shown

• attribute: ecore::EAttribute [1]
The attribute whose value shall be shown

Semantics
If a rule matches a state, the rule’s emphasized attributes are bound to the
values of the state nodes the emphasized attributes’ nodes are mapped to. The
details of this are given in Section 6.3.
Notation
The names of the emphasized attributes of a node are contained in the lowest
compartment of that node.

6.2.4 DMM Expression Language
DMM makes use of an internal, textual expression language used for the formu-
lation of assignments and conditions. This section will introduce that language.
The language’s concrete syntax is defined by means of a grammar which is pre-
sented in the next section. From Sect. 6.2.4.2 on, the metamodel elements of
the DMM expression language are introduced, following the same scheme as in
the rest of Sect. 6.2. The expression part of the DMM metamodel is depicted
as Fig. 6.13.

The DMM expression language has been developed by Eduard Bauer within
his bachelor thesis [16] – we have added basic support for enumerations. We only
provide the language definition here; for details on how the expression language
was implemented, please refer to Bauer’s thesis.

79

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Expression

LiteralExpressionAttributeExpression

- nextStateValue :boolean
- leftHandSide :boolean

OperationExpression

Literal

Operator

- symbol :String
- priority :int

UnaryOperator BinaryOperator

IntegerLiteral

- integerValue :int

BooleanLiteral

- booleanValue :boolean

StringLiteral

- stringValue :String

EnumerationLiteral

- enumeratorString :String

DoubleLiteral

- doubleValue :double

EStructuralFeature

EAttribute

(from Ecore)

GraphElement
NamedElement

Node

(from DMM)

EDataType

EEnum

(from Ecore)

attributeExpression 0..*

targetAttribute 1

attributeExpression 0..*

node 0..1

subExpression

1..2 {ordered}

operationExpression 0..1

operator

1

operationExpression1

enumerationLiteral 0..*

/enumerator
0..1

literal 1

literalExpression 1

Figure 6.13: Metamodel of the DMM Expression language.

Table 6.1: Lexical Tokens of the DMM Expression language (after [16, p. 20])
Name of regular expression Regular expression
boolean_literal (true|false)
integer_literal (0-9)+
double_literal (0-9)+.(0-9)*(exp)?|.(0-9)+(exp)?|

(0-9)+exp
enum_literal ’(subident)’
exp (e|E)(+|-)?(0-9)+
string_literal "(~("|\)|\(\|"))*"
identifier (subident.)?subident(’)?
subident (_|a-z|A-Z)(_|a-z|A-Z|0-9)*
set of operators4 +, -, *, /, %, !, &, |, min, max,

abs, <, <=, ==, >=, >, :=

6.2.4.1 Grammar of Expression Language

The syntax of expressions to be used within DMM assignments and conditions
is defined by means of a grammar, which is represented in this section. We
start by defining the lexical tokens used within expressions, followed by the
productions from which DMM expressions can be built.

Lexical Tokens DMM expressions make use of a couple of datatypes and op-
erators which are evaluated on these datatypes. Additionally, DMM expressions
allow to refer to attribute values – for the latter, the concept of an identifier is
needed.

The lexical tokens representing those datatypes are shown in Table 6.1.
Within the regular expressions, two simplifications are used to present them
more compactly: First, regular expressions such as 0-9 are used as an abbre-
viation for 0|1|2|3|4|5|6|7|8|9. Second, the regular expression ~(a|b)
describes all characters except a and b.

4The operators are not given as a regular expression, but just listed for reference; the

80

6.2. SYNTAX

Productions Finally, the productions from which DMM expressions can be
derived is provided as Table 6.2. Note that the priorities are achieved by
“delegating” from one nonterminal to the next. For instance, the nontermi-
nal <orExp> can either be derived to an expression containing the operator |
with priority 1, or to the nonterminal <andExp> increasing the priority by 1.

Table 6.2: Grammar of the DMM Expression language (after [16, p. 25])

No. Productions of grammar Prio
(1) <assignment> ::= identifier ’:=’ <orExp> -
(2)

<orExp>
::= <orExp> ’|’ <andExp>
::= <andExp>

1

(3)
<andExp>

::= <andExp> ’&’ <equalityExp>
::= <equalityExp> \\

2

(4)
<equalityExp>

::= <equalityExp> ’==’ <inequalityExp>
::= <inequalityExp>

3

(5)
<inequalityExp>

::= <inequalityExp> (’>=’ | ’>’ | ’<=’ |
’<’ | ’!=’)

<additiveExp>
::= <additiveExp>

4

(6)
<additiveExp>

::= <additiveExp> (’+’ | ’-’)
<multiplicativeExp>

::= <multiplicativeExp>

5

(7)
<multiplicativeExp>

::= <multiplicativeExp> (’%’ | ’*’ | ’/’)
<unaryExp>

::= <unaryExp>

6

Continued on next page

literals are directly contained within the language’s grammar (see Table 6.2)

81

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Table 6.2 – continued from previous page
No. Productions of grammar Prio
(8)

<unaryExp>
::= <unaryExp> (’-’ | ’!’) <mathPrefixExp>
::= <primaryExp>
::= <mathPrefixExp>

7

(9)
<mathPrefixExp>

::= (’max’ | ’min’)
’(’ <orExp ’,’ <orExp> ’)’

::= ’abs’ ’(’ <orExp> ’)’ \\

8

(10)
<primaryExp>

::= <literalExp>
::= identifier
::= ’(’ <orExp> ’)’

-

(11)
<literalExp>

::= integer_literal
::= double_literal
::= boolean_literal
::= string_literal
::= enum_literal

-

6.2.4.2 Expression

An Expression is the superclass of the different kinds of expressions.
Description
An Expression is the most general kind of the expressions which can be used
within DMM conditions and assignments, from which the concrete expression
types AttributeExpression (see Sect. 6.2.4.3), LiteralExpression (see
Sect. 6.2.4.4), and OperationExpression (see Sect. 6.2.4.5) inherit. Expres-
sions are built recursively, making use of the composite pattern [78, p. 163].
Associations
• operationExpression: OperationExpression [0..1]
The OperationExpression of which this expression is a sub expression

Notation
Expressions can be unparsed into a textual representation (and such textual
representations can be parsed into an expression). The grammar of expressions
is shown in Sect. 6.2.4.1.

6.2.4.3 AttributeExpression

An AttributeExpression represents an attribute.

82

6.2. SYNTAX

Generalizations

• Expression on page 82

Description
An AttributeExpression represents an attribute of some node. It can occur
in two contexts:

• Within an expression that forms a condition or the right side of an as-
signment. In this context, the attribute expression is at runtime bound to
that attribute’s value.

• On the left side of an assignment. In this context, the result of evaluating
the right side of the assignment will be stored into the attribute.

Attributes

• nextStateValue: Boolean [1]
Whether this attribute expression refers to the attribute’s value at rule
matching time or after rule application time.

• leftHandSide: Boolean [1]
Wether this attribute is the left side of an assignment

Associations

• targetAttribute: ecore::EAttribute [1]
The attribute this attribute expression refers to

• node: Node [1]
The node of which the attribute’s value will be bound to the attribute
expression

Semantics
Attribute expressions may refer to the value of an attribute in the state the
expression’s rule is currently matching or in the next following state (i.e., the
state we get from applying the rule) – in the latter case, the nextStateValue
attribute will be true. Furthermore, an attribute can be used either at the left
side of an assignment or within an expression, i.e., in either the right side of an
assignment or in a condition. In case the leftHandSide attribute is true, the
former is the case, the meaning being that the evaluation of the assignment’s
right side will be assigned to that attribute.
Notation
See Sect. 6.2.4.1.

6.2.4.4 LiteralExpression

A LiteralExpression represents a literal, i.e., a number, string, boolean,
or enumeration literal.
Generalizations

• Expression on page 82

83

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Description
A LiteralExpression represents actual literals to be used within expres-
sions. The LiteralExpression therefore refers to a single Literal instance
which has several subclasses referring to the type of literal to be used.
Associations

• literal: Literal [1]
The literal of this literal expression

Semantics
A literal expression represents the value of its literal.
Notation
See Sect. 6.2.4.1.

6.2.4.5 OperationExpression

An OperationExpression represents an operation to be performed on its
operands.
Generalizations

• Expression on page 82

Description
An OperationExpression represents an operation. Within the composite
pattern of which DMM expressions are built, it represents the container: An
operation expression can have one or two sub expressions, which can again be
operation expressions (or literal expressions or attribute expressions). Addition-
ally, an operation expression is associated with exactly one operator determining
the operation to be performed.
Associations

• operator: Operator [1]
The operator representing the operation to perform

Semantics
The semantics of an operation expression is the (recursive) evaluation of that
expression according to the operator’s semantics.
Notation
See Sect. 6.2.4.1.

6.2.4.6 Operator

An operator represents some unary or binary operation to be performed on the
operands of the operation expression the operator belongs to.
Description
An operator stores the symbol representing the very operation represented by
that operation expression as well as a priority which is used when unparsing
expressions. Operators can be unary or binary.
Attributes

84

6.2. SYNTAX

• symbol: String [1]
The symbol of this operator

• priority: Integer [1]
The priority of this operator (used for unparsing of expressions)

Associations
• operationExpression: OperationExpression [1]

The operatition expression owning this operator

Semantics
An operator’s semantics is naturally given by its symbol’s semantics. The cur-
rently available operators, their signatures, notations, and priorities are listed
in Table 6.3.
Notation
See Sect. 6.2.4.1.

6.2.4.7 UnaryOperator

See Sect. 6.2.4.6 on page 84.

6.2.4.8 BinaryOperator

See Sect. 6.2.4.6 on page 84.

6.2.4.9 Literal

A Literal represents some fixed mumerical, enumeration, or string value.
Description
A literal represents a number, string, or enumeration literal. The metaclass
Literal itself is abstract – the according concrete subclasses are
• BooleanLiteral: represents a boolean value

• IntegerLiteral: represents an integer value

• DoubleLiteral: represents a floating point value (Java datatype dou-
ble)

• StringLiteral: represents a string value, i.e., an array of characters

• EnumerationLiteral: represents one of the possible values of an enu-
meration

Each subclass has an accordingly typed attribute which stores the value the
literal instance represents.
Attributes
None (but see description above).
Associations
• literalExpression: LiteralExpression [1]
The literal expression owning this literal

Semantics
The semantics of a literal is the literal’s value as described above.

85

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Table 6.3: Operators of the DMM Expression language (from [16, p. 23])
Operation name Operator Signature Notat. Prio
Conjunction & bool × bool → bool infix 2
Disjunction | bool × bool → bool infix 1
Negation ! bool → bool prefix 7
Equality == bool × bool → bool infix 3
Addition + int × int → int infix 5
Subtraction - int × int → int infix 5
Multiplication * int × int → int infix 6
Division / int × int → int infix 6
Modulo % int × int → int infix 6
Minus - int → int prefix 7
Minimum min int × int → int prefix 8
Maximum max int × int → int prefix 8
Absolute value abs int × int → int prefix 8
Greater than > int × int → bool infix 4
Greater or equal >= int × int → bool infix 4
Equality == int × int → bool infix 3
Less or equal <= int × int → bool infix 4
Less than < int × int → bool infix 4
Addition + double × double → double infix 5
Subtraction - double × double → double infix 5
Multiplication * double × double → double infix 6
Division / double × double → double infix 6
Minus - double → double prefix 7
Minimum min double × double → double prefix 8
Maximum max double × double → double prefix 8
Absolute value abs double × double → double prefix 8
Greater than > double × double → bool infix 4
Greater or equal >= double × double → bool infix 4
Equality == double × double → bool infix 3
Less or equal <= double × double → bool infix 4
Less than < double × double → bool infix 4
Concatenation + string × string → string infix 5
Greather than > string × string → bool infix 4
Greater or equal >= string × string → bool infix 4
Equal == string × string → bool infix 3
Less or equal <= string × string → bool infix 4
Less than < string × string → bool infix 4

86

6.3. SEMANTICS

6.2.4.10 IntegerLiteral

See Sect. 6.2.4.9 on page 85.

6.2.4.11 StringLiteral

See Sect. 6.2.4.9 on page 85.

6.2.4.12 BooleanLiteral

See Sect. 6.2.4.9 on page 85.

6.2.4.13 DoubleLiteral

See Sect. 6.2.4.9 on page 85.

6.2.4.14 EnumerationLiteral

See Sect. 6.2.4.9 on page 85.

6.3 Semantics

In Sect. 5.2, we have seen that DMM as defined by Hausmann in [96] was
self-contained in the sense that Hausmann has provided a complete, set theory
based formalization, including the definition of rule matching and rule applica-
tion. This is the most precise way to specify a language’s semantics, but has
the drawback that it does not translate well into tool support. For this rea-
son, Hausmann has only briefly sketched a translation of DMM rulesets into
GROOVE grammars which can then be executed using the GROOVE tooling.

In contrast, the semantics of DMM++ is defined differently: Instead of pro-
viding an own formalization of the semantics of DMM, we focus on the transfor-
mation into GROOVE grammars, thus giving DMM++ a compiler semantics:
The semantics of a DMM rule is the semantics of the GROOVE rule resulting
from the transformation.

This section will define the the translation from DMM rulesets into GROOVE
grammars, which has two major parts:

First, Ecore models are transformed into GROOVE graphs, and graphs re-
sulting from such a transformation (and modified by a set of GROOVE graph
transformation rules) are transformed back into the corresponding Ecore mod-
els.5 Second, DMM rulesets are transformed into GROOVE graph transforma-
tion rules as mentioned above. Figure 6.14 shows an overview of the involved
transformations.

Since the generated GROOVE rules need to be “compatible” to the GROOVE
graphs generated from Ecore models, we will not present the above transforma-
tions separately. Instead, we will—feature by feature— show in parallel how the
transformations work. Before we do that, we first point out the challenges we
met in the next section. Section 6.3.2 will then present the actual transforma-
tion(s) as (basically) defined by Hausmann in [96]. Sections 6.3.3 to 6.3.5 will

5A first version of this transformation had been developed by Thomas Rheker as part of
his bachelor’s thesis [173]. Since then, the transformation has been advanced within the works
of Bandener [11, 12], Bauer [16], and the author [192].

87

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Ecore
model
M

Groove
graph
G

Groove
graph
G‘

DMM
rule

Groove
rule

Ecore
model
M‘

EMF2Groove Groove2EMFDMM2Groove

Application of
Groove rule

Application of
DMM rule

Figure 6.14: Overview of the transformations from DMM to GROOVE.

point out the newly introduced concepts for the treatment of universally quan-
tified structures, attributes, and rule overriding. Finally, Sect. 6.3.6 will point
out restrictions of the current state of the transformations (i.e., Ecore features
which are not yet supported or only in a restricted way).

6.3.1 Challenges
As we have seen in Chapters 2 and 4, the structures of Ecore models and
GROOVE graphs as well as DMM rules and GROOVE rules have a lot of
similarities, but also differences. We start by pointing out the similarities:

• An Ecore model can structurally be seen as a graph, where objects are
nodes, and references between objects are (directed) edges.

• Each object contained in an Ecore model has an explicit type from an
Ecore metamodel; on the other hand, GROOVE allows to type nodes
with the type: aspect.

• Ecore objects may have attributes – the same is true for GROOVE nodes.

• The notion of universal quantified structures and negative application con-
ditions used by DMM and GROOVE are rather similar.

• As DMM rules, GROOVE rules allow to constrain the mapping of rule
nodes to graph nodes by means of conditions of the nodes’ attributes as
well as the manipulation of attribute values.

However, not all Ecore and DMM concepts can be mapped to GROOVE con-
cepts in such an easy way. The most important differences are:

• As mentioned above, each type being used in an Ecore model belongs to an
Ecore metamodel (which technically is an EPackage). These metamodels
each each have a unique URI; therefore, the name of an Ecore type in
addition with the URI of the type’s package uniquely identify that type.
In contrast, GROOVE typenames are just strings.

• Not all datatypes which can be used within Ecore models have a natural
representation in GROOVE. In particular, GROOVE does not support
enumeration datatypes.

88

6.3. SEMANTICS

• As we have seen in Sect. 6.2, DMM rules can invoke other DMM rules, i.e.,
smallstep and premise rules. GROOVE does neither support the explicit
invocation of GROOVE rules, nor does it allow to “factor out“ common
structures of several rules into separate rules.

• GROOVE does not allow for the refinement of rules, as is the case with
the DMM OverridingRelation elements.

As a result, some Ecore and DMM constructs can be translated rather easily into
according GROOVE structures, but for others, much more effort is needed. In
the next section, we will describe the transformation and show how we realized
the advanced Ecore and DMM constructs with the simpler GROOVE constructs.

6.3.2 Basic Transformation Concepts
6.3.2.1 Preliminary Actions

Before the actual transformation of a DMM ruleset into the according GROOVE
grammar can take place, a couple of preliminary actions are necessary: First of
all, we have seen above that DMM premise rules are an extension of the invoking
rule’s left-hand graph. Therefore, premise rules are merged into their invoking
rules and do not need to be explicitly taken into account by the transformation.
The merging of premise rules is explained below.

The second prelimary action is the computation of unique strings, each of
which representing an EClass from one of the ruleset’s typing metamodels.

GROOVE rules match non-injectively by default. However, we have seen in
Chapter 4 that GROOVE allows to configure this by means of a properties file
belonging to each GROOVE grammar. Therefore, an according properties file
is generated, and the property matchInjective is set to true.

Finally, a number of generic helper rules will be copied into the directory
which will later contain the complete GROOVE grammar. These helper rules
will at model execution time help to identify error states, e.g. in the case of failed
invocations, or realize the semantics of soft rule overriding (see Sect. 6.3.5).

Merging Premise Rules The merging of premise rules is rather straight-
forward (it is implemented in class de.upb.dmm.ruleset.util.Premise-
RuleMerger of plug-in de.upb.dmm.ruleset). Let origRule be the (small-
step, bigstep, or property) rule containing one or more invocations of premise
rules. For each of the invoked premise rules pRule, the following happens:

1. A mapping from pRule’s context node to the invocation’s target node and
from pRule’s parameter nodes to the invocation’s parameters is created.
For each node of pRule neither being the context node nor a parameter
node, a new node is created in origRule and mapped to that node.

2. For each pEdge of pRule, an edge is created in origRule (if it not yet
exists) having the same properties as pEdge, but source and target node
from origRule according to the mapping computed in step 1.

3. Finally, the conditions of pRule’s nodes are copied into the according
origRule nodes – during this process, the target node of each Attribute-
Expression is set to the according origRule’s node. Again, the mapping
from step 1 is used.

89

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

4. Finally, for each invoked premise rule of pRule (if any), the above process
is restarted recursively. The map is also built up recursively: Each context
and parameter node of each premise rule will be mapped to its parent node,
which might again be node of a premise rule (i.e., the invoking premise
rule). The corresponding node in origRule will be the one in the sequence
of mappings not having a parent node.

The algorithm terminates since invocations of premise rules must not contain
circles. The result of the above algorithm is that each rule with premise invo-
cations now contains the invoked rules’ structures, and therefore only matches
if these structures are contained within the state graph, as desired.

Computing Unique Type Strings and Type Hierarchy Since GROOVE6

supports typing by providing a special type: aspect which will be mapped to
typed nodes accoding to a type hierarchy, we have to create a unique string
for each type of all involved DMM Nodes, and we have to compute the type
hierarchy.

The types’ unique strings are computed in class de.upb.dmm.transfor-
mation._2groove.mapping.NameFactory of the plug-in de.upb.dmm-
.transformation._2groove.mapping. The goal of the algorithm is to
create type labels which are as simple and close to the original type names as
possible. As such, the type strings are computed as follows: A bidirectional
mapping between types and type names is created. Then, for each EClass
contained in one of the involved metamodels,

1. Let typeName be the name of the EClass. If typeName is not yet
contained in the mapping, we add it and are done. Otherwise,

2. we prefix typeName with the name of the package the EClass is contained
in, and check again whether typeName is contained in the mapping. If it
is not, we are done. Otherwise,

3. we repeat step 2 until we have reached the root package. If we haven’t
found a valid type name yet, we set typeName as the EClass’s package’s
namespace URI, followed by the EClass’s name, and add typeName to
the mapping.

Since the names of EClasses must be unique within a EPackage, and since
each EPackage must have a unique namespace URI, the above algorithm will
always result in a valid mapping, and most unique type names will look like
MyClass or myPackage.MyClass.

We have seen in Chapter 4 that GROOVE allows to define a type hierarchy,
which will then taken into account when computing matchings. The according
configuration string is computed by first identifying the direct subtypes of each
involved EClass, and to then add the according subtyping relation >, using
the unique type names as described above. The string is then added to the
grammar’s property file as value for property subtypes.

6At the time of writing, dedicated type graph support had already been added to GROOVE,
but could not be reused by the DMM tooling due to time constraints.

90

6.3. SEMANTICS

Computing Elements to be Filtered Out We have seen in Sect. 6.2 that
DMM rule nodes and edges are typed over the metamodels of the DMM ruleset
they belong to, and that the matching of a DMM rule depends on the existence
of the rule’s nodes and edges within the state graph: For instance, if the DMM
rule contains a node typed A, then that node can only be mapped to a state
node also having type A or a subtype of A – the same holds for edges.

Let us now consider the other way around: If a model contains a node
typed A, but none of the rules of a DMM ruleset contains any node typed
A or supertype of A, then that node can neither affect the matching of any
of the DMM rules, nor can it ever be changed (e.g., deleted) by the DMM
rules. As such, that object (or reference) does not need to be translated when
computing a GROOVE state graph from an Ecore model. The advantage of
not translating these objects is obvious: The state graph’s size will be reduced,
leading to a faster and more memory-efficient computation of the transition
system describing the model’s behavior.

Consequently, as part of the preliminary actions, we collect all EClasses,
EReferences, and EAttributes which are used in any of the rules of the
DMM ruleset, and we use this collection of meta elements to decide during
translation of an Ecore model which of the model’s actual elements need to be
translated at all (see Sect. 6.3.2.3).

6.3.2.2 Models and Rulesets

In general, the transformation will take an Ecore model and a DMM ruleset
as input, and will produce a GROOVE grammar ready to be loaded into the
GROOVE simulator, model checked etc. The Ecore model will be transformed
into the start graph of the grammar, and each DMM rule (including the ones
from imported rulesets) is transformed into a GROOVE rule to work on that
start graph.

6.3.2.3 Objects and Links

First of all, all objects within the Ecore model and DMM nodes of the DMM
rules are mapped to GROOVE nodes, each of which equipped with a typing edge
whose label consists of type: and the unique type name of the object’s/node’s
type. The only exception are objects whose type is not used within any of the
rules (see Sect. 6.3.2.1); these objects are stored within a dedicated model for
the sake of being available when translating a GROOVE state graph back into
an Ecore model (see below).

In case of the Ecore model, the GROOVE node of the start graph addition-
ally receives a label with the object’s id (if any). In case of DMM rule nodes with
role ElementRole::CREATE, ElementRole::DESTROY, or ElementRole-
::NOT_EXISTS, the GROOVE node will also be equipped with an according
aspect edge new:, del:, or not:.

The transformation of references between the Ecore model’s objects is also
straight-forward: As long as the references are used in any of the DMM rules,
they result in a GROOVE edge between the according GROOVE nodes, being
labeled with the reference’s name. If a reference’s cardinality is greater than
one, one GROOVE edge is created for each of the referenced’s objects, resulting

91

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

in many edges pointing from the referencing object to each of the referenced
ones.7

The transformation of DMM edges to edges in the according GROOVE rules
works exactly the same, and additionally, if the DMM edge has a role other
than ElementRole::EXISTS, the resulting GROOVE edge is equipped with
an according aspect as above.

The translation from GROOVE state graphs back to Ecore models is again
not difficult: The source Ecore model (i.e., the one which served as start graph)
is modified to reflect the different structure of the GROOVE state graph:

1. For each GROOVE node with an object id label, find the according object
in the Ecore model. For each GROOVE node without an object id label,
create an object of the according type within the Ecore model. Remember
the mapping from GROOVE nodes to the existing or newly created Ecore
objects.

2. Delete each Ecore object for which no corresponding GROOVE node could
be found and which has also not been stored in the model containing the
unused model elements, making use of the mapping computed in step 1.

3. For each outgoing reference edge of each GROOVE node:

• If the reference has cardinality greater than 1, collect all referenced
objects in a set, and then use that set as the value of the object’s
reference.
• Else, directly use the referenced object as the object’s reference’s
value.

The result will be an Ecore model which reflects the changes performed by the
GROOVE rules on the start state graph and the intermediate graphs. Note
that the translation of DMM Quantifiers will be dealed with in Sect. 6.3.3.

6.3.2.4 Rule Invocation

So far, all DMM constructs could be mapped to GROOVE contructs in a very
natural way. For rule invocation however, this is not the case: The only means
of control of rule execution GROOVE provides is that of rule priorities, but that
doesn’t help for implementing rule invocation.

As such, the approach suggested by Hausmann has been applied and ex-
tended:

• The GROOVE state graphs contain an explicit invocation stack.

• Bigstep rules can only match if the invocation stack is empty (and, of
course, if their left-hand graph is contained in the state graph).

• In contrast, a smallstep rule can only match if an invocation corresponding
to that rule is on top of the invocation stack.

• For property rules, the matching behavior can be configured: the Proper-
tyRule.matchAsBigstepRule property dertermines whether a prop-
erty rule can match always (i.e., whenever its left-hand graph is found in
a state graph) or only if the invocation stack is empty.

7DMM yet has only very limited support for ordered references; see Sect. 6.3.6.

92

6.3. SEMANTICS

Figure 6.15: Empty invocation stack – only bigstep rules can match.

To achieve this very behavior, the GROOVE start state graph contains an empty
invocation stack which is generated as part of the transformation. Such an
invocation stack is depicted as Fig. 6.15. The node labeled DMM_System and
DMM_Invocation represents the stack itself. It has a single outgoing edge
labeled DMM_next_invocation pointing to the stack’s first invocation node,
which is in this case the special node representing the bottom of the stack (the
node carrying the label DMM_bottom). As such, the stack is empty.

In the following, we will explain how the matching behavior of the DMM
rules is achieved.

Bigstep Rules To make sure that a DMM bigstep rule only matches if the
invocation stack is empty, the empty stack’s structure is added to the bigstep
rule. If the rule does not invoke any smallstep rules, this is the only change
necessary.

Otherwise, the invocations are added to the stack by means of invocation
nodes, and in the order being implied by the invocations’ sequence numbers.
For each invocation,

1. an invocation node is created which is additionally labeled with the in-
voked rule’s name

2. the invocation’s target node is marked with a GROOVE edge labeled self
from the invocation node to the target node

3. the parameters of the invocation are marked with a GROOVE edge labeled
DMM_parameter from the invocation node to the respective parameter
node

4. to maintain the order of the parameters, DMM_parameter_next edges
are used.

All the above constructs representing the invocations are additionally equipped
with new: aspect edges. Finally, the invocation stack structure is modified
such that the DMM_next_invocation node pointing to the stack’s bottom is
deleted, and new such edges are created from the stack to the first invocation
node, and from the last invocation node to the stack’s bottom invocation.

The procedure is illustrated in Figs. 6.16 and 6.17, which show a (very sim-
ple) bigstep rule and the GROOVE rule resulting from translating that bigstep
rule. The bigstep rule contains one invocation of a rule execute().

93

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.16: DMM bigstep rule with one invocation.

Figure 6.17: Invocation stack manipulation of bigstep rule with one invocation
(resulting from the rule shown as Fig. 6.16).

In the resulting GROOVE rule, the invocation node representing that in-
vocation is created and inserted into the invocation stack. After application of
that rule, the invocation stack’s structure will have changed: The stack’s bottom
invocation will not be the first invocation any more, and thus, no bigstep rule
can match the containing state. The next section will show how that change is
used to make only the invoked smallstep rules match in such a state.

Smallstep rules In case of smallstep rules, the translation to GROOVE needs
to make sure that each smallstep rule only matches if it has been invoked. This
is achieved by adding the invocation stack to the smallstep rule just as we did
for bigstep rules as described above. The only difference is that the invocation
stack is not empty, but has an invocation corresponding to the smallstep rule
at its top.

Additionally, the context and parameter nodes of the smallstep rule need
to be annotated. We have already seen in the last section that the target and
parameter nodes of an invocation are annotated by dedicated edges (i.e., by
an edge labeled self in the case of the target node, and by edges labeled
DMM_parameter in the case of parameter nodes). If a smallstep rule is ex-
ecuted, its context and parameter nodes need to be bound to the target and
parameter nodes of the invocation. This is achieved by according self and
DMM_parameter edges which make sure that the rule’s context node can only
be bound to the node on which the invocation had been performed (since it is

94

6.3. SEMANTICS

Figure 6.18: DMM smallstep rule with one invocation.

the only node to which a self edge is pointing) – for parameters, the idea is
exactly the same.

Let us illustrate the above with an example: Fig. 6.18 shows a simple small-
step rule which contains a single invocation; the GROOVE rule resulting from
translating that smallstep rule is depicted as Fig. 6.19. In the latter figure, we
can see that the rule has an invocation node labeled execute in its context.
This node refers to the containing rule itself. The invocation node is connected
to the rule’s context and parameter node via self and DMM_parameter edges.
In the state graph, these nodes and edges have been created by the invoking
rule (see e.g. the rule within Fig. 6.17 which creates exactly this structure).
As such, if the smallstep rule from Fig. 6.19 matches a state graph, it is clear
from the matching on which node the invocation has been performed by the
invoking rule, and which nodes were passed as parameters. During execution of
our smallstep rule, the according structure is deleted from the invocation stack,
corresponding to the fact that the rule has indeed been executed.

Our smallstep rule additionally contains an own invocation. For this, an ac-
cording structure is pushed on top of the stack (the green elements of Fig. 6.19).
This works as explained for bigstep rules above, with one minor exception: In
case of a bigstep rule, we want to make sure that the invocation stack is empty.
As such, we have seen that a GROOVE rule resulting from a bigstep rule has
the bottom invocation as its next invocation (meaning that there is no next
invocation). For smallstep rules, the situation is slightly different: There might
be an arbitrary number of invocations on the stack. Therefore, a smallstep rule
has an arbitrary invocation as its next invocation (which can be seen at the
bottom right of Fig. 6.19). At runtime, this invocation node might be mapped
to an arbitrary invocation node of the state graph, including the bottom invo-
cation node in case the smallstep rule is the last one in a sequence of invoked
smallstep rules – the smallstep rule does not need to know what follows.

Finally, a smallstep rule can push new invocations on top of the stack, just
as bigstep rules can do. The mechanism is exactly the same as for bigstep rules
and will thus not be explained here again.

Property Rules In the case of property rules (which are not allowed to per-
form any changes, which includes the invocation of smallstep rules), the trans-
lation is simple: If the matchAsBigstepRule property is set to true, the
structure of the empty invocation stack is added to the rule, making it only

95

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.19: Invocation stack manipulation of smallstep rule with one invocation
(resulting from the rule shown as Fig. 6.18).

match if the stack is indeed empty. Otherwise, no change is made to the rule.
Thus, the rule matches as soon as the rule’s structure is contained in a state
graph; the rule’s matching is not affected by the state of the invocation stack.

6.3.3 Universal Quantified Structures
The treatment of universal quantified structures (UQS) by Hausmann was ham-
pered by the fact that GROOVE at time of writing his PhD thesis [96] did not
support UQS in any way. Therefore, Hausmann fell back to the concept of rule
schemes [198], where a scheme can be unfolded into a number of single rules,
each treating a fixed number of elements the UQS is mapped to.

In the meantime, GROOVE has introduced a powerful notion of UQS: the
concept of nested graph transformation rules introduces predicates ∀, ∀>0, and
∃ into GROOVE rules. These can be used to express things like “If all incoming
places of a transition carry a token, delete these tokens, and create one token
on each outgoing place” within one rule.

As a result, we have reused this mechanism to implement UQS for DMM. For
this, we have defined the ElementRoles ElementRole::ZERO_TO_MANY,
ElementRole::ONE_TO_MANY, and ElementRole::NESTED, correspond-
ing to the GROOVE predicates ∀, ∀>0, and ∃.

Additionally, we have defined the notions of UQS cluster and nested cluster,
meaning a set of nodes (transitively) being neighbors of each other and all
having the same ElementRole. By adding the restriction that each nested
cluster must be connected to exactly one UQS cluster (see Sect. 6.2.3.5), the
translation is straight-forward:

• For each UQS or nested cluster within a DMM rule, create an according
GROOVE predicate node in the resulting GROOVE rule, and connect all
nodes of the cluster with that predicate node by an edge labeled in.

• For each nested cluster: Connect the according predicate node with the
one predicate node representing the nested cluster’s UQS cluster by an
edge labeled at.

Let us demonstrate the above with a simple example: The rule action.start()#
depicted as Fig. 6.20 contains a node with element role ElementRole::ONE_TO

96

6.3. SEMANTICS

Figure 6.20: DMM rule with one UQS node and one nested node.

_MANY (the node typed InputPin) and one node with element role Element-
Role::NESTED (the node typed Token). Here, the former node forms a UQS
cluster, and the latter forms a nested cluster. The semantics of the rule is as
follows: The rule matches if there exists an Action which has at least one
InputPin, and if all InputPins of that Action carry at least one Token.
Additionally, the Action must not yet be executed, i.e, it must not have
an attached ActionExecution. Application of the rule will then create an
ActionExecution node and invoke rule action.execute().

In the resulting GROOVE rule in Fig. 6.21, the UQS structure can be seen
to the right: the InputPin and Token nodes are connected to the ∀>0 and ∃
nodes, and the ∃ node is connected to the ∀>0 node. The manipulation of the
invocation stack can be seen to the top left of the rule, and the handling of the
ActionExecution at the bottom left. Overall, the rule implements exactly
the behavior described above.

6.3.3.1 Invocations on Universally Quantified Nodes

The intuition of invoking a smallstep rule with a UQS node as target node is
that one invocation of the according rule is performed for each of the nodes of
the state graph to which the UQS node has been mapped.

Note that this statement does not consider any order in which the invocations
are performed on the nodes – the assumption is that the order of invocations
does not matter. This must of course be respected by the language engineer
when creating a DMM semantics specification.

97

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.21: GROOVE rule resulting from the DMM rule in Fig. 6.20.

We have seen earlier how rule invocation is implemented on the GROOVE
side by maintaining an invocation stack in which the invocations of rules are
inserted. However, we face a problem here: The UQS mechanism of GROOVE
does not allow to create a “linked list” structure out of a set of state nodes
mapped to a UQS node, at least not within one rule.8

To cope with that, the transformation works as follows:

• The invoking rule is mapped to a GROOVE rule such that for each in-
vocation on a UQS node n, one UQSInvocation node is inserted into
the invocation stack. Additionally, the rule will create one Invocation
node per state node mapped to n, and connect these Invocation nodes
to the UQSInvocation node via a DMM_handleInvocation edge.

• Additionally, some generic helper rules exist. These rules have higher pri-
ority than all other GROOVE rules – they will match as soon as the invoca-
tion stack contains a UQSInvocation, and will insert the Invocation
nodes created above into the invocation stack (and finally remove the
UQSInvocation) node.

• Finally, the normal DMM invocation mechanism takes care of performing
the invocations.

This solution has the following advantages: The GROOVE ruleset resulting
from translating a DMM ruleset will have the same number of rules (i.e., a

8Note that Rensik has indeed considered to change this [39], but to our knowledge this is
not implemented yet.

98

6.3. SEMANTICS

Figure 6.22: DMM smallstep rule with invocation on a universally quantified
node.

Figure 6.23: Invocation stack manipulation of smallstep rule with invocation on
a universally quantified node (resulting from the rule shown as Fig. 6.18).

DMM ruleset of size n will result in a GROOVE ruleset of size n + k, where
k is a constant number of rules). Additionally, since the order of invocations
does not matter, the resulting transition system will contain a linear structure
of applications of helper rules (in contrast to all possible orders of invocations
in case order would matter).

Let us demonstrate the above with an example: The DMM smallstep rule
shown as Fig. 6.22 contains an invocation on the Token UQS node. The
GROOVE rule resulting from this rule is shown as Fig. 6.23. To the right,
we see the insertion of the DMM_UQSInvocation node into the invocation
stack. To the left, we can see that for each Token object, a DMM_Invocation
node is created and connected to the DMM_UQSInvocation node.

The resulting structure will then be resolved by helper rules such as the
ones shown as Fig. 6.24 and 6.25. The former rule inserts one of the invoca-
tion nodes into the invoation stack and removes the DMM_handleInvocation
edge; this rule will be applied until all invocations are inserted into the stack.
The latter rule then removes the DMM_UQSInvocation node from the invoca-
tion stack. Note that more helper rules exist which take care of bigger numbers
of invocations at once to avoid extensive cluttering of the transition system.
Note also that the helper rules will only be generated if the DMM ruleset to be
transformed contains at least one invocation on a UQS node.

99

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.24: Helper rule inserting an invocation into the stack.

Figure 6.25: Helper rule removing the UQSInvocation from the stack.

100

6.3. SEMANTICS

6.3.4 Attributes
The treatment of attributes in DMM is two-fold: Attributes and their values
have to be translated to and from GROOVE state graphs (as long as they are
used by any of the DMM rules, see Sect. 6.3.2.1), and the DMM rule con-
structs Condition, Assignment, and EmphasizedNodeAttribute have
to be dealt with.

6.3.4.1 State Translation

There are two basic kinds of datatypes for attributes supported by DMM: enu-
merations and primitive datatypes. The translation of these two kinds is rather
different.

Since GROOVE does not support the notion of enumerations, these have to
be mapped into common GROOVE constructs. This is done as follows:

• For each enumeration, a dedicated node is created within the GROOVE
state graph and labeled with the enumeration’s name.

• Additionally, for each literal of each enumeration, a node labeled with
the literal’s string representation is created and connected to the node
representing the enumeration via a DMM_Enum edge.

• Then, if a node’s type has an attribute of enumeration type, the node will
have an edge to the enumeration literal representing the object’s attribute
value, and labeled with the attribute’s name.

In contrast, attributes having primitive datatypes as types are mapped to
GROOVE attributes. This is done according to Table 6.4. The shown mapping
is implemented in class de.upb.dmm.transformation._2groove.com-
mon.AttributeMapper of the de.upb.dmm.transformation._2groove-
.common plug-in.

Fig. 6.26 shows an excerpt of a GROOVE state. The PseudoState node
in the figure’s top right represents an object of type PseudoState. This ob-
ject has two attributes: kind of type PseudoStateKind (an enumeration)
and name of type string. The graph structure representing the enumeration
PseudostateKind fills the main part of Fig. 6.26. The PseudoState in
the graph has kind Initial and name “InitialState” – the latter is expressed
by the attribute node to the top right of the figure, which is connected to the
PseudoState node by an edge labeled with the attribute’s name (which is
name in this case).

The translation from GROOVE graphs back to Ecore models is straight-
forward: For each attribute, the attribute value is received from the state graph
(either by identifying the literal value in case of an enumeration datatype, or
by mapping the primitive value back to the according Java value). Using the
attribute’s name (which is received from the edge connecting the object node
with its attribute value), the value is then set on the Ecore object.

6.3.4.2 Conditions

We have seen earlier that Conditions are used to restrict the matching of rule
nodes: Nodes can only be matched to nodes of the state graph which fulfill the

101

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Table 6.4: Mapping between Java and GROOVE datatypes
Java type GROOVE aspect
java.lang.String string:
char string:
java.lang.Character string:
java.util.Date string:
short int:
java.lang.Short int:
byte int:
java.lang.Byte int:
int int:
java.lang.Integer int:
long int:
java.lang.Long int:
java.math.BigInteger int:
float real:
java.lang.Float real:
double real:
java.lang.Double real:
java.math.BigDecimal real:
boolean bool:
java.lang.Boolean bool:

Figure 6.26: GROOVE state graph with a node having attributes of type
EEnumeration and string.

102

6.3. SEMANTICS

Table 6.5: Mapping between DMM operators and GROOVE productions
DMM operator GROOVE production
& and
| or
! not
+ add
- sub

* mul
/ div
% mod
min min
max max
abs abs
> gt
>= ge
== eq
<= le
< lt

nodes’ conditions, where a condition is an expression over attribute values of a
rule’s nodes which evaluates to boolean.

To achieve this behavior in GROOVE, the following transformations are
performed:

• State graph: Each GROOVE node is equipped with a condition binder,
i.e., the boolean value true which is bound to its node by means of a
DMM_ConditionBinder edge.

• Rules: Each condition’s expression is translated into a tree of GROOVE
nodes, where leafs are literal values or attribute values of rule nodes, and
where the inner nodes are GROOVE productions. The translation of
DMM expression elements is straight-forward: LiteralExpressions
become GROOVE literal values, AttributeExpressions become ref-
erences to attributes of rule nodes, and OperationExpressions be-
come GROOVE productions. For a mapping of DMM operations to
GROOVE productions see Table 6.5.

• Finally, the “outer” expression of the condition (which evaluates to bool-
ean) is bound to the condition binders true attribute value via an eq
production.

The resulting structure makes sure that a state node can only be mapped to
a rule node if the rule node’s conditions all evaluate to true, resulting in the
desired behavior.

Note that the condition binder is necessary for one particular reason: Usu-
ally, a node’s conditions will refer to attributes of that node, and thus, an
expression tree resulting from a condition could be bound to the node through
those attributes. However, this does not have to be the case. For instance,
consider a custom Petri net semantics where a transition shall fire as soon as
the sum of the weights of tokens on incoming places is bigger than the sum of

103

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

tokens of outgoing places. Clearly, the condition formalizing this requirement
belongs to the transition.

However, the condition only refers to attributes of the incoming and outgoing
places, but not of the transition itself. Transforming such a condition would
result in an expression tree which would not be connected to the transition, but
would instead affect the complete rule’s matching. Therefore, every expression
tree is bound to the owning node by means of the node’s condition binder.

6.3.4.3 Assignments

The translation of Assignments into GROOVE structures is very similar to
that of Conditions as described above: The assignment’s expression is trans-
lated into an expression tree, just as we have seen for conditions. However, that
expression tree (which of course does not have to evaluate to a boolean value)
is not bound to the owning node by means of a condition binder, but through
the attribute of the assignment’s AttributeExpression.

More concretely, the translation deletes the edge pointing to the attribute’s
value node before rule application, and creates a new edge pointing to the result
of the expression tree’s evaluation and labeled with the attribute’s name.

6.3.4.4 Node Creation

In case of DMM nodes with role ElementRole::CREATE, attributes need to
be treated also. For such nodes, no conditions are allowed (see Sect. 6.2.3.5).
However, assignments are allowed and can be used to compute the initial value
of attributes of the newly created node. As such, the transformation ensures
the following:

• A condition binder (see Sect. 6.3.4.2) has to be created. This is be-
cause otherwise, DMM nodes on which a condition is defined could not be
mapped to a newly created node.

• The attribute values of the newly created node are either initialzed with
the attribute’s datatype’s default value or with the result of an assignment.

6.3.4.5 Negative Application Conditions

In case of DMM nodes with role ElementRole::NOT_EXISTS, no assignments
are allowed (see Sect. 6.2.3.5). However, conditions are allowed and can be
used to further restrict the mapping of state nodes to the negative application
condition. Since the conditions belong to the negative application condition,
all nodes belonging to the conditions’ expression trees are equipped with a
GROOVE NAC edge.

6.3.4.6 Emphasized Attributes

The purpose of EmphasizedNodeAttributes is to see the value of certain
attributes in the transition system at the time a rule is applied. For this,
GROOVE has a dedicated construct: For each EmphasizedNodeAttribute
of a rule, a special GROOVE node is created and labeled with par=$<nr>:,
where <nr> is the index of the according EmphasizedNodeAttribute in
the rule’s list of EmphasizedNodeAttributes (this is why in the DMM

104

6.3. SEMANTICS

Figure 6.27: Simplified syntax metamodel of UML Activities.

Figure 6.28: Runtime metamodel of UML Activities, referring to elements of
the syntax metamodel depicted as Fig. 6.27.

metamodel, EmphasizedNodeAttributes are not owned by the node they
are associated to, but by the according rule.).

Additionally, an edge is created from the DMM node being associated to (but
not owning) the EmphasizedNodeAttribute, and that edge is labeled with
the attribute’s name. This tells GROOVE which attribute’s value to display.

6.3.5 Rule Overriding
While working with DMM specifications, one recurring problem was the restric-
tion that they can not be refined in the sense that some behavior (i.e., rules) of
that specification can be changed. This hampered reusability of DMM specifica-
tions quite a bit. As a result, we decided to introduce a notion of rule overriding
into the DMM language: An overriding relation allows to model the overriding
of rules. Since DMM specifications can import other DMM specifications, the
refining of existing DMM specifications can be achieved.

Since rule overriding [62, 192] is one of the main contributions of this thesis,
we show the definition and implementation of it in detail in this section, which
is based on [192].

105

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.29: DMM rule action.execute(ActivityExecution)#.

Figure 6.30: Metamodel extending the syntax and runtime metamodels
(Fig. 6.27 and 6.28).

Assume that we have a language equipped with a DMM semantics, and we
want to create our own DSL by means of extending that language: Our goal is
to introduce new language elements, and to specify their semantics as easily as
possible. Consequently, we have to perform two tasks: First, we need to modify
the language’s syntax by integrating the new elements into the already existing
metamodel. Second, we need to specify how these elements behave.

As an example, we would like to introduce custom elements into the given
Activity metamodel: An ExtendedToken shall be a subclass of class Token,
and its purpose is to, e.g., carry additional information such as a certain object
(for the sake of simplicity, this is not modeled in our example). To be able to
produce ExtendedTokens, we introduce an ExtendedInitialNode class
(naturally being a subclass of class InitialNode). Finally, we introduce an
ExtendedAction which will process our ExtendedTokens in a certain, to
be defined way; class ExtendedAction inherits from Action.

In other words: Our extending metamodel contains three classes which are
referring to and inheriting from classes from the syntax and the runtime meta-
model seen in Fig. 6.27 and 6.28 (note that it would be conceptually cleaner to
again separate into an extending syntax and runtime metamodel). The resulting
metamodel is depicted as Fig. 6.30.

Let us now define the behavior of the new elements. The rules extended-
InitialNode.flow()# and extendedAction.execute(ActivityExecution) are shown as
Fig. 6.31 and 6.32. The task of the former is to create ExtendedTokens in-
stead of just Tokens; despite that, the rule is similar to rule initialNode.flow()#
from the original ruleset. Rule extendedAction.execute(ActivityExecution) is more
complex than its counterpart, rule action.execute(ActivityExecution): The rule re-
quires that at least one of the ExtendedAction’s incoming ActivityEdges
is carrying an ExtendedToken owned by the passed ActivityExecution

106

6.3. SEMANTICS

Figure 6.31: DMM rule extendedInitialNode.flow()#.

Figure 6.32: DMM rule extendedAction.execute(ActivityExecution).

node. If this is the case, the rule will perform some pre- and postprocessing on
the flowing tokens (we do not show the corresponding rules here).

Unfortunately, it is not that easy. As we have concluded in Sect. 5.3, DMM
in its current state only allows to add rules to an existing ruleset. These added
rules do not influence the application of the original rules, though: If one of
the old rules as well as one of the newly added rules matches a state, both of
them will be applied when computing a transition system, therefore leading to
a branch.

This might be the desired behavior, but in some cases it is not. For in-
stance, what does that mean for our new rules extendedInitialNode.flow()# and
extendedAction.execute(ActivityExecution)? It is easy to see that rule initial-
Node.flow()# matches whenever rule extendedInitialNode.flow()# matches, and
the same holds for rules action.execute(ActivityExecution) and extendedAction.-
execute(ActivityExecution). This is due to the fact that the left-hand graph of,
e.g., initialNode.flow()# basically is a subgraph of the other rule’s left-hand graph.
The only exception is the typing: In the new rule, some node’s type is not the
same type but a subtype of the old rule’s node’s type. Referring to Def. 6, the
above follows.

In a transition system, a state where rule extendedInitialNode.flow()# matches
will therefore give rise to (at least) two new states. One is derived by applying
rule initialNode.flow()#; in this state, a simple Token has been created. The
other state is the result of an application of rule extendedInitialNode.flow()#
and does contain a newly created ExtendedToken. In other words: If our

107

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

model contains an ExtendedInitialNode, the resulting transition system
will contain an undesired state where not an ExtendedToken but a Token
has been created.

The same holds for rule extendedAction.execute(ActivityExecution): Imagine
a state where this rule matches. Since action.execute(ActivityExecution) also
matches, our transition system will contain two paths: The desired one (in-
cluding the invocation of the pre- and postprocessing) and the undesired one
resulting from application of rule action.execute(ActivityExecution).

Note that removing e.g. rule initialNode.flow()# is no solution, since we then
could not mix InitialNodes and ExtendedInitialNodes within one Ac-
tivity any more. This is because rule extendedInitialNode.flow()# does not match
within the context of a simple InitialNode.

The problem arises because up to now, DMM does not allow to refine be-
havior, in contrast to the addition of behavior as we did above. This is what
we want to change: The problem can be solved by allowing rule extendedInitial-
Node.flow()# to override rule initialNode.flow()#, and to allow rule extendedAc-
tion.execute(ActivityExecution) to override rule action.execute(ActivityExecution).
In the following, we discuss two different definitions of an overrides relation
between DMM rules. Before we do that, we want to formalize DMM rules and
rule matching. We will then point out how rules should relate to each other to
participate in an overriding relationship, and we want to discuss whether the
overrides relation needs to be declared explicitly.

6.3.5.1 Prerequisites

In the previous chapters, we have not formalized the matching of rules. This
was on purpose: In Sect. 6.1, we have explained that a compiler semantics is
more appropriate for applying DMM specifications then a direct formalization
of DMM’s semantics. However, for the sake of explaining rule overriding in a
compact yet precise way, we will now capture the definitions of DMM rules and
rule matching in two definitions, which will then be referred from later parts of
this section.

We start with the definition of a DMM rule:

Definition 5 (DMM Rule) A DMM rule is a tuple R = (name, GL, GR,
NACs, contextNode, params, invocations) where GL and GR are graphs typed
over a metamodel M , NACs is the set of negative application conditions, con−
textNode ∈ NGL

is the context node of the rule (NGL
is the set of nodes of GL),

params ∈ NGL
× · · ·×NGL

is the (possibly empty) list of parameter nodes, and
invocations is the list of invocations of other DMM rules (which are pushed on
the invocation stack after application of the invoking rule).

The above definition of DMM rules basically transfers the information contained
in the DMM metamodel (see Sect. 6.2.2.2 on page 63) into the world of set
theory. Next, we use this definition to explain rule matching:

Definition 6 (Rule matching) Let G be a graph typed over a metamodel M ,
let R be a DMM rule typed over the same metamodel. R matches G if the
following conditions hold:

108

6.3. SEMANTICS

1. The invocation stack is either empty if R is a bigstep rule or has an ac-
cording invocation on its top if R is a smallstep rule.

2. A morphism m from GL to G can be found such that the types of the
matched nodes in G are of the same type or a subtype of the matching
nodes in GL.

3. m can not be extended to m′ such that m′ is a morphism from any of the
rule’s NACs to G.

Again, this definition captures (and formalizes to some extent) what we have
explained earlier. We are now ready to explain the relations between rules
participating in an overriding relation in the next section.

6.3.5.2 Relation of Overriding Rules

First of all, the names of two rules participating in an overrides relation must
be equal. Then, the context node of the overriding rule must be a subtype of the
overridden rule’s context node. This is because we want to mimic overriding
as it can be found in object-oriented languages (recall from Sec. 6.2.2.2 that
the context node can be seen as owning the rule, similar to a class owning its
methods). For the same reason, the parameter types of the two rules must be the
same or subtypes of the overridden rule’s parameters, i.e., the first parameter
of the overriding rule needs to have the same type or a subtype of the first
parameter of the overridden rule and so on.

So far, our arguments have been based on similarity with well-known object-
oriented concepts. There is one important difference between a method and a
DMM rule, though: Correct invocation of a method only relies on syntactical
constraints (and can therefore be checked by a compiler). For a DMM rule,
the situation is different: Recall from Sect. 6.3.2.4 that the invocation of a rule
might fail. This problem is not directly related to overriding at all. As we
have seen before, a DMM specification which—when executed—gives rise to
an intermediate state where a smallstep rule is invoked but cannot match is
considered to be incorrect.

Now, recall that we are interested in overriding rules because we do not
want them to match in cases a more specialized rule matches. In other words:
Overriding a rule only makes sense if the left-hand graphs of both rules are
related such that if one rule matches, an overridden rule also matches. This
means that the left-hand graph of the overriding rule contains the other rule’s
left-hand graph (modulo typing).

Note that putting this restriction on overriding rules has one big advantage
for a language engineer refining an existing DMM specification which is correct
in the sense discussed above: The language engineer can rely on the fact that
whenever his overriding rule is invoked, the structure required by the overridden
rule will be available; he only has to make sure that the elements possibly added
by the overriding rule will be available at that time.

The following definition collects all requirements identified in this section:

Definition 7 Let R,R′ be DMM rules as defined in Sect. 5. R can only override
R′ if the following requirements are fulfilled:

1. R and R′ have the same name.

109

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

2. R’s context node has a type which is a subtype of the context node of R′.

3. R has the same number of parameters as R′, and the parameters’ types
are the same or are subtypes of the types of the parameters of R′.

4. Let G be an arbitrary graph typed over the same metamodel as R and R′.
It must then be the case that RmatchesG =⇒ R′ matchesG.

6.3.5.3 Implicit and Explicit Overriding

In most programming languages, one does not have to explicitly declare if a
method overrides a method of the superclass. This is possible because the sig-
natures of all methods of a class must be pairwise distinct; therefore, a method
declared in a subclass implicitly overrides the method of the “nearest” super-
class, as long as it has the same signature. The same holds for UML classes and
operations.

In DMM, the situation is different: As we have seen in Sect. 6.3.2.4, several
rules having the same signature can exist. These rules will often have different
left-hand graphs, but this does not even have to be the case. To achieve maxi-
mum flexibility, a rule therefore needs to explicitly declare the rules it overrides.
This leads to the following modified definition of a DMM rule:

Definition 8 (Overriding DMM Rule) Let R be a DMM rule as defined
in Sect. 5. An overriding DMM rule is a tuple RO = (R, overrides) where
overrides is the set of DMM rules overridden by this rule, such that all rules
in overrides fulfill the requirements formulated in Def. 7.

Note that the directed graph consisting of rules as nodes and overriding rela-
tions as edges must not contain cycles. Note also that we will later use the
notation RO overridesR

′
O if R′

O is contained in the set of overridden rules of
RO (formally: RO overridesR

′
O :⇔ RO = (R, overrides) ∧R′

O ∈ overrides).
We have seen how an overriding rule must relate to its overridden rule.

From now on, we will assume that rule extendedInitialNode.flow()# overrides rule
initialNode.flow()#, and that extendedAction.execute(ActivityExecution) overrides
rule action.execute(ActivityExecution) (the rules fulfill all requirements formu-
lated above). Next, we want to discuss two semantics of rule overriding.

6.3.5.4 Complete Overriding

The idea of the first alternative is that an overridden rule can only match if
the node the rule’s context node is mapped to does not have an actual type for
which an overriding rule exists. Definition 6 is then modified as follows:

Definition 9 (Rule matching (complete overriding)) Let G be a typed
graph, let R be an overriding DMM rule as defined in Def. 5. R matches G if
the conditions listed in Def. 6 hold, and additionally:

4) Let n be the node of G to which contextNode is mapped. No rule R′ =
(name′, G′

L, G
′
R, NACs

′, contextNode′, params′, invocations′, over-
rides′) exists such that R ∈ overrides′ and the type of contextNode′ is
the same or a subtype of the type of the contextNode of R.

110

6.3. SEMANTICS

This notion of overriding is useful if some behavior shall never occur in the
context of a subtype. Since this is the case for the ExtendedInitialNode we
introduced above, we let rule extendedInitialNode.flow()# completely override rule
initialNode.flow()#. For our example, this would mean that rule initialNode.flow()#
cannot match such that its context node—itself having type InitialNode—is
mapped to a node of type ExtendedInitialNode, since another rule exists
which overrides this rule and has ExtendedInitialNode as the type of its
context node.

Having rule initialNode.flow()# not match anymore solves our problem of two
rules being applied (leading to an unwanted branch in the transition system),
but only partly: Assume that rule extendedAction.execute(ActivityExecution)
completely overrides rule action.execute(ActivityExecution). Now, if only usual
Tokens arrive at an ExtendedAction, rule extendedAction.execute(Activity-
Execution) will not match (since it requires an ExtendedToken on at least one
of its incoming edges).

On the other hand, we have seen that the overridden rule action.execute(Acti-
vityExecution) can never be applied in this situation, since there is an overriding
rule having a context node typed as described above.

Here, the solution would be to add a second overriding rule, which matches
in this very situation. This rule would basically be a copy of the overrid-
den rule, with one difference: The context node would of course have type
ExtendedAction. Note that this rule would fulfill the prerequisites for rule
overriding formulated above as well.

Complete overriding is comparable to overriding as defined e.g. in Java: An
overridden method will not be executed in the context of the subtype in which
the overriding method is defined (unless explicitly called on the type’s super
object within the overriding method). However, in the context of a type for
which an overriding rule exists, the behavior of the supertype is completely
“lost”, giving rise to the need for the second rule mentioned above. In the
next section, we will discuss a notion of overriding which is more suited for this
situation.

6.3.5.5 Soft Overriding

The second approach to rule overriding differs from the first one at only one
point: To prevent a rule from matching, an overriding rule does not only have
to exist, but must itself match. Before we provide the matching definition, let
overriddenR be the transitive closure of the overrides relation of a DMM rule
R, i.e., the set of rules which transitively override R.

Given that definition, we are now ready to provide the new matching defi-
nition:

Definition 10 (Rule matching (soft overriding)) Let G be a typed graph,
let R be an overriding DMM rule as defined in Def. 5. R matches G if the
conditions listed in Def. 6 hold, and additionally:

4) No overriding DMM smallstep rule R′ exists such that R′ ∈ overriddenR

and R′ matches G

The main difference is that in this definition it does not suffice for rule R′ to
exist to prevent rule R from matching G – additionally, R′ itself needs to match

111

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.33: GROOVE rule resulting from translating the overridden rule ini-
tialNode.flow()#.

G. It is easy to see that this indeed solves our problem from the last section: In
case that at least one ExtendedToken arrives at an ExtendedAction, rule
extendedAction.execute(ActivityExecution) will match and be applied. Because
of this, rule action.execute(ActivityExecution) will not match. However, if only
Tokens arrive at ExtendedAction, rule extendedAction.execute(ActivityExe-
cution) will not match. This “activates” rule action.execute(ActivityExecution);
the behavior of the ExtendedAction falls back to that of the Action.

There is another, more subtle difference between definitions 9 and 10: Only
smallstep rules can participate in a soft overriding relation. The reason for
this lies in the way soft overriding is translated into corresponding GROOVE
structures – we will explain this in the next section. However, this is actually
no restriction: If the soft overriding mechanism is needed in the context of a
bigstep rule, that rule can be changed such that its content is copied into a
smallstep rule, which is then invoked by the bigstep rule. The created smallstep
rule can now be softly overridden.

This more sophisticated definition of overriding implies some sort of dynamic
binding: It must be decided at runtime which rule to take – the first matching
rule in the inheritance hierarchy of the rule’s context node will be applied. Note
that in case a rule has overridden more than one other rule and does not match
itself, it is possible that more than one of the overridden rules match and are
applied, leading to the according number of new states.

6.3.5.6 Translation into GROOVE Rules

The implementation of matching with complete overriding as introduced in
Def. 9 is straightforward to implement: While generating the GROOVE rules to
represent the DMM rules, the transformation tool needs to keep track of com-
plete rule overriding relations. For every rule which is completely overridden,
the transformer identifies the types of the context nodes of the overriding rules.
For each of those collected types, it then adds a negative application condition
to the context node of the overridden rule, preventing it from matching in a
context where an overriding rule exists.

The new translation of the overridden rule initialNode.flow()# is depicted as
Fig. 6.33. The mentioned negative application condition can be seen at the
bottom of the node typed InitialNode – as desired, it prevents the rule from
being applied in the context of an ExtendedInitialNode. Note that the
translation of rule extendedInitialNode.flow()# does not change.

The implementation of matching with soft overriding as defined in Def. 10
is more difficult, as the actual rule that is to be executed has to be identified

112

6.3. SEMANTICS

Figure 6.34: GROOVE state after application of rule action.flow()#.

dynamically at runtime. The basic idea is to equip rules participating in a soft
overriding relation with additional structures which enforce that the rules can
only match if they are “activated”. An additional helper rule makes sure that
the rules are activated one after the other (according to their participation in
the overrides relation) until the most specialized and matching rule is found and
applied.

Let us investigate this in more detail: While transforming the DMM rule-
set, the transformer builds up a rule hierarchy graph, where nodes correspond
to rules, and edges correspond to overrides relations between the rules. This
graph will be part of the start graph. Figure 6.34 shows the state after applica-
tion of rule action.flow()#; the rule hierarchy graph resulting from our rules ac-
tion.execute(ActivityExecution) and extendedAction.execute(ActivityExecution) can
be seen on the right side of the figure (compared to the start state, it has not
changed yet). Note that in the start graph, the node(s) corresponding to the
most specialized rule(s) carry activated edges – this is where the search for
an applicable rule will start in case an overriding smallstep rule is invoked.

Additionally, every rule participating in an overrides relation is enhanced
in such a way that it can only match if the rule’s corresponding node in the
rule hierarchy graph carries an activated edge. If a rule is applied, the
activated edge is removed from that node and moved all the way down the
rule hierarchy graph, therefore activating the most specialized rules again. For
this, the needed information is collected during the transformation process, and
the corresponding structures are added to the rules.

Figure 6.35 shows the GROOVE rule resulting from translating rule action-
.execute(ActivityExecution). Its semantics is as follows: On the left side, the
nodes resulting from the actual DMM rule we have shown as Fig. 6.29 can
be seen. The structure to the right makes sure that the rule indeed matches
as desired: First, the action_execute node carries an activated edge
which is to be deleted; in other words, the rule can only match if the rule
is activated within the rule hierarchy graph as described above. Note that
we will explain the NAC below that node in the next section. Above to the
right, the extendedAction_execute node gets a new activated edge,
corresponding to the fact that the most specialized rules are activated again (in

113

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

Figure 6.35: GROOVE rule action.execute(ActivityExecution) with structure re-
alizing soft rule overriding.

Figure 6.36: GROOVE rule moving the activated edge to the next level.

a more complex setting, there would probably be more rules to be activated).
The part below ensures that all other activated edges are deleted as well.

Finally, we need to make sure that if none of the currently active rules match,
the rules on the next level of the rule hierarchy graph need to be activated.
To achieve this behavior, we make use of GROOVE’s rule priorities: Every
GROOVE rule has an associated priority, and a GROOVE rule can only match
if no rule with higher priority matches at the same time. We use this by adding
a helper rule with low priority to the GROOVE rule set, which removes all
activated edges from the current rule hierarchy level and moves them to the
next level.

The helper rule is depicted as Fig. 6.36. Its semantics is as follows: The left
part of the rule makes sure that it only matches if the state contains at least
one DMM_Overrides node carrying an activated edge. If this is the case, it
will delete all activated edges. The right part is responsible for moving the
activated edge to the next level: Every DMM_Overrides node which has
an overriding and activated DMM_Overrides node gets an activated edge.
The rule is generic in the sense that its nodes do not carry any rule labels. As a
result, the rule can take care of all parts of the rule hierarchy graph, independent
of the concrete rule names carried by the nodes of the rule hierarchy graph.

It now becomes clear why bigstep rules can only participate in complete
overriding relations: We have seen that the realization of soft overriding requires
a kind of dynamic binding. If such a rule is overridden, it will often result in
several applications of the helper rule from Fig. 6.36 until a matching smallstep
rule is found (we will see an example in Sect. 6.3.5.7). However, only rules

114

6.3. SEMANTICS

Figure 6.37: Metamodel of the example.

having the according signatures have to be taken into consideration.
In contrast, a bigstep rule is not invoked. All bigstep rules can potentially

match as long as the invocation stack is empty. Consequently, if bigstep rules
would participate in a soft overriding relation, we have to try them all. This is
because if bigstep rule R does not match, it might be the case that R′ (which
would be overridden by R) matches. To find out if this is the case, we have to
activate the rule as described above. This is not the case for complete overriding,
where the added negative application condition directly influences the matching
of a rule.

Note that because of the described translation to GROOVE rules, any DMM
rule may only participate in one type of overrides relation (complete or soft).
However, both types of overriding can be used within one DMM ruleset as
appropriate.

6.3.5.7 Complex Rule Overriding

The presented soft rule overriding scenario serves well to demonstrate the gen-
eral idea, but is rather simple. In this section, we want to investigate a more
complex example. It consists of three parts: in Fig. 6.37, a metamodel is shown,
Fig. 6.38 shows a sequence of states of the rule hierarchy, and in Fig. 6.39, a
labeled transition system can be seen.

The metamodel in Fig. 6.37 consists of several classes, some of which are
in an inheritance relation. To keep the example compact, we have chosen ab-
stract class names such as A. The example contains multiple inheritance: class
G inherits from classes E and F.

Let us now investigate the sequence of states in Fig. 6.38. They depict
the rule hierarchy: The graph at the top shows the initial state. It has been
computed during the transformation from the model into the corresponding
GROOVE state graph. Again to keep the example compact, we have omitted
the DMM_Overriding labels from the nodes of the rule hierarchy graphs, and
we use the label o instead of DMM_overrides and a instead of activated.

The initial state graph can be read as follows: there exist rules A.foo(),
B.foo() etc., where A.foo() refers to a smallstep rule of name foo having a context
node of type A. The o edges show that rule A.foo() is softly overridden by rules
B.foo() and C.foo() etc., and finally, rules B.foo(), D.foo(), C.bar(), and G.baz()
are currently activated by the according a edges.

To demonstrate the soft overriding mechanism, we have created all these
rules as dummy rules, i.e., despite the rule hierarchy graph, they do not change
the state (we have even removed the invocation stack). Each rule matches if

115

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

s1

s2

s3

s4

Figure 6.38: Sequence of states of the rule hierarchy graph.

the corresponding node carries an activating edge. It then deletes all activating
edges and creates new edges on the nodes corresponding to the most specialized
rules (as the right part of rule action.execute(ActivityExecution) in Fig. 6.35 does).

Obviously, to implement soft rule overriding within our example, we need a
helper rule to move the a edges. We do not show this rule, since it is very similar
to the rule shown in Fig. 6.36 (only the labels have been changed as described
above). The sequence of state graphs in Fig. 6.38 shows the effect of the helper
rule: With each rule application, all nodes having an activated predecessor node
are themselves activated by means of an a edge, and all existing a edges are
deleted. Please note that GROOVE draws self edges of nodes as node labels
(states 2 to 4).

With this knowledge, we are ready to discuss the transition system depicted
as Fig. 6.39. Its purpose is to show the activated rules in each state of the rule
hierarchy graph. For this, we have adjusted the rule priority of the helper rule
to be equal to those of the other DMM rules (recall from Sect. 6.3.5 that the
helper rule normally has lower priority than the “normal” DMM rules, making
sure that the rules on the next level are activated only if no smallstep rule of
the current level matches).

116

6.3. SEMANTICS

Figure 6.39: Labeled transition system showing the matching of the rules.

The first state is state s1 at the top of Fig. 6.39. Besides the s1 label,
the state carries four more labels referring to rules. These labels are in fact
self transitions: We have seen that the application of one of our example rules
deletes all a edges and creates a edges at the most specialized rules. Therefore,
rules B.foo() etc. do not change the state at all. They return to the initial state
(as all rules in this example do).

Application of the helper rule brings us to state s2. In this state, the node
corresponding to rule A.foo() is activated. However, the node of rule C.foo()
is also activated. Now we can explain the reason for the NAC at the bot-
tom of the action.execute(ActivityExecution) rule in Fig. 6.35: It
makes sure that the rule only matches if there is no other, (transitively) over-
riding rule which is still activated. This can be modeled with GROOVE by
means of a regular expression about edge labels: label DMM_overrides+ of
rule action.execute(ActivityExecution) in Fig. 6.35 means that the
NAC is matched if there exists a node which is connected through a positive
number of edges whose sequence of labels conform to the regular expression.
Therefore, the rule does not match if an activated node is connected through
at least one DMM_overrides edge. This is the reason why in the transition
system, rule A.foo() does not match in state s2. However, the other activated
rules do match; application of the rules again brings us back to the initial state.

Finally, rule A.foo() matches as the only rule in state s3. The next applica-
tion of the helper rule brings us to state s4, where no activating a edges are
existing any more. Therefore, neither any of our dummy rules nor the helper
rule match. This state corresponds to a situation where a rule has been invoked,
but none of the potential rules have matched, since none of the preconditions of
any of the rules were fulfilled. We have stated above that a DMM specification
giving rise to such situations is considered to be incorrect. Therefore, a special
rule with very low priority comes into play, annotating the according state(s)
and helping the language engineer to recognize and correct his error.

117

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

6.3.5.8 Applications of Rule Overriding

In the last sections, we have seen by means of simple examples how rule over-
riding has been integrated into the DMM framework. In this section, we want
to point to some more sophisticated uses of rule overriding we have performed
so far: We have implemented the semantics of Activities [105], State machines
[149], and Interactions [180]. While creating the specifications, we have used
rule overriding at two places:

• Due to the UML metamodel with its deep and complex inheritance hier-
archy, in some cases it was very convenient to be able to override behavior
of a supertype, for instance in the treatment of the ObjectNode and its
specializations.

• The UML specification contains explicit semantic variation points, where
certain aspects of the semantics of an element are either completely left
open, or a default semantics is suggested, but the possibility to use vari-
ations of that semantics is explicitly stated. We have considered this by
isolating semantic variation points into single DMM rules; if the need arises
to change an element’s semantics, this can easily be done by inserting a
subtype of the corresponding type into the language’s runtime metamodel
and then specifying the new semantics by means of a DMM rule which
overrides the original semantics.

6.3.6 Restrictions
In the previous sections, we have seen how Ecore language elements are trans-
lated into GROOVE constructs, and how DMM rules are typed over Ecore
metamodels. However, there are a number of Ecore features which are not yet
supported by DMM.

First, attributes are only supported if they have cardinality 0..1 or 1. In
other words, an EAttribute a such that a.isMany() is true will be ignored
during transforming a DMM ruleset or Ecore model into a GROOVE grammar
or start graph.

The next restriction concerns EReferences with cardinality greater than
1. Such references are generally supported (as we have seen in Sect. 6.3.2.3).
However, there is another limitation: Ordered references are only supported in a
limited way. The current treatment of ordered references provides the following
functionality:

• The order of objects in an ordered reference will be preserved, i.e., if an
Ecore model is transformed into a GROOVE state and back again, the
order of objects in the references of the the resulting Ecore model will be
the same as in the source Ecore model.

• When an object is deleted from an ordered reference, the ordering struc-
ture is preserved.

• Objects added to an ordered reference are appended to the end of that
reference.

However, there is currently no way to manipulate an ordered reference, e.g.
by inserting an object at a certain position, or by changing the position of

118

6.4. RELATED WORK

an object within an ordered reference. Additionally, the support for ordered
references introduces quite a number of graph elements on the GROOVE side,
i.e., the size of the rule graphs as well as state graphs is increased. Therefore, the
support for ordered references is disabled by default in the DMM transformation,
resulting in ordered references being treated as unordered ones. For the same
reason, we have not detailed the treatment of ordered references in Sect. 6.3.

Finally, a number of more sophisticated Ecore language elements is not sup-
ported at all, mostly since the concepts do not make sense in the context of
DMM specifications.

• No support for EOperations is provided. In Ecore, these can be used to
define the signatures of operations which will then be generated by EMF,
but have to be implemented manually9. However, behavior is described
by rules in the case of DMM.

• Several datatypes provided by Ecore are not supported, in particular
EByteArray, EEList, EFeatureMap, EFeatureMapEntry, EJava-
Class, EJavaObject, EMap, EResource, EResourceSet, and finally,
ETreeIterator. Metamodels making use of these datatypes can be used
with DMM, but the according attributes can not be referenced (they will
be ignored by the transformations).

• With version 2.3 of EMF, the metaclass EGenericType has been in-
troduced for the sake of supporting Java generics (see e.g. [148]). Since
there is no equivalent concept to generics in DMM, EGenericTypes are
ignored during the DMM transformations.

6.4 Related Work

In this section, we present related work to DMM and semantics specification in
general and to our approach of rule overriding in particular. For the former,
one important approach to defining a language’s semantics is code generation,
where a code generator receives a model or a set of models as input and generates
executable code in a certain programming language. For instance, the MDD tool
Enterprise Architect [193] includes several code templates for UML constructs
such as Behavior, Action, or Trigger which are then instantiated according
to the given UML model, resulting in executable code. Other examples include
[1, 140, 161].

DMM differs from such approaches in that it focuses on the analysis of
behavioral models at design time. However, it could be used in conjunction
with code generation approaches, using e.g. techniques as [179] for ensuring
equivalence of model and code behavior. This would allow to formally reason
about the models’ behavioral quality at design time and efficient execution at
runtime.

For the formalization of a language’s semantics, many different approaches
exist, some of them focusing on particular problems (and thus usually being
quite specialized), some of them trying to provide more general applicability.
Hausmann [96] and especially O’Keefe [160] have investigated different ways

9Alternatively, one can use OCL [155] or the recently developed Xcore [53] to specify the
operations’ behavior.

119

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

to provide behavioral semantics for metamodel-based languages such as the
UML. O’Keefe concludes that graph transformations are the most appropriate
target formalism for this task, and emphasizes DMM as one promising candidate
because of its formal, but still understandable nature. We do not repeat these
discussions here.

Instead, we focus on a few approaches which are particularly comparable to
DMM in that they are also formally based on graph transformations. Where
appropriate, we will point out further related work in the appropriate sections
later in this thesis.

Fujaba (From UML to Java and back again) [150] has started as a software
forward and reverse engineering tool, but has evolved into an extensible plat-
form for software engineering researchers. Several plug-ins add functionality
such as MOF-based metamodeling, reverse engineering with detection of design
patterns and anti-patterns [211], architectual reengineering [208], and model
transformation by means of triple-graph grammars [88]. One particular focus
of the Fujaba community have been real-time systems [25].

Fujaba allows to model a software system by means of class diagrams and
a special notion of activity diagrams called story diagrams; the latter are ca-
pable of modifying models and thus represent the system’s behavior, and their
semantics is defined by means of graph transformations. From a system model,
an executable prototype implementation of the system can be generated.

Fujaba has many similarities with DMM since it allows to modify instances
of metamodels by means of (graph transformation based) story diagrams. How-
ever, the focus of Fujaba is code generation, whereas DMM’s main goal is model
analysis, e.g. by means of state space exploration.

AGG [199] is a graph transformation toolset implementing the algebraic ap-
proach to graph transformation. AGG graph grammars can be attributed with
Java objects and Java code, allowing to modify Java data structures; as such,
AGG can be used within high-level Java applications as a graph transformation
engine.

The algebraic approach to graph transformation allows to apply the theory
of category theory to graph grammars. AGG makes use of this fact by offering
sophisticated, theoretically backed analysis options for graph grammars, e.g.
critical pair analysis. This allows to analyze graph grammars for confluence [98]
or termination [56].

Eclipse Henshin [3] provides a model transformation language and tool sup-
port based on the Eclipse platform. The transformation language is once more
visual, and its semantics is backed by graph transformations. Henshin focuses on
model transformations, but has an option to explore a Henshin transformation’s
state space with model checking techniques. As such, it could likely have served
as DMM’s graph transformation engine (and thus replaced GROOVE) due to
its comparable functionality. However, Eclipse Henshin was not yet available
when selecting the engine.

Next, we will discuss work related rule overriding, i.e., we will investigate
work which provides some support for reusability, such as modularization, pri-
oritization, or support for inheritance. The first area of interest we discuss is
notions of inheritance.

In [38], de Lara et al. show how to integrate attributed graph transforma-
tions with node type inheritance, therefore allowing to formulate abstract graph

120

6.4. RELATED WORK

transformation rules (i.e., rules which contain abstract nodes). The resulting
specifications tend to be more compact, since a rule containing abstract nodes
might replace several rules which would otherwise have to be defined for each
of the concrete subtypes. The resulting formalism does not provide support for
the refinement of rules (and is therefore comparable with the expressiveness of
the state of DMM as presented by Hausmann [96]).

Ferreira et al. [71, 132] develop a notion of typed graph transformations
which supports several object-oriented features, including inheritance and poly-
morphism. They focus on delivering a framework which is as close to object-
oriented systems described by e.g. Java code as possible, whereas the models
targeted by DMM are expected to have a less complex semantics, since they
usually will be abstractions of concrete systems described by code. As such,
DMM emphasizes on keeping the specification language simple.

Another tool to help with reusing existing semantics specifications is pri-
oritization, since it gives additional control over the application of rules. The
AGG toolset [199] supports the concept of rule layers: First, all (matching)
rules of layer 0 will be applied followed by all rules of layer 1 and so on. This al-
lows the implementation of a simple control flow of graph transformation. This
mechanism could probably be used to realize the concept of rule overriding, but
this has to be done “by hand”, i.e., the modeler has to manually add according
structures to the rules (which finally result in the desired overriding behavior).
This is not necessary for DMM, since that structure will automatically be built
during the transformation process of a DMM specification into a GROOVE
grammar (as we have seen in Sect. 6.3.5).

Another area of related work is modularization. In [123], Kreowski et al.
introduce the concept of graph transformation units (GTUs) as a way to struc-
ture large graph transformation systems. In a nutshell, a GTU consists of a set
of graph transformation rules, an optional import of other GTUs, and control
conditions. Its semantics is defined by means of the interleaving semantics of all
(own and imported) graph transformation rules. The control condition is used
to reduce nondeterminism of the resulting graph transformation system, since
only rule applications consistent with that condition are considered. GTUs ob-
viously are a powerful means to define the semantics of modeling languages in a
reusable way; however, we believe that in comparison to DMM, a considerable
larger amount of knowledge of the language engineer is needed to benefit from
its expressiveness, partly because the control conditions have to be delivered in
addition to the rules.

A completely different approach has been suggested by Legros et al. [129]:
They introduce generic and reflective graph transformation rules into the Fu-
jaba/MOFLON [2] framework. These rules can combine elements of the model,
the metamodel, and the metametamodel level, allowing to define rules which
reflectively inspect a corresponding graph and act with respect to the available
meta-information. The approach does not support reusability explicitly. How-
ever, it might give rise to specifications which are so general that modifying
them is not even needed, although this was not the intention of the authors and
is most likely not always possible.

Finally, we want to investigate model transformation languages, many of
which have a lot of similarities to DMM: The transformations are often modeled
by means of rules having a declarative as well as an imperative part.

For instance, ATL [110] and ETL [120] allow to define model transforma-

121

CHAPTER 6. LANGUAGE DEFINITION OF DMM++

tions based on the source and target language’s metamodels; they are both very
similar to the Relations part of Query/View/Transformation (QVT) specifica-
tion [156] provided by the OMG. Each rule describes the transformation of a
particular language element.

In the context of rule overriding, the most interesting feature of both lan-
guages is that a rule can extend another rule. However, in the case of ATL, the
rule extension mechanism is a static one: The language’s compiler makes sure
that the precondition of an extending rule becomes the union of the precondi-
tions of all (transitively) extended rules, and that the extending rule’s behavior
is an aggregation of all extended rules’ behaviors. ETL works very similar to
ATL with respect to the rule extension semantics. Note that the semantics of
the QVT rule extension mechanism is not precisely defined by the QVT speci-
fication (see e.g. [86]).

122

Summary of Part II

In this chapter, we have introduced our re-defined notion of Dynamic Meta Mod-
eling called DMM++. The main differences to the original DMM definition by
Hausmann [96] are that we defined DMM’s syntax by means of a metamodel
and OCL constraints and its semantics by means of a translation into GROOVE
grammars, allowing for better tool support and therefore for the practical ap-
plication of the DMM approach. Additionally, we have improved and extended
the existing DMM language, in particular by making attribute support much
more powerful, enhancing the DMM mechanism for specifying universal quan-
tification, and by introducing language elements which allow a DMM rule to
override another DMM rule.

The syntax of DMM has been defined in Sect. 6.2; we have provided a doc-
umentation following the style of the UML specification, explaining each meta-
class and providing its static semantics through OCL expressions. In particular,
we have introduced new language constructs such as the attribute expression
language, which allows to formulate rule application conditions against attribute
values as well as manipulating those attributes, and we have introduced meta-
classes for modeling the rule overriding relations mentioned above.

We have then specified the semantics of DMM by describing the transforma-
tion of arbitrary EMF models and DMM specifications into GROOVE grammars
in Sect. 6.3. Since the resulting GROOVE grammars will only work if the trans-
formation of models and DMM specifications is consistent, we have explained
the two transformations in parallel where appropriate. In particular, we have
put the focus of our explanations on new language features such as attribute
handling and rule overriding.

The results of this chapter are

• an extension of DMM which allows to specify rule overriding and improves
reusability of DMM specifications,

• an Ecore metamodel of the DMM language defining its syntax,

• OCL constraints to be evaluated against instances of the DMMmetamodel
and specifying the DMM language’s static semantics,

• and a Java-based transformation of Ecore models and DMM specifications
into GROOVE grammars, specifying the DMM language’s semantics.

This foundation allows to implement tool support for systematically creating
DMM specifications, as we will see in the next part, and the formulation and
analysis of functional as well as non-functional requirements, as we will see in
Part IV of this thesis.

123

Part III

Quality of DMM++
Specifications

125

7
Creating DMM Specifications

Obviously, the first task towards using Dynamic Meta Modeling is to create
a DMM semantics specification for the language at hand. This chapter will
introduce the necessary concepts for this task, which basically consists of three
steps:

1. The runtime metamodel has to be created from the syntax metamodel.

2. A transformation from instances of the syntax metamodel into instances of
the runtime metamodel (which are then ready to be executed by applying
DMM rules to them) has to be defined.

3. Finally, the DMM ruleset has to be defined, typing it over the runtime
metamodel defined in step 1.

The first step of the above process is motivated by the fact that—as we have
explained in Chapter 5 on page 37—for many languages, only the syntax is
defined formally; the semantics is then explained by means of natural language.
However, our goal is to formalize the language’s behavioral semantics, which
means that we have to formally introduce runtime concepts allowing for this
task.

For instance, in the case of UML activities, we have seen that the semantics
is based on token flow. Thus, tokens and their locations have to be added to
the syntax metamodel. Other languages will require other runtime concepts,
e.g., program counters. Therefore, we do not discuss the creation of runtime
metamodels here.

The second step results in a transformation which can be used to automati-
cally translate syntax models into runtime models. As such, the tranformation’s
goal is to make the necessary changes on the syntax model such that it can be
executed by means of DMM rules. For instance, in the case of UML activities,
an ActivityExecution object is added to the syntax model, and that ob-
ject is then used by the DMM rules to realize the semantics of the language
(in this case, the ActivityExecution will store the tokens which are flowing
through an activity as mentioned in the last paragraph). There are two general
approaches of defining such a transformation, both having their own advan-
tages and disadvantages. Both approaches will be introduced and discussed
in Sect. 7.2. Before we do that, we will discuss the usage of DMM for model
transformations in Sect. 7.1.

The last step of the above process—creating the actual DMM ruleset—is
usually the most complex one. For this, we have developed rich tool support,

127

CHAPTER 7. CREATING DMM SPECIFICATIONS

which we will show in Sect. 7.3.
Note that the above process will often be performed in an iterative way: The

runtime metamodel will be built up step by step until it contains all concepts
necessary to express the complete language’s semantics (and each step will only
introduce concepts needed to realize the currently treated part of the behavioral
semantics). Consequently, in each step the transformation from syntax to run-
time metamodel is refined to take the newly introduced runtime concepts into
account, and the rules realizing the semantics part are created. In fact, we will
see such an iteative process of creating a DMM specification in Chapter 8 on
page 147.

7.1 DMM and Model Transformations

As stated above, the second step of creating a DMM semantics specification
is to define a model transformation which translates instances of the syntax
metamodel in instances of the runtime metamodel (which can the be executed
by DMM rules). But what is a model transformation? An (in our opinion)
appropriate definition is provided by Kleppe et al. [118, p. 24]:

A transformation is the automatic generation of a target model from
a source model, according to a transformation definition. A trans-
formation definition is a set of transformation rules that together
describe how a model in the source language can be transformed
into a model in the target language. A transformation rule is a de-
scription of how one or more constructs in the source language can
be transformed into one or more constructs in the target language.

Note that the above definition does not express any contraints on source
and target language. In fact, one way to categorize model transformations is
to distinguish between endogenous and exogenous transformations: The former
refers to transformations where source and target language are the same, the
latter to transformations where the languages differ.1

We immediately notice that the above definition uses terminology which
is closely related to DMM’s terminology: a “set of transformation rules” is
comparable to a DMM ruleset, and “transformation rule” to a DMM rule. In
fact, we will now see that DMM can be used to specify model transformations in
a simple way. The idea is to create a set of DMM rules which receive the input
model as input; the rules will then be applied one after the other until no more
DMM rule matches the current model state. The final model state represents
the result of the transformation.

DMM can be used to specify endogenous as well as exogenous model trans-
formations: For the former, the transforming DMM ruleset is (only) typed over
the metamodel of the one language; the latter implies that the DMM ruleset is
typed over both metamodels of source and target language, meaning that rules
of such a DMM ruleset can contain objects from both metamodels. Another dif-
ference is that in the case of exogenous model transformations, the input model
is usually not needed any more. In this case, the transforming DMM ruleset
will contain a number of rules which—after creation of the target model—will

1See [34] and [139] for classifications of different model transformation types.

128

7.2. FROM SYNTAX METAMODEL TO RUNTIME METAMODEL

remove all language elements of the input language from the resulting model
state.

However, there is an important difference between using DMM for semantics
specification and for model transformation: In the former case, one is interested
in the complete semantics of a model. Thus, the complete transition system
will be created, which contains all possible executions of the model at hand,
and that transition system will be subject to verification by model checking. In
the latter case, we are not interested in the transition system, but in the result
of the model transformation.

This implies that a DMM ruleset used for model transformation needs to
ensure that a) the resulting transition system contains a final state, and that b)
we receive one and only one final state. Otherwise, which state would represent
the transformation’s result?

In other words, a DMM ruleset realizing a model transformation needs to
fulfill two requirements: termination [207] and confluence [98].

Termination refers to the fact that for each valid input model (i.e., each
model being consistent with its syntax and static semantics definition), applying
the rules will result in a final state, i.e., a state where no more rules match.
Additionally, the set of rules needs to be confluent, meaning that the order of
application of the ruleset’s rules does not matter; the transformation will always
result in the same single final state.

For a DMM ruleset fulfilling these two requirements, one thus does not have
to compute the complete transition system implied by the ruleset and the input
model. Instead, it suffices to apply one matching rule to each state reached
during the model transformation. The result is that using DMM for model
transformations does not suffer from the state explosion problem as introduced
in Chapter 4.

However, there are many dedicated languages for specifying model transfor-
mations (see Sect. 7.4). Thus, why should we use DMM for such tasks? The
answer depends on the concrete model transformation to be realized. In the
next section, we will see why DMM is a good solution for specifying a model
transformation from the syntax to runtime metamodel.

7.2 From Syntax Metamodel to Runtime Metamodel

We have seen earlier that the syntax definition of many languages does not
allow to express runtime states, and that DMM copes with this situation by
introducing a so-called runtime metamodel: States of execution of a model are
instances of the model’s runtime metamodel. In the case of UML activities, the
runtime metamodel contains concepts such as Tokens, and a state of execution
of an activity is determined by the location(s) of the activity’s token(s).

Therefore, the syntactical representation of models needs to be translated
into an instance of the language’s runtime metamodel. In this section, we will
introduce two approaches for defining a runtime metamodel, und for deriving
an executable transformation which takes a syntax model as input and outputs
the according runtime model. In other words: we will see in this section how
the semantic mapping seen in the overview figure 5.1 on page 39 will be realized
technically.

129

CHAPTER 7. CREATING DMM SPECIFICATIONS

The most important criterion for choosing one of the approaches is the sim-
ilarity between the syntax and runtime metamodels.

Section 7.2.1 introduces the so-called “From Scratch” approach: The run-
time metamodel will be built completely from scratch and does not contain
any elements of the syntax metamodel, but elements which represent syntax
metamodel elements. This has the advantage that all information irrelevant for
executing a model will not be contained in the runtime states of that model.
This approach has been applied by Hausmann in [96]; here, we show how this
approach can be supported by automatically creating a base model transforma-
tion which only has to be refined by the language engineer.

In contrast, the “Decorator” approach we will introduce in Sect. 7.2.2 directly
refers to the syntax metamodel and only enhances it with runtime information.
Here, the main advantage is that the actual model does not need to be changed;
instead, it will be “embedded” into a decorating part which contains all the
runtime information. As we will see in Chapter 10, this allows to re-use existing
visual editors for the sake of animating a model’s behavior.

7.2.1 The “From Scratch” Approach
Sometimes only a part of a language’s syntax is relevant for the language’s
behavioral semantics. For instance, in the case of the UML, the metamodel
contains all classes of the complete UML.2 However, the runtime metamodel for
executing UML activities neither needs to contain syntax elements of, say, state
machines, nor should it: Since DMM rulesets can be imported into other DMM
rulesets (see Sect. 6.2.1.2), it has several advantages to maintain the semantics
of each sub language in its own ruleset, e.g., easier maintainability and improved
scalability (the latter because if only a UML activity shall be executed—and not
a complex UML model containing different kinds of behavioral models which
even might invoke each others behavior—, the graph transformation engine has
to consider less rules for each state of the resulting transition system).

As such, Hausmann [96] suggested to create a runtime metamodel from
scratch which only contains the language elements relevant for the language’s
behavioral semantics, and to provide a mapping between syntax and runtime
metamodel by means of meta relations (see Sect. 5.2.1.2).

However, this has an important implication: To execute a model, it has to be
translated into an instance of the runtime metamodel. Unfortunately, we have
seen in Sect. 5.2.1.2 that meta relations are not executable. Thus, the language
engineer needs to come up with a model transformation for this task.

The created runtime metamodel will most likely be smaller than the syn-
tax metamodel, but it will still contain many elements which directly represent
elements of the language metamodel. This fact can be used as follows: Given
a syntax metamodel, we automatically generate a runtime metamodel which is
an exact copy of the syntax metamodel (except the root package’s name, which
needs to be unique to be able to distinguish between the metamodels). Addi-
tionally, we generate a set of DMM rules which translate each syntax metamodel
instance into the equivalent runtime metamodel instance, i.e., an exact copy of
the syntax model.

2Of course, the scope of the UML can be narrowed, e.g. by means of compliance levels
[158, p. 2] or the usage of UML profiles [158, p. 669].

130

7.2. FROM SYNTAX METAMODEL TO RUNTIME METAMODEL

Syntax
metamodel

Transfor‐
mation
rules

DMM
Transformer

Syntax
model

Refined
transformation

rules

Runtime
Model

Runtime
metamodel

Refined runtime
metamodel

„From Scratch“
tool support

instance of

data flow

DMM
ruleset

Instance of
Ecore

metamodel

Tool

Model

Figure 7.1: Illustration of the creation of runtime metamodel and transformation
in the “From Scratch” approach.

The language engineer’s job is then reduced to refining these two artifacts,
e.g. by removing metaclasses irrelevant for the semantics, and adding meta-
classes needed to realize the language’s semantics (such as a Token class). In
parallel, the language engineer refines the generated ruleset.

The result will be a DMM ruleset which serves as a model transformation as
follows: The transition system will be generated using a given syntax metamodel
instance as start state. However, the transition system will be explored linearly
as discussed earlier: For each state, only one outgoing transition will actually
be followed. The final state of this linear, labeled transition system then is an
instance of the runtime metamodel. It serves as start state of computation of
the actual semantics of the model by means of the DMM semantics specification
typed over the runtime metamodel.

An overview of the process is illustrated in Fig. 7.1. A syntax metamodel
serves as input for the support framework, which copies the metamodel and
generates the “copying” DMM transformation rules. The runtime metamodel
as well as the transformation rules can then be customized by the language engi-
neer. The final transformation rules serve—together with an instance model—
as input for the DMM transformator which will create the according runtime
model.

Note that the human intervention by means of adjusting the generated meta-
model and DMM rules is only needed once – afterwards, the DMM transformator
at the bottom can be executed for every possible input syntax model.

The copying of the metamodel is done using EMF Java API and is thus not
explained any more. In the next section, we investigate the generation rules
which create the DMM transformation rules to be modified by the language
engineer. This section is based on the master’s thesis of Hendrik Schreiber
[183].

7.2.1.1 Generating the DMM Transformation Rules

As mentioned in the last section, the DMM “From scratch” tool support gener-
ates a set of DMM rules for transforming syntax models into runtime models.

131

CHAPTER 7. CREATING DMM SPECIFICATIONS

„From Scratch“
tool support

DMM
Transformer

Syntax
metamodel

Transfor‐
mation
rules

Runtime
metamodel

instance of

data flow

Ecore
metamodel

DMM
metamodel

DMM
generation

rules

DMM
Metamodel

copier

typed over

Correspondence
metamodel

DMM
ruleset

Instance of
Ecore

metamodel

Tool

Figure 7.2: “From Scratch” approach: Detailed view of tool support and in-
volved artifacts.

The generation is itself performed by a set of DMM rules. Fig. 7.2 shows a
detailed view of the metamodels and rulesets involved in this task.

The DMM Transformer gets the generation rules and a syntax metamodel as
input and generates the transformation rules. To realize this exogenous transfor-
mation, the generation rules are typed over the Ecore metamodel as well as the
DMMmetamodel. Additionally, the “From scratch” support includes a so-called
correspondence metamodel, which will be used by the generated transformation
rules to create correspondences between syntax and runtime model elements.
Therefore, the transformation rules (which again realize an exogenous model
transformation) are typed over three metamodels: The syntax metamodel, the
(generated) runtime metamodel, and that correspondence metamodel.

With this brief idea of how the transformation generation works, let us now
investigate the generation ruleset in more detail, an overview of which is depicted
as Fig. 7.3.

The generation has two major parts: the actual rule generation and a clean
up phase. The latter is performed by the rules epackage.DestroyRuntimeMeta-
modelEPackage()#, epackage.DestroyMetamodelEPackage()#, and ruleset.Des-
troyEFactory()#, which remove the artifacts not needed in the generated ruleset.

The interesting part is the actual generation, which is started by rule epack-
age.EPackage2BigstepRule()# depicted as Fig. 7.4. The rule has the syntax and
runtime metamodels as EPackages as prerequisite. It creates the Ruleset
with a single Package which will contain the generated rules. Additionally,
it creates a reference to a correspondence metamodel which will be used in the
transformation to keep track of the correspondences between the elements of

132

7.2. FROM SYNTAX METAMODEL TO RUNTIME METAMODEL

Figure 7.3: Overview of the transformation generation ruleset.

Figure 7.4: Main transformation generation rule.

syntax and runtime model.
The rule then starts the generation of the rules which will copy the elements

of the syntax model into the runtime model. For each EClass, four steps are
performed:

1. A bigstep rule is generated which copies elements of the EClass’s type.

2. A bigstep rule is created for each outgoing EReference of the EClass
which is not a self-reference.

3. A bigstep rule is created for each outgoing EReference of the EClass
which is a self-reference. Self-references need special treatment because of
the fact that DMM rules match injectively – thus, the rules generated in
step 2 can not take care of objects referencing themselves.

4. The rules generated so far have a problem: A rule which is targeted for a

133

CHAPTER 7. CREATING DMM SPECIFICATIONS

Figure 7.5: Transformation generation rule creating correspondence structure
of an EClass.

metaclass A will also match for all subclasses of A. Therefore, in the last
step rule overriding relations will be inserted into the ruleset which make
sure that each rule only matches in the context of its particular type.

As an example, let us investigate rule eclass.GetAllEClasses() which is de-
picted as Fig.7.5. The rule creates the correspondence structure between the
EClasses of syntax and runtime metamodel and then delegates the rule cre-
ation to rule eclass.EClass2BigstepRule().3

Note that the correspondence metamodel is created using Ecpre: The source
and target eclasses’ (instances of which are to be copied) are connected by the
EClass at the bottom and to EReference instances; the name of the EClass
will later be used for finding the right correspondence.

Finally, rule eclass.EClass2BigstepRule(), which is depicted as Fig. 7.6, cre-
ates the actual bigstep rule which will copy elements of the rule’s type into the
runtime model. The creation of the bigstep rule can be seen at the top of the
rule; note that we have hidden the references between the Rule node and the
rule’s Node and Edge nodes to not clutter the figure. The actual node is created
to the top right of the rule – its type is set as the EClass of the runtime meta-
model which corresponds to the syntax metamodel’s EClass. Additionally,
the rule creates a correspondence structure which will during transformation be
used to identify the target node of an EReference within the runtime model.
Finally, the rule adds a negative application condition to the generated rule
which makes sure that during transformation, the rule can only be applied once
per object of the syntax model.

Note the treatment of correspondence at the bottom of the rule: the correct
correspondence class is found using a condition over the class’s name. The nodes
and edges of the created rule reference the correspondence parts.

As soon as all invocations of rule eclass.GetAllEClasses() are finished and
one copy rule has been generated per EClass f the syntax metamodel, the
generation continues with the rules for copying EReferences, which can now

3Note that most of the above rules are separated into the two phases of creating a corre-
spondence structure and creating the actual target elements.

134

7.2. FROM SYNTAX METAMODEL TO RUNTIME METAMODEL

Figure 7.6: Transformation generation rule creating the rule for copying ele-
ments of type EClass.

rely on the fact that for each object of the syntax model, a corresponding object
has been created in the runtime model.

We do not show the other rules of the generation ruleset here – the interested
reader can study the complete generation ruleset within plug-in de.upb.dmm-
.transformation.metamodel2runtime. Instead, we show some gener-
ated transformation rules within the next section as an example.

7.2.1.2 Example DMM Model Transformation

As an example for generating a DMM model transformation, let us again con-
sider the simplified version of UML activities we had introduced in Sect. 6.3.5 on
page 105, the metamodel of which is depicted as Fig. 6.27 on page 105. The lan-
guage contains a subset of the language elements of UML activities: It does not
distinguish between ControlFlows and ObjectFlows, and it only supports
a small subset of the UML’s ActivityNodes, i.e., the subclasses contained
in the UML’s packages FundamentalActivities, BasicActivities, and
IntermediateActivities.

Feeding the language’s metamodel and the generation rules we have seen in
the last section into the DMM “From Scratch” support tooling produces two
results: A copy of the syntax metamodel and a DMM ruleset which copies
instances of that metamodel into instances of the metamodel’s copy. Let us
first investigate the generated ruleset in more detail; it is depicted as Fig. 7.7.

The ruleset’s single package contains a number of bigstep rules, some of
which completely overriding each other. Each of these rules copies a certain
language element: rules with a signature of the form *.EClass* copy objects of
the EClass’s type, and the other rules copy references.

Fig. 7.8 shows the rule Activity.EClassActivity()#, which copies objects of type
Activity. For each Activity of the syntax model, an Activity is created
in the runtime model. Additionally, a correspondence node is created which
keeps track of the correspondence between the two Activity nodes – this is
an instance of the according correspondence metaclass and thus has a descrip-

135

CHAPTER 7. CREATING DMM SPECIFICATIONS

Figure 7.7: Generated ruleset for transforming syntax models into runtime mod-
els.

tive type name. Finally, the negative application condition makes sure that
the rule can only match once for each Activity object. Note that due to
a restriction of the visual DMM editor, the two Activity types can not be
visually distinguished in the rule view, but the nodes are indeed typed over the
two different Activity metaclasses of syntax and runtime metamodel.

The correspondence structure built by the object-copying rules is then used
in the reference-copying rules to make sure that the right objects are connected
via the references. Let us investigate rule Activity.Activity#nodes()# as an ex-
ample, which is depicted as Fig. 7.9. It matches for each nodes reference
between an Activity and an ActivityNode. The correspondence nodes in
the middle of the rule make sure that a) the rule does not match before the
Activity’s as well as the ActivityNode’s objects have been copied, and b)
that the nodes reference is created between the right object copies. Again, the
negative application condition makes sure that each nodes reference is copied
exactly once.

Now, the language engineer has to perform three tasks:

1. Refine the runtime metamodel as desired, e.g., add runtime elements and
remove elements not relevant for the behavioral semantics.

2. Refine the generated transformation ruleset, e.g., add runtime elements to
the according rules or remove rules which deal with elements removed in
step 1.

3. Create the actual DMM semantics specification realizing the language’s
semantics.

136

7.2. FROM SYNTAX METAMODEL TO RUNTIME METAMODEL

Figure 7.8: Generated rule Activity.EClassActivity()# copying nodes of type
Activity.

Figure 7.9: Generated rule Activity.Activity#nodes()# copying the nodes refer-
ence between Activities and their ActivityNodes.

137

CHAPTER 7. CREATING DMM SPECIFICATIONS

Figure 7.10: Modified runtime metamodel – the runtime part is marked with a
red box.

Figure 7.11: Refined rule Activity.EClassActivity()# for metaclass Activity.

For our simplified activity language, steps 1 and 2 are straight-forward – the
modifications are depicted as Figs. 7.10 and 7.11. The runtime metamodel is en-
hanced with two metaclasses which can be seen at the bottom of Fig. 7.10: The
Tokenmetaclass represents the locus of control of an executed Activity and is
located at an ActivityEdge;4 the ActivityExecution owns the Tokens
flowing through the executed Activity and keeps track of the InitialNodes
which have already produced a Token at activity start time.

Finally, the only change which has to be performed on the generated model
transformation is on rule Activity.EClassActivity()#. This rule is refined such
that for each Activity node, an ActivityExecution node is created and
associated with the Activity node. The resulting rule is depicted as Fig. 7.11.

The final transformation ruleset translates instances of the syntax meta-
model into instances of the runtime metamodel, adding ActivityExecu-

4Note that the semantics of the simplified activity language does not support traverse-to-
completion (see Sect. 3.3).

138

7.2. FROM SYNTAX METAMODEL TO RUNTIME METAMODEL

Syntax
metamodel

DMM
Transformer

Syntax
model

Runtime
Metamodel

Syntax
model

Runtime part

Runtime model

Transform‐
ation rules

instance of

data flow

DMM
ruleset

Instance of
Ecore

metamodel

Tool

Model

typed over

Figure 7.12: Illustration of the creation of runtime metamodel and transforma-
tion in the “Decorator” approach.

tions which make the models executable by the accompanying semantics spec-
ification, as desired. The language engineer’s part of creating the transformation
ruleset and the metamodel comes down to a minimum and can be performed in
a couple of minutes.

We have now seen that the “From Scratch” approach makes creating runtime
metamodel and transformation ruleset rather easy. However, replacing the com-
plete syntax metamodel with a different (although rather similar) metamodel
has one drawback: Any tooling based on the language’s syntax metamodel can
not be used for runtime models. In the next section, we will introduce the
“Decorator” approach which deals with exactly this problem.

7.2.2 The Decorator Approach
The difference between the syntax and runtime metamodel is—as we have seen
above—that the latter contains language elements needed to express states of
execution of a model – information which is not contained in the syntax meta-
model and has thus to be added.

To achieve this, another approach can be applied: The “Decorator” approach
is inspired by the decorator pattern [78, p. 175]. The idea is to store the runtime
language elements within their own metamodel, which then reference elements
from the syntax metamodel. An overview of the decorator approach is depicted
as Fig. 7.12.

The advantage is that the syntax metamodel does not have to be changed
at all – thus, tooling based on the syntax metamodel can be used on runtime
instances to some extent (we will make use of this in Sect. 10.1). Another benefit
is that there is no need to transform the syntax model into a runtime model
– only the runtime elements have to be created and configured such that they
reference the according elements of the syntax model.

Let us apply the “Decorator” approach to our simplified activity language
again, of which we have seen the metamodel in Fig. 6.27 on page 105. The deco-

139

CHAPTER 7. CREATING DMM SPECIFICATIONS

Figure 7.13: The single DMM rule realizing the runtime transformation.

rating runtime metamodel has been depicted as Fig. 6.28 on page 105. The run-
time elements ActivityExecution and Token are contained in the runtime
metamodel and reference types from the syntax metamodel (i.e., Activity
and InitialNode). The referenced syntax metamodel elements can be seen
at the top of Fig. 6.28.

The transformation which adds runtime elements has to be created com-
pletely in the “Decorator” approach, but is of course much easier than in the
“From Scratch” approach, since it does not need to take care of the syntax
part. In fact, for our example it consists of a single DMM rule which adds the
ActivityExecution – it is depicted as Fig. 7.13.

One could think that a drawback of the decorator approach is that the
DMM ruleset realizing the language’s semantics specification now has to be
typed over the complete syntax metamodel, instead of a metamodel containing
only the semantically relevant language elements as is the case with the “From
Scratch” approach. However, the translation of DMM rulesets into GROOVE
grammars makes sure that this is not true in general: Elements not relevant for
the language’s semantics will probably not be referenced by any of the DMM
ruleset’s rules and will thus be filtered out during translation of models into
GROOVE state graphs (and will be re-added when translating graphs back to
models), as we have seen in Sect. 6.3.2. The only exception are elements which
are not semantically relevant, but still need to be referenced by some semantics
rules, for instance because they connect two semantically relevant elements.

Having defined a runtime metamodel as well as a transformation from syntax
models to runtime models, the next step is to create the actual DMM ruleset
realizing the language’s semantics. This is done with help of the DMM Editor,
which is presented in the next section.

7.3 Creating DMM Rulesets

One of the main advantages of DMM is that the resulting semantics specifica-
tions are formal yet relatively easy to understand, the latter because of their
visual appearance which should be familiar to all advanced language users, i.e.,
users who know the language’s metamodel. Obviously, to make use of this
advantage, appropriate tool support is needed.

The core of this support is the DMM Editor, a set of Eclipse plug-ins which
allow to

• create DMM semantics specifications in a visual, intuitive manner,

• guarantee the syntactical correctness of the created specifications,

• check the static semantics of the specifications, and

140

7.3. CREATING DMM RULESETS

• execute DMM functionality such as transforming DMM rulesets and mod-
els into GROOVE grammars, performing model checking etc.

An early version of the DMM Editor has been developed by Malte Röhs within
[174]. Despite the author’s work on the DMM Editor, Eduard Bauer and Nils
Bandener have contributed within [16, 11].

The DMM Editor is based on the Eclipse Graphical Modeling Framework
(GMF) [50], a framework for generating rich visual editors out of models pro-
vided in a framework-specific domain-specific language. The core functionality
of the DMM Editor is contained in four plug-ins:

• de.upb.dmm.editor.diagram.ruleset
Generated visual editor for DMM rulesets, allowing to view and edit DMM
rulesets on the ruleset level.

• de.upb.dmm.editor.diagram.rule
Generated visual editor for DMM rules, allowing to view and edit a rule-
set’s rules.

• de.upb.dmm.editor.diagram.custom
Customizations of the generated editors, e.g., visual appearance of some
elements, drag and drop functionality etc.

• de.upb.dmm.editor.parser
Support for DMM’s expression language (see Sect. 6.2.4).

The visual editors generated by the GMF framework guarantee that the result-
ing models are syntactically correct with respect to the metamodel of DMM.
Additionally, GMF allows to provide constraints for defining the static semantics
of a language; these constraints—which are implemented by means of OCL—can
be validated against a created DMM ruleset, and violations are communicated
by visually annotating elements within the DMM Editor as well as by listing
them in Eclipse’s problems view. So far, the DMM Editor checks 66 such con-
traints – DMM rulesets not giving rise to any validation errors are expected to
be translatable to GROOVE grammars without problems.

Screenshots of the DMM tooling are shown as Figs. 7.14 and 7.15. The
former shows the visual DMM ruleset editor to the right. Left to that editor,
the tree-based DMM ruleset editor (generated from the EMF framework and
customized) can be seen. To the bottom left, the outline of the ruleset under
consideration can be seen – the ruleset being edited is a rather large one with
more than 200 rules. Right to the outline, the Eclipse problem view is located
and shows a couple of errors and warnings for the edited ruleset - two of these
warnings are also visualized in the visual ruleset editor by a yellow warning sign
annotating the affected rule. Hovering over the annotation reveals the reason
of the warning. Finally, to the bottom right, the Eclipse properties view can
be seen which shows detailed (and editable) properties of the currently selected
element.

Fig. 7.15 shows the visual DMM rule editor. To its left, the language’s
runtime metamodel is opened within the Ecore tree editor. The two editors are
integrated such that if one drags a metaclass from the Ecore editor and drops it
onto the rule editor’s canvas, a DMM node will be created and typed over that
metaclass, allowing for a simple and quick creation of DMM nodes.

141

CHAPTER 7. CREATING DMM SPECIFICATIONS

Figure 7.14: DMM Workbench with tree ruleset editor, visual ruleset editor,
outline, problems view, and property view.

Figure 7.15: DMM Workbench with Ecore metamodel editor, visual rule editor,
outline, problems view, and property view.

142

7.4. RELATED WORK

Figure 7.16: Dialog allowing to select one of the potentially invoked rules of an
invocation.

The DMM tooling supports the language engineer in creating DMM seman-
tics specifications in several ways: For instance, if an edge is created between
two DMM nodes, a dialog opens and offers all available EReferences over
which that edge can—depending on the types of source and target node—be
typed. Another example is the “Open invoked rule” action contained in all in-
vocations’ context menus: Recall from Sect. 6.2 that many smallstep rules may
exist which realize a certain invocation; the action will display a dialog show-
ing all smallstep rules which might match if an invocation is performed. It is
depicted as Fig. 7.16.

Overall, the DMM tooling has proven to enable the language engineer to
create and maintain DMM rulesets. In particular, [105], [180], and [149] would
not have been possible without reasonable tool support.

In the remaining thesis, we will point out other features of the DMM tooling
where appropriate.

7.4 Related Work

The scientific work related to this chapter can be divided into two categories:
Model transformation in general and the automatic generation of model trans-
formations. For the former, a huge number of approaches exist – providing a

143

CHAPTER 7. CREATING DMM SPECIFICATIONS

comprehensive overview is out of scope of this thesis. Mens et al. [139] present
a taxomomy of model transformation approaches; overviews of such approaches
can be found in [35] or —more recently—in [135]. Stevens focuses on bidirec-
tional model transformation approaches in [195].

Of particular interest are model transformation approaches which are backed
by graph transformations (as DMM is). An overview of different approaches is
given in [59]; Ehrig et al. [55] investigate the formal concepts of graph transfor-
mation in the context of model transformation and define correctness criteria
such as functional behavior, which includes termination and confluence.

For algebraic graph transformation approaches, termination is undecidable
in general [164]. However, termination criteria have been defined for graph
transformation systems. For instance, one can show that the number of certain
kinds of nodes and edges decreases with every rule application [7]. A more
general approach is followed by Bottoni et al. [23], where high-level replacement
systems serve as a generalization for graph transformation systems; the authors
develop termination criteria for such systems, which are then applicable to graph
transformation systems as well.

The graph transformation community has also delivered tools which allow
to practically apply the above concepts. For instance, AGG [199] and Eclipse
Henshin [3] both allow for the analysis of model transformations with respect to
termination and confluence, thus enabling the modeler to prove at design time
that her model transformation indeed realizes functional behavior.

In contrast, DMM has not been designed with performing model transforma-
tions in mind. Therefore, it does not provide sophisticated analysis techniques as
the approaches discussed above. However, it is an interesting research question
to which extend such approaches could be transferred into the DMM world.

Finally, we want to mention triple-graph grammars (TGGs) [184, 185], which
follow a slightly different approach: triple-graph transformation rules are typed
graph transformation rules which are not only typed over the source and tar-
get metamodels, but also a correspondence metamodel; instances of that meta-
model’s metaclasses are used to keep traces between the source model’s elements
and the elements created on the target side.

Triple-graph grammars have one advantage: They can be applied bidirec-
tionally. As such, triple-graph grammars have been used for model transfor-
mation (see e.g. [127, 122, 89]) in general and model synchronization (see e.g.
[83, 99]) in particular. DMM does not make use of triple graph grammars;
however, the correspondence metamodel used when generating the DMM trans-
formation rules in the From Scratch approach as seen in Sect. 7.2.1 is inspired
by the correspondence metamodel used in triple graph grammars.

Let us now consider the generation of model transformations. One scenario
that has been investigated is the automatic generation of “converting” model
transformations, i.e., model transformations which convert one data model into
a different, but similar data model. Roser and Bauer [176] use ontology match-
ing techniques to create mappings between source and target metamodels of the
desired transformation, and then automatically generate the transformations.
Falleri et al. [70] follow a similar approach: Given a source and target meta-
model, they use the Similarity Flooding algorithm to compute an alignment
model between the two metamodels, from which they generate the final model
transformation.

144

7.4. RELATED WORK

The above approaches are more general to ours in that source and target
metamodel can be different (which does not have to be the case in our scenario),
but rely on the difficult task of ontology matching and metamodel aligning (con-
sequently, both approaches consider manual intervention during these steps).
They could, however, be applied in the DMM setting by using the language’s
syntax metamodel as both source and target metamodel, and by using identity
as the ontology matching/meta model alignment.

A whole class of work on model transformation generation is dedicated to
the field of model transformation by example. The idea is to provide a couple
of transformation samples, i.e., pairs of a model of the source language and the
model which shall result from the target model transformation. The samples
will then be analyzed, and a model transformation will be generated which
performs the necessary transformation automatically.

Kappel et al. [112] provide an overview of current approaches of model trans-
formation by example. Varró et al. [10] use inductive logic programming to
gather knowledge about the target transformation, taking the sample models
into account. The transformation is then generated as graph transformation
rules. In [206], Varró suggests a different approach: He assumes that a proto-
type mapping model exists (created manually, and pointing out only the most
critical relations between elements of source and target metamodel). That map-
ping model is then analyzed together with the transformation samples, and a
model transformation is generated by means of graph transformation rules.

Other approaches do not generate graph transformation rules, but rules of
the transformation language ATL [110]. For instance, Wimmer et al. [197]
provide languages for manually relating source and target metamodels as well
as algorithms for deriving an according ATL transformation. Langer et al. [125]
show how to generate ATL rules from simple sample models demonstrating the
correspondence of source and target metamodel elements.

All above approaches could probably be used for creating a transformation
between syntax and runtime metamodels, although they usually need manual
intervention when defining the relations between source and target metamodel.
Since in our scenario of copying the metamodel, that relation is very simple, the
above approaches could probably be tweaked such that no manual intervention
is necessary. However, the From Scratch approach still has a minor advantage:
The resulting model transformation is specified be means of a DMM ruleset (as
is—or will be—the semantics specification of the language). Thus, the language
engineer does not have to learn additional languages such as ATL.

145

8
Test-driven Semantics Specification

Our final goal will be to reason about the quality of models whose language
is equipped with a DMM specification. This has an important implication: If
the DMM specification itself contains flaws, the analysis results of the models
will be pretty much useless. For instance, analysis of a model might reveal that
that model’s execution gives rise to potential deadlock situations; however, we
need to be (reasonably) sure that the cause of those deadlocks lies indeed in the
model (and not in the fact that erronously implemented DMM rules cause the
deadlock). Therefore, we have developed the approach of test-driven semantics
specification [191] which will be introduced in Sect. 8.1.

However, even if we develop DMM specifications in a test-driven way, this
will only result in higher quality if the tests themselves are reasonable. One way
to measure the quality of tests within software development is test coverage. In
Sect. 8.2 we will present our work [5] on transferring the concept of coverage
into the DMM world.

8.1 Test-Driven Semantics Specification

Given a formal specification, the first and obvious idea is to define a notion of
correctness by means of requirements the specification shall fulfill, and then to
prove that this is indeed the case. Unfortunately, the experiences from software
development seem to imply that proving the correctness of a reasonable complex
system is often just not feasible; as such, the most important technique in
software quality assurance is testing.

Therefore, we have developed a pragmatic approach to help creating high-
quality semantics, which is inspired by the well-known approach of Test-Driven
Development [19]. This is motivated by the fact that a semantics specification
basically follows the Input-Process-Output (IPO) model, where a certain model
can be seen as the input, and the semantics of that model is the output (e.g.,
represented as a transition system).

Figure 8.1 shows our approach and its relation to the testing of software
systems. In the latter case, a test case consists of some input for the software
system and the system’s expected result. The test succeeds if the actual output
of the system is equal to the expected result.

In contrast to that, we want to test a semantics specification. Therefore,
a test consists of an example model and its expected behavior. From that
model and the semantics specification, a transition system can be computed

147

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

Test

=?

Software
system

Input

Output

Expected
result

Test

Semantics
specification

≡?
Example
model

Expected
behavior

Transition
system

Tool

Figure 8.1: Comparison of testing of software systems (left) and semantics spec-
ifications (right); the test subject is depicted as an oval.

which represents the model’s behavior. The test succeeds if the actual behavior
contains the expected behavior (and only that behavior). There is only one
requirement on the semantics specification technique used: the behavior of a
model must be represented as a transition system which can be model checked
for certain execution events, i.e., events occuring when a model is executed.

In a nutshell, our approach works as follows: In a first step, a set of example
models will be created which demonstrate the constructs of the language under
consideration. Additionally, the expected behavior of each example will be
identified and fixed in terms of traces of execution events. In the second step,
the actual semantics specification is performed and tested continously, using a
formalization of the traces identified in step 1.

The result is a semantics specification which realizes the expected behavior of
the example models. Additionally, the language engineer has a set of examples
at hand which can be used e.g. for documentation purposes.

In the following, we will explain our approach of test-driven semantics spec-
ification in detail. Section 8.1.1 will show how to systematically create example
models, and how to describe the expected behavior of those models in terms of
traces of execution events. To ease the creation of the traces, we have developed
a DSL which we will introduce in Sect. 8.1.1.5. Section 8.1.2 will then show how
to derive test cases from the example models and the associated traces, and how
to use these test cases to ensure that the semantics specification indeed works
as expected.

8.1.1 Creating Example Models
Obviously, one has has to figure out the exact meaning of the language con-
structs before their behavior can be formalized. This is where example models
come into play: if they are chosen appropriately, they can serve as a good base
for discussion of the meaning of the example’s language elements.

But what means “appropriate” in this case? The example models should

• concentrate only on a few language elements and their meanings,

• all together cover all elements of the language under consideration, and

148

8.1. TEST-DRIVEN SEMANTICS SPECIFICATION

Create example models

Create example
model

Discuss
semantics

Describe
semantics

(traces)

Identify
execution

events[else]

[all language elements
covered]

Figure 8.2: Process of creating example models.

• each give rise to a finite transition system.

Section 8.1.2 shows how the last requirement is needed to reuse an example
model as a test case. In this section, we will describe how to systematically
create appropriate example models, and we will show how to precisely but in-
formally describe their meanings. The steps described within this section are
shown in Fig. 8.2.

The starting point is the abstract syntax of the language under consideration.
It defines all language elements and their relations with each other. In the case of
DMM, the abstract syntax must be given as a metamodel, but other descriptions
could be used here, e.g. some kind of grammar. Based on the abstract syntax,
the example models should be created step by step, systematically going from
the most basic to more complex language constructs1.

8.1.1.1 A Very Simple Example

Create example model: The very first step is the creation of an example model
which should be as simple as possible. Let us investigate this in the case of
UML Activities. The UML metamodel is structured into packages which de-
pend on each other, and which indeed start with the most fundamental lan-
guage elements (contained in the package FundamentalActivities) up to
the sophisticated language elements contained in package ExtraStructured-
Activities. This is helpful for our task of systematically creating example
models.

In fact, the package FundamentalActivities only allows to create Ac-
tivities containing Actions which can be grouped using ActivityGroups2.
Therefore, the first example model we create only contains one Action; it is
depicted as Fig. 8.3.

Discuss semantics: The next step will be to figure out the supposed be-
havior of our newly created example. For our simple Activity containing only
one Action, this is not difficult: the UML specification states that “when an
activity starts, a control token is placed at each action or structured node that
has no incoming edges” [158, p. 389]. Therefore, if the Activity is started, the
only occuring event is that the contained Action is executed.

Identify execution events: Now that the semantics of the example model
is reasonably clear, we want to describe it precisely. For this, we first have

1The example models can of course be created using existing editors and the language’s
concrete syntax.

2Note that according to the UML specification, ActivityGroups “have no inherent se-
mantics” and are therefore not used in our examples.

149

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

Single Action

A

Figure 8.3: Example Activity “Action” containing only one Action having
name “A”.

Decision and Merge

A

B

C

Figure 8.4: Example Activity containing a simple DecisionNode/MergeNode
structure.

to identify important execution events, i.e., events which will occur during the
execution of our example model, and which will describe what happens at a
certain point in execution time. Again, this is not difficult for our example
model: the only event is that the contained Action is executed. We therefore
define an execution event ActionExecutes. Since we will later refer to more than
one Action, we parameterize that execution event with the Action’s name.

Describe semantics: The last step of treating the current example model is
to actually describe the model’s semantics. We do that in terms of traces of
execution events: Here, a trace is just a possible sequence of events as identified
above. Our example model only has one possible trace, which we can describe
as

ActionExecutes(“A”)

The example presented is very simple, but it serves well to demonstrate the
overall approach. The next step would now be to proceed to more complex
examples, taking the package structure of the UML metamodel into account. It
turns out that the concept of ActivityEdges is introduced in package Ba-
sicActivities, together with concepts like InitialNode (which produces
a token when the Activity starts) and ActivityFinalNode (which consumes
tokens). Therefore, the next example model might consist of a sequence of two
Actions, connected by an ActivityEdge, with an according trace consisting
of the execution of the two Actions in the according order. We skip that
example model and proceed to a more complex one in the next section.

8.1.1.2 Example with two Traces

Let us now turn to a (slightly) more complex example model, which is depicted
as Fig. 8.4. Its purpose is to demonstrate the semantics of the DecisionNode
and MergeNode.

150

8.1. TEST-DRIVEN SEMANTICS SPECIFICATION

Loop

A

B

C

Figure 8.5: Example Activity containing a loop.

This example is interesting because of the fact that it allows for more than
one possible execution: a token flowing through the Activity will—as soon as
it has passed Action “A”—be routed either to Action “B” or to Action
“C”. Therefore, we will describe the model’s behavior by two traces of execution
events:

ActionExecutes(“A”) ActionExecutes(“B”)

and
ActionExecutes(“A”) ActionExecutes(“C”)

We decided to reduce the semantics of Activities to the possible orders of ex-
ecution of Actions, since the Actions are the places where the actual work
will be performed. However, it would also be possible to use more fine-grained
traces like InitialNode() ActionExecutes(“A”) DecisionNode() ActionExecutes(“B”)
MergeNode() ActivityFinalNode().

In fact, some execution events (e.g., when a token traverses an edge) might
become important only when investigating more complex examples at a later
stage. If this is the case, an additional execution event can (and should) of
course be used to describe the complex model’s behavior. Note that this does
not render the traces of the simpler examples useless: if such an execution event
does occur in a simpler model, too, but has not been used to describe that
model’s behavior, it is not important for that behavior; otherwise, it would
already have been added to the traces of the simpler model when its behavior
was investigated. In other words: there is no need to refine the traces of a simple
model at a later stage.

8.1.1.3 Example with Loop

The last example model we want to consider here shows how we deal with loops;
it is depicted as Fig. 8.5.

Obviously, that Activity gives rise to infinitely many traces; they only differ
in the number of times Action “B” is executed. However, the transition system
is still finite: The execution of “B” always corresponds to the same runtime state
(i.e., the state where the only token is sitting on Action “B”). As a result, we
are still able to use the Activity from Fig. 8.5 as an example model, and to later
derive a test case from it.

For this, we use the three traces where “B” is executed zero times, once, and
twice, covering the following three situations:

151

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

• The loop is not executed at all.

• The loop is executed the very first time, i.e., the Actions executed before
the loop is entered are lying outside the loop.

• The loop is executed more than once, i.e., the Actions executed before
the loop is entered (again) are lying inside the loop.

If all three situations are handled properly by the involved rules, we have some
confidence that rules are indeed correct with respect to the loop’s language
elements.

8.1.1.4 Guidelines for Creating Example Models

We have seen how to systematically create example models, and how to precisely
but informally describe their behavior. Before we continue with the actual
semantics specification and derivation of test cases from the examples, we will
outline a few more guidelines for the creation of the examples.

Existing Examples: In the case of the UML, the starting point for semantics
specification is the existing but informal specification provided by the OMG.
That specification already contains many example models, which should be
reused for two reasons: first, these models have been developed by the creators
of the UML and are therefore expected to be relevant. Second, the examples
are well-known to other users of the UML; these users—if in doubt about the
precise meaning of one of the examples—can use our traces of execution events
as a reference.

Difficult Semantics: Some language element’s semantics will probably be
more difficult to understand than others, most likely leading to a more difficult to
implement semantics specification (leading to a higher probability of introducing
flaws into the semantics specification). Such elements will be identified when
discussing their precise meaning. In this case, more example models containing
these elements should be created, and each of these examples should concentrate
on one or more of the identified difficulties.

Language creation: In the case of DSLs, a new language has to be created
from scratch, having certain target users in mind (e.g., business analysts). Cre-
ation of the new language should involve these users, and the easiest way to do
this is through the discussion of example models, including their precise mean-
ings. In other words: the example models should be created in parallel with the
actual language. The examples can later be reused for documentation of the
new language.

8.1.1.5 Describing Traces of Execution Events

Providing traces of execution events can be a cumbersome task, especially if
the example model whose semantics is to be described contains concurrency.
For instance, consider the UML activity shown as Fig. 10.6 on page 223: a
huge number of traces of execution events are needed to describe the model’s
semantics. Creating these traces manually is cumbersone and—even worse—
error-prone. Therefore, we have developed a simple textual DSL called Traces
which can be used to describe traces of execution events in a compact, efficient
manner. In this section, we introduce this language.

152

8.1. TEST-DRIVEN SEMANTICS SPECIFICATION

Figure 8.6: Metamodel of the Traces language.

The metamodel of the Traces language is depicted as Fig. 8.6. The Traces
metaclass represents a complete set of traces of execution events describing a
certain model’s semantics. It has an association traces to the Trace meta-
class representing a single trace. Additionally, each set of traces has a name
(which will usually be the name of the model the traces belong to).

A Trace contains a single Expression, of which 5 kinds are available: an
EventLiteral represents an actual execution event, and that event is stored
in the classes’ name attribute. The other expressions describe combinations
of expressions (and therefore all have a subExpressions) association to the
Expression metaclass). The Sequence describes a sequence of expressions.
The Circle models that the contained expression is to be repeated 0 times, 1
times, . . . upperBound times (where the latter is the according attribute of the
Circle metaclass). A Decision represents different alternatives, and finally,
the Parallel models concurrency.

Each Trace instance can then be unfolded into a number of simple sequences
of EventLiterals, i.e., into a set of traces of execution events as one would
otherwise have created manually. The unfolding is done recursively by unfolding
the most inner elements – the recursion ends as soon as the resulting traces do
not contain any composite constructs any more. To make this approach clearer,
let us investigate an example Traces model,3 the concrete syntax of which is
depicted as Fig. 8.7.

The example is unfolded by first dealing with the Parallel and Circle
expressions inside the Decision – the former evaluates to all permutations
of the execution events such that the order of the sequences is preserved, i.e.,
the traces BCDE, BDCE,BDEC,DEBC,DBEC, and DBCE. The latter evaluates to
repetitions of F, i.e., the empty string, F,FF, and FFF.

3Note that again we do not provide the complete formalization of our Traces language;
the interested reader can investigate the language’s definition within plug-ins de.upb.dmm-
.tests.common.traces and de.upb.dmm.tests.common.traces.ui, and the unfolding
of traces is implemented in class de.upb.dmm.tests.common.AbstractTemporalFormu-
laGenerator of plug-in de.upb.dmm.tests.common.

153

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

Traces for test ’TraceDemo’
traces: begin

A-><< [[B->C||D->E]] ?? ((F::3)) >>->G
traces: end

Figure 8.7: Example model of the Traces language, showing all language con-
structs.

ABCDEG
ABDCEG
ABDECG
ADEBCG
ADBECG
ADBCEG
AG
AFG
AFFG
AFFFG

Figure 8.8: Evaluation of the Traces model depicted as Fig. 8.7.

Then, the Decision is evaluated by unifying the results of the above eval-
uations (since it models that either one or the other trace of execution events is
expected). Finally, each of the traces is prefixed with an A and postfixed with
a G. The unfolding steps as well as the final traces are depicted as Fig. 8.8

In the next section, we will see how models and their expected behavior by
means of traces of execution events are translated into executable test cases.

8.1.2 Creating the Semantics Specification and Deriving
Test Cases

We have already argued in Sect. 8.1.1 that formal semantics specification is a
difficult task. Therefore, we have described how to first gain an understanding
of the semantics to be created by investigating example models, and by precisely
describing the examples’ behavior by means of traces of execution events. In
this section, we will perform the actual semantics specification, and we will test
that specification using the example models and their behavior. The overall
process is depicted as Fig. 8.9.

8.1.2.1 Creating the Semantics Specification

Recall from chapter 6 that DMM uses operational rules to describe behavior: a
DMM rule has a precondition and a postcondition, formulated in terms of typed
graphs. If a state fulfills the precondition (i.e., if the precondition’s graph can
be found within the current state graph), the rule will be applied, leading to a
new state which fulfills the postcondition (i.e., the precondition’s graph will be
replaced by the postcondition’s graph within the current state, leading to a new
state).

This means that in principle, one ore more DMM rules have to be defined for
each language construct. Naturally, one starts with defining DMM rules for the

154

8.1. TEST-DRIVEN SEMANTICS SPECIFICATION

Specify semantics, derive test cases

Specify
semantics for

element

Formalize traces
of example

Create test
case

Execute all
test cases

Fix semantics

[all tests passed]

[else]

[else]

[all elements of example
covered]

[else]

[all language elements
covered]

Figure 8.9: Specify semantics, create test cases from example models.

more simple language constructs and adds rules for more complex constructs
step by step. Now, the idea is that as soon as all language constructs a partic-
ular example model consists of are covered, that example is executable, and its
execution should result in a behavior similar to the one identified when creating
the example (and described by traces of execution events).

In other words: the example model and the current state of the semantics
specification should give rise to a transition system, and that transition system
should contain the traces of execution events (and only those traces). This puts
a requirement on the DMM specification we are creating: in Chapter 4, we
have seen that the GROOVE grammar produced by a DMM specification and
a model can be model checked against LTL expressions about the application
of GROOVE rules. Since we want to check the transition systems for traces
of execution events, we must make sure that for each such event, one or more
corresponding DMM rules exists (which will then be transformed into GROOVE
rule as seen in Sect. 6.3.2). An occurence of such a DMM rule is then equivalent
to an occurence of the according execution event.

Note that this is not a restriction, but a benefit of our approach: one of
the goals of creating a formal semantics specification is to check the behavioral
quality of models, i.e., to check whether certain behavioral properties hold for
the model under consideration. These properties need to be expressed in terms
of execution events. To put it another way: our approach makes sure that
the resulting semantics specification indeed allows for the verification of such
properties.

8.1.2.2 Translating Traces into LTL formulas

But how to convert the traces of execution events into properties which can be
checked against a transition system? This is in fact quite simple; let us demon-
strate our approach using the more complex example introduced in Sect. 8.1.1.2.
The trace

ActionExecutes(“A”) ActionExecutes(“B”)

155

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

can also be read as follows: the transition system representing the model’s
behavior must contain a trace where at some point in time, Action “A” must
be executed. From that point on, there must be a “subtrace” such that Action
“B” is executed at some point in time. Using the temporal logic dialect LTL
[134], this can be expressed as follows: As we have seen in Sect. 4.3.1 on page 31,
the LTL formula

F(r)

expresses the fact that Finally4, property r holds. Since we model check against
the application of DMM rules, r will be a such a rule (and reveals information
about the state the rule is applied to: it must be the case that the precondition
of r holds for that state).

Now, our DMM specification will contain a rule action.start(action.name),
corresponding to the execution event ActionExecutes(name) as described earlier.
Therefore, the trace shown above can be translated into the following LTL
formula, which can then be checked against the transition system:

p1 := F(action.start(“A”) ∧XF(action.start(“B”)))

However, if p1 holds for a transition system, then this means that all traces of
that transition system fulfill p1. This is not what we want to express (and would
of course not be true for our example): We want to know if the transition system
contains an according trace, but it may (and probably will) contain other traces
not fulfilling p1. We can deal with this by negating p1, expressing that on all
traces of the transition system, p1 does not hold. If the model checker finds out
that ¬p1 indeed does not hold, we know that the transition system contains the
trace as desired.

Checking our transition system as described above ensures that it indeed
contains the trace as desired. There is one remaining problem, though: Up to
now, we only know that there are traces such that Actions “A” and “B” are
executed, but we do not know what happens before “A”, between “A” and “B”,
and after “B”.

To make our LTL formula more precise with respect to that problem, we
have to dive deeper into LTL: we have to make use of the Until operator, the
neXt operator, and the Globally operator. To explain the new formula, we first
define some helper constructs.

First, to be able to use a more compact representation, we will write ac-
tion.start(“A”) as aA (aB , aC accordingly). Now, let R = {aA, aB , aC} be the
set of all rules corresponding to execution events relevant for the model under
consideration. Finally, we define the predicate R̂ as ∧r∈R(¬r).

We will now construct the formula step by step. The first part looks as
follows:

P1 := R̂UXA

The intuition is that we want to find the first occurrence of rule aA on some
path; therefore, we require that none of the rules contained in R occurs Until
aA occurs (which will be part of XA). The definition of XA reads as

XA := aA ∧X(R̂UXB)
4“Finally” must be understood as “at some point in time” here.

156

8.1. TEST-DRIVEN SEMANTICS SPECIFICATION

This is the most important part of the formula to construct. The idea is that
since we have found the first occurrence of aA, we want to make sure eventually
in the future XB will hold, and before that, no other rules out of R will occur.
Note that the X is needed since we have to look at the next state, because in
the current state, aA holds, so R̂ can never be true. Now for XB :

XB := aB ∧XG(R̂)

This formula completes our definition of P1. It expresses the fact that after aB

has occurred, no other rule from R will ever occur again.
All together, ¬P1 expresses exactly the desired property of our transition

system: it is false iff the transition system contains a trace such that aA and aB

occur in the desired order, and there are no other occurrences of rules from R
at other places. Additionally, it is easy to see that the above construction can
be extended to traces of arbitrary length by using several expressions similar
to XA, where aA is replaced by the rule to be checked, and by nesting them as
above.

Note that the above could be expressed more easily by using property speci-
fication patterns [42], a collection of temporal logic formulas which can be used
to express properties which are used frequently. We still decided to provide the
translation using basic LTL contructs, since we expect them to be more common
to most readers than the property specification patterns.

8.1.2.3 Creating Test Cases

In the last section, we have seen how to translate a trace of execution events
into an LTL formula, which can then be model checked against the transition
system. It is now straight-forward to create a test case from a model and a set
of such traces.

First, all the traces belonging to the example model under consideration
have to be translated into LTL formulas as explained above. In the case of our
more complex UML Activity, this will result in two LTL formulas P1 and P2
(we have seen P1 in the last section). Then, a model checker can be used to
verify whether all these properties hold. If this is the case, we know that the
expected behavior is contained within the transition system; this means that our
semantics specification so far produces the behavior as desired. Otherwise, we
know which trace of execution events is not contained in the resulting behavior,
and we can use that information to fix the semantics specification.

It remains to show whether this is the only behavior produced by our se-
mantics specification: there might be other traces which do not fulfill P1 or P2,
i.e., some undesired behavior is going on. Therefore, we check one more prop-
erty which ensures that the transition system indeed only contains the desired
behavior:

P1 ∨ P2

The above formula holds iff for all traces through the transition system, either
P1 or P2 hold. Its verification will fail if the transition system contains undesired
behavior. In this case, the model checker will provide a counter example, i.e., a
trace which does not belong to the expected ones. That counter example can
then be used to fix the semantics specification (in Chapter 10 on page 215, we
introduce some basic toling for supporting the language engineer in this task,
which might—even with a counter example—still be quite difficult).

157

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

8.1.2.4 Automatic Execution of Test Cases

To support the creation of DMM semantics specifications, we have implemented
a Java framework which enables the automatic execution of test cases as de-
scribed above. For this, we have used JUnit [115], which provides convenient
ways to execute our test cases, including a GUI showing which tests passed or
failed for which reasons. An execution of a test case works as follows:

First, the example model under consideration is translated into a GROOVE
graph, which serves as the start state for the transition system to be computed.
Next, the traces of execution events—written in the language we have introduced
in Sect. 8.1.1.5—are translated into LTL formulas as described in Sect. 8.1.2.2.
Then, the generation of the transition system is started, using the current state
of the DMM specification to be built. Finally, the LTL formulas are verified
one by one; if a verification fails, the according JUnit test will fail, providing a
message which points at the trace not being contained in the transition system.

8.2 Coverage Criteria for Tests of DMM Specifications

In the last section, we have seen how a DMM semantics specification can be
tested by means of example models and their expected behavior formalized as
traces of execution events. If all our tests pass, we have some confidence that
the semantics specification indeed realizes the language’s semantics as desired.
That confidence of course depends on the tests themselves. For instance, we
will naturally trust our semantics specification more if we have many test cases
(instead of only a few ones which e.g. test just the main features of our seman-
tics specification). However, the number of tests is not a very helpful quality
criterion for a test suite, since all tests could concentrate on testing only a small
part of the software system, leaving other parts completely untested.

Therefore, it would be beneficial for our approach of test-driven semantics
specification if we would have a way to measure the quality of our tests – the
higher their quality, the higher our trust in the semantics specification.

In software engineering, the most important criterion for measuring the qual-
ity of a software system’s tests is test coverage. The International Software Test-
ing Qualifications Board (ISTQB) defines coverage as “the degree, expressed as
a percentage, to which a specified coverage item has been exercised by a test
suite”, where a coverage item is defined as “an entity or property used as a basis
for test coverage, e.g. equivalence partitions or code statements” [108, p. 16].

In this section, we will define notions of test coverage for DMM semantics
specifications. Before we do that, in the next section we will discuss the notion
of coverage in general, and we will investigate what kinds of coverage items to
define for DMM specification. Section 8.2.2 will then introduce a data structure
to be covered, and Sect. 8.2.3 will introduce several coverage criteria for DMM.
Finally, Sect. 8.2.4 will discuss how our coverage criteria relate to each other in
terms of expressiveness.

This section is based on [5] and [4]. The concepts described here are im-
plemented in the plug-ins de.upb.dmm.tests.coverage.rule and de.-
upb.dmm.tests.coverage.edge.

158

8.2. COVERAGE CRITERIA FOR TESTS OF DMM SPECIFICATIONS

8.2.1 Covering DMM Specifications
In software engineering, the most important criterion for choosing a coverage
item is the kind of test: in black-box testing, we do not have access to the
source code of the system under test (SUT) – the system in treated as a black
box. As a result, coverage items can only be defined by taking the test’s input
data into account. For instance, an important technique in black-box testing
is equivalence partioning, where the test input is devided into classes, each of
which shall produce the same result for all members of a class. Coverage can
then be defined as the number of classes for which test cases do exist.

In white-box testing, the SUT is transparent to the tester – the source code
(and all other artifacts) of the SUT can be accessed. This allows to define
much more fine-grained coverage criteria. The idea is to derive a data structure
called control-flow graph5 from the source code, where nodes of the graph are
statements of the source code, and there is an edge between two statements
s1, s2 if there is a possible execution of the program such that s2 is executed
immediately after s1. Such a data structure can then be covered: For instance,
statement coverage is defined as the number of statements which are executed by
our test suite, divided by the number of all statements. Other coverage criteria
for control-flow graphs include branch coverage (where the outgoing edges of
each node are covered) or path coverage (where the possible pathes through
the control-flow graph are covered).6 See e.g. [202, 85] for more information on
coverage criteria and their definitions.

But what to cover in DMM? In contrast to software engineering, where
the flow of control is basically given by the order of program statements and
constructs such as loops and if-then-else, graph transformation rules can in
general be applied in any order: At every state, any rule can potentially match
and be applied. However, in DMM the situation is sightly different: We have
seen in DMM’s definition that if a DMM rule contains an invocation, the next
rule to be applied must be an invoked one; if no such rule has been specified,
the DMM specification is considered to be erroneous.

Let us illustrate this with an example: Assume that bigstep rules A and B
both contain a single invocation of a rule S. In this case, our tests should make
sure that in both cases, S can be applied after the previous rule (A or B). For
instance, A and B must make sure that S’s application context is available.

As such, test coverage of a DMM specification can be defined as the degree
to which the potential orders of invoked rules has been exercised by our test
models.

In the next section, we will introduce a data structure called invocation graph
which models all potential orders of invoked rules.

8.2.2 Invocation Graph
In the case of common graph transformation rules, all rules must be checked for
matching in every state, since there is no concept which restricts the order of

5Other data structures used in covering white-box testing e.g. describe the flow of data
(data-flow graph).

6Note that in most cases, a path coverage of 100% can not be achieved since the control-
flow graph contains an infinite number of pathes; however, path coverage is often used as the
theoretical optimum to which other, actually applicable coverage criteria are compared.

159

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

start.1

execute.2 execute.1

executeHand-
lerBody.1

Figure 8.10: Example invocation graph for bigstep rule action.start()# with
unique name start.1.

application of those rules.7 In contrast, we have seen in chapter 6 that DMM
invocations allow to implement some flow of control: If a DMM rule contains an
invocation, only rules compatible to that invocation can match and be applied.

This allows to compute potential orders of execution of DMM rules by only
evaluating the rules’ invocations. Invocations graphs are the result of such a
computation and reflect exactly those potential sequences of applications of
DMM rules: Nodes of an invocation graph correspond to DMM rules, and a
rule r1 can be followed by a rule r2 if and only if there is an edge between the
corresponding nodes. Note that an invocation graph might (and usually will)
contain edges corresponding to orders of rule applications which are not actually
possible, e.g. since r1 contains an invocation compatible to r2 but creates object
structures which prevent r2 from matching.

Since bigstep rules can not be invoked (and can therefore match as soon as
the invocation stack is empty, see Sect. 6.3.2.4), each bigstep rule gives rise to a
single invocation graph, from which a sequence of applications of smallstep rules
might follow – the bigstep rule corresponds to the root node of its invocation
graph, from which all potential sequences of rule applications are rolled out.

Let us illustrate the above with an example from the UML activity semantics
created by Hornkamp [105]. The invocation graph depicted as Fig. 8.10 reflects
the following situation: the bigstep rule with unique name start.1 contains an
invocation, and two smallstep rules (with unique names execute.1 and execute.2)
are compatible to that invocation. Both of these rules contain an invocation
themselves, for which only one compatible rule exists (the rule with unique
name executeHandlerBody.1). Note that the invocation graph would look the
same if start.1 would contain both invocations in the according order (and rules
execute.1 and execute.2 would contain no invocation).

Figure 8.11 describes a slightly different situation: Rule flow.1 again contains
a single invocation for which two compatible rules exist: accept.1 and accept.2,
and both rules contain two invocation for which the single compatible rules
notifySpawns.1 and moveOffers.1 exist. The difference to the above example is
that rule accept.1 additionally contains a third invocation with another single
compatible rule finish.1. In this case, two different nodes are needed which both

7Usually, graph transformation rules are designed to (at least partly) match in a specific
order, e.g. by using trigger nodes [91]. However, it is the responsibility of the rule creator
to make sure that the rules indeed match in the desired order. DMM invocations take that
burden from the creator’s back.

160

8.2. COVERAGE CRITERIA FOR TESTS OF DMM SPECIFICATIONS

flow.1

accept.2accept.1

notifySpawns.1

finish.1

notifySpawns.1

moveOffers.1 moveOffers.1

Figure 8.11: Example invocation graph for bigstep rule forkNode.flow()# with
unique name flow.1.

correspond to the DMM rule with unique name notifySpawns.1 (and the same
holds for rule moveOffers.1): If the rules would be reflected by a single node
(as in the above example), there would be paths through the invocation graph
which would not correspond to possible sequences of applications of DMM rules
(namely, the invocation graph would allow for the sequence flow.1 → accept.2
→ notifySpawns.1→ moveOffers.1→ finish.1, which is not possible since neither
rule accept.2 nor rules notifySpawns.1 or moveOffers.1 contain an invocation to
which rule finish.1 is compatible).

To put this more generally: two nodes corresponding to the same DMM rule
are merged if at the point of execution of that rule, the invocation stack is the
same in both cases. This is true for our example in Fig. 8.10: After the exe-
cutions of rules execute.1 and execute.2, the invocation stack contains the only
rule executeHandlerBody.1. Since the invocation stack is equal in both cases,
only one node is needed. In contrast, in the example of Fig. 8.11, after execu-
tion of rule accept.1, the invocation stack contains three rules, after execution
of rule accept.2, the invocation stack contains only two rules. Since the two
stacks differ, two nodes are needed.

The final example of this section is depicted as Fig. 8.12. Here, rule sup-
plyStreamingToken.1 contains a single invocation, for which two compatible rules
exist: rules destroy.1 and destroy.2. These two rules realize a recursion, where
destroy.1 contains an invocation for which both the rule itself and rule destroy.2
are compatible. The recursive call is modeled by the self edge of the destroy.1
node, and the end of the recursion is reached as soon as rule destory.2 matches
and is applied.

Having a good intuition on how invocation graphs are reflecting a DMM rule-
set’s invocation structure, let us now investigate the algorithm used to compute
invocation graphs, which is depicted as Listing 8.1. Lines 1–6 define a data
structure called RuleNode which—as the name suggests— represents DMM
rules as nodes in the invocation graph. For this, a RuleNode stores its rule’s
unique name as well as a list of invocations which are to be processed at the

161

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

supplyStreaming
Token.1

destroy.2 destroy.1

Figure 8.12: Example invocation graph for bigstep rule inputPin.supplyStrea-
mingToken()# with unique name supplyStreamingToken.1.

time the rule is applied. Two RuleNodes are equal if both their unique names
and list of open invocations are the same.

Listing 8.1: Algorithm for computing the invocation graph of a bigstep rule

1RuleNode
2String uniqueName
3List openInvocations
4

5boolean equals(RuleNode other)
6return uniqueName = other.uniqueName and openInvocations.equals(

other.openInvocations)
7

8DirectedGraph computeInvocationGraph(BigstepRule bigstepRule)
9DirectedGraph invocationGraph := new DirectedGraph()
10RuleNode rootNode := new RuleNode(bigstepRule.uniqueName,

bigstepRule.invocations)
11invocationGraph.addVertex(rootNode)
12exploreNode(invocationGraph, rootNode)
13return invocationGraph
14

15void exploreNode(DirectedGraph invocationGraph, RuleNode node)
16if (not node.openInvocations.isEmpty())
17Invocation invocation := node.openInvocations.removeFirstElement

()
18for each (Rule rule in getCompatibleRules(invocation))
19RuleNode ruleNode := new RuleNode()
20ruleNode.uniqueName := rule.uniqueName
21ruleNode.openInvocations.appendAll(rule.invocations)
22ruleNode.openInvocations.appendAll(node.openInvocations)
23if (invocationGraph.containsVertex(ruleNode))
24invocationGraph.addEdge(node, ruleNode)
25else
26invocationGraph.addVertex(ruleNode)
27invocationGraph.addEdge(node, ruleNode)
28exploreNode(invocationGraph, ruleNode)

The operation shown in lines 8–13 then starts the computation of an invo-
cation graph; it gets a bigstep rule as input and returns the rule’s invocation
graph. The operation creates the graph object and a RuleNode corresponding
to the bigstep rule. As such, the RuleNode receives the bigstep rule’s unique
name as well as all the rule’s invocations (reflecting the fact that after the big-
step rule has been applied, all the rule’s invocations are still to be processed).
The operation then adds the RuleNode to the invocation graph and starts
the main part of computing the invocation graph by invoking the operation
exploreNode, passing the invocation graph and the bigstep rule’s RuleNode

162

8.2. COVERAGE CRITERIA FOR TESTS OF DMM SPECIFICATIONS

as parameters.
Operation exploreNode does the actual work. Its idea is as follows: First,

if the RuleNode to be processed (with name name) does not contain any invo-
cations, the operation immediately returns – we have reached a leaf node of the
invocation graph. Otherwise, the very first invocation to be processed is taken
from the node’s list of open invocations (line 17). Then, the operation loops
over all rules compatible to the invocation (see Sect. 6.3.2.4 for the definition of
compatibility between an invocation and a smallstep rule). For each compatible
rule, a RuleNode object is created and receives the rule’s unique name and
invocations. However, at point of time of applying the current rule, there might
still be invocations from previously processed rules to be executed at a later
stage – these invocations are appended to the list of open invocations in line 22.

Finally, it is checked whether the invocation graph already contains a Rule-
Node similar to the one just created. If this is the case, we only need to add an
edge from the node to the ruleNode. No further exploration of ruleNode
is necessary: Since the invocation graph’s node has already been explored, and
since that node contains exactly the same open invocations than our newly
computed ruleNode, exploring the ruleNode would result in exactly the same
structure we have already found when exploring the invocation graph’s node.
Otherwise, we add the ruleNode and an edge between the invoking node and
the invoked ruleNode to the invocation graph and recursively continue with
the exploration of ruleNode.

The algorithm described above results in an invocation graph which contains
exactly one RuleNode for each (transitively) invoked rule and state of open in-
vocations, and it contains an edge between two RuleNodes if and only if one
rule might follow another rule. However, the algorithm does not always termi-
nate. The reason for this is that some DMM specifications give rise to infinitely
large invocation graphs. As a simple example, consider a DMM specification
containing a smallstep rule which contains two invocations: The first one is
a recursive invocation (i.e., the rule invokes itself), and the second one is an
arbitrary invocation. This situation will result in an infinite invocation graph,
where nodes are added over and over, and each of these nodes has one more
invocation on its invocation stack than the previous node. It is the language
engineer’s responsibility to be aware of such situations (as it is her responsibility
to create example models which give rise to finite transition systems).

Now that we have defined the invocation graphs of a ruleset, in the next
section we will introduce several ways to cover these graphs.

8.2.3 Coverage Criteria
As we have explained above, the invocation graphs formalize the order of poten-
tial executions of smallstep rules. Now, the idea is to cover that data structure
by means of executing the test models and marking nodes and edges of the
invocation graphs as covered.

The invocation graphs of a ruleset contain two kinds of elements to be cov-
ered: nodes and edges. Therefore, we have developed two categories of coverage
criteria: In Sect. 8.2.3.2, we will introduce three notions of rule coverage, fol-
lowed by the definition of three notions of edge coverage in Sect. 8.2.3.3. Before
we do that, we explain the general approach of computing coverage in the next
section.

163

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

8.2.3.1 General Coverage Computation

In the following, the coverage criteria are described as follows: First, a gen-
eral CoverageCalculator is introduced which relies on two functions to be
provided by the different coverage criteria: The first function computes the cov-
erage items to be covered, and the second function decides whether a coverage
item is covered by a given transition system.

Listing 8.2 shows the CoverageCalculator as pseudo code. The algo-
rithm receives a DMM ruleset and a set of transition systems as input and
returns the ruleset’s test coverage in percent.

Listing 8.2: General algorithm for coverage computation

1double computeCoverage(Ruleset ruleset, Set transitionSystems)
2Map invocationGraphs := new Map()
3for each (Rule rule in ruleset.rules)
4if (rule is BigstepRule)
5invocationGraphs.put(rule, computeInvocationGraph(rule))
6Set coverageItems := computeCoverageItems(ruleset, invocationGraphs)
7Set coveredItems := new Set()
8for each (GraphTransitionSystem gts in transitionSystems)
9performCoverageAnalysis(ruleset, invocationGraphs, coverageItems,

coveredItems, gts)
10return coveredItems.size() / coverageItems.size()
11

12void performCoverageAnalysis(Ruleset ruleset, Map invocationGraphs, Set
coverageItems, Set coveredItems, GTS gts)

13Map name2transitions := computeMap(ruleset, gts)
14for each (CoverageItem coverageItem in coverageItems)
15if (not coveredItems.contains(coverageItem) and isCovered(gts,

invocationGraphs, name2transitions, coverageItem))
16coveredItems.add(coverageItem)
17

18Map computeMap(Ruleset ruleset, GraphTransitionSystem gts)
19Map result := new Map()
20for each (Rule rule in ruleset.rules)
21if (rule is BigstepRule or rule is SmallstepRule)
22Set transitions := new Set()
23for each (GraphTransition graphTransition in gts.transitions)
24if (matches(graphTransition, rule.uniqueName))
25transitions.add(graphTransition)
26map.put(rule.uniqueName, transitions)
27return result

The algorithm starts with computing the invocation graphs of all bigstep
rules contained in the given ruleset (lines 2–5). It then receives the coverage
items for the given coverage criterion in line 6 – function computeCoverage-
Items() is the first function to be provided by concrete coverage realizations.
Then, the algorithm iterates over all transition systems and performs coverage
analysis for each of them. Finally, the coverage is computed by dividing the
number of covered items by the number of all items (line 10).

The actual coverage analysis is shown in lines 12–16. First, a map is com-
puted, mapping each DMM rule to a set of corresponding transitions from the
transition system currently analyzed. Then, the algorithm iterates over the cov-
erage items and—given that an item is not yet covered—uses the isCovered()
function to check whether the given coverage item is indeed covered by the tran-
sition system at hand.

164

8.2. COVERAGE CRITERIA FOR TESTS OF DMM SPECIFICATIONS

start.1 execute.1 executeHandlerBody.1… …
Figure 8.13: Excerpt of a test model’s transition system.

start.1 execute.2 executeHandlerBody.1… …
Figure 8.14: Excerpt of a test model’s transition system.

In the following, we will introduce the different coverage criteria by means
of their realizations of the functions computeCoverageItems() and isCo-
vered().

8.2.3.2 Rule Coverage Criteria

As stated above, the first kind of elements to be covered are nodes of the invoca-
tion graphs, which correspond to the execution of DMM rules. In the following,
we will introduce three kinds of rule coverage.

Rule Coverage Our goal is to make sure that our test models make use of
the DMM rules forming the language’s semantics in as many ways as possible.
However, the first (and most basic) requirement is that each rule of our semantics
specification should be used during the execution of at least one of our test
models. Therefore, our first coverage criterion is called rule coverage.

Let us illustrate rule coverage with an example: We will cover the invocation
graph depicted as Fig. 8.10. Assume that we have a single test model, the
transition system of which contains the sequence of states and transitions as
shown in Fig. 8.13. It is easy to see that three of the four rules occuring in
the invocation graph are contained in the transition system. As such, our test
model would result in a rule coverage of 75%.

Note that for computing rule coverage, it would not be necessary to compute
the invocation graphs – it would suffice to just traverse the example models’
transition systems, and to mark each rule of the DMM specification as used
which occurs in at least one of our transition systems. However, we still decided
to define rule coverage on base of the invocation graph data structure, since
this allows for a better understanding of the differences between the coverage
criteria we are presenting.

To increase rule coverage, we would have to add a second test model,8 the
execution of which would result in the application of the rule with unique name
execute.2. For instance, if our test model’s transition system would contain the
sequence of transitions as depicted in Fig. 8.14, we would have achieved a rule
coverage of 100%.

Let us now define rule coverage by means of pseudo code, which is depicted
as Listing 8.3. In the case of rule coverage, it suffices to describe the coverage
items by means of a rule’s uniqueName – two coverage items are equal if their
respective unique names are equal (lines 1–5). Consequently, the computation

8Of course, we could also modify our existing test model. However, it is recommended to
keep the test models as simple and small as possible.

165

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

start.2

execute.2 execute.1

executeHand-
lerBody.1

Figure 8.15: Example invocation graph for bigstep rule action.start()# with
unique name start.2.

of the coverage items comes down to collecting all different unique names. Note
that in lines 11–13 a new CoverageItem is only added to the result set if that
set does not yet contain a coverage item equal to the one to be added; thus, the
final set will contain one coverage item per rule of the ruleset.

Listing 8.3: Subroutines for computing rule coverage

1CoverageItem
2String uniqueName
3

4boolean equals(CoverageItem other)
5return uniqueName = other.uniqueName
6

7Set computeCoverageItems(Ruleset ruleset, Map invocationGraphs)
8Set result := new Set()
9for each (DirectedGraph invocationGraph in invocationGraphs.values)
10for each (RuleNode ruleNode in invocationGraph.vertices)
11CoverageItem item = new CoverageItem(ruleNode.uniqueName)
12if (not result.contains(item))
13result.add(item)
14return result
15

16boolean isCovered(GraphTransitionSystem gts, Map invocationGraphs, Map
name2transitions, CoverageItem coverageItem)

17Set transitions := name2transitions.get(coverageItem.uniqueName)
18return transitions.size() > 0

Using the map computed by the generic coverage algorithm we introduced
in Sect. 8.2.3.1, it can now be decided whether a coverage item is covered by
checking whether the number of transition corresponding to the given rule is
greater than 0 – if this is the case, we know that the rule is executed at least
once by the example model giving rise to the given transition system.

Rule Coverage Plus Now, let us assume that we have a second invocation
graph, which is depicted as Fig. 8.15. This invocation graph differs from the
one in Fig. 8.10 only by the root bigstep rule (which is start.2 in this case). As
such, we have five different rules, and our two test models would result in a rule
coverage of 80%.

The smallstep rules execute.1, execute.2 and executeHandlerBody.1 now do
not only need to work correctly when (transitively) invoked by bigstep rule

166

8.2. COVERAGE CRITERIA FOR TESTS OF DMM SPECIFICATIONS

start.2 execute.1 executeHandlerBody.1… …
Figure 8.16: Excerpt of a test model’s transition system.

start.1, but also when invoked by bigstep rule start.2. However, rule coverage
does not take this into consideration. Therefore, we have defined the notion
of rule coverage plus: For this coverage criterion, each smallstep rule must be
covered separately for all bigstep rules it is transitively invoked by.

As an example, the number of nodes to be covered in rule coverage plus is
eight for the given two invocation graphs, and our two example models would
result in a coverage of 50%. If we add a third example model containg the se-
quence of transitions as depicted in Fig. 8.16, the coverage increases to 7

8=87.5%:
not only is bigstep rule start.2 now covered, but both rules execute.1 and exe-
cuteHandlerBody.1 are executed in the context of rule start.2 and are therefore
covered with respect to rule coverage plus.

Now for the definition of rule coverage plus, the pseudo code of which is
depicted as Listing 8.4. Since we want to track whether a rule is executed while
being invoked by a certain bigstep rule, that bigstep rule is also stored within
our coverage items – two items are now equal if both their bigstep rules and
unique names are equal (lines 1–6).

Listing 8.4: Subroutines for computing rule coverage plus

1CoverageItem
2BigstepRule bigstepRule
3String uniqueName
4

5boolean equals(CoverageItem other)
6return uniqueName = other.uniqueName and bigstepRule.uniqueName =

other.bigstepRule.uniqueName
7

8Set computeCoverageItems(Ruleset ruleset, Map invocationGraphs)
9Set result := new Set()
10for each (Rule rule in ruleset.rules)
11if (rule is BigstepRule)
12DirectedGraph invocationGraph := invocationGraphs.get(rule)
13for each (RuleNode ruleNode in invocationGraph.vertices)
14CoverageItem item = new CoverageItem(rule, ruleNode.uniqueName)
15if (not result.contains(item))
16result.add(item)
17return result
18

19boolean isCovered(GraphTransitionSystem gts, Map invocationGraphs, Map
name2transitions, CoverageItem coverageItem)

20Set transitions := name2transitions.get(coverageItem.uniqueName)
21for each (GraphTransition graphTransition in transitions)
22Set invokingBigstepRules := new Set()
23collectInvokingBigstepRules(gts, graphTransition,

invokingBigstepRules)
24for each (String invokingBigstepRule in invokingBigstepRules)
25if (matches(invokingBigstepRule, coverageItem.bigstepRule.

uniqueName))
26return true
27return false

167

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

flow.1 accept.1 notifySpawns.1… …moveOffers.1 finish.1

Figure 8.17: Excerpt of a test model’s transition system.

Computing the coverage items is done by traversing all invocation graphs,
creating a coverage item for each graph’s nodes, and adding the created coverage
items to the result set to be returned (lines 8–17). Note that as always, a
coverage item will only end up in the result set if that set does not already
contain a coverage item being equal to the one to be added.

Finally, before we explain how coverage of a certain item is checked, let
us quickly introduce a helper function, which is depicted as Listing 8.5. The
function collectInvokingBigstepRules() computes the set of all bigstep
rules which might have (transitively) invoked the current rule. This is realized by
the algorithm of Fig. 8.5 as follows: It receives a transition system, a transition
and a set as input – after execution of the algorithm, the set will contain the
invoking bigstep rules. Starting with the given transition’s source state, the
algorithm then goes backwards through the transition system in a recursive
way. The recursion stops as soon as a bigstep rule is found (and added to the
result set).

Listing 8.5: Routines to be reused by the coverage algorithms

1void collectInvokingBigstepRules(GraphTransitionSystem gts,
GraphTransition graphTransition, Set invokingBigstepRules)

2Set incomingTransitions := gts.getIncomingTransitions(graphTransition
.source)

3for each (GraphTransition transition in incomingTransitions)
4if (transition represents BigstepRule)
5invokingBigstepRules.add(transition.label)
6else
7collectInvokingBigstepRule(gts, transition, invokingBigstepRules)

It is now straight-forward to check whether one of our coverage items is
indeed covered – function isCovered() works as follows: Using the map com-
puted by the generic coverage algorithm, we first receive the set of transitions
corresponding to the given rule (line 20). We then iterate over all the transi-
tions found; for each, we compute the set of invoking bigstep rules as defined
above (lines 22–23). Finally, we iterate over these bigstep rules – if we find the
coverage item’s bigstep rule within the set, the coverage item is indeed covered,
and we return true (lines 24–26).

Rule Coverage Plus Plus Finally, let us add the invocation graph depicted
as Fig. 8.11 as the third invocation graph, and let us also add another example
model, the transition system of which shall contain the sequence of transitions
as shown in Fig. 8.17. The invocation graphs and test models result in a rule
coverage of 10

11=90.9% (the only uncovered rule is accept.2) and a rule coverage
plus of 12

14=85.7% (the uncovered rules are rule execute.2 in the context of
bigstep rule start.2 and rule accept.2 in the context of bigstep rule flow.1).

Now, the difference between rule coverage and rule coverage plus was that
some rules were occuring in more than one invocation graph. In the invoca-
tion graph of Fig. 8.11, we have another situation: rules notifySpawns.1 and

168

8.2. COVERAGE CRITERIA FOR TESTS OF DMM SPECIFICATIONS

moveOffers.1 occur more than once in a single invocation graph. The situation
is different because the rules are invoked by both rules accept.1 and accept.2
and therefore need to work correctly in both cases. However, rule coverage plus
does not distinguish between nodes within the same invocation graph which
correspond to the same rule.

The solution is rule coverage plus plus, which means that every single node of
our invocation graphs has to be covered by an example model. For the situation
described above, we therefore have a coverage of 12

15=80%.
The definition of rule coverage plus plus as pseudo code is depicted as List-

ing 8.6. The definition of the coverage item can once more be seen at the top of
that listing (lines 1–6): Since we now need to distinguish nodes within invoca-
tion graphs, it is not enough any more to store a rule’s unique name (since an
invocation graph might contain several nodes which all correspond to the same
rule). Thus, for two coverage items to be considered equal, they need to have
the same bigstep rule and rulenode.

Listing 8.6: Subroutines for computing rule coverage plus plus

1CoverageItem
2BigstepRule bigstepRule
3RuleNode ruleNode
4

5boolean equals(CoverageItem other)
6return bigstepRule.uniqueName = other.bigstepRule.uniqueName and

ruleNode.equals(other.ruleNode)
7

8Set computeCoverageItems(Ruleset ruleset, Map invocationGraphs)
9Set result := new Set()
10for each ((BigstepRule rule, DirectedGraph invocationGraph) in

invocationGraphs)
11for each (RuleNode ruleNode in invocationGraph.vertices)
12CoverageItem item = new CoverageItem(rule, ruleNode)
13if (not result.contains(item))
14result.add(item)
15return result
16

17boolean isCovered(GraphTransitionSystem gts, Map invocationGraphs, Map
name2transitions, CoverageItem coverageItem)

18DirectedGraph invocationGraph := invocationGraphs.get(coverageItem.
bigstepRule)

19Set edgeCandidates := name2transitions.get(coverageItem.ruleNode.
uniqueName)

20for each (GraphTransition edgeCandidate in edgeCandidates) {
21if (isCovered(gts, invocationGraph, coverageItem.bigstepRule,

coverageItem.ruleNode, edgeCandidate, new Set()))
22return true
23return false
24

25boolean isCovered(GraphTransitionSystem gts, DirectedGraph
invocationGraph, BigstepRule bigstepRule, RuleNode ruleNode,
GraphTransition transition, Set seenInvocationEdges)

26if (ruleNode.uniqueName = bigstepRule.uniqueName and matches(
transition, bigstepRule.uniqueName))

27return true
28for each (Edge invocationEdge in invocationGraph.incomingEdgesOf(

ruleNode))
29if (seenInvocationEdges.contains(invocationEdge))
30return false
31seenInvocationEdges.add(invocationEdge)

169

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

supplyStreamingToken.1 destroy.1 destroy.2… …
Figure 8.18: Excerpt of a test model’s transition system.

32RuleNode invocationSourceNode := invocationEdge.source
33for each (GraphTransition sourceTransition in gts.

getIncomingTransitions(transition.source))
34if (matches(sourceTransition, invocationSourceNode.uniqueName))
35if (isCovered(gts, invocationGraph, bigstepRule,

invocationSourceNode, sourceTransition, new Set(
seenInvocationEdges)))

36return true
37return false

But how to find out which concrete rule node is covered by a certain transi-
tion? We need to make sure that the transition system contains a sequence of
transitions corresponding to rules such that the sequences starts with the cover-
age item’s bigstep rule, ends with the rule we are investigating for coverage, and
has a corresponding path in the invocation graph which starts at the graph’s
root node and ends at the investigated rule node.

This is done as follows: the computeCoverageItems() method (lines 8–
15) iterates over all invocation graphs and—within those graphs—over all graph
nodes, and creates a coverage item for each of the nodes. The isCovered()
method is more complex: it first receives the invocation graph belonging to
the coverage item’s bigstep rule as well as all edges which might cover the given
node. It then delegates the actual coverage check to the recursive isOrdered()
method which can be seen at lines 25–37.

The idea of this method is to walk the invocation graph as well as the
transition system “backwards” in parallel until a bigstep rule is found – if this
succeeds, we know that there are consecutive transitions t1, . . . , tn in the tran-
sition system such that the corresponding nodes form a path in the invocation
graph that starts with the bigstep rule and ends up with the node to be covered.

Lines 26–27 check whether the current rule node corresponds to the bigstep
rule of the rule node we are checking for coverage – if this is the case, we are
done and return true. Otherwise, we iterate over all edges which have our
current rule node as target. For each of those edges, we again iterate over all
incoming transitions. If we find a matching pair of invocation graph edge and
graph transition, we do perform a step “backwards” (line 35). Note that the
set seenInvocationEdges makes sure that the algorithm terminates, since
every edge is considered at most once.

8.2.3.3 Edge Coverage Criteria

To motivate the need for edge coverage criteria, let us extend our example once
more by adding a fourth invocation graph, i.e., the graph depicted as Fig. 8.12,
and let us add a test model the transition system of which contains the sequence
of transitions shown in Fig. 8.18. It is easy to see that the test model fulfills
all rule coverage criteria, since it covers all nodes of the invocation graph. As
such, our example now has a rule coverage of 13

14=92.9%, a rule coverage plus of
15
17=88.2%, and a rule coverage plus plus of 15

19=78.9%.

170

8.2. COVERAGE CRITERIA FOR TESTS OF DMM SPECIFICATIONS

However, consider the invocation graph of Fig. 8.12: The graph is completely
covered by the single test model of Fig. 8.18, but there are a number of situations
which are still not executed: What if rule destroy.2 is immediately executed
after rule supplyStreamingToken.1? The test model also does not give rise to
situations where rule destroy.1 is executed more than once.

This is where edge coverage comes into play. Covering an edge means to
execute two rules consecutively: The edge’s source and target rules. This allows
to define finer coverage criteria than rule coverage.

The approach to defining the coverage criteria is similar to the rule coverage
criteria: Let us define two edges e1, e2 to be similar if e1’s source (target) node
corresponds to the same rule as e2’s source (target) node. The first edge coverage
criterion, edge coverage, requires that each similar edge is executed by at least
one of the test models. Edge coverage plus requires that for each invocation
graph, one of the (possibly contained) similar edges needs to be executed by a
test model. Finally, edge coverage plus plus requires that each edge has to be
executed by a test model (including similar edges within an invocation graph).

In the following, we will discuss each edge coverage criterion, and we will
provide pseudo-code showing how each criterion is computed.

Edge Coverage Let us illustrate the edge coverage criterion with an example.
First of all, we note that the invocation graph of Fig. 8.12 does not contain any
similar edges (neither within the rule’s invocation graph nor when taking the
other invocation graphs into account). Therefore, to achieve an edge coverage
of 100%, we need to make sure that our example models execute all edges of
that invocation graph, including the self edge of node destroy.1 and the edge
between nodes supplyStreamingToken.1 and destroy.2 (these two edges are not
yet covered, even with a rule coverage plus plus of 100%). As such, we can
e.g. change our example model of Fig. 8.18 such that rule destroy.1 is exe-
cuted two times before rule destroy.2 is executed, and we could add a second
example model the transition system of which would contain the execution of
supplyStreamingToken.1 and destroy.2 without destroy.1 in between.

The computation of edge coverage is straight-forward; it is depicted as List-
ing 8.7. As expected, the coverage items are edges of the invocation graph, and
two edges are considered to be equal if their source and target nodes refer to
the same rule. As such, the set of coverage items is computed by iterating over
the invocation graphs, and to iterate over each invocation graph’s edges – for
each edge found, a coverage item is added to the result set (lines 9–13). Note
that as always, a coverage item only gets added to the result set if the set does
not yet contain an edge equal to the one to be added.

Listing 8.7: Subroutines for computing edge coverage

1CoverageItem
2Edge edge
3

4boolean equals(CoverageItem other)
5return edge.source.uniqueName = other.edge.source.uniqueName and

edge.target.uniqueName = other.edge.target.uniqueName
6

7Set computeCoverageItems(Ruleset ruleset, Map invocationGraphs)
8Set result := new Set()
9for each (DirectedGraph invocationGraph in invocationGraphs.values())

171

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

10for each (Edge edge in invocationGraph.edges)
11CoverageItem item = new CoverageItem(edge)
12if (not result.contains(item))
13result.add(item)
14return result
15

16boolean isCovered(GraphTransitionSystem gts, Map invocationGraphs, Map
name2transitions, String coverageItem)

17Set sourceTransitions := name2transitions.get(coverageItem.edge.
source.uniqueName)

18Set targetTransitions := name2transitions.get(coverageItem.edge.
target.uniqueName)

19for each (GraphTransition sourceTransition in sourceTransitions)
20for each (GraphTransition targetTransition in targetTransitions)
21if (sourceTransition.target = targetTransition.source)
22return true
23return false

Coverage computation is done is follows: First, using the map computed
by the generic coverage algorithm, all transitions corresponding to the edge’s
source and target nodes are received (lines 18–19). The algorithm then iterates
over these transitions (lines 20–21) and returns true as soon as it has found
two consecutive transitions which correspond to the edge’s source and target
nodes. If such a pair of transitions can not be found, the algorithm returns
false.

Edge Coverage Plus The next example refers to the invocation graphs of
Fig. 8.10 and Fig. 8.15. Edge coverage would only require two example models
such that the first executes the edge between nodes execute.1 and execute-
HandlerBody.1, and the second would execute the edge between nodes execute.1
and executeHandlerBody.1. It would not matter whether these executions would
start with rule start.1 (as in Fig. 8.10) or start.2 (as in Fig. 8.15).

In contrast, edge coverage plus requires that these edges are covered within
each invocation graph. As such, we have to add example models such that the
edges are covered between the two invocation graphs of Figs. 8.10 and 8.15,
making sure that the execution works in the context of both bigstep rules.

Consequently, the definition of edge coverage plus, which is depicted as List-
ing 8.8, is rather similar to the one of edge coverage: The coverage item addi-
tionally stores the bigstep rule which is also considered for the coverage item’s
equals() definition (lines 1–6). The set of coverage items is computed by
iterating over all edges of each invocation graph, where an edge is added to the
result set only if no similar edge is already contained in that set.

Listing 8.8: Subroutines for computing edge coverage plus

1CoverageItem
2BigstepRule bigstepRule
3Edge edge
4

5boolean equals(CoverageItem other)
6return bigstepRule.uniqueName = other.bigstepRule.uniqueName and

edge.source.uniqueName = other.edge.source.uniqueName and edge.
target.uniqueName = other.edge.target.uniqueName

7

8public Set computeCoverageItems(Ruleset ruleset, Map invocationGraphs)
9Set result := new Set()

172

8.2. COVERAGE CRITERIA FOR TESTS OF DMM SPECIFICATIONS

10for each (Rule rule in ruleset.rules)
11if (rule is BigstepRule)
12DirectedGraph invocationGraph := invocationGraphs.get(rule)
13for each (Edge edge in invocationGraph.edges)
14CoverageItem item = new CoverageItem(rule, edge)
15if (not result.contains(item))
16result.add(item)
17return result
18

19boolean isCovered(GraphTransitionSystem gts, Map invocationGraphs, Map
name2transitions, CoverageItem coverageItem)

20Set sourceTransitions := name2transitions.get(coverageItem.edge.
source.uniqueName)

21Set targetTransitions := name2transitions.get(coverageItem.edge.
target.uniqueName)

22for (GraphTransition sourceTransition : sourceTransitions)
23for each (GraphTransition targetTransition in targetTransitions)
24if (sourceTransition.target = targetTransition.source)
25Set invokingBigstepRules := new Set()
26collectInvokingBigstepRule(gts, sourceTransition,

invokingBigstepRules)
27for each (String bigstepRuleUniqueName in invokingBigstepRules)
28if (matches(bigstepRuleUniqueName, coverageItem.bigstepRule.

uniqueName))
29return true
30return false

Coverage computation is then done exactly as in edge coverage, with one
extension: If two consecutive transitions have been found such that they corre-
spond to source and target of the edge (line 24), it must additionally be checked
whether their transitions result from invocation of the coverage item’s bigstep
rule; the latter is done in lines 25–29.

Edge Coverage Plus Plus Finally, let us consider the invocation graph of
Fig. 8.11 again, which contains two similar edges (the ones between the nodes
notifySpawns.1 and moveOffers.1). For edge coverage plus it would suffice to
cover one of those edges. To make sure that the consecutive execution of the
two rules works correctly when either rule accept.1 or accept.2 are executed
beforehand, we need to cover both edges within that invocation graph (and
therefore fulfill the edge coverage plus plus criterion).

The items to be covered in the case of ege coverage plus plus therefore also
consist of a bigstep rule and an edge (as it was the case for edge coverage
plus). However, the definition of two coverage items being equal to each other
is different (see Fig. 8.9): It not suffices any more that the edge’s source and
target nodes have the same unique names. Instead, the edges themselves must
be different (line 6). The computation of the coverage items is then done exactly
as with edge coverage plus (but will usually end up with more coverage items).

Listing 8.9: Subroutines for computing edge coverage plus plus

1CoverageItem
2BigstepRule bigstepRule
3Edge edge
4

5boolean equals(CoverageItem other)
6return edge = other.edge and bigstepRule.uniqueName = other.

bigstepRule.uniqueName

173

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

7

8Set computeCoverageItems(Ruleset ruleset, Map invocationGraphs)
9Set result := new Set()
10for each (Rule rule in ruleset.rules)
11if (rule is BigstepRule)
12DirectedGraph invocationGraph := invocationGraphs.get(rule)
13for each (Edge edge in invocationGraph.edges)
14CoverageItem item = new CoverageItem(rule, edge)
15if (not result.contains(item))
16result.add(item)
17return result
18

19boolean isCovered(GraphTransitionSystem gts, Map invocationGraphs, Map
name2transitions, CoverageItem coverageItem)

20DirectedGraph invocationGraph := invocationGraphs.get(coverageItem.
bigstepRule)

21Set sourceTransitions := name2transitions.get(coverageItem.edge.
source.uniqueName)

22Set targetTransitions := name2transitions.get(coverageItem.edge.
target.uniqueName)

23for each (GraphTransition sourceTransition in sourceTransitions)
24for each (GraphTransition targetTransition in targetTransitions)
25if (sourceTransition.target = targetTransition.source)
26return isCovered(gts, invocationGraph, coverageItem.bigstepRule

, coverageItem.edge.source, sourceTransition, new Set())
27return false

Checking whether a coverage item is indeed covered again starts with search-
ing two consecutive transitions corresponding to the edge’s source and target
nodes. If such transitions are found, the same technique is used as in rule cover-
age plus plus to make sure that indeed this very edge is covered: The invocation
graph as well as the transition system are explored backwards until a transition
is found which corresponds to the coverage item’s bigstep rule, and from where
on a sequence of transitions starts which finally ends up in the two transitions
corresponding to the edge. For this, the isCovered() function of rule cover-
age plus plus is reused (i.e., the call of getSorted in line 26 in fact refers to
the lower isSorted() function of Listing 8.6).

After having introduced the six coverage criteria, the next section will discuss
how the criteria relate to each other.

8.2.4 Hierarchy of Coverage Criteria
The definition of the six coverage criteria introduced in the last section has
shown that the criteria are related to each other. In this section, we will discuss
these relations, and we will give an intuition of their expressiveness.

Before we do that, let us define that a coverage criterion C1 implies a cov-
erage criterion C2 if a C1 coverage of 100% implies a C2 coverage of 100% – in
other words: If the test models of a semantics specification fulfill C1, C2 can be
taken for granted.

It is easy to see that rule coverage plus implies rule coverage and that rule
coverage plus plus implies rule coverage plus: If all nodes corresponding to a
single DMM rule are covered (rule coverage plus plus), then this implies that
at least one such node is covered in each invocation graph (rule coverage plus),
and if at least one node corresponding to the same DMM rule is covered per
invocation graph, this implies that at least one such node is covered at all (rule

174

8.2. COVERAGE CRITERIA FOR TESTS OF DMM SPECIFICATIONS

Rule Coverage ++

Rule Coverage +

Rule Coverage

Edge Coverage ++

Edge Coverage +

Edge Coverage

Figure 8.19: Hierarchy of coverage criteria.

coverage).
In the same way, we can see that edge coverage plus plus implies edge cov-

erage plus, and that edge coverage plus implies edge coverage.
The relation between the rule and edge coverage criteria is only slightly more

difficult to explain: Two edges are similar if their source and target nodes refer
to the same rules. As such, edge coverage implies rule coverage: if all similar
edges are covered at least once by our test models, than every rule must also be
covered.

To make this even clearer, let us assume that we have an edge coverage of
100% and a rule coverage of less than 100%, i.e., there is an uncovered rule.
Since rule coverage is defined over the rule nodes of the invocation graphs, and
due to its definition, invocation graphs can not contain isolated nodes, it must
be the case that there is an uncovered edge (since an edge is only covered if both
its source and target rule nodes have corresponding transitions), contradicting
our assumption of an edge coverage of 100%.

The same is true for edge coverage plus and rule coverage plus and for edge
coverage plus plus and rule coverage plus plus. This results in the hierarchy
of coverage criteria depicted as Fig. 8.19. The figure visualizes the relations
between the criteria by containing an edge from criterion C1 to C2 if C1 implies
C2. As such, one can easily see that e.g. edge coverage plus does not only imply
edge coverage, but also rule coverage plus and rule coverage.

It remains to give the language engineer advice on how to choose appropriate
coverage criteria: The more expressive a (fulfilled) criterion, the higher is the
quality of the tests (and, hopefully,9 the quality of the semantics specification).
On the other hand, to fulfill a more expressive coverage criterion, more test
models will in general be needed than for a less expressive coverage criterion.
As such, it is important to choose an appropriate criterion.

It is immediately clear that a rule coverage of 100% should be the minimum
requirement for every DMM specification – otherwise, there are rules which are
not executed by any of our test models, and we do not have any confidence that
these rules work as expected.

Despite that, our experience from testing several DMM semantics speci-
fications [4] seem to imply that edge coverage plus is an appropriate coverage
criterion in most cases. Our intuition behind this is that edge coverage is needed

9Of course, tests can only reveal existing problems, but they can not show the absence of
problems.

175

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

X

Y.2Y.1

Z.1 Z.2

Figure 8.20: Invocation graph demonstrating the potential for dead edges.

in general because otherwise, cases such as recursive invocation of a rule are not
covered at all (as we have seen with the invocation graph depicted as Fig. 8.12).
However, each sequence of rule invocations starts with the invoking bigstep
rule, and that rule needs to “set the stage” for the following invocations (e.g.
by making sure that the invoked rules’ application context exists – otherwise
invocations will fail). Therefore, our experience is that it is a good idea to aim
at edge coverage plus, which will make sure that we have test models for each
edge and bigstep rule.

Finally, we want to point out that (similar to code coverage) a coverage of
100% might not always be possible. For instance, consider the invocation graph
depicted as Fig. 8.20, which describes the situation where a DMM rule X invokes
a rule Y for which two compatible rules exist, and where both Y.1 and Y.2 invoke
a rule Z for which again two compatible rules exist.

Now, it might be the case that rules Y.1 and Z.1 are designed such that
after Y.1 has been applied, only Z.1 can match, and that after Y.2 has been
applied, only Z.2 can match. As a result, no test model will ever give rise to
a transition system such that e.g. rule Z.2 is executed after rule Y.1. However,
the coverage framework does not analyze the rules’ structure – it only takes the
rules’ invocations into account. As such, no test model will ever be able cover
e.g. the edge between nodes Y.1 and Z.2, and therefore, an edge coverage of
100% can not be achieved. It is the language designer’s task to be aware of such
design decisions, and to accordingly interprete the coverage rates computed by
our framework.

8.3 Related Work

The existing work related to our approach of test-driven semantics specification
can mainly be grouped into two categories: related test approaches and language
engineering. For the former, the work most closely related to ours is the work
by Sadilek et.al. [178]. His goal is to quickly prototype DSLs. The scenario is as
follows: A language’s semantics might first be specified using a formal language,
e.g. Abstract State Machines, for the sake of proving properties of the DSL’s
semantics. Later on, a second, more efficient semantics specification might be
created which shall be semantically equivalent to the first one. Since both
semantics specifications allow for DSL instances to be executed, the language
engineer can now create test models of the DSL, execute them and compare the
resulting execution traces. The main difference to our approach is that Sadilek

176

8.3. RELATED WORK

uses tests to compare two semantics specifications, whereas we use them to
convince ourselves that the semantics specification indeed produces the behavior
the language engineer had in mind.

Another comparable approach is the so-called scenario-based testing. Xuan-
dong et.al. [214] use UML Sequence diagrams to validate Java programs for
safety consistency (sequences of method calls which must not occur during ex-
ecution) and mandatory consistency (sequences of methods calls which have
to occur). The main difference to our approach is that scenario-based testing
focuses on testing a concrete object-oriented system, i.e., the communication be-
tween some objects, whereas we are testing semantics specifications describing
the behavior of a complete language.

In the area of language engineering, several approaches for defining DSLs
exist. For instance, MetaCase provides MetaEdit [188], Microsoft provides the
DSL Tools as part of MS Visual Studio [28], and the Eclipse foundation provides
the Graphical ModelingFramework [50]; all these approaches aim at an easy
creation of visual languages. openArchitectureWare [92] provides a set of tools
which allow for the easy creation of textual languages, including powerful editor
support.

To our knowledge, all the above approaches focus on defining a DSL’s be-
havioral semantics by providing support for code generation, but they do not
provide a means to systematically create high-quality code generators; the gen-
eration is pretty much done ad-hoc.

The same holds for other semantics specification techniques which can be
used in language engineering, e.g., the π calculus [143], Structural Operational
Semantics [163], and others – we are not aware of a comparable test-driven
process which helps to create high-quality semantics specifications.

Measuring test quality is a difficult task. One important approach is mu-
tation analysis, where flaws are intentionally injected into a software system.
The quality of the system’s tests is then quantified as the relation between the
number of flaws introduced and the number of these flaws actually discovered by
the tests. For instance, Haschemi and Weißleder [94] present a generic approach
to run mutation analysis, where the creation of mutants is separated from the
mutation analysis execution environment. This approach could likely also be
used in the context of DMM semantics specification. However, the metrics pre-
sented in this paper depends on the structural properties of DMM specifications
(i.e. invocation structures); as a result, our framework is able to provide more
concrete hints on how to improve test quality.

Our approach to measuring quality of tests is test coverage. Lots of research
has been performed in this area – a comprehensive review would be out of scope
if this thesis. See e.g. [147] for an introduction to software testing, including the
definition of several coverage criteria for software systems.

Of particular interest in the context of this thesis is model-based testing,
where different kinds of model coverage criteria have been defined (an intro-
duction to model-based testing is provided e.g. in [201]). For instance, in [75],
Friedman et al. describe different coverage criteria for state machines, which are
then used to automatically generate and evaluate test cases. Another example is
[72], where Ferreira et al. compute the coverage of UML activities by simulating
them, and provide visual information on which parts of the activity have been
covered.

177

CHAPTER 8. TEST-DRIVEN SEMANTICS SPECIFICATION

On a more general level, Friske et al. [76] provide a framework for creat-
ing composed coverage criteria by combining different simple coverage criteria.
They use OCL to formally describe the coverage criteria as well as the test
goals, allowing to combine those formalizations into more complex ones. In
[210], Weißleder and Schlingloff define new coverage criteria as a combination of
advantages from condition- and boundary-based types, and use them to auto-
matically generate test cases. The efficiency of the introduced coverage criteria
is evaluated using mutation testing.

In contrast to our work, the above approaches define coverage criteria for
executable models. They could thus be used to define and measure coverage
of models the semantics of which is defined by means of a DMM specification,
whereas we are interested in covering the DMM specification itself.

McQuillan and Power [136] examine white-box coverage criteria for model
transformations specified with ATL [110]. In particular, they define the notions
of rule coverage (which is very similar to our definition of rule coverage), in-
struction coverage and decision coverage, the latter roughly corresponding to
the code coverage metrics statement coverage and branch coverage. This is the
main difference to our work: Since ATL transformation rules are specified tex-
tually (in contrast to the visual DMM language), it is rather straight-forward
for the authors to adjust existing coverage criteria for ATL transformations.

[209] measure the coverage of Tefkat [128] model transformations in terms
of metamodel coverage: The transformation rules are analyzed for references
to metaclasses, associations etc., marking the according metamodel elements as
covered. The resulting coverage is not primarily meant as a quality measure of
the model transformation, but as a means to give a quick overview of a model
transformation’s completeness with respect to the involved metamodels. In this
sense, it could also be useful in the context of DMM, e.g. to measure the amount
to which the semantics of a particular language has been specified.

Bauer et al. [17] are interested in testing chains of model transformations.
Their approach is to compute a footage for each test case, which basically is
a vector containing a coverage counter per coverage item. Defining a distance
between two footages, they are then able to compare test cases with respect to
similarity; e.g., two test cases with the exact same footage might test similar
parts of the system, in which case one of the test cases could be removed (which
still is to be decided by the modeler). On the other hand, if no test footage
contains a coverage counter greater than zero for a particular coverage item,
that item has not been excercised at all. The approach could be beneficial
to DMM: Defining test case footages for the coverage criteria introduced in
Sect. 8.2 might allow to define an appropriate similarity criterion for DMM test
models, thus helping to keep DMM test suits reasonably small.

178

Summary of Part III

This part of the thesis was concerned with creating DMM semantics specifica-
tions of high quality. Our support of this goal is two-fold: First, we provide
sophisticated tool support for the creation of DMM specifications. Second, we
have suggested a test-driven development process for DMM specifications.

Chapter 7 introduced our tool support for creating DMM specifications. Part
of this is the semi-automatic creation of executable mappings from syntax to
runtime metamodels as needed for the DMM approach. As language for these
mappings, we use DMM itself; thus, we first briefly discussed the usage of DMM
in model transformation scenarios in Sect. 7.1; we then explained how to define a
transformation from a syntax model into a runtime model in Sect. 7.2. We have
suggested two approaches: In the decorator approach the runtime elements are
kept in a different metamodel which references—and thus decorates—the syntax
metamodel. In the from scratch approach, the runtime metamodel contains the
syntax as well as runtime elements; runtime models are created from syntax
models by a DMM based model transformation. We have described how to
generate a base transformation from the syntax metamodel, which can then be
customized for the sake of adding necessary runtime information.

Section 7.3 has given an introduction to the tool support for creating DMM
specifications; we provide visual as well as tree-based editors for creating and
editing DMM specifications, including validation of syntax and static semantics
and annotation of problematic elements.

Chapter 8 has introduced our approach of test-driven semantics specification.
Section 8.1 describes the approach itself; the idea is to first define example
models of the target language, and to describe the expected semantics of those
models by means of traces of execution events. Then, during the process of
creating the DMM semantics specification, executable tests are automatically
derived from the example models and their expected behavior; the tests check
whether the semantics specification realizes exactly the desired behavior.

Section 8.2 defined a set of coverage criteria for tests of DMM specifications.
The idea is to use the control structure implied by the rule invocation mechanism
to derive a set of invocation graphs; the graphs describe potential orders of
execution of smallstep rules. These graphs are then covered during the execution
of the tests as described above, and the resulting coverage rate as well as te
uncovered graph structures are reported. We have defined six coverage criteria
which differ in expressiveness as well as computation complexity.

The results of this part are
• a test-driven process for the creation of high-quality DMM semantics spec-
ifications,

• coverage criteria for measuring the quality of a DMM specification’s tests,

• rich tool support which enables the language engineer to create DMM
specifications in a convenient manner, and to validate their syntactical
correctness, and

• tool support for semi-automatically creating DMM-based model transfor-
mations from syntax into runtime models.

The results of this part thus enable us to turn to our final goal, analyzing and
improving the quality of models, which is the topic of the next part.

179

Part IV

Quality of Models

181

9
Formulating and Verifying Requirements

In Part III, we have seen how to create a high-quality DMM semantics speci-
fication in a test-driven way. The current part will show how such semantics
specifications can be used to verify the quality of models, which is our main goal
when providing a formal semantics of a language. More precisely, given a set of
requirements against a model, we will provide means to check whether they are
indeed fulfilled by the given model.

Requirements are usually divided into two general kinds: functional and non-
functional requirements. The former refers to the functions of the system: A
functional requirement is fulfilled if the system—given an appropriate input—
performs the correct behavior and produces the desired output. In contrast,
non-functional requirements do not describe what the system shall do, but how
it shall do this.

Let us illustrate the above with an example: Let us assume that an insur-
ance company has described the workflow for dealing with a customer’s insur-
ance claim by means of a UML activity. In this context, a typical functional
requirement would be that a second employee has to double-check the claim be-
fore money is sent to the customer; a typical non-functional requirement would
be that on average, processing a customer’s claim must not take longer than a
certain period of time.

Given a model whose language is equipped with a DMM semantics specifi-
cation, DMM allows to verify both functional and non-functional requirements
against that model. Section 9.1 will show how functional requirements can be
formulated visually and verified by using model checking techniques. Section 9.2
will then explain how to add non-functional properties to a DMM specification,
and how these properties can then be used to analyze models with respect to
e.g. average execution time.

9.1 Functional Requirements

One of the most important reasons for equipping a visual language with a formal
semantics is that this allows to reason about the quality of models of that
language in an automated way. In this section, we will show how this is done
for functional requirements, which are the most important kind of requirements
to be addressed by our models: If they do not produce the desired behavior, the
models are pretty much useless.

As an example of functional requirements, we will use the workflow property

183

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

of soundness [203, 65], which basically states that a workflow should a) not
contain any useless elements and b) should have a well-defined start and end.
We will give a brief introduction to soundness in the next section.

Section 9.1.2 will then introduce the Process Pattern Specification Language
(PPSL) [74, 73], a visual language dedicated to the formulation of behavioral
properties, and EPPSL, an extension of that language [116].

As it turns out, the focus of (E)PPSL on business processes does not allow
to directly apply the languages against other kinds of languages. Therefore, in
Sect. 9.1.3 we show how we have generalized (E)PPSL to allow for the verifica-
tion of temporal properties against arbitrary model states. The section is based
on [190].

Finally, in Sect. 9.1.4 we use generalized EPPSL to formalize the soundness
requirements as formulated in Sect. 9.1.1.

9.1.1 Example Requirement: Soundness
When modeling a business workflow, the business analyst will have certain func-
tional requirements in mind. For instance, she wants to ensure that in case of
a bicycle factory, each bicycle which is the result of the process will be tested
before delivery. Such properties are specific for each individual workflow and
are thus not reusable in most cases.

However, it would be useful to have general quality requirements for work-
flows, i.e., requirements every workflow should fulfill. Such requirements could
then be formulated for once, and verified against each business process model
to get at least a basic impression of its quality.

Soundness is such a requirement, which has been defined by van der Aalst
[203, 204]. The basic idea is that each workflow should a) not contain any useless
elements and b) should have a well-defined start and end.

For business process modeling, van der Aalst uses a syntactically restricted
kind of Petri nets [162] called workflow nets. The restriction is that a workflow
net must have exactly one source and sink place, the former having no incoming
transitions, the latter having no outgoing transitions. A process is then started
by putting a token onto the source place; the token represents some work to be
processed and is routed through the workflow net until it ends up at the sink
place.

In [65], we have transferred the soundness property into the world of UML
activities. Thus, we do not present the formalization of workflow nets and
their soundness here – the interested reader is pointed to [203]. Instead, we
immediately turn our attention to soundness in the context of UML activities,
which we have defined as follows:

1. The Activity must have exactly one InitialNode and ActivityFi-
nalNode.

2. If a token arrives at the ActivityFinalNode, no more tokens are left
in the Activity.

3. A token finally arrives at the ActivityFinalNode.

4. Any Action must be executed under at least one possible execution of
the Activity.

184

9.1. FUNCTIONAL REQUIREMENTS

The intuition of the above definition, which very closely follows the one for
workflow nets, is as follows: Requirement 1 makes sure that the start and end
of the activity are well-defined: The activity starts if a Token is put on its
InitialNode, and it ends if a Token arrives at the ActivityFinalNode.
Requirement 2 ensures that if the activity ends, no more work is left within
the activity which still is to be processed. Requirement 3 makes sure that an
activity always terminates, and finally, requirement 4 ensures that the activity
does not contain any useless Actions.

In the next section, we will introduce the Pattern Process Specification Lan-
guage (PPSL), a generalized version of which we will then use in Sect. 9.1.4 to
formulate soundness with respect to UML activities.

9.1.2 Pattern Process Specification Language
In Chapter 8 we have seen how test-driven semantics specification (TDSS) makes
use of so-called execution events to describe the expected semantics of test mod-
els, and how to translate traces of execution events into a certain kind of LTL
formulas which are then verified against the models’ transition systems. This
approach contains all basic concepts needed to perform verification of functional
requirements. However, it has a severe drawback: In the case of TDSS, the tem-
poral logic formulas to be verified are generated by the test framework, which
was possible because of the special sequential structure of the traces (and, thus,
the resulting formulas). In contrast, in the case of arbitrary requirements the
formulas would have to be created manually, a task which is expected to be
beyond knowledge of the average business analyst.

The Pattern Process Specification Language (PPSL) [74, 73] has been devel-
oped to overcome a very similar issue. Its goal is to enable business analysts to
formalize requirements against business processes in a visual, intuitive way. In
the next section, we will give a brief introduction to PPSL.

However, the focus of the authors of the PPSL was to make their language
as easy as possible to use. As a result, the language slightly lacks expressive-
ness, partly because some logical constructs are missing (e.g., it is not directly
possible to express that something should not happen), partly because PPSL
expressions are translated into the temporal logic dialect LTL [165] (which does
not allow for the formulation of certain important requirements, as we have seen
in Sect. 4.3.1).

Thus, an extension of the PPSL called EPPSL has been proposed in [116],
which provides a more comprehensive set of constructs for formulation; addi-
tionally, EPPSL is translated to the temporal logic dialect CTL [60].

In the next section, we will introduce the PPSL, followed by EPPSL in
Sect. 9.1.2.2.

9.1.2.1 PPSL

As we have mentioned above, the goal of the PPSL [73] is to enable business
analysts (i.e., people not familiar with formalisms such as the temporal logic
dialects CTL or LTL) to formulate requirements against their models in a formal
way. This is achieved by providing a visual, easily understandable language for
requirements formulation; sentences of that language are then automatically
translated into according temporal logic structures.

185

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

produce
part 2receive

order

ship

send invoice

close bill

[else]

[order accepted]

report
order

report rejected order

report
payment

test
quality

receive
payment

fill
order

produce
part 1

Figure 1. Example business process (adopted from [14, p. 312])

report order

test quality ship

<<complete>>

a) Process constraint #1

<<all>>

produce

b) Process constraint #2

close order

Figure 2. Process patterns for constraints #1
and #2

can state:

Process constraint #1: Before an order is being closed,
records of the received orders have to be made.

The constraint implies that the Action “report order” is exe-
cuted at some point before the Action “close order” is exe-
cuted, but it does not require that the Action “report order”
is executed directly before “close order”.

It is an important property of typical process require-
ments that they frequently contain rather loose or incom-
plete temporal/logical relationships between Actions. In a
concrete business process there may be many other Actions
executed in between “report order” and “close order” with-
out contradicting the pattern. Since the original semantics
of an ActivityEdge as described in the UML Superstruc-
ture is that Action “close order” is enabled immediately
when Action “report order” terminates [14], we introduced
the stereotype �after� for an ActivityEdge to express that
some Action has to be executed after another but not nec-
essarily directly following it. Stereotyping of model ele-
ments is the standard extension mechanism of the UML.
Using stereotypes, model elements can be given additional
or extended semantics. Figure 2a shows process constraint
#1 modeled in our PPSL. The curly line in Fig. 2a is a
visualization option of the �after� stereotype. In the re-
mainder, we refer to this sort of stereotyped ActivityEdge
as AfterEdge.

Being able to express such loose order relationships in
process patterns is also a necessary prerequisite to enable

flexible application of the process patterns since pattern ac-
tions and actions of the original business process usually
need to be weaved together. If the pattern designer wants to
specify that there may not be other Actions being executed
in between two Actions of a pattern, a regular ActivityEdge
without stereotype can be used in the pattern.

Process constraint #1 could be read in two directions. Ei-
ther “every time an order is closed this has to be preceeded
by reporting an order” or “every report of an order must
be followed by closing the order”. It is important to have
the possibility to distinguish these two cases in the process
constraint language. This can be done using the stereo-
type �all� for Actions. It denotes whether the implication
given by the AfterEdge in the constraint refers to all “close
order” Actions or all “report order” Actions. In the remain-
der, we will refer to an Action having an �all� stereotype
as AllAction. The multi-node in Figs. 2 and 3 are a visu-
alization option of the AllAction. It is also possible to use
AllActions on both sides of the AfterEdge or ActivityEdge
denoting that both implications have to be fulfilled. Conse-
quently, it is a well-formedness rule for our language that at
least one of two Actions being connected by an AfterEdge
or ActivityEdge is an AllAction.

The next process constraint that we want to consider is:

Process constraint #2: After each production action a
quality check has to be performed prior to delivery.

Process constraints #2 is similar to process constraint #1
but contains precisely spoken two different constraints put
together. The first requirement is that after each produc-
tion action there has to be a quality check and the second
requirement is that before shipping a product, the quality
has to be checked. This is why the actions “produce” and
“ship” in the process pattern are AllNodes. The use of a
regular ActivityEdge between ”test quality” and ”ship” sets
the requirement that shipping has to be directly preceded by
the quality test. There may not be other actions executed in
between these two actions.

If we now compare the process constraints with the ex-
ample business process in Fig. 1, we can see that it does
not have an action called “produce” like the pattern in Fig.

Figure 9.1: Example business process (from [74, p. 3]).

produce
part 2receive

order

ship

send invoice

close bill

[else]

[order accepted]

report
order

report rejected order

report
payment

test
quality

receive
payment

fill
order

produce
part 1

Figure 1. Example business process (adopted from [14, p. 312])

report order

test quality ship

<<complete>>

a) Process constraint #1

<<all>>

produce

b) Process constraint #2

close order

Figure 2. Process patterns for constraints #1
and #2

can state:

Process constraint #1: Before an order is being closed,
records of the received orders have to be made.

The constraint implies that the Action “report order” is exe-
cuted at some point before the Action “close order” is exe-
cuted, but it does not require that the Action “report order”
is executed directly before “close order”.

It is an important property of typical process require-
ments that they frequently contain rather loose or incom-
plete temporal/logical relationships between Actions. In a
concrete business process there may be many other Actions
executed in between “report order” and “close order” with-
out contradicting the pattern. Since the original semantics
of an ActivityEdge as described in the UML Superstruc-
ture is that Action “close order” is enabled immediately
when Action “report order” terminates [14], we introduced
the stereotype �after� for an ActivityEdge to express that
some Action has to be executed after another but not nec-
essarily directly following it. Stereotyping of model ele-
ments is the standard extension mechanism of the UML.
Using stereotypes, model elements can be given additional
or extended semantics. Figure 2a shows process constraint
#1 modeled in our PPSL. The curly line in Fig. 2a is a
visualization option of the �after� stereotype. In the re-
mainder, we refer to this sort of stereotyped ActivityEdge
as AfterEdge.

Being able to express such loose order relationships in
process patterns is also a necessary prerequisite to enable

flexible application of the process patterns since pattern ac-
tions and actions of the original business process usually
need to be weaved together. If the pattern designer wants to
specify that there may not be other Actions being executed
in between two Actions of a pattern, a regular ActivityEdge
without stereotype can be used in the pattern.

Process constraint #1 could be read in two directions. Ei-
ther “every time an order is closed this has to be preceeded
by reporting an order” or “every report of an order must
be followed by closing the order”. It is important to have
the possibility to distinguish these two cases in the process
constraint language. This can be done using the stereo-
type �all� for Actions. It denotes whether the implication
given by the AfterEdge in the constraint refers to all “close
order” Actions or all “report order” Actions. In the remain-
der, we will refer to an Action having an �all� stereotype
as AllAction. The multi-node in Figs. 2 and 3 are a visu-
alization option of the AllAction. It is also possible to use
AllActions on both sides of the AfterEdge or ActivityEdge
denoting that both implications have to be fulfilled. Conse-
quently, it is a well-formedness rule for our language that at
least one of two Actions being connected by an AfterEdge
or ActivityEdge is an AllAction.

The next process constraint that we want to consider is:

Process constraint #2: After each production action a
quality check has to be performed prior to delivery.

Process constraints #2 is similar to process constraint #1
but contains precisely spoken two different constraints put
together. The first requirement is that after each produc-
tion action there has to be a quality check and the second
requirement is that before shipping a product, the quality
has to be checked. This is why the actions “produce” and
“ship” in the process pattern are AllNodes. The use of a
regular ActivityEdge between ”test quality” and ”ship” sets
the requirement that shipping has to be directly preceded by
the quality test. There may not be other actions executed in
between these two actions.

If we now compare the process constraints with the ex-
ample business process in Fig. 1, we can see that it does
not have an action called “produce” like the pattern in Fig.

Figure 9.2: Example PPSL expression (from [74, p. 3]).

Let us investigate an example usage of the PPSL by first introducing a
business process modeled as a UML activity, which is depicted as Fig. 9.1. The
workflow models how a company deals with an incoming order by checking the
order’s validity – if the order is valid, the product is produced, tested, and
delivered to the customer. In parallel, the payment belonging to the order is
processed.

Now, one important requirement against the given business process can be
formulated as follows: “After each production action a quality check has to be
performed prior to delivery.” However, it is not immediately obvious whether the
process fulfills this requirement. Even if it was, more realistic business processes
are expected to contain hundreds of steps, making it basically impossible to
manually check requirements like the one above.

The PPSL can now be used to formulate the above requirement in a visual
means; the resulting PPSL expression is depicted as Fig. 9.2 and shows the
characteristics of the PPSL:

• To improve understandability for language users who are already familiar
with UML activities, the PPSL reuses quite a number of elements from
activities. In particular, a) the notion of rounded rectangles representing
actions is reused, and b) these actions are connected by directed edges
which are again reused from activities.

• Additionally, the PPSL introduces some custom language elements, the
concrete syntax of which has been designed such that it is easily under-
standable. In particular, the PPSL uses a sidled arrow to express that two
actions have to follow each other after an arbitrary (but finite) amount
of time (see the arrow between “produce” and “test quality”), and it uses
a “multi-action” representation to model that the requirements shall be
true for all such steps of the workflow (see “produce” and “ship”).

Therefore, the PPSL expression of Fig. 9.2 models the requirement presented
above: The left part of Fig. 9.2 can be read as “all production action must be
followed by a test quality action at some point in time”, and the right part can
be read as “all ship actions must be preceded by a test quality action”.

We now show how PPSL expressions are translated into the temporal logic
dialect LTL. For this, a number of translation rules are provided (see e.g. [73,

186

9.1. FUNCTIONAL REQUIREMENTS

pp. 137f]) which map the visual elements of the PPSL into temporal logic coun-
terparts (and thus define the semantics of PPSL). Let us again show this by
means of our example: The left part of our requirement shall express that it
must always be the case that if an item is produced, that item will be tested
sometimes in the future. The resulting LTL formula is

G(produce⇒ F(test quality))

The right part shall express that in all cases, the quality is tested immediately
before shipping. The resulting LTL formula looks quite similar to the one above:

G(ship⇒ Y(test quality))

The difference between the formulas is two-fold: First, the F expresses that the
quality has to be tested at some point in the future (in contrast to Y, which
would express that the test of quality had to be performed immediately before
shipping, i.e., as the previous step of the process). Second, the F operator talks
about the future, where the Y operator concerns the past.

Technically, PPSL is making use of the DMM specification for UML activities
for the sake of describing the business processes’ execution semantics. Thus,
the last step in applying a PPSL expresssion consists of replacing the names
of the actions occuring in our formulas with actual DMM rules against which
we can perform model checking. Since rule action.start(name)# corresponds to
the execution of an action, it suffices to replace each action name in the above
formulas with the action.start(name)# rule we have seen earlier in this thesis,
finally resulting in the LTL formulas

G(action.start(“produce”)#⇒ F(action.start(“test quality”)#))

and
G(action.start(“ship”)#⇒ Y(action.start(“test quality”)#))

The conjunction of the two formulas above formalizes our original require-
ment. It can now be model-checked using the GROOVE model checker – if
the verification reveals that the formula indeed holds for a model’s transition
system, we can be sure that the model fulfills our requirement.

It remains to discuss the complete workflow of modeling and verifying a
business process with the PPSL, which is depicted as Fig. 9.3. The upper
part of that figure shows the “standard” DMM workflow: A DMM semantics
specification as well as a model (in this case, a UML activity) are fed into the
DMM generator component, which transforms the artifacts into a GROOVE
grammar and computes the model’s transition system.

The PPSL-specific steps can be seen at the bottom of Fig. 9.3: The require-
ments are formulated as PPSL expression and fed into the PPSL translator,
which generates temporal logic formulas using the translation rules as described
above (and replacing the actions’ names with according instances of the rule
action.start(name)#). Then, the GROOVE model checker receives the transition
system as well as the temporal logic formulas and verifies whether these hold.
If one of our requirements is violated, the model checker will provide a counter
example which will (hopefully) prove helpful when fixing our model.

187

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

Business Process
(UML Activity)

DMM-
Specification

GROOVE
Generator

Labeled
Transition
System

Visual
Process
Pattern

GROOVE
Model

Checker

True/False,
Counter example

Temporal
Logic

Formulas

VPP
Translator

Figure 9.3: Overview of the PPSL approach (from [190, p. 3]).

526 L. Khaluf, C. Gerth, and G. Engels

QC2: "After checking the application data, the qualifications of the applicant are
considered to be either sufficient or not sufficient".

The temporal relationship in QC2 states that the action "check the application data"
must be followed by one of the guards "qualifications are not sufficient", or "qualifica-
tions are sufficient".

EPPSL provides a set of modeling elements to express temporal relationships. Since
EPPSL considers deterministic and non-deterministic futures, it provides for each tem-
poral relationship two modeling elements. The first one represents the relationship when
it holds for all control flows of a business process (deterministic). The second one repre-
sents the relationship when it holds for at least one control flow (non-deterministic). Fig.
3 shows the notation of EPPSL modeling elements for temporal relationships. These el-
ements are new classes defined by EPPSL.

Fig. 3. EPPSL modeling elements for temporal relationships

Deterministic Temporal Relationships: The deterministic temporal relationships are
"Next", "After", "Until", and "All". "Next" and "After" may link two basic blocks,
which could be "Actions", "Guards" or "AnonymousSteps". "Next" states that the first
block must be followed next by the second block on all control flows of a business
process. "After" states that the first block must be followed by the second block on all
control flows of the business process, no matter if other blocks occur between the first
and the second block. "Until" connects two basic blocks, which could be two "Actions",
or an "Action" and a "Guard". "Until" states that an action must be repeated on all con-
trol flows of a business process until another action takes place or a guard is satisfied.
"All" refers to all instances of an action on all control flows of a business process. "All"
is usually used to confirm that a quality constraint which includes an action, to which
the temporal relationship "All" is applied, must hold for all instances of that action on
all control flows of a business process.

For example, we want to verify QC3 on a business process model for using a bank
card to withdraw money.

QC3: "The pin number must always be entered repeatedly until the pin number is
correct".

The EPPSL model in Fig. 4 models QC3. It states that all instances of the action
"enter the pin number" must be repeated on all control flows of the business process
until the guard "pin number is correct" is satisfied. In this model, we have applied

Figure 9.4: Temporal operators provided by the EPPSL approach (from [116,
p. 6]).

9.1.2.2 EPPSL

EPSSL is an extension of PPSL which adds support for more logical operators
and translates to CTL. It has been proposed in [116].

The most important addition of EPPSL to PPSL is that it allows to formu-
late conditions which must only be true by some (but not all) possible executions
of the business process under consideration. The temporal operators provided
by EPPSL are depicted as Fig. 9.4; the figure’s left column refers to temporal
operators which must be true for all possible process executions, and the right
column refers to temporal operators which must be true for at least one of the
possible executions. For instance, the “Next” operator translates to CTL’s AX,
where the “Possibly next” operator translates to CTL’s EX; “After” translates
to AF, and “Possibly after” to EF; etc.

Additionally, EPPSL provides more possibilities to refer to the business pro-
cess than PPSL does, and provides a means to hierarchically compose EPPSL
expressions. The necessary building blocks are depicted as Fig. 9.5. For in-
stance, the “InitialNode” building block refers to the start of a UML activity,
and the “ConstraintContainer” allows to encapsulate EPPSL expressions for the
sake of combining them to more complex expressions.

188

9.1. FUNCTIONAL REQUIREMENTS

Pattern-Based Modeling and Formalizing of Business Process Quality Constraints 525

Anonymous steps: A quality constraint may refer to an anonymous step which could
be an unknown action or an unknown guard. For example, a quality constraint might be
dedicated to ensure that the business process model in Fig. 1 includes a possibility to
accept the application after 6 steps from starting the process without any need to know
to which actions or guards these steps are referring. Quality constraints which counts
anonymous steps are useful if the number of steps refers e.g. to the time consumed or the
money paid to perform these steps, or if it plays a role in the satisfaction of the customer.
For this reason, we introduce in EPPSL a modeling element called "AnonymousStep"
(Fig. 2.e).

Partial quality constraints: A partial quality constraint is a quality constraint which is
linked to other partial quality constraint(s) with a logical relationship to build another
quality constraint. We use the concept of the partial quality constraint, since we need
sometimes to model a quality constraint which consists of several quality constraints
that are logically related, but temporally not related. For example, a quality constraint
might be dedicated to ensure that if the business process model in Fig. 1 includes a
possibility to make an interview, then it includes no possibility to accept the application
online. The first possibility is not temporally related to the second one. However, they
are logically related, since the first possibility implies the negation of the second one.
We model partial quality constraints as separated units. For this reason, we provide in
EPPSL a modeling element called "ConstraintContainer" (Fig. 2.f) which is dedicated
to contain a partial quality constraint model separating it temporally from other partial
quality constraint models.

The elements in Fig. 2.a, Fig. 2.b, Fig. 2.c, and Fig. 2.d are the same elements used
by UML 2.0 Activity Diagrams to model Actions, InitialNodes, ActivityFinalNodes,
and Guards. The elements in Fig. 2.e and Fig. 2.f are new classes defined by EPPSL.

Fig. 2. EPPSL modeling elements for the basic blocks

EPPSL models for quality constraints provide the ability to link the modeling ele-
ments of the basic blocks with temporal and logical relationships. In the following, we
introduce how EPPSL can model these relationships.

4.2 Modeling Temporal Relationships

A temporal relationship determines the order of actions, guards, and anonymous steps.
For example, QC2, which we want to verify on the business process model in Fig. 1,
consists of a temporal relationship "After":

Figure 9.5: Basic building blocks provided by the EPPSL approach (from [116,
p. 5]).528 L. Khaluf, C. Gerth, and G. Engels

Fig. 6. EPPSL modeling elements for logical relationships

Fig. 6 shows the notation of the EPPSL modeling elements for logical relationships.
The "Join/ForkNodes" and "Decision/MergeNodes" are the same control nodes used
by UML 2.0 Activity Diagrams. The "Not" and "Connector" elements are new classes
defined by EPPSL.

To give an example for using the logical relationships modeling elements, we assume
that we want to verify QC5 on the business process model in Fig. 1.

QC5: "If there exists a possibility to make an interview, then there exists no possibility
to accept the application online".

The EPPSL model in Fig. 7 models QC5. It includes two EPPSL models for two par-
tial quality constraints, which are temporally not related. This means that each one of
them must be checked separately on the business process. For this reason, we separate
each one in a ConstraintContainer. The first model states that there exists a possibility
to make an interview after starting the process. The second model states that there exists
no possibility to accept the application online after starting the process. The Constraint-
Containers are linked with a Connector, which means that the partial quality constraint
represented by the first model must imply the partial quality constraint represented by
the second model.

Fig. 7. EPPSL quality constraint model

5 Translation of EPPSL Models into CTL-Formulas

The Computation Tree Logic (CTL) [6] views the time as a tree. It considers all different
paths, allowing the future to be non-deterministic. CTL-formulas are based on a set
of atomic propositions (statements which truth value may change over time), logical
connectives (¬, ∧, ∨, ⇒), temporal operators (X: Next, F: Eventually, U: Until, G:
Globally), and path quantifiers (A: On all paths, E: On at least one path). Whenever
there is a temporal operator in a CTL-formula, a path quantifier must precede it. For
example, if ψ is an atomic proposition, then AXψ is a CTL-formula, which states that,
On all paths, ψ holds next.

Figure 9.6: Logical operators provided by the EPPSL approach (from [116,
p. 7]).

For the latter task, a number of logical operators exist, which are depicted
as Fig. 9.6. These allow to combine “ConstraintContainers” with the “Join/-
ForkNode” operator (logical and), the “Decision/MergeNode” operator (logical
or), the “Not” operator, and the “Connector” operator (implication).

Let us now consider an example EPPSL expression, which is depicted as
Fig. 9.7 and combines the different language elements introduced above. The
requirement realized by the EPPSL expression is described as follows: “If there
exists a possibility to make an interview, then there exists no possibility to
accept the application online and there exists a possibility to make an interview
per phone or there exists a possibility to make an interview per Internet” [116,
p. 12].

The translation of EPPSL expressions into CTL is rather complex: Patterns
of language elements are translated into CTL formulas – for some examples of
patterns, see Fig. 9.8. For translating combinations of the patterns, different
strategies are followed depending on the complexity of a given expression. WePattern-Based Modeling and Formalizing of Business Process Quality Constraints 533

Fig. 13. Example of a complex model

Fig. 14. Translation strategy of complex models, where control nodes link ConstraintContainers

(3): Start → EF(make an interview per phone)
(4): Start → EF(make an interview per Internet)

3. We translate the partial quality constraint models which contain ConstraintContain-
ers, which in turn include partial quality constraint models already translated into
CTL-formulas. For example, since (3) and (4) in Fig. 14 are already translated, we
translate (5) depending on the EPPSL patterns in Fig. 9:
(5): (Start → EF(make an interview per phone)) ∨ (Start → EF(make an interview
per Internet))
Then we translate (6) since (2) and (5) are already translated, depending on the
EPPSL patterns in Fig. 9:
(6): (Start → ¬ EF(accept the application online)) ∧ ((Start → EF(make an inter-
view per phone)) ∨ (Start → EF(make an interview per Internet)))

4. We always reach a state, where we have two ConstraintContainers, including two
translated partial quality constraint models, and a connector, which connects the
first to the second one. We translate this state depending on the EPPSL patterns
for simple models [21] by stating that the CTL-formula representing the first Con-
straintContainer implies the CTL-formula representing the second one. In Fig. 14,
we reach a state where (1) implies (6). We translate it depending on the EPPSL
patterns in Fig. 9:

Figure 9.7: Complex example EPPSL expression (from [116, p. 13]).

189

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS
530 L. Khaluf, C. Gerth, and G. Engels

AG (B → (AF(A1) V .. V
AF(An)))

(C*)

(C1*) Λ .. Λ (Cn*)

(C1*) V .. V (Cn*) ¬M*

Action → S*

EF (S*)

AX (S*)

AG (Action
→ S*)

Fig. 9. Translation of EPPSL patterns into CTL-formulas

S4* :

S3* :

S2* :

S1* :

S* :

Fig. 10. Example of the translation strategy for a simple EPPSL model into a CTL-formula

Figure 9.8: Translation of EPPSL patterns into CTL formulas (from [116,
p. 10]).

do not explain that translation here; the interested reader is pointed to [116].
For the sake of still giving an impression of the translation, we do show the

translation result of the EPPSL expression depicted as Fig. 9.7.

(Start⇒ EF(make an interview))⇒
((Start⇒ ¬EF(accept the application online))∧
((Start⇒ EF(make an interview per phone))∨

(Start⇒ EF(make an interview per Internet))))
The translation result is straight-forward: The first line results from the left

constraint container of Fig. 9.7. The “ForkNode” to the container’s right models
the logical and; as such, the top right container can be found in line 2, and the
middle and lower container at lines 3 and 4.

The final step in applying EPPSL is the same as in PPSL: Within the for-
mula, DMM rules have to be inserted which represent the according events. For
the “Start” event, rule initialNode.flow()# is used; the references to actions such as
“make an interview” are replaced by occurences of the rule action.start(“make an
interview”)#. The final formula is then ready to be model-checked by GROOVE.

To recapulate, PPSL as well as EPPSL provide a convenient means to formu-
late temporal requirements against business processes modeled by UML activ-
ities, which can then be automatically translated into LTL/CTL formulas and
model-checked by the GROOVE tool. However, both PPSL and EPPSL are
dedicated to business process verification; they do not allow for the verification
of arbitrary model properties. In the next section, we will show how we have
generalized them to overcome this issue.

190

9.1. FUNCTIONAL REQUIREMENTS

9.1.3 Generalizing (E)PPSL
In the last section, we have seen how functional requirements of business pro-
cesses can be formulated by means of PPSL and EPPSL. However, we have
also seen that both languages only allow to formulate expressions about execu-
tions of certain elements of UML activities – the languages do not allow for the
formulation of requirements over arbitrary states of execution of our models.
In this section, we show how we have generalized (E)PPSL to improve on this
situation.

Before we dive into this, let us recall the general idea of model checking
as seen in Chapter 4: A GROOVE transition system consists of states and
transitions, where each state is a typed graph, and two states s, s′ are connected
by a transition t if there exists a rule r such that r matches s, and the application
of r to s results in s′ – in this case, t is labeled with r’s name. GROOVE does
not directly allow to model check against properties of a transition system’s
states; instead, GROOVE allows to model check against the transitions’ labels.
However, this allows to indirectly reason about the states: If r matches s, then
we have knowledge about s (in particular, we know that s contains an object
structure such that r matches).

Of course, also (E)PPSL makes use of this fact. However, since the goal
was to be able to specify and verify requirements for business processes only,
PPSL makes use of the action.start(name)# rule only (matching of this rule
corresponds to the execution of the according action). EPPSL improves on
that by allowing to formulate expressions over more UML activity constructs
such as the InitialNode and FinalNode. This has the advantage that
language users do not even have to know that there are rules which correspond
to the according events – they only need to provide the business process and
the requirements (which are formulated in a language very close to the one the
process is formulated in).

However, our goal is to specify requirements against all kinds of languages
(not only UML activities), and we want to be able to specify those requirements
over all language elements of the target language. For instance, neither PPSL
nor EPPSL allows for the formulation of requirements against, say, states of a
UML state machine.

Now, recall from Sect. 8.1 that during creation of a DMM ruleset, execution
events are identified. These are selected such that they suffice to describe the test
models’ expected behaviors, and are thus dedicated for formulating temporal
properties about models.

Therefore, the first step of generalizing (E)PPSL is to bind the “nodes”
occuring in the (E)PPSL expression not to a fixed rule (for instance, rule ac-
tion.start(name)# or rule initialNode.flow()#), but to an arbitrary execution event
of the DMM semantics specification of the language at hand.

Let us illustrate this using the DMM semantics specification for UML state
machines as developed by Nesterow as part of his diploma thesis [149]. The spec-
ification consists of 12 bigstep and 77 smallstep rules organized in 9 packages.
During creation of the ruleset, Nesterow identified and formalized the language’s
execution events; in particular, he identified an execution event corresponding to
executing a state’s associated behavior, which he called “StateExecutes(name)”.

In generalized (E)PPSL, we can now make use of this execution event: We
bind it to a node by displaying the execution event within the node (instead of

191

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

StateExecutes(„Regi‐
stration logged“)

StateExecutes(„Regi‐
stration started“)

Figure 9.9: Example EPPSL for state machines, referring to execution event
“StatExecutes(name)”.

only the name of the according action). The resulting nodes can then be used
in (E)PPSL expressions as usual (E)PPSL nodes, since the backing mechanism
does not change: In (E)PPSL, nodes are bound to fixed rules of the activity
semantics specification (and the rules’ names are used within the generated
temporal logic formulas). These rules are just replaced by the specific rules
bound to the execution events at ruleset definition time.

An example generalized EPPSL expression is depicted as Fig. 9.9. It models
that as soon as a given state machine enters the state where a registration
process is started, the registration will always be logged at some point in time
(no matter whether the registration succeeded or was canceled by the user).
The expression translates to

AG(StateExecutes(“Registration started”)

⇒ AF(StateExecutes(“Registration logged”)))

However, this is still not good enough. Suppose that we want to model that
as soon as a state machine is started, it shall never be in states “A” and “B” at
the same time. For referring to the start of a state machine, we can use execu-
tion event “StatemachineStarts()”, which is part of the semantics specification.
However, there is no execution event which corresponds to being in two states
at the same time (nor can there be such an execution event, since execution
events are generic and can not reflect properties of a certain model).

The solution are DMM property rules. Recall from Sect. 6.2.2.8 that a prop-
erty rule has similar left-hand and right-hand graphs and thus does not change
the states a property rule matches and is applied to – instead, a property rule
results in a self-transition of the according states. Thus, we can add property
rules to an existing DMM specification without changing the modeled behav-
ior. The property rule state.A_and_B()! realizing our current requirement is
depicted as Fig. 9.10. It matches if and only if both States “A” and “B” carry
a Marker and are thus active, as desired.

We can now formulate our above requirement by referring to the added
property rule. The resulting EPPSL expression is depicted as Fig. 9.11. It
models the desired requirement: As soon as the state machine has started, the
property rule must never match in the future. The expression translates to

AG(StatemachineStarted()

⇒ ¬EF(state.A_and_B()!))

To summarize, PPSL as well as EPPSL allow for the convenient, visual
formulation of temporal requirements against business processes modeled as
UML activities. We have generalized them such that we allow to bind arbitraty
execution events or property rules to nodes of (E)PPSL expressions; by making
use of property rules (see Sect. 6.2.2.8 on page 68), we are able to formulate

192

9.1. FUNCTIONAL REQUIREMENTS

Figure 9.10: Example property rule state.A_and_B()! for state machines.

state.A_and_B()!StatemachineStarted()

Figure 9.11: Example EPPSL for state machines, referring to the property rule
of Fig. 9.10.

temporal requirements against arbitrary model states. In the next section we
will use generalized EPPSL to formulate the soundness property.

9.1.4 Formalizing and Verifying Soundness
It remains to show how soundness as defined in Sect. 9.1.1 on page 184 can be
formalized and verified. First of all, requirement 1 is a syntactical one and is
therefore easy to check by analyzing the syntactical representation of a given
model: It suffices to traverse the abstract syntax of the model, counting the
objects of type InitialNode and ActivityFinalNode of an Activity
instance. If the analysis reveals that exactly one of both node types is contained
in the model, the requirement is fulfilled.

The other requirements are more complicated to check since the actual be-
havior of the model has to be taken into account. Let us start with requirement
4, which states that the activity must not contain any useless Actions. The
requirement can be verified as follows:

1. Traverse the model’s abstract syntax and collect the names of all Actions
occuring in the activity.

2. For each action name:

(a) Create a generalized EPPSL expression such as the one depicted as
Fig. 9.12, where “<action name>” is replaced by the name of the
according action.

(b) Verify the created EPPSL expression, making use of the GROOVE
model checker.

193

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

ActionExecutes(„<action name>“)ActivityStarted()

Figure 9.12: Generalized EPPSL expression realizing requirement 4 on page
184.

ActivityFinished()ActivityStarted()

Figure 9.13: Generalized EPPSL expression realizing requirement 3 on page
184.

(c) If the verification fails, report the action as unused (and therefore
superfluous).

The generalized EPPSL expression of Fig. 9.12 translates to

AG(ActivityStarted()

⇒ EF(ActionExecutes(“<action name>”)))

Let us now turn our attention to requirement 3, which states that an activity
shall always terminate. Using a generalized EPPSL expression, this can now
easily be formulated. The EPPSL expression is depicted as Fig. 9.13. It states
that for all possible executions of the model, the execution event “ActivityFin-
ished()” has to occur at some point in time, corresponding to the fact that the
activity will end its execution.

Finally, let us investigate requirement 2, which states that the moment a
Token arrives at the activity’s ActivityFinalNode, no other Tokens are
allowed to flow through the activity. Since we do not have any DMM rule in the
activity semantics which corresponds to this very situation, we have to make
use of an according property rule.

The property rule finalNode.ERROR()! containing according object structure
is depicted as Fig. 9.14. The rule matches any situation such that an incom-
ing ActivityEdge of an ActivityFinalNode carries an Offer (and—
transitively—a Token), and if there exists at least a second Token somewhere
in the activity.1 The latter holds because the according Token object, which
can be seen in the right upper corner of Fig. 9.14, is not associated to any other
element – in other words: The rule does not make any statement about that
Token despite that it must exist at all.

Referring to the newly introduced property rule finalNode.ERROR()! now
allows to formulate requirement 2 on page 184 – the resulting EPPSL expression
is depicted as Fig. 9.15.

The expression is true for a transition system which does not contain any
reachable transition labeled with the property rule’s name. An activity giving
rise to such a transition system will never produce a situation such that a Token
arrives at an ActivityFinalNode and one or more other Tokens are still

1Recall from Sect. 6.3.2 that DMM rules match injectively, which means that for the rule
to match, at least two tokens must exist.

194

9.2. NON-FUNCTIONAL REQUIREMENTS

Figure 9.14: DMM property rule finalNode.ERROR()! used to formulate require-
ment 2 on page 184.

finalNode.ERROR()!ActivityStarted()

Figure 9.15: Generalized EPPSL expression realizing requirement 2 on page
184.

flowing through the activity. In other words: The according activity fulfills
requirement 2 on page 184.

Note that the property rules used for defining soundness do not have to be
added to the DMM ruleset specifying the semantics of UML activities, which
would “pollute” that semantics specification. Instead, the property rules can
be contained in a different ruleset dedicated to soundness verification, and the
ruleset containing the semantics rules can be imported into that ruleset (see
Sect. 6.2.1.2).

9.2 Non-Functional Requirements

In the last section, we have seen how functional requirements against our models’
behavior can be formulated and verified. In this section, we will show how
basic nonfunctional requirements can be formulated, and how the models can
be analyzed with respect to these requirements.

As an example, we will use a business process modeled by means of a UML
activity. We will introduce that example model in the next section, and we will
discuss a scenario where—given a fixed budget—the average throughput of the
business process can be improved as much as possible.

The actual analysis of the nonfunctional requirements makes use of the Per-
formance Evaluation Process Algebra (PEPA) [100, 101]. It is performed in
three steps:

1. First, performance information is added to the given combination of model
and semantics specification, e.g., information about the expected runtime
of actions of our bussiness process needs to be modeled.

2. Using that performance data, a PEPA model is generated.

195

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

3. Finally, the PEPA model can be analyzed by means of existing PEPA
tooling.

Section 9.2.2 will give a brief introduction to the PEPA concepts and tools.
Based on that, we will show in Sect. 9.2.3 how performance information can
be added to a given DMM ruleset. We will also see that in most cases, only
considering the ruleset itself will not suffice to add appropriate performance
information; in these cases, we will also have to consider the concrete model the
nonfunctional properties of which we are interested in.

Finally, in Sect. 9.2.4 we will add performance information to our example
model of Sect. 9.2.1, and will analyze the model’s nonfunctional properties and
identify the best way to improve the model’s average throughtput.

The concepts presented in this section have been implemented within the
plug-in de.upb.dmm.performance.

9.2.1 Example: Process Improvement with Fixed Budget
In this section, we will introduce our example scenario for analyzing non-functio-
nal properties. First, an example model is shown as Fig. 9.16 – the given UML
activity models a business process in the insurance domain. Let us investigate
the activity more closely. The activity’s name is “Process Claim”. It contains
several Actions such as “Get Insurance Info”, “Check Validity” etc. which
are connected with ActivityEdges. The activity starts as soon as a Claim
arrives at the ParameterNode on the activity’s left side. The black bar fol-
lowing the ParameterNode is a JoinNode: It makes sure that the processing
of the claim as well the updating of the statistics are performed in parallel.

In the activity’s main part, the claim is investigated: Is it a valid claim
(e.g., does the customer have an insurance policy covering the claim)? How
big is the probability that the incident has happened as described in the claim?
Depending on the answers of those questions, the claim will be routed through
the activity, finally resulting in the letter of rejection or the sending of the money
as mentioned above. If, however, the claim turns out to be rather complicated,
or if the information necessary to process the claim is not currently available,
the handling of the claim will be scheduled for later processing.

We can now present our example scenario as follows: The above business
process was in place for quite some time, which allowed to monitor the process’s
execution. In particular, one result of that monitoring is that the average execu-
tion times of the process’s tasks (i.e., the UML actions) have been determined;
these average execution times are depicted as Table 9.1.

Our goal is to improve the average execution time of the business process.
For this task, a fixed budget is available, which only allows to perform certain
changes on the process. In particular, we can use the given money to realize
one of the following alternatives:

1. Reduce the average execution time of task “Check probability” from 15 to
10 minutes.

2. Reduce the average execution time of task “Calculate amount” from 10 to
6 minutes.

3. Reduce the average execution time of task “Verify Calculation” from 10
to 6 minutes.

196

9.2. NON-FUNCTIONAL REQUIREMENTS

Fi
gu

re
9.
16
:
Ex

am
pl
e
bu

sin
es
s
pr
oc
es
s
m
od

el
ed

as
a
U
M
L
ac
tiv

ity
.

197

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

Task Avg execution time
Get Insurance Info 2 mins
Check Validity 5 mins
Check Probability 15 mins
Calculate Amount 10 mins
Verify Calculation 10 mins
Send Money 3 mins
Send Reject Letter 4 mins
Archive Claim 2 mins
Schedule for Expert 1 min
Schedule for later 1 min
Update Statistics 5 mins

Table 9.1: Average execution times of the tasks of the business process depicted
as Fig. 9.16

As a consequence, we need to find out which of the above changes will result in
the greatest improvement of our process’s average execution time. We will tackle
this problem by modeling the performance information for the three alternatives,
and to then compute the resulting process’s average execution time. Before we
do that, let us first give a brief introduction to PEPA in the next section.

9.2.2 Performance Evaluation Process Algebra
Process algebras such as Communicating Sequential Processes (CSP, [102, 103]),
the Calculus of Communicating Systems (CCS, [141]), or its continuation, the
π-calculus [142] provide means to model and analyze concurrent systems. The
general idea is that the interaction of independent processes is modeled, i.e., the
communication between those processes as well as their synchronization. The
resulting models can be evolved by means of algebraic operations.

An extension of process algebras are stochastic process algebras, which do
not only contain information about what the modeled system will do, but addi-
tionally provide timing and probability information. In addition to the capabil-
ities of simple process algebras, this allows to reason about several performance
properties of the modeled system such as steady-state solution (the probability
that the modeled system will be in a certain state) or transition throughput
(long-term frequencies at which events occur in the modeled system).

The Performance Evaluation Process Algebra (PEPA) is a stochastic pro-
cess algebra. It has been developed by Jane Hillston [100, 101] with the goal
of providing a formalization of concurrent processes. For this, each action of
the process is associated with a rate, i.e., a numerical value which describes
how often an action is expected to be executed within a fixed period of time.
Formally, each action’s rate is interpreted as parameter of a negatively exponen-
tially distribution (see e.g. [101]), allowing to translate a PEPA process into an
equivalent Continuous Time Markov Chains (CTMCs, see e.g. [187]), for which
powerful analysis techniques based on simple linear algebra exist.

The PEPA language consists of a small set of combinators. Sentences of the
PEPA language describe the behavior of the modeled system by means of the
performed tasks and their interactions. The grammar which formally defines

198

9.2. NON-FUNCTIONAL REQUIREMENTS

the syntax of the PEPA language is depicted as Fig. 9.17. The semantics of the
combinators is defined as follows:

S ::= (sequential components)
(α, r).S (prefix)

| S + S (choice)
| CS (constant)

P ::= (model components)
P ./ P

L
(cooperation)

| P/L (hiding)
| C (constant)

Figure 9.17: The syntax of PEPA.

Prefix: The most important construct for describing the behavior of a system
is to sequentially compose the behavior by means of actions and their
given rate. For instance, the process (α, r).S describes that action α is
executed, and that action has a rate of r; afterwards, the modeled system
will behave as S. Sequences of actions can be combined to build up a life
cycle for a component.

Choice: The choice combinator describes alternative behaviors the system may
perform. For instance, the PEPA expression P + Q represents a system
which may behave either as P or as Q.

Constant: Constants can be used to define a behavior at some place and reuse
that behavior somewhere else.

Hiding: The hiding operator allows to declare some behavior as internal to a
process. For instance, the PEPA expression P/L describes that the set of
actions L are to be considered internal or private. Note that this does not
affect the actions’ rates.

Cooperation: Most systems consist of several components which interact with
each other. In PEPA, direct interaction, or cooperation, between compo-
nents is modeled by the butterfly combinator (./). The subscript L of
the cooperation symbol denotes the actions on which the cooperands are
forced to synchronize. This means that for actions not in L, the compo-
nents proceed with their work in an independent concurrent manner; if a
component’s action α is to be executed which is contained in L, execution
stops until other components which have α as part of their actions are
also ready to execute α. Thus, if L is empty, the two components work
completely independently.

To make the PEPA concepts even more clear, let us examine an example
PEPA process, which is depecited as Fig. 9.18. The process’s initial state is S1.
In that state, action a1 is applied with a performance rate of r1, bringing the

199

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

S1 = (a1, r1).S2;
S2 = (a2, r2).S3 + (a3, r3).S4;
S1;

Figure 9.18: Example PEPA process.

S1 S2

S4

S3

(a1, r1)

(a2, r2)

(a3, r3)

Figure 9.19: Example PEPA process (graph representation).

system to state S2. Here, two alternative executions are possible: The system
will either execute action a2 with rate r2, or action a3 with rate r3.

9.2.2.1 From GROOVE to PEPA

Now that we have an understanding of PEPA and it’s syntax and semantics,
let us establish the connection between PEPA models and GROOVE labeled
transition systems as described in [6]. The idea is to not specify a PEPA model
directly, but to generate it from the labeled transition system GROOVE pro-
duces from a DMM specification and an according model.

To grasp this idea, let us consider a visual representation of the PEPA process
depicted as Fig. 9.18, which is depicted as Fig. 9.19. It is immediately clear that
the data structure of the PEPA model is very similar to an LTS as we have seen
in Chapter 4. More precisely:

• Both the nodes in PEPA processes and the nodes of labeled transition
systems correspond to states of the modeled system. The difference is
that in PEPA, nothing is said about the state – two states differ if they
are the result of different sequences of actions. In contrast, as we have
seen in Chapter 4, GROOVE state nodes are typed graphs describing the
complete current state of the system under consideration.

• In PEPA, two states are connected by an application of one of the system’s
actions - the resulting transition is labeled with the action’s name and the
rate of that action. In GROOVE, the situation is very similar: Two nodes
of the LTS transition are connected by a transition if there exists a rule
which matches the first state, and which—when applied—results in the
second state; the resulting transition is labeled with the rule’s name.

As such, the generation of a PEPA model from a transition system as pro-
duced by GROOVE is rather straight-forward – the algorithm is depicted as
Listing 9.1. It receives an LTS as input and outputs a text file representing the
PEPA model.

The algorithm implements a breadth-first traversion of the LTS, starting
with the LTS’s start state – the states to be processed are stored in a Stack

200

9.2. NON-FUNCTIONAL REQUIREMENTS

(line 2). To be able to deal with loops, the algorithm stores the states which
have already been processed in a Set (line 3). Then, the LTS’s start state is
pushed onto the stack; the stack is processed in lines 5 and 6. If the stack (i.e.,
all states) has been processed, the initial start state is defined as the starting
point of the PEPA process.

Method processState takes care of generating the necessary PEPA con-
structs for each state. First, the current state is added to the already processed
states (line 10). Then, the state’s number is used to generate a state label in
line 11. Next, the algorithm iterates over the outgoing transitions of the current
state – if there are none, then a final state has been found which has to be
connected with the start state.2 Otherwise, for each transition, an according
PEPA sequence is generated (line, 17). Finally, if the target state of the pro-
cessed transition is neither contained in the states to be processed nor in the
already processed states, it is pushed onto the stack for later exploration.

A transition is mapped to a PEPA action in lines 24–26: Taking the transi-
tion and the transition’s label into account, the performance rate is computed
(line 25). Then, in line 26 the actual PEPA contructs are written, where the
transition label is used as the action, and the resulting action/rate specification
is sequentially composed with the target state of the transition in line 26.

Listing 9.1: Algorithm for generating PEPA model from transition system

1void generatePepaModel(GraphTransitionSystem gts)
2Stack statesToBeProcessed := new Stack()
3Set processedStates := new Set()
4statesToBeProcessed.push(gts.startState)
5while (not statesToBeProcessed.isEmpty())
6processState(statesToBeProcessed.pop())
7output("\nS" + gts.startState.number)
8

9void processState(GraphTransitionSystem gts, GraphState state, Stack
statesToBeProcessed, Set processedStates)

10processedStates.add(state)
11output("S" + state.number + " =\n")
12Set transitions = gts.getOutgoingTransitions(state)
13if (transitions.isEmpty())
14output(" (’RESTART’, infty).S" + gts.startState.number)
15else
16for each (GraphTransition transition in transitions)
17writeTransition(transition);
18if (not processedStates.contains(transition.target) and not

statesToBeProcessed.contains(transition.target))
19statesToBeProcessed.push(transition.target)
20if (more transitions to be processed)
21output(" +\n")
22output(";\n")
23

24void writeTransition(GraphTransition transition)
25double rate := computePerformanceRate(transition)
26output(" (’" + transition.label + "’, " + rate + ").S" +

transition.target.number)

In [6], the authors have associated each GROOVE rule with a fixed perfor-
mance rate; as such, the computation of the rate as seen in line 26 comes down
to a lookup in a map containing the rules’ labels and associated performance

2This is because PEPA assumes a strongly connected graph as input; see e.g. [100]

201

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

PerformanceModel

- name :String
- description :String
- defaultPerformance :double

Performance

SimplePerformance

- performance :double

ParameterizedPerformance

- ocl :String

ParameterizedPerformanceWithContext

Parameter

Rule

Node

EAttribute

0..* 1

rule

1

parameter

0..*

0..*

node 1

0..*

attribute 1

0..1

context

1

Figure 9.20: Performance metamodel of DMM.

rates. In DMM, more sophisticated approaches for specifying performance rates
are provided, as we will see in the next section.

9.2.3 Modeling Performance Information in DMM
In this section, we will explain how performance rates are defined for DMM
specifications in a model-driven way. We start by introducing the metamodel
for defining performance rates in the next section. Sections 9.2.3.2 to 9.2.3.4 will
then present the three different kinds of performance definition within DMM.

9.2.3.1 DMM Performance Models

As we have seen in Sect. 6, the DMM rules are the actual places where behavior
is going on. Consequently, our goal is to associate each rule with a perfor-
mance rate. This is done using a performance model, the metamodel of which
is depicted as Fig. 9.20.

The general structure of the performance metamodel is straight-forward:
a PerformanceModel contains a number of Performances (the different
kinds are discussed below). Each Performance is associated to a DMM rule
for which it defines the performance rate. The PerformanceModel class also
allows to provide a default performance rate which will be used for DMM rules
for which no other performance rate has been defined.

We now turn to the different kinds of performance definitions, starting with
rule-based performance definition.

9.2.3.2 Rule-Based Rate Definition

The most simple case of performance definition is that a rule will always take
about the same time to be executed, independent from the context the rule
is applied in. To model such cases, the performance metamodel contains the
concept of a SimplePerformance whose only feature is an attribute with
name performance and type double. The effect is the same as in [6]: A
SimplePerformance associates a rule with a fixed performance rate.

202

9.2. NON-FUNCTIONAL REQUIREMENTS

Figure 9.21: Performance model containing a single SimplePerformance for
rule initialNode.flow()#.

Figure 9.21 shows a performance model containing a single SimplePerfor-
mance. The target rule of this performance definition is rule initialNode.flow(),
and that rule is given a performance rate of 300.0.

9.2.3.3 Parameterized Rate Definition

As mentioned in the last section, SimplePerformance rate definitions are
well suited for situations where the DMM rule (i.e., the event of the reality to
which the DMM rule corresponds) always has the same average duration, as it
might be the case for the initialization of our “Process Claim” activity. However,
often the context in which a rule is applied has to be taken into account when
computing the performance rate of a rule.

As an example, let us consider rule action.start(name)#, which in reality
corresponds to the execution of one of the tasks contained in our process. Ob-
viously, these tasks will not all have the same average duration: Some of them
(like “Schedule for Later”) will be performed quite quickly while others (like
“Check Validity”) will take much more time.

Therefore, the performance metamodel contains the concept of a Parame-
terizedPerformance, the idea being that parameters are passed to the rate
definition which can be used to decide how long the rule will take. A Para-
meterizedPerformance contains a number of Parameters, each of which
refers to a Node of the associated rule and an EAttribute. Finally, the rate
definition contains an ocl attribute which is used to store the OCL expression
computing the actual rate. In that expression, the parameters can be used to
take the context of the rule application into account.

In our example, the (single) parameter is the name of the action in the
context of which the rule is applied. Figure 9.22 shows an example for such
a performance definition. It refers to rule action.start(name)# and contains a
single parameter. The parameter refers to the name attribute of the rule’s node
action. That node has type Action (we have seen in Chapter 3 that UML
actions indeed have such an attribute).

The most interesting part of the performance definition is the OCL ex-
pression. It consists of a number of nested if-then-else statements, each
statement referring to a particular action’s name. Within the expression, the

203

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

Figure 9.22: Performance model containing a single ParameterizedPerfor-
mance for rule action.start(name)#.

parameters can be referenced; the syntax is that of the Java String.for-
mat(String, Object...) method, e.g., the first parameter is referenced
by %1$s. We will see below how the parameter references will be bound to
attribute values during generation of the PEPA process.

ParameterizedPerformance rate definitions are a powerful tool. How-
ever, we will see in the next section that in some cases we need even more
information to be able to compute a meaningful performance rate.

9.2.3.4 Parameterized Rate Definition with Context

DMM semantics specifications such as the one for UML activities are designed to
be generic, i.e., they describe the semantics of all UML activities. As such, the
DMM rules of the activities semantics specification can only refer to concepts
of the runtime metamodel (which contains the classes of the static activity
structure as seen in Fig. 3.3 on page 20 plus some generic runtime concepts
such as Token, Offer etc.).

As the modeler, we are interested in analyzing a specific model, and we
have more knowledge about that model than can be contained in the semantics
specification. For instance, we know that an object of type Claim is passed to
our “Process Claim” activity. However, since none of the DMM rules “knows”
about the Claim concept, and since our ParameterizedPerformances can
only refer to attributes of rule nodes, there is no way to refer to attributes of
the Claim object within a ParameterizedPerformance rate definition.

We solved this problem by introducing the concept of a Parameterized-
PerformanceWithContext. The according metaclass inherits from Para-
meterizedPerformance and therefore has all its references and attributes.
Additionally, the ParameterizedPerformanceWithContext class refers to
a context object of type Node. In the OCL expression, this object will be
bound to the self object. It can then be used to (indirectly) access attributes
of objects not having a corresponding node in the rule.

Figure 9.23 shows an example of such a rate definition. As the modeler, we
know that a Claim object is flowing through our activity, and that it has an
attribute size describing the size of the actual claim (e.g. in terms of pages, the
number of words, etc.). We can now make use of this knowledge by declaring

204

9.2. NON-FUNCTIONAL REQUIREMENTS

Figure 9.23: Performance model containing a single ParameterizedPerfor-
manceWithContext for rule action.start(name)#.

the rule’s Token object as the context object, and by then using that object
within the OCL expression to access the attribute we are interested in: The
OCL expression
let size:Integer = self.oclAsType(ObjectToken).eobject

.oclAsType(insurance::Claim).size
casts the self object to an ObjectToken, accesses the carried object through
the eobject reference, casts this object to a Claim, and finally accesses the
size attribute of that claim. It stores the attribute’s value into a local variable
size which can then be used within the computation of the actual performance
rates.3

9.2.3.5 Evaluating Performance Definitions

In Sect. 9.2.2.1, we have seen the general algorithm for generating a PEPA
model from a GROOVE transition system. That algorithm contained a method
computePerformanceRate(GraphTransition) which we will define in
this section.

Before we turn to the pseudo code formalizing the evaluation, let us first
get an idea of what the algorithm does. First, if the given Performance
is of type SimplePerformance, the evaluation result is the rate associated
with that SimplePerformance. Otherwise, the evaluation is (much) more
complex: The graph transition is used to compute the actual objects to which
the DMM rule nodes have been mapped when the rule had been matched to the
state graph – from these objects, the referenced attribute values are received
and bound to the parameters of the ParameterizedPerformance’s OCL
expression. Finally, the OCL expression is evaluated, and the resulting value is
returned.

Let us now investigate the algorithm implementing the described behavior,
which is depicted as Listing 9.2. In line 2, the Performance for the given rule
label is received; we do not show the details of this here. Then, in lines 3 to 6, the
simple cases are handled: If there is no performance definition for the current

3Recall from Sect. 9.2.2 that a rate describes how often an event occurs in a fixed period
of time; we therefore divide through the size value, resulting in a longer execution time for
a bigger size.

205

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

transition, we return the PerformanceModels defaultPerformance, and
if the performance definition is of type SimplePerformance, we return the
associated rate.

Listing 9.2: Algorithm for evaluating DMM performance definitions

1double computePerformanceRate(GraphTransition transition)
2Performance performance := getPerformance(transition.label)
3if (performance = null)
4return getDefaultPerformance()
5if (performance is SimplePerformance)
6return performance.performance
7Map map := getDmmNodesToObjectsMap(performance.rule, transition)
8String ocl := bindParameterValuesToOclExpressionVariables(performance

, transition, map)
9EObject self := null;
10if (performance is ParameterizedPerformanceWithContext)
11self := map.get(performance.context)
12return OCL.evaluate(self, ocl)
13

14String bindParameterValuesToOclExpressionVariables(
ParameterizedPerformance performance, GraphTransition transition,
Map map)

15List arguments := new List()
16for each (Parameter parameter in performance.parameters)
17EObject realObject := map.get(parameter.node)
18arguments.add(realObject.eGet(parameter.attribute))
19return java.util.String.format(performance.ocl, arguments);
20

21Map getDmmNodesToObjectsMap(Rule rule, GraphTransition transition)
22Map result := new Map()
23for each (Node dmmRuleNode in rule.nodes)
24for each (GrooveNode grooveRuleNode in transition.ruleGraph.nodes)
25if (grooveRuleNode represents dmmRuleNode)
26GrooveNode grooveStateNode := transition.getMatchedStateNode(

grooveRuleNode);
27EObject realObject := Emf2Groove.getEObject(grooveStateNode)
28map.put(dmmRuleNode, realObject)
29return result

Otherwise, the above behavior is realized by first computing a map from
DMM rule nodes to the objects they have been mapped to in line 7. The
implementing method (lines 21–29) works as follows: It traverses over the DMM
rule’s nodes in line 23. It then searches for the corresponding GROOVE node
of the transition’s rule graph (i.e., the node to which the DMM node had been
mapped during transformation into the GROOVE grammar as described in
Sect. 6.3). Then, it uses the transition’s matching to identify the GROOVE
state node to which the GROOVE rule node had been mapped (line 26), and
finally, it receives the corresponding EObject from the EMF2Groove tool (line
27).

With this map, we can now bind the parameters of the Parameterized-
Performance’s OCL expression to the actual values of the state’s objects in
line 8. The implementation of this (lines 14-19) works as follows: for each
Parameter of the ParameterizedPerformance, the EObject is received
from the map computed above (line 17). Then, Ecore’s reflection mechanisms
are used to receive the object’s attribute value (line 18). Finally, the OCL string
is formatted, i.e., the occurences of parameter references within the string are

206

9.2. NON-FUNCTIONAL REQUIREMENTS

DMM
Parameterized
Performance

DMM Rule

DMM
Node

Groove Rule

Groove
Node

Groove State Graph

Groove
State
Node

Model

EObject

references is translated to matches represents

Figure 9.24: Connection between DMM performance model and state model.

Runtime
Model

DMM
Ruleset

DMM
Generator

Transition
System

DMM
Performance

Editor

Performance
Model

DMM PEPA
Generator PEPA Model

Figure 9.25: Workflow generating a PEPA model from a DMM specification, a
model, and a performance model.

replaced with the computed attribute values in line 19.
Figure 9.24 visualizes the connection between the DMM rule nodes refer-

enced by a DMM performance definition and a model’s contained EObjects.
In the case of a ParameterizedPerformance, we are now ready to eval-

uate the OCL expression and return the result. In the case of a Parame-
terizedPerformanceWithContext, one more step is necessary: In lines
10 and 11, the EObject which corresponds to the ParameterizedPerfor-
manceWithContext’s context node is received from the map and then used
as the OCL self object.

9.2.4 DMM goes PEPA

Now that we have seen the different kinds of performance definitions DMM
provides, we present the workflow of generating PEPA models, which is shown
in Fig. 9.25. At the top, the standard DMM workflow is shown: A DMM
specification and a model are fed into the DMM generator which computes the
labeled transition system.

At the bottom, the PEPA-specific part of the workflow can be seen: Using
the DMM specification and the model, the modeler creates a PerformanceMo-
del, using SimplePerformance, ParameterizedPerformance, and Pa-
rameterizedPerformanceWithContext instances as desired. Then the
PEPA model is generated from the labeled transition system and the Perfor-
manceModel as described in Sect. 9.2.2.1, computing the performance rates
from the PerformanceModel as described in the last section. The PEPA
model can then be analyzed using the PEPA tooling.

207

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

Task Avg execution time Performance rate
Get Insurance Info 2 mins 720
Check Validity 5 mins 288
Check Probability 15 mins 96
Calculate Amount 10 mins 144
Verify Calculation 10 mins 144
Send Money 3 mins 480
Send Reject Letter 4 mins 360
Archive Claim 2 mins 720
Schedule for Expert 1 min 1440
Schedule for later 1 min 1440
Update Statistics 5 mins 288

Table 9.2: Average execution times and resulting performance rates of the tasks
of the business process depicted as Fig. 9.16

9.2.5 Improving the Example Process
It remains to show how the concepts explained in the last sections can be used to
improve our example model of Sect. 9.2.1. This is now rather straight-forward:

1. The modeler creates a DMM performance model reflecting the execution
times of Table 9.1 on page 198. This can be done using a Parame-
terizedPerformance which distinguishes different names of the ac-
tions as we have seen in Sect. 9.2.3.3, and returns the according perfor-
mance rate. If desired, attributes of the Claim object flowing through the
activitiy can additionally be taken into account as seen in Sect. 9.2.3.4.

2. The modeler creates variants of the performance model of step 1, reflecting
the possible changes to our business process as suggested on page 198.

3. Using the given activity “Process Claim” and the DMM semantics spec-
ification for UML activities, the modeler generates the labeled transition
system describing the activity’s behavior.

4. For each performance model of step 2, the modeler generates an according
PEPA model, making use of the transition system computed in step 3.

5. Finally, the modeler uses the PEPA tooling to analyze each of the PEPA
models and identifies the change which results in the best average execu-
tion time.

In the case of our example business process, the result of step 1 will be a
performance model with a single ParameterizedPerformance – we have
seen such a performance model as Fig. 9.22. The rates assigned to the different
actions are computed as follows: As 24 hours consist of 1440 minutes, we divide
1440 through the average execution time of our tasks. For instance, task “Get
Insurance Info” takes 2 minutes on average; thus, we define the performance
rate of that task as 1440/2 = 720, the meaning being that within 24 hours, that
task will on average be executed 720 times. Table 9.2 shows the performance
rates for all tasks of our activity.

208

9.3. RELATED WORK

Variant Throughput Avg execution time
Process as is 101.3 14.2 minutes
“Check Probability” 111.6 12.9 minutes
“Calculate Amount” 103.7 13.9 minutes
“Verify Calculation” 102.1 14.1 minutes

Table 9.3: Average execution times of the business process depicted as Fig. 9.16
after improvement

Then, variants of the performance model are created in step 2, each modeling
the desired change as suggested on page 198. In particular, the first variant will
have a performance rate of 144 (10 minutes) for task “Check Probability” (and
the other rates stay unchanged), the second variant will have a rate of 240 (6
minutes) for task “Calculate Amount”, and the final variant will have the same
rate of 240, but this time for task “Verify Calculation”.

In steps 3 and 4, the modeler uses the DMM tooling to generate the activity’s
labeled transition system and, using that transition system, one PEPA model
for each performance model variant.

Finally, the modeler uses the PEPA tooling to analyze the resulting PEPA
models. Here, the property of interest is the transition throughput of the ac-
tivityFinalNode.consume()# rule: The higher the throughput of that transition,
the more often our activity has been completed within the fixed time period of
24 hours we were assuming. Figure 9.26 shows a screenshot of the according
view of the PEPA tooling: For each transition, the average throughput has been
computed.

The resulting throughputs of the activityFinalNode.consume()# transition are
depicted as Table 9.3. It turns out that the most improvement is achieved by
speeding up task “Check Probability”. Note that this is consistent with our in-
tuition: Due to the decisions contained in the process, task “Check Probability”
is part of more possible executions of the process than the other tasks; as such,
improving that task’s execution time has a higher effect on the process’s average
execution time than the other tasks we considered to improve.

9.3 Related Work

In this section we review related work to (generalized) (E)PPSL and model
checking in the next section.

9.3.1 Functional Requirements
The most important related work to ours can be grouped into three categories:
Visual languages for expressing temporal logic properties, model checking of
graph transformatiom systems, and model checking of UML models.

9.3.1.1 Visual temporal logic

Del Bimbo et al. [40] provide a visual language for branching time temporal logic
which is more expressive than the PPSL since it allows to express all possible
CTL formulas visually. However, the approach lacks the understandability of

209

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

Figure 9.26: Screenshot of the PEPA tooling, transition throughput view.

210

9.3. RELATED WORK

(E)PPSL. It could still be a candidate for a more expressive visual language
for functional requirements specification in case it turns out in practice that
(E)PPSL is not expressive enough for some tasks.

Another visual language for specifying functional requirements is the Graph-
ical Interval Logic (GIL) by Kutty et al. [124]. It supports a subset of LTL and
is thus comparable to PPSL.

Janssen et.al. [109] suggest an approach for the verification of business pro-
cesses using model checking techniques which is based on a proprietary process
modeling language. The authors formalize different basic constraints; the ap-
proach does not allow for the verification of custom, user-defined properties.

9.3.1.2 Model Checking Graph Transformation Systems

One of the most important distinctions of the several approaches is whether they
apply model checking directly on the graphs and rule applications, or whether
the graph transformation system is translated into another language for which
model checking tools exist. In [171], Rensink and Varro compare two different
such approaches for model checking systems whose behavior is specified by graph
transformation systems. One approach is to build up the state space by directly
simulating the graph transformation rules, where the other approach encodes
graphs into fixed vectors and rules into commands modifying these state vectors.
The authors conclude that the latter outperforms the former if the dynamic
nature of the described systems is limited, while the first approach shows its
strength for highly dynamic systems.

GROOVE is one of the tools which follow the former approach. In his
PhD thesis [113], Kastenberg has developed model checking techniques for the
GROOVE tool set, including a new technique of partial order reduction dedi-
cated to reducing the state space without loss of possible behavior of the system.
One of the results of his thesis is the possibility to verify GROOVE transition
systems using LTL. Additionally, in [114] Kastenberg and Rensink show how to
model check GROOVE transition systems by means of CTL formulas. In our
work, we have used their techniques extensively (see Sect. 4).

Constituents of the second approach of translating graph grammars into
intermediate formats ready for model checking can be found more often. For in-
stance, Schmidt et al. [182] translate instances of arbitrary modeling languages
into an intermediate representation of transition systems defined by a corre-
sponding metamodel, from which they automatically generate input models for
the SPIN model checker. Baresi [15] translates AGG specifications [200] into
BOGOR models [175], enabling the verification of LTL properties. De Lara
et al. [126] use the AToM3 tool to analyze and simulate systems which have
been described using different formalisms. For this, the different formalisms are
translated into a common one by means of graph transformations. The latter
formalization can then be model checked.

Eckardt et al. [43] present a rather interesting approach for dealing with the
state explosion problem: They formally define coordination patterns by means
of graph transformations, which allows to first prove that an architecture in-
cludes only component connections which correspond to the defined coordina-
tion patterns, and then to model check safety and liveness properties only for
each individual coordination pattern rather than for the system as a whole. For
model checking, they use the model checker UPPAAL [21].

211

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

9.3.1.3 Model Checking UML Models

There are many approaches for model checking UML models. Many of these
deal with UML state machines, the reason probably being that the semantics
of those is relatively clear (at least compared with, say, UML activities), and
that state machines are quite often used for modeling real-world systems. For
instance, Jussila et al. [111] translate hierarchical UML state machines into
input for the model checker SPIN [104] with the goal of checking properties
of protocol specifications. Dong et al. [41] translate UML state machines into
Büchi automata and verify behavioral properties using LTL. Schäfer et al. [181]
translate state machines into input for SPIN and UML collaborations into Büchi
automata; then, they use the model checker SPIN to verify whether the state
machines can handle the interactions described by the collaborations.

In the case of UML activities, less research has been performed. In [67],
Eshuis translates Activity Diagrams from UML 1.5 into the input language of
the model checker NuSVM [27], giving activities a statechart-like semantics as
stated by the UML 1.5 specification, and uses that semantics for verification of
certain properties. This work is extended in [68], where Eshuis and Wieringa
provide guidelines on how to support the analysis of control-flow properties in
the case of UML activities.

Another class of behavioral UML diagrams are UML interactions. Knapp
et al. [119] translate UML interactions into interaction automata and use the
tool HUGO/RT [131] for model checking.

There are also approaches which are not restricted to a single UML sub
language, but treat models consisting of several languages. Gagnon et al. [77]
translate class, state and communication diagrams into MAUDE specifications
[133] and use SPIN to model check UML models consisting of a combination
of the mentioned diagrams. Their focus lies on concurrent systems. In the
same line, Niewiadomski et al. [152] formalize all executions of a UML system.
In contrast to Gagnon et al., their target formalism are boolean propositional
formulas, the satisfiability of which is then checked using a SAT-solver.

xUML [137] is an executable subset of the UML. In [213], Xie et al. translate
xUML models into S/R, the input language for the COSPAN model checker [93],
making use of xUML’s execution semantics.

All of the above approaches differ to our work in that they are targeted at the
UML; this is not the case for DMM, which can be used to provide semantics for
all kinds of metamodel-based behavioral languages, and to analyze the behavior
of according models. The model checking concepts presented in Sect. 9.1 can
be applied to all those languages.

However, in terms of scalability, the above approaches tend to be more ef-
ficient than the currently available DMM tooling. This is mainly due to the
complexity of rule matching, which is NP-complete in the size of the rule graph
(which is both bad and good news; rule graphs tend to have a rather small
size). Additionally, the state graphs have to be compared to each other, which
is again NP-complete; however, GROOVE successfully applies heuristics (graph
certificates) to significantly reduce the number of actual graph comparisons. See
[167] for more information.

212

9.3. RELATED WORK

9.3.2 Non-Functional Requirements

Analyzing models for performance properties first of all requires the possibility
to add according performance information to the models, e.g. by means of du-
rations of executions, probabilities etc. To our knowledge, there is no standard
way to add such information to Ecore/MOF models; however, in the case of the
UML, two dedicated profiles exist: the UML Profile for Schedulability, Perfor-
mance, and Time Specification (SPTS) [153] and the UML Profile for Modeling
and Analysis of Real-Time Embedded Systems (MARTE) [159]. SPTS provides
concepts for analyzing schedulability and performance as well as time and time-
related mechanisms. MARTE basically is a follow-up to SPTS, providing more
expressiveness and flexibility and being targeted at the UML 2.0 (which was
a major re-design to previous UML versions). Woodside [212] discusses usage
scenarios of the profiles. In our work, we use the custom metamodel depicted as
Fig. 9.20 on page 202 for performance specification, which is tightly coupled to
DMM since it references DMM’s metamodel, but still provides means to model
performance information strictly separated from the semantics information it-
self.

As the de facto modeling standard, many approaches of analysing the per-
formance of UML models have been suggested. Cortellessa et al. [32] extract
performance relevant information from several UML diagrams (i.e., use case,
sequence, and deployment diagrams). That information is then used to gener-
ate a queuing network which can be analyzed with standard tools. Bouarioua
et al. [24] use graph transformations to translate UML sequence diagrams into
stochastic petri nets, both being defined by custom metamodel. The result-
ing petrinet can then be analyzed again by means of standard tools. King
and Pooley [117] follow a similar approach for collaboration and statechart di-
agrams. Lindemann et al. [130] translate UML statecharts and activities into
generalized semi-Markov processes; their tool DSPNexpress is then capable of
doing performance analysis. D’Ambrogio and Bocciarelli [37] describe web ser-
vice orchestrations by means of annotated UML activities; the results of the
performance analysis are provided through the service registry by means of
Performance-enabled WDSL [36].

Other approaches provide dedicated languages for performance modeling.
For instance, the Palladio Component Model (PCM) [20] allows to model soft-
ware components and their performance characteristics in a—compared to the
UML—much more detailed way. PCM models can then be analyzed using
the Eclipse-based Palladio workbench. Another example in the context of
component-driven software engineering is KLAPER [87], which defines a simple
but expessive kernel language for performance modeling, reducing a language
engineer’s task to defining a model transformation into that language (instead
of directly mapping her language into the target formalism suited for analysis).

All of the above approaches translate models into formalisms suitable for
analysis. However, every such translation assumes an individual behavioral se-
mantics of the according languages. In contrast, DMM is targeted at defining
the behavioral semantics of the UML and other languages in the first place,
which can—as we have seen during this thesis—be used for all kinds of pur-
poses, including simulation, functional analysis, or even language reference for
advanced language users. As such, in the ideal situation, DMM performance
information is added to a language the semantics of which is already accepted

213

CHAPTER 9. FORMULATING AND VERIFYING REQUIREMENTS

and used in different contexts, and the performance analysis is based on exactly
that semantics.

214

10
Debugging Models

In the last chapter, we have seen how we—given a model and an according
DMM semantics specification—can formulate and verify behavioral properties
of that model. For this, we have used GROOVE to generate a labeled transition
system which we have then model checked using the formulas generated from
the generalized (E)PPSL expressions. Of course, the GROOVE model checker
delivers counter examples in terms of states and transitions of the transition
system.

However, investigating such a transition system is a difficult and cumbersome
task for a number of reasons. First of all, we have seen that the states of
the transition system are instances of the runtime metamodel, which can be
quite difficult to comprehend. Additionally, due to the so-called state explosion
problem, the transition systems tend to be very large.

One solution for (at least partly) solving this problem would be to show the
execution of a model in the model’s own concrete syntax. This has two major
benefits:

• It is significantly easier to find interesting states of execution, e.g., situa-
tions where a particular Action is executed.

• Investigating the states of the transition system only is an option for ad-
vanced language users, i.e., people who are at least familiar with the lan-
guage’s metamodel. In contrast, visualizing the model execution in con-
crete syntax is much easier to comprehend, in particular for people only
having an intuitive understanding of the language at hand.

In this chapter, we show how we extended the DMM approach to allow for
exactly that. We will show how the language engineer (i.e., the person who
defines a modeling language) can make her language visualizable and debuggable
by adding models containing all information necessary to visualize a model’s
execution, and how this information is used to extend existing visual editors at
runtime for the sake of showing the model execution. As a result, the language
engineer can make the language under consideration visualizable and debuggable
without writing a single line of code.

In the next section, we will show what information the language engineer
has to provide, and how this information is specified by means of certain con-
figuration models. Section 10.2 then introduces to the debugging of models in
a visual way; we show how to define breakpoints and integrate the animation
capabilities developed in Sect. 10.1 into the model checking process. The imple-
mentation of the above concepts is briefly discussed in Sect. 10.3, and finally,

215

CHAPTER 10. DEBUGGING MODELS

related work is reviewed in Sect. 10.4. This chapter is based on [12], which is a
result of the diploma thesis of Nils Bandener [11].

10.1 Visual Model Execution

With DMM, we can define the semantics of a modeling language, calculate
execution states of model instances, and apply further analytical methods to
it. However, the basic concept of DMM provides no means to visualize the
execution and the therein occurring states of a model; a feature which is helpful
for monitoring, better understanding, or debugging a model—especially if it is
written in a visual language.

Thus, we have developed a tool for visually executing and debugging mod-
els with DMM-specified semantics, the DMM Player [12, 11]. From a techni-
cal perspective, the tool is a set of Eclipse plug-ins, which is able to process
models and DMM semantics specification. The visualization is realised using
the Graphical Modeling Framework (GMF) [50], a framework for developing vi-
sual editors for EMF-based models. As there are already numerous existing
GMF editors for behavioral models which—however—do not support display-
ing runtime-information such as tokens or active states, the DMM Player also
provides means to augment existing editors by such elements.

Let us now focus on the underlying concepts which make the visualization
of a model execution possible. Using UML activities as a running example, we
start with the fundamental question on how to visualize execution states and
how the augmentation of existing visualizations can be specified in a model-
driven way. Beneath the graphical dimensions, we will also have to consider the
time axis when visualizing the execution. This will be covered in Sect. 10.1.2.
Section 10.1.3 covers means of controlling the execution path when external
choices are necessary. Finally, in Sect. 10.1.4 we will demonstrate our approach
on another language, i.e., UML Statemachines.

10.1.1 Visualizing Runtime Information
In order to visualize the behavior of a model, i.e., the development of its runtime
state over time, it is essential to be able to visualize the model’s runtime state at
all. However, this cannot be taken for granted. While certain visual languages
have an inherent visual syntax for runtime information—such as Petri nets [162]
visualizing the state using tokens on places—many visual languages only support
the definition of the static structure. For instance, as we have seen earlier, the
behavioral semantics of UML activities is based on token and offer flow, but
the abstract syntax definition, i.e., the UML metamodel, does not contain those
concepts. Therefore, existing visual editors for UML activities only support
visualization of the static structure of activities.1

As we have seen, DMM copes with this by encoding such information into
the runtime metamodel, which formally defines an abstract syntax for runtime
states of models in the particular language. With the DMM Player, we have

1We do not explain the definition of such diagram visualizations within this thesis; however,
in Fig. 9.16 on page 197 we have seen an example for the visualization of a UML activity’s
static structure by means of an editor provided by the UML2Tools project [52] and realized
on top of the Graphical Modeling Framework [50].

216

10.1. VISUAL MODEL EXECUTION

Figure 10.1: An UML activity diagram with additional runtime elements.

developed a set of concepts and techniques to define a concrete syntax for those
runtime states. Similar to the enhancement by runtime information in the
abstract syntax, the concept allows for building on the concrete syntax of the
static part of models in order to create the concrete syntax for runtime states.
The enhanced concrete syntax is defined in a completely declarative, model-
based way.

For creating such a visualization with the DMM Player, three ingredients
are needed: An idea on how the concrete syntax should look like, the DMM
runtime metamodel, and an existing extensible visualization implementation
for the static structure of the particular language.

Our implementation of the DMM Player allows to extend GMF-based edi-
tors, as GMF offers all required extension mechanisms. The particular imple-
mentation is described in Sect. 10.3. In the following, we will focus on the con-
cepts, which are—while being partially inspired by—independent from GMF.
Essentially, this means that definitions for an enhanced concrete syntax may
be also used in conjunction with other frameworks. This of course requires an
implementation interpreting the DMM artifacts for these particular frameworks.

The first concern is how the runtime information should be visualized in
concrete syntax. Beneath the obvious question on the shape or appearance
of runtime information, it may also be necessary to ask what runtime objects
should be included in the visualization at all. Certain runtime information may
be only useful in certain contexts. In the example of UML activity diagrams,
the visualization of tokens is certainly essential; we visualize tokens—aligned
with the visualization in Petri nets—as filled black circles attached to activity
nodes. An example for such a diagram can be seen in Fig. 10.1. For debugging of
models and semantics, visualized offers may also be useful; offers are visualized
as hollow circles. As multiple tokens and offers may be in action at once, an
arrow visualizes which offers are owned by which tokens.

The diagram in Fig. 10.1 also shows boxes labeled with the letters EX. These
boxes indicate that the particular node is currently executing.

Having an idea on how the concrete syntax should look, we combine it with
the formal structure of the runtime metamodel to create a so called diagram
augmentation model which associates certain parts of the runtime metamodel
with visual shapes. The word “augmentation" in the name of the model refers
to the fact that it is used by the DMM Player to augment the third ingredient,
the preexisting static diagram visualization, with runtime information.

217

CHAPTER 10. DEBUGGING MODELS

DiagramAugmentationModel

- dia gram Type :St ring

AugmentationElement

- displayName :String
- ico nURL :St ring
- pro vide Tool :boo lean

AugmentationEdge AugmentationNode

ShapeAugmentationEdge

- col or :Color
- l in eStyl e :Li neStyle

EdgeEndDecoration

ShapeEdgeEndDecora tion

- sha pe :Edge EndShap e

ShapeAugmentationNode

- sha pe :Shap e
- forgroun dCol or :Color
- ba ckgro undColor :Colo r
- lab el :S tring

EClass

ERefere nce

«e nume ratio n»
Shape

 CIRCLE
 SQUARE

«e nume ratio n»
LineStyle

 SOLID
 DASHED
 DOTTED

«e nume ratio n»
EdgeEndSha pe

 SIM PLE_ARROW_HEAD
 FIL LED_ARROW_ HEAD

0..*

sou rceDecora tion 0..1 targetDe cora tion0..1

con tain ment

1

au gmen tatio nCla ss

1

references

1..2

references

1..*

Figure 10.2: Metamodel for diagram augmentation models.

Diagram augmentation models are defined by means of the metamodel which
is pictured in Fig. 10.2. The class DiagramAugmentationModel is the root
element, i.e., each augmentation model contains exactly one instance of this
class. The attribute diagramType is used to associate a particular diagram
editor with the augmentation model – this diagram editor will then be used for
displaying runtime states.

The actual elements to be visualized are determined by the classes Aug-
mentationNode and AugmentationEdge. More precisely, as both classes
are abstract, subclasses of these classes must be used in an instance of the meta
model. The subclasses determine the implementation type of the visualization.

The way the elements are integrated into the existing diagram is determined
by the references between AugmentationNode and AugmentationEdge on
the one side and EReference and EClass on the other side. They represent
elements from the DMM runtime metamodel the visualization is supposed to
be based on.

218

10.1. VISUAL MODEL EXECUTION

:DiagramAugmentationModel

dia gram Type = "UMLActivit y"

:ShapeAugmentationNode

sha pe = Sha pe.CIRCLE
ba ckgro undColor = Col or.BL ACK
forgroun dCol or = Color.BLACK

:EClass

na me = "Con trolT oken "

:EClass

na me = "Token"

:EReference

na me = "con taine d_in "

:EClass

na me = "Acti vityNode"

au gmen tatio nCla ss

sup erTypes

typ e

references

Figure 10.3: Excerpt of the augmentation model for UML activities.

In the case of an AugmentationNode, the following references need to
be set: The reference augmentationClass determines the class from the
runtime metamodel which is visualized by this particular node; however, this
is not sufficient, as the class needs to be somehow connected to elements that
already exist in the visualization of the static structure. For instance, a token
is linked to an activity node and should thus be visually attached to that node.
This connection is realized by the reference named references; it must point
to an EReference object from the referenced augmentationClass or one
of its super classes. The EReference object in turn must point towards the
model element the augmenting element should be visually attached to. Thus,
this model element must belong to the static metamodel and must be visualized
by the diagram visualization to be augmented. The reference containment is
only relevant if the user shall be able to create new elements of the visualized
type directly in the editor; those elements will be added into the containment
reference specified here.

Figure 10.3 shows the part of the augmentation model for UML activities
which specifies the appearance of control tokens, which are a subclass of tokens.
The references link specifies that the reference named contained_in de-
termines to which ActivityNode objects the new nodes should be attached
to. The references link is part of the class Token. However, as the link
augmentationClass specifies the class ControlToken as the class to be
visualized, this particular ShapeAugmentationNode will not come into effect
when other types of tokens occur in a runtime model. Thus, other augmentation
nodes may be specified for other tokens.

10.1.2 Defining the Steps of Executions
Being able to visualize individual runtime states, creating animated visualiza-
tions of a model’s behavior is straightforward. Sequentially applying the rules
of the DMM semantics specification yields a sequence of runtime states which
can be visualized with a brief pause in-between, thus creating an animation.

However, the sequence of states produced by DMM is not necessarily well
suited for a visualization. In many cases, subsequent states only differ in parts
that are not visualized. These parts are primarily responsible for internal infor-

219

CHAPTER 10. DEBUGGING MODELS

Figure 10.4: A sequence of states exhibiting a temporary inconsistency.

mation which is specific to the particular implementation of the semantics, but
is not relevant for the behavior of the final model. Including these steps in the
animation would cause strange, irregular pauses between visual steps.

Furthermore, DMM semantics may produce states with temporary inconsis-
tencies. These states also result from implementation details of the particular
DMM semantics specification. DMM rules may modify a model using several
consecutive invocations of other rules; this is necessary if the semantics of a
language element is too complex to be described within one rule. Each invoked
rule produces a new state, which however might be wrong—when viewed from
pure semantics perspective without implementation details. In the case of the
particular implementation the state is of course still correct, as the subsequently
invoked rules correct this inconsistency, thus making it a temporary inconsis-
tency.

Figure 10.4 shows an example for a temporary inconsistency. In the first
state, an offer has reached the final node. The activity diagram semantics now
demands that the corresponding token should be moved to the node reached by
the offer. The DMM implementation of the semantics however creates a new
token on the target node before removing the original token from its location.
This creates a temporary inconsistency as introduced above with two tokens
being visible at once.

The visualization of temporary inconsistencies might be interesting for the
developer of the DMM semantics implementation; for a user only interested in
viewing the behavior of a model, such states should not be visualized.

Thus, we need a way of selecting the states that should be displayed to the
user. There is a number of different approaches to that problem which we will
briefly discuss in the following.

If the visualization of temporary inconsistencies is desired and only the afore-
mentioned problem of steps without visual changes needs to be addressed, a very
simple solution is obvious: Using the diagram augmentation model, it is pos-
sible to determine what elements of the runtime model are visualized. The
DMM Player can use this information to scan the consecutive states for vi-
sual changes; only if changes are detected, a visual step is assumed and thus
promoted to the user interface.

If temporary inconsistencies are to be avoided in the visualization, other
measures need to be applied. A simple and straight-forward approach would
be to visualize only the state when the application of a bigstep rule has been

220

10.1. VISUAL MODEL EXECUTION

StepDefinitionModel

StepDefinition

- wh enMa tche d :bo olea n
- be foreApplication :bo olean
- afterApp licat ion :bool ean
- afterCom plet ion :bool ean

RuleTypeStepDefinition

- rul eTyp e :Ru leType

ConcreteRuleStepDefinition
Na medE leme nt

Rule

- /un ique Name :St ring

«e nume ratio n»
RuleType

 BIGSTEP_RULE
 SM ALL STEP_RULE
 PROPERTY_ RUL E

rul e

1

0..*

Figure 10.5: Step definition metamodel.

finished; application in this context means that the changes by the bigstep rule
and by its invocations have been performed. As temporary inconsistencies are
typically raised by an invocation and again fixed by a consecutive invocation,
temporary inconsistencies will be fixed when all invocations have been finished
and thus the application of a bigstep rule has been finished.

However, the structuring concept of bigstep and smallstep rules has not been
designed for visualization purposes; thus, it is also possible to find cases in which
a state produced by a smallstep rule should be visualized while the application
of the invoking bigstep rule has not been finished yet. Just restricting the
visualization to states left by bigstep rules is thus too restrictive.

An obvious solution would be the explicit specification of all rules that should
trigger a visual step. This is, however, also the most laborious solution, as each
rule of the semantics specification needs to be treated. In the case of the DMM-
based UML activity semantics specification by Hornkamp [105], this means the
inspection of 217 rules.

Our solution is a combination of the approaches – the metamodel defining
step definition models is depicted as Fig. 10.5. Thus, in addition to the specifi-
cation of individual rules triggering visual steps, the DMM Player also allows for
the specification of e.g. all bigstep rules. Furthermore, it is possible to specify
whether the visualization should be triggered before or after the application of
the particular rules, already when they just match, or after completion of the
rule (which refers to the point in time where all the rule’s invocations have been
processed).

For creating a suitable animated visualization with the DMM UML activity
semantics, it is sufficient to trigger a visual step after the application of all
bigstep rules and after the application of only one further smallstep rule, which
takes the responsibility of moving a token to the new activity node that has
accepted the preceding offer.

221

CHAPTER 10. DEBUGGING MODELS

10.1.3 Controlling Execution Paths
A limitation of the behavior visualization using an animated sequence of states is
its linearity. In some cases, the behavior of a model may not be unambiguously
defined. For instance, this is the case in the activity diagram we have seen
before in Fig. 10.1; the left decision node has two outgoing transitions. Both
are always usable as indicated by the guard [true]. In a transition system,
such a behavior is reflected by a fork of transitions leading from one state to
several distinct states. In an animation, it is necessary to choose one path of
the fork. At first sight, it is evident that such a choice should be offered to the
user.

The DMM Player can offer this choice to the user by pausing the execution
and visualizing the possible choices; after the user has made a choice, execution
continues.

However, there are cases in which it is not feasible for the user to choose the
path to be used for every fork in the transition system. This is primarily the case
for forks caused by concurrency in the executed model. Even though a linear
execution does not directly suffer from state space explosion, concurrency might
require a decision to be made before most steps of a model execution. This is
due to the interleaving semantics GROOVE realizes. For instance, consider the
transition system depicted as Fig. 4.3 on page 28: The interleaving structure
caused by the underlying model’s concurrency results in basically every state
having more than one outgoing transition.

As the semantics of concurrency can be interpreted as an undefined execution
order, it is reasonable to let the system make the decision about the execution
order automatically. Forks in the transition system which are caused by model
constructs with other semantics—such as decision nodes—should however sup-
port execution control by user interaction.

Now, the problem is to distinguish transition system forks that should require
user interaction from others. More precisely, as a single fork can both contain
transitions caused by decision nodes and by concurrency, it is also necessary to
identify the portions of a fork that are supposed to form the choices given to
the user.

As an example, consider the UML activity depicted as Fig. 10.6. Its tran-
sition system contains a lot of forks, only a few of which are actually caused
by DecisionNodes; the other forks are caused by the interleaving semantics
resulting from the model’s concurrency. Since concurrency means that the order
of the concurrently executed Actions does not matter, the user should not be
bothered with those forks. In the following, we will discuss how the desired
behavior can be achieved.

First of all, a basic measure for identifying the model construct that caused
a fork or a part of it is considering the transformation rules that are used for
the transitions forming the fork. In the case of the DMM semantics for UML
activities, the transitions which cause the forks at decision nodes are produced
by the bigstep rule decisionNode.flow()# (see Fig. 10.7). Forks which consist of
transitions caused by other rules can be regarded as forks caused by concurrency.

Just considering the rules causing the transitions is not sufficient, though.
Concurrency might lead to forks which consist of decisionNode.flow()# transi-
tions belonging to different decision nodes in the model. If each of those decision
nodes has only one active outgoing transition, there is no choice to be made by

222

10.1. VISUAL MODEL EXECUTION

Figure 10.6: Example UML activity that contains concurrency and decisions
(from [11, p. 59]).

Figure 10.7: DMM Rule decisionNode.flow()#.

223

CHAPTER 10. DEBUGGING MODELS

1

23

[. . .]

25

decisionnode.flow()#("b1e")

26

decisionnode.flow()#("b2e")

27

decisionnode.flow()#("a1e")

24

decisionnode.flow()#("a2e")

34

[. . .]

44

decisionnode.flow
()#("a2e")

43

de
ci

si
on

no
de

.fl
ow

()
#(

"a
1e

")

42

action.start()#("b2")

[. . .][. . .] [. . .]

33

[. . .]

41

decisionnode.flow
()#("a2e")

40

de
ci

si
on

no
de

.fl
ow

()
#(

"a
1e

")

39

action.start()#("b1")

[. . .][. . .] [. . .]

35

[. . .]

46

decisionnode.flow
()#("b2e")

47

de
ci

si
on

no
de

.fl
ow

()
#(

"b
1e

")

45

action.start()#("a1")

[. . .][. . .] [. . .]

32

[. . .]

38

de
ci

si
on

no
de

.fl
ow

()
#(

"b
2e

")

36

action.start()#("a2")

37

decisionnode.flow
()#("b1e")

[. . .] [. . .][. . .]

Figure 10.8: A part of the transition system induced by the model from Fig. 10.6
(after [11, p. 59]).

224

10.1. VISUAL MODEL EXECUTION

the user but just choices purely caused by concurrency.
Thus, it is necessary to group the transitions at a fork by the model element

they are related to. This model element can be identified by using the rule
match associated to the particular transition (see Sect. 6.3 for the definition of
of rule matching and application). The match is a morphism between the nodes
of the particular DMM rule and elements from the model. Generally, one node
from a rule that is supposed to trigger a user choice can be used to identify the
related model element. In the case of the DMM activity semantics, this is the
DecisionNode element.

Figure 10.8 visualizes the above concepts. At the top, a runtime state of
our activity from Fig. 10.6 can be seen: The single token is sitting on the
InitialNode, and its Offer has just passed the ForkNode and has been
copied. Thus, in the next step, either the upper or the lower Offer is going
to pass the according DecisionNode. For each of the DecisionNodes, two
outgoing ControlFlows exist. Thus, there are four possible continuations.

At the bottom, a part of the activity’s transition system can be seen. The
runtime state of our model is state 23, which accordingly has four outgo-
ing edges, each labeled with rule decisionNode.flow()#. Note that the rule
has slightly been modified for this example: An emphasized node attribute
has been added which displays the name of the DecisionNode’s outgoing
ControlFlow within the transition’s label.

In the middle, the rule has been depicted two times, and for each rule, an
underlying rule matching (i.e., the morphism from rule node to state node,
the latter in concrete syntax) has been visualized. The right matching refers
to the rule application between states 23 and 25: The DecisionNode node
of the rule has been mapped to the model’s lower DecisionNode, and the
DecisionNode’s outgoing ActivityEdge within the rule has been mapped
to the ControlFlow with name “b1e”. The other match refers to the rule
application between states 23 and 24; the rule’s elements have been mapped to
the upper DecisionNode and ControlFlow “a2e”.

Now, to distinguish the matchings by the model’s DecisionNodes, it suf-
fices to group them by the match between the rule’s DecisionNode and the
model’s DecisionNode: Two rule matchings are in the same group if their
group node is matched to the same runtime model node. For state 23, this
results in two groups of rule applications.

With these components, we can build an algorithm for identifying the in-
stances of transition system forks in which the user should be asked for a choice;
the algorithm is depicted as Fig. 10.9.

It first receives all outgoing transitions of the current state. If no or only
one transition is found, the algorithm is done and returns the found transition
(or null, respectively). Otherwise, the transitions are grouped by the rule and
by the elements bound to the grouping node defined for the particular rule. If
there is no grouping node or the rule is not supposed to cause user choices, the
particular transition forms a group of size one.

Next, an arbitrary group is selected. If that group contains only one tran-
sition, the algorithm is again done and returns that transition. Otherwise, the
selection of a transition depends on the kind of transitions contained in the
group: If switch instances are defined for them, than the selection is delegated
to the user. Otherwise, we have concurrent behavior, in which case the algo-
rithm arbitrarily chooses a transition. In both cases, the selected transition will

225

CHAPTER 10. DEBUGGING MODELS

Choose Transition

Find
transitions

from current
sta te

Return
transition

Group
transitions
by rule and
group nodes

Arbitrarily
choose one

group

Le t the user
choose one

transition

Arbitrarily
choose one

transition

[nu mbe r of
tra nsitio ns = 0] [nu mbe r of

tra nsitio ns = 1]

[nu mbe r of
tra nsitio ns in
gro up = 1]

[group o f swi tch
instance s cho sen]

Figure 10.9: Algorithm for selecting a transition to be followed.

SwitchDescriptionModel SwitchDescription SwitchDefinition

NamedElement

Rule

- /uniqueName :String

GraphElement
NamedElement

Node
0..* identificationNode

1

0..*

groupNode

1

0..*

rule

1

definitions

0..*

descriptions

0..*

Figure 10.10: Metamodel for describing rules which indicate decisions.

be returned.
This algorithm enables us to ensure that the user is only required to make

choices regarding single instances of certain model constructs, such as decision
nodes.

A remaining problem is how to give the user an overview over the possible
choices. We can again utilize nodes from the rules that are supposed to trigger
user choices. In most cases, those rules contain a node which represents the
different targets which can be reached while the aforementioned grouping node
stays constantly bound to the same model element. If the model element repre-
sented by the target node is part of the diagram, this diagram element can be
used for identifying the different choices.

In the case of UML activities, this is the target ActivityEdge node in
the rule decisionNode.flow()#. This can be seen in Fig. 10.8: The left, vi-
sualized match differs by the match corresponding to the transition between
states 25 and 26 only by the match target of the DecisionNode’s outgoing
ActivityEdge.

The information on rules indicating user choices, grouping nodes and identi-
fication nodes is captured as instances of the metamodel depicted as Fig. 10.10.
A SwitchDescriptionModel consists of SwitchDefinitions which are
grouped to SwitchDescriptions. Each SwitchDefinition references its
rule as well as the groupNode and the identificationNode.

The DMM Player can now use switch description models to visualize the

226

10.1. VISUAL MODEL EXECUTION

Figure 10.11: UI for choosing execution paths (from [11, p. 50]).

227

CHAPTER 10. DEBUGGING MODELS

Figure 10.12: Example state of Statemachine execution.

possible choices using generic marker signs as is depicted in Fig. 10.11. The
user may easily select one of the choices using the context menu of one of these
model elements.

10.1.4 Example: UML Statemachines
To further demonstrate the usefulness of our approach, within this section we
provide a second language for which we have applied our visualization/animation
approach: UML statemachines.

Let us briefly discuss the language of UML statemachines. Syntactically,
a statemachine mainly consists of states and transitions between those states.
At every point in time, a Statemachine has at least one active state. There are
different kinds of states, the most important ones being the simple state and the
complex state (the latter will usually contain one or more states). The semantics
of transitions depends on their context: For instance, an unlabeled transition
from a complex state’s border to another state models that the complex state
can be left while any of its inner state(s) is active. More advanced concepts
like history nodes allow to model situations where, depending on different past
executions, the statemachine will activate different states.

A sample statemachine is depicted as Fig. 10.12 (note that this figure already
contains runtime information). The first active state will be state A1. From this
state, either state A2 or A3 will be activated. In case of state A3, the Complex
State 1 will be entered. The state marked H* is a so-called deep history state;
it makes sure that in case state Complex State 1 is activated again, all states
which were active when that state was left are reactivated.

We now want to briefly investigate the DMM semantics specification of UML
statemachines. As we have seen before, states of execution2 of a statemachine
are determined by the active states. As a consequence, the runtime metamodel
of statemachines contains the concept of a Marker which references the cur-
rently active states (and will be moved by according DMM operational rules).
To remember the last active states in case a complex state is left that contains
a history state, the runtime metamodel introduces the HistoryMarker.

Next, we want to discuss how the execution of a Statemachine is visualized.
In Fig. 10.12, we have already seen a Statemachine augmented with runtime

2Note that state is overloaded here; as before, state of execution refers to the complete
model.

228

10.1. VISUAL MODEL EXECUTION

:ShapeAugmentationEdge

l in eStyl e = L ineS tyle.DASHED
col or = Color.BLACK

:DiagramAugmentationModel

dia gram Type = "UMLStateM ach ine"

:EClass

na me = "HistoryM arker"

:EClass

na me = "Pse udoState"

:EClass

na me = "Vertex"

:EReference

na me = "con taine d_in "

:EReference

na me = "belo ngs_ to"

au gmen tatio nCla ss

references

references typ e

typ e

Figure 10.13: Excerpt of the augmentation model for UML Statemachines.

information. Active states can be recognized by an attached box with the label
ACT. These boxes represent the Marker instances from the runtime metamodel.

Further runtime information can be seen around the deep history state H*.
The dashed arrows pointing away from that state signify the states that will
be activated as soon as the complex state containing the history state is en-
tered again. Thus, these arrows represent HistoryMarker instances. The
part of the augmentation model that realizes the arrows representing history
markers can be seen in Fig. 10.13. The ShapeAugmentationEdge instance
specifies the class to be additionally visualized, i.e., the HistoryMarker and
its references which determine the end points of the visualized edge.

We are now ready to explain the runtime state of the Statemachine which
can be seen in Fig. 10.12. The currently active state is A1. Since from that state,
either state A2 or A3 can be reached, the DMM player has already asked for a
user decision – as the icons show, the user has decided to follow the transition
leading to state A3.

To realize the user choice, the implementations of the rule transition.fireTran-
sition()# had to be taken into account which handle the different circumstances
under which a transition might fire. Four of these rules are related to actual
choices; the other rules are related to explicit or implicit concurrency. Explicit
concurrency can be modeled within a UML Statemachine by means of using
the PseudoState with kind Fork, and implicit concurrency can be modeled
through states containing parallel Regions. Therefore, it sufficed to mark the
four rules related to choice as ExecutionPathSwitches.

The visualization also reveals that Complex State 1 had already been active
in the past. This is because there do exist HistoryMarker edges. The edges
point to the states which had been active within state Complex State 1 before it
was left through the transition between Complex State 2 and A1 (i.e., Complex
State 2 and, within that state, C2). Therefore, after two further execution
steps, these states will be set active again.

The DMM specification of Statemachines contains several

229

CHAPTER 10. DEBUGGING MODELS

10.2 Model Examination

In the last section, we have seen how DMM specifications can be enriched with
visualization and execution information and then animated. This is already use-
ful when trying to understand the semantics of a certain model. In this section,
we will introduce additional support for understanding a model’s semantics and
fixing problems revealed with the analysis techniques introduced in Ch. 9.

In some sense, we are aiming at providing concepts and tools similar to de-
buggers in classical programming environments. The main concept of debuggers
is the breakpoint; in the next section, we will discuss the notion of breakpoints
DMM supports. Section 10.2.2 then explains the process of executing a model
while respecting breakpoints and watchpoints.

We have seen that analyzing functional requirements will—in the case a re-
quirement does not hold—result in a counter example, i.e., a path through the
transition system which violates the according requirement. Using the visualiza-
tion techniques from Sect. 10.1 and the debugging techniques from Sect. 10.2.2,
it is straight-forward to provide visual feedback on counter examples to the user,
which is discussed in Sect. 10.2.3.

10.2.1 Controlling Model Execution
As we have seen up to now, the main objective of the DMM Player is the
visualization of a model’s behavior by means of animated concrete syntax. This
is very useful when trying to understand the details of a model’s behavior,
for instance if the model contains flaws. One feature which would obviously
be of great use in such scenarios is the possibility to stop the execution of a
model as soon as certain states of execution are reached. In other words: The
transformation of concepts known from debuggers for classical programming
languages to the DMM world is needed.

The purpose of a classical debugger is to help the programmer in searching for
and correcting errors of the program. It does this by allowing the programmer
to interrupt a program’s execution and investigate the internal execution state
of the program, e.g. by means of the current program counter, call stack or
values of locally and globally visible variables.

The most important concept of classical debuggers is the breakpoint, i.e., a
line marked such that the program execution stops when that line is reached.
In the next section, we will discuss the realization of breakpoints in DMM. A
related concept are watchpoints, where the developer defines expressions over
variables of the program; as soon as a watchpoint’s expression evaluates to
true, the program stops execution. DMM also supports watchpoints, which are
discussed in Sect. 10.2.1.2.

10.2.1.1 Breakpoints

The main concept of classical debuggers is the breakpoint, which refers to a
marker in the source code; as soon as program execution reaches that marker, the
execution is suspended. In DMM, the situation is slightly different: Executing a
model means to apply the rules of the model’s semantics specification one after
the other. In other words: The execution of a model relies on the model itself
and the rules of the semantics specification.

230

10.2. MODEL EXAMINATION

Figure 10.14: Eclipse breakpoint view with single breakpoint for rule ac-
tion.start()#.

One approach to defining breakpoints in the context of DMM would be
to associate them with syntax elements of the executed model; for instance, a
certain Action could be marked as breakpoint, and the execution could stop as
soon as that Action is to be executed. However, a number of consecutive rule
applications might be needed to realize the semantics of a single syntax element;
thus, relying only on a model’s syntax elements for defining breakpoints appears
to be too coarse-grained.

In DMM, the smallest unit of execution are rules. Thus, a DMM breakpoint
is associated to a rule (in contrast to a marker in the source code as in traditional
debugging); as soon as this rule takes places when debugging a model, the
execution is stopped. DMM breakpoints can be configured to stop execution
either if a rule matches the current state, before being applied,3 or after being
applied.

Some program debuggers allow to equip breakpoints with additional condi-
tions. A conditional breakpoint will only cause the program’s execution to be
suspended if the breakpoint is reached and the condition evaluates to true at
that time. This is also supported by DMM: A breakpoint can be associated with
a condition about the rule’s nodes’ attribute values. This can also be used to
realize the scenario described above: A breakpoint can be defined which carries
an Action’s name as its condition; associated with the main rule for executing
Actions (i.e., rule action.start()# as seen earlier in this thesis), the breakpoint
causes the interruption of the model execution as soon as the according Action
is to be executed.

However, when using conditions it is not sufficient to use an existing DMM
rule for reference of the breakpoint: Adding a condition to the rule would change
the rule’s—and thus the DMM specification’s—semantics. For this reason,
DMM breakpoints with conditions are treated slightly differently: If a model is
debugged, copies of the rules occuring in conditional breakpoints are created,
and the referenced node of each of these rules is equipped with the according
condition (the target node of a condition is selected by prefixing the condition’s
left side’s attribute name with the node’s name).

The resulting transition system will then only differ from the orginal one
by additional transitions: If the original rule is applied and the condition is
true, an edge “parallel” to the edge resulting from the original rule’s application
will exist (since the rule copy will result in the same target state as the original
rule). These additional edges can then be utilized by the debugger for according
model suspensions, but do not change the model’s semantics.

Figure 10.14 shows the Eclipse Breakpoint view containing a single DMM
breakpoint, in this case for rule action.start()#; to the top of the figure, the “Add

3Many rules might match a state, but only one will be chosen for application.

231

CHAPTER 10. DEBUGGING MODELS

Figure 10.15: DMM breakpoint configuration dialog.

Rule Breakpoint” button can be seen, with which new DMM breakpoints can
be defined.

Figure 10.15 shows the dialog allowing to configure the breakpoint shown
as Fig. 10.14. At the top, the target rule can be seen, and the breakpoint can
in general be enabled or disabled. Below, the actual moment of interrupting
model execution can be configured by selecting “When Matched”, “Before Ap-
plication”, and “After Application”. Note that more than one option may be
selected, possibly resulting in more than one suspension per rule application.
At the bottom, a condition can be specified, resulting in the behavior as de-
scribed above. In Fig. 10.15, the condition makes sure that model execution is
suspended as soon as the action with name “A” is to be applied.

10.2.1.2 Watchpoints

In contrast to breakpoints, watchpoints are not associated to a certain line of
code. Instead, a watchpoint defines a condition over variables of the program;
the program’s execution is suspended as soon as the condition evaluates to true.

In DMM, property rules can be used for the same purpose. Recall from
Sect. 6.2.2.8 on page 68 that property rules do not change the state they are
applied to, they only result in a self-transition of that state – that is why we
have used them to formulate and verify functional requirements in Sect. 9.1.

As such, the modeler can add property rules to the semantics specification
which describe the (global) state she is interested in, and then define rule break-
points using these property rules, including conditions.

10.2.2 Model Execution Process
Debugging a model now means to take control of the graph transformation
process; the idea is to “walk” a certain path through the transition system,
visualizing execution steps as explained in Sect. 10.1.2 and letting the user

232

10.2. MODEL EXAMINATION

Model Execution Process

Get matching
transitions

Suspend
execution

Check for
tight loop

Suspend
execution

Follow
transition

Visualize
current state

Wait for step
delay

Suspend
execution

Choose
transition

[breakpoint
reached]

[no transition
available]

[tight loop and
no alternative]

[tight loop, alternative available]

[breakpoint
reached]

[visual step]

[breakpoint
reached]

Figure 10.16: Model Execution Process.

control the path at decision points as described in Sect. 10.1.3. The underlying
execution process is depicted as Fig. 10.16.

The process starts with getting the transitions originating from the initial
runtime state of our model. Since a breakpoint can already apply when its
rule only matches the current state, this is the first time to check whether a
breakpoint is indeed hit. If this is the case, the execution is suspended.

Otherwise, the DMM Player chooses a transition. This is the most complex
of the process’s actions: The algorithm to choose a transition as described in
Sect. 10.1.3 is executed here, and if it results in a user choice, the user is asked
to make her selection. If no transition has been found, the execution is ended.

Otherwise, the algorithm checks for tight loops. To understand why this is
necessary, consider a DMM specification and model which give rise to a tran-
sition system containing loops. This is in general perfectly fine and will quite
often be the case. However, when studying the execution of a model by means
of animated concrete syntax, the user can only recognize such a loop if it results
in at least two visually distinct steps of execution; otherwise, the model will
not change, and the user will have to study the executed rules to figure out the
reason for this, which can be quite cumbersome. This situation is called a tight
loop. Tight loops can be detected by keeping track of the states and visual
steps; if the same state is seen with less than two visual steps in between, a
tight loop is found.

If a tight loop has been detected, the algorithm tries to choose a different
transition; if this is not possible, execution is ended (and the user is notified of
the cause). Otherwise, or if no tight loop had been detected, we have finally
found the transition to follow. This is again time to check for hitting breakpoints
(this time we consider the ones being configured to match “Before application”).

Then, the transition is followed. Now, if the transition corresponds to a

233

CHAPTER 10. DEBUGGING MODELS

visual step, the visualization is updated to reflect the new model state; after
waiting for the configured delay, the execution is continued.

Finally, it is once more checked whether any breakpoints are hit, this time
for the ones configured as “After application”. Afterwards, the process is started
over by computing the next set of transitions.

10.2.3 Debugging Models
Finally, let us show how the above concepts can be applied to improve a model’s
quality. This is now rather straight-forward:

1. First, the functional requirements which the model shall fulfill are formu-
lated using generalized (E)PPSL as described in Sect. 9.1.

2. Then, the GROOVE model checker is used to verify the requirements.
In case all requirements hold, we are done. Otherwise, GROOVE will
deliver a counter example, i.e., a path through the model’s transition
which violates the requirement.

3. The counter example is visualized by means of the DMM Player. To
understand the issue at hand, the debugging facilities as provided above
can be applied.

4. The model is modified to correct the problems identified in step 3.

5. The requirements are verified again (i.e., we continue with step 2). Note
that since we have changed the model, we also have to verify the require-
ments again that were fulfilled.

Figure 10.17 shows a screenshot of the complete DMM debugging facilities. In
the center is the augmented UML activity editor showing a simple activity,
Action “b” of which is currently executed. To the top of the editor’s tool
panel, the augmented tools for creating Tokens and Offers are shown.

Right to the activity editor, the property view can be seen, which allows
to inspect the properties of the model’s elements; it shows the property of the
Offer selected in the activity editor. Above the activity editor, the Eclipse
debug view is located, which provides controls to pause and re-start model
execution as well as to step through a model.

For the current debug session, one breakpoint has been defined for rule
action.start()#. That breakpoint can be seen within the Eclipse breakpoint view
to the right of the Eclipse debug view. Finally, to the very bottom, the console
shows the log output produced by the DMM Player; here, all executed rules can
be seen.

10.3 Implementation

This section will give insights into our implementation of the concepts described
in the last section. However, our explanations are rather high-level – the reader
interested in more technical details is pointed to [11]. A high-level view of the
DMM Player’s architecture is provided as Fig. 10.18.

234

10.3. IMPLEMENTATION

Figure 10.17: Screen shot of the DMM Player in debug mode with the debug
controls, the breakpoints view, the properties editor for the selected offer and
the execution log in the console.

As mentioned above, the DMM Player builds upon Eclipse technologies;
still, the concepts of DMM are completely technology-independent. The im-
plementation can be divided into two mostly independent parts: The diagram
augmentation and the model execution. Both are connected by the EMF [44]
model just using its standard interfaces; the model execution process changes
the model. The diagram augmentation part listens for such changes and updates
the visualization accordingly.

The model execution part utilizes EProvide [179], a generic framework for
executing behavioral models inside of Eclipse. EProvide decouples the actual
execution semantics and the method to define them using two layers:

On the first layer, EProvide allows to configure the semantics description
language, which provides the base for the actual definition. The DMM Player
registers DMM as such a language. The second layer defines the actual execution
semantics for a language using one of the languages from the first layer. Thus,
a DMM semantics definition—such as the UML activities definition—is defined
at this level.

EProvide essentially acts as an adaptor of the semantics description lan-
guages to the Eclipse UI on one side and EMF-based models which shall be
executed on the other side. The DMM Player code receives commands from
EProvide along with the model to be executed and the semantics specification
to be used. The most important command is the step, i.e., the command to
execute the next atomic step in the given model. The DMM implementation
realizes that step by letting the backing graph transformation tool GROOVE
[166] perform the application of the according rule, and by translating the ma-

235

CHAPTER 10. DEBUGGING MODELS

DMM

GROOVE

EMF

GMF

Diagram
Augmentation

EProvide

Eclipse
Platform Debug

Framework

Code Dependency

Configuration Dependency

DMM Semantics
Definitions

DMM Player
Model Execution

Figure 10.18: Architecture of DMM tooling.

nipulations of the GROOVE rule back to the EMF model which is visualized.
The advanced features, such as the definition of visual steps—which actually

combines multiple steps into single ones—, the user control of execution paths,
and the debugging functionality, are realized directly by the DMM Player. The
EProvide module MODEF [22] also offers debugging functionality which, how-
ever, could not be directly utilized, as it makes a quite strong assumption. It is
assumed that the model’s state can be deduced from one single model element.
Since this is not the case with DMM, where a state is a complete model, we
needed to bypass this module.

The implementation of the DMM debugging facilities makes use of the
Eclipse Debugging Framework. At every point in time, the DMM Player keeps
track of the GROOVE rule applied in the last step to derive the current state,
as well as the rules matching that new state. If a breakpoint or watchpoint is
reached, the execution is suspended as desired.

The diagram augmentation part of the DMM Player uses extension points of
the GMF [50] for extending existing diagram editors. GMF offers quite extensive
and flexible means for customizing editors using extension points and factory
and decorator patterns.

GMF uses a three-layer architecture to realize diagram editors: Based on
the abstract syntax model on the lowest level, a view model is calculated for
the mid layer. The view model is simply a model representation of the graph to
be visualized, i.e., it models nodes that are connected by edges. On the third
layer, the actual UI visualization components are created for the elements from
the second layer. Thus, specific elements get a specific look.

The DMM Player hooks into the mapping processes between the layers;
between the abstract syntax model and the view model, it takes care that the
elements defined in the augmentation model are included in the view model.
Between view model and the actual UI, it chooses the correct components and
thus the correct appearance for the augmenting elements.

236

10.4. RELATED WORK

Thus, the DMM Player provides a completely declarative, model driven way
of augmenting diagram editors; there is no need to writing new or altering
existing source code. Figure 10.11 shows screenshots of the activity diagram
editor that comes with the Eclipse UML2 Tools [52] which has been augmented
by runtime elements using the DMM Player.

The DMM Player is designed to be generically usable with any DMM se-
mantics specification. Thus, it offers extension points and configuration models
that just need to be adapted in order to use a semantics specification with the
DMM Player.

10.4 Related Work

The first work obviously related to ours is the EProvide framework [179], which
we have used for the realization of the DMM Player. EProvide allows to asso-
ciate some kind of execution semantics with a GMF-based editor (in our case,
that semantics is of course the DMM semantics specification); as soon as the
backing model changes, the model’s concrete syntax is updated accordingly.
However, EProvide makes a quite strong assumption within its debugging com-
ponent MODEV: It is assumed that the model’s state can be deduced from one
single model element. Since this is not the case with DMM, where a state is a
complete model, we had to adjust EPRovide quite a bit.

The scientific work related to ours can mainly be grouped into two categories:
Visualization of program execution and animation of visual languages. For the
former, an interesting tool is eDOBS [79], which is part of the Fujaba tool suite.
eDOBS can be used to visualize a Java program’s heap as an object diagram,
allowing for an easy understanding of program states without having to learn
Java syntax; as a result, one of the main usages of eDOBS is in education. In
contrast to that, the concrete syntax of such eDOBS visualizations is fixed (i.e.,
UML object diagrams), whereas in our approach, the modeler has to come up
with his own implementation of the concrete syntax, but is much more flexible
in formulating it.

In the area of graph grammars and their applications, there are a number
of approaches related to ours: For instance, in [144, 13, 66], the authors use
GTRs to specify the abstract syntax of the language under consideration and
operations allowed on language instances. The main difference to our approach
is that in [144, 13], the actual semantics of the language for which an editor/sim-
ulator is to be modeled is not as clearly separated from the specification of the
animation as in DMM, where the concrete syntax just reflects what are in fact
model changes caused solely by (semantical) DMM rules. In the Tiger approach
[66], a GEF [49] editor is generated from the GTRs such that it only allows for
edit operations equivalent to the ones defined as GTRs; however, Tiger does not
allow for animated concrete syntax.

Another related work is [33]; the DEViL toolset allows to use textual DSLs to
specify abstract and concrete syntax of a visual editor as well as the language’s
semantics. From that, a visual editor can be generated which allows to create,
edit, and simulate a model. The simulation uses smooth animations based on
linear graphical interpolation as default; only the animation of elements which
shall behave differently needs to be specified by the language engineer.

There is one major difference from all approaches mentioned to ours: As we

237

CHAPTER 10. DEBUGGING MODELS

have seen in Sect. 10.1.1, DMM allows for the easy reuse of existing (GMF based)
editors. As a result, the language engineer only has to create the concrete syntax
for the runtime elements not contained in the language’s syntax metamodel, in
contrast to the above approaches, where an editor always has to be created from
scratch; reusing and extending an existing editor at runtime is not possible.

238

Summary of Part IV

In this part, we have explained how to formulate and analyze functional as well
as non-functional requirements against behavioral models whose semantics is
defined by means of a DMM specification, and we have shown how to fix flaws
of such models with debugging techniques.

Chapter 9 has covered the topic of requirements formulation and analysis.
We have first treated functional requirements: In Sect. 9.1 we have given an
introduction to the visual languages PPSL and EPPSL which are dedicated
at formulating functional requirements against business processes by means of
intuitive visual expressions, which are then translated into according temporal
logic formulas. We have then generalized the two languages for the sake of being
able to formulate requirements against all kinds of languages (not only business
processes), and we have shown how to integrate the concept of property rules
into the above to be able to refer to basically arbitrary object structures within
the generalized (E)PPSL expressions.

Section 9.2 was concerned with non-functional properties. Our approach is
to add performance information to the DMM semantics specification and model
at hand, and then to automatically derive a PEPA model, i.e., an instance of the
Performance Evaluation Process Algebra. This allows to analyze non-functional
properties with the standard PEPA tooling (which is—as the DMM tooling—
based on Eclipse and thus integrates nicely).

Finally, Chapter 10 has shown how models can be debugged, e.g. to un-
derstand and correct errors revealed with the techniques of the last chapter.
In Sect. 10.1, we have explained our strictly model-driven approach to visualize
runtime information: An augmentation model defines the concrete syntax of the
runtime elements and their visual relations to elements of the static structure
(e.g., whether a runtime elements’ visual representation is contained within the
visual representation of a syntax element or attached to its border), a rule step
model defines the visual steps to be shown during animation of a model’s execu-
tion, and a switch model marks elements such as DecisionNodes to cause the
user to selected the execution alternative. At runtime, the model’s execution is
visualized within existing GMF editors which are augmented with the runtime
elements.

Section 10.2 has then explained our concepts for debugging models: Break-
points and watchpoints can be defined by binding them to rules; if one of these
rules is to be applied, execution is suspended, and the model’s runtime state can
be examined. Every model can be debugged this way, but of particular interest
are models which have failed functional requirements: The resulting counter
example can be visualized to understand the cause of the problem.

The results of this part are

• a method to augment existing visual GMF editors with runtime informa-
tion which can then be used to visualize a model’s execution by means of
animation,

• the possibility to define breakpoints and watchpoints which—when hit—
suspend a model’s execution and allow to investigate the model’s runtime
state,

• and an integration of the above with the GROOVE model checker, counter

239

SUMMARY OF PART IV

examples of which can be visualized for the sake of understanding and
correcting the underlying problems.

As such, this part of the thesis has covered the complete model quality lifecycle,
from formulating requirements to their verification and correction.

240

10.4. RELATED WORK

241

11
Summary and Outlook

Summary

Dynamic Meta Modeling is a semantics specification language targeted at be-
havioral languages whose syntax is defined by means of a metamodel. It has
first been suggested by Engels et al. [63]; the actual conceptual base has then
been created by Hausmann [96], who has defined the DMM language by means
of mathematical terms, and who has provided examples of the visual concrete
syntax of DMM as well as ideas on how to translate DMM specifications into
GROOVE grammars. As such, DMM allows to formalize a language’s behavior
in terms of an easily understandable visual semantics specification, with all the
benefits such as preciseness and analyzability.

Obviously, the next step had to be to make DMM alive by creating appro-
priate tooling. Based on that, concepts and tools had to be developed to make
use of DMM’s benefits: In particular, it had to be investigated how—given an
according DMM specification—to perform quality assurance on a given model.
This is the main topic of this thesis.

To realize this goal, we had to overcome three main problems: First, we
needed to build tool support from scratch; the second problem was that quality
analysis of a model based on an erroneous semantics specification would render
that analysis nearly useless, meaning that we had to develop ways to guarantee
the quality of the DMM semantics specifications. Finally, the last problem—and
the one we are eventually interested in—was how to formulate and then verify
requirements against models equipped with a DMM specifications, and how to
fix possibly exisiting flaws of the models.

We were able to provide rich visual editors for DMM specifications mainly
because of the advances of model-driven development; in particular, we have
defined the DMM language by means of an Ecore metamodel, and based on that,
we have used EMF-based frameworks such as the Eclipse Graphical Modeling
Framework to model and then generate and customize our editors. The resulting
tooling supports different views on the edited DMM specification and allows for
the validation of the language’s static semantics by means of OCL constraints,
violations of which are displayed as annotations in the editors.

In parallel, we have implemented Java-based model transformations from
DMM specifications (i.e., instances of the DMM metamodel) into GROOVE
rules and from EMF models (i.e., instances of arbitrary Ecore metamodels) into
GROOVE graphs, allowing us to use GROOVE’s capabilities of exploring a
model’s state space and performing model checking on that state space. Note

243

SUMMARY AND OUTLOOK

that by doing that, we have re-defined the core of DMM: The semantics of a
DMM rule now is the semantics of the resulting GROOVE rule.

We then had the basic building blocks in place to tackle the actual problems
of the thesis: Ensuring the quality of DMM semantics specifications as well as
models. For the former, we have developed a process called test-driven semantics
specification, where example models and their expected behavior are encoded
into test cases; during creation of the DMM specification, the tests are executed,
which basically comes down to checking for each example model whether the
semantics specification produces exactly the desired behavior.

Knowing that a DMM specification produces the correct behavior for its test
cases indeed gives some confidence about the specification’s quality. However, it
is desirable to be able to measure the quality of a specification’s tests; otherwise,
parts of our semantics specification might remain untested even with a high
number of tests. Therefore, we have developed a set of six coverage criteria
for tests of DMM specifications. The criteria are defined on so-called invocation
graphs, where nodes are rule applications, and edges are consecutive applications
of rules.

While developing actual DMM specifications, it turned out that reusability
of those specifications is hampered by the fact that DMM only allowed to add
rules to an existing DMM specification, but not to refine rules. Thus, we have
developed and integrated the concept of rule overriding, where a DMM rule can
override another DMM rule such that only the overriding rule will be applied
(even if the overridden rule also matches).

Finally, we turned our attention to the quality assurance of models. Since
DMM is supposed to be easily understandable, our first step was to overcome
the need to study a model’s state space within GROOVE to understand that
model’s behavior. Thus, we have developed the DMM Player which allows to
execute a model visually by means of animated concrete syntax. The challenge
was to make it easy for the the language engineer to add the necessary visual-
ization animation; we have solved this by reusing existing visual editors which
are augmented with visual constructs representing the runtime elements of the
executed model. The information needed for this augmentation (and other in-
formation such as step definitions) are provided by the language engineer as
models; there is no need to write additional (or even change existing) code.

It remained to provide means to formulate requirements, analyze them,
and—if necessary—improve the according models. Once more to support un-
derstandibility, we have used visual languages, in this case for the specification
of functional requirements: The pattern process specification language as well as
its extension, the enhanced pattern process specification language are dedicated
to formulate functional requirements against business processes. We have gen-
eralized these languages to be able to formulate requirements against arbitrary
languages. Expressions of the language are translated into temporal logic for-
mulas which can then be model checked with GROOVE. We have demonstrated
this approach using the example requirement of soundness.

In terms of non-functional requirements, our approach was to add perfor-
mance information to existing DMM specifications and models by means of
decoration, leaving the specification and model unchanged; that information is
then used to generate an instance of the performance evaluation process algebra
(PEPA), which can be analyzed for non-functional requirements such as average
throughput with the existing PEPA tooling.

244

SUMMARY

In a nutshell, we have seen the following contributions in this thesis:

• The definition of DMM++ as an extension to DMM, including concepts
to refine DMM rules and a semantics defined by transforming a DMM
specification into a GROOVE grammar (Part II).

• A test-driven semantics specification process including test coverage com-
putation and tooling for creating high-quality semantics specifications
(Part III).

• A visual language for the formulation of functional requirements, perfor-
mance analysis of models through the PEPA tooling, and a model-driven
means to equip languages with animated concrete syntax (Part IV).

The result of this thesis are concepts and tools which—with the exceptions of
requirements specification and syntax definition—support the complete lifecycle
of behavioral languages, from specifying a language’s semantics to analyzing and
improving the quality of models.

As such, we hope that we have contributed to the field of model-driven
engineering in a useful way.

245

SUMMARY AND OUTLOOK

Outlook

As we have seen (not only) in the summary, this PhD project has touched a lot of
different areas of semantics specification; therefore, many approaches presented
within this thesis (and especially the implementations of those approaches) have
a proof-of-concept character. In this section, we will point out open issues of
the DMM approach in general and the different concepts it consists of.

First of all, the DMM approach claims that its specifications are easily un-
derstandable due to their visual, the language metamodel using appearance.
However, it has never been thoroughly investigated whether this is indeed the
case. For instance, textual specification languages tend to be more compact,
thus maybe allowing for an easier overview of a complete semantics specifica-
tion. Now that a rich DMM tooling is available, it might be the right time to
study this question in an empirical way.

Our own experience with respect to this question is two-fold: The students
who were working with DMM and creating rather complex semantics specifica-
tions (see [105, 180, 149]) were on the one hand able to pretty quickly understand
the general DMM concepts; on the other hand, they had problems managing
the complexity of their specifications. One important point was changeability:
For instance, changing the name of a smallstep rule implies that all according
invocations have to be changed (and, in addition, other smallstep rules carrying
the same name); it is quite easy to oversee some invocations, ending up with an
erroneous semantics specification. As such, one area where serious work is nec-
essary is refactoring of DMM specifications. Note that the results of an empiric
study on DMM usability could (and should) be respected by such research (and
vice versa).

Another important area is scalability. We have seen that the underlying
formalism of DMM, graph transformations, has a rather high computational
complexity, which makes the general model checking problem of state explosion
even worse. As such, all measures should be taken to improve DMM’s scala-
bility. There are several existing approaches which could be investigated for
applicability in the DMM scenario; for instance, the work on graph abstraction
(see e.g. [215]) looks promising; another area is (de)composition, e.g. Heckel [97]
has described the compositional verification of reactive systems the semantics
of which is described by graph transformations.

The approach of test-driven semantics specification has proven to be very
helpful when creating DMM specifications. However, there is still room for im-
provement in the area of coverage computation. First, our current approach only
considers the invocations of smallstep rules inside a single bigstep rule; however,
the relation of the bigstep rules to each other is not taken into consideration.
Further work needs to be performed in this area; one possible approach could
be the computation of critical pairs (see e.g. [138]) of bigstep rules (or some
generated rules which take a bigstep rule’s invocations’ changes into account).

We have seen that invocation graphs contain pathes of execution which are
in fact not possible; this is because the computation of invocation graphs does—
despite the invocations—not take the rules’ content into account. For instance,
consider a bigstep rule invoking a smallstep rule s, for which two implemen-
tations exist. Thus, the invocation graph will contain both possible execution
paths. However, it might be (and will quite often be) the case that the big-

246

OUTLOOK

step rule’s structure only allows for the matching of one of the two smallstep
rules. Critical pair analysis might be helpful with this respect, too, by reduc-
ing the number of execution paths by removing impossible sequences of rule
applications.

Finally, research should be performed on how to improve the feedback of the
coverage tooling. In its current state, the feedback is very technical; basically,
a set of rule or invocation sequences is provided which is not covered, but no
feedback is given on how to improve on the situation. It might be possible to
analyze the rules contained in such uncovered sequences, and to suggest models
or model parts as result of that analysis which will cause the according sequences
to be covered.

In the area of formulating and verifying functional requirements, our first
paragraph of this section basically holds once more: To our knowledge, it is yet
to be shown how helpful the usage of the (enhanced) process pattern specification
language is in practice (although the performed case studies suggest that it
indeed is), and the same of course holds for our generalization of that language.
Such research could (and once more: should) be conducted together with the
empirical studies on the general usability of DMM.

Additionally, neiter (E)PPSL nor our generalization support the full ex-
pressiveness of LTL/CTL (in contrast to e.g. attempts such as [40]). Since the
application range of generalized (E)PPSL (all kinds of languages) is much larger
than that of (E)PPSL (business processes), it should be investigated whether
its expressiveness is still sufficient.

Our work on doing performance analysis on models with DMM specifications
nicely separates the model and its execution semantics from the performance
information and allows for powerful performance descriptions which take the
model’s runtime states into account. However, we do not yet support the ad-
dition of probability information. This problem could probably be tackled by
defining a notion of DMM probability models, to compute the probability of
each transition of the model’s transition system, and to then compute the final
performance rates while taking the transitions’ probabilities into account.

The DMM Player and the surrounding framework fulfill the basic task of al-
lowing to describe the necessary information for visual executing “token-based”
languages such as UML activities, Petri nets, or UML statemachines (for the
latter, the markers of the active states can be seen as tokens). In general, the
DMM Player’s configuration models have been designed to fulfill more use cases;
however, this is yet to be shown.

Additionally, it might be a good idea to consider that different people work-
ing with DMM might want to see different amounts of detail while simulating
a model. For instance, the language engineer probably wants to see more ex-
ecution details while developing the semantics of a language than end users.
Moreover, there might even be people which are only interested in an even
higher view of a model’s behavior; for instance, they might not care about the
location of the offers in the case of UML activities. To suite the needs of these
different kinds of users, an area of research could be to extend our approach such
that the augmentation and rulestep models can be refined. This would allow to
start with a specification of the visualization which reveals all execution details,
and then to refine that specification step by step, each refinement fulfilling the
information needs of a different kind of language users.

247

List of Figures

2.1 A metamodel and one of its instances 10
2.2 The four-layer metamodel hierarchy 11
2.3 Simplified Ecore metamodel . 13

3.1 Example UML activity modeling a workflow 18
3.2 UML activity packages and their dependencies 18
3.3 Simplified metamodel of UML activities 20

4.1 GROOVE host graph representing a Petri net 26
4.2 GROOVE rule describing the semantics of a Petri net transition 27
4.3 Labeled transition system of a Petri net 28
4.4 GROOVE rule describing the semantics of a customized transition 29
4.5 Labeled transition system of a customized Petri net 30
4.6 Counter example for property AG(!fire(“A”)) 33
4.7 Screenshot of the GROOVE simulator 34

5.1 Overview of the DMM approach 39
5.2 Excerpt of the UML activity runtime metamodel 40
5.3 Excerpt of the UML activity meta relations 41
5.4 Metamodel of meta relations . 41
5.5 Example DMM rule initialNode.createToken() 42
5.6 Example DMM rule fork.getOffer()* 47
5.7 Graph concepts in DMM and GROOVE 48
5.8 DMM invocation stack . 50
5.9 Application control . 51

6.1 DMM Metamodel: Ruleset view 60
6.2 Package Notation . 63
6.3 DMM Metamodel: Rule hierarchy view 64
6.4 Bigstep rule . 66
6.5 Smallstep rule . 67
6.6 Premise rule . 68
6.7 Property rule . 69
6.8 Soft rule overriding . 70
6.9 Complete rule overriding . 71
6.10 DMM Metamodel: Internal rule structure view 71
6.11 Internal structure of rule activityExecution.start()# 72
6.12 Internal structure of rule action.start()# 72
6.13 DMM Metamodel: Expression language 80
6.14 Transformation Overview . 88

249

LIST OF FIGURES

6.15 Empty invocation stack . 93
6.16 Bigstep rule with invocation . 94
6.17 Invocation stack of bigstep rule 94
6.18 Smallstep rule with invocation 95
6.19 Invocation stack of smallstep rule 96
6.20 DMM rule with UQS . 97
6.21 GROOVE rule with UQS . 98
6.22 Smallstep rule with invocation 99
6.23 Invocation stack of smallstep rule 99
6.24 Helper rule inserting an invocation into the stack 100
6.25 Helper rule removing the UQSInvocation from the stack 100
6.26 GROOVE state graph with enumeration 102
6.27 Syntax metamodel of UML Activities 105
6.28 Runtime metamodel of UML Activities 105
6.29 DMM rule action.execute(ActivityExecution)# 106
6.30 Metamodel extending the syntax and runtime metamodels . . . 106
6.31 DMM rule extendedInitialNode.flow()# 107
6.32 DMM rule extendedAction.execute(ActivityExecution) 107
6.33 GROOVE rule resulting from an overridden rule 112
6.34 GROOVE state after application of rule action.flow()# 113
6.35 GROOVE rule with soft rule overriding structure 114
6.36 GROOVE rule moving the activated edge to the next level . 114
6.37 Metamodel with complex inheritance hierarchy 115
6.38 Sequence of states of the rule hierarchy graph 116
6.39 Labeled transition system showing the matching of the rules . . 117

7.1 “From Scratch” approach: Runtime metamodel 131
7.2 “From Scratch” approach: Tool support 132
7.3 Transformation generation ruleset 133
7.4 Main generation rule . 133
7.5 EClass correspondence generation rule 134
7.6 EClass rule generation rule . 135
7.7 Generated transformation ruleset 136
7.8 Generated rule for Activity 137
7.9 Generated rule for reference Activity::nodes 137
7.10 Modified runtime metamodel 138
7.11 Refined rule for Activity . 138
7.12 “Decorator” approach: Runtime metamodel 139
7.13 “Decorator” approach: DMM-based transformation 140
7.14 DMM Workbench – Ruleset view 142
7.15 DMM Workbench – Rule view 142
7.16 DMM Workbench – “Open invoked rule” dialog 143

8.1 Comparison of software testing and semantics testing 148
8.2 Process of creating example models 149
8.3 Example Activity containing only one Action 150
8.4 Example Activity with a simple decision/merge structure . . . 150
8.5 Example Activity containing a loop 151
8.6 Metamodel of Traces language 153
8.7 Example Traces model . 154

250

LIST OF FIGURES

8.8 Evaluation of Traces model . 154
8.9 Specify semantics, create test cases from example models 155
8.10 Invocation graph for rule action.start()# 160
8.11 Invocation graph for rule forkNode.flow()# 161
8.12 Invocation graph for rule inputPin.supplyStreamingToken()# . . . 162
8.13 Excerpt of transition system . 165
8.14 Excerpt of transition system . 165
8.15 Invocation graph for rule action.start()# 166
8.16 Excerpt of transition system . 167
8.17 Excerpt of transition system . 168
8.18 Excerpt of transition system . 170
8.19 Coverage Hierarchy . 175
8.20 Invocation graph with potentially dead edges 176

9.1 Example business process . 186
9.2 Example visual process pattern 186
9.3 Overview of the PPSL approach 188
9.4 Temporal operators provided by EPPSL 188
9.5 Building blocks provided by EPPSL 189
9.6 Logical operators provided by EPPSL 189
9.7 Example EPPSL expression . 189
9.8 Translation of EPPSL patterns 190
9.9 Example EPPSL for state machines 192
9.10 Example property rule state.A_and_B()! 193
9.11 Example EPPSL for state machines 193
9.12 Generalized EPPSL expression for requirement 4 on page 184 . 194
9.13 Generalized EPPSL expression for requirement 3 on page 184 . 194
9.14 Property rule finalNode.ERROR()! 195
9.15 Generalized EPPSL expression for requirement 2 on page 184 . 195
9.16 Example business process . 197
9.17 The syntax of PEPA . 199
9.18 Example PEPA process . 200
9.19 Example PEPA process (graph representation) 200
9.20 DMM performance metamodel 202
9.21 Performance model with a SimplePerformance 203
9.22 Performance model with a ParameterizedPerformance . . 204
9.23 PM with a ParameterizedPerformanceWithContext . . 205
9.24 Connection between DMM performance model and state model 207
9.25 PEPA generation workflow . 207
9.26 PEPA analysis tooling – Throughput view 210

10.1 An UML activity diagram with additional runtime elements . . 217
10.2 Metamodel for diagram augmentation models 218
10.3 Excerpt of the augmentation model for UML activities 219
10.4 A sequence of states exhibiting a temporary inconsistency . . . 220
10.5 Step definition metamodel . 221
10.6 Example UML activity with concurrency and decisions 223
10.7 DMM Rule decisionNode.flow()# 223
10.8 Transition system, rules, and morphisms 224
10.9 Algorithm for selecting a transition to be followed 226

251

LIST OF FIGURES

10.10 Metamodel for describing rules which indicate decisions 226
10.11 UI for choosing execution paths 227
10.12 Example state of Statemachine execution 228
10.13 Excerpt of the augmentation model for UML Statemachines . . 229
10.14 Eclipse breakpoint view with a single DMM breakpoint 231
10.15 DMM breakpoint configuration dialog 232
10.16 Model Execution Process . 233
10.17 Screen shot of the DMM Player in debug mode 235
10.18 Architecture of DMM tooling 236

252

List of Listings

8.1 Algorithm for computing the invocation graph of a bigstep rule . 162
8.2 General algorithm for coverage computation 164
8.3 Subroutines for computing rule coverage 166
8.4 Subroutines for computing rule coverage plus 167
8.5 Routines to be reused by the coverage algorithms 168
8.6 Subroutines for computing rule coverage plus plus 169
8.7 Subroutines for computing edge coverage 171
8.8 Subroutines for computing edge coverage plus 172
8.9 Subroutines for computing edge coverage plus plus 173
9.1 Algorithm for generating PEPA model from transition system . . 201
9.2 Algorithm for evaluating DMM performance definitions 206

253

List of Tables

6.1 DMM expression language: Lexical Tokens 80
6.2 DMM expression language: Grammar 81
6.3 DMM expression language: Operators 86
6.4 Java and GROOVE datatypes . 102
6.5 DMM operators and GROOVE productions 103

9.1 Average execution times of example business process 198
9.2 Average execution times and rates of example business process . 208
9.3 Effects of example process improvements 209

Bibliography

[1] Abstract Solutions. iUML Modeler and Simulator. http://www.kc.
com/PRODUCTS/iuml/. Online, accessed 5–14–2013.

[2] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON: A
Standard-Compliant Metamodeling Framework with Graph Transforma-
tions. In A. Rensink and J. Warmer, editors, Proceedings of ECMDA ’06,
volume 4066 of LNCS, pages 361–375, Berlin/Heidelberg, 2006. Springer.

[3] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transformations.
In D. C. Petriu, N. Rouquette, and Ø. Haugen, editors, MoDELS (1),
volume 6394 of LNCS, pages 121–135. Springer, 2010.

[4] S. Arifulina. Coverage Criteria for Testing DMM Specifications. Master’s
thesis, University of Paderborn, 2011.

[5] S. Arifulina, C. Soltenborn, and G. Engels. Coverage Criteria for Testing
DMM Specifications. In Proceedings of the 11th International Workshop
on Graph Transformation and Visual Modeling Techniques (GT-VMT
2012), Tallinn (Estonia), volume 47 of Electronic Communications of the
EASST. European Association of Software Science and Technology, 2012.

[6] N. Arijo, R. Heckel, M. Tribastone, and S. Gilmore. Modular Perfor-
mance Modelling for Mobile Applications. In S. Kounev, V. Cortellessa,
R. Mirandola, and D. J. Lilja, editors, ICPE, pages 329–334. ACM, 2011.

[7] U. Aßmann. Graph Rewrite Systems for Program Optimization. ACM
Trans. Program. Lang. Syst., 22(4):583–637, 2000.

[8] C. Atkinson and T. Kühne. Model-driven Development: A Metamodeling
Foundation. Software, IEEE, 20(5):36 – 41, 2003.

[9] P. Baldan, A. Corradini, and U. Montanari. Concatenable Graph Pro-
cesses: Relating Processes and Derivation Traces. In K. G. Larsen,
S. Skyum, and G. Winskel, editors, ICALP, volume 1443 of LNCS, pages
283–295, Berlin/Heidelberg, 1998. Springer.

[10] Z. Balogh and D. Varró. Model Transformation by Example using Induc-
tive Logic Programming. Software and System Modeling, 8(3):347–364,
2009.

[11] N. Bandener. Visual Interpreter and Debugger for Dynamic Models Based
on the Eclipse Platform. Diploma thesis, University of Paderborn, 2009.

[12] N. Bandener, C. Soltenborn, and G. Engels. Extending DMM Behavior
Specifications for Visual Execution and Debugging. In M. v. d. B. B. Mal-
loy, S. Staab, editor, Proceedings of the 3rd International Conference on
Software Language Engineering (SLE 2010), volume 6563 of LNCS, pages
357–376, Berlin/Heidelberg, 2011. Springer.

255

http://www.kc.com/PRODUCTS/iuml/
http://www.kc.com/PRODUCTS/iuml/

BIBLIOGRAPHY

[13] R. Bardohl, C. Ermel, and I. Weinhold. GenGED – A Visual Definition
Tool for Visual Modeling Environments. In J. L. Pfaltz, M. Nagl, and
B. Böhlen, editors, Proceedings of AGTIVE ’03, volume 3062 of LNCS,
pages 413–419, Berlin/Heidelberg, 2003. Springer.

[14] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-based Refinement of
Dynamic Software Architectures. In Software Architecture, 2004. WICSA
2004. Proceedings. Fourth Working IEEE/IFIP Conference on, pages 155–
164, 2004.

[15] L. Baresi, V. Rafe, A. T. Rahmani, and P. Spoletini. An Efficient Solution
for Model Checking Graph Transformation Systems. Electronic Notes in
Theoretical Computer Science, 213(1):3 – 21, 2008. Proceedings of the
Third Workshop on Graph Transformation for Concurrency and Verifica-
tion (GT-VC 2007).

[16] E. Bauer. Enhancing the Dynamic Meta Modeling Formalism and its
Eclipse-based Tool Support with Attributes. Bachelor’s thesis, University
of Paderborn, 2008.

[17] E. Bauer, J. M. Küster, and G. Engels. Test Suite Quality for Model
Transformation Chains. In TOOLS (49), pages 3–19, 2011.

[18] J. Bauer, I. Boneva, M. E. Kurbán, and A. Rensink. A Modal-Logic Based
Graph Abstraction. In Ehrig et al. [58], pages 321–335.

[19] K. Beck. Test-Driven Development by Example. Addison-Wesley Long-
man, Amsterdam, The Netherlands, 2002.

[20] S. Becker, H. Koziolek, and R. Reussner. The Palladio Component Model
for Model-driven Performance Prediction. Journal of Systems and Soft-
ware, 82:3–22, Jan. 2009.

[21] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL –
A Tool Suite for Automatic Verification of Real-time Systems. In R. Alur,
T. Henzinger, and E. Sontag, editors, Hybrid Systems III, volume 1066 of
LNCS, pages 232–243. Springer, Berlin/Heidelberg, 1996.

[22] A. Blunk, J. Fischer, and D. A. Sadilek. Modelling a Debugger for an Im-
perative Voice Control Language. In R. Reed, A. Bilgic, and R. Gotzhein,
editors, Proceedings of SDL 2009, volume 5719 of LNCS, pages 149–164,
Berlin/Heidelberg, 2009. Springer.

[23] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. Termination of
High-Level Replacement Units with Application to Model Transformation.
Electr. Notes Theor. Comput. Sci., 127(4):71–86, 2005.

[24] M. Bouarioua, A. Chaoui, and R. Elmansouri. From UML Sequence
Diagrams to Labeled Generalized Stochastic Petri Net Models Using
Graph Transformation. In J. Yonazi, E. Sedoyeka, E. Ariwa, and E. El-
Qawasmeh, editors, e-Technologies and Networks for Development, vol-
ume 171 of Communications in Computer and Information Science, pages
318–328. Springer, Berlin/Heidelberg, 2011.

256

BIBLIOGRAPHY

[25] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and M. Tichy. The FU-
JABA Real-time Tool Suite: Model-driven Development of Safety-critical,
Real-time Systems. In G.-C. Roman, W. G. Griswold, and B. Nuseibeh,
editors, ICSE, pages 670–671. ACM, 2005.

[26] J. M. Chiaradía and C. Pons. Improving the OCL Semantics Definition
by Applying Dynamic Meta Modeling and Design Patterns. In OCL for
(Meta-)Models in Multiple Application Domains 2006, volume 5 of Elec-
tronic Communications of the EASST. European Association of Software
Science and Technology, 2006.

[27] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource
Tool for Symbolic Model Checking. In E. Brinksma and K. G. Larsen,
editors, CAV, volume 2404 of LNCS, pages 359–364, Berlin/Heidelberg,
2002. Springer.

[28] S. Cook, G. Jones, S. Kent, and A. Wills. Domain-Specific Development
with Visual Studio DSL Tools. Addison-Wesley Professional, 2007.

[29] A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and J. Padberg. The
Category of Typed Graph Grammars and its Adjunctions with Categories.
In J. E. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, TAGT,
volume 1073 of LNCS, pages 56–74, Berlin/Heidelberg, 1994. Springer.

[30] A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg,
editors. Graph Transformations, Third International Conference, ICGT
2006, Natal, Rio Grande do Norte, Brazil, September 17–23, 2006, Pro-
ceedings, volume 4178 of LNCS, Berlin/Heidelberg, 2006. Springer.

[31] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe.
Algebraic Approaches to Graph Transformation - Part I: Basic Concepts
and Double Pushout Approach. In Rozenberg [177], pages 163–246.

[32] V. Cortellessa and R. Mirandola. Deriving a Queueing Network Based
Performance Model from UML Diagrams. In Proceedings of the 2nd inter-
national workshop on Software and performance, WOSP ’00, pages 58–70,
New York, NY, USA, 2000. ACM.

[33] B. Cramer and U. Kastens. Animation Automatically Generated from
Simulation Specifications. In Proceedings of VL/HCC ’09. IEEE Com-
puter Society, 2009.

[34] K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Syst. J., 45(3):621–645, July 2006.

[35] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transforma-
tion Approaches. IBM Systems Journal, 45(3):621–646, 2006.

[36] A. D’Ambrogio. A WSDL Extension for Performance-Enabled Description
of Web Services. In P. Yolum, T. Güngör, F. S. Gürgen, and C. C. Öztu-
ran, editors, ISCIS, volume 3733 of LNCS, pages 371–381, Berlin/Heidel-
berg, 2005. Springer.

257

BIBLIOGRAPHY

[37] A. D’Ambrogio and P. Bocciarelli. A Model-driven Approach to Describe
and Predict the Performance of Composite Services. In Proceedings of
the 6th international workshop on Software and performance, WOSP ’07,
pages 78–89, New York, NY, USA, 2007. ACM.

[38] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Attributed Graph Transformation with Node Type Inheritance. Theoret-
ical Computer Science, 376(3):139–163, 2007.

[39] M. de Mol and A. Rensink. On A Graph Formalism for Ordered Edges. In
Proceedings of GT/VMT 2010, volume 29 of Electronic Communications
of the EASST. European Association of Software Science and Technology,
2010.

[40] A. Del Bimbo, L. Rella, and E. Vicario. Visual Specification of Branching
Time Temporal Logic. In Visual Languages, Proceedings., 11th IEEE
International Symposium on, pages 61–68, 1995.

[41] W. Dong, J. Wang, X. Qi, and Z.-C. Qi. Model checking uml statecharts.
In Software Engineering Conference, 2001. APSEC 2001. Eighth Asia-
Pacific, pages 363–370, 2001.

[42] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specification
Patterns for Finite-State Verification. In Proceedings of the second work-
shop on Formal methods in software practice (FMSP ’98), pages 7–15,
New York, NY, USA, 1998. ACM.

[43] T. Eckardt, C. Heinzemann, S. Henkler, M. Hirsch, C. Priesterjahn, and
W. Schäfer. Modeling and Verifying Dynamic Communication Structures
Based on Graph Transformations. Computer Science - Research and De-
velopment, 28(1):3–22, Feb. 2013.

[44] Eclipse Foundation. Eclipse Modeling Framework. http://www.
eclipse.org/modeling/emf/. Online, accessed 9–1–2010.

[45] Eclipse Foundation. Eclipse Remote Application Platform. http://
eclipse.org/rap/. Online, accessed 3–18–2013.

[46] Eclipse Foundation. EMF Compare. http://www.eclipse.org/
emf/compare/. Online, accessed 3–18–2013.

[47] Eclipse Foundation. EMF OCL. http://www.eclipse.org/
modeling/mdt/?project=ocl. Online, accessed 3–18–2013.

[48] Eclipse Foundation. EMF Validation Framework. http://www.
eclipse.org/modeling/emf/?project=validation. Online, ac-
cessed 3–18–2013.

[49] Eclipse Foundation. Graphical Editing Framework. http://www.
eclipse.org/gef/. Online, accessed 9–15–2010.

[50] Eclipse Foundation. Graphical Modeling Framework. http://www.
eclipse.org/modeling/gmf/. Online, accessed 5–5–2009.

258

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://eclipse.org/rap/
http://eclipse.org/rap/
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/emf/?project=validation
http://www.eclipse.org/modeling/emf/?project=validation
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/modeling/gmf/

BIBLIOGRAPHY

[51] Eclipse Foundation. UML2 Project. http://www.eclipse.org/
modeling/mdt/?project=uml2. Online, accessed 3–18–2013.

[52] Eclipse Foundation. UML2 Tools. http://www.eclipse.org/
modeling/mdt/?project=uml2tools. Online, accessed 9–15–2010.

[53] Eclipse Foundation. Xcore. http://wiki.eclipse.org/Xcore/.
Online, accessed 10–16–2012.

[54] Eclipse Foundation. XText. http://www.eclipse.org/Xtext/. On-
line, accessed 3–18–2013.

[55] H. Ehrig and K. Ehrig. Overview of Formal Concepts for Model Transfor-
mations Based on Typed Attributed Graph Transformation. Electr. Notes
Theor. Comput. Sci., 152:3–22, 2006.

[56] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-
Gyapay. Termination Criteria for Model Transformation. In M. Cerioli,
editor, FASE, volume 3442 of LNCS, pages 49–63. Springer, 2005.

[57] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook
of Graph Grammars and Computing by Graph Transformation, Vol. 2:
Applications, Languages, and Tools. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1999.

[58] H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer, editors. Graph Trans-
formations, 4th International Conference, ICGT 2008, Leicester, United
Kingdom, September 7-13, 2008. Proceedings, volume 5214 of LNCS.
Springer, 2008.

[59] K. Ehrig, E. Guerra, J. D. Lara, L. Lengyel, U. Prange, G. Taentzer,
D. Varro, and et al. Model Transformation by Graph Transformation: A
Comparative Study. In Proceedings of MTIP 2005, pages 71–80, 2006.

[60] E. Emerson and J. Y. Halpern. Decision Procedures and Expressiveness in
the Temporal Logic of Branching Time. Journal of Computer and System
Sciences, 30(1):1–24, 1985.

[61] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited:
on branching versus linear time temporal logic. J. ACM, 33(1):151–178,
Jan. 1986.

[62] G. Engels, D. Fisseler, and C. Soltenborn. Improving Reusability of Dy-
namic Meta Modeling Specifications with Rule Overriding. In M. E.
R. DeLine, M. Minas, editor, Proceedings of the 2009 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC 2009), Cor-
vallis, Oregon (USA), pages 39–46, Piscataway, NJ (USA), 2009. IEEE
Computer Society.

[63] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic Meta-
Modeling: A Graphical Approach to the Operational Semantics of Be-
havioral Diagrams in UML. In A. Evans, S. Kent, and B. Selic, edi-
tors, Proceedings of UML 2000, volume 1939 of LNCS, pages 323–337,
Berlin/Heidelberg, 2000. Springer.

259

http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://wiki.eclipse.org/Xcore/
http://www.eclipse.org/Xtext/

BIBLIOGRAPHY

[64] G. Engels and C. Soltenborn. Test-driven Language Derivation with
Graph Transformation-based Dynamic Meta Modeling. In C. Ermel,
H. Ehrig, F. Orejas, and G. Taentzer, editors, Proceedings of the In-
ternational Colloquium on Graph and Model Transformation (GraMoT
2010), Berlin (Germany), volume 30 of Electronic Communications of
the EASST, pages 240–257. European Association of Software Science
and Technology, 2010.

[65] G. Engels, C. Soltenborn, and H. Wehrheim. Analysis of UML Activities
using Dynamic Meta Modeling. In M. M. Bosangue and E. B. Johnsen,
editors, Proceedings of FMOODS 2007, volume 4468 of LNCS, pages 76–
90, Berlin/Heidelberg, 2007. Springer.

[66] C. Ermel, K. Ehrig, G. Taentzer, and E. Weiss. Object Oriented and Rule-
based Design of Visual Languages using Tiger. In Proceedings of GraBaTs
’06, volume 1 of Electronic Communications of the EASST. European
Association of Software Science and Technology, 2006.

[67] R. Eshuis. Symbolic Model Checking of UML Activity Diagrams. ACM
Trans. Softw. Eng. Methodol., 15(1):1–38, 2006.

[68] R. Eshuis and R. Wieringa. Verification Support for Workflow Design with
UML Activity Graphs. In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, pages 166–176, New York, NY, USA,
2002. ACM.

[69] M. Eysholdt and H. Behrens. XText: Implement Your Language Faster
than the Quick and Dirty Way. In Proceedings of the ACM international
conference companion on Object oriented programming systems languages
and applications companion, SPLASH ’10, pages 307–309, New York, NY,
USA, 2010. ACM.

[70] J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut. Metamodel
Matching for Automatic Model Transformation Generation. In K. Czar-
necki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter, editors, MoDELS,
volume 5301 of LNCS, pages 326–340, Berlin/Heidelberg, 2008. Springer.

[71] A. P. L. Ferreira and L. Ribeiro. A Graph-based Semantics for Object-
oriented Programming Constructs. Electron. Notes Theor. Comput. Sci.,
122:89–104, 2005.

[72] R. D. F. Ferreira, J. P. Faria, and A. C. R. Paiva. Test Coverage Anal-
ysis of UML Activity Diagrams for Interactive Systems. In Proceedings
of QUATIC 2010, pages 268–273, Washington, DC (USA), 2010. IEEE
Computer Society.

[73] A. Förster. Pattern-Based Business Process Design and Verification. PhD
thesis, University of Paderborn, 2008.

[74] A. Förster, G. Engels, T. Schattkowsky, and R. V. D. Straeten. Verifi-
cation of Business Process Quality Constraints Based on Visual Process
Patterns. In TASE, pages 197–208. IEEE Computer Society, 2007.

260

BIBLIOGRAPHY

[75] G. Friedman, A. Hartman, K. Nagin, and T. Shiran. Projected State
Machine Coverage for Software Testing. SIGSOFT Softw. Eng. Notes,
27:134–143, 2002.

[76] M. Friske, B.-H. Schlingloff, and S. Weißleder. Composition of Model-
based Test Coverage Criteria. In MBEES, volume 2008-2 of Informatik-
Bericht, pages 87–94. TU Braunschweig, Institut für Software Systems
Engineering, 2008.

[77] P. Gagnon, F. Mokhati, and M. Badri. Applying Model Checking to
Concurrent UML Models. Journal of Object Technology, 7(1):59–84, 2008.

[78] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns –
Elements of Reusable Object-oriented Software. Addison-Wesley, 1995.

[79] L. Geiger and A. Zündorf. eDOBS – Graphical Debugging for Eclipse. In
Proceedings of GraBaTs ’06, volume 1 of Electronic Communications of
the EASST. European Association of Software Science and Technology,
2006.

[80] M. Gemis, J. Paredaens, I. Thyssens, and J. van den Bussche. GOOD: A
Graph-Oriented Object Database System. In P. Buneman and S. Jajodia,
editors, Proceedings of the 1993 ACM SIGMOD International Conference
on the Management of Data, volume 22, pages 505–510, New York, NY,
USA, 6 1993. ACM.

[81] A. Gerber and K. Raymond. MOF to EMF: There and Back Again. In Pro-
ceedings of the 2003 OOPSLA workshop on Eclipse technology eXchange,
eclipse ’03, pages 60–64, New York, NY, USA, 2003. ACM.

[82] A. H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, and M. Zimakova.
Modelling and analysis using GROOVE. STTT, 14(1):15–40, 2012.

[83] H. Giese and R. Wagner. Incremental Model Synchronization with Triple
Graph Grammars. In Nierstrasz et al. [151], pages 543–557.

[84] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a
Process Algebra-based Approach to Performance Modelling. In Proceed-
ings of the Seventh International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, volume 794 of LNCS, pages
353–368, Berlin/Heidelberg, 1994. Springer.

[85] R. Gold. Control Flow Graphs and Code Coverage. Int. J. Appl. Math.
Comput. Sci., 20(4):739–749, Dec. 2010.

[86] T. Goldschmidt and G. Wachsmuth. Refinement Transformation Support
for QVT Relational Transformations. In Proceedings of the 3rd Workshop
on Model Driven Software Engineering (MDSE 2008), 2008.

[87] V. Grassi, R. Mirandola, E. Randazzo, and A. Sabetta. KLAPER: An
Intermediate Language for Model-Driven Predictive Analysis of Perfor-
mance and Reliability. In A. Rausch, R. Reussner, R. Mirandola, and
F. Plsil, editors, The Common Component Modeling Example, volume
5153 of LNCS, pages 327–356. Springer, Berlin/Heidelberg, 2008.

261

BIBLIOGRAPHY

[88] J. Greenyer and E. Kindler. Reconciling TGGs with QVT. In G. Engels,
B. Opdyke, D. C. Schmidt, and F. Weil, editors, MoDELS, volume 4735
of LNCS, pages 16–30. Springer, 2007.

[89] J. Greenyer and E. Kindler. Comparing relational model transforma-
tion technologies: implementing Query/View/Transformation with Triple
Graph Grammars. Software and System Modeling, 9(1):21–46, 2010.

[90] R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley, 2009.

[91] M. Gyssens, J. Paredaens, J. Van den Bussche, and D. Van Gucht. GOOD:
A Graph-Oriented Object Database Model. IEEE Trans. on Knowl. and
Data Eng., 6(4):572–586, Aug. 1994.

[92] A. Haase, M. Völter, S. Efftinge, and B. Kolb. Introduction to openArchi-
tectureWare 4.1.2. MDD Tool Implementers Forum (Part of the TOOLS
2007 conference, Zürich), 2007.

[93] R. Hardin, Z. Har’El, and R. Kurshan. COSPAN. In R. Alur and T. Hen-
zinger, editors, Computer Aided Verification, volume 1102 of LNCS, pages
423–427. Springer, Berlin/Heidelberg, 1996.

[94] S. Haschemi and S. Weißleder. A Generic Approach to Run Mutation
Analysis. In Proceedings of TAIC PART 2010, volume 6303 of LNCS,
pages 155–164, Berlin/Heidelberg, 2010. Springer.

[95] J. H. Hausmann. Metamodeling Relations - Relating Metamodels. In
Proceedings of the Metamodelling for MDA workshop, York (UK), pages
147–161. University of York, November 2003.

[96] J. H. Hausmann. Dynamic Meta Modeling. PhD thesis, University of
Paderborn, 2006.

[97] R. Heckel. Compositional Verification of Reactive Systems Specified by
Graph Transformation. In E. Astesiano, editor, Fundamental Approaches
to Software Engineering, volume 1382 of LNCS, pages 138–153. Springer,
Berlin/Heidelberg, 1998.

[98] R. Heckel, J. M. Küster, and G. Taentzer. Confluence of Typed Attributed
Graph Transformation Systems. In A. Corradini, H. Ehrig, H.-J. Kre-
owski, and G. Rozenberg, editors, ICGT, volume 2505 of LNCS, pages
161–176, Berlin/Heidelberg, 2002. Springer.

[99] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, and Y. Xiong.
Correctness of Model Synchronization Based on Triple Graph Grammars.
In J. Whittle, T. Clark, and T. Kühne, editors, MoDELS, volume 6981 of
LNCS, pages 668–682. Springer, 2011.

[100] J. Hillston. A Compositional Approach to Performance Modelling. PhD
thesis, University of Edinburgh, 1994.

[101] J. Hillston. Process Algebras for Quantitative Analysis. In Proceedings of
the 20th Annual IEEE Symposium on Logic in Computer Science, LICS
’05, pages 239–248, Washington, DC, USA, 2005. IEEE Computer Society.

262

BIBLIOGRAPHY

[102] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM,
21(8):666–677, Aug. 1978.

[103] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall In-
ternational, 1985.

[104] G. Holzmann. The Model Checker SPIN. Software Engineering, IEEE
Transactions on, 23(5):279–295, May.

[105] M. Hornkamp. A Formal, Graph-Based Semantics for UML Activities.
Master’s thesis, University of Paderborn, 2009.

[106] M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn, and
H. Wehrheim. Full Semantics Preservation in Model Transformation – A
Comparison of Proof Techniques. In S. M. D. Méry, editor, Proceedings
of the 8th International Conference on Integrated Formal Methods (IFM
2010), LNCS, pages 183–198, Berlin/Heidelberg, 2010. Springer.

[107] M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn, and
H. Wehrheim. Full Semantics Preservation in Model Transformation – A
Comparison of Proof Techniques. Technical report, Centre for Telematics
and Information Technology of the University of Twente, 2010.

[108] International Software Testing Qualifications Board. ISTQB Glos-
sary of Testing Terms V2.2. http://www.istqb.org/downloads/
viewcategory/20.html, 2012. Online, accessed 12–6–2012.

[109] W. Janssen, R. Mateescu, S. Mauw, P. Fennema, and P. v. d. Stappen.
Model Checking for Managers. In Proceedings of the 5th and 6th Inter-
national SPIN Workshops on Theoretical and Practical Aspects of SPIN
Model Checking, pages 92–107, London, UK, UK, 1999. Springer.

[110] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL:
A QVT-like Transformation Language. In OOPSLA ’06: Companion to
the 21st ACM SIGPLAN symposium on Object-oriented programming sys-
tems, languages, and applications, pages 719–720, New York, NY, USA,
2006. ACM.

[111] T. Jussila, J. Dubrovin, T. Junttila, T. L. Latvala, and I. Porres. Model
Checking Dynamic and Hierarchical UML State Machines. In Proceedings
of the 3rd Workshop on Model Design and Validation (MoDeVa 2006),
2006.

[112] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wim-
mer. Model Transformation By-Example: A Survey of the First Wave. In
A. Düsterhöft, M. Klettke, and K.-D. Schewe, editors, Conceptual Mod-
elling and Its Theoretical Foundations, volume 7260 of LNCS, pages 197–
215. Springer, 2012.

[113] H. Kastenberg. Graph-Based Software Specification and Verification. PhD
thesis, University of Twente, 2008.

[114] H. Kastenberg and A. Rensink. Model Checking Dynamic States in
GROOVE. In A. Valmari, editor, Model Checking Software, volume 3925
of LNCS, pages 299–305. Springer, Berlin/Heidelberg, 2006.

263

http://www.istqb.org/downloads/viewcategory/20.html
http://www.istqb.org/downloads/viewcategory/20.html

BIBLIOGRAPHY

[115] Kent Beck. JUnit Homepage. http://junit.org/. Online, accessed
11–19–2012.

[116] L. Khaluf, C. Gerth, and G. Engels. Pattern-Based Modeling and For-
malizing of Business Process Quality Constraints. In H. Mouratidis and
C. Rolland, editors, Proceedings of the 23rd International Conference on
Advanced Information System Engineering (CAiSE’11), volume 6741 of
LNCS, pages 521–535, Berlin/Heidelberg, 2011. Springer.

[117] P. King and R. Pooley. Derivation of Petri Net Performance Models
from UML Specifications of Communications Software. In B. Haverkort,
H. Bohnenkamp, and C. Smith, editors, Computer Performance Evalua-
tion.Modelling Techniques and Tools, volume 1786 of LNCS, pages 262–
276. Springer, Berlin/Heidelberg, 2000.

[118] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[119] A. Knapp and J. Wuttke. Model checking of UML 2.0 interactions. In
Proceedings of the 2006 international conference on Models in software
engineering, MoDELS’06, pages 42–51, Berlin/Heidelberg, 2006. Springer.

[120] D. Kolovos, R. Paige, and F. Polack. The Epsilon Transformation Lan-
guage. In A. Vallecillo, J. Gray, and A. Pierantonio, editors, Proceed-
ings of the First International Conference on Theory and Practice of
Model Transformations (ICMT 2008), volume 5063 of LNCS, pages 46–60,
Berlin/Heidelberg, 2008. Springer.

[121] B. König and V. Kozioura. Augur 2 - A New Version of a Tool for the
Analysis of Graph Transformation Systems. Electr. Notes Theor. Comput.
Sci., 211:201–210, 2008.

[122] A. Königs. Model Integration and Transformation: A Triple Graph
Grammar-based QVT Implementation. PhD thesis, TU Darmstadt, 2009.

[123] H.-J. Kreowski and S. Kuske. Graph Transformation Units with Inter-
leaving Semantics. Formal Aspects of Computing, 11(6):690–723, 1999.

[124] G. Kutty, L. Dillon, L. Moser, P. Melliar-Smith, and Y. S. Ramakrishna.
Visual Tools for Temporal Reasoning. In Visual Languages, 1993., Pro-
ceedings 1993 IEEE Symposium on, pages 152–159, 1993.

[125] P. Langer, M. Wimmer, and G. Kappel. Model-to-Model Transformations
By Demonstration. In L. Tratt and M. Gogolla, editors, ICMT, volume
6142 of LNCS, pages 153–167. Springer, 2010.

[126] J. Lara, E. Guerra, and H. Vangheluwe. Meta-Modelling, Graph Trans-
formation and Model Checking for the Analysis of Hybrid Systems. In
J. Pfaltz, M. Nagl, and B. Böhlen, editors, Applications of Graph Trans-
formations with Industrial Relevance, volume 3062 of LNCS, pages 292–
298. Springer, Berlin/Heidelberg, 2004.

264

http://junit.org/

BIBLIOGRAPHY

[127] M. Lauder, A. Anjorin, G. Varró, and A. Schürr. Bidirectional Model
Transformation with Precedence Triple Graph Grammars. In A. Vallecillo,
J.-P. Tolvanen, E. Kindler, H. Störrle, and D. S. Kolovos, editors, ECMFA,
volume 7349 of LNCS, pages 287–302. Springer, 2012.

[128] M. Lawley and J. Steel. Practical Declarative Model Transformation with
Tefkat. In J.-M. Bruel, editor, MoDELS Satellite Events, volume 3844 of
LNCS, pages 139–150. Springer, 2005.

[129] E. Legros, C. Amelunxen, F. Klar, and A. Schürr. Generic and Reflec-
tive Graph Transformations for Checking and Enforcement of Modeling
Guidelines. J. Vis. Lang. Comput., 20(4):252–268, 2009.

[130] C. Lindemann, A. Thümmler, A. Klemm, M. Lohmann, and O. P. Wald-
horst. Performance analysis of time-enhanced UML diagrams based on
stochastic processes. In Proceedings of the 3rd international workshop on
Software and performance, WOSP ’02, pages 25–34, New York, NY, USA,
2002. ACM.

[131] LMU München. HUGO/RT. http://www.pst.informatik.
uni-muenchen.de/projekte/hugo/. Online, accessed 4–3–2013.

[132] A. P. Lüdtke Ferreira and L. Ribeiro. Derivations in Object-Oriented
Graph Grammars. In H. Ehrig, G. Engels, F. Parisi-Presicce, and
G. Rozenberg, editors, Proceedings of the 2nd International Conference
on Graph Transformations (ICGT 2004), volume 3256 of LNCS, pages
416–430, Berlin/Heidelberg, 2004. Springer.

[133] P. L. M. Clavel, S. Eker and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Electronic Notes in Theoretical Computer Science,
volume 4. Elsevier Science Publishers, 2000.

[134] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer, New York, NY, USA, 1992.

[135] Matthias Biel. Literature Study on Model Transformations.
http://staffwww.dcs.shef.ac.uk/people/A.Simons/
remodel/papers/BiehlModelTransformations.pdf, 2010.
Online, accessed 5–8–2013.

[136] J. A. McQuillan and J. F. Power. White-Box Coverage Criteria for Model
Transformations. In Proceedings of the 1st International Workshop on
Model Transformation with ATL, Aachen (Germany), 2009. CEUR Work-
shop Proceedings.

[137] S. J. Mellor and M. J. Balcer. Executable UML: A Foundation for Model-
Driven Architecture. Addison-Wesley Professional, 2002.

[138] T. Mens, G. Taentzer, and O. Runge. Detecting Structural Refactoring
Conflicts Using Critical Pair Analysis. Electr. Notes Theor. Comput. Sci.,
127(3):113–128, 2005.

[139] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. Elec-
tron. Notes Theor. Comput. Sci., 152:125–142, Mar. 2006.

265

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/papers/BiehlModelTransformations.pdf
http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/papers/BiehlModelTransformations.pdf

BIBLIOGRAPHY

[140] Mentor Graphics. BridgePoint Comprehensive xtUML Tool Suite.
http://www.mentor.com/products/sm/model_development/
bridgepoint/. Online, accessed 5–14–2013.

[141] R. Milner. A Calculus of Communicating Systems. Springer, Berlin/Hei-
delberg, 1980.

[142] R. Milner. Communicating and Mobile Systems: The π-calculus. Cam-
bridge University Press, 1999.

[143] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I.
Information and Computation, 100(1):1–40, 1992.

[144] M. Minas and G. Viehstaedt. DiaGen: A Generator for Diagram Editors
Providing Direct Manipulation and Execution of Diagrams. In Proceedings
of VL ’95. IEEE Computer Society, 1995.

[145] M. Mohamed, M. Romdhani, and K. Ghedira. MOF-EMF Alignment. In
Autonomic and Autonomous Systems, 2007. ICAS07. Third International
Conference on, page 1, June.

[146] G. E. Moore. Cramming More Components onto Integrated Circuits.
Electronics, 38(8):114–117, Apr. 1965.

[147] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing.
John Wiley & Sons, 2011.

[148] M. Naftalin and P. Wadler. Java Generics and Collections. O’Reilly
Media, 2006.

[149] V. Nesterow. Eine formale, graphbasierte Semantik für UML State Ma-
chines. Master’s thesis, University of Paderborn, 2009.

[150] U. Nickel, J. Niere, and A. Zündorf. The FUJABA environment. In
C. Ghezzi, M. Jazayeri, and A. L. Wolf, editors, ICSE, pages 742–745.
ACM, 2000.

[151] O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors. Model Driven
Engineering Languages and Systems, 9th International Conference, MoD-
ELS 2006, Genova, Italy, October 1-6, 2006, Proceedings, volume 4199 of
LNCS. Springer, 2006.

[152] A. Niewiadomski, W. Penczek, and M. Szreter. A New Approach to Model
Checking of UML State Machines. Fundam. Inf., 93(1-3):289–303, Jan.
2009.

[153] Object Management Group. UML Profile for Schedulability, Perfor-
mance, and Time Specification. http://www.omg.org/spec/SPTP/
1.1/PDF/, 2005. Online, accessed 4–3–2013.

[154] Object Management Group. Meta Object Facility (MOF) Core Specifi-
cation – OMG Available Specification, Version 2.0. http://www.omg.
org/docs/formal/06-01-01.pdf, 1 2006.

266

http://www.mentor.com/products/sm/model_development/bridgepoint/
http://www.mentor.com/products/sm/model_development/bridgepoint/
http://www.omg.org/spec/SPTP/1.1/PDF/
http://www.omg.org/spec/SPTP/1.1/PDF/
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/docs/formal/06-01-01.pdf

BIBLIOGRAPHY

[155] Object Management Group. Object Constraint Language V2.0. http:
//www.omg.org/docs/formal/06-05-01.pdf, 5 2006.

[156] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Version 1.0. http://www.
omg.org/spec/QVT/1.0/PDF/08-04-03.pdf, 2008.

[157] Object Management Group. UML Infrastructure, Version 2.3. http:
//www.omg.org/spec/UML/2.3/, 2010. Online, accessed 3–11–2013.

[158] Object Management Group. UML Superstructure, Version 2.3. http:
//www.omg.org/spec/UML/2.3/, 2010. Online, accessed 3–11–2013.

[159] Object Management Group. UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems. http://www.omg.org/
spec/MARTE/1.1/PDF/, 2011. Online, accessed 4–3–2013.

[160] G. O’Keefe. The Meaning of UML Models. PhD thesis, Australian Na-
tional University, 2008.

[161] Pathfinder Solutions. PathMATE. http://www.pathfindersolns.
com/products/pathmate/. Online, accessed 5–14–2013.

[162] C. A. Petri. Kommunikation mit Automaten. PhD thesis, University of
Bonn, 1962.

[163] G. D. Plotkin. A Structural Approach to Operational Semantics. J. Log.
Algebr. Program., 60–61:17–139, 2004.

[164] D. Plump. Termination of Graph Rewriting is Undecidable. Fundam. Inf.,
33(2):201–209, Feb. 1998.

[165] A. Pnueli. The Temporal Logic of Programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57, 31 1977-nov. 2
1977.

[166] A. Rensink. The GROOVE Simulator: A Tool for State Space Genera-
tion. In J. L. Pfaltz, M. Nagl, and B. Böhlen, editors, AGTIVE 2003 –
Revised Selected and Invited Papers, volume 3062 of LNCS, pages 479–485,
Berlin/Heidelberg, 2004. Springer.

[167] A. Rensink. Time and Space Issues in the Generation of Graph Transition
Systems. Electr. Notes Theor. Comput. Sci., 127(1):127–139, 2005.

[168] A. Rensink. Nested Quantification in Graph Transformation Rules. In
Corradini et al. [30], pages 1–13.

[169] A. Rensink and D. Distefano. Abstract Graph Transformation. Electr.
Notes Theor. Comput. Sci., 157(1):39–59, 2006.

[170] A. Rensink and J.-H. Kuperus. Repotting the Geraniums: On Nested
Graph Transformation Rules. In Proceedings of GT/VMT 2009, volume 18
of Electronic Communications of the EASST. European Association of
Software Science and Technology, 2009.

267

http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/spec/QVT/1.0/PDF/08-04-03.pdf
http://www.omg.org/spec/QVT/1.0/PDF/08-04-03.pdf
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/MARTE/1.1/PDF/
http://www.omg.org/spec/MARTE/1.1/PDF/
http://www.pathfindersolns.com/products/pathmate/
http://www.pathfindersolns.com/products/pathmate/

BIBLIOGRAPHY

[171] A. Rensink, A. Schmidt, and D. Varró. Model Checking Graph Trans-
formations: A Comparison of Two Approaches. In H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg, editors, Graph Transformations,
volume 3256 of LNCS, pages 226–241. Springer, Berlin/Heidelberg, 2004.

[172] A. Rensink and E. Zambon. Neighbourhood Abstraction in GROOVE. In
Graph-based Tools 2010, volume 32 of Electronic Communications of the
EASST. European Association of Software Science and Technology, 2010.

[173] T. Rheker. A Bidrectional Transformation between EMF Models and
Typed Graphs. Bachelor’s thesis, University of Paderborn, 2008.

[174] M. Röhs. A Visual Editor for Semantics Specifications Using the Eclipse
Graphical Modeling Framework. Bachelor’s thesis, University of Pader-
born, 2008.

[175] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an Extensible and Highly-
modular Software Model Checking Framework. SIGSOFT Softw. Eng.
Notes, 28(5):267–276, Sept. 2003.

[176] S. Roser and B. Bauer. An Approach to Automatically Generated Model
Transformations Using Ontology Engineering Space. In Proceedings of
Workshop on Semantic Web Enabled Software Engineering (SWESE, 2006.

[177] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1997.

[178] D. A. Sadilek. Prototyping Domain-Specific Language Semantics. In Com-
panion to the 23rd ACM SIGPLAN conference on Object-oriented Pro-
gramming Systems Languages and Applications, New York, 2008. ACM.

[179] D. A. Sadilek and G. Wachsmuth. Prototyping Visual Interpreters and
Debuggers for Domain-Specific Modelling Languages. In I. Schieferdecker
and A. Hartman, editors, Proceedings of ECMDA ’08, volume 5095 of
LNCS, pages 63–78, Berlin/Heidelberg, 2008. Springer.

[180] J. Schäfer. Eine formale, graphbasierte Semantik für UML Interaktionen.
Master’s thesis, University of Paderborn, 2009.

[181] T. Schäfer, A. Knapp, and S. Merz. Model checking UML state machines
and collaborations. Electronic Notes in Theoretical Computer Science,
55(3):13 pages, 2001.

[182] A. Schmidt and D. Varró. CheckVML: A Tool for Model Checking Visual
Modeling Languages. In P. Stevens, J. Whittle, and G. Booch, editors,
UML 2003 - The Unified Modeling Language. Modeling Languages and
Applications, volume 2863 of LNCS, pages 92–95. Springer, Berlin/Hei-
delberg, 2003.

[183] H. Schreiber. Metamodellbasierte, teilautomatisierte Transformation von
visuellen Modellen in ausführbare DMM-Laufzeitmodelle. Master’s thesis,
University of Paderborn, 2010.

268

BIBLIOGRAPHY

[184] A. Schürr. Specification of Graph Translators with Triple Graph Gram-
mars. In E. W. Mayr, G. Schmidt, and G. Tinhofer, editors, WG, volume
903 of LNCS, pages 151–163. Springer, 1994.

[185] A. Schürr and F. Klar. 15 Years of Triple Graph Grammars. In Ehrig
et al. [58], pages 411–425.

[186] M. Semenyak. Full Semantics Preservation in Model Transformation. PhD
thesis, University of Paderborn, 2011.

[187] R. F. Serfozo. An Equivalence between Continuous and Discrete Time
Markov Decision Processes. Operations Research, 27(3):616–620, 1979.

[188] K. Smolander, K. Lyytinen, V.-P. Tahvanainen, and P. Marttiin. Meta-
Edit: a Flexible Graphical Environment for Methodology Modelling. In
Proceedings of the third international conference on Advanced information
systems engineering (CAiSE 91), pages 168–193, New York, NY, USA,
1991. Springer New York, Inc.

[189] C. Soltenborn. Analysis of UML Workflow diagrams with Dynamic Meta
Modeling techniques. Diploma thesis, University of Paderborn, June 2006.

[190] C. Soltenborn and G. Engels. Towards Generalizing Visual Process Pat-
tern. In P. Bottoni, E. Guerra, J. de Lara, T. Margaria, J. Padberg,
and G. Taentzer, editors, Proceedings of the 1st International Workshop
on Visual Formalisms for Patterns (VFfP 2009), Corvallis, OR (USA),
volume 25 of Electronic Communications of the EASST. European Asso-
ciation of Software Science and Technology, 2009.

[191] C. Soltenborn and G. Engels. Towards Test-Driven Semantics Specifica-
tion. In B. S. A. Schürr, editor, Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems (MoD-
ELS 2009), Denver, Colorado (USA), pages 378–392, Berlin/Heidelberg,
2009. Springer.

[192] C. Soltenborn and G. Engels. Using Rule Overriding to Improve Reusabil-
ity and Understandability of Dynamic Meta Modeling Specifications.
Journal of Visual Languages and Computing, 22(3):233–250, 2011.

[193] Sparx Systems. Enterprise Architect. http://www.sparxsystems.
com.au/. Online, accessed 5–14–2013.

[194] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF – Eclipse
Modeling Framework. Addison-Wesley, 2008.

[195] P. Stevens. A Landscape of Bidirectional Model Transformations. In
R. Lämmel, J. Visser, and J. Saraiva, editors, GTTSE, volume 5235 of
LNCS, pages 408–424. Springer, 2007.

[196] H. Störrle and J. H. Hausmann. Towards a Formal Semantics of UML 2.0
Activities. In P. Liggesmeyer, K. Pohl, and M. Goedicke, editors, Software
Engineering, volume 64 of LNI, pages 117–128. GI, 2005.

269

http://www.sparxsystems.com.au/
http://www.sparxsystems.com.au/

BIBLIOGRAPHY

[197] M. Strommer and M. Wimmer. A Framework for Model Transformation
By-Example: Concepts and Tool Support. In R. F. Paige and B. Meyer,
editors, TOOLS (46), volume 11 of Lecture Notes in Business Information
Processing, pages 372–391. Springer, 2008.

[198] G. Taentzer. Parallel and distributed graph transformation - formal de-
scription and application to communication-based systems. PhD thesis,
TU Berlin, 1996.

[199] G. Taentzer. AGG: A Tool Environment for Algebraic Graph Transfor-
mation. In M. Nagl, A. Schürr, and M. Münch, editors, AGTIVE, volume
1779 of LNCS, pages 481–488, Berlin/Heidelberg, 1999. Springer.

[200] G. Taentzer. AGG: A Graph Transformation Environment for Modeling
and Validation of Software. In J. L. Pfaltz, M. Nagl, and B. Böhlen, edi-
tors, AGTIVE, volume 3062 of LNCS, pages 446–453, Berlin/Heidelberg,
2003. Springer.

[201] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA (USA),
2006.

[202] M. Utting and B. Legeard. Practical Model-Based Testing – A Tools Ap-
proach. Elsevier, Amsterdam, The Netherlands, 2007.

[203] W. van der Aalst. Verification of Workflow Nets. In Proceedings of the
18th International Conference on Application and Theory of Petri Nets
(ICATPN 97), pages 407–426, London, UK, 1997. Springer.

[204] W. Van Der Aalst and K. van Hee. Workflow Management: Models,
Methods, and Systems. Cooperative Information Systems Series. MIT
Press, 2004.

[205] M. Vardi. Branching vs. Linear Time: Final Showdown. In Proceedings
of the 2001 Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2001, volume 2031 of LNCS, pages 1–22,
Berlin/Heidelberg, 2001. Springer.

[206] D. Varró. Model Transformation by Example. In Nierstrasz et al. [151],
pages 410–424.

[207] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer. Ter-
mination Analysis of Model Transformations by Petri Nets. In Corradini
et al. [30], pages 260–274.

[208] M. von Detten. Archimetrix: A Tool for Deficiency-Aware Software Ar-
chitecture Reconstruction. In WCRE, pages 503–504. IEEE Computer
Society, 2012.

[209] J. Wang, S.-K. Kim, and D. A. Carrington. Verifying Metamodel Coverage
of Model Transformations. In ASWEC, pages 270–282. IEEE Computer
Society, 2006.

270

BIBLIOGRAPHY

[210] S. Weißleder and B.-H. Schlingloff. Quality of Automatically Generated
Test Cases based on OCL Expressions. In ICST, pages 517–520. IEEE
Computer Society, 2008.

[211] L. Wendehals. Struktur- und verhaltensbasierte Entwurfsmustererken-
nung. PhD thesis, University of Paderborn, 2007.

[212] M. Woodside. From Annotated Software Designs (UML SPT/MARTE)
to Model Formalisms. In M. Bernardo and J. Hillston, editors, Formal
Methods for Performance Evaluation, volume 4486 of LNCS, pages 429–
467. Springer, Berlin/Heidelberg, 2007.

[213] F. Xie, V. Levin, and J. C. Browne. Model Checking for an Executable
Subset of UML. In Proceedings of the 16th IEEE international conference
on Automated software engineering, ASE ’01, pages 333–, Washington,
DC, USA, 2001. IEEE Computer Society.

[214] L. Xuandong, W. Linzhang, Q. Xiaokang, L. Bin, Y. Jiesong, Z. Jianhua,
and Z. Guoliang. Runtime Verification of Java Programs for Scenario-
Based Specifications. In L. M. Pinho and M. G. Harbour, editors, Pro-
ceedings of the 11th Ada-Europe International Conference on Reliable Soft-
ware Technologies (Ada-Europe 06), volume 2006 of LNCS, pages 94–105,
Berlin/Heidelberg, 2006. Springer.

[215] E. Zambon and A. Rensink. Using Graph Transformations and Graph Ab-
stractions for Software Verification. In Proceedings of ICGT 2010 – Doc-
toral Symposium, volume 38 of Electronic Communications of the EASST.
European Association of Software Science and Technology, 2011.

271

A
Appendix

A.1 Custom OCL Operations

Some OCL constraints describing the static semantics of the DMM language are
rather difficult or even impossible to express using standard OCL. Fortunately,
the OCL framework we are using (see Sect. 2.3.2) provides an easy way to
extend an OCL evaluation environment with custom OCL operations, which
can then be used within the OCL expressions defining the DMM language’s
static semantics as presented in appendix A.2. In this section, we will define
these custom OCL operations.

For each operation, we provide a precise description of the operation’s seman-
tics – the formal definition of these operations by means of Java code can be in-
vestigated in class de.upb.dmm.ruleset.ocl.DMMEvaluationEnviron-
ment of plug-in de.upb.dmm.ruleset.ocl.

A.1.1 EObject.findParentObject(EClass):
EObject

This operation is used to find the nearest object in the containment hierar-
chy which a) transitively contains this EObject and b) has the same type
as the EClass provided as the operation’s parameter. For instance, calling
findParentObject() on an invocation and passing ruleset::Package
as a parameter will return the package which directly contains the invocation’s
rule.

A.1.2 Invocation.getCompatibleRules(): Set

This operation computes the set of DMM rules which are compatible with the
given invocation. A rule is compatible with an invocation if all of the following
conditions hold:

• The rule’s name is the same as the invocation’s invokedRule attribute
value

• The number of parameters of the rule is the same as the number of pa-
rameters passed by the invocation

• The rule’s context node’s type is the same or a subtype of the invocation’s
target node’s type

273

APPENDIX

• The type of the i-th parameter passed by the invocation must be the same
or a subtype of the type of the i-th parameter of the rule

A.1.3 EDataType.isCompatible(EDataType):
boolean

This operation returns true if and only if a value of the passed datatype
can be assigned to an attribute having this datatype. For instance, calling
isCompatible on datatype ecore::ELong and passing datatype ecore::-
EInt will yield true; switching the two datatypes of this example will yield
false.

A.1.4 Expression.getEDataType(): EDataType

This operation returns the EDataType of the expression’s evaluation result. For
instance, calling getEDataType on the expression represented by the string
“4711 == 2001” will yield ecore::EBoolean.

A.1.5 Rule.hasAssignmentCycles(): boolean

This operation returns true if and only if the assignments in the given rule
do contain assignment cycles. An assignment cycle is a number of assignments
such that one assignment depends on the result of another assignment and
vice versa. For instance, a very simple assignment cycle is contained in the
two assignments a’ := b’ and b’ := a’. The operation is implemented by
computing a topological order on the rule’s assignments – it returns true if
and only if this is not possible.

A.1.6 Rule.getUqsClusters(): Set

A UQS cluster is a set of nodes which are connected to each other, and where
each of the nodes has either quantification Quantifier::ZERO_TO_MANY or
Quantifier::ONE_TO_MANY. This methods returns the set of such clusters
(if any), i.e., it returns a set of sets of nodes.

A.1.7 Rule.getUqsCluster(Node): Set

This operation returns the UQS cluster containing the passed node (if any), i.e.,
a set of nodes. For the definition of a UQS cluster see Sect. A.1.6.

A.1.8 Rule.getNotExistsCluster(): Set

A not exists cluster is a set of nodes which are connected to each other, and
where each of the nodes has role ElementRole::NOT_EXISTS. This methods
returns the not exists clusters to which the passed node belongs (if any), i.e., it
returns a set of nodes.

274

A.2. DMM: STATIC SEMANTICS

A.1.9 Rule.areNestedNodesConnectedProperly():
boolean

Each not exists cluster must be connnected to exactly one UQS cluster. The
methods returns true if and only if this is the case for this rule. For the defini-
tion of a UQS cluster see Sect. A.1.6, for the not exists cluster see Sect. A.1.8.

A.2 DMM: Static Semantics

This section defines the static semantics of the DMM language by means of
OCL constraints for the DMM metamodel’s metaclasses. The OCL expressions
make use of the custom OCL operations as defined in the last section. The
metaclasses are organized as in the DMM language definition we have seen in
Sect. 6.2 on page 59. Metaclasses which do not introduce any OCL constraints
are not listed within this section at all.

A.2.1 Ruleset Structure
A.2.1.1 Ruleset

Constraints

• A ruleset must have a non-empty name
self.name.size() > 0

A.2.1.2 Package

Constraints

• A package is either contained in a ruleset or in a package
self.ruleset.oclIsUndefined() xor
self.parent.oclIsUndefined()

A.2.2 Rule Hierarchy
A.2.2.1 Rule

Constraints

• A rule must have a non-empty name
self.name.size() > 0

• A rule must have a context node
not self.contextNode.oclIsUndefined()

• A rule’s context node must have a non-empty name
self.contextNode.name.size() > 0

• A rule’s context node must have role EXISTS or DESTROY
self.contextNode.role = ElementRole::EXISTS or
self.contextNode.role = ElementRole::DESTROY

275

APPENDIX

• A rule’s unique name must be distinct within a ruleset
self.ruleset.rule->forAll(

r, s | r <> s implies r.uniqueName <> s.uniqueName)

A.2.2.2 ParameterizedElement

Constraints

• Every node acting as a parameter within a rule must have a name
self.parameter->forAll(n | n.name.size() > 0)

• All nodes used as parameters must have pairwise distinct names
self.parameter->forAll(

n,m | n <> m implies n.name <> m.name)

A.2.2.3 PremiseRule

Constraints

• A premise rule must not contain nodes which are to be deleted or created
self.node->forAll(n |

n.role = ElementRole::EXISTS or
n.role = ElementRole::NOT_EXISTS)

• A premise rule must not contain edges which are to be deleted or created
self.edge->forAll(e |

e.role = ElementRole::EXISTS or
e.role = ElementRole::NOT_EXISTS)

• A premise rule can only invoke other premise rules
self.invocation->forAll(i |

i.oclIsTypeOf(PremiseRule))

A.2.2.4 PropertyRule

Constraints

• A property rule must not contain nodes which are to be deleted or created
self.node->forAll(n |

n.role = ElementRole::EXISTS or
n.role = ElementRole::NOT_EXISTS)

• A property rule must not contain edges which are to be deleted or created
self.edge->forAll(e |

e.role = ElementRole::EXISTS or
e.role = ElementRole::NOT_EXISTS)

A.2.2.5 OverridingRelation

Constraints

276

A.2. DMM: STATIC SEMANTICS

• A rule can only override another rule if the overridden rule’s context node’s
type is a supertype of the overriding rule’s context node’s type
self.overridingRule.contextnode.type <>
self.overriddenRule.contextnode.type and
self.overridingRule.contextnode.type.allSupertypes

->includes(self.overriddenRule.contextnode.type)

• A rule participating in a CompleteOveridingRelation cannot also partici-
pate in a SoftOverrdingRelation
SoftOverridingRelation.allInstances()->forAll(r |

r.overriddenRule <> self.overriddenRule and
r.overridingRule <> self.overriddenRule and
r.overriddenRule <> self.overridingRule and
r.overridingRule <> self.overridingRule)

• A rule participating in a SoftOveridingRelation cannot also participate in
a CompleteOverridingRelation
CompleteOverridingRelation.allInstances()->forAll(r |

r.overriddenRule <> self.overriddenRule and
r.overridingRule <> self.overriddenRule and
r.overriddenRule <> self.overridingRule and
r.overridingRule <> self.overridingRule)

A.2.2.6 SoftOverridingRelation

Constraints

• Only smallstep rules can participate in an overriding relation (see seman-
tics below)
self.overridingRule.oclIsType(SmallstepRule) and
self.overriddenRule.oclIsType(SmallstepRule)

A.2.3 Internal Rule Structure

A.2.3.1 Node

Constraints

• Nodes acting as parameters of an invocation must not be universally quan-
tified
self.quantification <> ruleset::Quantifier::ONE
implies self.rule.invocation->forAll(i |

not i.parameter->includes(self))

• Universally quantified nodes must not have role ElementRole::CREATE
or ElementRole::NOT_EXISTS
(self.quantification = Quantifier::ONE_TO_MANY or
self.quantification = Quantifier::ZERO_TO_MANY)
implies not
(self.role = ElementRole::CREATE or
self.role = ElementRole::NOT_EXISTS)

277

APPENDIX

• A node must have a type from one of the ruleset’s metamodels
self.rule.ruleset.metamodels->exists(m |

m.eClassifiers->includes(self.type))

• Nodes carrying emphasized attributes must have quantification Quanti-
fier::ONE and role ElementRole::EXISTS or ElementRole::DE-
STROY
self.emphasizedAttributes->size() > 0 implies
self.quantification = Quantifier::ONE and
(self.role = ElementRole::EXISTS or
self.role = ElementRole::DESTROY)

• A nested node must be connected to exactly one UQS cluster
self.rule.areNestedNodesConnectedProperly()

• All nodes of a UQS cluster must have the same quantification
self.quantification = Quantifier::ZERO_TO_MANY or
self.quantification = Quantifier::ONE_TO_MANY
implies
self.rule.getUqsClusters()->forAll(c |

c->exists(n | n = self) implies
c->forAll(n |

n.quantification = self.quantification))

A.2.3.2 Edge

Constraints

• An edge must have a reference from one of the ruleset’s metamodels
self.rule.ruleset.metamodels->exists(m |

m.eClassifiers->exists(c |
c.oclIsTypeOf(ecore::EClass) and
c.oclAsType(ecore::EClass).eReferences
->includes(self.reference)))

• An edge’s reference must be compatible with its source and target nodes’
types
(self.source.type.eAllSuperTypes->includes(

self.reference.eContainingClass.oclAsType(
ecore::EClass))

or self.source.type = reference.eContainingClass)
and
(self.target.type.eAllSuperTypes->includes(

self.reference.eType.oclAsType(
ecore::EClass))

or self.target.type = reference.eType)

• The nodes of an edge must not have roles ElementRole::DESTROY and
ElementRole::CREATE
not((

self.source.role = ruleset::ElementRole::DESTROY
and

278

A.2. DMM: STATIC SEMANTICS

self.target.role = ruleset::ElementRole::CREATE)
or
(self.source.role = ruleset::ElementRole::CREATE
and
self.target.role = ruleset::ElementRole::DESTROY))

• If one of an edge’s nodes has role ElementRole::CREATE, Element-
Role::DESTROY, or ElementRole::NOT_EXISTS, the edge must have
the same role
((self.source.role = ruleset::ElementRole::NOT_EXISTS
or
self.target.role = ruleset::ElementRole::NOT_EXISTS)
implies self.role = ruleset::ElementRole::NOT_EXISTS)
and
((self.source.role = ruleset::ElementRole::CREATE or
self.target.role = ruleset::ElementRole::CREATE)
implies self.role = ruleset::ElementRole::CREATE)
and
((self.source.role = ruleset::ElementRole::DESTROY or
self.target.role = ruleset::ElementRole::DESTROY)
implies (self.role = ruleset::ElementRole::DESTROY
or self.role = ruleset::ElementRole::NOT_EXISTS))

• If one of an edge’s nodes has role ElementRole::NOT_EXISTS and
the other has role ElementRole::DESTROY, the edge must have role
ElementRole::NOT_EXISTS
((self.source.role = ElementRole::NOT_EXISTS and
self.target.role = ElementRole::DESTROY) or
(self.source.role = ElementRole::DESTROY and
self.target.role = ElementRole::NOT_EXISTS))
implies self.role = ElementRole::NOT_EXISTS

• If this edge connects a node with role ElementRole::NOT_EXISTS to
a nested node, the former node must also be nested
not(
(self.source.role = ElementRole::NOT_EXISTS and
self.source.quantification = ruleset::Quantifier::ONE
and self.target.quantification = Quantifier::NESTED)
or (self.target.role = ElementRole::NOT_EXISTS and
self.target.quantification = ruleset::Quantifier::ONE
and self.source.quantification = Quantifier::NESTED))

A.2.3.3 Invocation

Constraints

• The target node of an invocation must not have role ElementRole::DE-
STROY or ElementRole::NOT_EXISTS
self.targetnode.role <> ElementRole::DESTROY and
self.targetnode.role <> ElementRole::NOT_EXISTS

279

APPENDIX

• The parameters of an invocation must not have role ElementRole::DE-
STROY or ElementRole::NOT_EXISTS
self.parameter->forAll(p |

p.role <> ElementRole::DESTROY and
p.role <> ElementRole::NOT_EXISTS)

• Every invocation must invoke an existing rule, i.e., a rule with the same
name and compatible contextnode and parameters (see Sect. A.1.2 for
more details)
self.getCompatibleRules()->size() > 0

• Premise rules must not invoke smallstep rules, only other premise rules
self.rule.oclIsTypeOf(ruleset::PremiseRule) implies
self.getCompatibleRules()->forAll(r |

r.oclIsTypeOf(ruleset::PremiseRule))

• Property rules must not invoke smallstep rules, only premise rules
self.rule.oclIsTypeOf(ruleset::PropertyRule) implies
self.getCompatibleRules()->forAll(r |

r.oclIsTypeOf(ruleset::PremiseRule))

• An invoked premise rule must be unique, i.e., there must only exist one
compatible premise rule
self.getCompatibleRules()->exists(r |

r.oclIsTypeOf(ruleset::PremiseRule))
implies self.getCompatibleRules()->size() = 1

• The target node of a premise rule invocation must not be quantified
Quantifier::ZERO_TO_MANY or Quantifier::ONE_TO_MANY
self.getCompatibleRules()->exists(r |

r.oclIsTypeOf(ruleset::PremiseRule))
implies self.targetnode.quantification <>
Quantifier::ZERO_TO_MANY and
self.targetnode.quantification <>
Quantifier::ONE_TO_MANY

A.2.3.4 Condition

Constraints

• Conditions must evaluate to a boolean value
self.expression.getEDataType().isCompatible(

ecore::EBoolean.oclAsType(ecore::EDataType))

• Identifiers within a condition must not refer to the new value of attributes
self.expression.oclAsType(ecore::EObject)

.eAllContents()->forAll(o |
o.oclIsTypeOf(expression::AttributeExpression)
implies not
o.oclAsType(expression::AttributeExpression)
.nextStateValue)

280

A.2. DMM: STATIC SEMANTICS

• Only enumeration conditions of form <attribute>== ’<enumLite-
ral>’ are allowed
let opExp : expression::OperationExpression =
self.expression.oclAsType(

expression::OperationExpression)
in opExp.subexpressions->at(1).oclIsTypeOf(

expression::LiteralExpression)
implies opExp.subexpressions->at(1).oclAsType(

expression::LiteralExpression).literal.oclIsTypeOf(
expression::EnumerationLiteral)

implies
(opExp.operator.symbol = ’==’ or
opExp.operator.symbol = ’!=’) and
opExp.subexpressions->size() = 2 and
opExp.subexpressions->at(0).oclIsTypeOf(

expression::AttributeExpression)

• Only literals of the according enumeration can be used in a condition
let opEx : expression::OperationExpression =
self.expression.oclAsType(

expression::OperationExpression)
in opEx.subexpressions->at(1).oclIsTypeOf(

expression::LiteralExpression)
implies
let litExp : expression::LiteralExpression =
opEx.subexpressions->at(1).oclAsType(

expression::LiteralExpression)
in litExp.literal.oclIsTypeOf(

expression::EnumerationLiteral)
implies
opEx.subexpressions->at(0).oclAsType(

expression::AttributeExpression).targetAttribute
.eType.oclAsType(ecore::EEnum)
.eLiterals->includes(

litExp.literal.oclAsType(ecore::EEnumLiteral))

A.2.3.5 Assignment

Constraints

• An assignment must not assign a value to an attribute of a node other
than the assignment’s owner
self.assignTo.targetNode = self.oclAsType(

ecore::EObject).eContainer()

• The data type of the expression must fit to the data type of the attribute
within an assignment
self.assignTo.oclAsType(expression::Expression)
.getEDataType().oclAsType(ecore::EDataType)
.isCompatible(

281

APPENDIX

self.expression.getEDataType()
.oclAsType(ecore::EDataType))

• An assignment must assign its expression to a new value of an attribute
self.assignTo.nextStateValue

A.2.3.6 EmphasizedNodeAttribute

Constraints

• Only attributes belonging to the node’s type can be used as emphasized
attributes
self.node.type.eAllAttributes()->contains(

self.attribute)

A.2.4 DMM Expression Language
A.2.4.1 Expression

Constraints

• The data type of the sub expressions does not fit the operator within the
expression
not self.getEDataType().oclIsUndefined()

A.2.4.2 AttributeExpression

Constraints

• An identifier must refer to an existing attribute
self.targetNode.type.eAllAttributes->includes(

self.targetAttribute)

• Attribute expressions on the left side of an assignment must always refer
to the attribute’s value after rule application
self.leftHandSide implies self.nextStateValue

• An identifier must not refer to a new value of an attribute of a node with
the role ElementRole::DESTROY
self.nextStateValue and not self.leftHandSide
implies self.targetNode.role <> ElementRole::DESTROY

• An identifier must not refer to a value of an attribute of a node with the
role not exists
let rule : Rule = self.oclAsType(ecore::EObject)
.findParentObject(Rule.oclAsType(ecore::EClass))
.oclAsType(Rule)
in let parentNode : Node = self.oclAsType(

ecore::EObject)
.findParentObject(Node.oclAsType(ecore::EClass))
.oclAsType(Node)
in let targetNode : Node = self.targetNode

282

A.2. DMM: STATIC SEMANTICS

in not self.leftHandSide and
targetNode.role = ElementRole::NOT_EXISTS
implies
parentNode.role = ElementRole::NOT_EXISTS and
rule.getNotExistsCluster(targetNode)->includes(

parentNode)

• An identifier must not refer to a value of an attribute of a universally
quantified node
let rule : Rule = self.oclAsType(ecore::EObject)
.findParentObject(Rule.oclAsType(ecore::EClass))
.oclAsType(Rule)
in let parentNode : Node = self.oclAsType(

ecore::EObject)
.findParentObject(Node.oclAsType(ecore::EClass))
.oclAsType(Node)
in let targetNode : Node = self.targetNode
in not self.leftHandSide and
(targetNode.quantification = Quantifier::ZERO_TO_MANY
or
targetNode.quantification = Quantifier::ONE_TO_MANY)
implies
parentNode.quantification <> Quantifier::ONE and
rule.getUqsCluster(targetNode)->includes(parentNode)

• An identifier must not refer to a new value of an attribute whose value is
not assigned.
self.nextStateValue and not self.leftHandSide
implies
self.targetNode.assignments->exists(a |

not a.assignTo.targetNode.oclIsUndefined() and
not a.assignTo.targetAttribute.oclIsUndefined()
and not self.targetNode.oclIsUndefined() and
not self.targetAttribute.oclIsUndefined() and
a.assignTo.targetNode = self.targetNode and
a.assignTo.targetAttribute = self.targetAttribute)

• An identifier must not refer to an old value of an attribute of a node with
the role create
not self.nextStateValue and not self.leftHandSide
implies self.targetNode.role <> ElementRole::CREATE

• An identifier must not refer to value of an attribute of a nested quantified
node
let rule : Rule = self.oclAsType(ecore::EObject)
.findParentObject(Rule.oclAsType(ecore::EClass))
.oclAsType(Rule)
in let parentNode : Node = self.oclAsType(

ecore::EObject)
.findParentObject(Node.oclAsType(ecore::EClass))
.oclAsType(Node)

283

APPENDIX

in let targetNode : Node = self.targetNode
in not self.leftHandSide and
targetNode.quantification = Quantifier::NESTED
implies
parentNode.quantification = Quantifier::NESTED and
rule.getUqsCluster(targetNode)->includes(parentNode)

284

	Introduction
	Motivation
	Current State of Dynamic Meta Modeling
	Objectives of this Thesis
	Structure of this Thesis

	I Foundations
	Eclipse Modeling Framework
	Metamodeling and MOF
	Ecore Metamodel
	The Eclipse Modeling Framework

	UML Activities
	Overview
	Syntax
	Semantics

	GROOVE
	Graph Transformation in GROOVE
	State Space Exploration
	Model Checking GROOVE Grammars
	Tool Support

	Dynamic Meta Modeling
	Goals of and Requirements on DMM
	Dynamic Meta Modeling
	Evaluation of DMM's Current State

	Summary

	II Dynamic Meta Modeling ++
	Language Definition of DMM++
	Comparison of DMM and DMM++
	Syntax
	Semantics
	Related Work

	Summary

	III Quality of DMM++ Specifications
	Creating DMM Specifications
	DMM and Model Transformations
	From Syntax Metamodel to Runtime Metamodel
	Creating DMM Rulesets
	Related Work

	Test-driven Semantics Specification
	Test-Driven Semantics Specification
	Coverage Criteria for Tests of DMM Specifications
	Related Work

	Summary

	IV Quality of Models
	Formulating and Verifying Requirements
	Functional Requirements
	Non-Functional Requirements
	Related Work

	Debugging Models
	Visual Model Execution
	Model Examination
	Implementation
	Related Work

	Summary

	Summary and Outlook
	List of Figures, Listings and Tables, Bibliography, Appendix
	List of Figures
	List of Listings
	List of Tables
	Bibliography
	Appendix
	Custom OCL Operations
	DMM: Static Semantics

