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Kurzfassung

Die Segmentierung von Bewegung hat sich zu einem der schwierigsten Probleme

im maschinellen Sehen entwickelt. Verfahren zur Detektion bewegter Objekte sowie

zur Schätzung der Bewegungsparameter unterstützen die Verarbeitung dynamischer

Szenen beträchtlich. Ein 3D-Bewegung im maschinellen Sehen resultiert aus räum-

lich-zeitlichen Veränderungen der Pixelinformationen. Der Nachweis solcher Un-

terschiede zwischen zwei oder mehreren aufeinander folgenden Bildern ist der er-

ste Schritt zur Bestimmung der Bewegung. Daher hängt die Schätzung der Bewe-

gungsparameter zusätzlich zur Segmentierung von Genauigkeit der Detektion ab. Die

Berechnung einer einzigen 3D-Bewegung aus einem Fluss von 2D-Bildern durch das

Finden der optimalen Koeffizienten in einer 2D-Signal-Transformation hat seine Ef-

fizienz unter Beweis gestellt. Allerdings, im Falle mehrerer 3D-Bewegungen, leidet

die resultierende Segmentierung unter mehreren Nachteilen, wie die innere Verwech-

selung zwischen Translation und Rotation und dem Problem der degenerierten Bewe-

gungen, vor allem, wenn das Eingabe-Bewegungsvektorfeld sehr verrauscht ist. Auf

der anderen Seite schlagen solche Techniken fehl, wenn 3D-Bewegungen teilweise

überlappen.

Diese Arbeit präsentiert eine schnelle Schätzung der Bewegungsparameter, die zu

einer signifikanten Verringerung der Rechenzeit des "3D-Motion-Segmentation" An-

satzes sowie einem verringerten mittleren Fehler der geschätzten Parameter auch

bei starkem Rauschen führt. Darüber hinaus wurde ein Salienz-basierter Ansatz für

die Schätzung und Segmentierung von 3D-Bewegungen aus mehreren bewegten Ob-

jekten mittels 2D Bewegungsvektorfeldern entwickelt. Eine Klassifizierungsmodul

wurde implementiert, um die globale Bewegung der Kamera zu definieren und um

typische Probleme der Wahrnehmung autonomer mobiler Roboter zu lösen, wie Bil-

drauschen, Verdeckung und Berücksichtigung der Eigenbewegung. Weiterhin schla-

gen wir eine schnelle biologisch motivierte Schätzung von 3D-Bewegungsparametern



vor. Die Ergebnisse belegen, dass die vorgestellten Verfahren eine erfolgreiche Erken-

nung und Bewertung von vordefinierten 3D-Bewegungsmustern und insbesondere

Bewegungen in die Richtung eines Roboters erlauben. Sie sind damit ein wichtiger

Meilenstein in Richtung einer erfolgreichen Vorhersage von Kollisionen.



Abstract

Motion segmentation has evolved into one of the most challenging problems in com-

puter vision. The process of detecting moving objects as well as the estimation of

their motion parameters provides a significant source of information to better un-

derstand dynamic scenes. A 3D motion in terms of computer vision results from

the spatio-temporal change of pixel information. The detection of such differences

between two or more consecutive frames is the first step in determining the related

motion. Therefore, the estimation of the motion parameters in addition to the seg-

mentation process depends on the accuracy of the detection process. Computing a

single 3D motion from a 2D image flow by finding the optimal coefficient values

in a 2D signal transform has proven its efficiency. However, in the case of multiple

3D motions, the resulting segmentation suffers from several drawbacks, such as the

inherent confusion between translation and rotation and the problem of degenerated

motions especially if the input motion vector field (MVF) is very noisy. On the other

hand, such techniques failed to handle spatially overlapping 3D motion vector fields

(3D transparent motion).

In this work, we present a fast approach to estimate the motion parameter coefficients,

which results in a significant reduction of the computational time of the 3D motion

segmentation approach as well as a decrease in the mean error of the estimated pa-

rameters even with highly noisy MVF. Furthermore, a saliency-based approach for

estimating and segmenting 3D motions of multiple moving objects represented by

2D motion vector fields (MVF) was developed. A classification module has been im-

plemented to define the global motion of the mounted camera in order to overcome

typical problems in autonomous mobile robotic vision such as noise, occlusions, and

inhibition of the ego-motion defects of a moving camera head. Moreover, we propose

a fast depth-integrated 3D motion parameter estimation approach which takes into

consideration the perspective transformation and the depth information to accurately



estimate biologically motivated classifier cells in the 3D space using the geometrical

information of the stereo camera head. The results show a successful detection and

estimation of predefined 3D motion patterns such as movements toward the robot

which is a vital milestone towards a successful prediction of possible collisions.
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1 Introduction

Computer vision holds a special position in developing important applications such

as robotics, surveillance and transportation. Among these systems, active vision has

the ability to interact with dynamic environments by operating on sequences of im-

ages and altering its focal point of attention to scan the scene which provides the

ability to detect and track several moving targets. The use of active vision systems

on mobile robots significantly changes the way computer vision can be used. Such

systems can actively control camera parameters according to the required situation

such as orientation, focus and zoom, especially for mobile robots navigating in un-

known environments. On the other hand, it has been shown that motion information

plays an important role in visual tasks as diverse as control of eye movements, depth

perception, object segregation, estimation of ego-motion and time-to-collision.

As the computation power has been increased since the beginning of the motion

analysis studies, more techniques and approaches has been used for the motion es-

timation such as regularization, robust statistics and Markov random fields. Over

the last decade, the increased interest in the field of motion segmentation has lead

to expanding its applications to many areas of machine vision e. g. object track-

ing [WS02, HKW08], activity surveillance [AWK+05, MCK09], image and video

compression [KA02, LZL+07], and object recognition [Hun05, TMD09]. In active

vision systems, the scope of these applications can be more complex but they can

help in development of autonomous tools useful such as survivor rescue systems,

security guard robots, and adaptive systems for driver assistance.
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1.1 Motion Analysis in Active Vision

Motion is the change in the relative position of objects. The navigation of an au-

tonomous vehicle through dynamic environments requires a good sense of motion.

Hence, the dynamic model of the environment has to be maintained in order to up-

date the existing information. Mounting active vision systems on mobile robots could

provide real-time feedback of the current traffic conditions which allow them to in-

teract with a rapidly changing dynamic environment (fig. 1.1 shows an example of

a mounted active vision system on a mobile robot from our lab (GETbot)). In order

to achieve such targets, a 3D motion analysis research has to overcome several chal-

lenges concerning the detection and recognition of multi-moving objects within the

concepts of image understanding.

There are many challenges in 3D motion analysis in dynamic scenes. First, the im-

plemented algorithms must be able to absorb changes in the 3D pose and also toler-

ate noise in the input images. Secondly, the vision system should be able to detect

and classify any additional features that may appear in the observed scene such as a

textured background or occluded objects. Implementing the capability to deal with

object motions in active vision systems improves the ability to understand complex

3D motions of multiple objects in dynamic environments. In this context, the motion

detection process can be considered as a part of a general object recognition module.

Such integration is vital to distinguish between object movements and artifacts that

could affect the pixels value such as an illumination change.

1.2 Formulation of the Problem

Accurate interpretation of the 3D motion parameters 1 of moving objects is the key

to better understand dynamic scenes. The input to the 3D motion parameters estima-

tion module is the 2D optical flow which relies on the change of the spatio-temporal

1For more information about 3D motion parameters, refer to section 2.4.
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Figure 1.1: An active vision system mounted on a mobile robot from our lab (GET-
bot).

information of pixels. Computing a single 3D motion from a 2D image flow by find-

ing the optimal coefficient values in a 2D signal transform suffers from ambiguous

interpretations concerning 3D motion especially motions in the z direction. On the

other hand, one of the main challenges facing the segmentation of 3D multi-moving

objects in an active vision system is to partition the MVF within a reasonable compu-

tation time. This especially proved to be difficult when moving objects are partially

visible and are not spatially connected. Hence, it is important to detect, estimate, and

segment the MVF independently from a predefined spatial coherence such as object

contours generated from image segmentation approaches. Such methods are depen-

dent on a group of features which could be affected by the continuous environment
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change in a dynamic scene, e. g. the results of the color-based segmentation ap-

proaches could be affected by illumination changes. The following sections will ex-

plain in more details the mentioned challenges starting with the concept of transparent

motion then the importance of predicting future collisions and the ego-motion.

1.2.1 Concept of Transparent Motion

One of the fundamental processes in the computation of 3D motion is the group-

ing of velocity signals into surfaces (layers) as in the case of motion transparency

[DDT+06, SV99]. A special case of layered motion where visual motion is caused

by the movement of a small number of objects at different depths in the scene is

the transparent motion, which is usually caused by reflections seen in windows and

picture frames. Natural images in general may contain reflected and transmitted

light [SAA00] where local moving elements appear to be a superposition of two

or more spatially overlapping layers when the camera is moving. Hence, the chal-

lenge for modeling 3D motion transparency is raised in order to demonstrate how

two different motion signals can appear perceptually co-localized in the same space.

Furthermore, the 3D motion parameters estimation process requires a multi-valued

representation for each point in the image or the co-localization of more global sur-

face descriptors as shown in fig. 1.2 which represents examples of overlapped 3D

motions in life and fig. 1.3 where two synthetic 3D motion are group together to give

the impression of lacy overlapping surfaces despite the connectivity of the object.

1.2.2 Prediction of Collision

The detection and avoidance of obstacles are very important for mobile robot navi-

gation systems. Using visual sensors instead of strictly range-finding sensors has the

advantage of providing a higher density of information. Objects that span a small

region of pixels could theoretically be detected in an image, but would almost be

missed by laser or sonar depending on the resolution of the range sensor. Some of



1.2 Formulation of the Problem 5

(a) (b)

Figure 1.2: Examples of overlapped 3D motions representing the concept of transpar-
ent motion. (a) Two swarms of starlings moving in the opposite direction
of each other [Win]. (b) Pedestrians crossing the road in opposite direc-
tions [Miu].

(a) (b) (c)

Figure 1.3: Synthetic MVF representing the concept of transparent motion. (a) A
3D motion representing translation and rotation in the z axis. (b) A 3D
motion represents the same translation in the direction of z axis with op-
posite rotation about the z axis. (c) Random combination of both MVFs
representing the concept of transparent motion.
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the vision-based collision detection approaches standing out from the ground the floor

region of an image assuming that the floor remains consistently identifiable and con-

sistent over the entire environment [YLC10] or continually adapt the robot’s model

of the floor [Kum09]. Other approaches rely on features instead of working on the

pixel level to approximate real-world locations and trajectories of objects based on

their varying location in a series of images assuming that objects are rigid [CG09]

which is not always the case where non-rigid objects exists often in autonomous sce-

narios.

The principal problem of non-rigid objects motion analysis and collisions detection

lies in the geometrical assumption of objects based on the segmentation of unreliable

features such as color or intensity variations. Such assumption demand smoothing

mechanisms to handle non-regular information which affects the estimated 3D mo-

tion parameters. The computation of motion characteristics such as velocity, acceler-

ation, displacement vector, etc. is based on object edges or principal corners depends

on the quality of the interpretation of object shape and the accuracy of the differential

optical flow (more details are represented in section 2.3.3).

1.2.3 Ego-Motion

Self-localization is a key capability for autonomous mobile robots where hardware

sensors such as joint encoders and accelerometers are generally used. The main draw-

back of such sensors are the limitation in certain environment, e. g. the wheels slips

over wet ground which make the wheel odometry is unreliable. Hence, the use of vi-

sual sensors for motion estimation in such cases provides a better alternative. In order

to estimate the ego-motion, the 3D motion parameters have to be estimated from the

generated 2D optical flow assuming that there are no significant objects motion in the

scene. Such assumption is valid in some applications such as aerial imagery when

the ego-motion causes large displacements between consecutive frames [BJG10]. On

the other hand, estimating the ego-motion for mobile robots based on the detection

and tracking of extracted image features such as in [MOK+10] may suffers from the

aperture problem in low textured images. Furthermore, such features mus belongs to
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static objects in order to correctly estimate the ego-motion. Otherwise, the computed

ego-motion is highly distracted and in some cases it is completely wrong.

1.3 Motion Segmentation and Motion of Segments

Motion estimation has been developed as a major aspect of estimating the three di-

mensional nature and structure of a scene, as well as the 3D motion of objects and

the observer relative to the scene. The generation of a motion vector fields is basi-

cally a correlation problem which tries to find the correspondence of a certain feature

such as color or edges spatially between two or more consecutive frames. Hence,

the generated MVF inherits the main drawbacks of the correlation process such as

the ambiguity problem. As one way to overcome such a problem, some assumptions

have been integrated to find a reasonable flow field estimate such as flow smoothness

which explicitly forces neighboring pixels in the image to have a similar optical flow.

Another way to deal with the problem is to group the neighboring pixels which are

similar in a certain homogeneity criterion in one segment then estimate the motion

of the whole segment by finding its corresponding segment in the other frame. How-

ever, the output of this technique contradicts the concept of transparent motion in

case that the segmentation criterion is not taken into consideration the depth informa-

tion of overlapping layered motions. Furthermore, the change of image features in

a dynamic environment, e. g. by illumination change results in segmentation errors

such as segments size which in turn lead to false estimation of the 3D motion parame-

ters. On the other hand, some approaches segment the generated motion vectors into

a set of 3D motions where motion parameters are used as a homogeneity criterion

for the segmentation process despite the spatial-connectivity of the motion vectors.

Table 1.1 shows a summarized comparison between motion segmentation and motion

of segments approaches.
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Table 1.1: Summarized comparison between the motion segmentation and motion of
segments approaches

Motion Segmentation Motion of Segments

Input Motion vector field (MVF) Image segments
Output Set of 3D motions 3D motion parameters for each

segment
Advantages Handle transparent motion Fast computation

Handle high noisy MVF Suitable for objects tracking ap-
proaches

Drawbacks Computationally expensive Very sensitive to the segmenta-
tion errors

Not suitable for object tracking Prior information such as spa-
tial coherence is required

1.4 Thesis Outline

In this thesis, we handle the 3D motion segmentation analysis in a new perspective:

Biologically inspired motion recognition is involved to deal with spatially overlapped

moving elements (fig. 1.4 represents the system architecture of the proposed 3D mo-

tion analysis for an active vision system). Hence, the challenge for modeling 3D

motion transparency [DDT+06] is raised in order to demonstrate how two different

motion signals can appear perceptually co-localized in the same space. Furthermore,

another challenge facing the segmentation of 3D multi-moving objects in an active

vision system is the segmentation of an incoherent MVF into partitions in reason-

able computation time. Therefore, it is important to detect, estimate, and segment

the MVF independently from a predefined spatial coherence such as object contours

generated from image segmentation approaches.

A general overview about the basic concepts related to the 3D motion analysis is pre-

sented in chapter 2. Meanwhile, a thorough review of the literature from different

areas of knowledge involved in the work on this project is provided in chapter 3. An

enhanced approach for estimating 3D motion parameter coefficients from the gener-
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Figure 1.4: System architecture of the proposed 3D motion analysis for an active
vision system

ated MVFs is presented in chapter 4 which successfully overcomes the drawback of

Daugman’s transform [Dau88] of finding the derivative of the error of an estimated

parameter with respect to each of the 3D parameter coefficients. A 3D saliency-based

motion segmentation approach is explained in chapter 5 while chapter 6 represents

the 3D depth-integrated motion estimation and visualization approach. The results

of experiments carried out using the developed approaches under different dynamic

scenarios are presented in chapter 7 while chapter 8 summarizes the achievements

and indicates the issues that requires further work in this direction of research.
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2 Basic Concepts

2.1 Visual Motion Estimation

Mainly, there are three classes of visual motion estimation algorithms: gradient

based techniques which operate using image derivatives, frequency domain tech-

niques which analyze the image sequence in the frequency domain and token based

techniques which track some image tokens between frames. All these techniques

share the principle of utilizing the brightness constancy assumption (BCA). They as-

sume that the intensity of light reflected from a point on an object does not change

over time so that all changes in the image intensity pattern are due to motion. Thus,

before considering specific techniques, it is necessary to analyze the brightness con-

stancy assumption.

2.1.1 Brightness Constancy

The light intensity (brightness) captured by a camera at a particular pixel is generally

proportional to the amount of light reflected from the corresponding point in the

environment. The amount of reflected light depends on the reflectance property of

the surface and the prevailing illumination. Meanwhile, the brightness constancy

assumption requires fixed illumination or reflectance otherwise it will fail [KV05].

The brightness of a static object caused by a diffuse light source remains stable,

otherwise it will be changed. On the other hand, the movement of the camera will

cause the brightness of a point to be changed except the rotation about the lens axis.

Furthermore, in case that a shadow of an object lies on another object in a dynamic

environment, it will cause distraction for the motion estimation algorithms.
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2.1.2 Gradient Based Motion Estimation

As represented in [KV05], the brightness constancy assumption is the first step to

estimate motion based on the gradient:

dI(x, y, t)

dt
= 0 (2.1)

where I(x, y, t) is the spatio-temporal image intensity function. Using the chain rule

for differentiation we obtain the total derivative:

vxIx + vyIy + It = 0 (2.2)

where (vx, vy) is generated optical flow representing temporal derivative of position.

The equation could be rewritten without the coordinates and subscripts indicate the

partial derivatives with respect to the subscript variable.

∇I · v + It = 0 (2.3)

where ∇I = (Ix, Iy) is the spatial intensity gradient, v = (vx, vy)T is the im-

age velocity or optical flow at pixel (x, y) at time t and It is the temporal intensity

derivative (more details are represented in section 2.3.1 and 2.3.2). The goal of the

gradient-based optical flow is to find the velocities that minimize the square of this

constraints. Such constraint are important for the relation between the optical flow

and the intensity derivatives where the velocities are constrained to belong to a par-

allel line to the intensity gradient. In order to obtain a unique solution for the motion

at a point, further constraints must be applied as described later in section 2.3.

2.1.3 Background Subtraction and Surveillance

As one of the main applications that benefits from the detection and estimation of mo-

tion is surveillance. In general, a surveillance camera is stationary and the detection
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process uses simple image difference techniques. However, such an approach doesn’t

provide velocity information and error prone if the illumination change rapidly. The

following section will highlight in more detail the detection of moving objects using

a static camera.

2.2 Motion Detection from a Static Camera

The basic concept behind motion detection is to follow image differences from frame

to frame in an image sequence in order to discriminate the background from moving

foreground objects. The approach used in this regard examines each pixel of an

image if it corresponds to a moving object by a relaxed threshold image difference

approach where the background model Bt has to be updated with each image frame

It to handle the illumination variation [MZK01]:

Bt+1 = αIt + (1− α)Bt (2.4)

where α regulates the dependency of the background model to the illumination vari-

ation and usually is kept small otherwise moving objects will have artificial "tails"

behind them. The detection process is applied to two consecutive frames from an

input image sequence. The result is a binary image that shows the spatial posi-

tion of changed pixels values. Fig. 2.1 represents an image sequence from PETS

dataset [PET] and the binary result of motion detection.

2.2.1 Region-Based Motion Detection

In order to segment an image into a list of regions or labels using region-based meth-

ods, neighboring pixels of initial seed points has to be validated according to a certain

criteria. Once a neighboring pixel has been detected and labeled as the new initial

seed pixel, the validation process continue to the neighboring pixels as well. As the
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(a) (b)

Figure 2.1: Result of motion detection on a sequence of real images. (a) Input se-
quence from PETS Data set [PET]. (b) Resulting binary image of motion
detection between two consecutive frames.

validation process iteratively continue to examine all unallocated neighboring pixels,

the segment size is increased. The region is growing until there are no more valid

neighboring pixels within a search window w to be included to the region. On the

other hand, increasing the size of the search window w will lead to including more

valid pixels in the neighborhood as shown in fig. 2.2. The process is iterated on, in

the same manner as general data clustering algorithms. Fig. 2.3 represents the result

of segmenting the detected motion using the region growing algorithm applied to an

image sequence (PETS dataset) [PET] . Segmenting the image using a region-based

segmentation algorithm such as region growing may suffer from over-segmentation.

Hence, its better to use boundary segmentation models such as “Snake Active Con-

tour” or “Geodesic Active Contour” specially when the purpose of the segmentation

is tracking moving objects in a sequence of images (more details are represented in

the following section).
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(a) (b)

(c)

Figure 2.2: Segmentation using a region growing algorithm. (a) With a search win-
dow size of w := 3× 3. (b) w := 5× 5. (c) w := 7× 7.

2.2.2 Contour-Based Motion Detection

Active contours or (snakes) are an image segmentation and object boundary detection

approach that minimizes the energy of a contour. The energy function consists of

internal and external forces [CKS97, NTA06, GME10]. The external force drives the

contour nodes towards the inside of the contour until it reaches an object boundary

where the external energy supposed to be minimal. Hence, the snake contour is bent

and shaped according to the object boundary. The snake model starts from an energy

function integrated along a curve C(pn) = {x(pn), y(pn)}, where the curve nodes

pn ∈ [0, 1]. The energy function includes an internal and external term [LGP+02].



16 2 Basic Concepts

(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Result of segmenting the detected motion from an image sequence (PETS
dataset) with a search window size w := 13× 13. (a-f) Results of the re-
gion growing segmentation algorithm after an interval of 24 frames each.
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E =
1∫
0

[α · Eint(C(pn)) + β · Eext(C(pn))] dp (2.5)

whereEint is the internal energy which represents physical properties of the contour,

while Eext is the applied external energy which relates to the image data (e. g. in-

tensity). The influence of both energies are regulated by α and β. On the other hand,

internal and external energies could be defined as combination of other energies, e.

g. the elastic energy represents the internal energy.

Eelastic = K1

N∑
i=1

(L(i, i− 1))2 (2.6)

where N is the number of contour points, L(i, i − 1) is the distance between two

contour points and K1 is a regulation parameter for the applied forces on the contour

point. Hence, the applied forces on both x and y directions are defined as:

Felastic(xi) = 2K1((xi−1 − xi) + (xi+1 − xi))
Felastic(yi) = 2K1((yi−1 − yi) + (yi+1 − yi))

(2.7)

The contour points loose their energy once they detect an edge point. As the exter-

nal force drives the snake to shrink and move towards object boundary as shown in

fig. 2.4.

One of the main advantages of the adaptive active contour models over the region

based segmentation is taking into consideration the spatial relation between the seg-

ment size and nearby segments, i. e., the proximity feature of the Gestalt principles.

As an example, if two relatively large objects are separated by a certain distance they

will be grouped by one contour. On the other hand, if the same distance are used to

separate small objects they will be segmented. Fig 2.5 represents the evolution of an

active contour over two small and large segments separated from each other with the

same distance, while fig. 2.6 represents the result of segmenting the detected motion

from an image sequence (PETS dataset) region growing algorithm.
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(a) (b)

(c)

Figure 2.4: Evolve of the snake active contour algorithm over a part of the detected
motion from the “PETS dataset”. (a) Initial position of the snake where
the green dots represents the contour nodes and connected by red lines.
(b) The first and the last node in a contour segment that reaches an object
boundary is highlighted by a green and a blue square respectively. (c)
The snake in its final state.

However, the evolution of the active contour could be stopped by a local minima.

Such a problem could be solved at the prize of computational time by using simulated

annealing approaches.

2.3 2D Motion Vector Fields

Many recent robotics applications are based on the estimation of the optical flow such

as object tracking, 3D scene structure and visual odometry [LK81]. In this section the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.5: Results of the snake active contour algorithm over two small and two
large segments separated from each other with the same distance.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Result of segmenting the detected motion from an image sequence (PETS
dataset). (a-f) Results of the adaptive active contour segmentation algo-
rithm.
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2D and 3D motion constraint equation (as presented in [BT05]) will be introduced.

The main difference between the 2D and the 3D optical flow is that in 2D it measures

the motion of a pixel between adjacent images while in 3D it measures the motion of

the volume voxel between adjacent volumes. Furthermore, both 2D and 3D motions

cause temporal changes in image intensity assuming that there are no other reasons.

In general, this assumption is usually true but there are many exceptions. The motion

constraint equation are the basis of the differential optical flow as explained in the

following subsections.

2.3.1 2D Motion Constraint Equation

The 2D motion constraint equation which could be interpreted as the gradient based

motion estimation is based on the brightness constancy assumption represented in

section 2.1.2.

The pixel point I(x, y, t) is moving spatially by δx, δy in a time interval δt to I(x+

δx, y + δy, t+ δt). Hence, I(x, y, t) and I(x+ δx, y + δy, t+ δt) holds the same

intensity information:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (2.8)

This assumption is true for small local translations assuming that δx, δy, δt are not

too big. Thus, the first order of Taylor series expansion can be performed for I(x, y, t)

in equation (2.8) to obtain:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+ ξ (2.9)

where ξ are the higher order terms, which could be ignored and removed. Using eq.

no. (2.8) and (2.8) we have:
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∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
= 0 (2.10)

where vx =
δx

δt
and vy =

δy

δt
are the x and y components of image velocity (optical

flow) and
∂I

∂x
,
∂I

∂y
and

∂I

∂t
are image intensity derivatives at (x, y, t) which could be

written as:

Ix =
∂I

∂x
, Iy =

∂I

∂y
and It =

∂I

∂t
(2.11)

The relation between the x and y components of the optical flow (vx, vy) and the

intensity derivatives (Ix, Iy, It) are:

(Ix, Iy) · (vx, vy)T = −It (2.12)

which is often presented in dot product form.

∇I · v = −It (2.13)

where∇I = (Ix, Iy) is the spatial intensity gradient and v = (vx, vy)T is the image

velocity or optical flow at pixel (x, y) at time t. Eq. 2.13 is the same as the gradient

based motion estimation eq. 2.3. The 2D motion constraint equation ∇I · v = −It
has two unknowns which resulted from the aperture problem. The aperture problem

appears when local image intensity structure is not sufficient to measure full image

velocity.
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2.3.2 3D Motion Constraint Equation

Similar to the 2D motion constraint equation, it is possible to use the first order Taylor

series expansion. since I(X,Y, Z, t) = I(X + δX, Y + δY, Z + δZ, t+ δt) 1 it is

clear that:

IXVX + IY VY + IZVZ + It = 0 (2.14)

where VX , VY , VZ are the 3D optical flow components and IX , IY , IZ and It are the

3D spatio-temporal derivatives. Equation 2.14 could also be rewritten as:

∇3I · V = −It (2.15)

where ∇3I = (IX , IY , IZ) is the 3D spatial intensity gradient, It is the temporal

intensity derivative and V = (VX , VY , VZ)T is the 3D velocity (see e. g. [BT05] for

more details).

2.3.3 2D Optical Flow

After measuring the spatio-temporal intensity derivatives, all velocities normal to the

local intensity structures are integrated into full velocities using least squares method

in local techniques and regularization in the global approaches. On the other hand, it

is assumed that all objects are rigid and there are no specularities in the scene. Under

this assumptions, the 2D optical flow is representing an approximation to the ideal

projection of 3D motion on an image. The projected velocity V of a 3D point P on

a spatio-temporal pathK(t) could be written as:

V =
dK(t)

dt
=

(
dX(t)

dt
,
dY (t)

dt
,
dZ(t)

dt

)T
(2.16)

1To be consistent with literature, capital letters X, Y and Z are representing 3D coordinates.
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The projected 2D point p(t) on the image plan with a focal length f in a standard

perspective projections as shown in fig. 2.7 will be:

p(t) = (x(t), y(t))T =

(
fX(t)

Z(t)
,
fY (t)

Z(t)

)T
(2.17)

the instantaneous 2D velocity v is:

v(t) =

(
dx(t)

dt
,
dy(t)

dt

)T
=

f

Z(t)

(
dX(t)

dt
,
dY (t)

dt

)T
− fdZ(t)

Z2(t)dt
(X(t), Y (t))T

(2.18)

for more details about the perspective projection refer to section 6.2.

Figure 2.7: Standard perspective projection.
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2.4 3D Motion Interpretation

3D motion interpretation of an image flow has become an important problem in com-

puter vision. Early publications such as [FH84] discussed the estimation of general

3D motion parameters of a rigid body from two or more consecutive image frames.

Longuet-Higgins and Prazdny [LHP80] introduced equations for computing the 3D

egomotion in stable scenes. They suggest that the 3D motion interpretation prob-

lem is a matter of solving a system of equations for six motion parameters. A linear

optimization approach has been introduced in [Adi85] with an assumption that the

optical flow is accurately available.

In the case of interpreting an optical flow, the elementary signals are 2D vector fields

of infinitesimal generators of a 3D Euclidean group. The infinitesimal motion of a

rigid body, i. e., a 3D vector field can be expressed as a linear combination of six

component 3D vector fields. The computation of a 3D motion from a 2D image flow

or a motion template finds the optimal coefficient values in a 2D signal transform.

The ideal optical motion vopt caused by a motion of a point (x, y, dp) on a rigid

visible surface with a distance from the origin dp = ρ(x, y), is

vopt(x, y) =
6∑
i=1

ciei(x, y) (2.19)

where ρ(x, y) > 1 is a positive function defined on the image plane and ei(x, y) rep-

resents the six infinitesimal generators in form of 2D vector fields [TSL+91,MJM02].

For translation:
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e1(x, y) =

(
ρ−1(x, y)

√
1 + x2 + y2

0

)

e2(x, y) =

(
0

ρ−1(x, y)
√

1 + x2 + y2

)

e3(x, y) =

(
−xρ−1(x, y)

√
1 + x2 + y2

−yρ−1(x, y)
√

1 + x2 + y2

)
(2.20)

and for rotation :

e4(x, y) =

(
−xy

1 + y2

)

e5(x, y) =

(
1 + x2

xy

)

e6(x, y) =

(
−y
x

) (2.21)

After the projection of the partial velocities to the image plane (using pinhole-camera

mapping), six motion templates will be obtained depending on the object-depth Z,

image position (x, y) and the camera focus f . By setting the unknown depth to

Z = 1 and the unknown focal length to f = 1, we can establish relative velocity

estimations which yields the templates depicted in Fig. 3.1.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 2.8: Motion templates for the translation and rotation obtained from the pro-
jection of the instantaneous velocities of the motion model to the image
plane. (a) The coordinate system. (b-d) Translation in the X,Y, Z axes
respectively. (e-g) Rotation around the X,Y, Z axes respectively.
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3.1 Introduction

Over the last decade, robotics has advanced rapidly into applications which require

increasing dexterity and dynamic response. The increased interest in the field of mo-

tion segmentation has lead to expanding its areas of application to include e. g. ob-

ject tracking [WS02,HKW08], activity surveillance [AWK+05,MCK09], image and

video compression [KA02, LZL+07], and object recognition [Hun05, TMD09].

The remainder of this chapter is organized as follows: section 2 introduce the concept

of the biologically motivated classifier cells, while section 3 and 4 gives an account

of the motion segmentation approaches based on dense optical flow and 3D shape

construction respectively. Finally, section 5 summarizes the chapter.

3.2 Biologically Motivated Classifier

Detecting and estimating 3D motions in an image sequence generally requires a

bottom-up approach which is very useful in the context of exploration for autonomous

mobile robots. On the other hand, some scenarios especially in dangerous environ-

ment requires a top-down approach for the detection and estimation of a certain 3D

motion which could represent a possible collision e. g. the movement of a pedes-

trian in the direction of a car. Therefore, we present in this section a biologically

inspired top-down approach for the detection and estimation of a specific 3D mo-

tion. In neurophysiology, neurons in the medial superior temporal cortex (MST) in

the mammalians brain are sensitive to global patterns of 3D motion such as rotation,

translation and expansion [How12]. In this module, models of motion-sensitive cells

for the preferential direction will be constructed in order to measure the response of
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the sensitive cells to a corresponding motion. The generation of the corresponding

map requires calculating a radial symmetric weight function for each cell which is

in term of computation time very expensive. Developing a fast connection weight

function based on the depth information reduce the time consumption dramatically

without the use of a GPU power as in [WRC08] where a biologically motivated clas-

sifier and feature descriptors are designed for execution on single instruction multi

data hardware using the programmable GPU.

In [MJM02], a model neuron for the detection of motion templates named c-cell was

introduced. The c-cell activation function represents the instantaneous velocity in

the preferential direction of the cell. The motion vector v(x, y) at a point (x, y) is

computed by a motion parameters ci and a motion template eLi which represents the

six infinitesimal generators of a 2D vector field (translation in X, Y, Z and rotation

about X, Y, Z axis).

v(x, y) = cie
L
i (x, y) (3.1)

solving the previous equation for the motion parameter ci:

ci(x, y) =
vT (x, y) · eLi (x, y)

|eLi |2
(3.2)

the c-cell of point p0 is defined by:

ci(p0) =
1

|S|
∑
p∈S

vT (p)
ω(p0 − p)eLi (p)

|eLi |2
(3.3)

where S is a concatenated vector of the detected MVs in the image and p :=

(x, y),p0 := (x0, y0). A radial symmetric weight functionω(p) =
1

2πσ2
exp(−1

2

|p|2

σ2
)

is used to create a local neighborhood around p0 and separate the multi-object mo-

tions based on the size of the receptive field and the σ parameter.
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Similar to the c-cell, [MJM02] introduced an activation function named ξ-cell to

measure how well is the correspondence of a c-cell to a preferential motion:

ξi(p0) =
1

|S|
∑
p∈S

|$(p0 − p)(v(p)− ci(p0)eLi (p))| (3.4)

where ci(p0) is the estimated c-cell, and$(p0−p) is the updated connection weight

function between a point p0 and its neighbor point p. Fig. 3.1 shows the response

measurement of the sensitive cells tuned to six motion templates eLi (p) to a corre-

sponding synthetic motion.

We used the depth information generated from a stereo algorithm to enhance the

connection weight function $(p):

$(p0 − p) =

{
1 ∀ p ∈ =(p0)

0 otherwise
(3.5)

where =(p0) is the segment label of point p0. The new connection weight function

enhances the overall computation time as well as it overcomes the blurring effect

of the ω(p) function especially at the edges of an object. Moreover, considering

only the points that belong to the same depth level improves the estimation process

overcoming the ambiguous interpretation problem.

This approach allows the separation of the MVF into arbitrarily predefined motion

channels with the c-cells encoding the velocity and the ξ-cells the error for each

channel. As MVFs generally are ambiguous without additional information, the in-

terpretation of a motion can deviate from the actual object motion. Therefore, the

solution presented here benefits from the computation of non-exclusive interpreta-

tions which preserve as much information as possible for higher-level components

within a more complex system design.
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(a) (b)

(c) Translation in X (d) Rotation about X

(e) Translation in Y (f) Rotation about Y

(g) Translation in Z (h) Rotation about Z

Figure 3.1: Response measurement of the sensitive cells adapted from [MJM02]. (a)
Coordinate system. (b) Input MVF. (c-h) The precision 1 − ξi(p0) de-
scribing how well each location fits the corresponding motion template
of cell ci.
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3.3 Motion Segmentation Based on Dense Optical Flow

The majority of motion segmentation approaches are generally based on estimating

dense optical flow. The optical flow field was assumed to be piecewise smooth to ac-

count for discontinuities caused by occlusion and object boundaries [BJ96, OB98],

or separate the image flow into different regions by looking for flow discontinu-

ities [BA91]. Unfortunately, the lack of precision across edges of the most popular

motion estimation methods makes them less useful for recovering the exact shape of

moving objects. This section gives an account of different approaches to segment

a dense optical flow, starting with the expectation maximization technique, then the

multi-body factorization algorithm and finally with the random sample and consensus

approach.

3.3.1 Expectation Maximization Approaches

For many estimation problems, the expectation-maximization algorithm (EM) is used.

[Wei97a] introduced a short tutorial to describe the expectation (E) and the maxi-

mization (M) step used in motion segmentation as shown in the rest of this section.

In order to segment a set of data points such as two lines that were generated by mul-

tiple processes using the EM algorithm, the two lines parameters and the assignment

of the points to the correct generating process have to be estimated. The basic struc-

ture of an EM algorithm starts with random parameter values for two input models,

then iterates until parameter values converge. In the expectation step, points are as-

signed to the model that fits it best. While in the maximization step, the parameters

of the models are updated using points assigned to it.

Motion Segmentation using EM algorithm

Some of motion segmentation approaches based on dense optical flow represent the

motion vector field in layers [AS95, DP91]. While the main target is to compute the

motion parameters for each layer, each pixel has to assign to the correct layer first.
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Using regularized radial basis functions (RBFs) [Wei97b] improved the overlapping

layers approach to utilize flexible motion fields. The layered representation meth-

ods often use expectation-maximization (EM) techniques [JF01, RR97]. Integrating

information of large areas in an image in the EM motion segmentation approaches

enhance there robustness. On the other hand, an optimum results depends on good

initialization [TSA01, FAH+08]. Some approaches enhance the initialization of the

EM algorithm by obtaining the 2D motion parameters using K-means [WA93] or

normalized cuts [SM98]. However, such techniques are suffering from the aperture

problem.

Some approaches such as [SHP08] use hierarchical clustering of Hidden Markov

Models (HMMs) for learning motion behavior in order to detected abnormal behav-

ior in input image sequences. The implemented track clustering algorithm uses an

agglomerative HMM clustering technique within the expectation maximization (EM)

approach to determine the HMM parameters. However, in order to compute the opti-

mal number of states and to estimate the parameters in each HMM, some assumptions

about the data have to be available. Recent work such as in [MAM11] introduced

a new estimator called generalized projection based M-estimator (gpbM). The esti-

mator determine each inlier structure iteratively to estimate multiple heteroscedastic

inlier structures. However, the inline structure assumes the moving points belongs to

a rigid object. Hence, the result of motion segmentation will be affected severely if

transparent motion exists i. e., overlapped 3D motions.

3.3.2 Multi-Body Factorization Approaches

Since Tomasi and Kanade (1992) [Tom92] introduced a factorization technique based

on orthographic projection to recover structure from motion using features tracked

through a sequence of images. Factorization methods have become very popular

due to their simplicity. [WW11] introduces a short introduction for the multi-body

factorization approach. In dynamic environment where many objects move simulta-

neously, motion features of different objects could be extracted and sorted according
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to the object in a tracking matrix. As the motion features stored in the tracking ma-

trix belongs to different objects, it is required to segment the objects based on the

observation of the tracking matrix where interaction between features is measured.

The main drawback in [WW11] is the sensitivity of noises. As a solution to the men-

tioned problem [CKI97] minimizes the total energy of the shape interaction matrix

iteratively and [Kan01] integrates model selection and least-median fitting using di-

mension correction for the segmentation process. Despite the fact that this method

gives the 3D structure of the object and the motion of the camera, it assumes that the

features belong to the same object i. e., it does not perform segmentation. It can deal

only with a single rigid object and it is very sensitive to noise.

Many approaches have been proposed in the field of motion segmentation following

the same idea of forcing the rank constraint. These methods are based on using the

dimensionality of the subspace in which the image trajectories lie to perform the mo-

tion segmentation [KK01, MZMI02, VS03]. The problem is solved using subspace

constraints on an input matrix containing the location of a number of points in many

frames. They use algebraic factorization techniques to calculate the segmentation

of the points into objects in addition to the objects’ motion and their 3D structure.

Multi-body factorization algorithms use the full temporal trajectory of every point,

and therefore, as a main advantage, are capable of segmenting objects whose mo-

tions cannot be distinguished using only two frames [GW04]. However, in terms of

computation speed, their performance is still far from satisfactory.

3.3.3 RANSAC Based Approaches

The main advantage of the RANSAC algorithm (Random Sample And Consensus)

[FB81] is the ability to estimate model parameters in the presence of high number of

outliers (noises) which increases its robustness. The input data set to the RANSAC

approach assumed to be defined by a parameterized model. The algorithm starts by

iteratively selecting a group of the input data set randomly and then validates the

hypothesis that those data are inliers and representing the required model. Once the

parameters of the fitted model are estimated, the rest of the data set are examined
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by the model. When a data point fits the model i. e. the fitting error is less that a

predefined threshold, it is added to the inliers (consensus set). Afterward, the model

is again estimated from all the inliers and then fitting errors will be estimated to

evaluate the model. The process is repeated iteratively and the iterations number

could be either fixed or computed [Der10].

RANSAC based motion segmentation approaches such as [MMI06] solve the 3D

motion segmentation problem by successive computation of dominant motions using

methods from robust statistics. These methods fit a single motion model to all the

image measurements using random sample consensus (RANSAC) [FB81]. During

the iterative process, the correct estimated measurements of the motion model are

removed from the data set and RANSAC is re-applied to the remaining points to

obtain a second motion model.

In a comparison of 3D motion segmentation algorithms for affine models [TV07]

using a benchmark of 155 motion sequences, a Local Subspace Affinity (LSA) algo-

rithm [YP06] introduced as a general framework for motion segmentation of feature

trajectories, has generally shown a better performance than its competitors (The Gen-

eralized Principal Component Analysis (GPCA) [VH04], the Multi-Stage Learning

(MSL) [SK04], and the RANSAC algorithm). The framework of [YP06] presents the

segmentation problem as a linear manifold finding solutions under affine projections.

However, the algorithm is robust only in cases where the outliers are not dominant

in number. As a solution for the main drawback of the RANSAC approaches where

only one model for a particular data set could be processed, [JC10] used RANSAC

to process only small set of correspondences in a post processing step to a mixture

of Dirichlet process (MDP) in their motion segmentation approach. However, the

problem of degenerated (dependent) motion is not addressed and may fail in finding

overlapping multi-model data set as in the case of transparent motion.
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3.4 Motion Analysis Based on 3D Shape Construction

Recently, many works concentrates on studying the geometry of dynamic scenes by

modeling dynamic real world 3D objects [RBW07, YW09] where the projected sur-

face of a 3D object model and the data of a previously estimated 3D pose are used

to construct 3D shapes to be integrated in the segmentation process. The constructed

3D model are used to estimate the rigid motion of objects by determining the 3D pose

of the objects. Estimating the 3D pose of objects depends on the accuracy of fitting

the extracted features from the 3D model such as the projected object surface and the

corresponding 2D object contour in the image .

3.4.1 3D Pose Estimation

In [HKW08] a spatio temporal model for estimating 3D poses using a trinocular

camera sensor has been proposed. The algorithm avoids typical delays in the fil-

tration of pose estimation process by providing the derivative of the temporal pose

instantaneously. However, initializing the parameters of the model is still required.

[GRS06, HRT+09] suggested a texture model based method for 3D pose estimation

where the influence of the features is automatically adapted during tracking while

local descriptors and contours are used for the matching process. This approach has

shown its ability to deal with a rich textured and non-static background as it has

shown robustness to shadows, occlusions, and noise in general situations overcoming

the drawbacks of the single features. However, the use of several cameras from dif-

ferent angles is necessary for the estimation of 3D object positions which is not the

case for a single mobile robot.

[BB06] developed an image likelihood function using the Wandering-Stable-Lost

framework and the annealed particle filter. The prior 3D model information of the

body is used to improve the accuracy of the pose estimation and predict any possible

self occlusion. It suggests that when background subtraction is unreliable, an adaptive

appearance model for the limbs is essential in order to stabilize the tracking results.

[BRC+06] determines position, orientations and the joint angle of the object. These
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techniques compromise the reduction of the high dimension search space, the density

estimation, or smoothness assumption on the motion patterns. They use an industrial

marker-based training samples for the estimation of a nonparametric Parzen density

in order to converge the solution by the learned density. The algorithm selects the

most probable solution according to the prior state in case that provided information

from the input image is not enough fro a unique solution. However, the use of markers

could be considered as a drawback in case of dynamic autonomous systems. On the

other hand, [BRM+09] integrates the retrieved motion with 3D tracking techniques

for capturing marker-less human motion. The use of prior motions to stabilize the

tracking based on the results of the classification process means that misallocated

priors may then worsen the tracking error.

3.4.2 3D Modeling from Stereo Images

Another application for motion segmentation and 3D modeling [YA07] for consec-

utive sequences of 3D models (frames) represented as 3D polygon mesh conducted

the motion segmentation by analyzing the motion parameters using extracted feature

vectors, while each 3D model contains information about the coordinates of vertices,

connection between joints and their color. The 3D structure of a model can be ex-

tracted using stereo images [SA03, LW08, HS09] by estimating the acquired depth

information. However, 3D reconstruction from stereo approaches may suffer from

strong illumination change such as the sudden existence of unbalanced light source

which may happen occasionally in an unknown dynamic environment.

Recent approaches such as [YK10] reconstructs the 3D target object by tracking the

position of a target object in a scene to voxelize the accurate 3D human model, while

classification and recognition of human 3D motions and actions requires a Multiple-

Kernel based Support Vector Machine. Nevertheless, such an approach requires input

images from multiple viewpoints simultaneously which is not applicable for a single

mobile robots.
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3.4.3 Stereo Active Vision

In a taxonomy proposed by Scharstein and Szelinski [SS02] classification of stereo

algorithms has been conducted. The major categories are local methods and global

methods. Global methods attempt to minimize an energy function across the entire

image area, while local methods minimize a matching cost function for computing

the correspondence between the stereo input frames using an aggregation window. In

general, local algorithms are suitable for real-time applications but may suffers from

crossing depth discontinuities and the aperture problem if the size and the shape of the

aggregation window was not defined properly. As a result of such problems, object

boundaries are blurred and the texture-less regions are very noisy. On the other hand,

global methods such as Dynamic Programming (DP) [LSY06], Belief Propagation

(BP) [KSK06] and Graph Cut (GC) [KZ01] make explicit smoothness assumptions

on the disparity map. DP approaches assume that the relative ordering of pixels on

a scan-line between two frames remains the same (monotonicity assumption) which

may cause errors in the depth estimation of narrow foreground objects. As most of

the global algorithms, BP and GC approaches gives encouraging results by enforcing

the optimization in two-dimensions on the prize of the computational speed. Other

stereo approaches based on the minimization of an energy function over a subset

of the input image are considered in between local and global algorithms. Their

minimization strategy is based on Semi Global Block Matching (SGBM) algorithms

[Hir06], Dynamic Programming or Scan-line Optimization (SO) techniques [MTS07]

and recently on line segmentation [DL06].

Recent stereo algorithms have significantly advanced the state-of-the-art in terms of

quality. However, in terms of speed, they are computationally expensive and takes

up to several minutes to compute a disparity map ( [TMS+08] gives a performance

evaluation of cost aggregation strategies proposed for stereo matching). Some ap-

plications such as (autonomous mobile robots, augmented-reality and automatic ve-

hicle guidance) require real-time performance for the generation of the depth map.

Hence, the importance of real-time stereo algorithms increases as in [FLV05] where

an adapted recursive formulation is proposed to reduce the computing cost of SAD
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cost function of a local approach which in turn inherits the ambiguity problem from

the local algorithms. As a solution to overcome this problem, they implement a post

processing filter application at the last phase of the algorithm which is considered as

an overhead to the computation time. On the other hand, [YEA08] overcomes the

ambiguity problem in low textured areas by replacing estimates in texture-less re-

gions with fitting planes. The algorithm starts with window-based multi-view stereo

matching followed by the application of consistency fusion module. Afterword, a

plane-fitting phase is applied by using color segmentation, where a plane is adjusted

for each segment. In order to enhance the overall computation time, some approaches

integrate the computation power of the GPU. The use of a GPU has been introduced

before in global approaches with hierarchical BP [YWY+06] and DP based on adap-

tive cost aggregation [WLG+06]. As the use of a GPU due to hardware constraints is

not applicable on some platforms, solving the low texture problem using an effective

variable support based on image segmentation within the SO framework has been

addressed in [MTS07]. While the result is promising, the performance is far from

being real-time (i. e. some minutes). The computational time has been improved

by using line segment techniques and tree dynamic programming as in [DL06]. The

segmentation module there contains three steps: computing the initialization marks,

repositioning marks, and removing isolated marks. In order to extract linear planes,

a parameter estimation approach is used for fitting planes on sparse correspondence.

Afterward, dynamic programming is used on the constructed tree to minimize the

energy function. The algorithm has performed well on an Intel Pentium IV 2.4 GHz

processor (processing time for “tsukuba” [SS02] is about 160 ms). However, the re-

quirement of enforcing the monotonicity inherited from the DP techniques still cause

the thin foreground objects problems.

3.5 Constraints of Alternative Systems

Yet, some of these 3D motion estimation and segmentation approaches require a

pre-defined 3D model or prior segmentation information [SWE+08]. Such require-

ments may considered as a vital drawback in the autonomous robotic field where
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prior information about the objects 3D model in unpredicted scenarios and model

geometry couldn’t be available. Moreover, they did not address the multi-moving

non-rigid objects problem where several objects could be occluded in different depth

levels [KCC10]. Another aspect that should be taken into consideration is the compu-

tation speed as active vision applications require fast algorithms to act realistic in such

dynamic environment. Hence, In order to overcome such drawbacks, we propose in

our work a motion segmentation approach which is capable of handling transparent

motion in a reasonable computation speed, proposing a saliency-based 3D motion

segmentation approach integrating a real time segment based stereo algorithm, and

detecting 3D motion patterns in a biologically inspired approach. On the other hand,

some of the 3D motion analysis systems based on the generated depth from stereo

information are limited by the use of external hardware and geometrical information

as shown in the rest of this section.

3.5.1 Forward Collision Detection

In [NVO+08] a forward collision approach has been introduced for urban traffic en-

vironment using the depth information from a stereo camera. However, the system

integrates the 3D reconstruction information from a "TYZX" hardware board [TYZ].

The reconstructed 3D points is used to form primary coarse objects to extract the re-

quired geometrical information which are used in tracking the constructed 3D coarse

objects. A combined radial border scanning algorithm has been used to extract the

delimiters of objects based on the generation of the top view projection and the con-

tour extraction. The object delimiters data provides the necessary information re-

quired for the forward collision module to handle partially occluded objects. The

system introduced a 3D polyhedron model for the drivable tunnel based on the gen-

erated information of the elevation map and the car relative velocity. The external

hardware-dependent vehicle parameters such as the steering angle, yaw rate and car

speed define the geometrical shape of the drivable tunnel. Hence, the output of the

forward collision module is dependent on the object delimiters, tracked objects and

the drivable tunnel model. However, external hardware-dependent ego-car mechani-
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cal and movement parameters has been used in the system as shown in fig. 3.2. The

use of such external hardware dependent information limits the usability of the sys-

tem which is considered one of the main constraints.
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Figure 3.2: Forward collision detection system architecture introduced in [NVO+08]

3.5.2 6D Vision

A 3D variational optical flow integrating the temporal smoothness using Kalman fil-

ter assuming a linear motion model has been introduced in [RMW+10]. The Kalman

filter integrates a measurement vector mt generated by a feature extraction mod-

ule.
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mt =

(
pt

disp(pt)

)
, pt = pt−1 + v(pt−1) (3.6)

where v(pt−1) is the estimated optical flow of the previous feature position pt−1,

while disp(pt) is the disparity value at the pt position. The state vector of the Kalman

filter ξ = (X,Y, Z, Ẋ, Ẏ , Ż)T defines the 3D position and velocity of the feature

point. The 6D vision approach uses the previous feature position pt−1 generated by

the feature tracker module instead of the projection of the filtered state ξt−1 in order

to avoid the low pass filtering effect. The problem of such approach comes when

new feature points appear or disappear. Hence, [RMW+10] introduced a filtered

dense optical flow and stereo named Dense6D based on a U-D factorization algo-

rithm. The Dense6D approach associate with every discrete pixel pt−1 a Kalman

filter κt−1(pt−1) and a sub-pixel component spt−1(pt−1). The position and the

sub-pixel components are updated by

pt = [pt−1 + spt−1(pt−1) + v(pt−1) + 0.5px]

spt(pt) = [spt−1(pt−1) + v(pt−1) + 0.5px] mod 1px− 0.5px
(3.7)

where px = (1, 1)T . In order to overcome the problem of false initialization, the

covariances of the surrounding filter has been taken into consideration. However, the

result of the filtering approach will be highly distracted in case of large optical flow

displacements. On the other hand, in order to achieve real time performance they used

the GPU and FPGA unit for parallel implementation. Moreover, they compensate

the error generated from the ego-motion of vehicle using the external inertial sensor

data.

3.5.3 Obstacle Detection in Complex Scenarios

The obstacle detection method in [PN10] integrates the local 3D point information

such as the density, the neighborhood area and depth for generating an occupancy
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grid framework as shown in fig. 3.3. The input stereo images are used in the gen-

eration of the dense depth maps while the left image sequence is used to generate

the optical flow. The system fuses the range and motion information extracted from

the optical flow and road-obstacles separation modules to detect dynamic obstacles

and their motion orientation. While the system is named real time, the performance

improvement is due to the use of the GPU in the generation of the optical flow and

the use of "TYZX" accelerated hardware system [TYZ] in the 3D scene construc-

tion. Furthermore, the vehicle ego-motion is estimated using the external car sensors

information such as the speed and the yaw rate.
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Figure 3.3: Obstacle detection in complex scenarios system architecture introduced
in [PN10]



4 3D Motion Parameter Estimation

The basic idea of the proposed algorithm is to enhance the computational speed of

the motion segmentation approach represented in [MJM02] by improving the 3D

motion parameter estimation process. The segmentation approach initializes the seg-

mentation process with the whole motion vector field (MVF) as one segment. The

objective is to obtain a state where only MVs belonging to the same 3D motion are

connected. The estimated motion parameters at a point pm is influenced by other

MVs depending on their connectivity to the same 3D motion. Hence, the process of

motion parameters estimation is repeated N times for each iteration, where N is the

total number of detected MVs. Therefore, enhancing the computational speed of the

motion parameters estimation process leads to a significant speed-up in the segmen-

tation approach.

4.1 Daugman’s Neural Network

Interpreting optical flow as introduced in [TSL+91] includes a 2D signal transform

similar to that described by Daugman [Dau88]. Daugman employed a network of

neuron-like units with a specified learning rule. According to the architectural design,

the stabilized connection weights are the best least-mean-squares approximation to

the Gabor parameters. Daugman’s transform finds the derivative of the estimation

error with respect to each of the Gabor parameters using a gradient descent method

in order to iteratively approximate the solution.

In the case of interpreting an optical flow, the elementary signals are 2D vector fields

of infinitesimal generators of a 3D Euclidean group.
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The error functionE(w) is defined as the difference between the ideal optical motion

vopt(x, y) and the sensed optical motion v(x, y) for each small patch of image flow

[TSL+91]:

E(w) =
∑

(x,y)∈w

|v(x, y)− vopt(x, y)|2 (4.1)

where v(x, y), (x, y) ∈ w is an image flow in a window w with m points, w =

{pj , j = 1, ...,m}. A least-square-error solution is a set of coefficients ci, i =

1, ..., 6 (see section 2.4) which minimizes the error E(w), i. e., dE(w) = 0. The

derivative of an error E(w) with respect to ci is given as

Dci =
∂E(w)

∂ci

= 2
∑

(x,y)∈W
[vT (x, y) · ei(x, y)]− 2

∑
(x,y)∈W

[(
6∑
k=1

ckek(x, y)

)T
· ei(x, y)

]

= 2
∑

(x,y)∈W
[v(x, y)− vopt(x, y)]T · ei(x, y)

(4.2)

Dci is set equal to zero to solve the equation for the coefficients ci. This approach

has been improved in [MJM02] by including a recursive term α ·∆c(k−1)i into the

learning rule

ck+1 = ck + ∆ck with ∆cki = −1

2

∂E

∂ci
+ α ·∆c(k−1)i (4.3)

where α is a constant learning rate, which yields a noticeable speed-up at gradual

slopes.
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4.2 Enhanced 3D Motion Parameters Estimation

This part describes the functionality of the proposed algorithm in [SM08b]. It dis-

cusses the drawback in Daugman’s algorithm. According to which the change in a

single estimated parameter i. e. ck is affected by the estimation of other parame-

ters. This would generate an error especially in the scenarios where an input MVF

describes the motion generated by one of the parameters in a motion template. The

proposed method approaches the aftermentioned problem by making use of global

minimum search criterion for each parameter in a MVF, which is applicable from the

first iteration step k = 0. It is quite possible that each parameter in the estimation

process may require different number of iterations m i. e. m ∈ {0, 1, 2, ..., Nm} for

particular k ∈ {0, 1, 2, ..., Nk} to be cikm where i ∈ {1, 2, ..., 6}, Nm and Nk are

predefined threshold values for maximum iterations number. The root mean square

error (RMSE) Eikm(c) is calculated between the input and the estimated motion vec-

tor as

Eikm(c) =
1

|S|
√ ∑

(x,y)∈S
|v(x, y)− vest(x, y)|2 (4.4)

where v(x, y) is a vector component of input MVF and vest(x, y) is the vector com-

ponent of the estimated MVF. S is a concatenated vector of the detected MVs in the

image. Afterwords, the change in error ∆Eikm between two successive iterations is

being calculated as

∆Eikm(c) = Eikm(c)− Eikm−1
(c) (4.5)

The above parameter ∆Eikm is significant in devising a set of learning rules which

determines the stop criterion during the motion parameters estimation process.

We start with the computation of a particular parameter coefficient cikm+1
as fol-

lows:
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cikm+1
= cikm + ∆cikm (4.6)

The convergence of cikm+1
is dependent on the value of ∆cikm which depends on the

value RMSE Eikm(c) as given in

∆cikm = − 1
2

∆Eikm(c)

∆cikm
+ αi∆c

i
km−1

(4.7)

where

∆cikm =


1 if cikm = cikm−1

cikm − c
i
km−1

|cikm − c
i
km−1

|
if cikm 6= cikm−1

(4.8)

and αi is an adjustable learning force parameter. Let us assume that at the start of

estimation process when k = 0, cikm = 0 as a default value.

⇒ cikm+1
= ∆cikm

⇒ ∆cikm = − 1
2
∆Eikm(c) ∀ ∆cikm−1

= 0

∆cikm = 1

(4.9)

It can be seen that ∆cikm is proportional to ∆Eikm(c) at the first step. This means

∆Eikm(c) will be positive for the first iteration under the assumption that the default

input MVF is a blank template i. e. a MVF generated from the motion parameter

vector c = (0, 0, 0, 0, 0, 0). Now if ∆Eikm(c) is increasing, this means that the

cikm is not a negative value. Hence, we will seek cikm within the positive values. In

order to speed up the seek process, we will consider the value of the estimated ∆cikm
obtained in the first step (4.9) in order to skip redundant computations. Afterwords,

we will test the ∆Eikm(c) again. In case it is increasing, we have not reach a global

minimum. Although, cikm may reach a local minimum which could further reduce
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the RMSE Eikm(c). However, this is would not be an optimum solution. This point

actually highlights the main difference between Daugman’s algorithm and the new

methodology. According to which, the new algorithm will not consider the value of

cikm obtained at the first iteration k = 0 in estimating the other coefficients. The

learning rule has been changed to be:

cikm+1
=


cikm + ∆cikm

cikm − 2∆cikm if (Λ = 0)

cik0 if (Λ = 1 ∧ k = 0)

(4.10)

where Λ is a testing criterion to check the validity of the error convergence in a

particular direction

Λ =

0 if (∆Eikm(c) ≥ 0 ∧ ∆cikm < 0)

1 if (∆Eikm(c) ≥ 0 ∧ ∆cikm ≥ 0)
(4.11)

For primary motion templates, each template has been generated using only one co-

efficient and the other coefficients being equal to zero. This leads to the fact that in

order to estimate the right value for that coefficient in a fast way, the other coefficients

should be zeros. So for the first iteration, as we seek if the MVF is one of the those

primary motion templates, we assume correctly constructed MVF will be generated

using only one coefficient. Therefore, we check for each cikm if it reaches a global

minimum or not, independent from other coefficients.

4.3 Results on 3D Motion Segmentation Approach

The new developed 3D motion parameters estimation algorithm introduced in [SM08b]

yields an overall computation time enhancement as shown in fig. 4.1 which demon-

strates the improvement in computation time of the motion segmentation approach
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with respect to the computational time needed for segmenting a MVF of size (128x192)

compared to the results obtained by [MJM02].

Figure 4.1: Reduction of the computational time achieved by the improved algorithm
in [SM08b] needed for segmenting a MVF of size (128× 192).

4.4 Chapter Summary

We have presented a fast approach to estimate the motion parameters coefficients,

which results in a significant speed up compared to the estimation process from prim-

itive motion patterns as it enhances the reduction of the mean error of the estimated

parameters even with highly noised MVF. The proposed algorithm will leave a great

influence in reducing the computational time of motion segmentation approaches

which implies the need for fast processing methods.



5 3D Saliency-Based Motion Segmentation

In order to emphasize the contribution of the proposed approach in this chapter, the

difference between estimating the 3D motion parameters and 3D motion segmenta-

tion algorithm has to be recognized. This chapter represents an enhanced 3D motion

segmentation approach which integrates the improved 3D motion parameters estima-

tion algorithm introduced earlier in the previous chapter.

In comprehensive systems of multi-object motion analysis in robotic vision, the in-

terpretation of multiple moving objects becomes very important. There are two main

challenges facing the segmentation of 3D multi-moving objects in an active vision

system. The first is to segment an incoherent MVF into partitions in reasonable com-

putation time, and the second is to overcome the ego-motion problem from the move-

ment of a mobile robot or a camera head.

In the context of the first problem, our active vision system is exposed to some res-

cue scenarios where objects could be partially visible and not connected. Hence,

its important to segment the MVF independently from a predefined spatial informa-

tion such as object contours generated from image segmentation approaches. Such

methods are dependent on a group of features which could be affected by the con-

tinuous environment change in a dynamic scene, e. g., the results of the color-based

segmentation approaches could be affected by illumination changes.

The 3D motion segmentation approach in [MJM02] is conceptually able to handle

transparent motion despite the pixel-connectivity of objects where motion parameters

are used as a homogeneity criterion for the segmentation process. Other approaches

in this context assume that each segment represents a rigid and connected object such

as [GW04] where 2D non-motion affinity cues (such as spatial coherence) are in-

corporated into 3D motion segmentation using the Expectation Maximization (EM)

algorithm. In the Expectation step, the mean and covariance of the 3D motions are
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calculated using matrix operations, and in the Maximization step the structure and

the segmentation are calculated by performing energy minimization. [SM06] also

assumes that each segment represents a single rigid body motion in space. The seg-

mentation process is based on an estimate of the optical flow consistent with a single

rigid motion in each segmented region. The method which allows both viewing sys-

tem and viewed objects to move iterates three steps until convergence. The first step

is the evolution of closed curves via level sets, and then comes the computation of

essential parameters of rigid motion by linear least squares in region of segmentation,

while the third step is the estimation of optical flow consistent with a single rigid mo-

tion. In [HC05], a set of feature points tracked across a number of frames is obtained

in order to segment 3D motions of multiple moving rigid objects. The feature points

whose motion is consistent with a given motion matrix are determined using seed se-

lection and coherence measure mechanisms that provide a map which is segmented

by region growing algorithm. However, using the spatial coherence in the mentioned

works, requires prior information of the object geometry. Such information is mainly

based on a predefined assumption of spatial constraints or detecting certain groups

of features such as in [PB06] which is in the case of our autonomous system are not

available. In addition, implementing such constraints leads to image segmentation

rather than segmenting the generated MVF based on its motion parameters. Similar

in concept the work done in [WGP09] where prior geometric information (bounding

box) is required for tracking selected image segments (manually delinated contour

for each object in the first frame) based on the object’s index and relative depth in-

formation using a single pairwise Markov random field (MRF). In this context the

work presented in [WNL08] is also based in the detection of image segments rather

than the segmentation of the computed MVF where a part hierarchy detector is de-

fined for the required object class e. g. pedestrians and learned by boosting shape

information from local image features. In [TP07] instead of tracking predefined im-

age segments, a texture-based back-ground subtraction is used to detect objects and

a unifying distance measure algorithm is build to utilize the tracking and classifica-

tion module. The motion information is used in the previous approaches as an extra

cue for tracking image segments besides other features such as color histogram and

texture. While other approaches use the motion information to detect and track the
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objects behaviors as represented in a visual surveillance survey of object motion and

behaviors [HTW+04].

The second challenging problem (estimation of the camera ego-motion) has been

subjected in early work such as [KKR+97] which addresses the problem of cap-

turing, calibrating, and estimating 3D ego-motion of a monocular camera including

the camera position in a known 3D environment. The intrinsic and extrinsic cam-

era parameters of a real camera are estimated using an automated landmark-based

camera calibration method which requires prior knowledge of the virtual environ-

ment. In [SMS00] a single camera has been used for computing the ego-motion of

the vehicle relative to the road. A probability density function for each image patch is

computed, then the probability functions from all patches are combined where prior

motion estimates give low weight to patches that are not related to the road. The

motion model has been reduced to 3 essential parameters, which eliminates the am-

biguity between rotations and translations but also limits the representation of a six

degree of freedom 3D motion. Recent work such as [SFG+07] has handled the same

problem using a stereo-vision system where feature points (basicly road lane mark-

ings) are matched between pairs of frames and linked into 3D trajectories. However,

the estimated parameter is only the vehicle velocity. In [SO06], in order to estimate

the vehicle ego-motion, static regions must be extracted first which are dependent on

the road plane.

In this chapter, a new algorithm is proposed to enhance the computational speed of

the motion segmentation approach presented in [MJM02] which is very expensive

computationally due to its vector-based mechanism. The new algorithm assumes

a limited number of motions in two or more consecutive frames. Hence, the new

approach attaches the most salient motion according to its vector numbers to the first

segment, then the next salient motions in a fast iterative process using an enhanced

motion parameters estimation algorithm [SM08b]. Moreover, the new approach is

able to deal with the ego-motion problem resulting from the movement of the mobile

robot by addressing the most salient motion resulting from the segmentation of the

generated MVF under certain constraints as the global motion of the scene.
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5.1 Filtering of 2D Input MVFs

In case of using a sequence of real images, a new challenge has been raised due

to the large number of generated VFs. In order to reduce the number of processed

vectors, the input data could be represented in different scales. Scaling the input

image itself will result in big losses of input information, while scaling the generated

MVF will produce better result as shown in fig. 5.1 using input sequence from PETS

Dataset [PET].

5.2 Vector-Based Motion Segmentation

The motion segmentation approach in [MJM02] sets a connection weight function

ς(pm,pn) ∈ [1, 0] between all MVs to be ς(pm,pn) := 1. The weight function is

iteratively updated for each pair of image points. For an image point pm, the update

process starts by estimating the motion parameters c(pm) using the following error

function derived from equation 4.1

E(c(pm)) =
1

|S|
∑
p∈S

ς(pm,p)|v(p)− vopt(p)|2 (5.1)

The motion parameters c(pm) are influenced by other MVs depending on their con-

nectivity to the same 3D motion. A generated residual VF describes the error be-

tween the generated MVF and the actual input field (for more details refere to section

2.4).

fm(p) =

M∑
i=1

ci(pm)ei(p)− v(p) (5.2)

For a pair of points (pm,pn), the error vectors fm(pm) and fm(pn) are compared

by evaluating a deviation measure ∆f(pm,pn) and ∆f(pn,pm). The weight func-

tion is updated by the following equation
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(a) (b)

(C)

Figure 5.1: Representation of computed MVFs at different scales. (a) Input sequence
from PETS Dataset [PET]. (b) Resulting MVF. (c) Left: MVFs gener-
ated from scaling the input images. Right: MVFs resulted from scaling
the generated MVF. From up to down, image sizes: 64 × 96, 32 × 48
respectively.
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ς(pm,pn) ≡ ς(pm,pn)− α1

2
(∆f(pm,pn) + ∆f(pn,pm)) (5.3)

The update process is iteratively repeated for each pair until there is no significant

change. Fig. 5.2 demonstrates the segmentation process of a synthetic MVF contain-

ing two different motions.

5.3 Saliency-Based 3D Motion Segmentation

The segmentation approach is developed to be a saliency-based approach instead of

vector-based in order to increase the processing speed which is considered the main

improvement of the proposed algorithm over [MJM02] and [SM08b]. In case of

the ego-motion problem, in order to detect other kinds of motion while the robot is

moving, the global motion should be estimated in such a scene. Other approaches to

estimate global motion such as in [SSH05] use 2D affine transformation parameters

for this purpose.

The proposed algorithm [SM08a] combines the two goals of segmenting multiple 3D

motions, and estimating the global motion of a scene by considering the most salient

motion has been segmented, i. e., the first segment ζi=1, i ∈ {1, 2, 3, ...,m} is the

global motion of that scene in case that the vectors numberNζi are above a threshold

τζmax .

Before the segmentation approach starts, a noise reduction process is applied to the

input MVF in order to limit the estimation process to the valid vectors only. Then, a

motion segments class is initialized where every segment contains the motion param-

eters information c(ζi) of the attached motion. While the segmentation process con-

siders the whole MVF is representing one motion at the first iteration as in [MJM02],

the learning rule in the estimation process has been developed from equation 4.3 to

be
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(a) (b) (c)

i = 1 i = 2 i = 3

i = 4 i = 5 i = 6

(C)

Figure 5.2: Vector-based motion segmentation of two different motions: (a) Coordi-
nate system. (b) Input synthetic MVF. (c) Result of segmentation process.
(d) Evolution of results after i iterations.
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cikm+1
=


cikm + ∆cikm

cikm − 2∆cikm if (Λ = 0)

cik0 if (Λ = 1 ∧ k = 0)

(5.4)

where each parameter in the estimation process may require a different number of

iterations m i. e. m ∈ {0, 1, 2, ..., Nm} for a particular k ∈ {0, 1, 2, ..., Nk} to be

cikm where i ∈ {1, 2, ..., 6}. Meanwhile, the convergence of cikm+1
is dependent on

the value of ∆cikm .

∆cikm = − 1
2

∆Eikm(c)

∆cikm
+ αi∆c

i
km−1

(5.5)

where

∆cikm =


1 if cikm = cikm−1

cikm − c
i
km−1

|cikm − c
i
km−1

|
if cikm 6= cikm−1

(5.6)

and Λ is a testing criterion to check the validity of the error convergence in a particular

direction:

Λ =

0 if (∆Eikm(c) ≥ 0 ∧ ∆cikm < 0)

1 if (∆Eikm(c) ≥ 0 ∧ ∆cikm ≥ 0)
(5.7)

where ∆Eikm is the change in error between two successive iterations

∆Eikm(c) = Eikm(c)− Eikm−1
(c) (5.8)
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A validation process is applied to each unprocessed vector vε=0
k , ε ∈ {1, 0} in or-

der to detect whether it belongs to the same motion or not by measuring the vector

difference ϑf between the estimated vector and the actual input vector

ϑf (k) = vε=0
k − vinp(k)

vε=0
k ∈ ζi if ϑf (k) < τ

ϑf

min

(5.9)

where τ
ϑf

min is the minimum threshold that a vector difference should pass in order

to consider an estimated vector vε=0
k belonging to the current motion segment ζi

generated by the motion parameters c(ζi)

After the validation process is done, the estimation process is applied after the exclu-

sion of vectors that do not belong to the same motion. Hence, the estimated motion

parameters ζi is enhanced.

The validation process is repeated until the maximum value of all vector differences

does not exceed the minimum threshold τ
ϑf

min. Afterwards, the estimated motion

parameter coefficients will be assigned to the first segment and each estimated vector

that belong to the same motion will be marked as processed as shown in fig. 5.3 which

demonstrates the segmentation process of a synthetic MVF containing two different

motions.

vε=0
k → vε=1

k if c(vk) ≡ c(ζi) (5.10)

The segmentation approach will continue with the remaining unprocessed vectors in

order to segment other existed motions until either the number of segments reaches

a predefined threshold –under the assumption that there is a limited number of mo-

tion in two or more consecutive frames– or the last resulted segment size is below a

minimum threshold τ ζmin.
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(a) (b) (c)

i = 1 i = 2 i = 3

i = 4 i = 10 i = 11

(c)

Figure 5.3: Saliency-based motion segmentation of two different motions: (a) Co-
ordinate system. (b) Input synthetic MVF. (c) Result of segmentation
process. (d) Evolution of results after i iterations.
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5.4 Chapter Summary

In this work, we propose a saliency-based approach for estimating and segmenting

3D motions of multiple moving objects represented by 2D motion vector fields. In

order to overcome typical problems in autonomous mobile robotic vision such as

noises in the generated MVFs, occlusions, and inhibition of the ego-motion defects

of a moving camera head, a classification module has been implemented to define

the global motion of the mounted camera. The proposed method achieves valuable

reduction in computational time by applying a guided control module which limits

the segmentation output to a flexible predefined threshold value (results of the seg-

mentation approach are discussed in chapter 7). The computational enhancement is

very important since the output of the motion segmentation approach is implemented

in an active vision system.
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6 Depth-Integrated 3D Motion Estimation

In this chapter, a new algorithm is proposed [SM11a] to enhance the computational

speed of the motion segmentation approach presented in [SM08a] by integrating the

depth information in the 3D motion parameters estimation process (see section 6.3).

Hence, the search space can be reduced to five dimensions which represent the rota-

tion about theX,Y, and Z axes and translation in the direction ofX and Y axes. The

geometrical information of the mobile robot and the mounted stereo camera head has

been taken into consideration in order to accurately position the motion vectors in the

3D spatial domain. The resulting 3D MVF provide the ability to detect and estimate

any predefined motion patterns which is vital in predicting any possible collision not

only with the robot but with any objects in the observed 3D environment. The dis-

parity map is generated using a segment-based scan line stereo algorithm presented

in [SM09] which is fast and independent of the GPU power.

6.1 Pinhole Stereo Geometry

In order to estimate the metric values of the disparity maps, the distance between the

stereo cameras b and the focal length f as shown in fig. 6.1 has to be known.

Stereo algorithms search only in a window of disparities where the range of deter-

mined objects is restricted to an interval called Horopter. The horopter defines a curve

of 3D points with zero retinal disparity [CS09] i. e. the retinal images have the same

distance from the two foveae as shown in fig. 6.2.

The search window can be moved to an offset by shifting the stereo images along the

baseline which must be large enough to encompass the ranges of objects in the scene.

Hence, the determined depth value d will be:
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Figure 6.1: Pinhole stereo geometry.

d =
bf

xr − xl
(6.1)

where xr − xl is the metric disparity value. In order to use the disparity value in

pixel disp, a metric to pixel transformer
1

k
is used in disp = (xr − xl)

1

k
as well as

to transform the metric focal length f to be in pixel n = f
1

k
. The metric depth value

could be rewritten as:
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Figure 6.2: The horopter curve and the disparity on the retina where (H) is a point of
fixation [CS09].

d =
b n

disp
(6.2)

Fig 6.3 demonstrate the relation between the depth value d and different search ranges

of disparity window for a constant value of the distance between the stereo cameras

b and the focal length f .

6.2 Perspective Projection

A perspective projection represents an objects as it would be seen by an observer

positioned at a certain vantage point [CP79]. The center of projection is at the origin

o of the 3D reference frame. The focal length f determines the distance between

the origin and the image plane which is is parallel to the (x, y) plane along the Z
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Figure 6.3: The relation between the depth value d and different search ranges of
disparity window [0,15], [30,45], and [45,60].

axis [MT96]. The 3D point P projects to the image point p as shown in fig. 2.7. The

2D coordinates of p are (x, y), while (X,Y, Z) are the 3D coordinates of P :

x =
fX

Z
y =

fY

Z
(6.3)

The homogeneous coordinates (in case of full camera calibration while assuming that

the focal length f = 1) will be:

xy
1

 ∼
XY
Z

 =

1 0 0 0

0 1 0 0

0 0 1 0



X

Y

Z

1

 (6.4)
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The principal point is not always the origin of the image coordinates in case of real

images which shift the world coordinate system from the reference frame. Hence, the

Euclidean motion of the 3D coordinates must be integrated into the equation (matrix

M ). On the other hand, a transformation matrix K is required to handle the scaling

difference of the image axes [MT96].

xy
1

 ∼ K
1 0 0 0

0 1 0 0

0 0 1 0

M

X

Y

Z

1

 (6.5)

The exterior camera parameters which represent the 3D position and pose of the

camera are determined by the matrix M , while the interior camera parameters are

given by the matrix K which is independent from the camera position:

K =

sx sθ u0

0 sy v0

0 0 1

 (6.6)

where sx and sy are the scaling factors of the x and y axes respectively, sθ deter-

mines the skew between the axes, while the intersection of the principal axis and the

image plane are defined by (u0, v0) (the principal point) [MT96].

6.3 Integrating Depth for Estimating 3D Motion

In this part, the functionality of the proposed algorithm in [SM11a] will be described.

Integrating the depth information in the 3D motion parameters estimation process

reduces the search space to 5D where the parameter coefficient of the translation

in Z direction ci3 will equal the depth difference between two consecutive disparity

maps:
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ci3 = dt+1
i − dti (6.7)

where dti is the depth of point pi,t = (x, y, t)T and dt+1
i is the depth of its corre-

spondence point pi,t+1 = (x+ δx, y+ δy, t+ 1)T determined by the motion vector

vvv(pi,t) generated using a fast variational optical flow approach [BWF+05]. Before

the estimation approach starts, a noise reduction process is applied to the input MVF

in order to limit the estimation process to the valid vectors only. Then, a motion

segments class is initialized where every segment contains the motion parameters

information c(ζi) of the attached motion. The segmentation process considers the

whole MVF is a global motion at the first iteration.

A validation process is applied to each unprocessed vector vε=0
k ε ∈ {1, 0} in order

to detect whether it belongs to the same motion or not by measuring the vector dif-

ference ϑf between the estimated vector and the actual input vector. The estimation

process is re-applied after the exclusion of vectors that do not belong to the same

motion.

6.3.1 Real-Time Segment Based Stereo Algorithm

The goal of stereo algorithms is to establish pixel correspondences between the left

image Il and the right image Ir . In order to achieve reasonable results, two geometric

constraints are used: first on the imaging systems, i. e. the input stereo images are

rectified where the epipolar lines are aligned with corresponding scan-lines. And sec-

ond on the scene, i. e. the smoothness assumption where the disparity map is smooth

almost everywhere except at the border of objects assuming that scene is composed

of smooth structures which in the case of autonomous mobile robots applications is

not granted.

The first step of the proposed technique in [SM09] is the line segmentation of the

reference image Ir , in which the epipolar line eply is segmented into different labels

li(eply) ∈ Γ in the label space Γ based on the Euclidean color differences between
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the color of a seed pixel glis where g = (R,G,B)T and the color of the neighborhood

pixels of the same epipolar line:

(x+ k, y) ∈ li(eply) ∀ |glis − gk| < τc (6.8)

where τc is the Euclidean color distance threshold and k is an adjacent segment in a

particular epipolar line eply . The correspondence problem is formulated as an energy

minimization function between segments of the input images.

E(dΓ) = argmin(Elidata(dΓ) + E
l(i,d)∈k
smooth (dΓ)) (6.9)

where E(dΓ) is the estimated disparity map of line segment of label i ∈ Γ for a

disparity value dΓ. The data term Elidata(dΓ) of the energy function is the match-

ing cost between a segment li(eply) in the reference image and the opponent seg-

ments li,d(eply) in the target image. The smoothness term E
l(i,d)∈k
smooth (dΓ) encodes

the smoothness assumption (see equation 6.12).

Matching Cost and Optimization

In order to reduce the complexity of calculations, a matching cost CM based on the

absolute color difference between the points of the current segment in the reference

image and all disparity hypotheses is used to evaluate the data term

CM (qr, ql,d) =
∑
c∈<

|qcr(x, y)− qcl,d(x+ disp, y)| (6.10)

where < is the RGB color space, qc(x, y) c ∈ < is a single color channel value at

the point (x, y), while qr(x, y) ∈ Ir , ql,d(x, y) ∈ Il, and disp is the hypothesized

disparity value.

The data term is computed from the sum of the matching cost along the segment

points
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Elidata(dΓ) =

qNr∑
q=qs

CM (qr, ql,d) ∀ qr ∈ li(eply) (6.11)

where qs is the starting seed pixel of a line segment and qNr is the last point in the

same segment.

In order to enhance the optimization performance, we propose an effective and sim-

plified smoothness term within the scan-line optimization (SO) framework.

E
l(i,d)∈K
smooth (dΓ) = λ(`li) · |dli − dlK | (6.12)

where λ(`li) is an ascending function to the length of the current segment `li used

to penalize depth discontinuities. The concept behind the function is to balance the

relation between the disparity of a segment and the sum of the matching cost of the

segment points. While the matching cost is affected by the length of the segment, only

one disparity value is assigned to all the segment points and the best value is chosen

within a winner take all (WTA) scheme. Considering the inter-scan-line smoothness

resulting from line segmentation leads to overcome the ambiguity problem without

the use of a recursive smoothing function as in BP approaches or facing narrow front

objects problem as in DP algorithms.

Results of the Proposed Approach

In an effort to reduce the overall computation time, the depth from the stereo ap-

proach is applied without a refinement step depending on the enhancement done by

the modified smoothing function. Fig. 6.4 represents a qualitative comparison of

the proposed algorithm to the ground truth of the Middlebury data-set [SS02, SS03].

The second row depicts the generated depth map without the use of the smoothing

function, while the third row represents the result of the stereo approach using the

smoothing function. The result shows that when the smoothing function is applied,

it provides a better quality. However, the use of the smoothing function increases the
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processing time by about 5∼9 ms which is not very critical for real-time application.

On the other hand, the result without the smoothing function is affected by noise but

this is not very critical to the depth perception.

6.3.2 3D Representation of Motion Parameters

The visualization difference between a projected 3D point into a 2D plane using the

equations proposed in [TSL+91] and the 3D homogeneous transformation matrix

resulting from multiplying the current 3D spatial position and the perspective matrix

must be taken into consideration. Hence, in order to represent a similar visualization

of the projected 3D point in the real 3D spatial domain, transformation functions

have to be applied to estimate the transformation matrix coefficients (tX , tY , tZ for

translation motion and θX , θY , θZ for rotation motion) from the pre-estimated 3D

motion parameter coefficients of the projected motion ci (see equation 2.19).

The translation in theX and Y direction will be equal to the pre-estimated 3D motion

parameters c1, c2, while the translation in the Z direction and the rotation motions

involve the perspective information. For a 3D perspective projection, a 3D point in

eye space is projected onto the near plane (projection plane) where Xe as shown in

fig. 6.5 is mapped to x and calculated using the triangles similarity [Ahn]:

x

Xe
=
−n
Ze

x =
−nXe
Ze

(6.13)

and similarly for y:

y =
−nYe
Ze

(6.14)
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(a) (b) (c)

(d)

(e)

Figure 6.4: Qualitative comparison of the generated depth map: (a-c) Ground truth
data for the three images from the Middle-bury data-set (Tsukkuba,
Teddy, and Cones). Result of the proposed line segment based stereo
algorithm (d) without and (e) with the use of the modified smoothing
function.
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Figure 6.5: Projection in OpenGL of a 3D point in eye space onto the near
plane [Ahn].

Translation in X, Y and Z

The following transformation matrix is used to estimate the translation in X direc-

tion:


X ′e

Y ′e

Z′e

w

 =


1 0 0 tX

0 1 0 tY

0 0 1 tZ

0 0 0 1



Xe

Ye

Ze

1

 (6.15)

from the above transformation X ′e is the new value for Xe with tY = 0 and tZ =

0:

X ′e = Xe + tX (6.16)

x′ from eq. 6.13 is:

x′ =
−nX ′e
Z′e

=
−n(Xe + tX)

Ze
(6.17)
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while x′ from the estimated 3D motion parameter coefficient of the projected motion

c1 for Z = 1 (see eq. 2.19 and 2.20) is:

e1(x, y) =

(
1

0

)
x′ = x+ c1

(6.18)

and similarly for the translation in y:

e2(x, y) =

(
0

1

)
y′ = y + c2

(6.19)

From eq. 6.17 and 6.18 :

x+ c1 =
−n(Xe + tX)

Ze
=
−nXe
Ze

− ntX
Ze

x+ c1 = x− ntX
Ze

tX = −nc1
Ze

(6.20)

And similarly for the translation in tY :

tY = −nc2
Ze

(6.21)

while for the translation in Z direction, x′ and y′ from eq. 2.20 will be:
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e3(x, y) =

(
−x
−y

)

x′ = x+ (−c3xsk)

y′ = y + (−c3ysk)

(6.22)

where xs ∈ [−1, 1] is the normalized value of the x location on the near plane, k is a

scaling factor. On the other hand, X ′e and Y ′e from eq. 6.15 with tX = 0 and tY = 0

are:

X ′e = Xe + tX = Xe

Y ′e = Ye + tY = Ye

Z′e = Ze + tZ

(6.23)

from eq. 6.13, 6.22 and 6.23:

x− c3xsk =
−nX ′e
Z′e

=
−nXe
Z′e

Z′e = − nXe
x− c3xsk

(6.24)

Hence the translation in z direction tz will be

tz =
−nXe

x− c3xsk
− Ze (6.25)

Fig. 6.6 demonstrates the translation in the X , Y and Z axes using the translation

parameter coefficient ci from eq. 2.19 and the transformed translation parameter tX ,

tY and tZ from (eq. 6.20, 6.21 and 6.25).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: Translation in the X , Y and Z axes. (a-c) Translation in the X di-
rection, (a) using the translation parameter coefficient c1, (b) using the
transformed translation parameter tx, (c) perspective view of (b) using
OpenGL. (d-f) Translation in the Y direction. (g-i) Translation in the Z
direction.
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Rotation about x, y and z

In order to estimate the rotation parameters such as the rotation about the Z axis θZ ,

the following transformation matrix has to be used:


X ′e

Y ′e

Z′e

w

 =


cos θZ − sin θZ 0 0

sin θZ cos θZ 0 0

0 0 1 0

0 0 0 1



Xe

Ye

Ze

1

 (6.26)

X ′e and Y ′e are computed from the above transformation:

X ′e = Xe cos θZ − Ye sin θZ

Y ′e = Xe sin θZ + Ye cos θZ

Z′e = Ze

(6.27)

For the rotation about Z axis, x′ and y′ from eq. 2.21 will be:

e6(x, y) =

(
−y
x

)

x′ = x− c6ysk
y′ = y + c6xsk

(6.28)

From eq. 6.13 and 6.27:

x′ =
−nX ′e
Z′e

=
−n(Xe cos θZ − Ye sin θZ)

Ze
(6.29)

From eq. 6.28 and 6.30:
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x− c6ysk =
−n(Xe cos θZ − Ye sin θZ)

Ze

Xe cos θZ − Ye sin θZ = (x− c6ysk)
−Ze
n

(6.30)

Solving the equation using the trigonometric identities yields:

a sin θ + b cos θ =
√
a2 + b2 sin(θ + α) = c

θ = sin−1(
c√

a2 + b2
)− tan−1(

b

a
)

(6.31)

where a = −Ye, b = Xe and c = (x − c6ysk)
−Ze
n

. Hence, the rotation about the

z axis is computed from eq. 6.30 and 6.31:

θZ = sin−1

 (x− c6ysk)
−Ze
n√

X2
e + Y 2

e

− tan−1

(
Xe
−Ye

)

θZ = sin−1

(
(nXe + c6yskZe)

n
√
X2
e + Y 2

e

)
− tan−1

(
Xe
−Ye

) (6.32)

The same procedure is applied for the estimation of the rotation parameter θX :

Ze cos θX + Ye sin θX =
−nXe

(x− c4xsysk)

θX = sin−1

(
nXeZe

(nXe + c4xsyskZe)
√
X2
e + Y 2

e

)
− tan−1

(
Ze
Ye

) (6.33)

and for θY :
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Ze cos θY −Xe sin θY =
−nYe

(y + c5xsysk)

θY = sin−1

(
nYeZe

(nYe − c5xsyskZe)
√
X2
e + Y 2

e

)
− tan−1

(
Ze
−Xe

) (6.34)

Fig. 6.7 demonstrates the rotation about the X , Y and Z axes using the rotation

parameter coefficient ci from eq. 2.19 and the transformed translation parameter θX ,

θY and θZ from (eq. 6.32, 6.33 and 6.34).

6.3.3 3D Representation of a Motion Vector Field

The representation of a vector in the 3D domain requires the 3D spatial information

of its two points P 1 = (Xe, Ye, Ze)
T and P 2 = (X ′e, Y

′
e , Z

′
e)
T . The estimated

depth value dti for point P 1 and the focal length f are used in the eq. 6.13 where

−Ze = dti and −n = f . Similar to point P 1, −Z′e = dt+1
i for point P 2 are used in

eq. 6.14, which yields:

P 1 =


xi
dti
f

yi
dti
f

dti

 P 2 =


(xi +DXi)

dti
f

(yi +DYi)
dti
f

dt+1
i

 (6.35)

For an accurate 3D representation of the 2D MVs, DXi and DYi from eq. 6.35 are

functions of the depth information:

DXi = vix + (dt+1
i − dti)xs, DYi = viy + (dt+1

i − dti)ys (6.36)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.7: Rotation about the X , Y and Z axes. (a-c) Rotation about the X axis,
(a) using the rotation parameter coefficient c4, (b) using the transformed
rotation parameter θX , (c) perspective view of (b) using OpenGL. (d-f)
Rotation about the Y axis. (g-i) Rotation about the Z axis.



6.4 Detection of 3D Motion Patterns 81

where the vix and viy are the 2D generated MV components. Fig. 6.8 represents

the error (see eq. 4.4) resulting from using the 2D MV components vix and viy in

the estimation of x′ and y′ values of a 3D motion parameters c = (1, 0, 1, 0, 0, 0)

representing translation in the X and Z direction.

6.4 Detection of 3D Motion Patterns

On the other hand, the proposed approach succeeds in detecting a predefined motion

pattern as shown in fig. 6.9 where a ball is moving forward in the Z direction towards

the robot. The 3D MVs that present the translation in theZ direction (which describes

possible objects movements in the direction of the robot) are represented in yellow

(for more details see chapter 7).

6.4.1 Collision Detection with the Drivable Tunnel

In order to improve the prediction of possible collisions, a drivable tunnel model

has been constructed representing the virtual area around the 3D motion path of the

vehicle. Fig. 6.10 shows the drivable tunnel model where the color of the tunnel has

been scaled from green to red representing the danger of the collision based on the

distance to the vehicle. The detection process are based on the 3D motion vectors

V = P 1 + δt(P 2 − P 1) pointing towards a tunnel plane kn in the direction of the

vehicle

V = (Vx, Vy, Vz)
T =

 X1

Y1

Z1

+ δt

 X2 −X1

Y2 − Y1

Z2 − Z1

 (6.37)

where δt = ti − ti+k and Z2 − Z1 ≥ 0, the danger of the collision is dependent on

the distance χ to the tunnel plane kn which the 3D motion vector V is intersecting
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(a)

(b) (c)

(d) (e)

Figure 6.8: A synthetic 3D motion template. (a) The generated 2D MVF of the mo-
tion parameters c = (1, 0, 1, 0, 0, 0) representing translation in the −X
and Z direction. (b-c) The incorrect 3D MVF and its perspective view
generated using vix and viy values of the 2D MVF. (d-e) The correct 3D
MVF generated using DXi and DYi values.
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(a) (b)

(c)

Figure 6.9: Detection of 3D motion patterns. (a) First image in the scene. (b) Last
image in the scene. (c) Resulted 3D MVF where yellow MVs represent
the translation in the Z direction.
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χ =
(P k − P 1)T · n

V T · n
(6.38)

where P k is a point on the tunnel plane kn and n is a normal vector to that plane.

(a)

(b)

Figure 6.10: The drivable tunnel model where the color of the tunnel scaled form
green to red represents the danger of the possible collision. (a) Front
view. (b) Auxiliary view.
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6.5 Chapter Summary

We have presented a fast depth-integrated 3D motion parameter estimation approach

which enhanced the overall computation time of a 3D salient-based motion segmen-

tation algorithm (see chapter 7) by reducing the search space of the parameter co-

efficient to five dimension. In addition, the presented 3D motion parameters repre-

sentation algorithm has taken into consideration the perspective transformation and

the depth information to accurately position motion vectors of the generated depth

sequence in the 3D space using the geometrical information of the stereo camera

head. Moreover, the proposed approach has successfully detected and estimated pre-

defined motion patterns describes important 3D motions such as movements toward

the robot which is very helpful in detecting possible collisions of moving objects with

the robot.
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7 Results and Evaluation

The proposed motion segmentation approaches are implemented as a complete soft-

ware framework using object oriented programming techniques with C++. This chap-

ter presents the output generated by the algorithms on various test cases selected to

evaluate its performance, for which details are described in sections 7.2, 7.3 and

7.4 respectively. The results were obtained using two different platforms described

in section 7.1 for testing the algorithms’ performance on images sequence of static

camera, controlled virtual environments in a simulation framework, and real-life sce-

narios using a stereo camera.

7.1 Experimentation Platforms

The first platform is an evaluation framework for single images as well as image

sequences. An interactive graphical user interface has been designed using Qt frame-

work (Qt is a cross-platform application and UI framework [Sum10]) and run un-

der ROS (Robot Operating System) as shown in fig. 7.1 to evaluate the different

approaches of 3D motion analysis and to control the involved parameters of the algo-

rithms.

The second platform is the robot simulation framework (SIMORE) developed in our

group [KHS+08, KM10] which allows integration and manipulation of dynamic 3D

environments with simulated sensors, actors, and complete robots. The robot can be

operated by manual input devices, a graphical user interface and program commands.

The interface associated with the simulator is reliable enough so that the control com-

mands can be directly transferred to a real robot platform after successful simulation

tests. In addition to the 3D graphics engine, the simulator has a physics engine to

guarantee a correct physical behavior of the simulated objects.
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Figure 7.1: Graphical user interface for the evaluation of the proposed algorithms.
Real time representation of depth maps within the GUI using stereo video
as an input is shown.

This platform helps in testing the algorithms in a three dimensional world with the

ability of maneuvering the sensor head as well as the whole robot to estimate the 3D

motion of objects with the existence of the ego-motion. The test scenes can be created

with scalable complexity and they are utterly reproducible as illumination conditions

remain stable and the arrangement of objects remains intact for an arbitrarily long

period of time. Moreover, experiments can be conducted uninterruptedly without

disturbances from hardware failures and emptying of batteries. Hence the core func-

tionality of the algorithms can be verified and validated through this system. Fig. 7.2
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presents a sample virtual environment with a simulated robot maneuvering inside it.

The visual input seen through the cameras are also shown.

Figure 7.2: Robot simulation framework (SIMORE) with stereo image stream repre-
senting the output of the simulated stereo camera head.

7.2 3D Motion Parameters Estimation Results

In order to evaluate the 3D motion parameters estimation algorithm, a graphical user

interface has been designed to generate synthetic MVFs by editing the coefficient

parameters manually as shown in fig. 7.3. The input data set represented in fig. 7.4,
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describes a synthetic MVF generated by different coefficients values and after ap-

plication of 100% noise to each vector component and random equally distributed

removal of MVs (with ρ = 0.5).

Figure 7.3: Graphical user interface for the evaluation of the proposed algorithms.
The result of a 3D motion parameters estimation process is shown with
the percentage of the mean error.

In order to investigate the performance of the proposed algorithm correctly, the test-

ing criterion is based on the progression of the mean error of the estimated parameters

Etotal instead of the progression of the mean square error E(c) over the general it-

eration step k as shown in Fig. 7.4.
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(a) (b)

(c)

Figure 7.4: Synthetic MVFs. (a) Generated by c = (1, 0,−1,−1.8,−2, 0.6). (b)
After application of noise and MVs removal. (c) Progression of the mean
square error E(c) over the general iteration steps k.

Etotal =
1

6

6∑
i=0

εi where εi =
copt − ci
copt

× 100

Fig. 7.5 and fig. 7.6 demonstrates a comparison between the implemented Daug-

man’s NN in [MJM02] and the proposed algorithm in [SM08b] for the progression

of the mean error of the estimated parameters Etotal over the particular iteration step
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(a) (b)

Figure 7.5: Progression of the mean error of the estimated parameters over the par-
ticular iteration steps for the implemented Daugman’s NN in [MJM02]
and the proposed algorithm in [SM08b]. (a) For a synthetic MVF gen-
erated by c = (1, 0,−1,−1.8,−2, 0.6). (b) For a synthetic MVF after
application of 100% noise to each vector component and random equally
distributed removal of MVs (with ρ = 0.5).

kmi (note that we use here the more precise iteration step kmi instead of the general

iteration step k as in [MJM02]).

Due to the linearity between the derivative error Dvi and the partial velocity coeffi-

cients of the translation in X and Y direction (c1, c2), the performance of the imple-

mented Daugman’s network in [MJM02] is almost the same as that of the proposed

algorithm. On the contrary, the non-linear relation with respect to the translation in

Z direction and the rotation in X,Y and Z (c3, ..., c6) leads to the need of increased

number of iteration steps. This drawback has been overcome by the new algorithm

as seen in the results of the first data set. In the second data set, the new approach

showed an enhanced performance in reaching a minimum error of Etotal < 0.01%

for a synthetic MVF andEtotal < 0.5% for a significant alteration to the same MVF.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Progression of the mean error of the estimated parameters over the partic-
ular iteration steps for the implemented Daugman’s NN in [MJM02] and
the proposed algorithm in [SM08b]. (a-f) For the instantaneous velocity
coefficients c1, ..., c6 respectively.
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7.3 Saliency-Based Motion Segmentation Results

In this section, the result of applying the motion segmentation approach to three

different data sets will be presented. The first data set represents a synthetically

generated MVF. The second data set represents the motion of objects censored by a

moving camera on a sequence of simulator framework (Simore), while the third data

set describes the motion of multiple objects obtained by a stationary camera.

7.3.1 Synthetic Motion Templates

In the first data set, the segmentation approach is able to deal with noises in a syn-

thetic MVF generated by different coefficient values with random equally distributed

removal of MVs as directed in fig. 7.7 where the first image shows the results of

segmenting two different motions, while the second and the third images represent

the first and the second motion, respectively. In this data set, the most salient motion

which is almost the same as the size of the input image can be considered a global

motion of input sequence.

(a) (b) (c)

Figure 7.7: Segmentation of two different synthetic motions: (a) Result of the motion
segmentation approach, (b) first motion, (c) second motion.
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7.3.2 Dynamic Virtual Scene from a Moving Camera

The second data set represents a virtual environment simulating a mobile robot in a

simple room which contains multiple moving objects. In this environment the simu-

lated robot is moving forward and steering towards the left in front of a stable cube, a

moving cone, and a size changeable ball. The proposed algorithm succeeds to detect

the moving cone despite the effect of the ego-motion problem. The segmentation

approach has shown the ability to distinguish between the most salient motion and

the global motion of the MVF where the most salient motion results from the moving

cone at the same time while the robot moves towards the cone as shown in fig. 7.8.

The cone is faster than the robot. Hence, the VFs representing the cone have higher

values than the rest of the VFs which promote the motion of the cone to be considered

the most salient motion. In this case, the global motion will be defined based on the

segment bounding window size relative to the image dimension. Hence, it could be

used as a reference for estimating the camera ego-motion in the absence of predefined

well known land marks which is vital for the extraction of static areas.

7.3.3 Dynamic Real-World Scene from a Static Camera

On the other hand, in the third data set, a sequence of real images taken from PETS

dataset [PET] will be used. The segmentation approach was able to segment the

movement of the two cars successfully in the first and the second segment as shown

in fig. 7.9 as they represent the most two salient motions in the scene. The rest of

the vectors have been segmented in afterward which means less salient values. As

the segmentation approach uses the motion parameters as a homogeneity criterion,

the motion of the third moving object (a person) has been merged with the middle

car motion since both objects (the person and the middle car) are moving in the same

direction. Due to a threshold for the segment size, the pedestrian is removed by the

segmentation process. However, implementing 2D spatial constraints could succeed

in separating the moving person, but it may lead to over-segmenting occluded ob-

jects. In order to correctly estimate an initial contour for the object geometry, the
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(a)

(b)

Figure 7.8: Result of motion segmentation approach on a sequence of simulator
framework (Simore). (a) Input sequence from a virtual mobile robot cam-
era of moving cone. (b) Up, generated MVF. Down, representation of the
most salient motion.
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depth information must be available which in the case of the mobile robot can be

obtained from the stereo camera head.

(a)

(b) (c)

(d) (e)

Figure 7.9: Result of motion segmentation approach on a sequence of real images.
(a) Input sequence from PETS Dataset. (b) Resulting MVF. (c) Result of
motion segmentation with no size limit constraints. (d) First most salient
motion (1stsegment). (e) Second most salient motion (2ndsegment).
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7.3.4 Performance Results

Applying the guided size control module has helped in reducing the computation

time of the segmentation process in [SM08a] compared to the related segmenta-

tion approaches [MJM02, SM08b], which use 3D motion parameter coefficients as

a homogeneity criterion in the absence of spatial coherence information, such as

in [MJM02] and to an enhanced algorithm after improving the motion parameters

estimation process in [SM08b]. The proposed segmentation algorithm in [SM08a]

has shown a significant speed-up in the overall computation time for the same seg-

mentation results as shown in fig. 7.10 where the segmentation approaches applied

to four data sets, the synthetic generated MVF shown in fig. 7.7, the same synthetic

MVF after application of 100% noise to each vector component, the traffic scene of

PETS dataset acquired by a static camera (see fig. 7.9), and the dynamic scene of the

simulator framework (SIMORE) as shown in 7.8.

Figure 7.10: Enhancement of the computational time of the new approach of motion
segmentation applied to different data sets compared to the result of
the segmentation approach in [MJM02] and the improved algorithm in
[SM08a].
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7.4 Depth-Integrated Motion Segmentation Results

In this section, the result of applying the proposed approach in [SM11a, SM11b] to

different data sets will be presented. As in the previous section, the first data set

represents a synthetically generated MVF. The second data set represents a sequence

of simulator framework (Simore), while the third data set describes real stereo image

sequence acquired by a moving car.

7.4.1 Synthetic Motion Templates

The main advantage of the first data set which represents synthetic 3D motion tem-

plates is the availability of the ground truth data for the evaluation of the segmentation

process. Fig. 7.11 shows the result of the depth-integrated segmentation approach

in [SM11a] of two different motions. The first motion consists of the translation in

the X and Z direction, while the second motion represents the translation in the Y

direction.

In fig. 7.12, the result of 3D motion segmentation of synthetic MVFs representing

the concept of transparent motion are shown. The synthetic MVFs are consist of two

overlapped 3D motion which are opposite in the rotation about the Z axis. Further-

more, random noise has been applied to each vector component in order to evaluate

the reliability. Each raw in fig. 7.12 represents the segmentation result of two differ-

ent overlapping synthetic MVFs. The first column in the first raw of fig. 7.12 depicts

the first 3D motion generated from the motion parameters c = (0, 0, 1, 0, 0, 1) which

consists of the translation in Z direction and the rotation about the Z axis. Similarly,

the second column in the first raw shows the 3D motion generated from the motion

parameters c = (0, 0, 1, 0, 0,−1) which consists of the same translation in the Z

direction but with an opposite rotation about the Z axis. The third column represents

the overlapping 3D motions, while the forth and the fifth column represent the results

of the motion segmentation process.
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(a) (b)

(c) (d)

Figure 7.11: Segmentation of two different synthetic motions: (a) first motion, (b)
second motion, (c) noisy MVF consists of the two previous motions, (d)
result of the motion segmentation approach

The proposed approach has a significant reduction of the total iterations number re-

quired for the 3D motion segmentation process which leads to a noticeable compu-

tational time improvement. Fig. 7.13 shows the progression of the root mean square

error Ek(c(pm)) over the total iteration steps k of the synthetic MVF depicted in

fig. 7.11 for the proposed algorithm [SM11a] compared to the segmentation approach

in [SM08a]. The behavior of the RMSE progression is dependent on the segmenta-

tion process and 3D motion parameters value of the existing 3D motions in the input

MVF. The 3D motion parameters estimation process of a complex 3D motion results

in wide fluctuation in the convergence curve due to the nonlinear representation of

the 3D motion, e. g. the first 3D motion segment in fig. 7.13.



7.4 Depth-Integrated Motion Segmentation Results 101

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 7.12: Results of the segmentation of two overlapping 3D motions: (a) The first
3D motion of the motion parameters c = (0, 0, 1, 0, 0, 1). (b) Second
3D motion with opposite rotation about the Z axis (c6 = −1). (c) A
noisy synthetic MVF consists of the two previous motions. (d) The first
resulted segment. (e) The second segment. (f-j) c = (1, 0, 1, 0, 0, 1).
(k-o) c = (0, 1, 1, 0, 0, 1). (p-t) c = (0, 0, 1, 1, 0, 1). (u-y) c =
(0, 0, 1, 0, 1, 1).
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On the other hand, a translation motion either in the X or Y direction such as the

second motion segment in fig. 7.11 is progressing fast and forward due to the linear

representation of the 3D motion (more details are represented in chapter 6).

(a)

(b)

Figure 7.13: Progression of the root mean square error Ek(c(pm)) over the total it-
eration steps k of the previously represented synthetic MVFs for the
proposed depth-integrated algorithm in [SM11a] compared to the seg-
mentation approach in [SM08a]. (a) For the synthetic MVF of fig. 7.11.
(b) For the synthetic MVFs of fig. 7.12.
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7.4.2 Dynamic Virtual Scene from a Moving Stereo Camera

In order to correctly test and analyze the result of the proposed algorithm, a virtual

environment simulating a mobile robot in a scalable complex scene is used. The first

scenario in this environment a represents a moving ball in front of a mobile robot

as shown in fig. 7.14. The generated depth map from the stereo images are used in

the 3D MVF representation as shown in fig 7.15. The world 3D coordinate axes are

depicted in fig 7.15 where the X axis is represented in red, the Y axis in blue and

the Z axis in green which could be considered as a reference for the next 3D MVFs

representations.

(a) (b)

Figure 7.14: Stereo image stream representing the output of the simulated stereo
camera head from the robot simulation framework (SIMORE). (a) Left
image. (b) Right image.

In this scenario the ball are moving forward towards the robot and then move back-

ward. The 2D optical flow represents the movement of the ball in the Z direction

in a range of MVs pointing outwards from the center of the ball and inwards in the

reverse movement. Fig. 7.16 represents the generated optical flow for the movement

of the ball towards the robot.

In fig. 7.17 the 3D motion pattern which describes the forward movements in the z

direction has been detected and represented by yellow vectors. On the other hand,
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(a)

(b)

Figure 7.15: Construction of 3D MVF. (a) generated depth map. (b) Constructed 3D
MVF.

when the ball are moving backward the MVs are represented by the default white

color.
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(a) (b)

(c) (d)

Figure 7.16: Representation of 2D optical flow. (a) The ball moves forward. (b) The
ball moves backward. (c-d) The generated optical flow.
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(a)

(b)

Figure 7.17: Representation of 3D MVF. (a) The ball moves forward. (b) The ball
moves backward.
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The complexity of the scene has been increased in the second scenario where the

simulated robot is in front of a stable cube, a moving cone, and a size changeable ball

as shown in fig. 7.2 while the generated depth maps from the stereo image stream for

the first and the last frames in the scene and the 2D optical flow are represented in

fig.7.18.

(a) (b)

(c)

Figure 7.18: Representation of the generated depth maps and optical flow. (a) The
depth map of the first image in the scene. (b) The depth map of the last
image in the scene. (c) The generated 2D optical flow.
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The 3D motion patterns that describes the translation in the z direction has been suc-

cessfully detected and represented by yellow MVs as in the case of the increasing

size of the ball. On the other hand, the cone is moving to the left and therefore the

majority of its MVs are still in the default white color. Furthermore, the MVs that

points towards the robot area which describes a possible collision with the robot has

been represented by red as shown in fig. 7.19.

Figure 7.19: Detection of 3D motion patterns in the 3D MVF where the yellow MVs
represent the translation motion in the z direction and the red MVs rep-
resent the motion towards the robot area which could be a possible col-
lisions with the robot.
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7.4.3 Dynamic Scene from a Moving Stereo Camera

This first data set is representing real stereo image sequence acquired from a stereo

system mounted on a moving car [KKV+11]. In this scene, a car is entering a round-

about while a man is crossing the street. Fig. 7.20 shows the generated depth images

of the roundabout scene using the SGBM algorithms [Hir06].

(a) (b)

(c) (d)

Figure 7.20: Stereo image sequence from the “roundabout“ scene [KKV+11] . (a)
Left image at the beginning of the sequence. (b) Left image after 40
frames. (c-d) Generated depth maps using the SGBM algorithm [Hir06].

The generated depth images are used in the 3D construction of the scene as shown in

fig. 7.21. while the construction of the 3D MVFs requires the generation of the 2D

optical flow as well.
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(a) (b)

(c)

(d)

Figure 7.21: 3D construction of the scene. (a) Left image . (b) Generated depth map
using the SGBM algorithm [Hir06]. (c-d) The constructed 3D scene.
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Fig. 7.22 represents the constructed 3D MVF and the detected translation in the Z

direction. Furthermore, MVs which lies within a certain threshold distance from the

car (d ≤ τz) and pointing towards it has been represented by red which describes a

possible collision with the car. On the other hand, if the MV is pointing outside the

car area then it will be represented by the default white color as shown in fig. 7.22

where a pedestrian has already passed the front of the car area.

(a) (b) (c)

(d) (e) (f)

Figure 7.22: Detection of 3D Motion pattern. (a-c) Left images acquired from the
mounted stereo camera. (d-e) Constructed 3D MVFs where yellow MVs
represent the translation in the Z direction and the red MVs represent
near MVs that point towards the car area. (f) MVs belong to the pedes-
trian are pointing outside the car area.

Similar to the first data set, the second data set is representing stereo image sequence

acquired from camera system mounted on a car [DIP]. The proposed approach has

successfully modeled the 3D spatiotemporal information from the generated depth

maps detecting a predefined motion patterns that present the translation in the Z

direction as in fig. 7.23 where the mounted stereo system is moving forward and the
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detected possible collision were the upcoming car as well as the tree behind it and

some part of the background scene.

(a)

(b)

Figure 7.23: 3D representation of MVFs generated from the DIPLODOC road stereo
sequence. (a) Left, an acquired image from the mounted stereo cam-
era. Right, the generated depth map. (b) The result of the 3D MVF
representation of the proposed approach.

The 3D MVFs representation is very important to the 3D motion segmentation pro-

cess, especially where the scene ground is heavily textured which results on generat-

ing reasonable amounts of MVs. Such MVs of the scene ground should not interfere

with other MVs in the 3D motion segmentation process, otherwise false results will
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be generated. The accurate positioning of such MVs gives the ability to easily detect

and eliminate them before starting the process of 3D motion segmentation.

On the other hand, in cases where the vehicle are moving relatively fast the ego mo-

tion become the most salient motion. Hence the first motion vector field resulted

from the motion segmentation approach represent the ego motion of the vehicle.

Fig.7.24 represents the most salient motion resulted from the motion segmentation

approach [SM11a] and a synthetic motion template representing the resulted 3D mo-

tion parameters coefficients of the most salient 3D motion segment from "round-

about" scene [KKV+11]. While fig. 7.25 represents the resulted most salient motion

taken from the "DIPLODOC" image sequence [DIP].

Integrating the generated depth information into the 3D motion segmentation pro-

cess [SM11a] reduced the total iterations number required for the estimation of the

most salient 3D motion which leads to a noticeable computational time improvement.

Fig. 7.26 shows the progression of the root mean square error Ek(c(pm)) over the

total iteration steps k required to estimate the most salient 3D motion depicted in

fig. 7.24 and fig. 7.25 for the proposed algorithm [SM11a] compared to the segmen-

tation approach in [SM08a]. Taking into consideration that the progression of the

RMSE is affected by the amount of noisy motion vectors exists in the input MVF,

the elimination of noisy MVs (Outliers) during the segmentation process may results

in converging the error curve to zero. Furthermore, fig. 7.27 shows the histogram of

the average end point error Epe between the estimated motion vector (vestx , vesty )

resulting from the segmentation process and the input MVs (vx, vy) for all MVs:

Epe =
1

k

∑
i∈k

√
(viestx − vix)2 + (viesty − viy)2 (7.1)

where k is the total iteration number, while the result of the histogram is fit to a

Gaussian curve to examine the frequency distribution of the proposed approach in

[SM11a] compared to the segmentation approach in [SM08a].



114 7 Results and Evaluation

(a) (b)

(c) (d)

Figure 7.24: The most salient 3D motion resulted from the motion segmentation ap-
proach taken from the "roundabout" scene [KKV+11]. (a) Left image.
(b) Generated optical flow. (c) the resulted most salient motion. (d) A
synthetic motion template representing the 3D motion parameters coef-
ficients of the most salient motion.

7.5 Collision Detection with the Drivable Tunnel

The drivable tunnel model represents the spatio-temporal path of the vehicle in a

dynamic environment. The danger of the objects collision with the tunnel are scaled

based on the distance to the vehicle from green representing less danger situation

to red which represents the high level of danger. The detection process depends on

the speed and the direction of the 3D motion vectors that points to the tunnel in the
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(a) (b)

(c) (d)

Figure 7.25: The most salient 3D motion resulted from the motion segmentation ap-
proach taken from the "DIPLODOC" image sequence [DIP]. (a) Left
image. (b) Generated optical flow. (c) the resulted most salient motion.
(d) A synthetic motion template representing the 3D motion parameters
coefficients of the most salient motion.

direction of the vehicle taking the advantages of the relative difference between the

ego-motion of the vehicle and the rest of the 3D motion vectors. Hence, a possible

collision is only detected if a 3D motion vector is intersecting a plane of the drivable

tunnel after δt time. Fig.7.28 shows the detection of possible collision in the virtual

scene represented in fig. 7.14 for a red ball moving towards the robot drivable tunnel

then crossing the tunnel. The first image represents the start position of the ball, while

the second image represents the 3D motion vectors generated when the ball start
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(a)

(b)

Figure 7.26: Progression of the root mean square error Ek(c(pm)) over the total it-
eration steps k for the proposed depth-integrated algorithm in [SM11a]
compared to the segmentation approach in [SM08a]. (a) For the most
salient 3D motion of the "roundabout" scene depicted in fig. 7.24. (b)
For the results of the "DIPLODOC" image sequence [DIP] shown in fig.
7.25.

to move. The resulting 3D motion vector end points after δt time are intersecting

with the drivable tunnel and color coded with the same tunnel plane color that the

end points of the 3D motion vector are intersecting. Hence, the collision has been

detected even the ball is entirely outside of the drivable tunnel. The third image shows

the change of the 3D vectors color based on the tunnel plane they are intersecting.

In the forth image, the 3D motion vector of the ball are pointing outside the drivable

tunnel which means that the ball is moving away from the robot spatio-temporal path.

In such a case there is no threat to the robot and it could be safely state that there is

no collision even if a part of the ball is still inside of the tunnel.
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(a)

(b)

Figure 7.27: Histogram and the normal fit of the average end point error of the result-
ing most salient 3D motion overall the 3D motion segmentation process
in [SM11a] compared to the segmentation approach in [SM08a]. (a) Re-
sults of the most salient 3D motion of the "roundabout" scene depicted
in fig. 7.24. (b) Results of the "DIPLODOC" image sequence [DIP]
shown in fig. 7.25.
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(a) (b)

(c) (d)

Figure 7.28: Collision detection with the drivable tunnel. (a) Start position of the
ball. (b) The ball start moving in the direction of the tunnel. (c) The ball
crossing the tunnel. (d) The ball is moving away from the tunnel.

The second data set is the roundabout scene represented in fig. 7.20 where a man

is crossing the street while the car is moving forward, while fig. 7.29 shows the the

drivable tunnel of the car in different views.

In fig. 7.30 the detection of possible collision is represented first by color coding the

original input left images and second by the 3D motion vector field. The first image

represents the pedestrian crossing the street, while the resulting 3D motion vectors are

intersecting the the drivable tunnel in the low danger part causing a possible collision

even the majority part of the pedestrian is outside the drivable tunnel. In the second
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Figure 7.29: Car drivable tunnel model in different views.

and the third images, the pedestrian is moving forward as well as the car causing the

3D motion vectors of the pedestrian to intersect the drivable tunnel in a higher danger

level. In the forth image, the 3D motion vectors resulting from the movement of the

pedestrian are pointing outside the drivable tunnel which means at the time δt the

pedestrian will be completely outside the drivable area.

7.6 Chapter Summary

This chapter has presented results of the proposed 3D motion parameter estimation

algorithm, saliency-based and depth-integrated motion segmentation approaches and
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the collision detection with the drivable tunnel using two different platforms. Table

7.1 represents an overall comparison of the 3D motion analysis approach with alter-

native systems introduced in [PN10, NVO+08, RMW+10]. The developed graphi-

cal user interface provides the capability of controlling the involved parameters to

evaluate the results in the real time. The simulation framework on the other hand

integrates the capability of manipulating dynamic 3D environments and scaling the

complexity of the dynamic scene as well as integrating with other active vision ap-

plications [MFM+10, AM10]. A formal evaluation of the results produced by the

proposed algorithms has been discussed along with a comparison with other existing

algorithms. Furthermore, quantitative metrics have been applied to judge the validity

of results, efficiency and the performance of the proposed approaches.
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Table 7.1: Summarized comparison between the proposed 3D motion analysis ap-
proach and the alternative systems

Proposed
3D Motion
Analysis
Approach

Obstacle
Detection
in Complex
Scenarios
– [PN10]

Forward
Collision
Detection –
[NVO+08]

6D Vision –
[RMW+10]

Estimation of 3D
MVF * * *
Temporal smooth-
ness by KF *
3D Motion parame-
ters estimation *
Obstacle detection
and separation * *
Collision Detection

* * * *
Drivable tunnel
model * *
Specialized Hard-
ware independent *
Handle 3D trans-
parent motion *
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(a)

(b)

(c)

(d)

Figure 7.30: Collision detection with the drivable tunnel. (a) Start position of the
pedestrian. (b-c) The pedestrian is crossing the street while the car is
moving forward. (d) The 3D motion vectors of the pedestrian are point-
ing outside the drivable tunnel.



8 Conclusion

This chapter first summarizes the contributions of the new approach discussed in this

dissertation and then reviews the achievements made in the field of 3D motion anal-

ysis. After that a critical discussion on the theoretical aspects of the proposed 3D

motion segmentation algorithm verses the commonly used late motion segmentation

is presented. After completion of the work presented here many directions have be-

come visible that need to be investigated further for reaching an optimal model of 3D

spatio-temporal motion recognition. The dissertation is concluded with indications

of such directions.

8.1 Scientific Contributions

The early effort in the direction of motion analysis was in [SM08b] which is concep-

tually able to handle transparent motions where two or more 3D motions are grouped

together to give the impression of lacy overlapping surfaces despite the connectivity

of the object. In this algorithm, the estimated motion parameters serve as a homo-

geneity criterion for the segmentation approach and the 3D motion can be expressed

as a linear combination of six component 3D vector fields. The computation of a

3D motion from a 2D image flow or a motion template finds the optimal coefficient

values in a 2D signal transform. The enhanced approach for estimating 3D motion

parameter coefficients from the generated MVFs [SM08b] has a great influence on

reducing the computation time of the motion segmentation approach. The algorithm

successfully overcomes the drawback of Daugman’s transform of finding the deriva-

tive of an error with respect to each of the 3D parameter coefficients. However, the

overall segmentation process still does not satisfy our requirement for fast process-

ing algorithms. In order to speed up the segmentation process, two approaches are

suggested.
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The first approach is to modify the segmentation algorithm in [SM08b] to be a salient-

based segmentation process. In this approach [SM08a], instead of applying the vali-

dation criterion to each vector to check whether or not it belongs to the same motion

of a certain vector, it examines the unsegmented vector whether or not it belongs to

the main dominant motion in a MVF. Limiting the number of segments represent-

ing the most dominant (salient) motion resulting from two consecutive frames leads

not only to a great reduction in computation time but also provides the most salient

motion which in most cases under certain constraints can be considered the global

motion of a dynamic scene. Such information is very useful in determining the ego-

motion of a camera head mounted on a mobile robot. Due to the iterative nature of the

segmentation process, the computation time can be expensive in the case of several

moving objects or very high noisy MVFs.

The second approach presents a fast 3D motion parameter estimation algorithm in-

tegrating the depth information [SM11a] to enhance the computational speed of the

motion segmentation approach presented in [SM08a] by integrating the depth infor-

mation in the 3D motion parameters estimation process. Hence, the search space has

been reduced to be five dimensions which represent the rotation around the x, y, and

z axes and translation in the direction of x, y axes. The resulting 3D motion param-

eters are used to generate and accurately positioning motion vectors of the generated

depth sequence in the 3D space using the geometrical information of the stereo cam-

era head. The resulting 3D MVF provide the ability to detect and estimate any prede-

fined motion patterns which is vital in predicting any possible collision not only with

the robot but with any objects in the observed 3D environment. The disparity map

is generated using a segment-based scan line stereo algorithm presented in [SM09]

which is fast and independent of the GPU power (needed for other applications).

8.2 Discussion

From the experience gained during the work in this area of research, analyzing the

3D motion of moving objects in a dynamic scene requires more than just the spa-
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tial coherence of objects boundaries resulted from image segmentation. Most of the

revised motion analysis algorithms tend to implement such constraints and assump-

tions in the motion detection process. Hence, the motion segmentation module de-

pends on detection of the moving objects which in turn depends on the quality of the

image segmentation. Although the generation of motion vector process depends on

the quality of finding the corresponding features in the next frame(s) and in gener-

als suffers from ambiguities, it is still beret than detecting moving objects based on

image segmentation. In my opinion, the recognition of an object requires more than

grouping similar coherent pixels in one segment. Such a process should be involved

within a bigger conceptual frame such as scene understanding which requires a lot of

prior information to correctly detect, recognize, then segment an object which in the

end could contributes in the estimation of its motion.

On the other hand, in order to estimate and segment moving elements appear to be

grouped into two or more spatially overlapping surfaces in a motion segmentation

approach, the 3D motion parameters estimation process requires a multi-valued rep-

resentation for each point in the image or the co-localization of more global surface

descriptors. Hence, the motion segmentation algorithm will process the motion vec-

tor field as an input to estimate possible 3D motions using the motion parameter

coefficients as a homogeneity criterion.

This work presents a fast depth-integrated 3D motion segmentation approach which

enhanced the overall computation time of modeling 3D transparency motions. The

3D spatial localization of motion vectors implements the geometrical information of

the mobile robot and the mounted stereo camera to modify the perspective transfor-

mation for accurate positioning of motion vectors in the 3D space. Moreover, the pro-

posed approach has successfully detected and estimated predefined motion patterns

describing important 3D motions such as movements toward the robot which is very

helpful in detecting possible future collisions of moving objects with the robot.
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8.3 Outlook

A step forward after integrating the depth information in the estimation and seg-

mentation of the 3D motion parameters is to construct a long term spatio-temporal

memory to save output of the segmentation process. Such technique will provide the

capability to detect and recognize 3D spatio-temporal motion patterns which respond

to certain moving behaviors of the existing objects in the dynamic environment.
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