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Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Facility Location Problem. Dies ist ein Optimie-
rungsproblem, bei dem festgelegt werden muss an welchen Positionen Ressourcen zur
Verfügung gestellt werden, so dass diese von Nutzern gut erreicht werden können. Es
sollen dabei Kosten minimiert werden, die zum einen durch Bereitstellung von Res-
sourcen und zum anderen durch Verbindungskosten zwischen Nutzern und Ressourcen
entstehen. Die Schwierigkeit des Problems liegt darin, dass man einerseits möglichst
wenige Ressourcen zur Verfügung stellen möchte, andererseits dafür sorgen muss, dass
sich Nutzer nicht all zu weit weg von Ressourcen befinden. Dies würde nämlich hohe
Verbindungskosten nach sich ziehen.

Das Facility Location Problem wurde bereits sehr intensiv in vielen unterschiedlichen
Varianten untersucht. In dieser Arbeit werden drei Varianten des Problems modelliert
und neue Algorithmen für sie entwickelt und bezüglich ihres Approximationsfaktors
und ihrer Laufzeit analysiert.

Jede dieser drei untersuchten Varianten hat einen besonderen Schwerpunkt. Bei der
ersten Varianten handelt es sich um ein Online Problem, da hier die Eingabe nicht von
Anfang an bekannt ist, sondern Schritt für Schritt enthüllt wird. Die Schwierigkeit hier-
bei besteht darin unwiderrufliche Entscheidungen treffen zu müssen ohne dabei die Zu-
kunft zu kennen und trotzdem eine zu jeder Zeit gute Lösung angeben zu können. Der
Schwerpunkt der zweiten Variante liegt auf Lokalität, die z.B. in Sensornetzwerken von
großer Bedeutung ist. Hier soll eine Lösung verteilt und nur mit Hilfe von lokalen In-
formation berechnet werden. Schließlich beschäftigt sich die dritte Variante mit einer
verteilten Berechnung, bei welcher nur eine stark beschränkte Datenmenge verschickt
werden darf und dabei trotzdem ein sehr guter Approximationsfaktor erreicht werden
muss.

Die bei der Analyse der Approximationsfaktoren bzw. der Kompetitivität verwendeten
Techniken basieren zum großen Teil auf Abschätzung der primalen Lösung mit Hilfe
einer Lösung des zugehörigen dualen Problems. Für die Modellierung von Lokalität
wird das weitverbreitete LOCAL Modell verwendet. In diesem Modell werden für die
Algorithmen subpolynomielle obere Laufzeitschranken gezeigt.
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C H A P T E R 1

Introduction

The topic of this thesis is approximation and online algorithms for an optimization prob-
lem known as Facility Location. This problem, or one of its many variants, arises as
a subproblem in many practical applications, and is thus of significant importance in
the field of Operations Research. Furthermore, it is also one of the most studied op-
timization problems in theoretical computer science with hundreds of research papers
published during the last decades. Most of these papers introduce approximation al-
gorithms for different variants of the problem making Facility Location a benchmark
problem for various new kinds of approximation techniques.

In this thesis, we focus on the theoretical aspects of Facility Location by designing
and, most importantly, analyzing approximation and online algorithms. Our algorithms
deal with three distinct scenarios in which Facility Location occurs: (i) networks that
are exposed to perpetual changes, (ii) wireless sensor networks with strong locality con-
straints, and (iii) distributed settings where the focus lies, first and foremost, on the
quality of the computed approximation.

We deal with each of these three scenarios within its own dedicated chapter. Chapter
2 covers Scenario (i). It presents an online algorithm designed for a highly dynamic
network where additional nodes are perpetually added. The difficulty here is that these
new nodes’ requests have to be handled efficiently without any knowledge of the net-
work’s future development. Scenario (ii) is considered in Chapter 3. Two distributed
algorithms for wireless sensor networks are presented here. Due to the nodes’ limited
communication range, locality is of high importance in this scenario. Additional aspects
like inaccurate measurement data, power consumption, and dynamics are also taken into
account. Finally, Scenario (iii) is considered in Chapter 4. Our objective here is to dis-
tributedly compute a solution with an approximation ratio that is as close as possible to
the best achievable ratio. In order to accomplish this, we allow, compared to Scenario
(ii), a higher running time, but still require that the algorithm terminates in sub-linear
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2 INTRODUCTION

time. The thesis ends with Chapter 5 where possible directions of future work are pre-
sented.

In the remainder of this introductory chapter, we first give an informal explanation of
the Facility Location problem in Section 1.1, followed by a formal definition of the prob-
lem in Section 1.2. Hereafter, in Section 1.3, an overview of related work is presented.
This section also contains a short overview of the main techniques used to analyze Facil-
ity Location algorithms. Note that a more detailed discussion of related work dedicated
to the three scenarios (and their corresponding Facility Location variants) can be found
later in the chapters. Section 1.4 presents a compact description of my contribution in
each of the three aforementioned scenarios (i.e., it describes the contents of Chapter
2, 3 and 4). We conclude the introduction with Section 1.5. Here, additionally to the
three Facility Location variants considered in this thesis, we present several further very
common modifications to Facility Location and explain their relevance to our work.

1.1 The Facility Location Problem

Assume you want to decide on which geographical positions power plants have to be
constructed such that cities are provided with electricity. Your solution should be good
from an economical point of view: On the one hand, you want to make sure that each
city is not too far away from the nearest power plant, because the cost of constructing
electricity lines increases with the distance they have to cover. But on the other hand, it
is not wise to build too many power plants (due to the high costs of their construction).
Thus, from an intuitive point of view, you want to build power plants on locations where
the density of cities is high and connect cities to power plants that are closest to them.
Especially, building a power plant close to a single remote city where it will be used by
that city only, might – in some cases – not be a good idea.

Of course, the power plants and the cities are only an example to illustrate the Facility
Location problem. One can also consider a computer network, where the objective is to
install servers on the network’s computers. Installing a server can be seen as equivalent
to building a power plant and users of the network as the equivalent of cities. Here, the
distance between a server and a user can be represented by the latency of the connection
between them.

In general, the locations where entities can be placed are referred to as facilities (this
can be, e.g., power plants or servers). Whenever we decide to place an entity on such
a location (e.g., construct a power plant, install a server, . . . ), we say that the facility
representing this location is opened. The entities that use open facilities are referred to
as clients (e.g., cities, users of the network, . . . ).
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1.2 Formal Definition

We are given a complete weighted bipartite graph G = (F,C,E). The node sets F and
C represent the two partitions of G and the set E contains the edges of G. Nodes in the
set F are facilities, while the set C contains the clients. The weight of the edge between
facility i and client j represents the connection costs and is denoted by ci j. Each node
i∈ F has a nonnegative weight fi referred to as the opening costs of facility i. In order to
get a feasible solution to our problem, we first have to choose a non-empty subset F ′⊆ F
of facilities and declare them to be open. Next, we have to assign each client j ∈C to an
open facility i (i.e., i ∈ F ′). This assignment is represented by the function φ : C→ F ′.
The set of open facilities F ′ and the assignment φ have to be chosen such that sum of
the facility opening costs (∑i∈F ′ fi) and the connection costs (∑ j∈C cφ( j) j) is minimized.
Note that the assignment φ is directly determined by the set of open facilities (as we
obviously cannot do better than connect each client to its closest open facility).

The Facility Location problem can also be formulated as an integer linear program in
the following way:

Facility Location IP

minimize ∑
i∈F

fiyi + ∑
i∈F, j∈C

ci jxi j

subject to ∑i∈F xi j ≥ 1 j ∈C (1)
yi− xi j ≥ 0 i ∈ F, j ∈C (2)

xi j ∈ {0,1} i ∈ F, j ∈C
yi ∈ {0,1} i ∈ F

The program contains two kinds of indicator variables (they can be set to either 0 or 1),
namely xi j and yi. A variable yi indicates whether facility i is open (yi = 1) or closed
(yi = 0). The other indicator variable xi j has the value 1 if the client j is connected
to facility i, and 0 otherwise. The constraints of type (1) guarantee that each client
is connected to at least one facility, while the constraints of type (2) make sure that a
client can only be connected to an open facility. Note, that in order to keep the program
as simple as possible we allow clients to be connected to more than a single facility.
This does not cause any problems, since every solution can be easily improved (while
retaining feasibility) by deleting all but one connection of the client. Finally, the cost
function consists of two parts, where the first part represents the amount we have to
pay for the opened facilities, and the second one represents the costs of connecting each
client to a facility.
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The Facility Location problem is sometimes defined on a complete graph (in contrast
to the definition above, where a complete bipartite graph is used). Each node in this
graph can take one of two different roles. It can become either a client or a facility. If the
node becomes a facility, we have to pay opening costs associated with this node. Other-
wise, the node becomes a client and we have to connect it to a node which has become
a facility. Here we pay for the connection between these two nodes. This definition will
be applied and explained in a more detailed way in Chapter 3.

Throughout this thesis we will consider the problem known as metric uncapacitated
Facility Location. It is called metric, since the values ci j are required to satisfy the
triangle inequality (i.e., ∀i, j, i′, j′ : ci j ≤ ci j′ + c j′i′ + ci′ j). This means that the direct
path between facilities and/or clients is always at most as long as some detour. Since
arbitrary many clients can be connected to a single open facility, we refer to the problem
as uncapacitated (see Section 1.5 for a more detailed description).

This thesis deals, for the most part, with approximation algorithms for this metric
uncapacitated Facility Location problem. Such algorithms do not necessarily compute
an optimal solution, but a solution with a cost that is guaranteed to be quite close to
the optimal solution’s cost. In order to measure an algorithm’s quality, the concept of
the approximation factor is used. For a minimization problem (e.g., Facility Location),
we say that an algorithm has an approximation factor ρ if – for all possible problem
instances – the solution it computes has a cost that is at most ρ-times higher than the
optimal solution’s cost. We also require that the runtime of our algorithms is polynomial
in the length of the input. The reason we are interested in approximation algorithms (as
opposed to exact algorithms) is due to Facility Location being an NP-hard problem (the
Set Cover problem can be easily reduced to Facility Location).

1.3 General Related Work

First work with respect to the Facility Location problem was done in the field of Opera-
tions Research. This research, as can be found in e.g., [8, 39, 47, 63], dates back as far as
50 years. Heuristics for numerous variants of the problem were presented (i.e., no worst
case analysis was performed). For a survey of more than fifty applications for Facility
Location see [20]. Some examples of applications are airports, blood banks, brewery de-
pots, computer service centers, bus stops, day-care centers, emergency medical services,
electric power generating plants, fire stations, fast-food restaurants, hazardous waste dis-
posal sites, railroad sidings, regional health facilities, satellite homing stations, schools,
social service centers, solid waste collection, vehicle inspection stations, warehouses,
chip manufacturing, data base management, . . . and now we are out of breath.
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During the last decades, the uncapacitated metric Facility Location problem was also
of great interest in theoretical computer science. A lot of progress has been made
concerning the running time and approximation factor of sequential algorithms solv-
ing it: Aardal et al. introduced the first polynomial time algorithm yielding a 3.16-
approximation [1]. Improving this approximation factor was the topic of a multitude
of research papers. For example, in [15] Chudak et al. improved the approximation fac-
tor to (1+ 2/e) ≈ 1.74 which was later on improved by Byrka to a 1.5-approximation
algorithm in [13]. Currently, the best known approximation that can be computed in
polynomial time is 1.488 (intorduced by Li in [41]). This approximation is very close to
the best known lower bound by Guha and Khuller (see [31]). They showed that under
the assumption that NP 6⊆ DTIME(nlog(log(n))), the best possible approximation factor
(computed in polynomial time) is 1.463.

Although both last mentioned algorithms yield very good approximation factors, they
have, due to applying LP-Rounding, high running times. Thus, the design of combina-
torial algorithms (possibly with slightly worse approximation factors, but better running
times) was also of interest in the past. Jain and Vazirani developed and analyze an algo-
rithm with approximation factor 3 and a running time of O(n2 log(n)) [34]. A simplified
and faster O(n2) version of this algorithm was introduced by Mettu and Plaxton [48].
Later on, Jain et al. improved the former results by presenting two algorithms in [35]:
One with running time O(m log(m)) and an approximation factor of 1.861 and another
one with running time O(n3) and an approximation factor of 1.61 (n denoting the num-
ber of nodes and m the number of edges in the complete bipartite graph of facilities and
clients). Later on, building upon [35], Mahdian et al. improved the factor to 1.52 [45].

As discussed by Shmoys in [61] there are, roughly speaking, three different cate-
gories of approximation algorithms for the Facility Location problem. The LP-rounding
algorithms first solve a relaxed linear program for the given Facility Location variant
optimally, which results in a not necessarily integral (thus possibly infeasible) solution.
This solution is then modified by rounding its variables’ values to integers. During this
rounding procedure, it is made sure that the solution’s costs are increased by a factor as
small as possible (this will be the approximation factor of the algorithm). The rounding
process can be both deterministic and randomized. Examples of such algorithms can be
found in [42, 62]. The second category is given by primal-dual algorithms. These al-
gorithms compute simultaneously an integral solution to the primal program and a dual
solution to the relaxed primal’s dual program. In their analysis, it is shown that the cost
of the primal solution is within some factor c of the dual’s. Due to the Weak Duality
theorem, c is an upper bound of the algorithm’s approximation factor. Prominent al-
gorithms of this type are presented in [35, 36]. Finally, there is the category of local
search algorithms (see, e.g., [3, 16, 38]). Here, the algorithm starts with some feasible
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solution and then iteratively modifies it with small changes. The current solution is only
changed if this change lowers the current costs. Once the solution cannot be improved
by such small (i.e., “local”) changes, the algorithms stops. A common example of such
a small change is to close a single facility while opening some another in a single step.
To compute an approximation factor ρ , one now has to show that the cost of each local
minimum is at most ρ times larger than the optimal costs.

1.4 Structure and Content of the Thesis

As mentioned before, the thesis is composed of three parts, each dealing with differ-
ent variants and aspects of the Facility Location problem. Most of the content, namely
[2, 18, 37] (as listed below), was published in peer reviewed conferences. An exception
are the results in [12] which, at the point of writing this thesis, were only published in
the CoRR database 1. The publication listed first is our strongest research result. It deals
with the online aspect of Facility Location and provides the content of Chapter 2. In
Chapter 3, the results of the second and third publication are described. Here, the fo-
cus is mostly on the Facility Location problem’s locality aspect. Finally, the publication
listed last is presented in Chapter 4 where the quality of the approximation and the mes-
sage complexity play a major role.

P. Kling, F. Meyer auf der Heide, and P. Pietrzyk. An algorithm for online facility
leasing. In Structural Information and Communication Complexity - 19th International
Colloquium (SIROCCO), pages 61-72, 2012 (c.f. [37] and Chapter 2)

S. Abshoff, A. Cord-Landwehr, B. Degener, B. Kempkes, and P. Pietrzyk. Local ap-
proximation algorithms for the uncapacitated metric facility location problem in power-
aware sensor networks. In Proceedings of the 7th International Symposium on Algo-
rithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities
(ALGOSENSORS), pages 13-27, 2011 (c.f. [2] and Chapter 3)

B. Degener, B. Kempkes, and P. Pietrzyk. A local, distributed constant-factor approx-
imation algorithm for the dynamic facility location problem. In Proceedings of the 24th
IEEE International Parallel & Distributed Processing Symposium (IPDPS), pages 1-10,
2010 (c.f. [18] and Chapter 3)

1 Computing Research Repository (http://arxiv.org/abs/1209.3868)
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P. Briest, B. Degener, B. Kempkes, P. Kling, and P. Pietrzyk. A distributed approxi-
mation algorithm for the metric uncapacitated facility location problem in the congest
model. CoRR, arXiv/1105.1248, 2011 (c.f. [12] and Chapter 4)

The subsections below present an overview of each of the three areas this thesis deals
with. They describe the used models and the attained results.

1.4.1 Facility Location in Dynamic Networks

The major part of the results presented in Chapter 2 was published in [37] in 2012. We
consider an online Facility Location problem where clients arrive over time and their
demands have to be served by assigning the clients to currently open facilities. When
opening a facility, we must choose which one of K different lease types is going to be
used. Each lease type k has a certain lease length lk. Opening a facility i using lease
type k causes a cost of f k

i and ensures that i is open (i.e., leased) for the next lk time
steps. Only during this time interval it is possible to connect clients to facility i. In
order to be able to use i after the time interval ends, one has to lease it again, which also
means that one has to pay the corresponding leasing costs again. In addition to costs for
opening (i.e., leasing) facilities, we have to pay connection costs ci j for assigning client
j to facility i. We develop and analyze the first online algorithm for this problem that
has a time-independent competitive factor.

This Facility Location variant was introduced by Nagarajan and Williamson [52] and
is strongly related to both the Online Facility Location problem by Meyerson [49] and
the Parking Permit problem also by Meyerson [50]. Nagarajan and Williamson gave a
3-approximation algorithm for the offline version of this problem (here it is known when
and where clients will arrive beforehand) and an O(K logn)-competitive algorithm for
the online variant. Here, n denotes the total number of clients arriving over time. We ex-
tend their result for the online variant by removing the dependency on n (and thereby on
the time). In general, our algorithm is O(lmax log(lmax))-competitive. Here lmax denotes
the maximum lease length. Moreover, we prove that it is O(log2(lmax))-competitive for
many “natural” client arrival patterns. Such patterns include, for example, situations
where the number of clients arriving in each time step does not vary too much, or is
non-increasing, or is polynomially bounded in lmax.

1.4.2 Facility Location in Sensor Networks

In Chapter 3, we present two distributed, constant factor approximation algorithms for
the metric Facility Location problem. They were published in [2] and build upon the
work published in [18]. Both algorithms have been designed with a strong emphasis
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on applicability in the area of wireless sensor networks: in order to execute them, each
sensor node only requires limited local knowledge and simple computations. Also, the
algorithms can cope with measurement errors and take into account that communication
costs between sensor nodes do not necessarily increase linearly with the distance, but
can be represented by a polynomial of higher degree. Since it cannot always be expected
that sensor nodes execute algorithms in a synchronized way, our algorithms are executed
in an asynchronous model (but they are still able to break symmetry that might occur
when two neighboring nodes act at exactly the same time). Furthermore, they can deal
with dynamic scenarios: if a node moves, the solution is updated and the update affects
only nodes in the local neighborhood. Finally, the algorithms are robust in the sense that
incorrect behavior of some nodes during some round will, in the end, still result in a good
approximation. The first algorithm runs in expected O(log1+ε n) communication rounds
and yields a µ4(1 + 4µ2(1 + ε)1/p)p approximation, while the second has a running
time of expected O(log2

1+ε n) communication rounds and an approximation factor of
µ4(1+ 2(1+ ε)1/p)p. Here, ε > 0 is an arbitrarily small constant, p the exponent of
the polynomial representing the communication costs, and µ the relative measurement
error. Thus, as a simplification, if we assume that no measurement errors occur (µ = 1),
the connection costs are linear (p = 1) and ε is set to 1, we get an approximation factor
of 4 respectively 6 with a runtime of O(log2 n) respectively O(logn).

1.4.3 Facility Location in Distributed Settings

Chapter 4, the final part of this thesis, we present a randomized distributed approxima-
tion algorithm for the metric uncapacitated Facility Location problem. The algorithm is
executed on a bipartite graph in the CONGEST model (with a restriction of O(logn) bits
on the message size) yielding a (1.861+ε) approximation factor, where ε is an arbitrary
small positive constant. It requires O(n3/4 log2

1+ε(n)) communication rounds with high
probability (n denoting the number of facilities and clients). At the time of publishing,
our algorithm had, to the best of our knowledge, the best approximation factor for the
Facility Location problem in a distributed setting. It is based on a greedy sequential
approximation algorithm by Jain et al. presented in [35]. Note that, while the presented
runtime bound of our algorithm is “with high probability”, the approximation factor is
not “in expectation” but always guaranteed to be (1.861+ ε).

The main difficulty in executing this sequential algorithm lies in dealing with situ-
ations where multiple facilities are eligible for opening, but (in order to preserve the
approximation factor of the sequential algorithm) only a small subset of them can actu-
ally be opened. Thus, a significant part of our contribution is a sublinear time selection
mechanism that, while increasing the approximation factor by an arbitrary small additive
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term, allows us to decide which of the eligible facilities to open.

1.5 Variants of Facility Location

Various aspects of the original Facility Location problem can be modified such that mul-
tiple new and interesting problems arise. Even though each of these problems is closely
linked to the original Facility Location, there are very distinct difficulties associated to
each one of them. Thus, the techniques required to solve them are also very different
from each other. Some of them can even be considered to be separate research areas by
themselves, each one comprising many publications. This section presents several such
modifications and describes their relationship to the work done in this thesis.

1.5.1 Objectives and Constraints

There are multiple variations of Facility Location where the objective is more compli-
cated than the original problem defined in Section 1.2. They all have in common that
one has to choose locations where facilities are opened (which incurs some costs) and
then connect clients to these open facilities (which incurs a cost proportional to the dis-
tance between a client and the facility it is connected to). Other than that, these variants
can differ significantly from each other. Here, we present some of the more prominent
variants.

The Fault Tolerant Facility Location problem is almost the same as the original prob-
lem with the exception that each client j is not only required to be connected to one open
facility but to at least r j ∈ N such facilities. Also, the r j facilities j is connected to are
required to be distinct (otherwise the problem could be easily solved by duplicating a
solution for the standard Facility Location problem). A detailed problem definition and
a O(log(k)) primal-dual approximation algorithm, with k = max j{r j}, can be found in
[33]. It is due to Jain and Vazirani, who were the first to consider this problem. Guha
et al. give the first constant upper bound of 2.47 in [32] using a local-search technique.
This bound is later improved by Swamy and Shmoys in [64] to 2.076. Note that the dis-
tributed algorithm presented in Chapter 4 can be extended to this fault tolerant variant in
a straight forward way (increasing its approximation factor from constant to O(log(k))).
In the special case that for all clients the r j values are equal, better bounds are known.
Here, Jain et al. give a 1.61 approximation in [35], and Swamy and Shmoys a 1.52
approximation in [64].

If there is more than one way to open a facility (i.e., a facility can provide different
kinds of services), we have a Multi Commodity Facility Location problem. Assume
there are m ∈ N different kinds of services a facility can provide. Now, for each client
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we require that the set of facilities the client is connected to provides all m different
services. In the case that we allow a facility to provide all m services (paying a fixed
price for each service), solving this problem is the same as solving the original Facility
Location problem m times. To make the problem interesting we can, e.g., disallow a
facility to provide more than one service. Another possibility (see [60] by Ravi and
Sinha) is to decrease the cost of providing a service by a facility if this facility is already
providing different services.

Until now we only considered Facility Location Problems where the clients have unit
demand and the amount of demand a facility can cover is unbounded. In the Capacitated
Facility Location we introduce a positive demand value d j to each client j and a positive
capacity κi to each facility. When client j is connected to facility i the incurred connec-
tion cost is now d j ∗ci j. We also require that the sum of the demand of clients connected
to facility i is not higher than i’s capacity (i.e., ∑ j∈φ−1(i) d j ≤ κi). Constant upper bounds
concerning this variant can be found in [15, 38, 40, 46].

Yet another branch of research is Mobile Facility Location. Even though the name
suggest some kind of dynamics (e.g., an online problem), this problem can be considered
as static (i.e., the entire input is known right at the beginning). Here, we are given a
complete graph with k nodes marked as open facilities. It is now possible to move the
facilities, for a certain cost that depends on the distance, before connecting each client
to its closest facility. The cost of the solution is the sum of the movement costs (incurred
by displacing the facilities) and the connection costs of clients (which are proportional to
the distance between a client and the facility it is connected to, and are weighted with the
client’s demands). Mobile Facility Location belongs to the research area of movement
problems that was initiated by Demaine et al. in [19]. For the unweighted case, Friggstad
and Salavatipour present the first approximation algorithm for Mobile Facility Location
in [29]. It yields an approximation factor of 8 and is based on LP-rounding. This result
was recently improved by Ahmadian et al. in [3] who developed a local search based
algorithm yielding an (3+ ε) approximation (with ε > 0).

1.5.2 Models of Computation and Locality

The initially developed algorithms for the Facility Location problem, as well as for most
other classical problems, are sequential (e.g., [1, 34, 35, 41]): they are executed on a
single processor that has knowledge of the entire problem instance. Later on, new com-
putation models with multiple processors working together in parallel were introduced
[43, 57]. Here, not only additional processors were added, but at the same time the in-
formation each processor was provided with was limited to only a small portion of the
whole input. This limit on knowledge together with the use of multiple processors was
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motivated by the emergence of large computer networks. Due to the huge size of such a
network and its perpetually changing properties, it is impossible for each of its members
to know everything about the entire network (i.e., the entire input for the given problem).

The focus of this thesis lies to a high degree on local algorithms, which nicely re-
flect the requirements of large (i.e., arbitrarily scalable) networks. Local algorithms are
executed in a distributed way: Each node of the network represents a single processor
and its knowledge about the entire input is strongly limited (i.e., it knows only about
its direct neighbors and the information they have stored). Together, all nodes have the
information about the entire network. All nodes are executing the same algorithm in
parallel. During the algorithm’s execution, nodes can communicate with each other and
thus gain additional information. Still, one can assume that at the end of the execution,
each single node knows, because of the small number of communication rounds, only a
tiny fraction of the entire input. The actual solution computed by a local algorithm is just
the sum of all the outputs computed by each node in the network. As an example, each
facility can be represented by a single node and the node’s output is whether it is open
or not. Other nodes represent clients and each such node’s output is the information to
which facility node it is connected to. Together, all the outputs represent a solution to
the Facility Location problem.

The LOCAL model, as popularized by Linial [43] and Peleg [57], is very common
in modeling locality (as described above) in computer networks. Here, in each round
all nodes execute some arbitrary complex computation in parallel and then are allowed
to send a single message of arbitrary size to each node they share an edge with. This
process is repeated over and over until the algorithm terminates. The number of rounds
until termination is achieved determines the algorithm’s runtime (the processing time
by each node within one round is of no interest). A generalization of this model is the
CONGEST model, where the size of the messages that are send each round is limited.
Most often the limit is set to O(logn) bits, where n is the number of nodes. This is
motivated by the fact that Θ(logn) bits are required to encode a node’s ID in a network
of size n. The CONGESTmodel will be used in Section 4 where a distributed primal-dual
algorithms for Facility Location is presented.

A different way to model locality is to consider the weights of the edges of the given
network and define locality using them. To do so, we consider an arbitrary graph G
with non-negative edge weights which represents the given network. Its weights can
for example represent the latencies between nodes. We use G to construct a complete
weighted graph G′ with the same set of nodes as G. In order to define the weights for
each edge v,w ∈ G′ we compute the length of the shortest weighted path between v,w
in the graph G and assign it to {v,w} ∈ G′. We now say that two nodes v and w are
neighbors, if the weight of the edge they share in G′ is smaller than some fixed value
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r. This models the fact that it is unreasonable for two nodes to communicate with each
other if the latency between them is too high. The weights in G′ can also be interpreted
as Euclidean distances. Setting the value r to 1 can be used to simulate a unit disc graph.
This approach is used in Section 3 where the focus lies on sensor networks.

Recently, in [27], Fraigniaud, Korman and Peleg initiated a new branch of computa-
tional complexity theory that deals with locality. They formulate a hierarchy of complex-
ity classes for decision problems using the LOCAL model and allowing the algorithms
to use at most a constant number of communication rounds.

1.5.3 Dynamics

The concept of dynamics can be introduced in every one of the aforementioned Facility
Location variants. By dynamics we refer to changes of the properties of our input graph
that occur over time. For example, new nodes can be added to the graph or old ones can
be removed. Also, the weights of the edges, the nodes, or even both can change. The
main difficulty when dealing with such dynamics is that the changes to the graph are
not known beforehand but are revealed piece by piece as time goes by. This means that
our algorithms have to update and maintain a feasible solution of good quality for each
time step without knowing the future. Each new solution is not computed from scratch
(which would mean that only a sequence of static/offline problems is considered), but is
strongly related to prior solutions. In this thesis we will consider such dynamics from
two different angles: The classical approach of competitive analysis for online problems
(see Chapter 2) and an approach that focuses on the time needed to update the current
solution with as few modifications as possible (see Chapter 3).

To be able to apply competitive analysis, the input has to be presented as a data stream
(i.e., in each time step a new request presents itself and has to be dealt with). In the
context of Facility Location such a stream could represent clients that arrive one by one
over time and are required to be connected to an open facility upon their arrival (Chapter
2 considers such a scenario). Now, in order to evaluate a given online algorithm, we
compare – for each possible problem instance – the cost of the solution it produces
with the optimal cost produced by an offline algorithm. An upper bound for the ratio
between the costs of such online and offline solutions for all possible problem instances
determines the quality of our online algorithm.

The second approach is not too much concerned with the ratio between the online
and the offline solution (even though this ratio is still important), but in the process
of updating the current solution such that it fits the new requirements presented by the
stream’s current request. Consider the following example: To a given instance of a
Facility Location problem, a good solution is computed and according to it, facilities
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are opened and clients are connected. Now, this instance changes in some way (e.g.,
the weights of some edges change) such that the quality of our current solution drops
significantly. Our objective is to update the current solution (e.g., open/close facilities
or reconnect clients) in such a way that the new solution is of good quality again. The
question that arises now is how fast a new solution can be computed in a distributed
way (using only local information) and how much the old and the new solution differ
from each other (i.e., how far did the changes, which were necessary to improve the old
solution, spread in the network)? In Section 3.5, we use approach to analyze the effects
of dynamic on a sensor networks with respect to the Facility Location problem. A similar
kind of analysis, referred to as quiescence analysis, was used for the construction and
maintenance of graph spanners by Elkin in [21].





C H A P T E R 2

The Facility Location Problem in
Dynamic Networks

2.1 Introduction

Consider a company that runs a distributed service on a computer network. In order to
be able to provide this service, the company has to use a subset of the network’s nodes
as service providers. Since the nodes in the network do not belong to the company, they
first have to be acquired by it in some way. While there is no possibility to buy them
(they might not be for sale, or buying them might be too expensive), they can be leased
for limited periods of time.

In our scenario, leasing a node works quite like renting a car. First, you have to pick
the car you want to rent (i.e., the nodes that are going to be used to provide the service).
Next, you have to decide from which date on you want to be using the car (i.e., the point
in time you want the service to be accessible). You also have to choose, right at the
moment you sign the contract with the car-renting firm, for how long you want to have
the car. Finally, you pay up front, and can use the car, at least during the period it is
rented, as much as you like. A very important aspect here is the irrevocability of your
decisions; once you have signed the contract, there is no way to get your money back
(even if you decide to never use the rented car at all). There are usually many options for
how long a car can be rented (a single day, two days, one week, maybe even an entire
month). Of course, the options become more expensive with increasing length of the
time period (you will pay more for one week than for one day). But, they also become
less expensive if the cost per day ratio is considered. For example, if you want to use
the car for four consecutive days, it might be cheaper to choose the “one week” option,
rather than rent it for four days separately (even though you will not be using the car
during the week’s remaining three days).

15
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Going back to our network scenario, we introduce, next to the service providing nodes,
client nodes that want to use the service. These client nodes issue requests that can be
fulfilled by service providing nodes (i.e., nodes that are currently leased by the com-
pany). The cost of satisfying such a request is proportional to the distance (i.e., latency)
between the client that issues the request and the leased node that fulfills it. Similar to
the original Facility Location problem, the company wants to lease nodes as seldom as
possible, while making sure that currently leased nodes are not too far away from request
issuing nodes. Additionally, the company has to also decide on the lease types that are
used (there are, like in the car rental example, various leases of different costs and du-
rations). The main difficulty here is the unpredictable behavior of the client nodes: It is
not known beforehand which nodes, and at what point in time, will request the service.
Thus, it might happen that the company buys long and expensive leases for some nodes,
just to realize later on that no more requests are issued in subsequent steps in the prox-
imity of those leased nodes. Or, the other way round, it buys short leases, just to notice
later that having bought a single longer lease would have been way less expensive.

The problem described above is known as Facility Leasing. It is one of many in-
frastructure leasing problems that were considered by Anthony and Gupta in [6]. In
this chapter, we state and analyze an online algorithm for this problem. Our algorithm
provides a means to decide online (i.e., without knowing the future) which nodes, with
which lease type, and at what point in time, should be leased. We show that the cost of
the solution computed by our algorithm is not too far away from the optimal solution
(i.e., a solution computed by an optimal algorithm that knows in advance when nodes
will issue requests, and thus can plan accordingly). More precisely, we show that our
competitive factor is polylogarithmic in the length of the longest lease type. This is
a complementary result to the work of Nagarajan and Williamson in [52], who show
an competitive factor that is polylogarithmic in the number of clients respectively the
number of time steps.

In the remainder of this chapter’s introduction, we give a formal definition of the
Facility Leasing problem (see Subsection 2.1.1). Then, in Subsection 2.1.2, our results
are presented. Subsection 2.1.3 covers related work that is strongly connected to the
Facility Leasing problem presented in this chapter. At last, Subsection 2.1.4 presents an
overview of the approach we use for our algorithm’s analysis.

2.1.1 Problem Definition & Notation

This subsection presents a formal definition of the Facility Leasing problem, for which
we gave an intuitive explanation in the previous subsection. Two variants of Facility
Leasing exist. It can either be formulated as an online or as an offline problem. In the
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online version, we have, as mentioned above, no information about the future, and thus
have to deal with the arriving clients’ requests in a classical online manner. The offline
version is quite different. Here, all information about future client requests is known
right from the start. But even with this additional knowledge, the offline version is still
a challenging problem. When solving it, not only are you required to solve the original
Facility Location problem, but you also have to deal with the aspect of time and the
leasing of facilities.

From now on, we will refer to the online version of Facility Leasing as FACIL-
ITYLEASING. This will enable us to distinguish the online from the offline variant,
and also allow us to talk about further variants of online Facility Leasing, like FACIL-
ITYLEASING1, FACILITYLEASING2 and 2-FACILITYLEASING (which we will intro-
duce later on), in a more elegant way.

The FACILITYLEASING problem, as presented by Nagarajan and Williamson [52], is
defined as follows: We are given, as is typical for Facility Location problems, a set F
of m facilities and a set D of n clients. Our goal is to minimize the costs of serving the
clients’ demands by opening facilities (which incurs costs) and assigning each client to
a nearby open facility (which incurs costs that are proportional to the distance between
the client and the facility). However, in contrast to the classical Facility Location model,
there is a notion of (discrete) time. Clients do not arrive all at once. Instead, at time t ∈N
a subset Dt ⊆ D of clients appears and these clients have a demand for the current time
t only. Note that these subsets form a partition of D, i.e., a client arrives exactly once.
Often, we will use Hq := ∑

q
i=1(|Di|/(∑i

j=1

∣∣D j
∣∣)) to describe a sequence of arriving

clients. Another difference to the classical model is that opening a facility is not simply
a binary decision. Instead, in order to open a facility, one is required to determine the
point in time during which the facility is going to be opened and one of the K different
lease types that is to be used to open it. Each lease type k has length lk and these lengths
l1, l2, . . . , lK are considered as a part of the input. We use lmax := max1≤k≤K(lk) to denote
the maximal lease length. Consider a facility i opened at time t using lease type k. This
facility is open for the lk time steps during the interval [t, t + lk−1] (let Ik

t denote this
interval). Now, a client j arriving at time step t ′ can only be assigned to the facility i if i
is open at j’s arrival (i.e., t ′ ∈ Ik

t ).

A solution has to assign each client to an eligible facility. Each time we open a facility
i∈F for the next lk time steps using a lease type k∈K, a cost of f k

i is charged. Moreover,
assigning a client j ∈D to a facility i ∈ F incurs a connection cost of ci j (independent of
the lease type used to open i). These connection costs can be assumed to correspond to
the distance between facility i and client j. Clients and facilities reside in a metric space,
such that the connection costs satisfy the following triangle inequality: ∀ i, i′ ∈ F, j, j′ ∈
D : ci′ j ≤ ci j + ci j′+ ci′ j′ .
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ILP formulation of FACILITYLEASING

min ∑
(i,k,t)∈F

f k
i yikt + ∑

( j,t)∈D
∑

(i,k,t ′)∈F :t∈Ik
t′

ci jxikt ′, jt

s.t. ∑
(i,k,t ′)∈F :t∈Ik

t′

xikt ′, jt ≥ 1 ( j, t) ∈ D

yikt ′− xikt ′, jt ≥ 0 (i,k, t ′) ∈ F,( j, t) ∈ D
xikt ′, jt ∈ {0,1} (i,k, t ′) ∈ F,( j, t) ∈ D

yikt ′ ∈ {0,1} (i,k, t ′) ∈ F

Figure 2.1: The integer linear program describing the online Facility Leasing problem.

Figure 2.1 shows the linear programming (LP) formulation of this problem (while
2.2 shows its dual). To ease the formulation of the LP and the analysis, we sometimes
abuse the notation and write ( j, t) ∈ D for a client j appearing at time t. Similarly,
we write (i,k, t) ∈ F and refer to this triple as a single facility instead of a (potential)
facility opened at time t using lease type k. The first sum in the objective function
for FACILITYLEASING represents the costs incurred by opening facilities. Here, the
indicator variable yikt tells us whether the facility i is opened at time step t with lease
type k. The remaining part of the objective function represents the costs incurred by
connecting each client to a facility. The variable xikt ′, jt indicates whether a client j that
arrived at time step t is connected to facility i opened at time step t ′ with lease type k.
While the first primal constraint guarantees that each client is connected to at least one
facility, the second makes sure that each client is only connected to a facility that is open
during the time step of the clients arrival.

Given an instance I of the just described problem and a corresponding solution S, we
refer to the total cost of the solution by cost(S). We are mainly interested in the online
version of the problem (FACILITYLEASING), i.e., when a client j appears at time t we
have to connect it to an open facility without any knowledge of the future. Especially,
we do not know whether in the following time steps more clients appear in j’s proximity
(which would favor a longer lease type) or not (which would encourage a shorter lease
type). We measure the quality of algorithms by their competitiveness: Let A(I) denote
the solution of an algorithm A for problem instance I and O(I) an optimal solution to I.
Then, the competitiveness of A is defined as supI

cost(A(I))
cost(O(I)) . We seek algorithms yielding

a small competitive ratio.
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Dual of the ILP for FACILITYLEASING

max ∑
( j,t)∈D

α jt

s.t. α jt−βikt ′, jt ≤ ci j (i,k, t ′) ∈ F,( j, t) ∈ D

∑
( j,t)∈D

βikt ′, jt ≤ f k
i (i,k, t ′) ∈ F

βikt ′, jt ≥ 0 (i,k, t ′) ∈ F,( j, t) ∈ D
α jt ≥ 0 ( j, t) ∈ D

Figure 2.2: The dual integer linear program describing the online Facility Leasing prob-
lem.

2.1.2 Results

We introduce the first online algorithm for the FACILITYLEASING problem with a com-
petitive ratio that does neither depend on the number of time steps nor on the number
of clients requesting the service. The previous result by Nagarajan and Williamson [52]
yields a competitive factor of O(K logn), where n is the number of clients and (assuming
that at least one client arrives each time step) also an upper bound on the number of time
steps. Their competitive factor can be expressed as O(log(lmax) logn) with lmax denoting
the length of the longest lease type (since log(lmax) can be seen as an upper bound for
K). Our algorithm allows us to replace the logn factor of Nagaraja and Williamson with
lmax in general and with log(lmax) for many “natural” special cases of client arrival se-
quences. These cases include, e.g., all instances where the number of clients arriving in
each time step varies only by a constant factor, or is non-increasing, or is polynomially
bounded in lmax. Thus we have an O(lmax log(lmax))-competitive algorithm in general
and, which is our main contribution, an O(log2(lmax))-competitive algorithm for the ar-
rival sequences described above. To be more precise, the approximation factor of our
algorithm is O(log(lmax)Hlmax), where Hlmax := ∑

lmax
i=1 (|Di|/(∑i

j=1

∣∣D j
∣∣)) with Di denot-

ing the set of clients arriving in time step i. This means that our approximation guarantee
depends not on the absolute numbers of clients arriving in each time step, but on the re-
lationship (as defined by Hlmax) between those numbers. While our algorithm is not a
direct improvement on Nagarajan and Williamson [52] (since we state our approxima-
tion factor using lmax and not K), our algorithm has the advantage that its competitive
ratio is not dependent on the number of time steps.
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2.1.3 Related Work

In [6] Anthony and Gupta propose and analyze various infrastructure leasing problems.
Here, instead of obtaining some infrastructure for a single step or for infinitely long, the
infrastructure is leased for a specific number of steps (which depends on the lease type)
and can only be used during this time. Also, their problems are offline, i.e., the entire
input is known from the start. They show that these kinds of problems have a connection
to multi-stage stochastic optimization problems. One of the problems they consider is
the metric uncapacitated Facility Location problem with K different lease types. For this
offline leasing problem they present a O(K) approximation algorithm obtained from an
algorithm by Swamy and Shmoys for the K-stage stochastic facility location problem
[65]. This upper bound of O(K) was improved by Nagarajan and Williamson in [52],
who presented a 3-approximation algorithm based on [34]. As already mentioned, they
are also the first to consider the online variant of Facility Leasing (i.e., FACILITYLEAS-
ING).

It is important to note, that FACILITYLEASING is a generalization of the two following
problems introduced by Meyerson: The Online Facility Location problem [49] and the
Parking Permit problem [50]. We will discuss these two problems and their connection
to FACILITYLEASING in the following paragraphs.

Parking Permit. Meyerson describes the Parking Permit problem with the following
example: There are two possibilities for us to get to our working place. We can either
walk, or go by car. The option we choose depends on the current weather (we go by
car if it is a rainy day; otherwise, we always choose to walk). Thus, our actions are
determined by something that we not only cannot influence, but also do not know in
advance. Whenever we drive to work, we need to have a valid parking permit. There are
various permits that vary in cost and duration (with the ones that last for a longer period
of time tending to cost less per day than the shorter ones). Each day we choose to drive
and do not have a valid permit, we have to buy a new one. The decision of which of the
various permits to buy is a tricky one, since we do not know how often we will actually
be able to make use of this permit again. If we use the car quite often during the next
few days, buying a more expensive, but longer lasting permit, seems like a good idea.
Otherwise, buying a one day permit is a better option.

Meyerson, in [50], shows a lower bound of Ω(K) on the competitive factor of deter-
ministic algorithms for this problem, where K is the number of permits. He also shows
that a simple greedy algorithm achieves this factor. For the case that randomization is
allowed, he presented an algorithm with a competitive factor of O(logn) in expectation
and showed that this factor cannot be improved. This Parking Permit problem is a spe-
cial case of the FACILITYLEASING problem: Let us assume that there is only a single
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facility. We simulate each day that we drive to work with a time step in which a client
appears on top of the facility (distance between client and facility is zero). Each day we
walk is represented by a time step in which no client appears (these are days on which
we are not required to have a valid parking permit). Buying a permit is then equivalent to
leasing this single facility with a lease type corresponding to the bought permit. Due to
the simplicity of the considered instance (there is only a single facility), the question, at
which position a facility shall be opened, does not arise. Also, the aspect of connecting
clients and their distance to the used facility, are irrelevant. Only the question “which
type of permit (i.e., lease) should be bought?” remains.

Online Facility Location. The second problem by Meyerson, Online Facility Loca-
tion, is also a special case of FACILITYLEASING. Here, both problems deal with open-
ing facilities and connecting clients to them. The difference is that in Online Facility
Location facilities are opened permanently. This can be simulated by a FACILITYLEAS-
ING instance in which there is only one lease with an “infinite” length (e.g., choose the
number of clients as the lease length of this single lease type). A very well written com-
prehensive survey of results concerning Online Facility Location and related problems
is presented by Fotakis in [25].

Building upon the work of Meyerson, Fotakis presents various results for Online Fa-
cility location in [22]. He shows a lower bound of Ω( logn

log logn) and also that this bound is
tight. This lower bound holds not only for deterministic, but also for randomized algo-
rithms. A further algorithm, also by Fotakis, with an approximation factor of O(logn)
can be found in [24]. Although this algorithm’s runtime bound is weaker than the one
from [22], it is a lot simpler than [22] and thus easier to implement. It is elegantly for-
mulated with the help of the primal and the dual formulation of the Facility Location
problem. Surprisingly, the primal-dual method (i.e., showing that the gap between the
primal solution computed by the algorithm and a dual solution is not too large) is not
used in its analysis. Later on, in [52], Nagarajan and Williamson apply the primal-dual
method to show the same upper bound of O(logn) for this algorithm. They use this
analysis as an intermediate step to show the competitive factor of O(K log(n)) for their
algorithm for the FACILITYLEASING problem.

An algorithm that is especially designed for the Euclidean plane was published by
Anagnostopoulos et al. in [5]. It has an approximation factor of O(logn) and can be
applied to various models (e.g., facilities can be either placed anywhere on the plane, or
only on positions of already arrived clients, or only at fixed locations).

Incremental Facility Location. For optimization problems that are related to clus-
tering, Charikar et al. introduced the framework of incremental algorithms in [14]. It
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is used to incrementally and efficiently perform hierarchical clustering in online scenar-
ios. Incremental Facility Location, which was first considered in [23], is directly derived
from this framework. It is very similar to the Online Facility Location problem. The
main difference is the additional option of “merging” facilities with each other: When-
ever a facility i is opened, we are allowed to close some facility i′ and then reconnect
each client j (that used to be connected to i′) to the newly opened i. After this merge, we
are no longer required to pay the opening costs of i′, but now have to pay the connection
costs of connecting j to i (instead of paying for the connection between j and i′). The
idea here is that, while clients can be reconnected, it is always guaranteed that clients
that were at some point connected to the same facility will remain grouped together
(i.e., always be connected to the same facility; their facility can, of course, change over
time). Fotakis showed in [23] that a competitive factor of O(1) can be achieved for this
problem.

A streaming algorithm that relaxes the constrains in the Incremental Facility Location
problem was introduced in [26] by Fotakis. Here, clients can be reconnected not only to
facilities which are merged with the facility they are connected to, but also to the cur-
rently closest open facility. The focus here is to compute a good approximation while
only storing very limited amount of data. For this problem, Fotakis presents a memory-
less (it only requires to stores information regarding the set of currently open facilities)
O(1) competitive algorithm.

2.1.4 Structure of the Chapter

In Section 2.2, we will show how to modify FACILITYLEASING in such a way that it
is, on one hand, way easier to work with, and on the other hand, a good solution to this
simplified problem can still be used as an intermediate step to compute a good solution
to the original problem (i.e., FACILITYLEASING). There are two different modifications
needed to construct the required simplification. One restricts the lease lengths, while the
other restricts the points in time at which facilities can be leased.

Our algorithm, which works on the simplified model (called 2-FACILITYLEASING),
is presented in Section 2.3 and later on analyzed in Section 2.4. The analysis of the
approximation factor consists of two parts. We first show that the contribution of clients
can be used to bound the costs of the algorithm’s solution. Then we argue that scaling
down this contribution yields a feasible dual solution (which in turn yields the desired
approximation guarantee). Finally, the chapter ends with Section 2.5, where possible
future work is described.
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2.2 Reduction to a Simplified Model Variant

The goal of this section is to show that we can transform a problem instance I of our
online Facility Leasing problem FACILITYLEASING into an instance I′ of the slightly
simplified problem variant 2-FACILITYLEASING. In 2-FACILITYLEASING, all lease
lengths are a power of two and a lease of type k may only start each lk time steps.

2.2.1 Rounding the Lease Length

We consider the problem variant FACILITYLEASING1 of FACILITYLEASING that only
allows lease types whose lengths are a power of two. Consider an instance I of FACIL-
ITYLEASING having K leases k ∈ {1,2, . . . ,K}. From I we construct an instance I′ by
rounding the lease lengths lk to the next larger power of two. That is, the lease lengths l′k
for k ∈ {1,2, . . . ,K} are defined as l′k := 2dlog lke. Other than that, I and I′ are identical.
Note that I′ is an instance of both FACILITYLEASING and FACILITYLEASING1.

Let O denote an optimal solution to I and O′ an optimal solution to I′. First note that
cost(O′) ≤ cost(O), as any solution to I yields a solution to I′ having the same cost.
Indeed, whenever a facility of lease type k in the solution to I is opened, opening a
facility of the same lease type k (but of lease length l′k ≥ lk) yields a feasible solution
to I′. Now, consider any solution S′ to I′. From this, we can build a feasible solution
S to I as follows: Whenever a facility of lease type k is opened in S′, we open two
consecutive facilities of the same lease type in S. Since 2lk ≥ l′k, this yields a feasible
solution to I. Moreover, we obviously have the relation cost(S) = 2cost(S′). We use
these observations to prove the following lemma.

Lemma 2.1. Given a c-approximation algorithm A′ for the FACILITYLEASING1 prob-
lem, we can construct a 2c-approximation algorithm A for the FACILITYLEASING prob-
lem. Similarly, any c-competitive algorithm for the FACILITYLEASING1 problem yields
a 2c-competitive algorithm for the FACILITYLEASING problem.

Proof. Given a problem instance I for FACILITYLEASING we let A build a problem
instance I′ for FACILITYLEASING1 by rounding the lease lengths to powers of two as
described above and invoke A′ on I′. The resulting solution S′ is used to build solution S
by opening two consecutive facilities for each facility opened in S′ for I (see above). We
have

cost(S)≤ 2cost(S′)≤ 2ccost(O′)≤ 2ccost(O).

Note that this can be done in an online fashion, by mimicking the behavior of A′ but
opening two consecutive facilities whenever A′ opens one.
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2.2.2 Restricting the Start of Leases

Let us consider the problem variant FACILITYLEASING2 of FACILITYLEASING that
allows to open facilities only at times t that are a multiple of their corresponding lease
length. That is, a facility of type k may only open at times t with t ≡ 0 mod lk. Note that
we do allow to open facilities belated, such that one may not be able to take advantage
of the full lease length one has paid for.

First of all, consider a problem instance I of FACILITYLEASING. Obviously, any
such I may be considered as a problem instance I′ of FACILITYLEASING2 without any
changes. Moreover, given a solution S′ to I′, we can interpret it directly as a solution
S to I. Thus, we have cost(S) = cost(S′). On the other hand, given optimal solutions
O to I and O′ to I′, we have cost(O′) ≤ 2cost(O). Indeed, any solution S to I yields
a feasible solution S′ to I′ with cost(S′) ≤ 2cost(S) as follows: Consider any facility
of type k ∈ {1,2, . . . ,K} opened in S at time t. For this facility, we open up to two
consecutive facilities of the same lease type k in S′. The first facility is opened at time
t1 := t− (t mod lk), the second at time t2 := t1 + lk if necessary. This yields a feasible
solution S′ to I′ with cost cost(S′)≤ 2cost(S). We get the following lemma.

Lemma 2.2. Given a c-approximation algorithm A′ for the FACILITYLEASING2 prob-
lem, we can construct a 2c-approximation algorithm A for the FACILITYLEASING prob-
lem. Similarly, any c-competitive algorithm for the FACILITYLEASING2 problem yields
a 2c-competitive algorithm for the FACILITYLEASING problem.

Proof. Algorithm A is identical to A′. Run on a problem instance I of FACILITYLEAS-
ING, which we interpret as an identical instance I′ of FACILITYLEASING2, we get a
solution S′ to I′ which can be immediately interpreted as a solution S to I (see above).
We get

cost(S) = cost(S′)≤ ccost(O′)≤ 2ccost(O).

2.2.3 Combining Both Variants

The model variant 2-FACILITYLEASING of our online facility location problem FA-
CILITYLEASING combines the simplifications of both FACILITYLEASING1 and FACIL-
ITYLEASING2. That is, we allow only lease lengths that are a power of two and restrict
the starting points of facilities of type k to multiples of lk. By combining the results from
Lemma 2.1 and Lemma 2.2, one easily gets
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Corollary 2.3. Given a c-approximation algorithm A′ for the 2-FACILITYLEASING

problem, we can construct a 4c-approximation algorithm A for the FACILITYLEASING

problem. Similarly, any c-competitive algorithm for the 2-FACILITYLEASING problem
yields a 4c-competitive algorithm for the FACILITYLEASING problem.

2.3 Algorithm description

Let us describe our online algorithm for the 2-FACILITYLEASING problem. In the be-
ginning, all facilities are closed. At the arrival of the client set Dt at time t, our algorithm
assigns these clients to open facilities to satisfy their demands, opening new facilities if
necessary. The costs charged for this step comprise the corresponding connection cost
ci j for assigning the clients j ∈ Dt to open facilities i ∈ F and the opening cost of newly
opened facilities (of a certain lease type). Remember that in this simplified problem
variant, we open facilities using lease type k only at times t that are a multiple of the
corresponding lease length lk. That is, only at times t with t ≡ 0 mod lk. Especially,
when we say we open facility (i,k, t) ∈ F , we can only make use of it up to the the next
time t ′ > t that is a multiple of lk. This means we may open a facility belatedly, such
that we cannot take advantage of the full lease length we paid for. Note that for a fixed
facility i and lease type k we get a partition of the time horizon into intervals of length
exactly lk. These intervals can be identified with the corresponding facility i of lease
type k which may serve clients in this interval. Now, for any time t we get exactly one
interval Ik

i for each facility i and lease type k that can be used by a client appearing at
time t. It remains to specify which pair (i,k) is chosen to satisfy a client’s demand.

Our algorithm is based on an approximation algorithm by Jain and Vazirani [34] for
the classical facility location algorithm. Their algorithm uses a primal-dual approach
to compute a 3-approximation, and we make use of a similar approach in each single
time step. In each time step t our algorithm operates in two phases, similar to the al-
gorithm from [34] for the static facility location problem. In the first phase, the clients
essentially bid towards the facilities (or more exactly, towards the intervals Ik

i ). In the
second phase, we use the triangle inequality to choose a cheap subset of facilities (in-
tervals Ik

i ) to actually open and assign clients to. In contrast to [34], we have to cope
with the problem to build a good solution for a facility location problem starting from
a partial solution (earlier arrived clients). This is similar to Nagarajan and Williamson
[52], however, our subproblem is much more complex, as we consider all newly arrived
clients simultaneously (instead of one after the other).

First Phase For each client j ∈ D≤t :=
⋃

t ′≤t Dt ′ that arrived at time t or before, we
introduce a potential α jkt that starts at zero and is continuously increased (con-
currently and at the same rate for each client). Each of these potentials is reset
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to zero in each round. To simplify notation, let us define (x)+ := max(x,0). For
any facility i of lease type k we maintain the invariant f k

i ≥ ∑ j∈D≤t (α jkt − ci j)+
(INV1). Whenever equality is reached for some facility i and lease type k, we tem-
porarily open i using lease type k. As soon as α jkt ≥ ci j for a client j ∈ D≤t and
a (temporarily or permanently) open facility i of lease type k, we stop increasing
α jkt . If j ∈ Dt (i.e., j is a newly arrived client), we connect j to i and furthermore
set α̂ j := α jtk (these α̂ j correspond to the dual variables α jt in the ILP from Fig-
ure 2.2, the t given implicitly by the relation j ∈ Dt). As a second invariant, we
ensure that in no time step t ′ an α jkt ′ is increased beyond α̂ j (INV2).

Second Phase In this phase we build K different conflict graphs, one for each lease
type k. The nodes of the graph for lease type k are given by temporarily and
permanently opened facilities i of lease type k. There is an edge between two
nodes i and i′ if and only if there is some client j ∈ D≤t with α jkt > max(ci j,ci′ j).
We say that the facilities i and i′ are in conflict. Now, for each conflict graph
we compute a maximal independent set (MIS) and open the facilities in the MIS
permanently (while closing the remaining temporarily opened facilities). If for a
client j ∈ Dt (i.e., newly arrived clients) the facility i it was connected to during
the first phase is not in a member of a MIS, j is reconnected to a neighbor of i that
is a member of a MIS (i.e., permanently open).

2.4 Analysis

Here we prove that the algorithm described in the previous section is (3+K)Hlmax-com-
petitive with respect to 2-FACILITYLEASING, the simplified online problem variant de-
scribed in Section 2.2. Remember that lmax denotes the maximum lease length. More-
over, note that it is sufficient to consider the first lmax time steps: at time lmax all facilities
must be closed, since for any k ∈ {1,2, . . . ,K} we have lmax ≡ 0 mod lk. Let us parti-
tion the time horizon into rounds τi := {(i−1)lmax, . . . , ilmax−1} of length lmax. By the
above observation, these rounds yield independent subproblems, each of length lmax. We
continue to show that the solution of our algorithm is (3+K)Hlmax-competitive in each
such round. As the costs over all rounds are additive, this yields that it is (3+K)Hlmax-
competitive for the complete problem.

Our analysis follows the typical idea of the analysis of a primal-dual algorithm, similar
to, e.g., the analysis of Jain and Vazirani [34]. The values α̂ j computed by our algorithm
correspond to the dual variables of the ILP formulation in Figure 2.2. First of all, we
show that the sum of all α̂ j times (3+K) is an upper bound for the cost of the solu-
tion produced by our algorithm (Lemma 2.4). Next, we consider the α̂ j as a (possibly
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infeasible) solution to the dual program of the FACILITYLEASING ILP. We prove that
by scaling this solution down by a suitable factor, we get a feasible solution to the dual
program (Lemma 2.7). By the weak duality theorem, multiplying both factors yields the
final competitive factor (Theorem 2.8).

2.4.1 Upper Bounding the Solution

The following lemma upper bounds the cost of the solution produced by our algorithm
by (3+K)∑ j∈D α̂ j. The basic idea is to exploit the triangle inequality to show that
3∑ j∈D α̂ j is a bound on the total connection cost and that our algorithm ensures that
each α̂ j is used at most K times to cover the complete costs for opening facilities.

Lemma 2.4. The cost of the primal solution produced by our algorithm can be bounded
from above by (3+2K)∑ j∈D α̂ j.

Proof. We bound the connection costs of the clients and the opening costs of facilities
separately. The α̂ j value of a client j is computed in step t of j’s arrival during the first
phase of our algorithm. During this phase, j is either connected to a facility i that was
already (permanently) opened at time t ′ < t or one that was temporarily opened at the
current time t. In both cases the client’s α̂ j value was set in such a way that it can cover
at least the distance ci j between i and j. If i remains in one of the MISs computed in the
second phase of our algorithm, this guarantees that j is assigned to a facility i′ such that
α̂ j is an upper bound on the client’s connection costs ci′ j. Otherwise, if i is no longer in
any MIS at the end of phase two, Proposition 2.5 (see below) exploits the metric property
of our facility location problem and yields that j is assigned to a facility i′ such that 3α̂ j

is an upper bound on the client’s connection costs ci′ j.
Now, consider the facility costs and fix a facility i of lease type k that is permanently

opened at some time t by our algorithm. As (i,k) is opened permanently at time t in the
second phase, it must have been temporarily opened in the first phase. Thus, by definition
of the algorithm, invariant INV1 must hold with equality, that is f k

i = ∑ j∈D≤t (α jkt −
ci j)+. Consider these bids (α jkt − ci j)+ of clients j ∈ D≤t to facility i of lease type k.
Note that all non-zero bids of clients j at the current time are guaranteed to be used by
facility (i,k) only, as (i,k) must have been in the corresponding MIS for lease type k.
Moreover, note that for a single client that arrived at time t, all its bids given to (and used
by) facilities of type k sum up to at most 2α̂ j, as any α jkt ′ with t ′ > t stops increasing
as soon as a corresponding open facility (or α̂ j) is reached. Together, this yields that the
total costs for opening facilities of type k in the solution produced by our algorithm is
upper bounded by ∑ j∈D α̂ j. As there are K different lease types, together with the bound
on the connection costs we get the lemma’s statement.
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The following proposition exploits the triangle inequality of our metric facility loca-
tion problem and can be proven completely analogue to [34, Lemma 5].

Proposition 2.5. For each client j that is reconnected in the second phase to a facility i,
we have α̂ j ≥ 1

3ci j.

Proof. Let i′ be the facility that client j was connected to in the first phase of the algo-
rithm. There must be a client j′ that is responsible for the conflict between facility i and
i′. We have that α j′ ≥ ci′ j, α j′ ≥ ci j and α j ≥ ci′ j. Let si resp. si′be the points in time
where i resp. i′ are temporarily opened. We know that α j′ ≤ min(si,si′) since j′ was
contributing to both facilities, and that α̂ j ≥ si′ since j was connected to i′. Plugging this
information into the triangle inequality ci j ≤ ci′ j + ci′ j′+ ci j′ yields the proposition.

2.4.2 Scaling the Dual Variables for Feasibility

For the second part of the proof, it remains to scale down the dual solution represented
by the α̂ j such that we obtain a feasible solution. Before we do so, we need another
proposition based on the triangle inequality. In spirit, it is similar to [52, Lemma 5], but
has a slightly more involved proof due to the fact that we have to consider multiple α̂ j’s
that increase simultaneously.

Proposition 2.6. Given a client l that arrived in time step t and a facility i of type k for
any client j that arrived before time t, we have α jkt− ci j ≥ α̂l−2ci j− cil .

Proof. Showing that α jkt + ci j + cil ≥ α̂l proves the proposition. Since for α jkt ≥ α̂l

the statement trivially holds, we assume the contrary. This means that client j reached
an open facility i′ (and thus its α jkt stopped increasing) before α̂l was fixed (i.e., αlkt

stopped increasing). Since αlkt stops increasing once it is large enough to cover the
distance between i′ and l and this distance is at most α jkt + ci j + cil , the proposition
follows.

Before we continue with the Lemma 2.7 and its proof, let us define Nt to be the number
of clients that have arrived until time t (i.e., Nt := |D1|+ |D2|+ . . .+ |Dt−1|) and note
that

Nt = Nt
|Dt |
|Dt |

= ∑
j∈Dt

Nt

|Dt |
=

Nt

|Dt | ∑
j∈Dt

1. (2.1)

For the prior defined series Hq, it holds that

t∗

∑
t=1

2ht

t−1

∑
t ′=1

∑
j∈Dt′

ci j =
t∗

∑
t=1

2 ∑
j∈Dt

ci j(Ht∗−Ht), (2.2)



2.4.2 SCALING THE DUAL VARIABLES FOR FEASIBILITY 29

which can be easily seen by observing that ∑
q
i=1 ∑

i−1
j=1 x jhi = ∑

q
i=1 xi(Hq−Hi) holds for

any series and any coefficients xi. Given these tools, we are now ready to formulate and
prove Lemma 2.7, which essentially shows that we get a feasible solution to the dual
program of our problem if we scale the α̂ j by a factor of 1

Hlmax
. To ease notation in the

following, whenever we consider a facility i of lease type k at time t∗, any time steps
t we speak of are assumed to lie in the the corresponding time interval of (i,k, t∗) (all
other time steps are of no interest with respect to the constraints of the dual program).

Lemma 2.7. For any facility i and lease type k at time t∗ we have

t∗

∑
t=1

∑
j∈Dt

(α̂ j/2Ht∗− ci j)≤ f k
i ,

where Hq := ∑
q
i=1

|Di|
∑

i
j=1 |D j|

.

Proof. Remember INV1 of our algorithm (see algorithm description in Section 2.3). It
states that the sum of bids towards a facility at any point in time does never exceed its
opening costs. Thus, for any time step t∗ we have

f k
i ≥ ∑

j∈D≤t∗
(α jkt∗− ci j)+

= ∑
l∈Dt∗

(α̂l− cil)++ ∑
j∈D<t∗

(α jkt∗− ci j)+

≥ ∑
l∈Dt∗

(α̂l− cil)+ ∑
j∈D<t∗

(α jkt∗− ci j)

= ∑
l∈Dt∗

(α̂l− cil)+
t∗−1

∑
t=1

∑
j∈Dt

(α jkt∗− ci j)

≥ ∑
l∈Dt∗

(α̂l− cil)+
t∗−1

∑
t=1

∑
j∈Dt

(α̂l∗− cil∗−2ci j) (Prop. 2.6 and l∗ := argmax(α̂l − cil))

= ∑
l∈Dt∗

(α̂l− cil)+
t∗−1

∑
t=1

∑
j∈Dt

(α̂l∗− cil∗)−2
t∗−1

∑
t=1

∑
j∈Dt

ci j

= ∑
l∈Dt∗

(α̂l− cil)+(α̂l∗− cil∗)
Nt∗

|Dt∗ | ∑
j∈Dt∗

1−2
t∗−1

∑
t=1

∑
j∈Dt

ci j

= ∑
l∈Dt∗

(α̂l− cil)+
Nt∗

|Dt∗| ∑
j∈Dt∗

(α̂l∗− cil∗)−2
t∗−1

∑
t=1

∑
j∈Dt

ci j

≥ ∑
l∈Dt∗

(α̂l− cil)+
Nt∗

|Dt∗| ∑
j∈Dt∗

(α̂ j− ci j)−2
t∗−1

∑
t=1

∑
j∈Dt

ci j
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=
(

1+
Nt∗

|Dt∗|
)

∑
j∈Dt∗

(α̂ j− ci j)−2
t∗−1

∑
t=1

∑
j∈Dt

ci j

=
(Nt∗+ |Dt∗|
|Dt∗|

)
∑

j∈Dt∗
(α̂ j− ci j)−2

t∗−1

∑
t=1

∑
j∈Dt

ci j.

The above inequality holds for each t ∈ {1, . . . , t∗}. Dividing each such inequality by
Nt+|Dt |
|Dt | yields the following set of inequalities:

|Dt∗|
Nt∗+ |Dt∗|

f k
i ≥∑

j∈Dt∗
(α̂ j− ci j)−2

|Dt∗|
Nt∗+ |Dt∗|

t∗−1

∑
t=1

∑
j∈Dt

ci j

|Dt∗−1|
Nt∗−1 + |Dt∗−1|

f k
i ≥∑

j∈Dt∗−1

(α̂ j− ci j)−2
|Dt∗−1|

Nt∗−1 + |Dt∗−1|
t∗−2

∑
t=1

∑
j∈Dt

ci j

...
...

...

|D2|
N2 + |D2|

f k
i ≥∑

j∈D2

(α̂ j− ci j)−2
|D2|

N2 + |D2|
1

∑
t=1

∑
j∈Dt

ci j

|D1|
N1 + |D1|

f k
i ≥∑

j∈D1

(α̂ j− ci j)−0.

Adding up these t∗ inequalities yields
( |D1|

N1 + |D1|
+ . . .+

|Dt∗|
Nt∗+ |Dt∗|

)
f k
i ≥

t∗

∑
t=1

∑
j∈Dt

(α̂ j− ci j)−
t∗

∑
t=1

2
|Dt |

Nt + |Dt |
t−1

∑
t ′=1

∑
j∈Dt′

ci j.

Due to Inequality (2.2) we have

Ht∗ f k
i ≥

t∗

∑
t=1

∑
j∈Dt

(α̂ j− ci j)−
t∗

∑
t=1

2 ∑
j∈Dt

ci j(Ht∗−Ht)

=
t∗

∑
t=1

∑
j∈Dt

(α̂ j−2Ht∗ci j)+
t∗

∑
t=1

∑
j∈Dt

2ci j

(
Ht−

1
2

)

≥
t∗

∑
t=1

∑
j∈Dt

(α̂ j−2Ht∗ci j).

Dividing by 2Ht∗ yields ∑
t∗
t=1 ∑ j∈Dt

( α̂ j
2Ht∗
− ci j

)
≤ f k

i
2 ≤ f k

i .

Finally, by combining our results from Corollary 2.3, Lemma 2.4 and Lemma 2.7,
and using that our time horizon is at most lmax (i.e., t∗ ≤ lmax), the weak duality theorem
implies a competitive factor depending on the series Hk.
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Theorem 2.8. Our online algorithm is at most 4(3+ 2K)Hlmax-competitive for the FA-
CILITYLEASING problem. Here, the series Hq is defined by

Hq :=
q

∑
i=1

|Di|
∑

i
j=1

∣∣D j
∣∣

and describes the relationship between the number of clients that arrive in each step.

The following corollaries bring the competitive factor guaranteed by Theorem 2.8 into
a more concrete and compact form.

Corollary 2.9. Our algorithm is at most 4(3+2K)lmax = O(log(lmax)lmax)-competitive
for the FACILITYLEASING problem.

Corollary 2.10. If for each round, the number of clients at any time t does vary by at
most a constant factor, is non-increasing, or bounded from above by a polynomial in lmax,
the competitive factor of our algorithm becomes at most O(K log(lmax))=O(log2(lmax))-
competitive for the FACILITYLEASING problem.

While Corollary 2.10 arguably covers the most interesting and realistic cases, it seems
probable that one can in fact construct an instance where the bound given in Corollary 2.9
is tight. Based on the convergence behavior of the series Hk, instances where the number
of arriving clients increases at least exponentially seem the most difficult and challenging
for an online algorithm.

2.4.3 Randomization

Our competitive bounds can also be written as O(Klmax) and O(K log(lmax)), respec-
tively. Meyerson [50] showed a lower bound of Ω(K) on the competitive ratio of de-
terministic online algorithms for the Parking Permit problem, a special case of FACIL-
ITYLEASING. For randomized algorithms, a lower bound of Ω(logK) is proven together
with an algorithm with a runtime matching this bound. As these bounds immediately
carry over to our model, one may hope, using the randomization techniques from [50],
to improve our bounds to O(log(K)lmax) and O(log(K) log(lmax)) by replacing the K
factor with log(K). To the best of our knowledge, no work containing this approach has
been published yet.

We would like to present a short intuition of how a randomized algorithm for FACIL-
ITYLEASING might look like. These are no actual results, but rather ideas we had when
we wanted to tackle this problem. Thus, they are explained in a very informal manner.
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First, note that the K factor in the approximation stems from the fact that each lease
type is considered almost independently from the other lease types. This can best be seen
in Lemma 2.4 where we use the contribution α̂ j of a client j multiple, namely K, times
in order to give an upper bound on the cost of our solution. Our aim should be to (i) only
use the α̂ j value log(K) times, and to (ii) find a different process to determine which
lease type to use (in the deterministic case we just use a lease if it was fully paid for;
now we have to choose one out of K possibilities and base our choice on the amount of
contribution to each lease). To achieve (i), the clients need to split up their contribution
α̂ j to each facility among the K different lease types. Splitting the α̂ j value evenly
between the lease types can be shown to not work out. Splitting that is dependent on the
costs f k

i of the lease for a given facility also does not work. The process mentioned in
(ii) should also use some kind of randomization, since we have a lower bound of Ω(K)

for deterministic algorithms for the Parking Permit problem (note that it is possible that
randomization is required at some other place to “overcome” this bound).

An idea to deal with both (i) and (ii) is to adapt the randomized algorithm for the
Parking Permit problem by Meyerson Meyerson [50]. Using his approach, we are able
to make sure that each α̂ j is only used log(K) many times in expectation. The contri-
bution to the leases is split in a similar way as is the payment to the parking permits in
Meyerson’s algorithm. This means that the rate at which the contribution is assigned to
leases depends on two things: First, the lower the cost of the lease, the more contribu-
tion it receives. Second, the more contribution is already assigned to the leases in rounds
before, the more contribution will be given to this lease in the current round. A facility
is now opened once the ratios of current contributions to the lease cost, summed up over
all lease types, add up to 1. The actual lease type our facility is opened with is now
chosen by a random experiment, where the probability of choosing a certain lease type
is equal to its ratio mentioned above. All these steps will ensure that each α̂ j is used, in
expectation, at most O(log(K)) times.

Now, all what remains to be done is to scale the α̂ j values (i.e., divide by O(log(n))
(or O(log(lmax)))) such that the resulting values yield a feasible primal solution. We
did not manage to analyze this step. The main difficulty here is due to Proposition 2.6,
which is not applicable for our randomized algorithm. This proposition is used to bound
the growth of the α̂ j using the fact that a client j has to stop increasing this value once
an open facility is reached. In the randomized setting, we do not know which lease was
chosen by our random experiment and thus cannot say with certainty when the α̂ j will
stop to grow. Thus, one has to find a technique that uses facilities that are almost opened
(the ratio of contribution is almost 1) to bound the α̂ j’s growth.
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2.5 Conclusion & Future Work

We gave the first algorithm for the online Facility Leasing problem FACILITYLEAS-
ING that has a time-independent competitive factor of O(lmax log(lmax)) in general and
O(log(lmax)

2) in many common cases. The competitive factor can be upper bounded by
O(Hlmax log(lmax)), where Hlmax is defined by the series Ht := ∑

t
i=1

Di
∑

i
j D j

. The Di ∈ N
represent the number of clients arriving at time step i. For an exponential increase in
the number of arriving clients, e.g., Di = 2i, we have Ht = Θ(t). We conjecture that,
based on this observation, it is possible to build an instance that shows that our upper
bound is tight for our algorithm. Instances featuring such an exponential increase in
arriving clients seem to have a unique hardness for an online algorithm: At any time t
the number of arriving clients essentially matches the total number of clients that arrived
up to now. Thus, in each single time step, we have to solve a problem that is as hard as
the complete problem up to the current time. It remains an interesting problem, whether
such instances are inherently difficult to handle for online algorithms, or whether this
conjectured lower bound is merely limited to our online algorithm.

Disregarding our algorithm (which expresses the competitive factor using the length
of the longest lease type), the best known competitive factor for FACILITYLEASING

is O(K log(n)) due to [52]. It is still an open question whether this result can be im-
proved without expressing the factor with the help of lmax. The best existing lower
bound for FACILITYLEASING is Ω(log(n)/log(log(n))+K) for deterministic algorithm and
Ω(log(n)/log(log(n))+ log(K)) for randomized algorithms. This is due to FACILITYLEAS-
ING being a generalization of the Online Facility Location problem (with the lower
bound of Ω(log(n)/log(log(n)))) and the Parking Permit problem (with the lower bound
of Ω(K)for deterministic and a lower bound of Ω(log(K)) for randomized algorithms).
Closing this rather large gap remains an interesting challenge.





C H A P T E R 3

The Facility Location Problem in
Sensor Networks

3.1 Introduction

In the previous chapter, we considered Facility Location from the viewpoint of a cen-
tralized algorithm (i.e., an algorithm that is executed on a single processor). Being able
to use such centralized algorithms in computer networks is not always possible. As the
given networks can be very large and highly dynamic, an entity executing a centralized
algorithm might require too much time to gather all information that is necessary to solve
the problem. Also, by the time the information is gathered and a solution is computed,
the network might have changed so much that the quality of the (possibly outdated)
solution is no longer sufficient.

In this chapter, we addresses the issue stated above by introducing distributed, espe-
cially local, approximation algorithms for the Facility Location problem. Such local
algorithms are executed in parallel on each node of the network. We call them local,
since each node performs its computations based on information regarding only its local
neighborhood. A node’s local neighborhood can, e.g., be defined to include nodes that
are at most a constant number of hops away from it (i.e., the number of edges on a short-
est path between them is constant). Once a local algorithm terminates, we have many
(one for each node) partial solutions to the problem at hand. Together, all these solutions
form the actual output (i.e., the global solution to our problem). With this distributed
approach, information about the network is no longer required to be propagated over
long distances (since everything that is far away from a node is irrelevant for its com-
putations). This aspect of locality makes the size of the network less significant. Also,
perpetual changes in the network structure are less problematic. Only in the proximity of
the change are required to update their solutions, while all the other nodes of the network

35
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remain unaffected by the change. The downside of this local approach is that the quality
of our solution is often lower than the quality of a solution computed by a centralized
algorithm. Nevertheless, we show that the two algorithms presented in this chapter still
yield good (i.e., constant factor) approximations.

In the remainder of this chapter’s introduction, we first explain why our algorithms
are especially suited for use in sensor networks. This is done in Subsection 3.1.1, where
we list properties of such networks and describe how our algorithms take them into
account. We give, in Subsection 3.1.2, a formal definition of the distributed variant
of the Facility Location problem at hand. It is quite different from the problem we
studied in the previous chapter, as it is no longer an online problem, has a different cost
function, and is executed in a distributed computation model. In Subsection 3.1.3, we
state our results concerning our approximation algorithms. Related work is handled in
Subsection 3.1.4, where we especially focus on Facility Location problems formulated
for a distributed setting. At last, Subsection 3.1.5 gives an overview of the way our local
algorithms and their analysis are described in the remainder of the chapter.

3.1.1 Relevance for Sensor Networks

The focus of the work presented in this chapter are algorithms designed especially with
sensor networks in mind. In the context of such networks, the Facility Location problem
arises if the objective is to provide a costly (e.g., energy intensive) distributed service
to the network. To be able to provide such a service, we have to choose a subset of
nodes as service providers (facilities) and assign the remaining nodes (clients) to close by
service providing nodes. Examples for such services are the maintenance of a distributed
database, the gathering of measurement data, control of the network and various energy
intensive computations.

The Facility Location variant that we formulate in this chapter reflects the properties
of wireless sensor networks. We assume these networks to contain a very large (arbitrar-
ily scaling) number of nodes with very limited capabilities. Another property of these
networks are the ongoing changes they are subjected to (e.g., nodes joining/leaving the
network or changing their position). Only local algorithms can be used in our sensor
network scenario, as the considered networks are arbitrary scalable, highly dynamic,
and consist of nodes with very limited capabilities. We formulate two such algorithms
that produce solutions, which are guaranteed to be constant factor approximations, by
assigning either the role facility or the role client to each sensor node. Note that this is
different from the previous chapter, where we have two fixed stets of client and facility
nodes and only have to determine which of the facility nodes should be opened. The
computed solutions are guaranteed to be constant factor approximations of an optimal
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solution.
As already mentioned, our algorithms are designed to cope with the various challenges

presented by wireless sensor networks. These challenges and the way our algorithms
deal with them are presented next.

Limited communication capabilities: One can expect two sensor nodes to be able
to communicate with each other only if the geographical distance between them is
small. Additionally, the messages exchanged between the nodes are highly limited
in size. Furthermore, a node is only aware of other nodes, and their positions, if
they are close by. Our algorithms take these constraints into account and only use
this strongly limited information for their execution.

Dynamics: Since the network is subjected to ongoing changes, the quality of the cur-
rent solution can deteriorate, even if all nodes execute the algorithm correctly. A
global algorithm can, after detecting changes to the network graph, just restart the
computation on every single node in order to reestablish a solution of good qual-
ity. In our case, such an approach is infeasible and also undesired: a restart request
issued by a node can require a large amount of time to be propagated to all other
nodes (during this time a lot of other changes might occur). Also, recomputing
a (possibly totally different) solution for the entire network, just because a small
part of it changed, can be too costly. In order to deal with this, nodes locally detect
such changes to the network and adapt their own local solution accordingly. These
adaptations only affect nodes that are in close vicinity of the change (i.e., are not
propagated through the entire network). Thus, only a small part of the network
is affected, while the remaining nodes never even notice that the global solution
changed.

Fault-Tolerance: Another aspect of sensor nodes is their susceptibility to incorrect
behavior. Nodes might stop executing the algorithm, just to resume its execution
some time later. They might also produce incorrect output until a technician re-
pairs them. If such behavior occurs, we want our algorithms to deal with it in
a local manner. No restart of the entire algorithm should be necessary and the
adaptations to the solution should only affect nodes in the proximity of the mal-
functioned node.

Energy consumption: In the original version of the metric facility location problem,
the costs of connecting a client to a facility are linear in the distance c between
them. This is not necessarily the case in the setting of wireless networks. Here,
the costs can be modeled by a polynomial cp, where the value of the path loss
exponent p varies depending on the environment the sensor network is deployed
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in. This polynomial is a simplified way to represent the energy costs necessary to
maintain a stable radio signal with increasing distance. According to [59], possible
values for p can be 2 in the (idealized) free space, 2.7 up to 3.5 in urban areas, and
even as large as 4 up to 6 when the nodes are obstructed by buildings. We take the
path loss exponent into account by including it in the cost function.

Measurement errors: Obviously, information about the distances between nodes are
required for the computation of a good solution. These information are not neces-
sarily available to the sensor nodes (especially in a dynamic scenario). Thus, the
distances need to be measured first. These measurements can be erroneous and it
is reasonable to assume (see [28]) that the measurement error increases with the
distance. Thus, we introduce the possibility to model this error and show its effect
on the approximation factor.

Asynchronous execution: Finally, in a large scale network one cannot assume that
the execution of an algorithm can be performed in a synchronous way. Thus, our
algorithms allow the nodes to act asynchronously. A symmetry problem can arise
if the local neighborhood of neighboring nodes is equal and the nodes act exactly
at the same time (see 3.4 for a detailed explanation). This situation can lead to
infinite loops, where the nodes never stop switching their role. We deal with this
problem with the help of randomization.

3.1.2 Problem Definition & Notation

We are given a complete, undirected, weighted graph G = (V,E) as input. Each edge
{i, j} in G is weighted with a nonnegative value c(i, j)∈R≥0 that represents the distance
(i.e., the costs of the connection) between node i and j. These weights satisfy the triangle
inequality (i.e., ∀ i, j,k we have c(i, j)≤ c(i,k)+ c(k, j)), are symmetric, and c(i, j) = 0
iff i = j. Also, there are two values di, fi ∈ R≥0 associated with each node i.

The objective is to assign one of two roles to each node. A node must either become a
facility or a client. We say that a node opens (resp. closes) if it changes its role to facility
(resp. client). The value fi represents the costs of opening node i and di represents the
demand of a node with the client role. The assignment (partition of V into the sets F and
C) has to be chosen in such a way that the objective function ∑i∈F fi +∑ j∈C d j · c( j,F)p

is minimized. Here, F (resp. C) represents the set of nodes with the facility (resp. client)
role (thus, we have C = V \F). The value c( j,F) = mini∈F{c( j, i)} describes the dis-
tance between client j and its nearest facility i, while p > 0 is the exponent representing
the exponentially increasing communication costs. Since an arbitrary number of clients
can use a single facility, we deal with the uncapacitated facility location problem.
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In order to represent errors that might occur when nodes measure distances between
each other, we introduce relative measurement errors bounded by the parameter µ with
1 ≤ µ . In other words, a node i’s measurement may yield a distorted distance ĉ(i, j)
to node j instead of the exact distance c(i, j) where 1/µ · c(i, j)p ≤ ĉ(i, j)p = ĉ( j, i)p ≤
µ · c(i, j)p. We use the ĉ(i, j)p values for the execution of our algorithms.

Execution model. The model used for the execution of our algorithm is based on
the CONGEST model, which was already mentioned in the introductory Section 1.5.2.
It was introduced by Peleg (see [57]) and is commonly used to model the execution of
distributed algorithms on graphs. Here, algorithms are executed in synchronous send-
receive-compute cycles. In one cycle, each node sends a message to each of its neighbors
in the graph. Note that the messages sent to each neighbor by a single node are not
required to contain the same information. Once all nodes have sent their messages, they
receive a single message from each of their neighbors. After all the messages have been
received, every node is allowed to spend an arbitrary amount of time for computation
(i.e., computation is for free and we are only interested in the number of communication
rounds). The end of the computation by all nodes marks the start of a new send-receive-
compute cycle.

The message size in the CONGEST model is bounded. We limit the size of the
messages used in our algorithms to O(logn) bits, where n = |V |. The same limitations
are also used in [30, 51, 54]. This bound is reasonable, because it allows the nodes to
send their IDs in single messages. Due to this constraint, we restrict the values fi, di, and
c(i, j) to be at most polynomial in n such that they can be represented with O(log(n))
bits (i.e., to be able to send them in a single message).

We adapt the CONGEST model to suite our requirements as follows. First, we limit
the communication range of the nodes by only allowing the nodes i and j to communicate
with each other if the weight c(i, j) of the edge {i, j} is smaller than O(rmax) where
rmax := maxi∈V{ fi/di}. Second, again to better reflect the abilities and limitations of
sensor nodes, we allow the nodes to execute the algorithm in asynchronous rounds. In
such a round every node can be active multiple times. Nodes are not required to (but still
may) act at the same time. A round is completed as soon as all nodes have been active
at least once. Note, that if all nodes would be required to act at the same time, a round
in our model would be equal to a round in the standard CONGEST model. Nodes do
not know, nor is it of any importance to them, when such an asynchronous round start
or ends. These rounds are only introduced for the sake of the runtime analysis of our
algorithms. Further, as is the case with all computation models we use in this thesis,
we abstract from message transmission delays and consider computation time within a
single round as instant. This means that a node which becomes active at time t receives
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all messages that have been sent before t (but not the message sent exactly at time t).
Furthermore, all computation is done instantly and messages are sent immediately.

In order to execute our algorithms, nodes require information only about other nodes
within O(rmax) distance. One can assume that, at least in the sensor networks scenario,
rmax is independent of the number of nodes. Thus, the execution of our algorithms only
requires nodes to able to communicate with nodes within constant (i.e., independent of
n) distance.

3.1.3 Results

The results presented in this chapter are published in [2] and are a continuation of our
work from [18]. We present two similar approximation algorithms for the Facility Lo-
cation problem. Both algorithms are based on the approach by Mettu and Plaxton pre-
sented in [48]. The first algorithm runs in expected O(log1+ε n) rounds and yields a
µ4(1+4µ2(1+ ε)1/p)p approximation, while the second has an expected running time
of O(log2

1+ε n) rounds and an approximation factor of µ4(1+2(1+ε)1/p)p, where ε > 0
is an arbitrarily small constant.

These two algorithms are particularly suitable for sensor networks. They are fast
(expected running time is polylogarithmic in expectation) and very simple to implement
(once the radius value mentioned above is computed, the nodes only need to perform a
relatively easy operation to ensure a specific property is satisfied). Since expecting the
nodes to act in a synchronized manner might not always be appropriate, the used model
allows for an asynchronous execution. To represent the fact that distances between nodes
cannot always be measured accurately, the parameter µ is introduced. It relates the
resulting approximation factor to the relative measurement errors. Robustness is also
added to the algorithms; if during the algorithms’ execution some nodes do not execute
the algorithms correctly for some rounds, the computed solution will (at the price of an
increased number of rounds) still have the desired approximation factor (i.e., no restart
of the algorithm is required). The algorithms can also deal with changes that might occur
when nodes change their positions or are removed/added to the network. We show that
such a change only forces our algorithms to update the role of nodes close by (i.e., nodes
far away from this change are not affected).

Even though our algorithms were developed with sensor networks in mind (i.e., prob-
lem instances where the given metric is Euclidean), all results are valid for general met-
rics.



3.1.4 RELATED WORK 41

3.1.4 Related Work

In the following subsection, we present results that are strongly related to our two local
approximation algorithms for Facility Location in sensor networks: in [54], Pandit et al.
present an algorithm yielding a 7-approximation and a running time of O(log(n)) where
n is the number of nodes. Their approximation factor can be improved to (3+ ε) by
changing the incrementation factor used in their algorithm from 2 to (1+ ε) and bound-
ing the difference between the highest and the lowest facility cost by a polynmial in n.
A similar result to [54] is presented by Blelloch et al. in [10]. Instead of the CONGEST
model, they use a PRAM model, as they are more interested in the number of operations
performed by their algorithms than the aspect of communication/locality. They achieve a
(3.722+ ε) approximation with a running time of O(log2

1+ε(n)) rounds by parallelizing
the greedy algorithm of Jain et al. [35]. This is later improved by the same authors to a
(1.861+ ε) approximation with an increased running time of O(log4(n)).

In our opinion, our algorithms are more fitting for sensor networks than the algorithms
listed above. This is due to their simplicity, asynchronous execution, and robustness
when dealing with errors/changes to the network. The main difference is that they do
not need to be restarted when the network changes, but instead have a natural distributed
way to update their solution in a very local manner (i.e., only affecting close by nodes).

In [55], Pandit et al. present a log∗(n) rounds algorithm that, contrary to ours, requires
a Unit Disc Graph and the graph’s geometrical representation for its execution. This
algorithm is very well suited for sensor networks in which the nodes posses additional
geometric data regarding their positions.

The approach by Mettu and Plaxton [48], on which our algorithms are based on, has
been successful in a lot of other settings as well: in the kinetic setting [17], in game
theoretic settings [53], for algorithms working in sublinear time [7], for the uniform fa-
cility location problem [30] (i.e., opening each facility incurs the same costs), and when
confronted with perpetual changes to the problem instance [18]. Compared to [18], we
improve the approximation factor and introduce a more realistic model of computation.
The model used in [18] guarantees that at any point in time only a single node has been
active. This means that there is no need to resolve conflicts between nodes in [18], which
is not the case in our problem formulation.

3.1.5 Structure of the Chapter

This chapter presents two local approximation algorithms for Facility Location. Start-
ing in Section 3.2, we introduce the radius and the invariant. These two concepts are
key building blocks for both of our algorithms. They are also used for the analysis of
our algortihms’ approximation factors. Then, in Section 3.3 we describe a distributed
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Maximal Independent Set algorithm, which is used as a subroutine by our algorithms.
Section 3.4 is the most important part of this chapter as both algorithms and their run-
time analysis are presented here. In Section 3.5, we discuss how our algorithms deal
with ongoing changes in the network. Finally, in Section 3.6 we end this chapter with
concluding remarks and possible future work.

3.2 The Radius and the Invariant

In this section, we introduce the radius and the invariant. These two concepts are used
by both our distributed approximation algorithms defined in Section 3.4. The radius
is a value used to determine how beneficial it is to assign the facility role to a node,
whereas the invariant describes a specific condition of a node. This condition depends
on the node’s current role and radius value, but also on the roles and radius values of
its neighboring nodes. Now, the general idea of our algorithms is to assign roles to the
nodes (i.e., compute a solution to our Facility Location problem) in such a way that
the invariant is fulfilled at all nodes. Once all invariants are fulfilled, the resulting role
assignment is a good (i.e., constant factor) approximation of an optimal role assignment
(see Theorem 3.3).

The next paragraphs describe the radius and the invariant in a detailed way, and also
show a relationship between the invariant and the quality of solutions for the Facility
Location problem.

Radius. For each node i we define a radius value which represents how beneficial it is
for i to become a facility (the smaller the value is, the better it is to open the node). The
radius of node i is computed based on i’s opening costs fi and on the distances between
i and other nodes (the radius is completely independent of the roles assigned to nodes).
Nodes with high opening costs tend to have a high radius value, while nodes with a lot
of other nodes close by tend to have small radius values. Our algorithms try to find a
balance between opening and closing nodes (preferring nodes with a small radius value
to be opened, but also making sure that nodes are not opened too close to each other).
The radius is computed using the following definition.

Definition 3.1 (Radius). Given r ∈R and a node i we define the set B(i,r) to contain all
nodes j such that c(i, j)≤ r. The radius ρi of a node i is the unique number satisfying

∑
j∈B(i,ρ1/p

i )

d j · (ρi− c(i, j)p) = fi ,
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while the distorted radius ρ̂i, which takes measurement errors into account, satisfies

∑
j∈B(i,ρ̂1/p

i )

d j · (ρ̂i− ĉ(i, j)p) = fi ,

where, in order to define the ball B(i, ρ̂1/p
i ), the values ĉ(i, j) are used.

The best way to get an intuition for the radius computation is to consider Figure 3.1.
Here, a simple example is given where all nodes are placed on the Euclidean plane, have
the same demands, there is no measurement error, and the exponent p = 1.

⇢i
i

j

k

c(i, j)

c(i, k)

⇢i � c(i, k)

⇢i � c(i, j)

l

Figure 3.1: Example of the radius definition (R2, p = 1, d j = 1). The radius of node i
is the value ρi such that the distances to the circular line of all nodes within the circle
around i with radius ρi, namely ρi +(ρi− c(i, j))+(ρi− c(i,k)), sum up to fi.

Our algorithms do not use the radius values ρi and ρ̂i directly. Instead, they work with
the radius value ri which is defined to be ρ̂i rounded to the next power of (1+ ε) (where
ε > 0). In order to simplify the description and analysis of our algorithms in Section 3.4
we will use the value r̂i = µ2/p · r1/p

i .
We have 1

µ(1+ε) · ri ≤ ρi ≤ µ · ri. Also note that for every problem instance with n
nodes, there exists a polynomial P such that 1/P(n) < ri < P(n) for all nodes i. There-
fore, the number of distinct rounded radius values is logarithmic in n and can be sent
using at most O(log1+ε n) bits (even O(log log1+ε n) is possible if only the exponent is
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encoded). Later on, we will use this property to bound the number of rounds that our
algorithms require.

Invariant. Our algorithms defined in Section 3.4 use the invariant to compute their
role assignments. Intuitively, the invariant is a means to allow node i to judge whether
the current role assignment (in i’s local neighborhood) is good or not. We define the
invariant in the following way:

Definition 3.2 (Invariant). The invariant is said to be fulfilled if and only if the following
conditions that depend on the node’s role are satisfied:

• Facility Role. If node i is a facility (i.e., i ∈ F), then no other facility j, j 6= i with
the following properties exists:

– r j ≤ ri

– ĉ(i, j)≤ 2 ·µ2/p · r1/p
i (= 2 · r̂i)

• Client Role. If node i is a client (i.e., i ∈C), then at least one facility j with the
following property exists:

– r j ≤ ri

– ĉ(i, j)≤ 2 ·µ2/p · r1/p
i (= 2 · r̂i)

The conditions described in the invariant’s definition depend on the node’s current
role. In the case that node i is a facility, we have to check other nodes with the facility
role in i’s proximity. If among them there exists a facility j with a smaller radius than
the radius of i (i.e., a more (at least according to the radius) beneficial facility), then the
current solution is (from an intuitive point of view) not good, closing i and connecting it
to j might significantly improve the solution. In the other case (where i is a client), we
again have to check close by nodes with the facility role. If at least one among them has
a smaller radius than i, everything is fine, since i can be connected to it. Otherwise, if
all of them have a higher radius, the solution might be not be quite good, since changing
the role of i to facility and the roles of close by facilities to clients might improve the
solution significantly.

Assume that you are given a role assignment for all nodes in a graph. Consider an
arbitrary node i. If i’s invariant is not fulfilled, it is always possible to fulfill it by chang-
ing only i’s role. In a distributed algorithm, each node can try to take care of its own
invariant (and fulfill it whenever necessary). The problem one has to deal with here, is
that a node changing its role in order to fulfill its invariant, might violate the (until now
fulfilled) invariants of other nodes. In Section 3.4, we discuss this problem and show
that our distributed algorithms compute solutions (in polylogarithmic time) where the
invariant is fulfilled for all nodes.
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Approximation guarantee. In this paragraph we show that any solution where the
invariant is fulfilled at all nodes has costs very close to those of an optimal solution. This
is done with the help of Theorem 3.3. Its proof is very close to the work of Mettu and
Plaxton in [48]. Our main contribution here is the introduction of measurement errors
and the changes in the cost function.

Theorem 3.3. Let Fopt be an arbitrary optimal solution and Finv be a solution where, for
each facility and client, the invariant is satisfied. Then, the cost of Finv can be bounded
as follows

cost(Finv)≤ µ
4(1+2(1+ ε)1/p)p cost(Fopt) .

Proof. Analogously to [48], we introduce a charge value for each node i which is de-
pendent on a solution F , i.e.,

charge(i,F) = c(i,F)p + ∑
j∈F

max{0,ρ j− c(i, j)p} .

Note that given a solution F , the sum over all charges is equal to the costs of the
solution F , namely

∑
i∈V

di charge(i,F) = ∑
i∈F

fi + ∑
j∈C

d j · c( j,F)p .

The theorem is proven by showing that for a solution Finv satisfying the invariants (in
particular a solution computed by our algorithms) and for any solution F (in particular
an optimal solution) it holds that

charge(i,Finv)≤ µ
4(1+2(1+ ε)1/p)p charge(i,F) .

This is done with the help of the following lemmas:

Lemma 3.4. Let i be a node, let F be a set of facilities, and let j be a facility. If
c(i, j) = c(i,F), then charge(i,F)≥max{ρ j,c(i, j)p}.

Proof. We distinguish two cases:

• i ∈ B( j,ρ1/p
j ), here charge(i,F)≥ c(i, j)p +max{0,ρ j− c(i, j)p} ≥ ρ j ≥ c(i, j)p

• i 6∈ B( j,ρ1/p
j ), here charge(i,F)≥ c(i, j)p ≥ ρ j.
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c(i, F )

⇢l � c(i, l)
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Figure 3.2: Example of the charge definition (R2, p = 1). Here, i and j are client
nodes and k and l are facility nodes. The charge of node i is the sum of the distance
c(i,F) of i to its closest facility (namely k) and the distances of i to the circular line of
all facility circles in F where i lies in (namely k and l, i.e., the charge of i is equal to
c(i,F)+(ρk− c(i,k))+(ρl +(c(i, l))).

Lemma 3.5. Let i be a node and let Finv be a set of facilities such that all invariants are
satisfied. If j ∈ Finv with i ∈ B( j,ρ1/p

j ), then charge(i,Finv)≤ ρ j.

Proof. First, we prove by contradiction that a node cannot be contained in the balls of
two different facilities. Assume there are two facilities j,k ∈ Finv, j 6= k, such that i ∈
B( j,ρ1/p

j ) and i ∈ B(k,ρ1/p
k ). Without loss of generality, assume ρ

1/p
j ≥ ρ

1/p
k . Then, the

invariant at j must be violated, since there is another facility k within distance c( j,k)≤
c( j, i)+ c(i,k) (by the triangle inequality) and

c( j, i)+ c(i,k)≤ ρ
1/p
j +ρ

1/p
k ≤ 2ρ

1/p
j

≤ 2µ
1/pr1/p

j

= 2r̂ j .
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Thus, i ∈ B( j,ρ1/p
j ) and i is in no other facility’s ball. Then,

charge(i,Finv) = c(i,Finv)
p + ∑

j∈Finv

max{0,ρ j− c(i, j)p}

= c(i,Finv)
p +ρ j− c(i, j)p ≤ ρ j ,

since c(i,Finv)
p ≤ c(i, j)p.

Lemma 3.6. Let i be a node and let Finv be a set of facilities such that all invariants are
satisfied. For any facility j ∈ Finv with i 6∈ B( j,ρ1/p

j ) we have charge(i,Finv)≤ c(i, j)p.

Proof. We distinguish two cases. In the first case, let there be no facility k ∈ Finv with
i ∈ B(k,ρ1/p

k ). It follows that for all facilities l ∈ Finv: c(i, l)≥ ρ
1/p
l . Thus,

charge(i,Finv) = c(i,Finv)
p ≤ c(i, j)p .

In the second case, let k ∈ Finv be such that i ∈ B(k,ρ1/p
k ). This implies that c(i,k) ≤

ρ
1/p
k . We know that ĉ( j,k) > 2µ2/p max{r1/p

j ,r1/p
k } because of the invariants. This

yields

c(i, j)≥ c( j,k)− c(k, i)

≥ 1
µ1/p

· ĉ( j,k)−ρ
1/p
k

≥ 1
µ1/p

2µ
2/pr1/p

k −µ
1/pr1/p

k

≥ µ
1/pr1/p

k

≥ ρ
1/p
k

≥ charge(i,Finv)
1/p .

Using lemmas 3.4, 3.5, and 3.6, for each node we compare the charge of solution Finv

to its charge of an optimal solution Fopt :

Lemma 3.7. For any node i and any set of facilities Finv, where all invariants are satis-
fied, we have

charge(i,Finv)≤ µ
4(1+2(1+ ε)1/p)p · charge(i,Fopt) .
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Proof. Let j ∈ Fopt such that c(i,Fopt) = c(i, j). By the invariant there exists a facility
k ∈ Finv such that ĉ( j,k) ≤ 2µ2/pr1/p

j and rk ≤ r j. We distinguish two cases, either

i ∈ B(k,ρ1/p
k ), or i 6∈ B(k,ρ1/p

k ).
In the first case, by Lemma 3.5, we have charge(i,Finv)≤ ρk. Thus, by Lemma 3.4,

charge(i,Finv)≤ ρk ≤ µrk ≤ µr j

≤ µ
2(1+ ε)ρ j ≤ µ

2(1+ ε) · charge(i,Fopt) .

In the second case (as depicted in Figure 3.3), by Lemma 3.6, we have

charge(i,Finv)≤ c(i,k)p

≤
(

c(i, j)+µ
1/pĉ( j,k)

)p

≤
(

c(i, j)+2µ
3/pr1/p

j

)p

≤
(

c(i, j)+2µ
4/p(1+ ε)1/p

ρ
1/p
j

)p

≤ µ
4(1+2(1+ ε)1/p)p · charge(i,Fopt) .

The last estimation follows by distinguishing whether ρ j or c(i, j)p is the biggest element
of the term.

This concludes the proof of Theorem 3.3.

Note that if all invariants hold, µ = 1, and p = 1, then the solution is a (3 + ε)-
approximation, which is an improvement to the 17-approximation of [18].

3.3 Computation of Maximal Independent Sets

Here, we restate an inclusion maximal independent set (MIS) algorithm (see [4, 44, 57])
which was originally introduced by Luby in [44]. This distributed algorithm calculates
a MIS in expected O(logn) communication rounds and forms a building block of our
algorithms.

The algorithm (for a pseudocode description refer to Algorithm 1) works as follows on
an arbitrary graph: When node i awakes, it marks itself with probability of 1/(2deg(i)),
where deg(i) is the number of i’s neighbors. The next time i awakes, it checks whether
a neighbor has joined the MIS in the meantime and decides to stay out of the MIS if this
is the case. If not, then i decides to join the MIS if there is no other marked neighbor
of a higher degree. When calculating the degree, only neighbors are considered which
have not yet decided. If two neighboring nodes with same degree are marked, then the
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i

j 2 Fopt

k 2 Finv

⇢j

2µ4(1 + ✏) · ⇢j

⇢kc(i, k)

c(i, j)
c(j, k)

Figure 3.3: Comparison of Finv and Fopt in Lemma 3.7. The charge of i in a solution
with all invariants fulfilled is not too far away from the charge of i in an optimal solution.

node with highest ID is selected. The decision to join or to stay out of the MIS is final
and each node stops executing the algorithm as soon as it has decided.

Note that if some nodes start executing the algorithm belatedly, then the MIS is still
calculated in expected O(logn) communication rounds after the last node has started
since previous decisions can only cause a faster termination. This is important for the
interleaved calculation of an MIS in Algorithm 3.

3.4 Approximation Algorithms

Due to Theorem 3.3, we know that a solution yields a good approximation if the in-
variants are fulfilled for every node. What remains to be shown is that our algorithms
compute such a solution in a polylogarithmic number of asynchronous rounds.

First note that if the invariant of node i is violated, i can always remedy this by chang-
ing its own role. Thus, a straightforward idea for a distributed approximation algorithm
would be to allow each node to change its role if its invariant is violated (and by doing so
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Algorithm 1 CREATEMIS(G) executed by each node i (Luby’s algorithm)
1: if ∃ neighbor j of i with j ∈MIS then
2: Not-in-MIS← Not-in-MIS ∪{ j};
3: terminate;
4: else
5: G′← subgraph of G induced by { j ∈V | j 6∈Not-in-MIS};
6: if state(i) =marked then
7: if ∃ j ∈ G′ with state( j) = marked and

(degG′( j)> degG′(i) or degG′( j) = degG′(i) and id( j)> id(i)) then
8: state(i)← unmarked;
9: else

10: MIS←MIS∪{i};
11: terminate;

possibly violate the invariants of other nodes). As a result, all nodes would switch back
and forth between being a client or a facility until they eventually reach a role assignment
where all invariants are fulfilled. This is essentially the idea used in [18]. The reason
why this approach worked in [18] is that the model used only allowed a single node to
be active (i.e., able to change its role) at any point in time. However, this approach is no
longer feasible in our (more realistic and more general) model, where nodes can execute
the algorithm simultaneously. For example, imagine a problem instance with only two
nodes. Both have the facility role and the same radius and are positioned in such a way
that they mutually violate each other’s invariant. If both become active at the same time,
they will both become clients. Now, both their invariants are violated again so they both
change their role to facility and everything is repeated. This process never reaches a state
where all invariants are fulfilled.

Therefore, we present two algorithms that can deal with this problem and show their
approximation factors, expected running time in communication rounds and how they
cope with dynamic scenarios. In order to simplify the presentation, we will set µ =

p = 1 and refer to the (µ4(1+ 4µ2(1+ ε)1/p)p) (respectively, (µ4(1+ 2(1+ ε)1/p)p))
approximation algorithm as the (5+ ε) (respectively, (3+ ε)) approximation algorithm.
These two algorithms are presented in the following two sections.

3.4.1 (5+ ε)-Approximation in O(log1+ε n) Rounds

As we could see above, nodes that have the same radius, are close to each other, and act
at the same time can cause undesired behavior. To be able to avoid this, we first define
the radius graph as follows:
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Definition 3.8. A radius graph Gr = (Vr,Er) for radius r is defined by the nodes Vr =

{i ∈V |r̂i = r} ⊆V and edges Er = {{i, j}|i, j ∈Vr∧ ĉ(i, j)≤ 2r}.

A node belongs to exactly one radius graph. We will prevent the nodes with the same
radius r̂ to influence each other by calculating a MIS on each radius graph Gr̂. The
algorithm proceeds in three steps:

1. Every node i calculates its radius r̂i (see Section 3.2 for the radius definition) and
sends it to all neighbors (nodes at a distance of at most 2 · r̂max). Now, each node
is aware of its neighbors and their radii in the specific radius graph Gr̂ it belongs
to.

2. For each radius graph the nodes compute a maximal independent set (MIS) using
Algorithm 1.

3. If a node is not member of a MIS, it becomes a client. Otherwise, whenever a
node becomes active, it checks whether its invariant is fulfilled and, if necessary,
changes its role such that its invariant is fulfilled again.

As mentioned before, the radius (as well as all other information required to execute
the algorithm) can be sent in a single message. A pseudo code description is given by
Algorithm 2.

Algorithm 2 FIVEAPPROXIMATION executed by each node i ∈V
r̂i← CALCULATEROUNDEDRADIUSi;
CREATEMIS(Gr̂i);
if i ∈ Not-in-MIS then

become client;
else if i ∈MIS then

if i is client and not INVARIANT then
become facility;

else if i is facility and not INVARIANT then
become client;

The expected number of rounds required to compute a solution, for which the invari-
ant is fulfilled for each node, is O(log1+ε n). Step (1) requires a constant number of
rounds, while step (2) is finished after O(logn) communication rounds in expectation
(see Section 3.3). Finally, step (3) requires O(log1+ε n) rounds. To see this, note that a
node i changing its role to facility can only violate invariants of nodes that have a strictly
larger radius than r̂i (nodes with strictly smaller radius are never affected by node i’s
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role changes and the MIS computation guarantees that nodes with equal radius are not
affected either). With each round, the invariants of the nodes with the next higher radius
become (and remain) fulfilled (starting with the nodes with the smallest radius). Since
there are O(log1+ε n) distinct radius values (due to us using radius values rounded to the
next power of 2), the claim follows.

Theorem 3.9. When the invariant holds for all nodes that are in the MIS and all nodes
not in the MIS are clients, then the resulting set of facilities yields a µ4(1+ 4µ2(1+
ε)

1
p )p-approximation.

Proof. Since only a node that is a member of the MIS can be a facility, the invariant
is fulfilled for every facility. The invariant of clients that are not in the MIS is not
necessarily fulfilled. Consider a client i with a violated invariant. There must be another
client j with the same radius in distance 2r̂i which is part of the MIS, otherwise i itself
would be part of the MIS. Since the invariant of j is fulfilled, there is a facility k with a
smaller or equal radius in distance 2r̂ j of j. Thus, due to the triangle inequality, facility k
is at a distance of at most 4 times µ2r̂i of i. Application of Lemma 3.7 yields the desired
approximation.

3.4.2 (3+ ε)-Approximation in O(log2
1+ε n) Rounds

This section presents an algorithm with the improved approximation factor of µ4(1+
2(1+ ε)1/p)p, but increased running time of O(log2

1+ε n) communication rounds. In
contrast to the algorithm before, we want to guarantee that the invariant is fulfilled at
every single node, and not just the nodes belonging to one of the MISs.

In order to describe the algorithm, the following states are introduced: undecided,
marked, MIS/facility, or no-MIS/client. We say a node has decided if it is either in state
MIS/facility or no-MIS/client. Also, if a node i is in the state undecided or marked and
all neighbors j of i with a smaller radius and within distance c(i, j)≤ 2ri have decided,
then we say this node is playing.

Theorem 3.10. All nodes have decided after O(log1+ε n · logn) communication rounds
(in expectation). The resulting solution is a µ4(1+2(1+ ε)1/p)p-approximation.

Proof. The state diagram in Figure 3.4 and Algorithm 3 illustrate the nodes’ behavior.
At the beginning, each node i is in the state undecided and calculates its radius r̂i. Once
a node enters the state MIS/facility (resp. no-MIS/client) it never changes its state again
and has the facility (resp. client) role in the final solution. A node that is in the marked
or undecided state changes its state to no-MIS/client if by assuming the client role its
invariant is fulfilled (i.e., the change of its role to client fulfills its invariant). A node i,
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undecided marked MIS/
facility

no-MIS/
client

all neighbors with smaller
radius have decide, then with

probability 1/(2degC(k))

no neighbor
in C with

higher degree is marked

client role
fulfills invariant

client role
fulfills invariant

a neighbor in the conflict
graph with higher degree is marked

Figure 3.4: A state diagram showing all possible states and their transitions in Algo-
rithm 3.

that cannot fulfill its invariant by assuming the client role, starts computing a MIS once
all nodes j with r̂ j < r̂i within distance 2 · r̂i of i have decided. The MIS is computed on
a conflict graph consisting of all playing nodes which is a subgraph of the radius graph
defined in Section 3.4.1.

Definition 3.11. A conflict graph Cr(t) = (Vr(t),Er(t)) for radius r at the beginning of
round t is defined by the vertices Vr = {i ∈ V |ri = r∧ i is playing at beginning of round
t} ⊆V and edges Er = {{i, j}|i, j ∈Vr∧ c(i, j)≤ 2r}.

Once a node enters the MIS, it changes its state to MIS/facility. Otherwise (if one of
its neighbors in the conflict graph joined the MIS and is therefore a facility), its state is
changed to no-MIS/client.

We prove by induction over the radius values that once a node has decided to change
its state to MIS/facility (i.e., it becomes a facility) or no-MIS/client (i.e., it becomes a
client), its invariant will never be violated again.

All nodes with the smallest radius r̂small start playing and compute a MIS (which takes
O(logn) expected rounds). If a node of this radius enters the MIS, it is a facility. No
other node with this radius within distance 2rsmall will ever enter the MIS, and therefore
its invariant will always be fulfilled. Each node j which is not in the MIS is within
distance 2r̂small of a node contained in the MIS and therefore within distance 2r̂small of
a facility node. Thus, such a node’s invariant is, and will remain, fulfilled.

Consider all nodes with radius r̂′ > r̂small . Assume that in some round the nodes with
radius less than r̂′ have decided and do not change their roles anymore. Then, we have
two cases for node i with radius r̂′. First, there is a facility j with radius less r̂′ within
distance 2r̂′ (i.e., assuming the client role fulfills the invariant of i). By the induction
hypothesis facility j will never change its state again and thus the invariant of node i will
not be violated in future rounds. Second, there is no facility j within distance 2r̂′. Here,
using the same argumentation as for the nodes with the smallest radius (i.e., nodes with
radius r̂′ compute a MIS on their conflict graph), we can state that the invariant of i is
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Algorithm 3 THREEAPPROXIMATION executed by each node i ∈V
r̂i← CALCULATERADIUSi;
if state(i) = undefined or (state(i) = client and not INVARIANT) or
(state(i) = facility and not INVARIANT then

state(i)← undecided;
if INVARIANT then

state(i)← client;
C← conflict graph Gr̂i(t);
if state(i) = marked then

if ∃ j ∈C with state( j) = marked and (degC( j)> degC(i) or
degC( j) = degC(i) and id( j)> id(i)) then

state(i)← undecided;
else

state(i)← facility;
if state(i) = undecided and ∀ j ∈V with r̂ j < r̂i and c( j, i)≤ 2r̂i and
state( j) ∈ facility, client then

with probability 1
2degC(i)

: state(i)← marked;

fulfilled after O(logn) rounds. Since there are O(log1+ε n) different radius values, the
expected number of communication rounds is O(log1+ε n · logn).

3.5 Dealing with Dynamics

Until now, we only considered a static scenario where the distances between nodes,
facility costs and client demands do not change over time. In this section we introduce
a dynamic scenario where such changes are possible. Starting with a problem instance
and a role assignment such that the invariant is satisfied for each node, we modify the
instance (e.g., by changing the distance between two nodes) such that the invariant is
violated at a single node (we call this “triggering an event at a node”). We want to
enable our algorithm to deal with such a change and analyze its effect on the roles of
other nodes. To be able to react to such changes, the algorithms have to be slightly
extended.

• Regarding the (5+ε)-algorithm, we have two cases to consider. First, assume the
change did not invalidate the MIS on the nodes’ radius graph. If the affected node
is part of the MIS, the node needs just to correct its invariant (which will possi-
bly trigger role changes of other MIS nodes). Otherwise, the node does nothing.
Second, the change invalidates (by adding or removing edges in the radius graph)
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the MIS. Here, nodes at which the MIS property is violated change their states to
unmarked (and thus start executing the (5+ ε)-algorithm again).

• The modification of the (3+ε)-algorithm is simpler: here, whenever the invariant
of a decided node (i.e., in state MIS/facility or no-MIS/client) is violated, it just
needs to change its state back to undecided.

The following lemma, which is an adaptation of the proof in [18], states that, given
a solution satisfying the invariants of all nodes, both modified algorithms will compute
a new solution with the desired approximation factor. Also, only nodes with a small
distance to the node where the change occurred can have a different role in this new
solution.

Lemma 3.12. A node i can only be affected by an event if it is triggered at a node which
is at most in distance 4µ3/p(1+ 1

ε
)ri from i.

Proof. Let k be the node at which an event is triggered. Let ei · ri be the maximal range
around k in which nodes with radii at most ri = (1+ ε)i · rk are affected by the state
change of k. First, we give an upper bound for e0 which implies that r0 = (1+ ε)0 · rk =

rk. Nodes with radius < r0 cannot be affected by the state change of k, as the invariant
only depends on nodes with smaller or equal radii. If k changes its state from closed
to opened, then this decision cannot violate the invariant of other nodes with radius r0

because then the invariant of k would have been fulfilled (note that we used the fact
that the distorted distances are symmetric). If k changes its state from opened to closed,
then this change affects only nodes with radius r0 within distance ≤ 2µ3/prk since they
might underestimate their distance to k by a factor of µ1/p when checking their invariant.
Therefore, we have e0 = 2µ3/p.

Now we describe the step from ei−1 to ei and claim ei ≤ ei−1
1+ε

+ 4µ3/p for i > 0. By
definition of ei−1, k nodes with radii at most ri−1 =(1+ε)i−1 ·rk can be at a distance of at
most ei−1 ·rk from k. Let m be such a node and let l be a node with radius ri = (1+ε)i ·k
that changes its role due to a role change of m. This node l must be within distance
2µ3/pri of m. If l needs to be opened, then m must have closed. No invariant of nodes
with radius ri is affected. If l needs to be closed, then m must have opened. Another
node n with the same radius ri might have to open and n can be in distance of at 2µ3/pri

of l. Again, the opening of n cannot violate the invariant of a node with the same radius.
Therefore, c(k,n)≤ ei−1 · rk +2 ·2µ3/pri ≤ ( ei−1

1+ε
+4µ3/p)ri and thus ei ≤ ei−1

1+ε
+4µ3/p.
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Finally, the recurrence can be solved,

ei ≤
ei−1

1+ ε
+4µ

3/p

=
e0

(1+ ε) j +
i−1

∑
j=0

4µ3/p

(1+ ε) j

=
e0

(1+ ε)i +4µ
3/p

1− 1
(1+ε)i

1− 1
1+ε

= 4µ
3/p · 1+ ε

ε
− 4µ3/p 1+ε

ε
− e0

(1+ ε)i

≤ 4µ
3/p
(

1+
1
ε

)
.

Notice that a node i can only be affected by a change occurring at node j, if c(i, j) ∈
O(r̂i). Also, r̂i ∈ O( fi/di). This means that, if fi and di are independent of the number
of nodes (which is a reasonable assumption in a sensor networks scenario) the area of
effect of a change is independent of the number of nodes. Thus, the solution computed
by our algorithms is, in practical scenarios, very stable (e.g., the removal/addition of a
node from/to the network will not trigger role changes on almost all of the other nodes).

3.6 Conclusion & Future Work

We converted the sequential algorithm by Mettu and Plaxton [48] to be applicable in
a distributed sensor nodes scenario. The two resulting algorithms have constant ap-
proximation factors ((3+ ε) respectively (5+ ε)) and polylogarithmic running times
(O(log2 n) respectively O(logn)). One of these algorithms retains the sequential algo-
rithm’s approximation factor up to an arbitrarily small constant ε . This is arbitrarily
close to the best approximation factor one can achieve using our approach (computing
the radius value and switching the roles until the invariant is satisfied at all nodes). Since
both algorithms are designed for the same model and use very similar operations, we
can choose which one of them we want to used based only on the desired runtime/ap-
proximation guarantee. Although better approximations can be achieved in distributed
settings (e.g., an approximation of 1.86, as explained in Section 3.1.4), our algorithms
adapt to changes in the network in a very efficient way (since they are formulated as a
simple infinite process). This is in contrast to all other distributed algorithms known to
us (e.g., see [10, 11, 54]), since they have to be restarted each time the network changes.
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Figure 3.5: Illustration of Lemma 3.12. Node i can only be affected by an event which is
triggered at a node within distance: 2µ3/pri +2µ3/pr j + . . .+2µ3/pru ≤ 4µ3/p (1+ 1

ε
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Such a restart can be very costly (e.g., it requires a lot of time and/or energy) and is
undesired, maybe even infeasible, in a sensor networks scenario.

Concerning dynamics, we only analyzed and bounded the distance between the loca-
tion at which a change in the network occurred and the nodes affected by this change
(i.e., nodes that changed their role because of the change in the network). Another aspect
one could try to analyze is the number of nodes that are affected by it. Here, limiting
the problem to include only graphs that can be embedded into the Euclidean plane might
be helpful. With this restriction, we showed in [18] (for a predecessor algorithm to the
two algorithms presented in this chapter) that at most O(log2 n) nodes are affected by a
change. Another interesting challenge is to find bounds on the number of role changes
performed as a result of network dynamics.





C H A P T E R 4

The Facility Location Problem in
Distributed Settings

4.1 Introduction

This Chapter, similar to Chapter 3, also considers the Facility Location problem in a
distributed scenario, nevertheless its focus is quite different. Our objective here is to
design an distributed algorithm with an approximation ratio that is as close as possible
to the best achievable ratio. Aspects concerning the applicability in wireless sensor
networks (e.g., dynamics, asynchronous execution, locality) are, contrary to Chapter 3,
no longer of high importance. In order to be able to achieve an approximation factor that
is better than the ones of our algorithms presented in the previous chapter, we allow a
higher running time (but still require that our algorithm terminates in sub-linear number
of rounds).

Later in this chapter it will become apparent that, in order to achieve a high quality
approximation, it is necessary to develop a selection mechanism that allows us to deter-
mine which facilities (from a set of “eligible” facilities) we have to open. Constructing
such a selection mechanism is by itself an interesting problem that can be considered
independently from the Facility Location problem. Thus, a major part of this chapter is
dedicated to the description and analysis of the selection mechanism that we developed.

The remainder of this introductory section will be structured as follows. First, we
define the Facility Location problem that is studied in this chapter (see Subsection 4.1.1).
This definition is slightly different from the one in Chapter 3, as we use a complete
bipartite graph instead of a complete graph. Here, we do not assign the roles of client
or facility to a node, but instead have a fixed set of client and facility nodes; we thus
only have to decide which facility node we want to open (one could say that we asign
the roles open or closed to each facility). We continue the introduction with Subsection

59
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4.1.2 where we present our results. Subsection 4.1.3 states related work that is especially
important for our distributed setting (i.e., work with focus on approximation quality).
Finally, in Subsection 4.1.4 we give an overview about the structure of this entire chapter.

4.1.1 Problem Definition & Notation

We consider the metric uncapacitated Facility Location problem in a distributed setting.
Here, we are given a complete bipartite graph G = F ∪C consisting of a set of facilities
F and a set of clients C. To each facility i ∈ F an opening cost fi ∈ R≥0 is assigned.
Each edge {i, j} in G is weighted with the value ci j ∈ R≥0 that represents the costs of
connecting client j with facility i. The objective is to determine a subset of the facilities
to be opened and connect every client to at least one open facility in such a way that
the sum of the opening costs and connection costs is minimized. The linear program
representation of this Facility Location problem is as follows:

Facility Location IP

minimize ∑
i∈F

fiyi + ∑
i∈F, j∈C

ci jxi j

subject to ∑i∈F xi j ≥ 1 j ∈C (1)
yi− xi j ≥ 0 i ∈ F, j ∈C (2)

xi j ∈ {0,1} i ∈ F, j ∈C
yi ∈ {0,1} i ∈ F

The variable yi indicates whether facility i is open (yi = 1) or closed (yi = 0). The
other indicator variable xi j has the value 1 if the client j is connected to facility i, and
0 otherwise. The constraints (1) guarantee that each client is connected to at least one
facility, while the constraints (2) make sure that a client can only be connected to an
open facility. The problem we consider is metric, since the values ci j are required to
satisfy the triangle inequality (i.e., ∀i, j, i′, j′ : ci j ≤ ci j′+ c j′i′+ ci′ j), and uncapacitated,
since an arbitrary number of clients can be connected to an open facility. Furthermore,
for the sake of presentation we assume all fi,ci j to be normalized such that the smallest
non-zero value is 1.

The dual program of the Facility Location problem will be used in the description of
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our approximation algorithm. It is formulated in the following way:

Dual of the Facility Location LP

maximize ∑
j∈C

α j

subject to α j−βi j ≤ ci j i ∈ F, j ∈C (3)
∑ j∈C βi j ≤ fi i ∈ F (4)

βi j ≥ 0 i ∈ F, j ∈C
αi ≥ 0 j ∈C

Intuitively, a α j variable can be seen as the amount the client j is willing to pay for being
connected to a facility. From the point of view of a facility i, α j is the sum of ci j (the
amount j pays for a connection to i) and βi j (the amount it pays for opening i).

Our algorithm is executed in the CONGEST model (see [57]). A variant of this model
was already described in Section 3.1.2 in the previous chapter. Here, we give a short
reminder of its formulation and point out the difference between the model used here
and the model from the previous Chapter. In the CONGEST model, algorithms are
executed in synchronous send-receive-compute rounds. In a single round, each node
sends a message to each of its neighbors in the graph. Note that the messages sent to
each neighbor by a single node are not required to contain the same information. Once
all nodes have sent their messages, they receive a single message from each of their
neighbors. After all the messages have been received, every node is allowed to spend
an arbitrary amount of time for computation (i.e., computation is for free and we are
only interested in the number of communication rounds). The end of the computation
by all nodes marks the start of a new send-receive-compute round. The message size
in the CONGEST model is bounded. We will limit the size of the messages used in
our algorithm to O(log(n)) bits. The same limitations were also used in [51], [30] and
[54]. This bound is reasonable, because it allows the nodes to send their ID in a single
message. Due to this constraint on message size, we restrict the values fi and ci j in such
a way that it is possible to represent them with O(log(n)) bits (i.e., to be able to send
them in a single message). Now, the difference between the model used here and the one
from Chapter 3 is the lack of asynchronous execution and the use of a bipartite graph.

The fact that the graph our algorithm is executed on is a complete bipartite graph of
clients and facilities, means that within a single round each client can communicate with
all facilities and each facility can communicate with all clients. Since nodes of the same
partition cannot communicate directly with each other, but instead have to use nodes of
the other partition as relays, a node requires Ω(n) rounds in order to gather all informa-
tion about the graph. In order to see this, consider a single client. It knows the opening
cost of all facilities and the distances between them and itself. Each distance/opening
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cost is encoded with Θ(logn) bits. As there can be Θ(n) facilities in the graph and only
a single message of size O(logn) bits can be sent in a single round, sending all the infor-
mation requires Ω(n) rounds. Note that without a limit on the message size our problem
could be trivially solved in four rounds (all information about the graph is gathered at a
single node in two rounds, an optimal solution is computed and distributed in two more
rounds). We want to stress that, although in our algorithm the nodes communicate with
all their neighbors in each round, it is possible to restate the algorithm such that nodes
i and j where ci j is “large” (more than max j∈C(mini∈F(ci j + fi))) never communicate
with each other.

4.1.2 Results

We present a distributed approximation algorithm for the metric uncapacitated facil-
ity location problem. It is based on a greedy algorithm by Jain et al. [35] (from here
on referred to as GreedyFL) and yields a guaranteed (not in expectation) (1.861+ ε)-
approximation in O(n3/4 log2

1+ε(n)) rounds (with high probability) with ε > 0. Our
algorithm is executed in the CONGEST model on a complete bipartite graph. Although
it is strongly related to the GreedyFL algorithm, there are (due to the parallel execution)
new challenges regarding the selection process that occurs when multiple facilities are
eligible for opening. The difficulty is that we require the cost of the solution computed
by our algorithm to be always at most (1.861+ ε) times worse than an optimal solution
(in contrast to similar work by Blelloch et al. [10], where the approximation factor is
increased by factor 2). Moreover, unlike other work (e.g., [56], where the approximation
factor is given “in expectation”), our algorithm provides a worst-case guarantee on the
approximation factor.

4.1.3 Related Work

The following results concerning the Facility Location problem can be found in the dis-
tributed scenario: In [54] Pandit et al. present an algorithm yielding a 7-approximation
and a running time of O(log(n)). Their algorithm is a parallel version of the primal-dual
algorithm by Jain et al. [34] and is – like our algorithm – executed in the CONGEST
model on a complete bipartite graph with message size limited to O(log(n)) bits. Pandit
et al. assume that the difference between the opening costs of the cheapest and the most
expensive facility can be arbitrary large. It is reasonable to drop this assumption, since
they (as well as we) require that the facility opening costs and distances between clients
and facilities are encoded with O(log(n)) bits. By dropping this assumption and modi-
fying the algorithm and analysis by Pandit et al. in a small way (changing a factor from
2 to (1+ ε)), it is possible to achieve a (3+ ε) approximation factor in O(log1+ε(n))
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rounds. Further improvement of the factor with this approach is not possible, since the
approximation factor of [34], which Pandit et al. parallelized, is 3. This means that their
algorithm, while faster than ours, has a worse approximation factor.

In [56] Pandit et al. all presented a technique that can be used to execute greedy Facil-
ity Location algorithms (like GreedyFL) in parallel in polylogarithmic time. Although
they consider a similar problem as we do, their results are quite different from ours:
Their approximation factor is O(1) in expectation (their algorithm can produce an ar-
bitrary bad solution, even though this is very unlikely), while we can guarantee an ap-
proximation factor of (1.861+ ε) in the worst case. Also, although they do not state
their exact approximation factor, the expected approximation factor achieved with their
technique cannot, to the best of our knowledge, be decreased below 4c, where c is the
approximation factor of the sequential algorithm (i.e., ≈ 7.444 if used with GreedyFL).

A similar result to [56] was presented by Blelloch et al. in [10]. Instead of the
CONGEST they use a PRAM model and achieve a (3.722 + ε) approximation with
running time O(log2

1+ε(n)) by parallelizing the GreedyFL algorithm. In order to choose
which facilities to open, they use a technique introduced by Rajagopalan and Vazirani
[58]. This technique can also be used to execute greedy facility location algorithms (in
a distributed manner and polylogarithmic time) and yields a guaranteed approximation
factor of 2c, where c is again the approximation factor of the corresponding sequential
algorithm (i.e.≈ 3.722 if used with GreedyFL). Later, they develop a technique for com-
puting fast “nearly” maximal independent sets in [11]. This technique can be used to
execute the greedy algorithm by Jain et al. [35] that yields approximation factor of 1.861
(which matches the approximation guarantee of the original sequential algorithm by Jain
et al.). Although the algorithm based on [11] guarantees a very good approximation,
its running time of O(log4(n)) is slightly higher than the running time of the algorithms
listed above.

Recently, in [9], Berns et al. presented a distributed algorithm for metric Facility Lo-
cation that runs on a complete graph in the CONGEST model. Its running time is ex-
ceptionally fast, as it subpolylogarithmic (O(log logn ∗ log∗ n)). For its approximation
factor the authors show an upper bound of O(1) (the actual approximation factor is, to
the best of our knowledge higher than the factors of the algorithms discusses above).

Other results that also use the bound of O(log(n)) on the message complexity are
[51] and [30]. In [51] Moscibroda et al. show that in O(k2) communication rounds a
O(k(nFρ)1/k log(nF + nC)) approximation in O(k2) communication rounds (nF and nC

are the number of facilities, respectably clients, and ρ a coefficient dependent on instance
parameters) can be achieved in the more general non-metric Facility Location problem.
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4.1.4 Structure of the Chapter

In Section 4.2, we give a detailed description of our approximation algorithm (see Sub-
section 4.2.1) and prove its approximation factor by generalizing the techniques and
results of [35] by Jain et al. (see Subsection 4.2.2). Our main contribution is Section
4.3. Here, we deal with the problem of selecting facilities to be opened that arises due to
the parallel execution of the GreedyFL algorithm. We present a selection mechanism in
Subsection 4.3.1 and show that it terminates in sublinear time in Subsection 4.3.2.

4.2 The Distributed Approximation Algorithm

Our parallel algorithm is based on the GreedyFL algorithm by Jain et al. [35]. As stated
above, it is executed in the CONGEST model on a complete bipartite graph. We will first
describe the algorithm and then give an analysis of its approximation factor and running
time.

4.2.1 Algorithm Description

Due to the completeness of the bipartite graph, in a single synchronous round each client
can send to and receive a message from all facilities. The same applies analogously to
each of the facilities. During the algorithm’s execution, clients and facilities can be in
various states: clients can be not connected or connected, while facilities can be closed,
currently-paid, or open. Intuitively, currently-paid facilities compete with each other for
the permission to change their state to open. All clients start in the not connected state
and all facilities in the closed state. When a client j changes its state to connected, it
is assigned to an open facility i (ϕ( j) := i) and never changes its state again. A closed
facility can only change its state to currently-paid, while a currently-paid facility can
either become closed or open. Once a facility is open, it never changes its state. The
algorithm terminates, once all clients are connected. The solution returned by our al-
gorithm is the set of all open facilities and the assignment ϕ . Each facility knows now
whether it is open or not and each client knows the facility it is assigned to.

Algorithm 4 EXECUTED BY CLIENT j
1: ∀i ∈ F : SEND[α j,status( j)]
2: Execute Algorithm 7 until there are no currently-paid facilities left
3: if status( j) = not connected then
4: Compute α j := (1+ ε)α j
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The algorithm is executed in a loop and each passing of the loop is referred to as a
phase. The behavior of a client during a phase is described in Algorithm 4, while the
behavior of a facility is described in Algorithm 5. Facilities and clients interact with each
other by transmitting messages; to each SEND operation there exists a corresponding
RECEIVE operation.

The idea of the algorithm is to assign to each client j a variable α j initialized with 1.
This variable represents the amount a client is willing to pay for being connected to
a facility and for opening this facility in the current phase (i.e., the α j variable of the
dual program). Each not connected client j increases this variable in every phase by
multiplying it with (1+ ε) where ε is an arbitrary small constant greater than 0 (fixed at
the start of our algorithm). After α j is increased, all clients send their current α j to all
facilities.

Algorithm 5 EXECUTED BY FACILITY i
∀ j ∈C : RECEIVE[α j,status( j)]

2: if (status(i) = closed) then
U := { j| j ∈C∧ status( j) = not connected}

4: Compute coveredCost := ∑ j∈U max(0,α j− ci j)

if ( fi ≤ coveredCost) then
6: status(i) := currently-paid

Execute Algorithm 6 until there are no currently-paid facilities left

Let U be the set of all not connected clients and βi j := max(α j− ci j,0). We say that
client j contributes to facility i, if βi j > 0 (the client pays ci j for being connected to and
βi j for the opening of facility i). Upon receiving the α j variables, every closed facility
i computes ∑ j∈U βi j, which represents the amount not connected clients are willing to
contribute to the payment of opening facility i. If the contribution to the opening of
facility i (i.e. ∑ j∈U βi j) reaches a point such that fi ≤ ∑ j∈U βi j, it changes its status to
currently-paid.

Opening all the currently-paid facilities could result in a very bad approximation,
since it is possible that a single not connected client j is contributing to an arbitrary
number of currently-paid facilities (i.e., βi, j,βi′, j > 0, i 6= i′) and opening just one of
these facilities would be sufficient. Thus, a selection procedure is needed to determine
which currently-paid facilities are going to be permanently opened (change their status
to open) and which of them will remain closed in this phase (changing their status from
currently-paid to closed). Furthermore, it is required to determine which client is con-
nected to which facility. All of this is achieved by the interaction of Algorithm 6 (from
the point of view of facility i) and Algorithm 7 (from the point of view of client j). In
each iteration of Algorithm 6 and 7, a subset of currently-paid facilities is chosen to be
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Algorithm 6 EXECUTED BY FACILITY i
Ri := uniformly distributed random number in [0,1]

2: ∀ j ∈C : SEND[Ri,status(i)]
∀ j ∈C : RECEIVE[S j,status( j)]

4: Define Ti := maxI(S j) where I := { j| j ∈C,status( j) = not connected,α j ≥ ci j}
thisRoundOpenedi := f alse

6: if (Ti = Ri∧ status(i) = currently-paid) then
status(i) := open

8: thisRoundOpenedi := true
∀ j ∈C : SEND[status(i), thisRoundOpenedi]

10: ∀ j ∈C : RECEIVE[status( j)]
I′ := { j| j ∈C,status( j) = not connected,α j ≥ ci j}

12: if (status(i) = currently-paid∧∑ j∈I′max(0,α j− ci j)< fi) then
status(i) = closed

opened. The development and analysis of these two algorithms is the main contribution
of this chapter, as they are responsible for selecting the facilities (which are going to
be opened) in a fast and efficient way. The algorithms operate by generating a random
number at each facility and then opening a facility, if its number is the highest one in its
neighborhood (the neighborhood of a facility i consists of all facilities i′, such that there
is at least one client that contributes to i and i′). Only O(log(n)) bits are used to represent
the generated random number, which is sufficient to guarantee that, with high probabil-
ity, no two facilities generate the same number. The main objective of Algorithm 6 and
7 is to establish the following fact:

Fact 4.1. In every phase, after the iterative execution of Algorithm 6 and 7 terminates,
the following is true for all facilities:

(i) No facility is currently-paid.

(ii) If facility i is open, then ∑ j∈U ′ βi j ≥ fi, where U ′ = { j|ϕ( j) = i}.

(iii) If facility i is closed, then ∑ j∈U βi j < fi, where U = { j|state( j) = not connected}.
Intuitively, (ii) means that a facility is only opened, if all clients connected to it can

(together) pay for its opening, and (iii) means that, after a phase ended, there is no closed
facility to which clients contribute enough to pay for its opening. The fact that a closed
facility with ∑ j∈U βi j ≥ fi cannot enter the next phase, as implied by (iii), is curcial for
(the later introduced) Lemma 4.3.

Note that after the algorithm’s termination the cost of the solution computed by our
algorithm lies in the interval [∑ j∈C α j/(1+ ε),∑ j∈C α j]. This is due to the following
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Algorithm 7 EXECUTED BY CLIENT j
1: ∀i ∈ F : RECEIVE[Ri,status(i)]
2: Define S j := maxJ(Ri) where J := {i|i ∈ F,status(i) = currently-paid,α j ≥ ci j}
3: ∀i ∈ F : SEND[S j,status( j)]
4: ∀i ∈ F : RECEIVE[status(i), thisRoundOpenedi]

5: J′ := {i|i ∈ F,status(i) = open,α j ≥ ci j, thisRoundOpenedi = true}
6: if (status( j) = not connected∧ J′ 6= /0) then
7: status( j) = connected{There is exactly 1 element in J′}
8: ϕ( j) = i (i ∈ J′)
9: ∀i ∈ F : SEND[status( j)]

facts: Each client is connected to exactly one facility and this facility is open. Since
βi j = max(α j− ci j,0) a client j contributes to the opening of a facility i only after α j

covered the costs ci j of connecting i to j. Also, since we require that only after fi ≤
∑ j∈U βi j facility i changes its state to open, the opening of i is completely paid for and
since U is the set of all not connected clients, it is made sure that a client contributes to
the opening of at most one facility.

The running time of the entire algorithm is bounded by O(n3/4 log2
1+ε(n)) rounds:

The number of phases is O(log1+ε(n)), since in the worst case a client has distance
O(poly(n)) to its nearest facility and this facility has opening costs of O(poly(n)) (the
representation of ci j and fi is limited by O(log(n)) bits). Thus, increasing the α j ≥ 1
value iteratively by multiplying it with (1+ ε), where ε > 0, results in O(log1+ε(n))
rounds. Later, we will show that with high probability Algorithm 6 and 7 terminate after
O(n3/4 log(n)) rounds. The value chosen for ε not only determines the runtime, but also
the approximation factor, which is 1.861(1+ ε)2.

4.2.2 Analysis of the Approximation Factor

Intuitively, the GreedyFL algorithm can be seen as continuously and simultaneously
increasing the α j values. This allows GreedyFL to open a facility i in the exact moment
it is paid for (i.e., when ∑ j∈U βi j = fi); a property which is essential for proving its
approximation factor. In contrast, our algorithm increases the α j values in discrete steps
and thus, in general, it may occur that ∑ j∈U βi j ≥ fi. The goal of this section is to
show that – even though our algorithm may yield a very different solution from the
sequential algorithm – the costs of the optimal and our solution do not differ too much.
Namely, we show that our approximation factor is at most (1+ε)2 times greater than the
approximation factor of GreedyFL. Our proof uses similar arguments as, and is based
on, the technique by Jain et al. ([35]). Still, it turns out that in order to apply the results
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of Jain et al., we need to get a deeper insight into the structural properties of the linear
programs involved.

The α j and βi j values computed by our algorithm can be interpreted as a solution to
the dual program of the Facility Location program presented in Subsection 4.1.1. These
values have two properties that are of importance to us. First, they do not necessarily
represent a feasible dual solution: our algorithm opens a facility when ∑ j∈U βi j ≥ fi

(summing over all not connected clients) and not, as required by constraint (4), over
all the clients. Second, the cost of this (most probably infeasible) dual solution (i.e.,
∑ j∈C α j) is exactly equal to the cost of the primal solution computed by our algorithm.
In order to see this, consider a facility i and the set Ci of all clients that are connected
to i in our primal solution. We can use the α j values of the clients in Ci to pay for
their connection costs, and additionally for opening facility i (i.e., show that ∑ j∈Ci α j =

fi+∑ j∈Ci ci j). Since we have α j = βi j+ci j for j ∈Ci, the connection costs of the clients
are paid for and we can use the remainder (i.e., the βi j values) to pay i’s opening costs,
as our algorithm made sure that fi = ∑ j∈Ci βi j. It is save to consider each facility, and
the clients that are connected to it, in a separate way (since a client withdraws all its
contribution to other facilities once it is assigned to one).

Now, if we choose γ such that α∗j := α j
γ

and β ∗i j := α∗j − ci j constitute a feasible dual
solution, the Duality Theorem yields that our solution is by a factor of at most γ more
expensive than an optimal solution. For their original, sequential algorithm Jain et al.
show that, as long as you choose a value greater than 1.861 for γ , the α∗j and β ∗i j values
are a feasible solution (see [35]). They denoted the used technique as dual fitting with a
factor-revealing LP. We will construct such a factor revealing program (see FacRev-Dist)
for our algorithm and establish a structural connection between it and the LP by Jain et
al. (see FacRev-Jain) for their sequential algorithm (GreedyFL).

Next, we want to explain how to find an appropriate γ with the help of the factor-
revealing LP. Consider a single facility i and assume, that w.l.o.g. α j ≥ γci j holds only
for the first k clients and that α1 ≤ α2 ≤ . . . ≤ αk. Our objective now is to find the
minimum value for γ such that ∑

k
j=1 max(α j

γ
− ci j,0) ≤ fi holds for all possible prob-

lem instances (i.e., all possible ci j and fi values). This is in fact a minimization linear
program with a single constraint and variables fi, α j’s and ci j’s. Note that, since we
want γ to be applicable to all possible instances, fi and ci j’s are not fixed values any
more. Starting with this program, we will construct our factor-revealing LP by adding
additional constraints to it. As it is now, our linear program is unbounded. But, since
there are dependencies between the α j variables and the fi and ci j variables (since α j’s
are computed by the algorithm base on the input), we can add constraints to the program
which represent those dependencies. These additional constraints are chosen is such a
way that our algorithm guarantees that they are always satisfied. If we choose them
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wisely, our linear program becomes bounded and we can find a non-trivial value for γ .
The two constraint types we add are listed in Lemma 4.2 and 4.3. We also change our
program into a maximization program (without changing the cost of its optimal solution)
by replacing the current cost function (minimize γ) and the ∑

k
j=1 max(α j

γ
− ci j,0) ≤ fi

constraint with the cost function (maximize (∑k
j=1 α j)/( fi+∑

k
j=1 ci j)). This formulation

yields the following family (since we have to bound γ for each possible integer value of
k) of linear1 programs, referred to as the factor-revealing LP.

FacRev-Dist

maximize zk =
∑

k
j=1 α j

fi+∑
k
j=1 ci j

subject to α j ≤ α j+1 ∀ j ∈ {1, . . . ,k−1} (1∗∗)
α j ≤ (1+ ε)(αl + ci j + cil) ∀ j, l ∈ {1, . . . ,k} (2∗∗)

∑
k
l= j max(α j− (1+ ε)cil,0) ≤ (1+ ε) fi ∀ j ∈ {1, . . . ,k} (3∗∗)

α j,ci j, fi ≥ 0 ∀ j ∈ {1, . . . ,k} (4∗∗)

The original factor-revealing LP for the sequential stetting looks as follows:

FacRev-Jain

maximize zk =
∑

k
j=1 α j

fi+∑
k
j=1 ci j

subject to α j ≤ α j+1 ∀ j ∈ {1, . . . ,k−1} (1∗)
α j ≤ αl + ci j + cil ∀ j, l ∈ {1, . . . ,k} (2∗)

∑
k
l= j max(α j− cil,0) ≤ fi ∀ j ∈ {1, . . . ,k} (3∗)

α j,ci j, fi ≥ 0 ∀ j ∈ {1, . . . ,k} (4∗)

Note that constraints (1∗) resp. (1∗∗) are only used to sort the α j values in order to ease
the formulation of constraints (3∗) resp. (3∗∗).

The following two Lemmas show that the constraints added to the factor-revealing LP
are always satisfied during our algorithm’s execution. They resemble similar lemmas to
those used in the proof for the sequential algorithm (cf. [35]).

Lemma 4.2. For any two clients j, j′ and a facility i, we have α j
(1+ε) ≤ α j′+ ci j′+ ci j.

Proof. If α j/(1+ε)≤α j′ the lemma obviously holds. Thus, let us assume the opposite.
Let t be the phase when our algorithm connects client j′ to some facility i′ and s the
phase i′ was opened. Facility i′ was either opened before j′ was connected to it (s < t)
or opened exactly in the same phase client j′ was connected to it (s = t). Since α j > α j′ ,

1 Note that this formulation is not a linear program, but can be transformed easily into one.
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we know that client j was connected in phase u≥ t +1. At time s≤ t the contribution of
client j was not enough to cover the distance between j and i′, since otherwise j would be
connected in phase s with i′. This means that once the contribution of j reaches ci′ j, client
j will be connected to i′. Since the contribution is increased by multiplying the current
α value with (1+ ε), it cannot become greater than (1+ ε)ci′ j, hence α j ≤ (1+ ε)ci′ j.
Thanks to the triangle inequality we have α j/(1+ ε) ≤ ci′ j ≤ ci′ j′ + ci j′ + ci j ≤ α j′ +

ci j′+ ci j.

Lemma 4.3. For every client j and facility i, the execution of the algorithm guarantees
that ∑

k
l= j max(α j− (1+ ε)cil,0)≤ (1+ ε) fi.

Proof. To prove by contradiction, we assume that the inequality does not hold. Thus,
we have ∑

k
l= j max(α j−(1+ε)cil,0)> (1+ε) fi. Since we ordered the clients according

to their α value, we know that for l ≥ j we have αl ≥ α j. Let t be the phase client j
was connected to a facility. By the assumption facility i is fully paid for (i.e. i’s current
payment is ≥ fi) in phase s < t. There must be at least one client l, with j ≤ l ≤ k and
α j− (1+ ε)cil > 0 which was connected to i in a phase q < t. For this client l, we have
αl < α j, since the algorithm will stop increasing αl when l is connected to a fully paid
facility (see Fact 4.1).

The following theorem quantifies the correlation between our (FacRev-Dist) and the
original factor-revealing LPs (FacRev-Jain).

Theorem 4.4. For any k ∈ N, the optimal solution to FacRev-Dist is bounded by (1+
ε)21.861, and thus the approximation factor of our algorithm is also (1+ ε)21.861.

Proof. Jain et al. showed that zk can be at most 1.861 in FacRev-Jain. In our mod-
ified version zk can be at most (1+ ε)21.861: Fix a problem instance by setting the
ci j variables and the fi variable to arbitrary values ≥ 0 and consider the following two
propositions.

Proposition 4.5. In an optimal solution α := (α1,α2, . . . ,αk) to FacRev-Jain, ∀ j ∈C at
least one of the two properties is true:

(i) α j = ( fi +∑q∈Q j ciq)/|Q j|, where Q j := {q|q ∈C∧α j− ciq ≥ 0∧α j ≤ αq}

(ii) ∃l ∈C : αl = ( fi +∑q∈Ql
ciq)/|Ql| and α j = αl + c ji + cil

Proof. Note that the term ( fi +∑q∈Q j ciq)/|Q j| is fixed. Since we deal with a maxi-
mization problem, which is bounded (see constraint (3∗) of FacRev-Jain), each α j is
bounded. Since α represents an optimal solution, for each α j there must be at least
one constraint that bounds α j and is also tight. If this tight constraint is of the form
∑

k
l= j max(α j− cil,0)≤ fi, (i) holds.
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Otherwise, there must be at least one tight constraint of the form α j ≤ αk1 +ci j +cik1 ,
i.e., ∃k1 ∈ C : α j = αk1 + ci j + cik1 . This argument can be analogously applied to k1:
either αk1 = ( fi +∑q∈Qk1

ciq)/|Qk1|, or there exists a k2 such that αk1 = αk2 + cik1 + cik2 .
Like this, we can build a recursion for α j = αk1 + ci j + cik1 , which terminates as soon as
we reach a variable αkt with αkt = ( fi +∑q∈Qkt

ciq)/|Qkt | and thus (i) holds for kt .
Note that for every α j there must be such a terminating sequence, since constraint (3∗)

is the only constraint which gives an absolute upper bound on the variables. Otherwise,
the α j would be unbounded. The recursion yields α j = αkt + cik1 + cik1 + cik2 + cik2 +

. . .+cikt−1 +cikt , implying α j ≥αkt +ci j+cikt . Since also α j ≤αkt +ci j+cikt (constraint
(2∗)), we have α j = αkt + ci j + cikt , proving (ii).

Proposition 4.6. Given an optimal solution α := (α1,α2, . . . ,αk) to FacRev-Jain and an
optimal solution α ′ :=(α ′1,α

′
2, . . . ,α

′
k) to FacRev-Dist, we have ∀ j∈C : α ′j≤ (1+ε)2α j.

Proof. Since the constraints in the linear program FacRev-Dist are a relaxation of the
constraints of FacRev-Jain, the solution α is also a feasible solution of FacRev-Dist.
Based on Proposition 4.5, we know that to any α j at least one of the following cases
applies:

(i) α j = ( fi +∑q∈Q j ciq)/|Q j|, i.e., the constraint ∑
k
l= j max(α j− cil,0) ≤ fi is tight.

Notice that for α ′j satisfying the constraint ∑
k
l= j max(α j−(1+ε)cil,0)≤ (1+ε) fi

we have, due to the set {cil|α j > cil} containing the set {cil|α ′j > (1 + ε)cil},
α ′j ≤ (1+ ε)α j.

(ii) According to Proposition 4.5 we know that ∃l ∈C : αl = ( fi +∑q∈Ql
ciq/|Ql| and

α j = αl + c ji + cil . Constraint (2) of FR-Dist guarantees that α ′j ≤ (1+ ε)(α ′l +
c ji + cil). Since we can apply case (i) for l, we have α ′l ≤ (1+ ε)αl , which yields
α ′j ≤ (1+ ε)((1+ ε)αl + c ji + cil)≤ (1+ ε)2(αl + c ji + cil).

Given any instance of the facility location problem, we know that the optimal solution
to the FacRev-Jain LP is bounded by 1.861 and that, by Proposition 4.6, the solution to
FacRev-Dist for the same instance is at most by a factor of (1+ ε)2 larger. Since the
problem instance was chosen arbitrarily, the theorem’s statement follows.

4.3 Facility Selection Mechanism

In this section we are only concerned with a single phase of our algorithm (i.e., the loop
in which Algorithm 6 and 7 are invoked and which establishes Fact 4.1). We show that
it terminates after O(n3/4 log(n)) rounds with high probability.
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To simplify notation, F and C do not refer to all facilities respectively all clients (as
was the case before). Instead, let F represent the set of all facilities that are in the
currently-paid state and C denote the set of all not connected clients contributing to a
currently-paid facility. All the other clients and facilities effectively do not take part in
the execution of Algorithm 6 and 7 in the considered phase and thus can be ignored. We
consider the bipartite Graph G = (F ∪C,E). There is an edge in E between i ∈ F and
j ∈C if and only if client j contributes to i (i.e., α j− ci j > 0). Furthermore, we assume
that there are no isolated nodes (i.e., deg(v)≥ 1 for all v ∈ F ∪C). Let n = |F |+ |C|. By
GF := (F,EF) we denote the Facility Graph, where there is an edge {i, i′} between two
facilities i, i′ ∈ F if and only if they share a common client in G. We use deg(·) and N(·)
to denote the degree and neighborhood of a node in G respectively. If the neighborhood
includes the node itself, we write N+(·). Similarly, we use degF(·), NF(·), and N+

F (·) to
denote the corresponding properties in GF .

In each execution of Algorithm 6 and 7 the set F of currently-paid facilities shrinks
(they change their status to closed or open). Also, with every facility changing its state
from currently-paid to open, clients that are connected to those newly opened facilities
are removed from C. Removing these clients form C can potentially cause currently-
paid facilities to change their state to closed (they lose contributing clients and their
opening costs are not paid for anymore). Since it cannot be guaranteed that a currently-
paid facility which loses a contributing client is no longer fully paid for, applying a
distributed MIS (maximal independent set) algorithm (e.g., Luby’s MIS algorithm [44])
on GF does not help to solve our problem: a facility that loses a contributing client (i.e.,
a facility that is not part of the MIS) might still be fully paid for. If such a facility is not
opened in the current phase (i.e., (iii) of Fact 4.1 does not hold), clients contributing to it
will raise their α j values in the next phase, which in turn could violate the constraints of
the FacRev-Dist LP. Since shrinking F by removing currently-paid facilities that are not
paid for only decreases the runtime of Algorithm 6 and 7, we will assume (in order to
consider the worst case) that facilities never change their status from currently-paid to
closed as the result of clients changing their state to connected (i.e., losing contributing
clients).

4.3.1 Simplified Problem Description

In order to alleviate describing the shrinking process of the set of currently-paid facil-
ities, we simplify the analysis of Algorithm 6 and 7 by omitting the information about
the values of ci j and fi and simulating the distributed execution of the algorithms by
the algorithm FacilitySELECT . Its input is the bipartite graph G and it possesses global
knowledge.
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Algorithm 8 FacilitySELECT
1: while (F 6= /0) do
2: I := /0 (Subsequently, determine I ⊆ F such that {i, i′} /∈ EF for all i, i′ ∈ I))
3: for all i ∈ F : do
4: Generate a uniformly distributed random value ri ∈ [0,1]
5: if (ri > maxi′∈NF (i) ri′) then
6: Add i to I
7: Eliminate N+(I) from G

As the execution of FacilitySELECT progresses, F , C, E, and n change. We denote
these sets and n in round t as Ft , Ct , Et and nt . However, most of the time we consider
only the effect of a single iteration of the while loop on the graph. In these cases, we
omit the time parameter and simply use F , C, E, and n to refer to the corresponding
values in the considered iteration.

4.3.2 Time Required to Shrink the Bipartite Graph

This paragraph analyzes the time required to remove all nodes from G. It is easy to see
that a fixed facility i ∈ F is selected with probability 1/(degF(i)+ 1) by this strategy.
First, we show that, in expectation, FacilitySELECT removes at least |E|/ |F | clients
and at least max{|F | , |E|/ |F |} edges in a single iteration of the while loop.

Lemma 4.7. The expected number of clients removed by FacilitySELECT in a single
iteration of the while loop is at least |E|/ |F |.

Proof. For a facility i ∈ F , let Xi denote a random variable counting the number of
clients j ∈C removed because of i being added to I or not. That is,

Xi =

{
deg(i) if i ∈ I

0 otherwise .

Since I is an independent set in GF , the total number of clients removed in one iteration
can be described by the random variable X :=∑i∈F Xi. Using the inequality degF(i)+1≤
|F |, we compute:

E(X) = ∑
i∈F

E(Xi) = ∑
i∈F

deg(i)
degF(i)+1

≥ ∑
i∈F

deg(i)
|F | =

|E|
|F | .

Lemma 4.8. The expected number of edges removed by FacilitySELECT in a single
iteration of the while loop is at least max{|F | , |E|/ |F |}.
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Proof. First note that, since by Lemma 4.7 the expected number of clients eliminated is
at least |E|/ |F | and there are no isolated clients, the expected number of edges removed
is at least |E|/ |F |. It remains to show that the expected number of edges removed is at
least |F |. For a facility i ∈ F , let us define random variables Zi counting the number of
edges removed because of i being added to I or not. That is,

Zi =

{
∑ j∈N(i) deg( j) if i ∈ I

0 otherwise .

Since I is an independent set in GF , the total number of edges removed by strategy
FacilitySELECT can be described by the random variable Z defined as Z := ∑i∈F Zi.
Using the inequality degF(i)+1≤ ∑ j∈N(i) deg( j), we compute:

E(Z) = ∑
i∈F

E(Zi) = ∑
i∈F

∑ j∈N(i) deg( j)
degF(i)+1

≥ ∑
i∈F

∑ j∈N(i) deg( j)

∑ j∈N(i) deg( j)
= |F | .

As an corollary, we get that, in expectation, the number of edges is reduced by at least
its square root:

Corollary 4.9. The expected number of edges removed by FacilitySELECT in a single
iteration of the while loop is at least

√
|E|.

Proof. Lemma 4.8 and the equality |E|= |F | · |E||F | imply max{|F | , |E||F |} ≥
√
|E|.

Lemma 4.10. If the number of edges is greater or equal n
√

n, the expected number of
clients removed by FacilitySELECT in one iteration of the while loop is at least

√
|C|.

If it is smaller or equal n
√

n, the expected number of removed edges is at least
√

n
√

n.

Proof. For the first statement, we can bound the expected number of removed clients
with the help of Lemma 4.7 as follows:

|E|
|F | ≥

n
√

n
|F | ≥

n
√

n
n

=
√

n≥
√
|C|

The second statement follows immediately from Corollary 4.9.

We call a round t edge-heavy, if in this round the number of edges is at least nt
√

n.
Otherwise, we refer to it as edge-light.

Lemma 4.11. Consider the effect of several iterations of FacilitySELECT’s while loop
starting at round t (for an arbitrary round t).
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(a) After 1
2
√

nt (not necessarily consecutive) edge-heavy rounds, at least 1
2
√

2
|Ct | clients

are removed in expectation.

(b) After 1
2

√
nt
√

nt (not necessarily consecutive) edge-light rounds, at least 1
2
√

2
|Et |

edges are removed in expectation.

Proof. We prove only the first statement, since the second can be proven analogously.
Let Y denote a random variable counting the number of clients removed during 1

2
√

nt

edge-heavy rounds. If Y < |Ct |/2, the number of clients in each of the considered rounds
was at least |Ct |/2. Thus, by Lemma 4.7, in each of these 1

2
√

nt rounds at least
√
|Ct |/2

clients were removed in expectation. If Y ≥ |Ct |/2, the number of removed clients is
trivially lower bounded by |Ct |/2. We get:

E[Y ]≥ |Ct |
2
·Pr
(

Y ≥ |Ct |
2

)
+

1
2
√

nt ·
√
|Ct |
2
·Pr
(

Y <
|Ct |
2

)

≥ |Ct |
2
√

2
·Pr
(

Y ≥ |Ct |
2

)
+
|Ct |
2
√

2
·Pr
(

Y <
|Ct |
2

)
=
|Ct |
2
√

2
.

Lemma 4.12. Consider the effect of several iterations of FacilitySELECT’s while loop
starting at round t (for an arbitrary round t).

(a) The probability of removing at least 1
4
√

2
|Ct | clients after 1

2
√

nt edge-heavy rounds
is at least a constant > 0.

(b) The probability of removing at least 1
4
√

2
|Et | edges after 1

2

√
nt
√

nt edge-light rounds
is at least a constant > 0.

Proof. We prove only the first statement. The second can be proven analogously.
By Lemma 4.11 1

2
√

2
|Ct | clients are removed after 1

2
√

nt edge-heavy rounds in expec-
tation. Let X define a random variable counting the number of clients removed after
1
2
√

nt edge-heavy rounds. Now define µ to be the probability that more than 1
4
√

2
|Ct |

clients are removed. We can bound E[X ] in the following way:

1
2
√

2
|Ct | ≤ E[X ]≤ µn+(1−µ)

1
4
√

2
|Ct |

Solving this inequality for µ yields µ ≥ c, where c is a positive constant.

We are now ready to prove our main theorem.

Theorem 4.13. The algorithm FacilitySELECT terminates with high probability after
O(n

3
4 log(n)) iterations of the while loop.
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Proof. By Lemma 4.12, starting at iteration t we lose at least a constant fraction of
either the clients or the edges with a non-zero, constant probability after at most 1

2
√

nt +
1
2

√
nt
√

nt ≤ n3/4
t rounds. Partition the number of iterations done by FacilitySELECT

into phases of n3/4 rounds. Let Xi denote a binary random variable indicating whether
the i-th phase was good (we lost at least the above mentioned constant fraction of either
clients or edges). We need about 2 logn good rounds to ensure that the problem size has
become O(1). Since we have Pr(Xi = 1) ≥ c for some positive constant c, we get for

X := ∑

1
c 2logn
i=1 Xi:

E[X ]≥ 2log(n) .

That is, in expectation it takes about 1
c ·2log(n) phases until FacilitySELECT terminates.

Applying a standard Chernoff bound yields:

Pr
(
|X−E[X ]|> E[X ]

2

)
< 2−4E[X ]/3 .

In other words, FacilitySELECT terminates with high probability after at most 1
c 2log(n)

steps.

4.4 Conclusion & Future Work

We presented a parallel execution of a greedy sequential algorithm for the Facility Lo-
cation problem and showed that we can preserve its approximation factor. However,
there are other sequential Facility Location algorithms based on the greedy approach
introduced by Jain et al. that yield (better) approximation factors of 1.61 [35] and 1.52
[45]. It might be also possible to execute them in the CONGEST model with a sublinear
running time using the facility selection mechanism we introduced in this chapter.

Improving the runtime. A natural question that immediately arises is, whether it is
possible to devise a faster mechanism than the one presented here. To answer this, one
has to note that our algorithm chooses which facilities should be opened based solely
on the information provided by the bipartite graph G described in Subsection 4.3.1. All
other information (client contributions, distances, facility opening costs etc.) is discarded
(see Section 4.3).

At this level of abstraction the lower bound for the runtime required to solve the prob-
lem of choosing facilities that are independent of each other is

√
n. To see this, consider

a bipartite graph G∗ with
√

n facilities with degree of
√

n−1, and
(√n

2

)
clients with de-

gree 2. Edges in G∗ are chosen in such a way that any two facilities are in hop distance
of 2 of each other (i.e., they are competing with each other to be opened in the current
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round). Now, consider any algorithm that runs on G∗ and solves our problem. During
its first step it can choose only a single facility, since each facility is in conflict with all
other facilities. This action will remove the chosen facility and

√
n−1 clients that were

connected to it. The resulting graph will have a similar structure to G∗. Thus, in the
second step, again only a single facility can be removed. As one can see, this process
will repeat itself over and over for

√
n time steps, since only one facility can be removed

in a single step.
It is not clear to us whether a graph such as G∗ can actually occur during the execution

of our algorithm; the connection costs have to satisfy the triangle inequality which might
prove to be a hindrance in the construction of a graph that exhibits the same behavior
as G∗ (i.e., only one facility can be removed each turn, as the other facilities have still
enough contribution to be opened).

A very nice approach to improve the runtime was introduced by Blelloch et al. in [11].
They do not solve the exact problem we introduced in Section 4.3.1, but a relaxation
thereof. In their problem formulation, a facility can be opened even if not all but a
constant fraction of clients (that are necessary to pay the facility’s opening costs) are
assigned to it. Lets assume this fraction is (1−ε ′), with ε ′ > 0. Opening not completely
paid facilities will result in an increase of the approximation guarantee by the factor
of 1

(1−ε ′) . Blelloch et al. show that they can solve this kind of selection problem in a
polylogarithmic number of steps (where the basis of the logarithm converges to 1 with a
decreasing ε).





C H A P T E R 5

Conclusion and Future Work

We considered the Facility Location problem from quite different points of view. It
was studied as an online problem with the help of competitive analysis in Chapter 2.
Chapter 3 and 4 deal, for the most part, with a static scenario. There, we presented dis-
tributed approximation algorithms with different properties. The algorithms presented in
Chapter 3 were especially designed to be applicable in wireless sensor networks, where
locality plays a major role. Our goal in Chapter 4 was to design a distributed algorithm
with an approximation factor that is as close as possible to the best possible approxima-
tion factor achieveable by sequential algorithms. The next three sections list possible
directions for future work.

Extending Our Results. A general idea for future work is to apply our techniques
to different variants of the Facility Location problem (see Section 1.5 for an overview
of such variants). As a first step, changing the objective function and the constraints
(see Subsection 1.5.1), while retaining the respective model of computation, appears to
be a reasonable approach. Consider, as an example, the Facility Leasing problem from
Chapter 2. One can easily generalize the problem by adding the aspect of fault tolerance
(requiring that each client is connected to a specific number of distinct open facilities,
and not just a single one).

Something that appears to be very challenging is the addition of capacities (e.g., each
facility can serve only a limited number of clients) to any of the problems we considered.
Adding capacities changes the problem significantly. To the best of our knowledge, there
are no distributed algorithm for this setting yet.

Combining Our Results. Another direction is to try to combine our results from
Chapter 2 with the results from either Chapter 3 or Chapter 4. The idea here is to ex-
ecute the online algorithm from Chapter 2 in a distributed manner. This seems to be

79
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very promising, as the primal-dual approach used by our online algorithm (each client
individually increases its α value, which is used to finance near facilities) is very similar
to the approach used in Chapter 4.

Restricting the communication infrastructure. Yet another possible research
direction is to change the model of computation that was used in the chapters dealing
with a distributed scenario (i.e., Chapter 3 and 4). In those chapters we always con-
sidered a complete (bipartite) graph for the purpose of communication, allowing direct
communication between each node (in Chapter 3) and each client with each facility (in
Chapter 4). One idea is to consider two graphs G and G′ with the same set of nodes. G is
a complete (bipartite) graph that is used to represent an instance of the Facility Location
problem. It is equal to the graphs we used throughout Chapter 2, 3 and 4. The other
graph, namely G′, represents the communication infrastructure that is used by the nodes.
Now, nodes cannot communicate using the edges given by G (unlike Chapter 3 and 4,
where the edges of G were used for communication); instead, they use only edges in
G′. In this model, computing a good solution becomes more challenging, since nodes
that have a close distance to each other in G (the weight of the edge connecting them is
small) might be quite far away from each other in G′.
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