'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Energy Efficient Scheduling for Hard
Real-Time Systems

Dissertation

A thesis submitted to the
Faculty of Computer Science,
Electrical Engineering and Mathematics
of the
University of Paderborn
in partial fulfillment
of the requirements for the degree of Dr. rer. nat.

by

Da He

Paderborn

Supervisors:
Prof. Dr. Franz Josef Rammig (Universitat Paderborn)
Prof. Dr. Achim Rettberg (Carl von Ossietzky Universitat Oldenburg)

Date of public examination: December 20, 2013.

Abstract

In modern electronic systems, especially in battery-driven devices, energy
consumption has clearly become one of the most important design concerns.
Low power consumption and long battery life are major development re-
quirements and objectives to reduce system operation cost. From the system-
level point of view, there are two widely applied energy saving techniques,
Dynamic Power Management (DPM) and Dynamic Voltage and Frequency
Scaling (DVS), which are able to adjust the trade-off between system perfor-
mance and power consumption. In brief, DPM tries to selectively shut down
unused components, whereas DVS attempts to slow down them. In fact, both
techniques reduce system power consumption at the cost of performance loss,
which is a crucial point in hard real-time systems.

To address energy optimization problem, this dissertation studies in detail the
combined application of DPM and DVS on both single- and multi-core pro-
cessor platforms, in particular with non-negligible state switching overhead.
Unfortunately, the facing problem is proven to be AN/P-hard in the strong
sense, which indicates non-existence of efficient algorithms. Thus, this work
proposes a heuristic search algorithm by extending simulated annealing with
neighbor selection guidelines using domain specific information. In addition,
a regression based mechanism to predict algorithm run-time behavior is pro-
posed, which in turn is used for quality estimation of a solution and derivation
of an efficient termination criterion.

Furthermore, this dissertation presents an approach, which is able to run the
proposed algorithms in a completely online fashion. Hereby, the main chal-
lenge is to integrate the heuristic into the execution of real-time tasks, which
is solved by mapping iterations of the algorithm to hyper periods of the task
execution. In doing so, a system becomes self-adaptive to dynamic changes.
More importantly, it can be shown that the run-time overhead introduced by
this approach is provably low.

Zusammenfassung

Fiir moderne elektronische Systeme, insbesondere batteriebetriebene Geriite,
spielt der Energieverbrauch eine immer wichtigere Rolle. Geringer Strom-
verbrauch und lange Akkulaufzeit sind die wichtigsten Anforderungen bei
der Entwicklung, um die Betriebskosten der Gerite zu reduzieren. Auf Syste-
mebene gibt es zwei weit verbreitete Techniken, um den Energieverbrauch zu
reduzieren: Dynamic Power Management (DPM) und Dynamic Voltage and
Frequency Scaling (DVS). Beide Techniken sind in der Lage, den Trade-off
zwischen Systemleistung und Stromverbrauch zu regulieren. Wéihrend die
DPM Technik versucht Systemkomponenten auszuschalten, wenn diese nicht
benutzt werden, versucht die DVS Technik die Ausfiithrungsgeschwindigkeit
der Systemkomponenten zu verlangsamen. Da beide Techniken den Energie-
verbrauch auf Kosten der Systemleistung reduzieren, sollten sie insbesondere
in der Kombination mit Echtzeitsystemen mit Bedacht eingesetzt werden.

Um den Energieverbrauch in Echtzeitsystemen zu reduzieren, beschiftigt
sich diese Arbeit mit dem Problem der Energieverbrauchsoptimierung mit
Hilfe einer kombinierten Anwendung von DPM und DVS. Dabei werden
sowohl Einzelkernprozessor- als auch Mehrkernprozessorsysteme betrachtet.
Hiermit wird insbesondere der Aufwand beim Zustandswechsel fiir DPM
und DVS untersucht. Leider ist das betrachtete Optimierungsproblem NP-
hart, sodass fiir seine Losung keine effizienten Algorithmen existieren. Daher
wird in dieser Dissertation ein heuristischer Suchalgorithmus entwickelt, der
den Simulated Annealing um spezielle Regeln fiir die Selektion von Nach-
barn erweitert. Dariiber hinaus wird eine auf Regression basierte Technik zur
Analyse des Verhaltens des vorgestellten Algorithmus erarbeitet. Aus dieser
Technik wird zudem ein Abbruchkriterium des Algorithmus abgeleitet.

Ferner présentiert diese Dissertation einen Ansatz zur Onlineausfiithrung des
vorgestellten Algorithmus. Dabei besteht die grofite Herausforderung darin,
dass der heuristische Algorithmus in der Ausfiihrung des Echtzeitsystems
integriert werden muss. Die Grundidee besteht darin, die Iterationen des
Algorithmus auf die Hyperperiode der ausgefiihrten Echtzeitprozesse abzu-
bilden. Dadurch ist das System in der Lage, sich selbststindig an dynamische
Verinderungen anzupassen. Noch wichtiger ist jedoch der gefiihrte Nach-
weis, dass der Laufzeitaufwand der Onlineausfiihrung gering ist.

Acknowledgement

This dissertation is the result of my research at C-LAB and University of
Paderborn. I would like to take this opportunity to express my gratitude to
several people, who supported me with their comments, suggestions and pa-
tience during the development of this work.

First of all, I would like to thank my supervisor Prof. Dr. Franz J. Ram-
mig for his invaluable guidance and constructive feedback on the concepts
I developed in this dissertation. I also thank Prof. Dr. Achim Rettberg for
vice-supervising my dissertation. Furthermore, I would like to thank Prof.
Dr. Sybille Hellebrand, Prof. Dr. Marco Platzner, and Prof. Dr. Christian
Plessl for taking part in the examination board. I also thank Prof. Dr. Gregor
Engels for his support at the final stage of writing this dissertation.

I am especially grateful to my group leader Dr. Wolfgang Miiller for his
advice and suggestions on finding my research topics.

This work would not have been possible without the fruitful discussions I had
with my colleagues. My gratitude goes to Dr. Henning Zabel, Dr. Alexander
Krupp, Tao Xie, Kay klobedanz, Jan Jatzkowski, Gilles Bertrand Gnokam
Defo, Fabian Mischkalla, Markus Becker, Christoph Kuznik, Dr. Marcio
Oliveira, Diana Riemer, and Mabel Joy.

Last but not least, I would like to thank my family for their patient sugges-
tions and especially my wife Qian Liu for her continuous support.

Vi

Contents

(L Introduction| 1
[LI_Motivationl. 1
(1.2 Objectives| e e 3
1 Problem MEeNt L e e e 3
[L4_Contributions] 5
[1.5 Organization of the Dissertation| 6

2 Background| 7
2.1 Real-Time Systems and Scheduling| 7
[2.2 Run-Time Energy Management Techniques| 14

[2.2.1 Dynamic Power Management (DPM)| 15
[2.2.2 Dynamic Voltage and Frequency Scaling (DVS)[. 19
[2.2.3 Interplay of DPM and DVS| 22
2.24 DPMand D n Multi-Core Pr: r Platforms| 23
[2.3 Energy Efficient Real-Time Scheduling| 24
[2.4 Advanced Configuration & Power Interface] 28
2.5 Chapter Summary|. e 31

13 System Models and Problem Formulation| 33

3.1 Processor Power Model|o o 33
[3.1.1 Single-Core Processor] 34
3.1.2 Multa-Core Processor. 36

32 Device PowerModell 36

3.3 Real-Time Task Modell 38

4 Problem Formulation| o 40
[3.4.1 Problem for Single-Core Processor Platforms (RTSC)[. 41
[3.4.2 Problem for Multi-Core Processor Platforms (RTMC)| 43

[3.5 Chapter Summary|. 46

4 Guided Search Algorithm based on Simulated Annealing| 47
4.1 Introductionl L 47
B2 The HSASC Algorthm For RTST| . .« « o o o oo oo oo 51
4.3 The HSAMC Algorithm for RTMC| 54
4.4 Chapter Summary|. e e e e e 58

Vii

CONTENTS

IS Run-Time Behavior Analysis|

1 Intr 100 e e e

[5.2 Run-Time Behavior Analysis through Exponential Regression|

[5.3 Quality Estimation|

5.4 Termination Criterion| Lo
[5.5 Chapter Summary|.

6 ES-AS: An Online Approach|

6.1 Motivationl.
[6.2 Overview of ES-AS Approach|
(6.3 ES-AS Approach for RISC|.
[6.3.1 Exploration Stage|.
[6.3.2 Application Stage|.o
[6.3.3 Correctness and Complexity|
[6.4 ES-AS Approach for RTMC|
[6.4.1 Exploration Stage|.
[6.4.2 Application Stage|.
[6.4.3 Correctness and Complexity|
[6.5 Chapter Summary|. L

[7 Consideration of Non-Negligible DVS State Switching Overhead|

(7.2 DVS Overhead Handling for RTSC|.
[/.2.1 Problem Description|
[7.2.2 Enhanced Schedulability Analysis|

(7.3 DVS Overhead Handling for RTMC|
[7.3.1 Problem Description|
[7.3.2 Enhanced Schedulability Analysis|

(7.4 Chapter Summary|.

8 Kvaluation|

[8.1 Objectives|
(8.2 Synthetic Test Scenarios|

[8.2.2 Generation of Synthetic Task Sets|
[8.2.3 Energy Reduction Efficiency (Static Slack)|
[8.2.4 Energy Reduction Efficiency (Dynamic Slack)
[8.2.5 Run-Time Analysis|
[8.2.6 Estimation Accuracy|

[8.3.1 Single-Core Processor Platform: BeagleBoard|

2 Multi-Core Pr r Platform: Intel Core 2 Duo Pr

(8.4 Chapter Summary|.

viii

CONTENTS

9__Conclusion and Future Workl

9.1 Conclusionl

[9.2 Open Issues and Future Work|.

"ll

Additional Evaluation R

|

[A.1 Energy Reduction Efficiency (Static Slack),

[A.2 Energy Reduction Efficiency (Dynamic Slack)|.

[A.3 Run-Time Analysis|

[List of Figures|
[List of Tables|

[List of Algorithms|

List of Abbreviations

[List of Symbols|

149
149
151

153

155
155
155
155

163

167

169

171

173

177

Chapter 1

Introduction

1.1

Motivation

Due to the continuous advancements in technology, electronic devices nowa-
days are more and more powerful and fast. A modern smart phone has more
computation power than all the computer devices used by NASA in 1969 to
land a man on the moon and send him safely back to the earth [Mil12]. How-
ever, this enormous progress has its price, namely the power consumption of
electronic systems is increasing rapidly as well. According to a report from
Vodafone [FZ08], the power consumption in mobile communication systems
rose 16-20% per year from 2003 to 2005. Another study [Lam+12] shows
that the relative contribution of communication network electricity consump-
tion to the total worldwide electricity consumption increased from 1.3% in
2007 to 1.8% in 2012. Therefore, energy efficiency becomes one of the most
important requirements in the system development to make the products more
competitive in the market.

Figure [I.1] shows the power consumption and performance trend of several
latest ARM application processors, which are increasing exponentially fol-
lowing Moore’s law [Moo98|]. There is no doubt that this dramatic growth
of power consumption presents a really big challenge in the system design,
especially for those with a constrained power budget. However, the good
news is that the power consumption shown here is the maximal value, i.e.,
the power consumed by a processor when it is fully utilized. Fortunately,
modern processors are usually equipped with run-time energy management
techniques, which are able to dynamically reduce the system energy con-
sumption. Dynamic Power Management (DPM) and Dynamic Voltage and
Frequency Scaling (DVS or DVES) are two mostly applied techniques, where
DPM tries to shut down an unused component and DVS tries to slow down
the operating speed of a working component. In general, both techniques re-
duce the energy consumption at the cost of performance degradation, which
is a crucial point in the context of hard real-time systems. Real-time com-

Chapter 1. Introduction

Cortex™-A15
(32nm,Dual) | 2500

—_————

20,000

15,000 1800

10,000 Cortex™-A9 1250

(40nm,Dual)

Performance (DMIPS)
Power Consumption (mW)

5,000 600
Cortex™-A8

(65nm,Single)

ARM1176™
(65nm,Single)

ARM Application Processors /

Figure 1.1: The trend of the power consumption vs. performance of ARM

application processors

puting in computer science describes a special form of computation that is
closely related to time. The computation result contains not only logic val-
ues, but also temporal properties. Typically, a real-time system is composed
of a set of real-time tasks, which are defined as software programs that must
complete before a given deadline. The execution of tasks does not need to
be as fast as possible. It only has to hold timing constraints. In this context,
a late answer is usually considered as incorrect. Depending on the conse-
quences caused by a deadline miss, there are three different categories of
real-time tasks: hard real-time, firm real-time and soft real-time. This disser-
tation focus on the hard real-time property, where timing constraint violations
are strictly prohibited.

In fact, real-time applications are becoming increasingly important and ubiq-
uitous in daily life. As a common feature, they often have to interact with
environment and therefore in most cases are embedded into computing sys-
tems. For instance, an airbag control system in vehicles is a typical hard real-
time embedded system, since a delayed response may cause damage. Many
real-time embedded systems are operating under mobile condition. Some no-
table examples are telecommunication systems, robotics, portable consumer
electronic devices and space applications. In such systems, power consump-
tion clearly is of utmost importance. In order to keep energy consumption
manageable, both DPM and DVS techniques are widely applied in this con-
text. However, due to the timing constraints, they have to be used with great
caution.

This dissertation exactly deals with this challenge by finding the best way to
apply the DPM and DVS techniques in hard real-time systems. In the follow-

Chapter 1. Introduction

1.2

1.3

ing sections, the main objectives and challenges are described. Thereafter,
the key contributions of the dissertation are highlighted.

Objectives

In short, the main objective of the dissertation is to optimize the total energy
consumption in hard real-time systems by taking the advantage of DPM and
DVS. Hereby there are several important requirements.

System schedulability: As hard real-time systems are addressed, the timing
constraints must be satisfied. A real-time system is said to be schedulable or
feasible, if all the given tasks can finish the execution before their deadlines.

System-wide energy minimization: Usually, a real-time system is com-
posed of software and hardware. The hardware in turn contains multiple
components, including the processor and I/O devices. The goal here is to not
only optimize the processor energy consumption, but also the energy con-
sumption of an entire system.

Consideration of state switching overhead: Both DPM and DVS tech-
niques reduce energy consumption by means of changing the operation mode
of components. An operation mode is also referred to as a power state. As
a state switching incurs time and energy overhead, they need to be carefully
dealt with.

Online: In the context of energy optimization in real-time systems, there are
online and offline approaches. Clearly, online approaches are more advanced
in terms of flexibility, because they are adaptive to system changes. However,
a big challenge is that the run-time overhead needs to be as low as possible.
One of the objectives of the dissertation is that the proposed approach should
be online and adaptive.

Consideration of multi-core processors: As multi-core processors become
more and more popular, the energy aware real-time scheduling problem on
such platforms needs to be addressed.

Problem Statement

By optimizing the system-wide energy consumption in hard real-time sys-
tems, there arise several problems and challenges.

DPM usage: The main idea behind the DPM technique is to switch off un-
used system components to save energy. For instance, a processor may sup-
port several operation states. One of them is the run state, in which the

Chapter 1. Introduction

processor executes instructions. The other states are standby and sleep.
Whenever the processor becomes idle, it can be switched to the standby or
sleep state. However, the state switching usually causes both time and power
penalty and can not be mindlessly ignored, especially when task execution
time is in the same order of magnitude of switching latency. The deeper the
sleep state, the more penalty has to be paid. Thus it takes longer to enter
the sleep state than the standby state. In fact, due to the non-negligible
overhead, a component can only be switched off under particular conditions.
More concretely, a component shutdown is dependent on the length of idle
time. Only if the idle time is long enough, it is worth switching off the com-
ponent. By analogy, nobody will suspend a computer to save energy while
writing a document, even when occasionally the user needs to stop typing
and think about the content, because the idle time is simply too short. In
the context of hard real-time systems, an unjustified component shutdown
not only causes additional energy consumption, it may even delay upcoming
work and thus jeopardize deadlines. Therefore the main challenge by using
the DPM technique is to predict idle time and decide whether a component
could be switched off, and if so, to which sleep state.

DVS usage: The basic concept of the DVS technique is to slow down the
component operating speed or frequency. In general, the power consumption
of a CMOS based circuit is quadratically proportional to the supply voltage.
Reducing the voltage and thus the speed, dramatically decreases the power
consumption. However, since running a task at lower speed will increase the
execution time, it should be carefully used, so that no task misses its deadline.
Therefore, the main problem is to find the most appropriate operating speed
for each task to minimize the system energy consumption while meeting all
the timing constraints.

Combined usage of DPM and DVS: If the DPM and DVS techniques are
used together, they actually work contradictorily. More concretely, on one
hand, the DPM technique tries to complete the work as soon as possible, so
that more idle time is available for DPM application. On the other hand,
the DVS tries to use the lowest speed and thus complete the work as late as
possible. The extensive usage of the DPM technique will limit the possibility
of DVS usage and vice versa. The main challenge hereby is to find the best
compromise or trade-off between them.

DPM/DVS usage on multi-core platforms: Multi-core processors are com-
ing into market in modern electric devices. In this context, the energy opti-
mization problem for hard real-time systems becomes even more complex, as
an energy efficient task partition should be additionally derived. Moreover,
there exist some hardware constraints on multi-core processor platforms in
terms of the DPM and DVS capabilities. For instance, if some processor
cores share the same power supply net, then they can only operate at the
same speed at the same time. An energy efficient real-time scheduling needs

Chapter 1. Introduction

1.4

to take this into consideration.

Contributions

In order to achieve the objectives, this dissertation makes the following con-
tributions.

System model: The first contribution is proposing an abstract system model
and formally formulating the main problem. Hereby, the idea of power state
machine is adopted to describe the power characteristics of processors and
devices. For processors, this dissertation addresses both single-core proces-
sor platforms and multi-core processor platforms. Moreover, the traditional
real-time task model is adopted to represent software applications.

Heuristic Search Algorithm: The second contribution is proposing a heuris-
tic search algorithm based on simulated annealing to solve the energy opti-
mization problem. The traditional simulated annealing algorithm is extended
by incorporating domain specific information, which improves the algorithm
performance. In other words, rules are defined to guide the search of neigh-
bor solutions.

Run-Time Behavior Analysis: The third contribution is analyzing the run-
time behavior of the heuristic search algorithm. A run-time mechanism based
on the exponential regression technique is introduced to estimate system per-
formance. An efficient and accurate termination criterion for the heuristic
search algorithm is derived as well.

ES-AS Approach: The fourth contribution is proposing an online approach,
which runs the heuristic search algorithm in a completely adaptive fashion.
Hereby the main idea is to integrate the iterative algorithm into real-time
system execution. The online approach is divided into two stages, the Ex-
ploration Stage (ES) and the Application Stage (AS). This is the reason why
it is called ES-AS approach. In short, the exploration stage tries to explore
candidate solutions, and the best solution found is applied in the application
stage. As the approach is completely online, the information concerning sys-
tem dynamics can be easily considered. Moreover, the run-time overhead
introduced by the approach, which will be discussed in detail later, is prov-
ably small.

DVS state switching overhead handling: Unlike the DPM state switching
overhead, which has attracted a lot of attention in existing work, the DVS
state switching overhead is often ignored, though it incurs considerable over-
head as well. The fifth contribution of this dissertation is investigating the
impact of the non-negligible DVS state switching overhead and the necessity
of its treatment. Two run-time protocols, conservative protocol and speed

Chapter 1. Introduction

1.5

inheritance protocol, are proposed to solve the problem.

Organization of the Dissertation

The remainder of the dissertation is organized as follows. Chapter [2] gives
the fundamentals and backgrounds in the area of energy efficient real-time
scheduling. An overview of the state-of-the-art analysis is shown as well.
Chapter |3| introduces the system model and formally defines the optimiza-
tion problem for both single-core and multi-core processor platforms. Chap-
ter [] presents the details of the heuristic search algorithm and the subse-
quent Chapter [5] analyzes its run-time behavior. A termination criterion of
the heuristic search algorithm is also derived. Chapter [6] proposes the on-
line approach and proves its correctness in terms of system schedulability
and efficiency in terms of run-time overhead. In order to deal with the non-
negligible DVS state switching overhead, Chapter [7]investigates its influence
and proposes two run-time protocols called conservative protocol and speed
inheritance protocol. Before the dissertation is finally concluded in Chapter
[9} a thorough evaluation of the proposed algorithm and approach is performed
and given in Chapter [§]

Chapter 2

Background

2.1

This chapter gives the fundamentals of the dissertation. The first section
introduces the basic concept behind real-time systems and reviews some im-
portant scheduling algorithms. The second section addresses the background
in the area of energy management techniques with special focus on run-time
aspects. In the subsequent section, a state-of-the-art analysis is presented
concerning the energy optimization problem in hard real-time systems. Be-
fore this chapter is finally concluded, the Advanced Configuration & Power
Interface standard is introduced.

Real-Time Systems and Scheduling

Real-time computing in computer science is a special term used to describe
the computation, where correctness is not only dependent on the logical value
but on the temporal constraints as well [Kop11]. A real-time system must be
able to produce correct results on time or earlier. A late answer is considered
to be wrong.

In fact, there exists a wide range of applications that require the real-time
property. Some examples include automotive applications, telecommunica-
tion systems, robotics, multimedia systems, space missions, consumer elec-
tronic devices, etc. [Butl 1] [MarO3]. In general, most real-time systems are
applied in the embedded context, i.e., encapsulated in an environment and de-
signed for a specific and dedicated purpose. Because of the interaction with
environment, one of the most important characteristics in real-time systems
is being reactive. Hereby time clearly plays a crucial role. One common mis-
understanding of real-time computing is often associated with ’being fast”.
However, the term “fast” is only relative to the environment. Instead, the
real-time requirement does not mean running as fast as possible, but rather
completing the computation within a predefined deadline. In other words,
the real-time property is more related to predictability and determinism of

Chapter 2. Background

systems.

In terms of safety critical systems, real-time constraints can be classified in
three categories depending on the consequence of a possible deadline miss
[Butl1]:

* Hard Real-Time: A system is said to be a hard real-time system, if a
deadline violation may result in catastrophic consequences.

* Firm Real-Time: A system is said to be a firm real-time system, if
produced results are useless but will not cause any damage when they
are late.

» Soft Real-Time: A system is said to be a soft real-time system, if a late
answer only reduces system performance but is still useful, at least to
some extend.

A real-time system is usually composed of hardware and software, which in
turn comprises a set of processes. From the system point of view, a software
process is considered as a basic computation entity executed by the processor.
In the context of real-time systems, a software process is commonly referred
to as a task. Typically, a real-time system contains more than one task and
thus admits a multitask execution environment. Since the tasks might be con-
current, their execution order needs to be decided by a so-called scheduling
algorithm. In other words, the scheduling algorithm is in charge of dispatch-
ing all the tasks at the right time. Moreover, a task is said to be preemptive,
if its execution can be interrupted by another task with higher priority. Oth-
erwise, the task is non-preemptive. Conventionally, a set of real-time tasks
is often denoted by I'= {11, 12, ..., T, }, where each task 7; is characterized by
the following properties [Butl 1]:

¢ Release time is the time, at which the task is released and becomes
ready for execution.

 Start time is the time at which the task actually starts its execution.

* Worst Case Execution Time (WCET) is the time needed by the task
to complete the execution without preemption under the assumption of
worst case conditions.

* Actual Execution Time (AET) is the actual time needed by the task
to complete the execution without preemption.

* Completion time is the time at which the execution of the task is fin-
ished.

Chapter 2. Background

Release Completion Absolute
time time deadline l:l T
€«<——> |[¢&— WECT —>
CPU Static
1%t instance slack 2" jnstance
Start . . |
time 20 40 60 80 100 120 t/ms

<«——— Period —>|«— AFT — |¢<—>

Relative deadline Dynamic slack

Figure 2.1: A real-time task with its properties

Absolute deadline is the time, before which the task must finish its
execution.

¢ Relative deadline is the difference between the absolute deadline and
the release time of the task.

* Static slack is the maximum time a task may be procrastinated without
violating the deadline based on its WCET.

* Dynamic slack is the time coming from the task earlier completion
than the WCET, i.e., the difference between WCET and AET.

In many real-time systems, it is quite common that the tasks are periodic,
i.e., the execution will be repeated at a specific rate. To distinguish task
executions in different periods, the definition of the so-called job instance
is introduced. The j-th job instance of a task identifies the task execution
in the j-th period. As a common assumption, the repetition rate of tasks is
considered as a constant.

Figure illustrates the above mentioned properties based on a simple ex-
ample with one real-time task. The task 7 is released at O ms and the relative
deadline is 60 ms, which is equal to the period. Moreover, the task WCET is
assumed to be 40 ms.

In terms of task dependencies, real-time systems can be distinguished into
two categories. The first category contains such task sets, in which the tasks
are dependent upon each other. More specifically, the tasks have to be exe-
cuted in a predefined order according to their precedence relation. Usually,
these tasks together with their dependencies can be described as a directed
acyclic graph. On the contrary, the second type of real-time systems contains
independent tasks, which can be executed in arbitrary order. For the sake
of simplicity, this dissertation concentrates on independent tasks only. How-
ever, the possibility of handling tasks with precedence relation is discussed
in the conclusion chapter.

Chapter 2. Background

In order to successfully execute all the tasks without missing any deadline,
real-time scheduling algorithms play a key role. Formally, a schedule on a
single-core processor is defined as a total order on a set of real-time tasks
by deciding the start time of each instance of the tasks. A real-time sys-
tem is said to be schedulable or feasible, if there exists a real-time schedule
such that all the tasks are able to complete their respective execution before
their deadlines. Real-time scheduling analysis is a well-studied research area.
There exist a large variety of real-time scheduling algorithms. A comprehen-
sive review of such algorithms is out of the scope of this dissertation. More
detailed information can be found in [Butl1]]. In what follows, the main fo-
cus is put on the two well-known real-time scheduling algorithms, Earliest
Deadline First (EDF) and Rate Monotonic (RM), which are widely applied
for periodic tasks.

Before the EDF and RM scheduling algorithms are explained, the processor
utilization U will be first introduced. Given a set of real-time tasks, U is de-
fined as the portion of time, in which the processor executes tasks. Formally,
it is computed by

W(t;
e

n
i=1

where W (1;) and T (7;) denote the WCET and the period of the task t;, re-
spectively.

The EDF scheduling algorithm is a dynamic approach, which dispatches
tasks according to run-time parameters. At each time, among all the ready
tasks the one with the earliest absolute deadline will be executed. In fact,
each task is associated with a priority based on its absolute deadline. The
earlier the deadline, the higher priority a task has. Thus, the priority of tasks
may change at run-time. By definition, the EDF algorithm is preemptive.
There exists a schedulability analysis based on the processor utilization fac-
tor, which yields a sufficient and necessary condition for EDF to guarantee
system feasibility. In particular, Theorem [2.1.1] holds under the following
assumptions:

Al: For all the tasks, the period is constant.

A2: The WCET of all the job instances of a periodic task is constant.

A3: The relative deadline of each task is equal to its period.

A4: All the tasks are independent.

10

Chapter 2. Background

Theorem 2.1.1 (Theorem 4.2 in [Butl 1]]). A set of periodic tasks is schedu-
lable with EDF if and only if the processor utilization

U<l1. (2.2)

Proof. The proof can be found in [Butl1]. [

The RM scheduling algorithm is a static approach, where tasks are dispatched
according to some fixed parameters that will not change at run-time. More
concretely, each task is associated with a static priority based on its period,
i.e., the longer the period, the lower priority a task has. At run-time, always
the task with highest priority is selected for execution. Instinctively, the RM
scheduling algorithm is preemptive. For schedulability analysis, Theorem
[2.1.2] gives a sufficient condition based on the processor utilization test under
the assumptions Al, A2, A3 and A4.

Theorem 2.1.2. Given n real-time periodic tasks, the system is schedulable
with RM if the processor utilization

U<n(2'/"-1) (2.3)

Proof. [LL73]] has shown that the least upper bound to the processor uti-
lization for the RM algorithm is n(2'/* —1). By definition [LL73], if the
processor utilization is less than the least upper bound, then all the tasks are
schedulable. Thus, the theorem follows directly. O

Forn > 1, n(21/ " —1) is a strictly decreasing function of n. As n grows to
infinity, n(2!/" — 1) eventually converges to In2 ~ 0.69 [Butl1]. Thus the
schedulability test can be simplified to

U <0.69 2.4)

Clearly, the schedulability tests for both EDF and RM have a linear compu-
tation complexity O(n).

Figure illustrates the different task execution of an example by applying
the EDF and RM algorithms. The example consists of two real-time tasks.
The WCET and period/deadline of T; is 5 ms and 20 ms, respectively. The
WCET and period/deadline of T, is 17.5 ms and 30 ms, respectively. The
hyper period of a task set is defined as the least common multiple of all the
task periods, which is 60 ms in this example. The task execution repeats

11

Chapter 2. Background

o B

CPU Hyper Period

10 20 30 40 50 60 t/ms

(a) Task execution under RM schedule

CPU

10 20 30 40 50 60 t/ms

(b) Task execution under EDF schedule

Figure 2.2: Different task execution under EDF and RM

itself in each hyper period. The main difference between the schedules ap-
plying EDF and RM happens at 20 ms when T, becomes active. In case
of the RM algorithm, T has a higher priority than T,, because its period is
shorter. Therefore, the execution of 7, is interrupted by T;. However, in case
of the EDF scheduling algorithm, T, has a higher priority, because the abso-
lute deadline of its current instance is due at 30 ms, which is earlier than the
absolute deadline of the current instance of t>. Therefore, the execution of T
is not preempted by 7.

Until now this section only addressed single-core processor based real-time
systems. In what follows, a brief overview of real-time scheduling on a multi-
core processor is given. As will be explained later, this work focuses on in-
dependent real-time tasks. In this context, there exist two classes of real-time
scheduling algorithms: the partitioned scheduling and the global scheduling
[DB11]. The key difference between them is that the task migration is not
allowed in the former case whereas it is permitted in the latter case. In other
words, the partitioned approach tries to allocate processor cores to tasks be-
forehand and later at run-time a task may only run on its allocated processor
core. Global scheduling, on the other hand, may dynamically change the pro-
cessor core allocation at run-time if needed, i.e., different job instances of a
task may be executed on different processor cores. One of the well-known
scheduling algorithms in this category is the Proportionate Fair (Pfair) algo-
rithm, which breaks the time into slots with equal length and each time slot
is allocated to a task. A detailed review of global scheduling algorithms can
be found in [DB11]].

This dissertation concentrates on the partitioned scheduling, because it pro-
vides several benefits in practice compared to the global scheduling.
* There is no penalty overhead for task migration.

* If a task has missed the deadline, only the tasks on the same processor
core are affected.

12

Chapter 2. Background

* The partitioned scheduling is more efficient in terms of scheduling
overhead, because each processor core only has to deal with the tasks
partitioned on it. On the contrary, the global scheduling has to manage
a global queue for all the tasks and often make the scheduling decision
online.

* Once the tasks are partitioned, the well-known single-core real-time
scheduling algorithms, such as EDF and RM, can be applied for each
processor core without adaptation.

Due to the last point shown above, the main challenge of real-time scheduling
on a multi-core processor obviously is reduced to a task partition problem.
Fortunately, it can be transformed to the bin packing problem [Vaz02]], a
well-studied combinatorial optimization problem, where the main objective
is to pack n objects with different values into a set of bins with different
capacities while minimizing the number of bins. Clearly, the tasks represent
the objects and the object value is the utilization of the task, i.e., W(t;) /T (T;).
The processor cores represent the bins and the bin capacity is the utilization
upper bound on the processor core to ensure system schedulability based on
a particular real-time scheduling algorithm, i.e., the capacity is 1 or 0.69 for
the EDF or RM scheduling algorithm, respectively. However, the goal in the
scheduling context is not to minimize the number of applied processor cores,
but rather to partition tasks onto a set of given processor cores, so that all the
tasks are schedulable. Other optimization goals, such as minimizing power
consumption or response time, can be added to the problem.

A comprehensive review of the partitioned scheduling is provided in [DB11]].
Because the bin packing problem is proven to be NP-hard, most studies try
to use heuristics to partition tasks. Some common strategies are listed as
follows.

* First Fit (FF) strategy tries to partition a task to the first processor
core, which still has enough space for it.

* Next Fit (NF) strategy tries to partition a task to the next processor
core (with the next higher index), which still has enough space for it.

* Best Fit (BF) strategy tries to partition a task to the mostly loaded
processor core (i.e., with highest utilization), which still has enough
space for it.

* Worst Fit (WF) strategy tries to partition a task to the least loaded
processor core (i.e., with lowest utilization), which still has enough
space for it.

13

Chapter 2. Background

2.2

Once the tasks are successfully partitioned, single-core processor real-time
scheduling algorithms can be applied on the processor cores. In order to run
the partitioned tasks on different processor cores independently, the parti-
tioned scheduling needs to manage a separate task queue per processor core.

Run-Time Energy Management Techniques

In a CMOS-based integrated circuit, power consumption is mainly composed
of two parts: the dynamic power consumption Pyy,amic and static power con-
Sumption Pstatic-

P= denamic + Pstatic (2.5)

The dynamic power dissipation comes from charging and discharging pro-
cesses of the logic circuit and therefore is highly dependent on the switching
activity and speed. In general, it can be expressed by (2.6) [ZMCO3]],

denamic = Lef- ded F (26)

where C, is the effective switching capacitance of the integrated circuit, V4
is the supply voltage and F is the clock frequency or speed. Moreover, the
clock frequency is dependent on the supply voltage

(Vg —Vin)?
\ 27

F=k- 2.7)

where £ is a technology constant and V;, is the threshold voltage [ZMCO3]].
By assuming that the threshold voltage is relatively small, the clock fre-
quency can be approximated as a linear function of the supply voltage.

F = k-Vdd (28)

By substituting V4 in li with £, the dynamic power consumption can be
considered as a cubic function of the clock frequency [ZMCO3]].

C
denamic - denamic(F) ~ ksz 'F3 (29)

The static power dissipation mainly describes the leakage power consumed
by transistors disregarding whether there are charging or discharging activi-
ties. Typically it can be expressed by

14

Chapter 2. Background

2.2.1

Figure 2.3: Power state machine of the StrongARM SA-1100 processor
[BBMOO]

Pstalic = Istatic : Vdd (210)

where 4. s the total current flowing in the circuit. In early years, the static
power consumption was often ignored, because it was clearly dominated by
the dynamic power consumption. However, due to the rapid and continuous
advancement toward nanoscale technology in deep sub-micron regimes, the
gate size becomes smaller and smaller. As a result, the leakage current and
thus the static power consumption becomes larger and larger [Aga+06]. This
leads to an increasing need to efficiently manage and deal with the static
power consumption.

As mentioned in the introduction chapter, there are two major run-time en-
ergy management techniques from the system level point of view: the DPM
and DVS techniques. In general, the DPM technique is applied to reduce the
static part of power consumption while the DVS technique is primarily used
to save the dynamic power consumption. In what follows, both techniques
are discussed in detail.

Dynamic Power Management (DPM)

Generally, “dynamic power management” is a frequently used term in the
research area of low power system design. There are many different inter-
pretations. To avoid ambiguity, in this dissertation Dynamic Power Man-
agement (DPM) is particularly referred to as a technique that dynamically
adjusts system power consumption by selectively switching off components
when they are idle. The primary motivation behind this technique is to re-
duce static power consumption. A system component with DPM capabil-
ity is commonly designated as a power manageable component [BBMOO],
which can be modeled by a power state machine. From the system point
of view, a component can be a processor or an I/O device, such as ether-
net controller, hard disk, memory card driver, USB controller etc.. Figure
[2.3]illustrates the power state machine of an example processor, StrongARM
SA-1100 [BBMOO]. Hereby the RUN state is the only working state, in which

15

Chapter 2. Background

Poffaon Ton%off

Pon—wff Ton—wff

Figure 2.4: Power state machine of a component with two states [BBMOO]

the processor may execute software processes. The other two states IDLE and
SLEEP are referred to as low power states, also known as sleep states, which
can be used for power saving. The RUN state consumes the most power (400
mW) and the SLEEP state consumes the least power (0.16 mW). Moreover,
as shown in Figure 2.3] the state switching incurs time overhead. Though the
latency appears to be very small, mindless ignorance is not always justified,
especially if the task execution time is in the same order of magnitude.

The main cause of the switching overhead is accounted to

* switching on/off and stabilizing the power supply.
* stabilizing the clock.

* loading and storing the system context.

Obviously, the deeper the low power state, the more power can be saved,
however the higher switching overhead has to be paid. There is a trade-off
by choosing the most appropriate low power state between power saving and
switching overhead. In some cases, the component should not even enter a
low power state at all, because the induced overhead is higher than the saved
power. In order to deal with this problem, the concept of so-called break-
even time [BBMOO] is adopted. To simplify the explanation, the discussion
is based on a simple example shown in Figure [2.4

The example component supports two states, ON and OFF, indicating the ac-
tive and the sleep state, respectively. P,, and P,ss denote their respective
power consumption. As mentioned above, a state switching introduces non-
negligible overhead. Thus, P, s and T;,, s denote the power consump-
tion and the latency of the state switching from ON to OFF. Similarly, Py ¢ on
and T, o, denote the power consumption and the latency when switching
the state from OFF back to ON.

Considering a scenario that the component becomes idle at a certain time #{
and will be required later again at 15, i.e., the idle time is [t1,7,]. Clearly, there
are two possibilities concerning the usage of DPM.

16

Chapter 2. Background

P/w [active [idle
POTl
Poff “ ’ El ‘
t (a) Case 1 2 t/s
P/w
Pon /Eoverhead\)
Poss |
Eofr
1| Ton-ofr Toffon |ty t/s
(b) Case 2

Figure 2.5: Comparison of energy consumption with and without component
shutdown

* Case 1: The DPM technique is not applied at all. The component
remains in the state ON and thus no state switching overhead needs to
be considered. The total energy E| consumed in the interval [t1,1;] can
be computed in (2.11)). Figure [2.5(a) illustrates this situation.

Ey =Py (t2—1) (2.11)

* Case 2: Figure[2.5(b) shows the case, where the component is switched
off to the state OFF during [¢1,#,]. In order not to delay the upcoming
work, the component needs to be switched on before its actually re-
quired time 7. Thus the inequation (2.12) expresses a condition for
this case.

h—t > Ton%off + Toff%on (212)

By incorporating the switching overhead, the total energy consumption
E, in [t1,1;] can be computed in (2.13).

Er = Eoff + Eoverhead (2.13)

where E, s denotes the energy consumed when the component is in
the OFF state.

Eopp=Posr- (2 —t1 — Tonssorf — Toff—on) (2.14)

and E, e neqaq denotes the energy consumption overhead caused by the
state switching.

Eoverhead = Pan%off : Ton%aff + Paffﬁon : Toff%on (2~15)

17

Chapter 2. Background

Clearly, Case 2 is more favorable in terms of energy saving, if E1 > E>. Oth-
erwise Case 1 is more preferred. Thus by substituting £ and E> with the
expressions from (2.11) and (2.13), the condition to choose Case 2 can be
obtained.

Pon . (t2 - tl) Z Eoff +E0verhead (2~16)
By applying (2.14), (2.16) can be reformulated to (2.17).
Pop - (t2 - tl) > Poff : (tZ —I = Ton%off - Toffﬁon) + Eoverhead
> Poff . (lz - tl) _Poff : (Ton—>off + Toff—)on) +E0verhead
(2.17)
If (2.17) is reformulated by combining the term ¢, — #; on both sides of the
equation, (2.18)) can be obtained.
(Pon - off) : (IZ - tl) > Eoverhead _Poff : (Tonaoff + Toff%on) (218)

By further reformulation, the condition for Case 2 can be expressed by (2.19).

Eoverhead - Poff : (TORHOff + Toff%on)
Pon — of f

h—1t > (2.19)

Intuitively, there is a lower bound to the idle time. Only if the idle time
lasts longer than it, switching off the component is beneficial. Otherwise,
the energy consumption overhead caused by the state switching is so high,
that it would be better to keep the component in the ON state. Looking at
(2.14), the longer the idle time, the more energy can be saved, i.e., the more
benefit can be achieved by switching off the component. Thus the break-even
time is defined as the minimum time required for a component being idle, so
that the switching overhead can be compensated. In other words, only if the
saved energy exceeds the overhead, it makes sense to choose Case 2, i.e.,
enter the OFF state. Note that the condition (2.12)) is another prerequisite for
Case 2, i.e., it presents another strict lower bound for #, —#;. Combining the
conditions (2.12) and (2.19)), the break-even time for the OFF state, denoted
by fpeoff» 18 Obtained.

Eoverhead _Poff : (Tonaoff“' Toff%on)}
Pop — off

tbe,off = maX{Ton_mff + Tgff—)ona
(2.20)

18

Chapter 2. Background

2.2.2

Since each low power state has its own switching overhead, different low
power states have different break-even time. Obviously, the deeper the low
power state, the less power it consumes, however, the longer the break-even
time takes. If a component supports multiple low power states, there is a
question concerning how to select the most appropriate one, if it becomes
idle. In order to maximize power saving, the chosen state should be as low
as possible, i.e., the deepest low power state, whose break-even time is yet
longer than the idle time.

As a summary, due to non-negligible DPM state switching overhead, a com-
ponent can not be simply switched off whenever it becomes idle. The de-
cision is rather dependent on the length of idle time. Only if the idle time
is longer than the corresponding break-even time, the component may enter
a low power state. An unjustified shutdown not only causes more energy,
but sometimes even delays upcoming work, which is a crucial point in hard
real-time systems.

Dynamic Voltage and Frequency Scaling (DVS)

Another well-applied run-time energy management technique is the so-called
Dynamic Voltage and Frequency Scaling (DVS), also known as DVFS. As
opposed to the DPM technique, the main motivation behind DVS is to reduce
the dynamic power consumption of circuits by slowing down the current op-
erating frequency/speed and the corresponding supply voltage. The relation-
ship between operating speed and supply voltage can be roughly modeled
as a linear function (2.8) [ZMCO3]]. In general, a pair of supply voltage
and frequency is referred to as an operation point. The DVS technique is
primarily available on processors, such as the well-known Intel SpeedStep®
technology. Note that this dissertation is not interested in reducing operating
frequency while keeping supply voltage, because it is not beneficial from the
energy saving point of view. However, it can be applied to reduce system
peak power consumption or for thermal control purpose, but this would be
out of the scope of this work.

To simplify explanation and avoid ambiguity in the remaining text, if the term
’speed” or ’frequency” is used in the context of being increased or decreased,
operating voltage is always implicitly assumed to be scaled accordingly as
well.

As indicated in (2.9), dynamic power consumption can be approximated as a
cubic function of speed. Therefore, reducing operating frequency results in a
cubic decrease of power consumption. However, this power reduction comes
at a price, because the execution time of workload is extended. There is a
trade-off between performance and power consumption. Especially in the
context of hard real-time systems, the DVS technique has to be applied with

19

Chapter 2. Background

great caution, as no task should ever violate its timing constraints. Further-
more, this work assumes that the task WCET is a linear decreasing function
of operating speed, i.e., the WCET decreases linearly as processor speed in-
creases.

In order to analyze the DVS technique, the so-called Active Energy Con-
sumption of a task is defined.

Definition 2.2.1. The Active Energy Consumption (AEC) of a periodic task
T;, denoted by Equive(Ti, F), is defined as the energy consumed during the
task execution at a particular frequency F within one period.

Intuitively, a task AEC describes the energy consumed by the task when it is
active. Formally, it can be computed as follows.

W(’C,’) . Fref

Eactive(riaF) - P(F)' F

(2.21)

where P(F) is the processor power consumption when running at the speed
F. Since the task execution time varies along with the operating frequency,
W (7;) denotes the WCET of 7; based on a reference frequency F.r. With-

out loss of generality, Fy.r is assumed to be the highest speed and all the
remaining speeds are lower. Obviously, w gives then the WCET of 7;

running at F. If only considering the dynamic power consumption, (2.21))
can be refined by applying (2.9) as follows.

W(Ti) 'Fref _ CefW(Ti)FVEf . F?

Eactive (ThF) = denamic(F> ’ F j%)

(2.22)

Clearly, E,eive(Ti, F) is a strictly increasing function of F. In order to mini-
mize the task AEC, the operating frequency needs to be lowered as much as
possible, i.e., using the lowest speed that can complete execution within the
task deadline.

However, if the static power consumption is considered as well, the formula
of Egcrive(Ti, F) looks like as follows.

C.sW (1) F,
Eactive(riaF) - % 'F2 + Pyaic -

W (i) Frey (2.23)

For a certain task and a certain technology, Cer, k, Pyasic, Frey and W(T;)
are clearly constant. It is not hard to see that E v (Ti, F) is not a strictly
increasing function of ' any more. In fact, it becomes merely a convex func-
tion, which admits a minimum value, i.e., the optimal energy consumption.

20

Chapter 2. Background

A Eactive (Tr F)

with static
without

static
power

\ 4

critical speed

F critical

Figure 2.6: The curves of the task active energy consumption

In order to find the minimum, the derivative of the function needs to be de-
termined.

dEqctive(Tiy F 2C. ¢ W (Ti)F, W (ti)F
fdﬁf iF) _ 2C k(z Vet p gy A et F)z el (224)
B . dEactive(Tin) . 1 1 1 1 1
y letting —“*=-=— = 0, the optimum energy consumption is obtained, if
the task runs at the speed F_,isicq;-
3| Pyarick?
Feritical = S;ge_cf (2.25)

In this context, F_,iicq; 1S commonly referred to as the critical speed or opti-
mal speed. No task should ever run below this speed, because otherwise both
the task AEC and execution time increase. Figure[2.6]illustrates the curves of
the task AEC. The red and blue curves correspond to the functions in (2.22)
and (2.23)), respectively. Note that the critical speed may not be always suit-
able for the task, because it might be too slow to complete the task on time.
It only gives a lower bound to choose the optimal task operating speed con-
cerning its AEC. Considering the speeds above the critical speed, the task
AEC becomes a strictly increasing function of speed again. Moreover, as
shown in (2.25)), F,iicqr is independent of tasks and only related to power
characteristics of the processor.

From the theoretical point of view, the formula (2.25)) presents a rigorous
analysis of the critical speed. However, some of the constants, such as Cey,
k and Py4ic are not always available. Therefore it is rarely used in practice.
By definition, the critical speed is the optimal speed to run tasks (without

21

Chapter 2. Background

Speed F (MHz) 150 | 400 | 600 | 800 | 1000
Power consumption (mW) 80 170 | 400 | 900 | 1600
W () (ms) 667 | 250 | 167 | 125 100
Ective(T,F) (mJ) 53.36 | 42.5 | 66.8 | 112.5 | 160

Table 2.1: An example to compute the critical speed [Xu+04]

consideration of deadlines) in terms of AEC. Since the number of available
speeds of a processor is usually limited, the critical speed can be computed by
first selecting one arbitrary task, then determining its AEC for all the speeds
and finally choosing the speed with the minimal energy consumption. Table
[2.1]shows an example, where the Intel XScale processor [Xu+04]] supports 5
operating speeds (150 MHz, 400 MHz, 600 MHz, 800 MHz and 1000 MHz).
The corresponding power consumption for each speed level is given in the
second row of the table. By choosing a task with WCET equal to 100 ms
with regard to the highest speed, the third row shows the respectively scaled
execution time. Finally, the fourth row shows the task AEC, which is the
product of the power consumption (second row) and the task run-time (third
row). Clearly, the task running at 400 MHz consumes the least energy and
therefore 400 MHz is the critical speed of the processor. From the practical
point of view, the critical speed is in fact the most energy efficient speed
concerning hertz per watt.

2.2.3 Interplay of DPM and DVS

The DPM and DVS techniques are widely applied in practice for run-time
energy management. However, if both of them are used in a combined man-
ner, especially in the context of system-wide energy optimization, they are
actually working contradictory. The intuitive reason is that, on one hand, the
DPM preferred strategy tries to complete work as soon as possible so that
more idle time is available for sleeping, on the other hand, the DVS preferred
strategy tries to finish task as late as possible, because lower speed is more
energy efficient, at least for those above the critical speed.

Figure compares the situations by applying the DPM preferred strategy
against the DVS preferred strategy. The example CPU supports two operating
frequencies F; and F>, where one assumes that Fj is higher and F; is the
critical speed. There is only one sleep state (low power state). A real-time
task with the given release time and deadline is executed on the CPU. The
DPM preferred strategy selects the higher speed F} to run the task and thus
the idle time is long enough to put the CPU to the sleep state. Hereby E! ;.
and El.ldl . denote the energy consumed during the task execution and the idle
time, respectively. On the contrary, the DVS preferred strategy selects the
lower speed F> to execute the task, provided that the task is able to complete

22

Chapter 2. Background

2.2.4

CPU , Release time Deadline CPU , Release time Deadline \
@F, @F T
@F, @F,
E2 . E?
@sleep @sleep - active idle
t t
DPM preferred strategy DVS preferred strategy

Figure 2.7: Comparison of the DPM and DVS preferred strategies

before the deadline. By definition of critical speed, Egmve <E ;mve clearly
holds. However, due to the extended task execution, the idle time on the right
hand side in Figure is too short to shut down the CPU. Thus the CPU
has to stay active and El.%ﬂ , may possibly exceed El.ldl .- 1f so, it is unknown
whether E ;mve + El.ldl . > E azm.ve + Eizdl .- In brief, there is a trade-off between
the usage of the DPM and DVS techniques. In general, by applying the DPM
technique, the possibility to use the DVS technique becomes limited and vice

versa.

DPM and DVS on Multi-Core Processor Platforms

Until now, the discussion about the DPM and DVS techniques has focused
on single-core processors. As multi-core processors become more and more
popular, this subsection introduces the essentials of the DPM and DVS ap-
plication on these platforms. In terms of the DPM and DVS capabilities,
multi-core processor platforms can be divided into three categories. Their
main difference is at which level the DPM and DVS techniques can be ap-
plied. They are referred to as full-chip platforms, per-core platforms and
cluster-based platforms.

In the early years, full-chip platforms were commonly adopted because of the
cost-efficiency of a shared power supply net. However, they lack flexibility
for power management, because all the processor cores have to operate at the
same voltage and speed (e.g. Intel Core™2 Quad [Intc|]) at the same time.
However, each individual processor core can be switched off independently
(Intel Core™2 Quad [Intc]]). The main reason for this is rather obvious, be-
cause switching off one processor core will not affect other processor cores
and this requires only a few transistors. The voltage scaling process on the
other hand is fairly expensive and needs different power lines to be pulled.
In other words, for full-chip platforms the DPM technique can be applied for
each processor core independently and the DVS technique can only be used
at the entire chip level.

With the introduction of the Frequency/Voltage Island technique ([DNMO6]]
[Hu+04]]), per-core platforms (e.g. AMD Phenom™ Quad-Core [AMD])
gain more and more interests, where all the processor cores can be controlled

23

Chapter 2. Background

2.3

coret coret

Full-Chip Platform Per-Core Platform Cluster-Based Platform

Figure 2.8: Three different categories of multi-core processor platforms

independently. However, it suffers the problem of high implementation costs,
because each processor core requires a dedicated on-chip voltage regulator.
This could become impractical if the number of cores dramatically increases,
as in the case of many-core systems.

This dissertation focuses on the third category, the so-called cluster-based
platforms, which combine the advantages of per-core and full-chip platforms
and offers the best compromise. The processor cores are divided into clus-
ters. The cores in the same cluster behave as in a full-chip platform while
the cores from different clusters behave as in a per-core platform. One of
the first commercial products in this context is the recently published ARM
big. LITTLE™ SoCs [ARM] [Jef] composed of a cluster of Cortex-A15 cores
and a cluster of Cortex-A7 cores. Clearly, the cluster-based multi-core plat-
form is a general form of per-core and full-chip platforms. Therefore, the
approach proposed for cluster-based multi-core processor platforms is appli-
cable for the other two categories as well. Figure [2.8|illustrates the different
platforms based on a quad-core processor.

Energy Efficient Real-Time Scheduling

Energy efficient real-time scheduling is a real-time scheduling which ensures
that all the tasks will finish before their deadlines and the system energy
consumption is minimized. This section shows an overview of the state-of-
the-art analysis by reviewing the existing approaches for both single-core and
multi-core processor platforms.

There have been extensive research work in the field of applying the DPM
and DVS techniques in hard real-time systems. In the context of single-core
processor platforms the existing studies can be roughly divided into three
categories, DVS-only, DPM-only and DVS/DPM-combined approaches. By
considering the DV S-only approaches, the primary focus is to find the opti-
mal speed-to-task assignment to reduce processor power consumption. One
of the earliest optimal offline DVS algorithms with polynomial complexity
is proposed by Yao et al. [YDS935]]. [ZCKO07] introduced a fully polynomial
time approximation algorithm. A collaborative approach based on operating
system and compiler is proposed in [Abo+03], where the decision of fre-

24

Chapter 2. Background

quency adjustment is made by means of the inserted code instruments in the
application. The problem of energy-aware scheduling for non-preemptive
real-time tasks is addressed in [JGOS]. In order to cover the resource sharing
aspect in real-time systems, the authors of [ZCO02] proposed a static dual
speed algorithm based on a stack resource policy. A dynamic speed ad-
justment scheme and a dynamic slack reclaiming algorithm are presented
as well to further reduce energy consumption at run-time. [ZX06] proposed
a polynomial time approximation scheme using the dynamic programming
technique to statically assign frequencies to tasks while minimizing the to-
tal system-wide energy consumption. The authors of [Ayd+04] proposed a
power aware real-time scheduling with three components: 1) an offline algo-
rithm to compute the optimal speed assignment, ii) an online dynamic slack
reclaiming framework and iii) an online aggressive speed adjustment scheme
that takes the advantage of dynamic slack of future tasks. Moreover, the
work [LS04] has shown an online DVS approach by exploiting dynamic slack
with a complexity of O(1). A performance comparison of different DVS
approaches for real-time systems under a uniform simulation framework is
given in [Kim+02[]. A comprehensive survey of the DVS-only approaches
for single-core processor platforms is given in [CKO7].

The DPM-only work is mostly proposed for device usage scheduling. The
survey [BBMOO] gives the basics of the DPM technique. In [CGO6|] an on-
line DPM algorithm in conjunction with the EDF scheduling algorithm is
proposed, where the tasks are procrastinated as much as possible to create
large device idle intervals. The work by Swaminathan et al. [SCOS] pro-
posed an offline optimal device scheduling algorithm for hard real-time sys-
tems based on pruning techniques. A heuristic search algorithm is proposed
as well to find a near optimal solution. The authors of [Row+08|] proposed a
rate-harmonized task scheduling, where an artificial task period is introduced
and all the tasks are only eligible to execute at the new period boundaries.
This has the effect that some ready tasks may be delayed in order to prolong
the current idle time for maximizing the DPM usage. [LHCI11] introduced
a dynamic counter approach to decide the number of upcoming events and
therefore bound the future workload. Based on this information, the devices
can be safely shut sown.

Moreover, the relationship between the DPM and DVS techniques attracted
more attentions in the context of system-wide energy minimization. Gen-
erally, the DVS and DPM techniques are applied for the processor and the
devices, respectively. Devadas et al. [DAO8b] studied the exact interplay of
DPM and DVS. However, their focus is on the frame-based task model, where
all the tasks share a common period/deadline. In the work of Jejurikar et al.
[JGO4]] the concept of critical speed was applied. A task should never run
below the critical speed, otherwise the power consumption increases. How-
ever, they ignored DPM state switching overhead. [DA10] introduced the

25

Chapter 2. Background

idea of Device Forbidden Region (DFR), which is reserved time frame for
devices staying idle. The offline part of the approach assigns all the tasks
with a common speed and computes the DFR for each device with regard
to system schedulability. The online part then tries to predict the length of
idle time by incorporating the previously computed DFR and thus can decide
whether a device can be put into a low power state. A generalized dynamic
slack reclaiming technique was proposed as well to further reduce system-
wide energy consumption. [Qua+04] proposed to apply the DVS technique
and additionally procrastinate the ready tasks when possible, so that the pro-
cessor idle time becomes longer than the break-even time. Niu has claimed in
his work [N1ul1] and [N1ulO] that the critical speed is no longer the optimal
speed, if the energy consumption during the idle time is considered and the
DPM state switching overhead is non-negligible. In other words, the speeds
below the critical speed could also be beneficial. The study then proposed a
mechanism to adjust the task operating speed based on the so-called feasible
interval, which is defined as the interval, during which a task can be executed
continuously without missing its deadline. In his follow-up work [NLI11],
the approach is extended to take into consideration dynamic slack, which is
mainly reclaimed for further usage of the DVS and DPM techniques. The au-
thors of [[Kon+10] formulated the system-wide energy optimization problem
for hard real-time tasks as a 0-1 integer non-linear programming problem,
however, they only focused on the frame-based task model.

In the context of multi-core processor platforms, the problem of energy ef-
ficient real-time scheduling has been discussed in several studies as well.
Based on their target platforms the approaches can be roughly divided into
three categories, per-core, full-chip and cluster-based approaches. Aydin et
al. [AYO03]] showed the NP-hardness of the problem of energy-aware task
partitioning and proposed a load balancing framework based on per-core plat-
forms. [[AAOS|] compared various partitioning algorithms and speed assign-
ment schemes in terms of energy consumption and feasibility analysis. Chen
et al. [CKOS[described a per-core DVS algorithm taking different power
characteristics of tasks into consideration, however, they assumed the frame-
based task model and ideal DVS model, where a processor can operate at any
frequency within a given range. With regard to leakage power the same au-
thors provided several approximation algorithms in another work [CHKOG6]
for per-core platforms, but the analysis is based on the ideal DVS model as
well. More information about their work may also be found in [Che+07|]
and [Che+04]. Zhu et al. [ZMCO03] studied energy aware global scheduling
on per-core platforms based on the dynamic slack sharing scheme. In [YPO2]]
the authors formulated the power optimization problem on per-core platforms
(each core is enabled with identical DVS capability) as an extended general-
ized assignment problem and tries to solve it with an extended linearization
heuristic (LR-heuristic). In the same context the aspect of dependent real-
time tasks is addressed in [Gru0OO] and [GKOI]] using a list-scheduling algo-

26

Chapter 2. Background

rithm. Lee et al. [Lee(09] classified the tasks into three categories according
to their utilization and proposed a heuristic scheduling scheme based on this
classification.

In the domain of full-chip platforms, most works are concentrating on bal-
anced task partitioning. Seo et al. [Seo+08] introduced a dynamic reparti-
tioning algorithm based on an existing partition, which tries to balance the
task load on different cores by considering dynamic slack. A dynamic core
scaling scheme was proposed as well to reduce the number of active cores.
Yang et al. [YCKOS|] proposed an approximation algorithm to schedule a
set of frame-based tasks. In the work [[ABO2]] the authors investigated the
problem of deciding the optimal number of required processors to minimize
energy consumption by a given workload. However, they only considered
static power management, i.e., no run-time speed adjustment is allowed and
all the processors are running at a pre-computed speed.

Only recently, more and more attention has been put on cluster-based multi-
core processor platforms. [KZS11]] has focused on the problem of clustering
processor cores into DVS domains. The authors proposed to group simi-
lar cores into clusters according to their typical workload. Chakraborty et
al. [CR11] introduced a fundamentally alternative means for cluster-based
multi-core processor design. They believe that a processor core, which is
designed for a dedicated frequency/voltage domain, is more energy efficient
than a core designed with run-time DVS capabilities and configured to that
frequency/voltage domain. Both works are not focusing on hard real-time
systems. Two closely related works are presented by Kong et al. [KYDI11]
and Qi et al. [[QZ08]]. The work [KYD11] addressed the energy optimization
problem on cluster-based multi-core processors. Basically, their algorithm
is divided into three steps: i) deciding the number of required clusters, ii)
partitioning the tasks based on the worst fit strategy and iii) attempting to as-
sign each task with the most energy efficient operating speed while meeting
deadlines based on the previous partition. The authors of [[QZ08|| considered
the same problem and even took dynamic slack into account. However, both
[KYD11] and [[QZO8]] focused only on the frame-based task model and ideal
DVS model, which are not really applicable in practice. Another closely
related work is shown in [[Han+12]], in which shared resources with critical
sections are considered. For this, a suspension based resource access proto-
col is developed, which means that if a task is blocked due to resource lock, it
will not do a busy-wait but rather is suspended so that other tasks on the same
processor core can be executed. Besides, they also proposed a task partition
heuristic based on the worst fit strategy and several run-time slack manage-
ment techniques including slack reclaiming, slack preserving, slack releasing
and slack stealing.

As a summary, Table [2.2] and [2.3] shows the existing approaches at a glance
with regard to some important aspects explained as follows.

27

Chapter 2. Background

2.4

» System-wide: This aspect shows whether an approach addresses the
total system energy consumption including the processor and devices.
If the main focus is only on processors or on devices, then they are
explicitly given in the tables.

* DPM: This aspect indicates whether the DPM technique is applied,
especially with non-negligible state switching overhead.

* DVS: This aspect gives whether an approach uses the DVS technique.
If a study applies DVS but assumes an ideal DVS model, i.e., the sup-
ported operating frequencies are not discrete but rather form a contin-
uous range, then it is explicitly given. Note that the ideal DVS model
does not exist in practice.

* Online: This aspect implies whether an approach is online. If an algo-
rithm contains an offline and an online part, it is referred to as a hybrid
approach.

* Task model: This aspect shows whether the addressed task model is
a general real-time task model. Some studies have applied the lim-
ited frame-based task model, where all the tasks share a common pe-
riod/deadline.

* Platform: This aspect is only relevant for multi-core processors. It
gives the target platform an approach has addressed. Mainly there are
three types of them: per-core, full-chip and cluster-based platforms.

These aspects also highlight the main contribution of the dissertation. The
main distinction between this dissertation and the existing work is that this
work addressed all the aspects, i.e., system-wide, DPM with non-negligible
switching overhead, non-ideal DVS model, online, general real-time task
model and cluster-based multi-core processor platforms.

Advanced Configuration & Power Interface

Advanced Configuration & Power Interface (ACPI) is an industrial open stan-
dard for unifying hardware/software interaction interfaces [ACP]. The pri-
mary objective is to enable operating system directed device configuration
and power management. Figure [2.9| shows the overall structure of an ACPI
compatible system. In particular, an ACPI subsystem is composed of three
major parts: ACPI register, ACPI BIOS and ACPI tables [ACP]. The last one
plays a key role to connect software and hardware components.

* ACPI registers are special hardware registers for ACPI subsystem to
configure a system.

28

Chapter 2. Background

Related work | System-wide | DPM | DVS | Online | Task model

~ [YDS95] processors X Ideal X v
- [ZCKO07] processors X v X v
~ [Abo+03]] processors X v' | Hybrid v
~ [IGO5] processors X v' | Hybrid v
~ [zCo2] processors X v' | Hybrid v
~ [ZXo06] v X v X v
~ [Ayd+04] processors X Ideal | Hybrid v
LS04 processors X Ideal v v
~ [CGO6] devices v X v v
~ [SCo5] devices v X X v
~ [Row+08] devices v X X v
~ [LHC11] processors v X v v
~ [DAOSDb]| v v Ideal X Frame-based
~ [IG04] v X v X v
~ [DA10] v v v | Hybrid v
"~ [Qua+04] processors v v' | Hybrid v
~ [Niull] v v v | Hybrid v
~ [Niul0] processors v v' | Hybrid v
~ [NL11] processors X v' | Hybrid v
~ [Kon+10] v v v X Frame-based

Table 2.2: A comparison among the existing approaches (single-core proces-

Sor)

Related work ‘ Platform ‘ DPM ‘ DVS ‘ Online ‘ Task model
[AYO03] Per-core X Ideal X v
~ [AA05] Per-core X Ideal X v
~ [CKO3] Per-core X Ideal X Frame-based
~ [CHKO6] Per-core v |Ideal | x v
~ [ZMCO03] Per-core X | Ideal | V v
~[YPO2] Per-core X v X v
~ [Gru00] Per-core X v X v
7[Che+04] Per-core X Ideal X Frame-based
"~ [Lee09] Per-core X v X v
~ [Seo+08] Full-chip x |Ideal | V v
~ [YCKO3] Full-chip X Ideal X Frame-based
~ [ABO2] Full-chip X v | Hybrid v
~ [KYD11] | Cluster-based | x | Ideal X Frame-based
~ [Qzog] Cluster-based X Ideal | Hybrid | Frame-based

Table 2.3: A comparison among the existing approaches (multi-core proces-

Sor)

Chapter 2. Background

o 0s
Applications Dependent
Application
APIs

Kernel OSPM System Code

OS Specific
technologies,
interfaces, and code.

Device
Driver

ACPI Driver/
AML Interpreter

os
Independent
technologies,
interfaces,

.

ACPI Table |
.

code, and |
.

.

Interface

ACPI
Register
Interface,

ACPI BIOS

Interface hardware.

Existing
industry
standard
register
interfaces to:
CMOS, PIC,
PITs, ... -

! - ACPI Spec Covers this area.

- OS specific technology, not part of ACPI.
- Hardware/Platform specific technology, not part of ACPI.

Figure 2.9: ACPI System Structure [ACP]

* ACPI BIOS describes the portion of BIOS that is compatible with
ACPI standard. It provides, for instance, interfaces to an operating
system for sleep, wake-up and restart operations.

* ACPI tables is the main part of an ACPI subsystem and contains the
descriptions of hardware components that are used by an operating sys-
tem. Hereby the ACPI specification only defines the interface of func-
tionality and the implementation is often left open to vendors. There
are different types of ACPI tables with different purposes. The basic
element in a table is the so-called definition block. ACPI tables can
be programmed by using the ACPI Source Language (ASL) and later
compiled to the ACPI Machine Language (AML), a pseudo-code type
of language. Thus an operating system needs an interpreter to under-
stand and execute the functionality specified in the tables. One of the
most important tables is the Differentiated System Description Table
(DSDT) containing the most hardware information.

The ACPI specification is a fairly large standard. This dissertation focuses
on a small part of it, namely the power management. In particular, the ACPI
standard defines the power management functionality for processors and de-
vices.

For processor power management, power and performance states are defined
in the ACPI specification [ACP]. The processor power states are usually re-

30

Chapter 2. Background

2.5

ferred to as C-states and used to describe different operation modes. They
are designated by Cy, C1, C», ..., C,. Cy is a mandatory state and also the only
state, in which a processor may execute software programs. C; is specified
as a mandatory state as well and should be supported by a special instruction
of a processor architecture, such as HLT for the IA-32 architecture. In Cj,
the content of caches should be preserved. Furthermore, C; is an optional
state which should provide more power saving than C;. In C,, a processor
should be able to keep its caches coherent. The C3 state is an optional state
as well. If it is present, it should provide even more power saving than C;
and have longer entry and exit latency. In C3 the context in a processor cache
is no longer maintained. Further C-states can also be supported by a proces-
sor. It is then left open to vendors. If they are present, their information is
available in the ACPI tables and can be read by an operating system. The
concept of C-states is comparable to the DPM states. Besides the processor
power states, the ACPI standard further defines processor performance states
as well, which are commonly referred to as P-states. Hereby the main idea
is similar to the DVS states, which describe different performance levels of a
processor.

For device power management, ACPI defines D-states to capture different
power states of a device. This is similar to the processor power states, where
there is only one active state. The remaining states are used then for energy
saving when the device is idle. It follows the same principle, the more energy
saving, the longer it takes to enter and exit the state. In fact, D-states represent
the DPM states for devices.

Chapter Summary

This chapter gave the background of the dissertation. First, a short introduc-
tion of real-time systems and scheduling is shown. Second, two run-time
energy management techniques, DPM and DVS, are thoroughly reviewed.
In particular, the main problem when using DPM and DVS together in the
context of hard real-time systems is discussed. In addition, the three types
of multi-core processor platforms in terms of the DPM and DVS capabilities
are explained. After that, a state-of-the-art analysis regarding energy efficient
real-time scheduling is presented. Finally, before this chapter is concluded, a
brief overview of the ACPI standard is given.

31

Chapter 2. Background

32

Chapter 3

System Models and Problem Formulation

3.1

This chapter formally introduces basic notions and terminologies and defines
the fundamental system models with special focus on power aspects. In the
context of this dissertation, the hardware of a system is composed of a pro-
cessor and multiple I/O devices, such as hard disk, ethernet controller, flash
card controller and other possible peripherals. The processor power model
and device power model are described in the first and second section, respec-
tively. This dissertation assumes that a processor supports both DPM and
DVS techniques while a device is only equipped with DPM capability. This
assumption is widely applied in the context of system-wide energy optimiza-
tion and can be found in numerous other studies, e.g., [DA10]], [NL11]] and
[[CGO9]. Moreover, a real-time task model is described as well to address the
software components of a system. Finally, before this chapter is concluded,
the energy optimization problems in hard real-time systems are formulated.

Processor Power Model

Since this work primarily targets energy optimization, the definitions here
concentrate on the power characteristics of processors rather than the func-
tional aspects. The processor power model is defined following the ACPI
recommendation by adopting the concept of C-states and P-states explained
in the previous chapter. The C-states mainly describe different power states
containing one active state and multiple low power (sleep) states with dif-
ferent sleep depth while the P-states reveal different performance states with
the corresponding operating speed. In other words, C-states represent states
related to the DPM technique and P-states can be identified as states with
regard to DVS. Therefore, in the remaining text the C-states and P-states are
also referred to as the DPM states and DVS states, respectively. In what fol-
lows, the power model of single-core processors and multi-core processors
are defined in detail.

33

Chapter 3. System Models and Problem Formulation

T(51,53) P(51,53)
S. | S3
P(S3)
F(S3)

Co SZ

7
Ton-off(C3) | | Togr-on(C€3)
Pon-ofr(€3) || Posr-on(C3)

(a]) (] (&)@,

Figure 3.1: The power state machine of a processor with 3 P-states and 4
C-states

3.1.1 Single-Core Processor

LetC ={Cy,Cy,...,C.} denote a finite set of C-states of a processor, where Cy
is the only working state, i.e., the processor can only execute tasks in this state
and C1,C;,...,C, are low power states (sleep states) in non-increasing order
of their power consumption. Moreover, the state Cy is defined as a superstate
that contains a finite set of P-states denoted by S = {S1, 52, ...,Ss}. S| is the
full performance state with the maximal operating speed and the remaining
states are sorted in non-increasing order of their power consumption. Vi :
1 <i<s, F(S;) and P(S;) denote the corresponding frequency (normalized
with regard to F(S})) and the power consumption, respectively. For instance,
if a processor supports two operating speeds 100 MHz and 50 MHz, then
F(S1) =1and F(S2) =0.5. The overhead for state switching among different
P-states is defined as follows:

* P(S;,S;) is the power consumption of state switching from S; to S ;.

* T(Si,S;) is the latency of state switching from S; to S ;.

Furthermore, Vi: 1 <i < ¢, P(C), Tonssorf(Ci), Tofr—on(Ci)s Ponsofs(Ci),
P, r7—on(Ci) and Ty, (C;) are defined as follows:

P(C;) is the power consumption of the state C;.
* Tonsorf(G;) is the latency for state switching from Cy to C;.
* Torr—on(Ci) is the latency for state switching from C; to Cy.

* Pruso ff(Ci) is the power consumption for state switching from Cy to
C.

e P, ff_mn(C,-) is the power consumption for state switching from C; to
Co.

34

Chapter 3. System Models and Problem Formulation

* Tpe(C) is the break-even time to enter the state C;.

In general, the C- and P-states of a processor can be modeled as a so-called
power state machine [BBMOO]. Figure [3.1] shows an example power state
machine of a processor with 3 P-states and 4 C-states. In the figure the power
properties of the state C3 are illustrated. As observed, this dissertation as-
sumes that C-state switching may only take place between the active state
and the low power states. A switching between two low power states is not
allowed. In addition, if a processor needs to be switched to a low power state,
then the current P-state is remembered as the history state that will be entered
when the processor wakes up later.

The definition of break-even time is introduced in the previous chapter and
its calculation formula is given in (2.20). Thus, Vi: 1 <i < ¢, T}.(C;) can be
derived as follows.

Eoverhead (Cl) - P(Ci) : Toverhead (Cl)

Tbe (Cl) = max{ Toverhead (Cl) 5 } (3 . 1)

where Tyerneqd(Ci) and Egyerneqd(Ci) are defined in (3.2)) and (3.3), respec-
tively. Intuitively, they are the latency and energy consumption required to

enter and exit the low power state.

Taverhead (Cl) — Toff—>0n (Cl) + Ton—>0ff (Cl) (32)

Eoverhead (Cl) — Toff—>0n (Cl> 'Poff—>0n (Cl) + Ton—mff(ci) : Pon—mff(ci) (33)

Furthermore, P,, denotes the power consumption when the processor is in
the active state Cy. As C is a superstate, the value of P,, is clearly dependent
on the concrete P-state. In other words, 7}, (C;) becomes different if different
P-states are selected. As break-even time is defined as the minimum time
required to stay in a low power state, choosing the maximal value of T, (C;)
keeps the computation on the safe side. Thus, the final calculation formula
of T (C;) is derived.

E e ;) — P(C; 'Tv 7]
Tbe (Cz) _ mgé{Toverhead(Ci)a ov rhead(cl) (Cz) ove head(cl)} (34)

Sj P(Sj) = P(Ci)

35

Chapter 3. System Models and Problem Formulation

3.1.2 Multi-Core Processor

The multi-core processor power model is a generalization of the single-core
processor power model, where a finite set of processor cores are denoted
by O ={0,,0,...,0,}. Each processor core O; is represented by a pair
0; = (C',S"), where C' and S’ denote the set of its C-states and P-states, re-
spectively. More concretely, C' = {C{,C},...,C..} and &' = {S},S5,..., 8¢ }
hold. The power consumption and switching overhead of each state are de-
fined in the same way as in the single-core processor power model.

Furthermore, this dissertation considers cluster-based multi-core processors,
where processor cores are clustered into disjoint groups G = {G1,Ga,...,G, }

with
8
0=|JG; (3.5)
i=1
VGi,GjZi%ijiﬂGj:@ (3.6)
and
VG,' 1 G € Q,G,- cO (3.7)

To formally define the clustering, the function group : O — G is introduced.
Hereby group(0O;) expresses the group containing O;. One important con-
straint on cluster-based multi-core processor is that the cores in the same
cluster may only operate at the same speed. In case of a speed conflict, i.e.,
two cores in one cluster require two different speeds, the highest speed is
used as the cluster wide operating speed. This speed coordination strategy,
on the one hand, is applied due to hard real-time constraints (more details are
shown later) and on the other hand is even obliged on some platforms due to
hardware restriction, e.g., Intel Core ™ 2 Quad [Intc|]. Instinctively, this work
assumes that the processor cores in the same cluster share a common power
model, i.e., VO; € O,0; € O, if group(0;) = group(0;), then O; = O;.

3.2 Device Power Model

A finite set of devices is denoted by R = {Ry,R»,...,R,} and their power
models are defined following the D-states concept in the ACPI specification.
More specifically, D' = {Df, D}, ..., D, } denotes the finite set of power states

of the device R;. Df) is the only active state and the remaining states are low

36

Chapter 3. System Models and Problem Formulation

Figure 3.2: The power state machine of R; with 4 D-states

power states (sleep states) in non-increasing order of the power consumption.
In fact, the D-states are the DPM states for devices. Similar to the processor
power model, state switching is only allowed between the active state and
the low power states. Figure [3.2] shows a simple power state machine of a
device R; with 4 D-states. Furthermore, the power consumption of each state
is denoted by P(D’]) For each low power state D;- with j > 0, T,,—, ff(D;),

Toff—on (D’J) Ponsof f(D’J) Poff—on (D’J) and T, (D’j) are defined as follows.

* Tonsso ff(D;) is the latency for state switching from D6 to D’J
* Toff—on (D’J) is the latency for state switching from D; to D).

* Ponsoff (D’j) is the power consumption for state switching from Df) to
D',
e

* Porroon (D’J) is the power consumption for state switching from D;- to
Di.
0

* Tpe (D’j) is the break-even time to enter the state D’J

In Figure the power properties of the state Dé are illustrated in detail.
Due to the assumption that the DVS technique is not supported by devices,
the active state here is a normal state, as opposed to the superstate in the pro-
cessor power model. Thus the break-even time of each low power state can
be computed more easily. By applying (2.20), Vi, j with j > 0, the formula
of Tpe (D’j) is shown in .

. . Eoverhead (Dl) - P(Di') : Toverhead (Dl)
Tye (Dlj) = maX{Toverhead (Dlj>7 PZ(DI) _ }J)(Di) ‘
0 J

} 38)

Yvhere Tover‘h‘?ad (D’]) and E, e head (D’J) are defined in 1} and (3.10), respec-
tively. Intuitively, they present the latency and energy consumption required
to enter and exit the low power state.

37

Chapter 3. System Models and Problem Formulation

3.3

processor
S, 1 cpu
1 Eactive (71, 52)

SZ -
T1

ty t; t

Ry
R
D(l) i Eaétive (71, 52)
D}
ty ty t

Figure 3.3: An example task execution at the speed level S with Dev(t;) =

{R1}

Toverhead (Dl]) - Toff%on (Dl]) + Ton%off (Dl]) (39)

Eoverhead(D;') - Toff—mn(D;) 'Poff—mn(Dj') + Ton—mff(Dj') 'Pon—>0ff(D§')
(3.10)

Real-Time Task Model

In this work the traditional real-time task model from [Butl1] is adopted. A
set of independent tasks is denoted by I" = {11, 12, ..., T, } with W(t;) denot-
ing the WCET at the maximal (without loss of generality) processor speed S

(i.e., the actual WCET of a task t; running at another speed S is %Si)(sl))

T(t;) denoting the relative deadline (equal to the period) and Dev(t;) de-
noting the set of devices required by the task execution, i.e., Dev(t;) C R.
VR; € Dev(t;), this dissertation assumes that R; must stay active during the
entire execution time of the task t;. Figure [3.3] shows the task execution of
T in the time [f],;]. The example further assumes Dev(t;) = {R;}. Thus
R stays active during [t;,#;]. Note that this work assumes non-existence of
critical sections by device access. However, Chapter [0] will discuss possible
extensions of this work to address this issue. The hyper period of a task set is
denoted by HP, which is the least common multiple of all the task periods.

As shown in the previous chapter by (2.23), AEC of a task is a convex func-
tion of speed and the concept of critical speed is introduced. No task should
ever run below that speed, because otherwise both the AEC and execution
time of the task increase. In this section, the definition of the task AEC is
extended by incorporating the energy consumption of devices.

Definition 3.3.1. The Active Energy Consumption (AEC) of a periodic task
T;, denoted by Eueive(Ti,S), is defined as the energy consumed by the pro-

38

Chapter 3. System Models and Problem Formulation

cessor and all the required devices during the task execution at a particular
speed state S within one period.

An example is illustrated in Figure where Tj requires R during its exe-
cution. It is assumed that T| runs at the speed state S,. Thus, the AEC of 1 is
composed of two parts, the energy consumed by the processor E;77 (T1,52)
and the energy consumption of the device Efcltiv .(T1,52). To generalize the
description, the AEC of a task T running at a particular speed state S; can be

computed as follows.

R.
EaCtive(T7 Sl) - EZZI,:ve(T7 Sl) + Z Eac{[ive(’c7 Sl)
R;€Dev(1)

W(T)'F(51)+ Y P(D)-

3.11
F(Si) Rj€Dev(t) (’) (:

W(t)-F(S1)
F

= P(S))-

Obviously, if Dev(t) = @, the task AEC here becomes the same as defined
in Definition 2.2.1] in Chapter 2] Within this context, the critical speed for
each task T, denoted by SC(7), can be calculated as the most power efficient
P-state in terms of its AEC, i.e.,

VSi €S: Eactive(SC(T);T> S Eactive(Siat) (312)

Note that, since device energy consumption is taken into consideration and
different tasks may require different sets of devices, a critical speed becomes
task-dependent, i.e., each task may have a different critical speed.

In the context of multi-core processor platforms, if the processor cores have
different power models, then the critical speed for each task is dependent on
the task partition, i.e., on which processor core the task is executed. There-
fore, for a particular task T, SC/(t) denotes its critical speed on the processor
core Oj, i.e.,

V8] € 87t Eacrive(SC/(1),7) < Eacrive(S],7) (3.13)

As a short summary, the critical speed is task-dependent, because each task
may require different sets of devices. In a multi-core processor, it is also
core-dependent, provided that the processor cores have heterogeneous power
models. By definition, the critical speed of a task is the optimal speed in terms
of its AEC. If a task runs at the critical speed, it is a good indicator that the
task execution is energy efficient. However, a system may contain many tasks
and all the tasks running at their critical speeds do not necessarily yield the

39

Chapter 3. System Models and Problem Formulation

3.4

minimal system energy consumption. The main reason is, on the one hand,
due to the energy consumption of idle time, which is not addressed in the
concept of critical speed. On the other hand, the calculation of critical speed
disregards schedulability issue, i.e., running all the tasks at the respective
critical speeds may result in a deadline miss. As will be seen later in Chapter
and [3] the task critical speed is often applied only as heuristic information
to find the actually optimal operating speed for tasks.

Problem Formulation

In general, the main objective is to find the most appropriate way to apply the
DPM and DVS techniques to save system-wide energy consumption while
meeting all the task deadlines. As indicated in the previous chapter, both
DPM and DVS reduce energy at the cost of performance degradation. Thus
they have to be used carefully. Roughly speaking, the key challenge of the
DPM application is to predict the length of idle time and select the most
proper low power state, whereas the challenge of the DVS application is to
assign each task with the most proper operating speed, so that the system
energy consumption is minimized. Note that the trade-off between the DPM
and DVS usages is to be considered as well. Before formally formulating the
problems, several definitions are first introduced.

Definition 3.4.1. Given a task set I and a set of available P-states S on a
processor core, a speed assignment is defined as a function from the task set
to the P-states. It is denoted by assign :T" — S.

This work assumes that the task execution time is linear to processor speed.
For a given speed assignment, the WCET of a task 7; is scaled up according
to the assigned processor frequency. It can be easily computed by %
Definition 3.4.2. Given a task set I" and a multi-core processor model O, a
task allocation is defined as a function which partitions the tasks onto the
processor cores. It is denoted by alloc : T" — O.

Since this work concentrates on independent tasks, the communication over-
head among processor cores is ignored.

Definition 3.4.3. A power state scheduling is defined as a scheduling, which
decides at run-time when a component can be switched off and on.

As shown in the previous chapter, shutting down a component is not only de-
pendent on when it is idle, but also on how long the upcoming idle time takes.
Only if the idle time is longer than the corresponding break-even time, the
component is able to enter a low power state. Besides, due to non-negligible

40

Chapter 3. System Models and Problem Formulation

3.4.1

wake-up latency, the component needs to be switched on a little ahead of the
actually required time. A power state scheduling exactly takes care of this
problem.

Now the problem can be formulated for single-core processor and multi-core
processor platforms, respectively.

Problem for Single-Core Processor Platforms (RTSC)

In this context, the system-wide energy consumption is of utmost importance,
1.e., the energy consumed by the processor and peripheral devices must be
optimized as a whole. To simplify the explanation, the term “component”
is used in a general sense and can be referred to either as a processor or a
device. Roughly, the energy optimization problem for hard real-time sys-
tems on single-core processor platforms is mainly composed of two parts:
the speed assignment and the task scheduling. More concretely, the first part
decides the execution speed of each task while the second part determines
the execution order. To find the optimal solution in general, the two parts
have to be considered coherently, because they have influence on each other.
Since the second part is a well-studied area and there exist many sophisti-
cated algorithms like EDF and RM, this work mainly deals with the first part.
In summary, the energy optimization problem for hard real-time systems on
single-core processor platforms (RTSC) is defined as follows.

Problem 3.4.1 (RTSC). Given a single-core processor based system model,
denoted by a tuple (I',C,S,R), and a real-time scheduling algorithm, the
goal is to find the optimal speed assignment assign, which ensures system
schedulability and the energy consumption over a hyper period is minimal.
A power state scheduling for all the components needs to be derived as well.

Intuitively, assign(t) gives the assigned speed state, in which the task 7 is ex-
ecuted. In other words, the operating frequency for T is F (assign(t)). There-

fore, the actual WCET of each task T can be expressed by % Note
that W(t) is defined in the previous section as the WCET with regard to
F(S7). Based on this information, system schedulability can be tested for the
well-known real-time scheduling algorithm EDF or RM by checking whether

the total system utilization is under the given bound.

Y W(t) F(S

L Flassign()) - 1(x) = ° G19

For the EDF and RM real-time scheduling algorithms, the utilization bound
Up is 1 and 0.69, respectively [Butl1]. In brief, the main challenge of RTSC

41

Chapter 3. System Models and Problem Formulation

State ‘ F ‘ P (mW) ‘ Ton%off Toff%on Ponﬁc)ff Pc)ff%on Tpe

S 1 800 n.a.l n.a. n.a. n.a. n.a.
S> 0.5 300 n.a. n.a. n.a. n.a. n.a.
C; | na. 50 2 ms 2 ms 50mW | 50mW | 4 ms
Dé n.a. 1000 n.a. n.a. n.a. n.a. n.a.
D% n.a. 100 2 ms 2 ms 100 mW | 100 mW | 4 ms

Table 3.1: The processor and device power model

Task ‘ W (ms) ‘ T (ms) ‘ Dev ‘ SC
T1 5 20 %) \Y)
T2 10 40 {R]} S]

Table 3.2: The task specification

is to find an optimal speed assignment to achieve minimal system-wide en-
ergy consumption while meeting all the hard real-time constraints.

Unfortunately, this problem has been proven to be A/P-hard in the strong
sense. In the work [DA10], the authors have shown that the energy optimiza-
tion problem even in the absence of the DVS application is already N P-hard
in the strong sense. The basic idea is to first define the corresponding de-
cision variant of the optimization problem and then prove it to be NP-hard
in the strong sense by making a reduction from the 3-partition problem. As
a result, both a pseudo-polynomial algorithm and a fully polynomial time
approximation scheme, which are the best algorithms one can hope for a
NP-hard problem, are not existing, unless NP = P [GIJ90].

Table [3.1] and [3.2] show the system model of a simple example, which is
composed of a single-core processor (with 2 DVS states and 1 low power
state), a device and two real-time tasks.

By assuming that the EDF algorithm is applied in this example, the optimal
solution can be easily calculated, which assigns S, to the task T; and S} to
the task T,. Clearly, all the tasks can be successfully scheduled as shown in
Figure (processor utilization is 0.75) and the system-wide energy con-
sumption Ejys over a hyper period (HP = 40 ms) is minimal.

Esys - p+ER1 (3.15)

where E, and Eg, denote the energy consumed by the processor and Ry,
respectively.

Inot applicable

42

Chapter 3. System Models and Problem Formulation

3.4.2

processor

[R 1
S14+ EH
switch
S2 Ah on/off
C
R 20 40 60 80 100 120 t/ms
1

i

-

20 40 60 80 100 120 t/ms

Figure 3.4: The task execution on a single-core processor

E, =2-10 ms-300 mW + 10 ms - 800 mW
+2-2ms-50 mW +6 ms-50 mW
=14.5mJ (3.16)

and

Eg, =10 ms-1000 mW +2-2 ms- 100 mW + 26 ms - 100 mW
=13 m] (3.17)

Problem for Multi-Core Processor Platforms (RTMC)

The actual energy optimization problem on a multi-core processor is mainly
composed of three parts: the task partitioning (processor affinity), the fre-
quency assignment to tasks and the task scheduling on each processor core.
Note that the partitioned scheduling is considered in this context. Similar
to the RTSC problem, hereby the dissertation concentrates on the first two
parts and assume that the last part is solved by a given real-time scheduling
algorithm like EDF or RM. Thus, the problem is stated as follows.

Problem 3.4.2 (RTMC). Given a multi-core processor based system model,
denoted by a tuple (I', O) and a real-time scheduling algorithm on each core,
the output is to find an optimal solution including a task partition alloc and
a speed assignment assign, so that all tasks are schedulable and the sys-
tem energy consumption over one hyper period is minimal. A power state
scheduling needs to be derived as well.

To simplify the problem, in this case the main focus is on the processor en-
ergy optimization and the devices are not considered, i.e., V1 : Dev(t) = &.

43

Chapter 3. System Models and Problem Formulation

State ‘ F ‘ P(mW) ‘ Ton%off Toff%on ‘ Ponﬁoff ‘ Poff%on ‘ Tbe

S 1 800 n.a. n.a. n.a. n.a. n.a.
st 105 300 n.a. n.a. n.a. n.a. n.a.
C% n.a. 50 2 ms 2 ms 50mW | 50 mW | 4 ms
S% 1 800 n.a. n.a. n.a. n.a. n.a.
S% 0.5 300 n.a. n.a. n.a. n.a. n.a.
C? | na. 50 2 ms 2ms | 5S0mW | 50mW | 4 ms

Table 3.3: The power model of a dual-core processor

Task ‘ W (ms) ‘ T (ms) ‘ Dev ‘ SC! ‘ SC?

T1

10

20

6]

S

i

T2

15

40

16}

5

i

Table 3.4: The task specification

The main reason is that shared resource access in multi-core environment is
very complex and out of the scope of the dissertation. However, the conclu-
sion chapter will give a short discussion how it could be taken into consider-
ation.

Similar to the previous RTSC problem, hereby system schedulability can be
checked by using the utilization test.

W(t)-F(S})

alloc()=0; F(assign(t))-T(1)

YO, €O < U} (3.18)

where U, é is the utilization upper bound of the given real-time scheduling al-
gorithm on the processor core O;. At this point, the previously mentioned
speed coordination comes into play. That is, the processor cores in the same
cluster may only operate at the same speed. If a speed conflict occurs, the
highest one is always selected. In this way, a task may only run at the
speed higher than its assigned speed and thus no task will complete later
than its original WCET, which is an important precondition for the test in
(3-18). Moreover, the RTMC problem is obviously a generalized version of
the RTSC problem and therefore it is NP-hard in the strong sense as well.

To simplify the explanation, a simple example with a dual-core processor
and two real-time tasks is shown in Table [3.3] and [3.4] respectively. Hereby
both cores O and O are in the same cluster and thus they have the same
power model, i.e., group(O;) = group(0). Since in multi-core scenarios no
peripheral device is considered, the set of required devices for all the tasks is
empty.

By assuming that the optimal solution of this example is alloc(t;) = Oy,

44

Chapter 3. System Models and Problem Formulation

0,

si
s34
i
10 20 30 40 50

0, 60 70
s34
s2]
ct

T1
T2

switch
on/off

=

=

i
80

t/ms

10 20 30 40 50 60 70 80 t/ms

Figure 3.5: The task execution of the multi-core processor example

alloc(ty) = O3, assign(t)) = S} and assign(tz) = S5 and the EDF real-time
scheduling algorithm is applied on both processor cores, the task execution
is shown in Figure[3.5] Clearly, all the tasks are feasible, since the utilization
of both processor cores are less than 1.

W(t))-F(Sj) 10ms-1
F(SH)-T(t1) 1-20ms

U(0)) = =05<1 (3.19)

W(t)-F(S§) 15ms-1
F($3)-T(t2) 0.5-40 ms

U(0,) = =0.75<1 (3.20)

Hereby an important observation is that the task 7, is running at S% during
the time interval [0 ms, 10 ms], even it is assigned with S%. This is due to
the hardware constraints that both cores are in the same cluster and may only
operate at the same speed. In other words, 7, is enforced to run at the higher
speed state S3.

The processor energy consumption over a hyper period (HP = 40 ms) can be
calculated as follows.

E =Eo, +Eo, (3.21)

where

Ep, =2-10ms-800 mW +4-2 ms-50 mW + 12 ms - 50 mW
=17 m] (3.22)

and

45

Chapter 3. System Models and Problem Formulation

3.5

Ep, =10 ms-800 mW + 10 ms - 300 mW
+2-2ms-50 mW + 16 ms - 50 mW
=12mJ (3.23)

Chapter Summary

This chapter formally defined the system models and basic terminologies. In
particular, the power model of processors and devices are presented follow-
ing the ACPI standard. The model for hard real-time tasks is adopted from
[Butl1]. Finally, before this chapter is concluded, the main problems RTSC
and RTMC, which are to be addressed in this dissertation, are formulated.

The system models presented in this chapter are rather formal. In order to
interpret them in a more practical way, some UML artifacts could be ap-
plied. For instance, the power state machine of a processor or device can be
expressed by a UML statechart. Since this topic is out of scope of this dis-
sertation, it will not be further discussed. However, some general informa-
tion and ideas can be found in [HMM11]], [MHMI10b], [Van+11f], [MHM11]],
[Mul+10] and [MHM10a].

46

Chapter 4

Guided Search Algorithm based on Simu-
lated Annealing

4.1

This chapter presents the main algorithm to solve the RTSC and RTMC prob-
lems introduced in the previous chapter. Unfortunately, both problems are
NP-hard in the strong sense, which indicates the non-existence of efficient
exact algorithms. This work proposes a guided and iterative heuristic search
algorithm based on simulated annealing. The main part of this chapter was
published in [HM12c|] and [HM12a].

Introduction

In the computational complexity theory, NP-hardness in the strong sense
or strong NP-hardness is a special case of NP-hardness and indicates that
the problem is even more tougher than N P-hard problems in practice. In
general, an optimization problem is said to be N"P-hard in the strong sense,
if there exists a strongly NP-complete problem that can be reduced to it
in polynomial time. This is exactly the proof idea to show the strong N/ P-
hardness of both RTSC and RTMC problems. More specifically, the authors
of [DA10] successfully reduced the 3-Partition problem, which is known to
be strongly A'P-complete [GJ73], to the so-called RT-DPM problem, which
is a simplified version of the RT'SC problem by disabling the DVS capability.

According to another fundamental result in the complexity theory presented
by Garey et al. [GJ78]], the strongly N P-hard problems, i.e., RTSC and
RTMC, do not even admit a pseudo-polynomial time algorithm, whose run-
time is polynomial in the numeric value rather than the size of the input. Note
that a pseudo-polynomial time algorithm is probably the best algorithm one
can expect for a N'P-hard problem.

By losing the hope for an exact pseudo-polynomial time algorithm, approx-

47

Chapter 4. Guided Search Algorithm based on Simulated Annealing

imation algorithms sometimes seem to be very helpful, if one is satisfied
with a solution that is ”good enough”. Unfortunately, it will be shown in
the following text that no efficient approximation algorithm for the RTSC
and RTMC problems exists, either. In order to measure the quality of a sub-
optimal solution, the approximation ratio is introduced. Let € be a positive
parameter, an algorithm for a minimization problem, without loss of gen-
erality, is said to be an (1 + €)-approximation algorithm, if the quality of
the produced solution is within a factor 1 4 € of the optimal solution. For
instance, an (1 + €)-approximation algorithm for RTSC would find a speed
assignment with the energy consumption over a hyper period being equal or
less than the energy consumed by the optimal speed assignment with the fac-
tor 1 4 €. In practice, an approximation algorithm is said to be efficient, if its
run-time is polynomial in both problem size and 1/€. This class is referred
to as Fully Polynomial Time Approximation Scheme (FPTAS). Relating to
pseudo-polynomial time algorithms, [[Vaz02] has shown that a problem with
a FPTAS must admit a pseudo-polynomial time algorithm (under some very
weak restrictions). Since there exists no pseudo-polynomial time algorithm
for RTSC and RTMC, no FPTAS can be found for them either. That is, there
is no efficient approximation algorithm.

As a consequence, this work proposes to apply meta-heuristics to solve the
problems, which tries to improve candidate solutions in an iterative manner.
In general, a meta-heuristic defines high level strategies to efficiently guide
the search process in the solution space. Some typical representatives are, for
instance, Simulated Annealing (SA) [Kir+83]] [Cer85]], Evolutionary Algo-
rithms (EA) [Bac96] [ESO3]] and Ant Colony Optimization algorithm (ACO)
[Dor92]. Hereby, SA is adopted to solve the RTSC and RTMC problem be-
cause of two main reasons.

It is very easy to implement, because SA is a single point search ap-
proach, as opposed to population based approaches. This saves a lot of
run-time overhead, which will become more clear in Chapter@

* Its success has been shown in several other application fields, such as
the layout optimization problem for integrated circuits design [VK83]].
Some excellent experimental results have been reported in [Joh+91]]
as well, which indicates that SA could be a good alternative to handle
N'P-hard problems by yielding acceptable performance in most cases.

Before the main algorithms for RTSC and RTMC are presented, an introduc-
tion of the generalized SA is given in this section. The SA algorithm was
first introduced by Scott Kirkpatrick et al. in 1983 [Kir+83|] and the basic
concept is naturally inspired by annealing process in material science, which
describes a metalworking process to alter the physical or chemical property of

48

Chapter 4. Guided Search Algorithm based on Simulated Annealing

a material through heating or cooling. In general, the SA algorithm is a ran-
domized local search heuristic. Let Q denote the finite set of solutions, which
is also the search space of the SA algorithm. Furthermore, let J: Q — R be
the real-valued cost function that defines the cost or the value for each so-
lution in Q. Without loss of generality, hereby the minimization problem
is considered, which indicates that the optimal solutions have the least cost.
The set containing the optimal solutions is denoted by Q*.

.Q*:{O)iEQ.|VOJjE.QIJ<O),')S](O)j)} 4.1)

The SA algorithm initially starts with an arbitrary solution ®;,;; € € and iter-
atively explores the solution space by selecting one neighbor solution in each
iteration. Let N(®) C Q denote the set of all the neighbors of ®. One assumes
that the neighborhood structure is symmetric, i.e., Yo; € Q and VYV, € Q,
if m, € N(m;) is true, then ®; € N(®;) holds as well. For simple appli-
cations, the probability of selecting a particular neighbor is usually defined
as 1/|N(w)|, where |N(®)| denotes the size of the neighborhood. In other
words, the neighbors in N(®) are chosen following a uniform distribution.
However, for the generalized SA the selection probability needs to be defined
in a more general way. Thus, a probability function Prg.ee; : Q2 [0,1] is
defined with the following properties. Let @ be an arbitrary element in €.

Pryelect (®,0") > 0,Y0" € N(w) 4.2)

Prielec(0,0") = 0,Vo' ¢ N(w) 4.3)

Y, Pretea(o,0) =1 (4.4)
o'eN(w)

Intuitively, if @ is the current solution, then a neighbor solution @' € N(®) is
to be selected with the probability Prgeeq (0, ®). At each iteration, once a
neighbor solution is chosen, the cost of the current solution and the new solu-
tion is compared. If the new solution yields a lower cost, then it is definitely
accepted and the new solution becomes the current solution. However, if the
new solution is worse than the current solution, i.e., the current solution has
a lower cost, then the new solution is accepted with a certain probability.

Afterwards, the SA algorithm goes to the next iteration and the process re-
peats until a termination criterion is reached. One unique feature of the SA
algorithm is allowing the acceptance of worse solutions. This provides the
advantage that the SA algorithm is able to escape from a local optimum,
which is a solution with all its neighbor solutions being worse that itself.

49

Chapter 4. Guided Search Algorithm based on Simulated Annealing

Some theoretical results have even shown that if the iteration number is suffi-
ciently large, the SA algorithm will eventually converge to a global optimum
[MRS83]].

More precisely, the acceptance probability is defined as a slowly and mono-
tonically decreasing function of time, which exactly emulates the slow cool-
ing behavior of the physical annealing process. Formally, a so-called cooling
schedule is defined as a decreasing sequence of positive real numbers (7});en
with tlijg T; = 0 and T7; is called the temperature at time or iteration ¢. There

exist different forms to define a cooling schedule. This work applies the most
popular cooling schedule (at least in theory [BT93|]) which takes the form

d
T=— 45
"= Jogr (4.5)

where d is a positive constant. Finally, the acceptance probability Pryccepr :
Q? x N — [0,1] is defined.

1, if J(o) < J(w)

(UL @), (4.6)

Praccept((’)amlut> = {

exp , otherwise

where ® and @' are the current and new solution, respectively. Algorithm
shows a pseudo-implementation of the SA algorithm.

Algorithm 1 Simulated Annealing Algorithm

Input: A solution space Q
Output: A solution Mg,

1: Select ®;,; € Q
2: Weyrr < Winit, i1
3: while termination criterion is not met do

4: Select @ € N(®cyrr) according to Pryeject (®cyrr, @)
5: Generate a random number r € [0, 1]

6. if r < Proccepi(®curr, @', i) then

7: Wpyrr — @

8: endif

9: i<+ i+1

10: end while

As a nature of meta-heuristics, the generalized SA algorithm is application-
independent and thus can be applied to a large number of combinatorial op-
timization problems. However, this could also be a disadvantage, because it
lacks problem specific knowledge when used in a concrete domain. There-
fore, in what follows, the SA algorithm is customized toward the RTSC and

50

Chapter 4. Guided Search Algorithm based on Simulated Annealing

4.2

rNeighbor Generation Process w

Input Output
- 1. Randomly select ataskt € I' -

assign;

2. Randomly change assign;(t) any

Figure 4.1: Neighbor generation process for the RT'SC problem

RTMC problems, respectively. More concretely, specific rules are defined to
guide neighbor selection at each iteration.

The HSASC Algorithm for RTSC

As a reminder, the RTSC problem addresses system-wide energy optimiza-
tion for hard real-time tasks running on a single-core processor. The main
objective is to find the optimal speed assignment assign, which ensures sys-
tem schedulability while minimizing the system-wide energy consumption
over one hyper period. Therefore, the solution space Qgrsc is defined as the
set of all possible speed assignments.

Qgrrsc = {assigny,assigny, ...,assign|s } 4.7)
Clearly, the size of solution space is |S|", where |S| is the number of available
P-states and »n is the number of tasks. For instance, if a processor supports
5 operating speeds and 10 real-time tasks need to be scheduled, there exist

519 = 9765625 possible speed assignments in total. Moreover, two solutions
assign; and assign; are said to be neighbors, i.e.,

(assign; € N(assignj)) A (assign; € N(assign;)) (4.8)

if they exactly differ in the speed assignment of one task, i.e.,

dt € I': assign;(t) # assign(T) 4.9)

and

vt e T\ {1} : assign;(t') = assign;(7) (4.10)

One of the most important procedures in the SA algorithm is neighbor selec-
tion. Naively, a uniform distribution can be applied to select neighbors, how-
ever, by considering problem specific information, some neighbors might be

51

Chapter 4. Guided Search Algorithm based on Simulated Annealing

Task T T T3 T4 Ts

SC S3 S3 S3 S3 S3

assign | S S3 S3 So S1
pen 1.8 1 1 1.3 | 1.8
prob | 0.26 | 0.14 | 0.14 | 0.20 | 0.26

Table 4.1: An example computation of the task penalty value and the task
selection probability

more superior than the others in terms of energy consumption. For the RTSC
problem, this process is performed by selecting a neighbor in two steps as
shown in Figure In the first step a task is selected, for which its fre-
quency is to be changed in the second step. For the first step, each task is
associated with a so-called penalty value pen(t;), which is defined in (4.11).

V1, € T : pen(t;) = Ay - |F(assign(t;)) — F(SC(t;))| + Az (4.11)

Intuitively, the penalty value of a task shows the distance between the cur-
rently assigned P-state and the P-state with critical speed. By definition, the
critical speed of a task is the optimal speed when its AEC is concerned. Ob-
viously, if the task is not running at the optimal speed, then there is some
wasted energy. Therefore, the task is to be penalized according to its dif-
ference to the optimal speed. The parameter A is a coefficient to adjust the
weight of the speed difference and A, is a technical parameter preventing the
penalty value from being zero. After establishing the penalty value, the task
selection probability prob(t;) in the first step is defined.

pen(T;)

Y pen(t))
‘CJ'EF

V1, € T: prob(t;) = (4.12)

It is not hard to see that the more penalized task is to be selected more likely,
because in this way, hopefully, its change is more beneficial with regard to
energy saving. Tabled.1|shows a simple example with 5 real-time tasks. It is
assumed that the processor supports 3 P-states with F(S;) =1, F(S2) =0.5
and F(S3) = 0.2. The critical speed for each task is assumed to be computed
and shown in the second row. Though all the tasks have the same critical
speed here, it may not be the case for other examples. Furthermore, the
example assumes assign as the current solution shown in the third row of
the table. The corresponding task penalty values can be easily obtained by
applying (4.11), provided that A; and A; are set to be 1. In accordance with
(4.12), the calculated selection probability for each task is shown in the fifth
Tow.

52

Chapter 4. Guided Search Algorithm based on Simulated Annealing

After a task T; is selected, a new speed has to be assigned to it. Hereby the
critical speed is selected with the probability 0.5 and the remaining probabil-
ity is uniformly distributed to the other available speeds. Algorithm [2|shows
an overview of the proposed heuristic search algorithm. The initial solution
is simply generated by assigning all the tasks with the maximal speed.

Algorithm 2 Heuristic Search Algorithm for RTSC (HSASC)

Input: A solution space Q = {assigni,assigna, ..., assign|sy }
Output: A solution assignpe

1: Generate assign;,; with vVt € I : assign,i;(t) = S;

2: asSigNpest <— ASSINinir, ASSIGNcyry <— ASSIGNinir, I — 1

3: while termination criterion is not met do

4: Select a T according to the selection probability prob

5. Generate assign’ by changing assign,,(T)
6: Generate a random number r € [0, 1]
7. if r < Proceepi(assigheurr,assign’,i) then
8: assigney,y < assign’
9: if J(assigne,rr) < J(assignpes) then

10: assSighpest $— ASSIZNcyrr

11: end if

12: endif

13: i+—i+1
14: end while

In Algorithm [2] the initial and current solution are denoted by assign;;; and
assigne,,r, respectively. assign’ denotes the generated neighbor solution in
each iteration. Except the neighbor selection process, another important dif-
ference between the HSASC Algorithm and the generalized SA algorithm
(Algorithm [I)) is that the HSASC algorithm always remembers the best so-
lution, denoted by assigny.s, ever found and produces it as the final output.
This modification further improves the performance of the original SA algo-
rithm, which outputs the current solution.

Moreover, J(assign) expresses the cost or value of the solution assign, which
is the system-wide energy consumption over a hyper period. If a speed
assignment results in an invalid solution, i.e., the real-time system is not
feasible under the speed assignment, the HSASC algorithm assumes that
J(assign) = +oo. As a result, the unschedulable solutions will never be ac-
cepted. In general, the evaluation of a solution is a non-trivial job. At this
moment, one assumes that the value of a solution can be obtained in some
way. However, more details are explained in Chapter [6]

Table 4.2] shows a possible series of solutions that are visited by the HSASC
algorithm for the example shown in Table

53

Chapter 4. Guided Search Algorithm based on Simulated Annealing

4.3

Task T | T | T3 | T4 | T5
Istassign | S1 | S1 |81 |81 |3
2nd assign | S» | S1 | S1 | S1 | S
3rd assign | S» | S3 | S1 | S1 | S
4th assign | S3 | S3 | S1 | S1 | S
Sthassign | S3 | S3 | S1 | S3 | S1
6th assign | S3 | S3 | S2 | S3 | Si
Tthassign | S3 | S3 | S2 | S3 | S

Table 4.2: A series of possible solutions
The HSAMC Algorithm for RTMC

The RTMC problem deals with the energy optimization problem on cluster-
based multi-core processor platforms. The main objective is to find a task
partition and a speed assignment. Therefore, the solution space Qgrpc 1S
defined as follows.

Qrrmc = {(alloc,assign)y, (alloc,assign),, .., (alloc, assign)y , |y}
(4.13)

The size of solution space is (¥, |S'|)", where |S’| is the number of available
P-states on O;. n is the number of tasks. For instance, one considers a quad-
core processor, where each processor core supports 5 P-states. If 10 real-time
tasks need to be scheduled, the number of possible solutions are (4-5)'0 ~
10'3. Furthermore, two solutions are said to be in a neighborhood, if they
differ in the configuration of one task, i.e.,

Jt € I': assign;(t) # assignj(t) Valloc;(t) # alloc;(t) (4.14)

and

vt e T\ {t} : assign;(t) = assign;(t') Aalloc;(t') = alloc;(t) (4.15)

The neighbor selection process is similar to the case of RTSC, however, there
is one more step for the RTMC problem. More specifically, a neighbor of
the current solution is generated in three steps: i) select a task, ii) change
its processor core allocation and iii) change its speed assignment. Figure
4.2 illustrates the generation process. Note that the other possibility is to
first make reassignment and perform reallocation afterward. In this case, the

54

Chapter 4. Guided Search Algorithm based on Simulated Annealing

rNeighbor Generation Process)

izl 1. Randomly select a task 7 € I Sl
. Randomly select a task T €
- v -
(alloc, assign); 2. Randomly change alloc(7) (alloc, assign);
3. Randomly change assign (1)

Figure 4.2: Neighbor generation process for RTMC

reallocation step may be dependent on the result of the reassignment step,
if a multi-core processor with heterogeneous cores in terms of power model
is considered. For instance, if a processor contains two cores O; and O;
grouped into two clusters and O and O, support different range of speeds,
the reassignment step may choose one speed that is supported by only one
of the processor cores, e.g., O>. As a result, the reallocation step may only
select O, as the target. In this dissertation, the focus is on the first option
that the core reallocation is made before the speed reassignment. The second
possibility, however, will be further discussed in Chapter [0] as part of the
future work.

For task selection (the first step) the guidance is defined based on the heuristic
information extracted from the current solution. More precisely, each task 7;
is associated with a penalty value denoted by pen(t;). On the analogy to the
RTSC problem, the penalty value of a task indicates the wasted energy by the
task. The higher the penalty value, the more possibly the corresponding task
is to be selected for a configuration change. pen(t;) is formally computed by
means of (#.16)), which is composed of three parts (on the right side of the
equation).

pen(t)) = M\ -|F(assign(v;)) — F(SC/(t))| +
)\'2 *Tunbalanced (Ti) + >L3 (416)

Like the penalty function definition for the RTSC problem, the first part ex-
presses the wasted active energy during task execution. Note that, hereby it
is assumed that T; is running on O;. Due to the speed coordination constraint
of cluster-based multi-core processor platforms, an additional term is added
into the penalty function. Namely, the second part describes the unbalanced
task execution in a cluster. More specifically, f,npaianced(Ti) denotes the time
inside a hyper period, where a processor core O executes T; at assign(t;) and
at least one of the other cores O’ in the same cluster is enforced to operate
at the same speed. In other words, by disregarding the processor core O, the
active task on O’ should have run at a lower speed than assign(t;). Obviously,
the task with larger f,,paianced (Ti) should be more penalized.

Figure 4.3| shows an example of task execution with two processor cores in

55

Chapter 4. Guided Search Algorithm based on Simulated Annealing

0,

[R 1

S% E

1 switch
S2 ¢ Ah on/off
cl _‘ \ ,
0, 10 20 30 40 50 60 70 80 t/ms
s? -
s%]
ct

10 20 30 40 50 60 70 80 t/ms
Figure 4.3: An example task execution on a dual-core processor
Task | W (ms) | T (ms) | SC' | SC?

T 10 20 | SY] S5
T 15 40 | S1 | 83

Table 4.3: The task specification

one cluster. In this example, there are two P-states (F(S}) = F(S?) = 1 and
F(S}) = F(53) =0.5) available and EDF schedule is assumed to be used. The
task specification is given in Table .3] The example further assumes that T
runs on O; and T on O>. S} is assigned to T; and S% to T, respectively.
Due to the speed coordination, task T is running at a higher speed than its
originally assigned speed during the time interval [0 ms, 10 ms|. In this case
tunbalanced (T1) 18 equal to 10 ms. The constants A; and A; in serve as
coefficients to adjust the impact of the first and the second part, respectively.
The constant A3 is a technical parameter in order to prevent the penalty value
from being zero. By assuming A; = A, = A3 = 1, the task penalty values in
the example can be computed as follows.

pen(ty) = |[F(S}) —F(S)|+10+1=11.5 (4.17)

pen(ty) = |F(S3) —F($3)|+0+1=1 (4.18)

Based on the penalty values, the selection probability prob(t;) of each task
can be derived.

pen(T;)

Y pen(t))
’CjGF

prob(T;) = 4.19)

After a task 7T is selected, in the second step the task is to be reallocated
to a new core. Hereby it is quite reasonable to balance processor load and
avoid generating invalid solutions, where system schedulability is not en-
sured. For this purpose each processor core O; is associated with a reward

56

Chapter 4. Guided Search Algorithm based on Simulated Annealing

value rew(O;), which is simply the available utilization that is still free to be
used. Formally the reward function rew(O);) is defined in (4.20)).

Ul —U(0)), if alloc(ty) # O;

- i (4.20)
Uj,—U(0j)+U (), otherwise

rew(0j) = {

U é is the utilization upper bound on the processor core O; to ensure schedu-

lability. For instance, Ué is 1 if the EDF scheduling algorithm is used. Ué is
0.69, if the RM algorithm is used. Moreover, U(O;) is the current processor
utilization on the core O; and U (1) is the utilization of the task Ty, assuming
that T is selected in the first step. In the example shown in Figure if
the task T is selected and needs to be reallocated, the reward value for each
processor core can be computed by

W) -F(S) | W(n)-F(S)
rew(01) = 1 F(S%).T(ﬂcl)—i—F(S%)-T(Tl)
B 10 10
:1 4.21)

and

. W(w)-F(8))
rew(O2) = 1 F(S%) T(n)
30
—_ 1 o
40
= 0.25 (4.22)

Analogous to task selection, the selection probability prob(O;) of each core
can be derived on the basis of the reward values.

rew(0;)

Y rew(0;)
0,‘60

prob(0j) = (4.23)

Intuitively, the processor core with more free utilization will be selected more
likely.

Finally, in the third step a new speed is to be assigned to the selected task.
Hereby the critical speed is selected with the probability 0.5 and the remain-
ing probability is uniformly distributed to the other available speeds. Algo-
rithm |3[shows an overview of the proposed heuristic search algorithm. The

57

Chapter 4. Guided Search Algorithm based on Simulated Annealing

4.4

initial solution is simply generated by means of the worst fit strategy [DB11]]
to partition the tasks and afterward assigning all the tasks with the maximal
speed.

Algorithm 3 Heuristic Search Algorithm for RTMC (HSAMC)

Input: The solution space Qg7c
Output: A solution (alloc,assign)pes

1: Generate (alloc,assign)ini

2: (alloc,assign)pess < (alloc,assign)inis

3: (alloc,assign)cyrr < (alloc,assign)ini

4: i1

5: while termination criterion is not met do

6: Select a T according to the penalty values

7 Reallocate T according to the reward values

8: Reassign T with a new speed to obtain (alloc,assign)’
9: Generate a random number r € [0, 1]
10: if r < Pryceept((alloc, assign) curr, (alloc, assign)’, i) then
11: (alloc,assign)cyrr < (alloc,assign)’
12: if J((alloc,assign)curr) < J((alloc,assign)pes) then
13: (alloc,assign)pes; < (alloc,assign) cyrr
14: end if
15: end if

16: i+—i+1
17: end while

The HSAMC algorithm returns the best solution it has ever visited, which
results in a better performance than the original version of SA. Similar to the
HSASC algorithm, the cost or value of a solution is defined as the energy
consumption over one hyper period. If the solution is not able to guarantee
system schedulability, its cost is set to infinity. Hereby the cost of a solution
is assumed to be obtained in some way. More details are explained in Chapter

6l

Table {.4] shows a possible sequence of solutions that are visited by the
HSAMC algorithm for the example shown in Figure {.3]

Chapter Summary

This chapter first gave an review of the RTSC and RTMC problems in terms
of complexity. Unfortunately, both problems are proven to be NP-hard in
the strong sense. As a result, there is no efficient algorithm available. Sub-
sequently, two heuristic search algorithms based on simulated annealing for

58

Chapter 4. Guided Search Algorithm based on Simulated Annealing

Task ‘ T1 ‘ T2
1st solution (01,51) (02,51)
2nd solution (01,51) (02,52)
3rd solution | (03,52) | (02,52)
4th solution | (01,S2) | (02,52)
5th solution | (01,S82) | (01,51)

Table 4.4: A series of possible solutions

RTSC and RTMC are proposed, which are the main contribution of this chap-
ter.

Chapter 4. Guided Search Algorithm based on Simulated Annealing

60

Chapter 5

Run-Time Behavior Analysis

5.1

The previous chapter introduced the heuristic algorithms for energy optimiza-
tion problem in the context of hard real-time systems. The guided search ap-
proach is iterative and based on the simulated annealing algorithm. Though
it may work well in most cases, there is no guarantee that the heuristic algo-
rithm will produce a globally optimal solution. There is even no information
about the quality of the output solution. In this chapter, an efficient mech-
anism is proposed to efficiently analyze and predict the performance of the
algorithm. A termination criterion is derived as well. The main part of this
chapter is published in [HM13a].

Introduction

Due to the hypothetical assumption that there exists no efficient algorithm for
NP-hard or strongly N'P-hard problems, meta-heuristics become quite pop-
ular and are widely used in practice. Even though in most cases they are able
to produce excellent results within reasonable time, there is no assurance of
finding a global optimum at the end of the algorithm. One has to be satisfied
with the sub-optimal performance. Unfortunately, the SA based HSASC and
HSAMC algorithms can not escape this fate either. In general, there are two
important questions that need to be answered.

* Ql: What is the termination criterion of the algorithm or after how
many iterations the algorithm should be stopped?

* Q2: What is the quality of the final solution? If it is not globally opti-
mal, then how far away it is from a globally optimal solution?

Obviously, these questions are not trivial to answer. In the context of SA,
some efforts have been carried out in the direction of convergence theory,

61

Chapter 5. Run-Time Behavior Analysis

which tries to prove that the SA algorithm will eventually find a global op-
timum, if the run-time of the algorithm is sufficiently large. Mitra et al.
[MRSS85]] [DS86] presented a theoretical analysis of the SA algorithm by
modeling it as a time-inhomogeneous Markov chain. The convergence result
is then proven by showing the strong ergodic property of the Markov chain.
More specifically, the probability distribution of solutions 7, : Q — [0, 1] de-
pending on the iteration number ¢ is defined to describe the probability of
each solution that might be produced as the final solution if the SA algorithm
terminates after ¢ iterations. At the beginning, 7y is a uniform distribution
indicating the initial solution is arbitrarily chosen. The goal is to prove that
the SA algorithm reaches a so-called quasi-stationary probability distribution
T, as t — oo,

1y *
(@)= @1 TOEL 5.1)
0, otherwise

Note that Q* denotes the set of the optimal solutions. In addition to the
convergence result, [MRS85] gave an asymptotic performance analysis of
the finite time behavior of the SA algorithm as well, which bounds the dis-
tance between 7; and ©* depending on ¢. This effectively estimates the con-
vergence rate. Nolte et al. [NSOO] proposed an alternative means by using
rapidly mixing Markov chains and proved the asymptotic convergence result
as well. They demonstrated the analysis on a well-known A/P-hard problem,
the traveling salesman problem [MT13]].

Sasaki et al. [SH88|] performed a time complexity analysis by applying the
SA algorithm to the maximum matching problem, also known as maximum
carnality matching. In fact, this problem is in the complexity class P, be-
cause there is a known polynomial time algorithm called Edmonds’s algo-
rithm [Edm65]. Clearly, no one would ever use the SA algorithm to solve
this problem in practice. However, [[SH88|| gave some insights on the analy-
sis technique to understand the run-time behavior of the SA algorithm. One
important result shows that a special form of the generalized SA algorithm,
where the temperature is a constant instead of being dependent on time, is
able to produce near optimum solutions in polynomial average time. The re-
search studies [Des99] and [Des92] applied an eigenvalue-based approach to
analyze the time complexity of the same problem. Their result is based on the
general cooling schedule and shows that the SA algorithm effectively serves
as a polynomial randomized approximation algorithm.

The author of [LocOl1]] investigated the performance of the SA algorithm for
continuous optimization problems. The study proved the convergence of the
algorithm and gave an upper bound of the expected run-time to find an opti-
mal solution within required accuracy.

62

Chapter 5. Run-Time Behavior Analysis

5.2

Unlike the above mentioned research work, the authors of [[OJO2]], [JHMO6],
[Nik+11]] and [Jac+035]] introduced a semi-analytic method to assess the finite
time performance of local search algorithms. They derived an upper and
lower bound of the expected time to hit a so-called B-acceptable solution,
which is a near optimum solution with approximation ratio 3. In order to use
their results, some measurement data have to be collected beforehand.

For additional information, survey articles [HJJO3|] and [NJ10] give excellent
overview of the SA algorithm from both the theoretical and practical view of
point.

As a short summary, there exist a large number of research work regarding
the performance analysis of the SA algorithm. However, most of them are
only relevant in theory. For instance, the convergence result shows that the
algorithm is able find a global optimum, if the number of iterations is infin-
ity. In practice, infinite time is clearly not acceptable. Several studies give
the asymptotic analysis of finite time behavior, however, the results are of-
ten related to a specific optimization problem and in some cases the problem
is even in the complexity class P. No existing results can be directly ap-
plied to exactly answer the questions Q1 and Q2. Therefore, the remaining
of this chapter tries to propose a more practical technique to analyze the per-
formance of the SA and SA-based algorithm. The key idea is inspired by
the work [RWep] proposed by Raman et al., who used exponential regression
technique to simulate and analyze the finite time behavior of the algorithm.
This dissertation further improves their approach by allowing it to be pre-
formed at run-time. The regression analysis is a mathematical method widely
applied in statistics to estimate the behavior of data. It often serves as a tool
to understand the relationship between dependent variables. An introduction
can be found in [[GCO04].

Run-Time Behavior Analysis through Exponential
Regression

In order to better understand the run-time behavior of the proposed algo-
rithms, several experiments through simulation are firstly made. The simu-
lation framework is built on the basis of a SystemC RTOS library [ZMGO09],
which provides the basic functions for simulating a set of real-time tasks un-
der well-known scheduling algorithms, such as EDF and RM. The library
is extended by additional support for DPM and DVS capabilities. A more
detailed introduction is given in Chapter 3]

The RTSC problem is addressed in the first experiment, where the virtual
platform is composed of an Intel XScale processor [Xu+04]] and five I/O de-
vices [CGO6] including a MaxStream Wireless Module, an IBM Microdrive,

63

Chapter 5. Run-Time Behavior Analysis

Energy consumption
0.75 0.80 0.85 0.90 0.95 1.00

0 20 40 60 80 100

Number of iterations

Figure 5.1: Run-time behavior of the HSASC algorithm (example 1)

1.13 1.15
| |

Energy consumption
1.11
\

1.09
|

T T T I
0 50 100 150

Number of iterations

Figure 5.2: Run-time behavior of the HSAMC algorithm (example 2)

an SST Flash, a SimpleTech Flash Card and a Realtek Ethernet Chip. Sev-
eral synthetic task sets are randomly generated. For demonstration purpose,
Figure [5.1] shows the recorded simulation results by applying the HSASC al-
gorithm on one of the generated task sets. The x-axis shows the number of
iterations and the y-axis is the value of the best solution found so far.

In the second experiment, the RTMC problem is investigated and the virtual
platform is built by multiplying the Intel XScale processor model. More
concretely, a quad-core processor is used in the simulation and each processor
core takes the same power model as the Intel XScale processor. In addition,
the processor cores are divided into two clusters of the same size. Figure [5.2]
illustrates the simulation result by applying the HSAMC algorithm on one
randomly generated task set. The meaning of the x- and y-axis are the same

as in Figure

There are two major observations that can be obtained from these two figures.

64

Chapter 5. Run-Time Behavior Analysis

1. The more iterations spent in the algorithm, the better solution can be
obtained.

2. The value of the best solution exponentially decreases as the algorithm
proceeds.

By the other experiments the same trend is observed as well. Therefore, it is
reasonable to conclude that the solution value is an exponentially decreasing
function of the number of iterations.

The core idea is then to use exponential regression technique at run-time to
simulate the behavior of the algorithm and try to predict the quality of solu-
tions. Obviously, the accuracy of regression gets better while the algorithm
advances and the number of observed data points increases. The regression
model takes the form,

yi=ae®i+e, i=1,..,1 (5.2)

where y; and x; are the response variable and the input variable, respectively.
The regression parameters a, b and c are to be determined by curve fitting to
a series of observed data points {yi,xi}le. Note that y; indicates the value of
the best solution found by the algorithm until the i-th iteration and x; is the
iterations spent so far, i.e.,

Vi:l1<i<lxi=i (5.3)

The parameter c is in fact the value of the optimal solution, to which the
regression function eventually converges. Unfortunately, solving the expo-
nential regression is not a trivial work and traditional approaches, such as the
Gauss-Newton algorithm [BWOS8], are often very time consuming. However,
there exists linearization technique transforming the exponential regression
problem to the linear regression problem, provided that the parameter ¢ can
be eliminated. Thus the exponential regression model is reformulated into
the following function:

/
Yi = Yi—-1—)i
= ae?i1yc—(aet¥itc) i=2,..,1 ©-4)

By applying (5.3)), it is obvious that,

Xio1=i—1=x;—1 (5.5)

Thus (5.4) can be further transformed as follows.

65

Chapter 5. Run-Time Behavior Analysis

0.08
|

Energy consumption improvement
0.04
|

)i

T T T T T I
0 20 40 60 80 100

0.00
|

Number of iterations

Figure 5.3: Run-time behavior of the solution value improvement (example

1)

ae?ti=1) ¢ — (ae¥i 4 c)
= (ae " —a)e?i, i=2,..,1

Vi (5.6)

Intuitively, y! expresses the value improvement at the i-th iteration. Figure
and illustrate its run-time behavior based on the previous examples.
The behavior of improvements actually reflects the gradient of the regression
function and is an exponentially decreasing function of the iteration number.
A larger improvement represents a larger gradient value. On the contrary,
smaller improvements indicate smaller gradient values. As the algorithm
proceeds, the value improvement clearly becomes smaller and smaller and
eventually converges to zero. Note that this convergence implies the conver-
gence of the regression function (5.2)) to the optimal solution.

By looking at (5.6)), since the offset parameter ¢ disappears, it can be lin-
earized to a linear regression model shown in (3.7). Hereby the nature loga-
rithm is applied.

() = In((ae™—a)eb)
In(ae™® — a) + In(e?*) (5.7)
= In(ae™®—a)+bx;, i=2,..,1

Let ¥; = In(y;) and X; = x;, the final linear regression model is obtained in
lb where the slope and offset are b and ln(ae_b — a), respectively.

Y =bX;+In(ae™® —a), i=2,..,1 (5.8)

Now one can apply the well-known Least-Squares Estimation (LSE) tech-

66

Chapter 5. Run-Time Behavior Analysis

Energy consumption improvement
0.000 0.005 0.010 0.015 0.020 0.025

0 50 100 150

Number of iterations

Figure 5.4: Run-time behavior of the solution value improvement (example
2)

nique [MPV12] by means of minimizing the sum of squared residuals to
determine the regression parameters.

(n— DX XYi — Y, Xi Yl Y
(n—1) er'l:ZXiz — (XioXi)?
N X - Y XY, X,

(n—1) ?:2Xi2 — (s Xi)?

b=

(5.9)

In(a(e > —1)) (5.10)

Note that (Y;,X;) is the observed data point at the i-th iteration. In order to
obtain the parameters a and b, mainly four expressions on the right side of
the equations and tb are to be determined:) , X;, Z?ZQX,-Z, " ,Y
and)7, X;Y;. Since the key idea is to perform regression while the algorithm
is running, these four expressions need not to be calculated from scratch ev-
ery time, but rather only have to be cumulatively updated at each iteration.
Algorithm [shows the procedure for updating the regression parameters at
each iteration of the HSASC and HSAMC algorithms.

d in Algorithm {4|denotes the value improvement at the current iteration. Ac-
cording to (5.7), Y; = In(y}) = In(yi—1 — yi) = In(8). The variable X remem-
bers the current iteration number.

There is still one problem in the calculation of the regression parameters.
Namely, the value of § is not allowed to be zero, as the term /n(0) is unde-
fined. In order to avoid this behavior, this work proposes to use the smoothing
technique to forecast such "unknown” data. Furthermore, there is also a posi-
tive side effect, because the regression technique now works on the smoothed
data rather than the original one. The “noise” data are often smoothed out.

67

Chapter 5. Run-Time Behavior Analysis

Algorithm 4 The Regression Procedure

1 YX—0,YX?«0,YY < 0,YXY <« 0and X « 1
2: for each iteration do

33 X« X+1

4 YX<+YX+X

55 YX?+YX?4X?
6: YY <« YY+In(d)
7.

8

9:

Y XY < Y XY +X-In(3)
Compute @ and b according to (5.10) and

end for

Hereby, the exponential smoothing approach is applied which tries to weight
the past data with regard to their time stamp, i.e., the older the data,Athe less
the weight. The smoothing equation is shown in where 8 and 0 are the
originally observed data and the smoothed data, respectively.

. , (5.11)
o8+ (1—a)-8_1, otherwise

a {5,’, if§; >0

o is the smoothing constant and the less the value, the more the data set is
smoothed. Based on the previous examples, Figure [5.5] and [5.6] show the
comparison between the original data and the smoothed data with o = 0.1.
Clearly all the zero” data are replaced by “non-zero” data. Moreover, the
smoothing constant o is a key factor to steer the convergence speed of S to-
ward zero. The larger the a., the faster the curve of S approaches zero. Since
the value improvement is an indicator of the gradient, the fast convergence
consequently implies a fast termination of the algorithm. Obviously, fast
termination has its price, because some local optima may be mistakenly rec-
ognized as global optima and reported as the final output of the algorithm.
The right choice of o has a significant impact on the performance analysis
result.

Figure shows the differently smoothed values with different smoothing
constants. It is not hard to observe that a larger o results in a faster con-
vergence to 0. The blue line (a0 = 0.5) converges to O at the fastest speed
and the purple line with o0 = 0.01 behaves the opposite. However, by setting
o = 0.5 the algorithm will miss the improvement marked by the red circle,
because it would have already terminated before. In other words, using a
larger o will produce a relatively worse solution. Therefore, o is a trade-off
factor that represents a compromise between the convergence speed and the
solution quality.

In order to find the best choice of the smoothing constant, a mechanism is

68

Chapter 5. Run-Time Behavior Analysis

4 ..
= Y —&— original value
GE) o —+— smoothed value
QO
§ —
o
E 8
c o
§e]
I3 |
1S
3 o
5 S -
o o
>
=2 |
()
0
o
S
S T \ \ \ \ \

0 20 40 60 80 100

Number of iterations

Figure 5.5: The original data vs. the smoothed data (example 1)

N —A— original value
T —+— smoothed value

Energy consumption improvement
0.000 0.005 0.010 0.015 0.020 0.025

0 50 100 150

Number of iterations

Figure 5.6: The original data vs. the smoothed data (example 2)

original value
a=0.5
a=0.1
a=0.01

1Hxt

Energy consumption improvement
0.000 0.005 0.010 0.015 0.020 0.025

0 50 100 150

Number of iterations

Figure 5.7: The impact of different smoothing constants (example 2)

69

Chapter 5. Run-Time Behavior Analysis

5.3

proposed to dynamically adjust o at run-time using heuristic information.
More specifically, o is updated at each iteration of the algorithm by means of

(.12).

1

Li_y |F(assign(ti))—F(SC(t:))|)

o= (5.12)

n-o-exp(

Hereby n is task number and o is the number of processor cores. Intuitively,
o is mainly derived from the average difference between the assigned speed
and the critical speed. As the critical speed admits the optimal task AEC, it
is an important indicator of solution quality. In other words, if the average
difference is fairly large, then it indicates that the solution quality is relatively
poor. Thus the convergence speed needs to be slowed down with a smaller
o.. On the other hand, the equation yields a larger o, if the assigned
speeds are equal to or close to the respective critical speeds. Moreover, o
here is also dependent on the number of cores o and the number of tasks n.
The main idea behind this is to slow down the termination speed when these
numbers are high, because in this situation the solution space is rather large
and more time should be spent for solution search. Note that obviously
ensures 0 < o < 1.

To briefly sum up, this section introduced a regression based technique to
simulate and predict the run-time behavior of the algorithms at run-time. An
exponential regression model is used as basis and the regression parameters
a and b can be estimated at each iteration. In what follows, a and b will be
applied to estimate the quality of solutions and finally derive the termination
criterion for the HSASC and HSAMC algorithms.

Quality Estimation

Before the final termination criterion is derived, this section defines a mech-
anism to estimate the quality of solutions found by the algorithm based on
the regression results. In order to measure the solution quality, the approxi-
mation ratio of a solution €(®) to the optimal solution is introduced, which is

defined in (5.13)).

J((D) — J(Q)OPT)
J(wopr)

g(w) = (5.13)

Hereby wopr denotes the optimal solution and thus J(®) — J(®epr) gives
the quality distance between the current solution and the optimal solution.
Usually, one has to compute J(wopr) to obtain the approximation ratio. By

70

Chapter 5. Run-Time Behavior Analysis

Figure 5.8: The exponential regression function

looking at the regression function shown in (5.2), the parameter ¢ (the con-
vergence point of the function as shown in Figure is in fact the value of
the optimal solution, i.e., J(®ppr) = ¢. Since the regression process shown
in the previous sections presumes the absence of ¢, the parameters a and b
can be estimated but ¢ still remains unknown. In other words, the exact value
of J(wppr) is not available. As a result, the main challenge to obtain €(®) is
to estimate the following two terms:

1. J((x)) —J((DOPT)

2. J(Q)OPT)

In order to estimate J(®) — J(®opr), the regression function (5.2) is slightly
reformulated. Thus the equation (5.14)) is obtained.

ac®i=vyi—c, i=1,..,1 (5.14)

It is not hard to see that the term ae? (cf. Figure expresses the absolute
difference between the value of the solution found until the i-th iteration and
the optimal solution, which is in turn an estimator of J(®) —J(wopr). Thus
the approximation ratio can be obtained in (5.15)

aebx

Now the only remaining obstacle is to compute J(®ppr). Though the exact
value of J(wppr) is not available, a lower bound of it (denoted by J'(wopr))
is able to be computed by using Algorithm 5| and [6]for the RTSC and RTMC
problems, respectively. Hereby, the main idea is to compute the optimal
power consumption for each task and device independently, i.e., disregarding
the schedulability test.

71

Chapter 5. Run-Time Behavior Analysis

Algorithm 5 Computation of J'(wopr) for RTSC

Input: (I',C,S,R)
Output: JI(O)OPT)

J/((OOPT) ~0
. for all task t; do
U(T) + rscidrie
J/(O)OPT) — J/(O)OPT) + U(”C,‘) . P(SC(’C,’))
end for
: for all device R; do

U(Rj) = ZR.,EDev(‘ck) U(w) .
J (wopr) < J' (wopr) + U (R;) - P(D})
end for

e Jxn kN

State ‘ F ‘ P (mW) ‘ Ton%off ‘ Toff%on ‘ Pon%off ‘ Poff%on ‘ The

S1 1 800 n.a n.a n.a n.a n.a
S> | 0.5 300 n.a n.a n.a n.a n.a
C, | na 50 2 ms 2 ms 50mW | 50mW | 4 ms
Dy | na 1000 n.a n.a n.a n.a n.a
D n.a 100 2 ms 2 ms 100 mW | 100 mW | 4 ms

Table 5.1: The processor and device power model

For the RTSC problem, the critical speed for each task is first computed.
By definition, this speed yields the optimal task AEC. Based on the criti-
cal speed, the device utilization can be derived. The total system energy
consumption is a sum of energy consumption of all the tasks and devices ac-
cording to their utilization. For the unused time, the power consumption is
considered to be zero. Thus this algorithm produces a lower bound of the
optimal solution.

For the RTMC problem, the basic idea is similar and the critical speed of all
the tasks are calculated. However, in case of a multi-core platform where the
processor cores have heterogeneous power models, the task critical speed can
not be determined, because it is dependent on the processor core to which it
is allocated and this will require a task partition. In this case, the task critical
speed is computed for all the processor cores and the one with the least energy
consumption is taken.

Though J'(wppr) is very optimistically estimated and not reachable in the
reality, it is sufficient to substitute J(®ppr) in (5.13) to obtain the approxi-
mation ratio.

One example instance of the RTSC problem is shown in Table[5.1|and[5.2] In

72

Chapter 5. Run-Time Behavior Analysis

Algorithm 6 Computation of J'(®wopr) for RTMC

Input: (I',0)
Output: JI(Q)OPT)

1: J'(wopr) < 0
2: for all task 1; do
3: F <+ max

4: for all processor core O; do
. . J

5 UI(W) ¢ poasol
6: E/ «+ Ul(t;)-P(SC/ (%))
7: if E/ < E then

8: E+ E/

9: end if
10: end for
11: J’(COOPT) (—J’(O)OPT)—i-E
12: end for

Task | W (ms) | 7 (ms) | Dev | SC
T 5 20 g |5
T 10 40 {Rl} S1

Table 5.2: The task specification

this example, the critical speeds for T; and T, are S»> and Sy, respectively. Thus
the utilization of T; and T, (running at their corresponding critical speed) are
0.5 and 0.25, respectively. The device R; is only used by T, and therefore its
utilization is 0.25 as well. Thus, J'(®ppr) can be obtained.

J (®0opr) = 0.5-800 mW + 0.25 - 800 mW + 0.25 - 1000 mW = 850 mW
(5.16)

Furthermore, Table [5.3]illustrates an example trace of running the HSASC

X 1 | 2] 3] 4| 5] 6 | 7|8
J(w) (mW) | 1800 | 1300 | 1080 | 1080 | 980 [920 [900 | 900
S - 500 | 220 0 100 | 60 20 0
& - 500 | 220 | 198 | 100 | 60 20 18
a - - 12029 [1902 | 1904 | 1912 | 2080 | 2021
b - - [-0.821-046|-0.49 | -0.50 | -0.59 | -0.57
() - - 020035019011 | 0.04 | 0.02

Table 5.3: The data set indicating an execution trace of the HSASC algorithm

73

Chapter 5. Run-Time Behavior Analysis

State ‘ F ‘ P (mW) ‘ Tan%off Toff%on ‘ Pon%off ‘ Poff%on ‘ Tbe

S 1 800 n.a n.a n.a n.a n.a
st 105 300 n.a n.a n.a n.a n.a
C% n.a 50 2 ms 2 ms S50mW | 50 mW | 4 ms
S% 1 800 n.a n.a n.a n.a n.a
S% 0.5 300 n.a n.a n.a n.a n.a
C? | na 50 2 ms 2ms | 50mW | 50mW | 4 ms

Table 5.4: The power model of a dual-core processor

Task ‘ W (ms) ‘ T (ms) ‘ Dev ‘ SC! ‘ SC?
T 10 20 | o | S1] S
T 15 40 o | S| S

Table 5.5: The task specification

algorithm for 8 iterations (shown in the first row). One assumes that the solu-
tion values (shown in the second row) are artificially generated (by simulating
an exponentially decreasing trend). The actual value improvement at each it-
eration can then be computed and is shown in the third row. The fourth row
shows the smoothed data. Hereby for the sake of simplicity, the smoothing
parameter 0. is assumed to be constant and equal to 0.01. Based on (5.10)
and (5.9), the regression parameters a and b are estimated for each iteration.
Finally, according to (5.15)) the approximation ratio for each iteration can be
computed (shown in the last row).

For the RTMC problems, one example instance is shown in Table [5.4] and
[5.5] Both processor cores are in one cluster and thus share the same power
model. Note that the critical speed of T; and T, on both cores are listed in
Table [5.5] The utilization of both tasks running at the critical speed then can
be easily computed, which are 1 and 0.75, respectively. Thus, J'(®ppr) can
be obtained.

X 1 | 2| 3| 4|5 | 6 | 7| 8
J(w) (mW) | 3400 [2400 | 1900 | 1900 | 1700 | 1600 | 1520 | 1500
S - [1000 | 500 0 200 | 100 | 80 20
& - [1000 500 | 450 | 200 | 100 | 80 20
a - - [4000 | 4106 | 4060 | 4191 | 4076 | 4548
b - - [-0.69[-0.40 | -0.49 | -0.55 | -0.52 | -0.60
e(m) - - 1036059025011 | 0.08 | 0.03

Table 5.6: The data set indicating an execution trace of the HSAMC algo-
rithm

74

Chapter 5. Run-Time Behavior Analysis

5.4

J (®wopr) = 1-800 mW +0.75-800 mW = 1400 mW (5.17)

Furthermore, Table [5.6] shows an example trace of running the HSAMC al-
gorithm for 8 iterations (shown in the first row). Hereby the computation
of various parameters is similar to the case with the RTSC problem shown
before.

Algorithm 7 Heuristic Search Algorithm for RTSC (HSASC)

Input: The solution space Q = {assigni,assigna,...,assigns }
Output: A solution assignpegs

1: Generate assign;,; with Vt € I': assignni;(t) = S|

2: asSigNpest <— ASSINinir, ASSIGNcyry <— ASSIGNinir, 1 +— 1

32 YX+0,YX2+0,YY+0,YXY «+ 0,5+ 0.01

4: while C1 and C2 are not met do

5. Generate assign’ from assign,,, and a random number r € [0, 1]
6. if r < Pryccepr(assigneyrr,assign’,i) then

7: assigneyy, < assign’

8 if J(assigneyrr) < J(assignpes) then

9: O < J(assignpes) — J(assigheyry), ASSigNpess <— ASSIGNcyrr
10: else

11: Compute o based on (5.12)), § < (1 —a) -9
12: end if
13: end if

14: YX+YX+i, Y X2 Y X242

155 LYY« YY+In(8), LXY ¢ YXY +i-In(d)

16: Compute a and b according to and (5.9), i i+1
17: end while

Termination Criterion

The termination criterion is mainly derived based on the approximation ratio.
More specifically, the HSASC and HSAMC algorithms terminate, if any of
the two following conditions is satisfied.

* Cl: g(®) <B,a>0and b < 0hold, where ® is the currently produced
solution.

e C2: The algorithm reaches a predefined threshold /;;, of the iteration
number.

75

Chapter 5. Run-Time Behavior Analysis

5.5

B and I, are the constants to be decided by the user. The condition C1 consid-
ers the approximation ratio €(®), which gives the information of how close
a solution found by the heuristic search algorithm is to the optimal solution.
If the distance is smaller than the one required by the user, then the algo-
rithm terminates. The second condition C2, on the one hand, ensures that
algorithms will definitely terminate and on the other hand, gives the user a
possibility to define an upper bound of the affordable run-time.

Chapter Summary

Algorithm 8 Heuristic Search Algorithm for RTMC (HSAMC)

Input: The solution space Qg7
Output: A solution (alloc,assign)pes

1: Generate (alloc,assign)ini

2: (alloc,assign)pes < (alloc,assign)inis

3: (alloc,assign) ey < (alloc,assign) i

4: i+ 1

5 YX+0,YX2+0,YY 0,y XY« 0,5+ 0.01

6: while C1 and C2 are not met do

7. Generate (alloc,assign)’ from (alloc,assign) curr

8: Generate a random number r € [0, 1]

9: if r < Proccept((alloc, assign) cyrr, (alloc, assign)’, i) then
10: (alloc,assign)cyrr < (alloc,assign)’
11: if J((alloc,assign)curr) < J((alloc,assign)pes) then
12: O < J((alloc,assign)pes) — J((alloc,assign) cyrr)
13: (alloc,assign)pess < (alloc,assign) cyrr

14: else

15: Compute o based on (5.12)), § + (1— o) - 8

16: end if

17: end if

188 YX <+ YX+iL, Y X2+ YX2+2

190 YY < YY+In(8), LXY ¢ YXY +i-In(d)

20: Compute a and b according to (5.10) and (5.9), i < i+ 1
21: end while

This chapter mainly provides a run-time behavior analysis of the HSASC and
HSAMC algorithms based on the regression technique. Because both algo-
rithms are following simulated annealing heuristic, there is neither guaran-
tee of finding a globally optimal solution nor information about the solution
quality. Some related work are first reviewed in terms of convergence theory,
however, their results are either only relevant in theory or only addressing a
specific optimization problem in the complexity class P. There is no direct

76

Chapter 5. Run-Time Behavior Analysis

answer for the questions Q1 and Q2 that are raised at the beginning of this
chapter. Therefore, this chapter proposes to apply the regression technique
at run-time to simulate and thus be able to predict the behavior of the algo-
rithms. Based on the regression result, a mechanism is further proposed to
estimate the quality of solutions and finally derive a termination criterion of
the algorithms.

As a conclusion of this chapter, Algorithm [7]and [§] give a complete overview
of the HSASC and HSAMC algorithms with integration of the proposed ter-
mination criterion, respectively.

77

Chapter 5. Run-Time Behavior Analysis

78

Chapter 6

ES-AS: An Online Approach

6.1

Naturally, the HSASC and HSAMC algorithms are often implemented as of-
fline programs to compute the solution. However, there are several problems
arising in this context. One of the most difficult obstacles is to evaluate the
solution value J(®). The main contribution of this chapter is to address all
these issues and propose an approach, ES-AS, to overcome them. Briefly,
the ES-AS approach runs the HSASC and HSAMC algorithms in a fully on-
line and adaptive fashion. The main part of this chapter was published in
[HM12c] and [HM13b].

Motivation

Both HSASC and HSAMC algorithms are simulated annealing based meta-
heuristics. As a nature, these algorithms are often implemented in an offline
fashion. One of the most important requirements in meta-heuristics is the
capability to efficiently evaluate the solution value. In many combinatorial
optimization problems, it can be expressed in a closed form and therefore
presents no real challenge. In the HSASC and HSAMC algorithms, however,
evaluation of the solution value is not a trivial job. As shown in Chapter }]
the solution value is defined as the system energy consumption over a hyper
period. The toughest part is to analyze the energy consumed by components
when they are idle. The main reason is to be accounted for the considera-
tion of non-negligible DPM state switching overhead. Depending upon the
length of an idle interval, different calculation formulas should be used. More
specifically, if the idle interval is larger than the corresponding break-even
time, then the power consumption of a low power state is to be used. On
the contrary, the component is active and thus the power consumption of the
active state is to be applied. As a result, in order to evaluate a solution, all the
idle intervals must be analyzed. Obviously, this is a very time consuming job,
because an offline analysis of idle intervals requires exact knowledge of the
start, preemption, resume, and completion time of all the tasks. This effort

79

Chapter 6. ES-AS: An Online Approach

[t:W(ty) = 5ms, T(rq) = 40 ms, Dev(ty) = {R¢}
B t,: W(ry) = 10ms, T(t,) = 60 ms,Dev(ty,) = @
Processor & 75: W(r3) = 10 ms, T(t3) = 60 ms, Dev(zr3) = {R,}

S+

S

¢y

R, 10 20 40 50 60 80 100 120 t/ms
idle

Dyt I oot

D1

10 20 40 50 60 80 100 120 t/ms

Figure 6.1: An example with a single-core processor and a device

at least has the same computation complexity as the task worst case response
time analysis, which is pseudo-polynomial [Butl 1].

In order to overcome this problem, this chapter introduces the ES-AS ap-
proach, which runs the algorithms in a fully online fashion. As will be ex-
plained later, the evaluation of solutions then becomes a easy work. The
basic concept of the proposed approach is mainly inspired by the general
idea of Organic Computing [SchO5]], which describes a technical system that
is able to autonomically adapts itself to environment changes. The funda-
mental characteristics of such systems are referred to as the so-called self-X
properties including self-configuration, self-healing, self-optimization, etc..
This work follows this basic principle to make systems self-adaptive in terms
of energy optimization. In other words, an online approach provides the ad-
vantage that system run-time and dynamic information can be taken into con-
sideration, whereas offline approaches lack this ability. In the context of real-
time systems, the dynamic information is twofold. The first type is related
to dynamic slack, which describes the unused time of a task due to its earlier
completion than the WCET. The second type of information concerns sys-
tem changes, such as a new task or device joining or leaving the system at
run-time. The goal is to react on this information and even make use of it for
further energy reduction if possible.

In addition, the proposed online approach offers a positive side effect as well,
which is particularly related to the RTSC problem. As shown in the previ-
ous chapters, the HSASC algorithm produces a solution assigning each task
with an operating speed. However, there is no information about power state
scheduling (cf. Problem [3.4.1)), which decides, for instance, when a device
can be switched off and when it should be switched on. By definition of
break-even time, the device can not be blindly turned off whenever it be-
comes idle. Instead, a shutdown is dependent on the length of the upcoming
idle interval. Besides, the device needs to be switched on a little ahead of

80

Chapter 6. ES-AS: An Online Approach

6.2

[Algorithm module]
[Observer module] [Controller module]
[System under observation and control]

Figure 6.2: The observer/controller architecture of organic computing

the dispatching time of the next requiring task, because otherwise the task is
delayed and its deadline may be jeopardized. In a preemptive real-time sys-
tem, analyzing or predicting the length of idle intervals for such devices at
run-time is not computationally feasible [DAOSal]. That is, deriving a power
state scheduling at run-time is in general not possible. The ES-AS approach,
however, tries to overcome this obstacle by using a special event recording
activity.

To emphasis the importance of power state scheduling, a simple example
is illustrated in Figure where three real-time tasks are running under
the EDF scheduling algorithm. The single-core processor supports two P-
states with F(S;) = 1 and F(S;) = 0.5. 1| and 13 are assigned with S, and
therefore their actual run-time are twice the original WCET. 1, is assigned
with S7 and its run-time is equal to W(t;). Furthermore, according to the
task specification shown in Figure[6.1] the device R; is required by the tasks
71 and 13. The power state scheduling has the job, for instance, to decide at
the time point 10 ms whether Ry should be switched off. In this example,
the marked idle time is too short to shut down the device and thus it has to
remain in the active state. On the contrary, at 50 ms the device becomes idle
again and is switched off to a low power state, as the idle time is long enough.
Afterward, the device Ry is activated before the actual required time, so that
T3 is not delayed.

In what follows, an overview of the ES-AS approach is given first and the
details of its application on the RTSC and RTMC problems are explained
subsequently.

Overview of ES-AS Approach

Following the basic idea behind Organic Computing, the goal is to find a
way that the HSASC and HSAMC algorithms can be implemented while
being able to be adaptive to the dynamically changing environment. Once
a system is set up, it runs completely autonomically. Whenever a dynamic

81

Chapter 6. ES-AS: An Online Approach

change occurs, the system is supposed to be reactive and takes the change into
consideration by computing a new solution that is more suitable. Hereby, a
generic observer/controller architecture [Ric+06] is adopted and its simpli-
fied version is illustrated in Figure [6.2]

In order to make the original system self-adaptive, several additional modules
need to be implemented. The observer module is responsible to monitor
system behavior and forward the observation to the algorithm module if any
changes happen. In case of a dynamic change, the algorithm module then
takes the responsibility to adapt the current solution to the change. Finally,
the controller module applies the new solution back to the system.

In the concrete context of RTSC and RTMC, the observer module should be
able to detect the above mentioned two types of dynamic information:

* dynamic slack

« if there is any task or device joining or leaving the system

The treatment for dynamic slack is straightforward, since the unused time
can be further exploited for more energy saving. More details will be ex-
plained later in the subsequent sections. The second type of information,
however, presents a bigger problem, because a new solution might need to be
computed.

A naive answer might be executing the entire algorithm, i.e., HSASC or
HSAMC, to compute the new solution before the actual real-time tasks start,
once system changes are detected. However, it is not suitable for hard real-
time systems due to the non-deterministic characteristic of meta-heuristics,
i.e., the algorithm may take too long and result in a deadline miss, because
the actual tasks are unjustifiably procrastinated. Hereby the main challenge
is to integrate the HSASC and HSAMC algorithms into the running real-
time systems while meeting all the deadlines. The basic idea is to take the
advantage of the common feature of both domains, namely “iterative”. The
algorithms are iterative, because they iteratively improve candidate solutions,
while real-time systems with periodic tasks are also iterative in terms of the
repeated task execution in each hyper period. In the approach, each iteration
of the algorithms is mapped to a hyper period. In other words, in each hyper
period a candidate solution is explored and evaluated. This stage is called
Exploration Stage (ES) and is stopped when the termination criterion is ful-
filled. For the remaining time it is called Application Stage (AS), because in
this stage the best solution found in the exploration stage is applied. This is
also the reason that the approach takes the name ES-AS. In the next sections,
the details of the ES-AS approach are presented for the RTSC and RTMC
problems, respectively.

82

Chapter 6. ES-AS: An Online Approach

6.3

6.3.1

ES-AS Approach for RTSC

This section describes the ES-AS approach applied on the RTSC problem,
where the system-wide energy consumption is to be optimized. Before ES
and AS are explained in detail, several assumptions are made. First of all, all
the tasks are assumed to run until their WCET during ES. If a task, neverthe-
less, completes earlier than its WCET, then its execution time is artificially
prolonged to the WCET. The tasks, however, are allowed to run shorter than
their WCET in AS. In other words, ES only exploits static slack and dy-
namic slack will be considered during AS. Moreover, since a system has no
knowledge of power state scheduling at the beginning, all the devices plus
the processor are kept in the active state even they are idle. In this manner,
no task will be delayed due to DPM state switching overhead. However, a
power state scheduling will be derived during ES and applied in AS.

Exploration Stage

In this stage, the main goal is trying to find the best solution. Mainly one
candidate solution is explored in one hyper period. At run-time two main
activities are taken to achieve this goal.

Algorithm 9 Algorithm Activity at the end of each hyper period in ES
(RTSC)

Get J(assigncurr)

Compare J(assigneyr) and J(assignpre,)

if assign ., 1s not accepted then
assigheyry <— ASSIZNprey

end if

Estimate the regression parameters a and b

if Termination criterion not met then
Generate assighn,e,, € N(assigneyrr)
assign prey <— ASSINcyry
if assigny,,, is schedulable then

asSighcyry <— asSigNyey

end if

. else

Terminate ES and enter AS

. end if

R A Y o o

—_— = = e e
A T

The first activity with the name Algorithm Activity (AA) takes place at the
end of each hyper period. AA mainly performs the work specified for each
iteration in the HSASC algorithm. Algorithm [0 shows a pseudo implemen-
tation of this activity. The value of the current solution assign.,, has to

83

Chapter 6. ES-AS: An Online Approach

be first evaluated. Since the system energy is recorded at run-time, which
will be explained later, the solution value can be easily obtained. Afterward
the acquired value is to be compared with the value of the solution from
the previous hyper period assignp.,. According to acceptance probability
a movement to the current solution is made. Based on the new value, the
regression process is carried out to estimate the regression parameters and
thus the approximation ratio. If the termination criterion is not yet met, the
next solution assigny,, will be generated, which is a neighbor solution of the
current solution. Before the next hyper period starts, AA decides whether
the new solution will make the system schedulable. If it is feasible, then the
new solution is used in the next hyper period, otherwise the current solution
is used.

The second activity with the name Recording Activity (RA) happens at each
scheduling point. As mentioned in Chapter 3| the term “component” in this
chapter is also used in a general sense and referred to as either a device or a
processor. Mainly, RA records two types of data.

1. Activation and deactivation events of all the components

2. System energy consumption.

The events are collected over each hyper period in an event list per compo-
nent. Each event contains two kinds of information: i) the time stamp when
it is recorded and ii) if it is an activation event or deactivation event. Figure
shows an example illustrating the events e1, e, €3, and e4 recorded into
the event list of the device R; and es, ¢g, €7, €3, €9, and ejq into the event
list of the processor. All the events of R are related to the execution of the
task t1, because R| € Dev(t;). Figure shows also that R; is kept always
active as mentioned earlier, even when it is not needed (between 40 ms and
80 ms). The recorded events intuitively reflect the component behavior, when
it should be activated and when it could be deactivated. These events will be
used in AS to derive the power state scheduling. Another observation is that
the event list of the processor actually collects the activation and deactivation
events of all the tasks, i.e., the task schedule.

The second type of data to be recorded in RA is the system energy recording,
which is quite straightforward. Since RA takes place at run-time, it is obvi-
ous when a task starts and finishes. At each scheduling point RA records the
energy consumption of involved components for the time interval between
the previous recorded event and the current event, then this is cumulatively
added to the total energy consumption for the current hyper period. At the
end of a hyper period the total system energy consumption is obtained with-
out any extra effort, which is exactly the solution value. In Figure [6.3] for
instance, at the scheduling point 40 ms the task T; completes. The involved

84

Chapter 6. ES-AS: An Online Approach

e o 1\ Activation \LDeactivation
1 2

Event Event
Processor | idle |
S és
1 _—E:' e e7
S, i ° = ‘10
¢
R 20 40 60 80 100 120 t/ms
1 | idle |
D% €1 €z | €3, e4|
D1

20 40 60 80 100 120 t/ms

Figure 6.3: Events recording in one example with Dev(t;) = {R;} and
Dev(Ty) = @

components are the processor and the device R;. Here the discussion is fo-
cused on the computation of energy consumption for R;. When the system
runs to the time point 40 ms, where the event e; is stored, RA records the
energy consumption of R; for the first time. The involved interval is from the
previous event e; to the current event e¢;. In this interval R; was active and
therefore the energy consumption is computed by means of

E=P(D})-(er.t —ey.t) (6.1)

provided that e;.r denotes the time stamp of e;. As the task execution contin-
ues, R becomes idle and the idle time lasts from e; to e3. At the time point
80 ms, where e3 is recorded, RA computes the idle length [= e3.t —e5.t and
afterward the energy consumption E by (6.2)) for this idle interval. Note that
the scheduling point at 60 ms is not relevant for Ry, because it is not involved
at that point.

o {Eoﬁoff +Eorr+Eoff—on if 1> The(Dj) 6.2)

P(D}) -1, otherwise

Hereby E,,ofr is the energy consumption for switching off Ry, Eyrr—on 18
the energy consumption for switching on Ry and E, ¢ is the energy consumed
by R; when it is in the low power state D%. In general, if a component sup-
ports multiple low power states, the state with the largest break-even time that
is less than the length of the idle interval is selected. This example assumes
that R; supports only one low power state. Eyyorf, Eoff—on and E,¢y can
be expressed by (6.3). Note that the energy recording for each component
needs only O(1) operation at each scheduling point.

85

Chapter 6. ES-AS: An Online Approach

Eorf = P(D})-(I=Tonsorr(D}) = Tofr—on(D1))
Eon—)off = Pon—)off(DD : Ton—>0ff(D%) (6.3)
Eoff%on - Poff%on(D%)'Toffﬂon(D%)

As a short summary, the recorded events reflect the time behavior of com-
ponents, when they should be activated and when they could be deactivated.
The recorded energy is the energy consumed by the components, if they are
switched on and off according to the recorded events. A pseudo implementa-
tion of RA is shown in Algorithm [0

Algorithm 10 Recording Activity at each scheduling point in ES (RTSC)

1: if There is a task T; finishing or being preempted then

2: Add a deactivation event into the list of the processor

3: Record the energy consumed by the processor in the last interval (de-
pending on the used P-state)

4: for all R; € Dev(7;) do

5 Add a deactivation event into the list of R;

6: Record the energy consumed by R; in the last interval based on

7

8

9

end for
: end if
. if There is a task T; starting or being resumed then
10: Add an activation event into the list of the processor
11: ~ Record the energy consumed by the processor in the last interval
12: for all R; € Dev(7;) do

13: Add an activation event into the list of R;

14: Record the energy consumed by R; in the last interval based on (6.2))
15: end for

16: end if

6.3.2 Application Stage

In this stage the best solution found in ES is applied and a power state
scheduling based on the recorded events is derived and used. By definition,
a power state scheduling has the work to decide when a component is to be
switched off and when to be switched on. For this purpose an activity called
DPM Activity (DA) is taken at each scheduling point. If there is a task finish-
ing or being preempted at a scheduling point, then the components required
by the task can be potentially switched off to a low power state, however,
this decision is dependent on the length of the upcoming idle interval. Other
existing online approaches are often applying complicated techniques for es-
timating the next activation time (even with task procrastination), which are
usually very time-consuming. On the contrary, DA can simply consult the

86

Chapter 6. ES-AS: An Online Approach

Processor Ah sw}tcff;
on/o

Sit I ST o i %

S2

Cq |

20 40 60 80 100 120 t/ms

Ry

D;

D}

20 40 60 80 100 120 t/ms

Figure 6.4: Application stage in one example with Dev(t;) = {R;} and
Dev(1y) = @

event list to compute the length of the next idle interval, which is much more
efficient. According to this information the decision whether a component
has to be switched off to a particular low power state is made. If a component
is switched off to a low power state, it also needs to be switched on a little
ahead of the next required time. If the idle time is shorter than the break-even
time of all the low power states (i.e., the component can not be shut down at
all), the component stays in the active state. Figure illustrates this DPM
activity without consideration of dynamic slack. This example assumes that
the solution and event lists are obtained from Figure[6.3] Since task run-time
variation is not considered, the task execution behaves exactly the same as
in Figure At the scheduling point 40 ms, the task T; completes and the
processor and Ry can be potentially put into a low power state. After con-
sulting the event list of the processor and R, respectively, the processor will
be required by 60 ms and R; will be required by 80 ms. For example, both
idle intervals are large enough, then both processor and R are switched to
a proper low power state. Note that the components are switched on a little
ahead of their actual required time. The switching on and off processes are
illustrated by triangles in Figure [6.4]

As mentioned before, dynamic slack can be explored in AS. Here the dy-
namic slack reclaiming mechanism is adopted. More specifically, the unused
execution time of a task is utilized for additional power saving through the
DPM technique. Mainly the components can be switched off earlier than the
worst case. Figure[6.5]shows the same example as in Figure [6.4] but all the
tasks are finishing earlier than their WCET. At the scheduling point where
the task 7y finishes (at 30 ms), DA can consult the event list of the processor
and Ry, respectively. As a consequence, it is obvious that the processor will
be required at 60 ms and R; will be required at 80 ms. This information will
guide the DPM activity to compute the length of the upcoming idle inter-
val, which can be used to make the decision whether a component should be
switched off to a low power state. One important note here is that all the tasks

87

Chapter 6. ES-AS: An Online Approach

Processor Ah sw}tcfr;
on/o
Sit Mo W,
AY)
€1 T } T
R 20 30 40 60 65 80 100 120 t/ms
1
D
D} .

20 30 40 60 80 100 120 t/ms

Figure 6.5: Dynamic slack reclaiming in one example with Dev(t;) = {R; }
and Dev(Ty) = &

are always activated at the recorded activation time. If a task is ready earlier
than the recorded time due to the earlier completion of previous tasks, then it
needs to be delayed to the recorded activation time, because only at that time
one can guarantee that all the required components are in the active state.
The second instance of the task T; in Figure [6.5] illustrates this situation. It
becomes ready after the task T, completes (at 65 ms), however, it should wait
until its recorded activation time, which is at 80 ms. A pseudo implementa-
tion of the DPM activity at each scheduling point is shown in Algorithm
The variable index denotes the current index in the current event list and is
initialized with 1.

Generally, the ES-AS approach is launched at system start and runs from ES
to AS. As soon as there are any system changes, such as a task or device join-
ing or leaving the system, however, only allowed at hyper period boundaries,
the approach will start over with the calculation of the new initial solution
and run from ES to AS again. Figure [6.6] shows the activities taken in the
ES-AS approach at a glance.

6.3.3 Correctness and Complexity

This section shows the correctness and complexity of the ES-AS approach.
The correctness ensures the system schedulability in terms of meeting the
task deadlines. The complexity gives the run-time overhead analysis of the
approach.

Theorem 6.3.1. The ES-AS approach always guarantees system schedula-
bility.

Proof. Since the ES-AS approach is divided into two stages, the system
schedulability is proven for ES and AS, respectively. In ES one solution is
explored in one hyper period. Since the initial solution obtained by assigning

88

Chapter 6. ES-AS: An Online Approach

Algorithm 11 DPM Activity at each scheduling point in AS (RTSC)

1: if There is a task t; finishing or being preempted then

2. for all R; € Dev(7;) and the processor do

3: Retrieve the next activation event according to index and compute
the length of the next idle interval. Based on the length it is to be
decided, whether the component can be switched off to a proper low
power state. If the component is switched off, it will be waked up a
little ahead of the next activation time.

4: Advance the variable index in the event list of R; and the processor.
5: end for
6: end if

7: if There is a task 7; starting or being resumed then
8: if Current time is equal to the recorded time then

9: Run the task 7;
10: for all R; € Dev(7;) and the processor do
11: Advance the variable index in the event list of R; and the proces-
sor
12: end for
13: else
14: Wait until the recorded time
15: end if
16: end if

all the tasks with the maximal speed is clearly schedulable (otherwise there
is no valid solution at all), in the first hyper period there will be no task miss-
ing its deadline. Note that in ES all the components are never switched off
(even when they are idle), thus no task will be delayed due to state switching
overhead. This is also the reason why the traditional schedulability test via
utilization can be performed. At the end of the first hyper period the solution
for the next hyper period is generated. As a schedulability test is carried out,
and only if the test is positive, the generated solution will be used in the next
hyper period (otherwise the initial solution is used), thus the schedulability
is guaranteed as well. The procedure repeats at the end of each hyper period,
therefore the solution used in each hyper period is obviously feasible.

In AS the best solution found in ES is applied and obviously this solution
is schedulable. Furthermore, since all the components are switched on as
recorded and all the tasks are activated as recorded, no task will be delayed
and therefore no task will finish later than its recorded finishing time, which is
obtained under worst case condition. Therefore no task will miss its deadline.
In total, the system schedulability is always guaranteed. [

Theorem 6.3.2. The ES-AS approach has a complexity of O(m-c) at each
scheduling point and O(n) at each hyper period boundary. n is the number

89

Chapter 6. ES-AS: An Online Approach

‘{ waiting for task event l
task scheduling

application stage

exploration stage

hyper period end
Alg<')r.|thm evaluation & comparison
Activity
solution generation
schedulability test
DPM Recording ;
power state scheduling
power consumption recording

S

<>

Figure 6.6: Overview of the activities taken in ES-AS approach

of tasks, m is the number of devices and c is the maximal number of supported
low power states by a component.

Proof. The theorem is proven in two steps. In the first step the complexity at
each hyper period boundary is shown and the complexity at each scheduling
point is proven in the second step.

Looking at Figure [6.6] the only activity taken at hyper period boundaries is
AA. At the end of each hyper period, it starts with the evaluation of the cur-
rent solution. The evaluation takes O(1), because through run-time energy
recording the energy consumption of a solution is automatically available at
the end of a hyper period. Afterward, the current solution is compared with
the previous solution to decide whether a movement to the current solution
should be made. This clearly takes O(1) time. Depending on the acceptance
result, a neighbor solution needs to be generated for the next hyper period.
Though only the speed assignment of one task needs to be changed, gen-
erating the random number based on a non-uniform distribution has linear
complexity O(n). As shown in ChapterEI, the non-uniform distribution of the
task selection probability is caused by the penalty function. After the gener-
ation process, the new solution is to be tested whether it can ensure system
schedulability. This is usually performed by means of a processor utiliza-
tion test. For both EDF and RM scheduling algorithms, the test takes O(1),
because only the utilization of the changed task needs to be updated. As a

90

Chapter 6. ES-AS: An Online Approach

6.4

6.4.1

summary, AA takes O(n) time in total and thus the time complexity of the
ES-AS approach at hyper period boundaries is O(n).

There are two activities taken at each scheduling point. The first one is RA,
which mainly records events and energy consumption. Obviously, the record-
ing process for a single component takes only O(1) . At one scheduling point
there can be at most m components getting involved, where m is the num-
ber of components in the system including all the devices and the processor.
Therefore RA takes O(m) time at each scheduling point. The second activity
is DA, which takes care of the job of the power state scheduling. As shown
in Algorithm [TT] the most time consuming work is described at the line 3.
Hereby DA needs to investigate the break-even time of all the low power
states and decide whether the component can be switched off to a particular
low power state. If the maximal number of the available low power states for
a component is assumed to be c, then the time complexity of DA is O(c) for
each component. In summary, the run-time overhead of the ES-AS approach
at each scheduling point is O(m - ¢) in total. O

Since m and c are often relatively small and constant, the run-time overhead
of ES-AS approach at each scheduling point can be considered as O(1).

ES-AS Approach for RTMC

This section describes the ES-AS approach applied on the RTMC problem,
where the energy consumption of a set of real-time tasks running on a cluster-
based multi-core processor is to be optimized. In general, it is quite similar
to the application on the RTSC problem. The approach is also divided into
two stages: ES and AS. The three main activities, AA, RA and DA, are taken
as well. However, there are some difference in their implementations.

Exploration Stage

The main goal in ES is to find the best solution using the HSAMC algorithm.
Hereby ES contains all three activities, the Algorithm Activity, the Recording
Activity and the DPM activity. Note that this is different to the case of the
RTSC problem, where ES contains only the first two activities. Moreover, ES
here assumes that all the tasks run until their WCET. The same assumption
is made as well in case of the RTSC problem.

AA behaves the same as for the RTSC problem, except that the work spec-
ified in the HSAMC algorithm is taken, instead of the HSASC algorithm.
More specifically, the current solution is first evaluated and compared with
the previous solution. Based on acceptance probability a decision is made,

91

Chapter 6. ES-AS: An Online Approach

whether the current solution is accepted or not. Afterward a neighbor solu-
tion is generated for the upcoming hyper period. In order to ensure system
schedulability, if the generated solution is not schedulable, the current solu-
tion is used in the upcoming hyper period. In other words, a non-schedulable
solution will never be selected and used during online execution. Algorithm
shows the pseudo implementation of the activity. Hereby task migration
overhead is not explicitly considered, because it occurs only at hyper period
boundaries. However, if a task migration indeed takes significant time, it can
be specified as a separate task running always at the maximal frequency and
taken into account in the schedulability analysis.

Algorithm 12 Algorithm Activity at each hyper period boundary in ES
(RTMC)

Get J((alloc,assign)cyr) and compare it with J((alloc, assign) prev)
if (alloc,assign)c,rr is not accepted then
(alloc,assign)curr < (alloc,assign) prey
end if
Estimate the regression parameters a and b
if Termination criterion not met then
Generate (alloc,assign)new € N((alloc,assign)curr)
(alloc,assign) prey < (alloc,assign)curr
if (alloc,assign)pe, is schedulable then
(alloc,assign) cyrr < (alloc,assign) ey
end if
. else
Terminate ES and enter AS
. end if

R A o e

—_ = = e
LA S e =

The second activity is RA, which takes place at each scheduling point and
mainly records two types of matters, energy consumption and heuristic in-
formation. The energy consumption recording is quite similar to the case of
the RTSC problem and is shown in Algorithm [I3] However, the heuristic
information recording is new and in fact replaces the event recording in the
case of the RTSC problem. The explanation will be found later.

In Algorithm the parameters t;,5; and f.uren; Store the time stamps of
the last and current scheduling point, respectively. The parameter Ls is the
state used by the processor during the time interval [t1,5, fcyrrent). Note that Ls
could be a P-state or a low power state. The variable e stores the cumulatively
recorded system energy consumption so far.

The heuristic information update is basically for the computation of task
penalty, which is required at each hyper period boundary to generate a neigh-
bor solution. As shown in Chapter 4] the task penalty function is defined in
(4.16)) and mainly comprises two parts. The first part is related to the critical

92

Chapter 6. ES-AS: An Online Approach

Algorithm 13 Energy Recording at each scheduling point in ES (RTMC)
if [s is a P-state then

temp < P(Is) - (tcurrent — tiast)

else if /s is a C-state then
temp <— Ponaoff(ls) . Tonéoff(ls) —i—Poffﬁon(lS) . Toffﬁgn(ls) +P(ls)-
(tcurrent —last — Ton%off(“‘) - Toff%on(ls»

5. end if

6: e<—e+temp

T: tast < Lcurrent

Sl S

speed and can be easily calculated. However, the second part is not trivial,
because it needs the information about unbalanced task execution during the
last hyper period. The ES-AS approach solves this problem by updating task
penalty values cumulatively at each scheduling point. The basic principle is
analogue to the power consumption recording. Thus the heuristic informa-
tion update process is part of the recording activity. Algorithm [I4]shows the
heuristic information update process.

Algorithm 14 Heuristic Information Update at each scheduling point in ES
(RTMC)

1: if a task 7; is arriving for the first time in the current hyper period then
2: pen(t;) < A - |F (assign(t;)) — F(SC/(t;))|+ A3 (cf. Equation (4.16))
3: end if

4: if there is a task T; causing an unbalanced execution in [t;4g, fcyrren:) then
5: pen(T;) < pen(Ti) + A2 (teurrent — tast)

6: end if

7

Y Nast < Leurrent

In Algorithm[14] the parameters f;,5 and f.yrens have the same meaning as in
Algorithm

Before the third activity DA is explained, there is a special treatment for the
RTMC problem. The primary focus of the RTMC problem is on cluster-
based multi-core platforms, where all the processor cores in the same cluster
can only operate at a common frequency. The tasks running in parallel in a
cluster must coordinate their frequencies. For this the ES-AS approach man-
ages one process per cluster. The process decides the cluster-wide frequency
at each scheduling point. Note that the scheduling points are differentiated
on different processor cores in a cluster, even at the same time. For instance,
if there are two tasks arriving or finishing simultaneously on two different
cores, then they are treated as two different scheduling points. The cluster-
wide frequency is selected as the highest one among all the required frequen-
cies, because in this way it is able to guarantee that no task will finish later

93

Chapter 6. ES-AS: An Online Approach

04
Si
51
1
cl ,
0, 10 20 30 40 50 60 70 t/ms

S% 7 = T1
5% | EH

c

10 20 30 40 50 60 70 t/ms

Figure 6.7: An example with two cores grouped in one cluster. 7'(t;) = 40
ms, 7(1;) = 80 ms, T, is partitioned onto O; and T, onto Oy, S{ is assigned
to T; and S% to T

than its finishing time under worst case condition. On some platforms this
strategy is even obliged due to hardware support [Intcl]. Figure shows
one example, where S% is assigned to T,. In the time interval [0 ms,20 ms]
the task t» however is executed with S2. because S % is required on the first
core at the same time and is higher. Subsequently, the task T; completes its
execution. Thus, in the time interval [20 ms,40 ms]| the task T, is executed
at its originally assigned frequency S%. Clearly, T, completes earlier than the
original completion time when it is constantly executed at S%. In this manner,
the system schedulability can be guaranteed.

If at a scheduling point one of the processor cores is going to be idle, it can
be switched off to a low power state. This is the place where DA comes into
play, because it takes care of the job of power state scheduling. The main
challenge is to decide the arrival time 7 of the next task. Since there is no
I/O devices considered in the RTMC problem, the length of the upcoming
idle time can be efficiently calculated. This is the main reason that the event
recording is not required any more. In particular, ¢ is retrieved from a sorted
queue Q. For each processor core O there is a dedicated Q/, which basically
stores the arrival time of each task allocated on this core in sorted manner.
Whenever a task is finished, it will update its next arrival time and reinsert it
into Q. It is not hard to see that the time complexity of this process at each
scheduling point is O(logn), where n is the number of tasks in the system.
More details about the queue management and its time complexity analysis
can be found in Algorithm[15]and Lemma

The variable #; in Algorithm [I5]always stores the arrival time of the next job
instance of the task 7;.

Lemma 6.4.1. Algorithm |15| has a computation complexity of O(logn) at

each scheduling point, where n is the total number of tasks in the system.

Proof. Tt is obvious that Q/ contains the arrival time of each task once at
most, which means that the length of 0/ can never be longer than n. By

94

Chapter 6. ES-AS: An Online Approach

6.4.2

Algorithm 15 Manage task arrival time in a sorted queue and predict the
length of idle time at each scheduling point in ES (RTMC)

1: if There exists a T; that is finishing on the processor core O/ then
2 <t + T(‘Ei)

3: Reinsert into Q/

4: end if

5: if A processor core O becomes idle then

6 Find the position of the current time f.,,, in o’

7: Retrieve the next entry after that position. Let it be #'.

8 Calculate the length of the next idle interval, which is ¢’ — 7.,
9: end if

means of the binary search algorithm, an insertion operation or position find-
ing takes O(logn) time. Hence, the computation complexity of Algorithm
is O(logn) at each scheduling point. O

As the length of idle time can be predicted, DA will shut down processor
cores accordingly. Note that there is also a need to wake up the processor
cores a little ahead of the actual arrival time of the next task, so that the task
will not be delayed due to DPM state switching latency. The DPM state
switching overhead is shown in Figure |6.7| by triangles. If the idle time of a
processor core is shorter than the break-even time of all the low power states,
the processor core needs to stay in its current P-state.

As a comparison, the application of ES-AS approach on the RTSC prob-
lem uses the event recording technique to compute the length of idle time,
whereas hereby the idle time is directly predicted. Both methods have their
advantages and disadvantages. The event recording yields a lower run-time
overhead (O(1)), but needs to keep all the components staying active dur-
ing the entire ES, which is clearly not energy efficient. The benefits and
the drawbacks of direct idle time prediction is exactly the opposite. Further-
more, another reason why the event recording technique is chosen for the
RTSC problem is that the device idle time prediction in a preemptive system
at run-time is not computationally feasible [DAO8a]. However, this is not the
case for RTMC, because devices are not considered.

Application Stage

AS mainly applies the best solution found in ES. Hereby DA is taken as well
to switch on and off processor cores accordingly.

In order to additionally exploit dynamic slack, a simple reclaiming mecha-
nism is applied. More specifically, unused task execution time is utilized by

95

Chapter 6. ES-AS: An Online Approach

6.4.3

51
53
Cl

1 } t T t t

0, 10 20 30 40 50 60 70 t/ms

53 8 o
S% = T2

i

10 20 30 40 50 60 70 t/ms

Figure 6.8: Dynamic slack reclaiming for DPM application

DPM to shut down processor cores earlier. Other sophisticated mechanisms,
such as task procrastination, are not adopted here, because the online com-
putation complexity is to be kept as small as possible. Figure [6.8] shows the
similar scenario as in Figure but the actual execution time of the first job
instance of the task t; takes 10 ms. This leads to the situation that the task T,
can run at S% already at 10 ms. By assuming that T, also completes earlier,
then the cores can be switched off earlier as well.

The ES-AS approach is launched at system start and runs from ES to AS.
As soon as there is a system change, such as a new task joining the system
(only allowed at hyper period boundaries), the approach will start over with
the calculation of a new initial solution. The new task is not accepted by the
system, if no schedulable initial solution is possible. Clearly, the approach is
extremely suitable for systems with long life time while system changes do
not happen very often, because more hyper periods can be spent to obtain a
better solution.

Figure shows the activities taken by the ES-AS approach for the RTMC
problem at a glance.

Correctness and Complexity

The proof of correctness of the ES-AS approach for the RTMC problem is
similar to the case of the RTSC problem. At run-time, the system schedu-
lability is always ensured due to three observations: i) only a schedulable
solution is allowed to be applied in a hyper period, ii) no task will run below
its assigned frequency, iii) and no task is delayed by DPM state switching
overhead.

The total complexity of the ES-AS approach for the RTMC problem is shown
in Theorem

Theorem 6.4.1. The proposed ES-AS approach has a computation complex-
ity of O(logn + c) at each scheduling point and O(n) at each hyper period
boundary, where n is the number of tasks in the system and c is the number

96

Chapter 6. ES-AS: An Online Approach

1" waiting for task event |

task scheduling
application stage exploration stage
NS

hyper period end

Algorithm Activity

evaluation & comparison solution generation schedulability test

Recording Activity

power consumption recording heuristic information update

DPM Activity

power state scheduling

manage queue Q

Figure 6.9: Activities performed in the ES-AS approach for the RTMC prob-
lem

of supported processor low power states.

Proof. The ES-AS approach contains two main parts. The first part hap-
pens at hyper period boundaries (AA), where the currently applied solution
is evaluated and a new neighbor solution is generated. The evaluation of so-
lution value is solved by run-time recording and the new solution generation
needs to change the configuration of only one randomly selected task, which
is depending on the heuristic information collected at run-time as well. Be-
cause the random number generation is based on non-uniform distribution,
the neighbor generation takes O(n). Afterward the schedulability test needs
to only update the changed task utilization on the involved cores. Because
the algorithm reallocates only one task from one core to another core at each
hyper period boundary, there can be 2 processor cores getting involved at
most. For these involved cores, the reward values need to be updated as well.
Therefore this part takes O(n) in total.

The second part occurs at each scheduling point and contains RA and DA as
shown in Figure [6.9] The power consumption recording (Algorithm [13) and
the heuristic information update take O(1) for each processor core. Further-
more, according to Lemmal6.4.1|the effort to manage Q and predict the length
of idle time is O(logn) at each scheduling point. In case of a processor core
being idle, DA needs to choose the most proper low power state. For this, it
has to investigate the break-even time of all the low power states, which has
a complexity of O(c), provided the number of low power states is ¢. Thus the
total complexity for RA and DA is O(logn+ ¢) at each scheduling point. [

97

Chapter 6. ES-AS: An Online Approach

6.5

In practice, the number of low power states c is usually relatively small and
constant. Thus the complexity of the ES-AS approach at each scheduling
point can be considered as O(logn).

Chapter Summary

This chapter introduced an online approach, the ES-AS approach, which is
able to run the previously proposed HSASC and HSAMC algorithms in a
fully adaptive fashion. The main concept is inspired by the general idea of
Organic Computing, where a running system can adapt itself according to
environment changes. The ES-AS approach is executed in two stages: Ex-
ploration Stage (ES) and Application Stage (AS). In brief, ES explores the
solution space and tries to find the optimal solution. Hereby the iterations
of the algorithms are mapped to the hyper periods of real-time systems. Af-
ter ES is finished, AS simply applies the best solution found in ES. Base on
this main concept, its application for the RTSC and RTMC problems is dis-
cussed in details. In addition, the correctness in terms of schedulability and
the efficiency regarding run-time complexity of the proposed approach are
analyzed.

In addition, the ES-AS approach provides several other advantages. First, this
approach is independent on real-time scheduling algorithms. For instance,
both EDF and RM can be applied here. Second, this approach is independent
on optimization heuristics as well. Though this chapter shows the application
for the HSASC and HSAMC algorithm, it, in general, could also be used with
other meta-heuristics.

98

Chapter 7

Consideration of Non-Negligible DVS State
Switching Overhead

Until now the proposed ES-AS approach has not explicitly taken DVS state
switching overhead into account at run-time. Though its overhead is gener-
ally smaller than DPM state switching overhead 2, the reckless ignorance is
not always safe in terms of timing constraints. The main contribution of this
chapter is to improve the ES-AS approach by incorporating the handling of
DVS overhead, especially for multi-core processor platforms. In particular,
the traditional schedulability test is enhanced for the RTSC and RTMC prob-
lems concerning non-negligible DVS state switching overhead. The main
part of this chapter was published in [HM12b] and [HM13b].

7.1 Introduction

The basic idea of DVS is to slow down active components by lowering their
operating speed and voltage. Obviously, hereby a switching from one speed-
voltage domain to another consumes time and energy. Voltage scaling is
fairly expensive and is often in the same order of magnitude as a DPM state
switching. For instance, a voltage switching on the Intel XScale [Inte] pro-
cessor typically takes 0.45 ms and a shutdown to the deep-sleep mode takes
0.66 ms. If the additional management taken by an operating system is con-
sidered as well, DVS switching overhead becomes even higher. However,
the state-of-the-art techniques, especially in terms of hard real-time systems,
studied this problem rarely in depth. Most work either ignore this overhead
or simply account it to the task WCET. However, as will be shown later, the
latter is only applicable on single-core processor platforms.

2The main problem with DPM state switching overhead is to correctly predict the length of idle time. This
is solved by the ES-AS approach through event recording activity (Algorithm [I0) for the RTSC problem and the
queue management process (Algorithm @ for the RTMC problem.

99

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

The main difficulty on cluster-based multi-core processor platforms is ac-
counted to the constraint that processor cores in the same cluster can only
operate at the same speed. Some studies [AYO03] and [CHKO6] proposed
to adapt single-core energy aware real-time scheduling algorithms to multi-
core platforms by additionally performing a task partitioning in advance. The
HSAMC algorithm proposed in this dissertation is belonging to this category
as well. Hereby one of the major advantages is that well-established single-
core real-time scheduling algorithms, such as EDF and RM, can be adopted
for each core. In this way, the traditional schedulability test via utilization
can be performed for each core independently. However, if cluster-based
or full-chip multi-core processor platforms with non-negligible DVS state
switching overhead are considered, this adaptation may not work appropri-
ately any more, not only because of the reduced energy efficiency, but also
due to the violation of timing constrains. As will be described in section
additional delays are introduced into the task execution, which makes tradi-
tional schedulability analysis insufficient. Section[7.3] proposes two solutions
to enhance the schedulability analysis by taking DVS state switching over-
head into consideration: the conservative protocol and the speed inheritance
protocol.

In Chapter[3] the DVS state switching overhead is defined by using the terms
P(S;,S;) and L(S;,S;) indicating the power consumption and the delay of
switching between the states S; and S, respectively. As the main concerns
are hard real-time systems and timing constraints, this dissertation concen-
trates on the switching latency. The power consumption of switching will
be, however, briefly discussed in Chapter [} Besides, in order to simplify the
explanation, this work assumes that DVS switching overhead is uniformly
equal, i.e., for any two P-states, the switching overhead between them is al-
ways the same, denoted by L,,. If a processor, nevertheless, prohibits a non-
uniform switching overhead, the worst case (the longest latency) is used for
L,.

7.2 DVS Overhead Handling for RTSC

This section addresses the issue caused by DVS state switching overhead
in the RTSC problem and proposes a solution by enhancing the traditional
schedulability analysis.

7.2.1 Problem Description

On single-core processor platforms the problem caused by DVS state switch-
ing is quite straightforward. Since each task runs at its assigned speed, at
each task switching point the core operating speed may have to be changed.

100

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

7.2.2

Processor [0ty [t, [DVSstate switch

S1
RY)
Cy

10 20 30 40 50 60 70 80 t/ms
(a) Task execution without consideration of switching overhead
Processor

S1
R
Cq

deadline miss

10 20 30 40 50 60 70 80 t/ms

(b) Task execution with consideration of switching overhead

Figure 7.1: A comparison of task execution with and without DVS state
switching overhead

Clearly, DVS switching latency introduces additional delays into the task
execution. If this latency is not considered properly in schedulability analy-
sis, some deadline misses may not be predicted. This problem is similar to
the context switching problem. Figure illustrates the comparison of task
execution with and without consideration of DVS state switching overhead.
This example assumes W (t;) = 20 ms, 7(t;) = 40 ms, W(1;) = 15 ms and
T(t2) = 80 ms. The tasks T; and T, are assigned with the P-states S and S,
respectively, where F(S;) = 1 and F(Sz) = 0.5. The EDF algorithm is ap-
plied as real-time scheduler. Based on the traditional schedulability analysis,
all the tasks can be scheduled without deadline miss.

3 7
—=—c<1 7.1
+8 g (7.1)

If the DVS state switching overhead is ignored, as shown in Figure[7.1{(a), all
the tasks indeed complete before their deadlines. However, if the switching
overhead is considered, which takes 5 ms in this example, the task T, misses
its deadline at the time point 80 ms. The reason is rather obvious, because
additional delays due to DVS state switches have been introduced into the
task execution.

Enhanced Schedulability Analysis

In order to solve the above mentioned problem, this work provides Theorem
by taking DVS switching overhead into consideration in the schedula-
bility analysis. Before the theorem is presented, an example is illustrated in
Figure[/.2[to simplify the explanation.

This example involves 4 real-time tasks and assumes a priority based schedul-
ing algorithm. In terms of task priority, T < T2 < T3 < T4 holds. During

101

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

Processor

[DVS state switch
S1 4
Ay Ty
c, T T3 T3 T t
L L Ly oL L

Figure 7.2: A single-core processor example with 4 real-time tasks

execution, one further assumes that T is preempted by T,. T is in turn pre-
empted by T3, which is again preempted by T4. As a result, there are in total
6 DVS state switches (L1, L%, etc.) shown in the figure. Note that a DVS
switch is always associated with a context switch. In other words, if there is
a DVS state switch then there must be a context switch. However, a context
switch may not be necessarily accompanied with a DVS state switch.

Therefore, in order to take DVS state switching overhead into account, it is
sufficient to count the number of context switches [DevO3|]. In a preemp-
tive real-time system, context switches can be classified into two categories
according to their causes:

1. Switches due to preemption: These context switches are cased by pre-
emption when a task with higher priority arrives while the currently
running task has a lower priority. In Figure the switches L},, le,

and Lf, are clearly belonging to this category.

2. Switches due to task completion: These context switches are caused
when a task completes and there is at least one ready task is waiting for
ex'ecutlon. Obviously, the switches L, L), and L) in Figure E fall in
this category.

Based on this classification, context switches can be charged to tasks. In
particular, a switch due to preemption is charged to the task, which has caused
the preemption, i.e., the task which just arrives and has a higher priority than
the current running task. A switch due to task completion is charged to the
task, which just completes. Following this rule, it is not hard to see that a
task may be responsible for at most one switch due to preemption and one
switch due to task completion inside its period, because the task arrives and
completes only once. Consequently, a task may cause two context switches
at most, once at the arriving time and once at the completion time. In Figure
clearly L}D and Lg are accounted to Ty, Lg and LZ are accounted to T3 and
finally L?, and L; are accounted to t4. Except the task T, all the tasks are
causing exactly two switches. If the example is extended to running » tasks,
the required switches become 2n — 2.

Now it is ready to introduce Theorem|/.2.1

102

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

7.3

7.3.1

Theorem 7.2.1. A hard real-time system on a DVS enabled single-core pro-
cessor platform is schedulable, if the following condition is satisfied:

o P +2-Ly
Z 2 < Up (7.2)

_ l

Proof. The delays are always caused by P-state switching, which may only
happen at context switch. Since each task may cause two context switches
at most inside its period, the maximal number of delays caused by a job
is limited by two. If these two delays are accounted into task worst case
execution time, clearly the system feasibility can be guaranteed. [

If the processor utilization in the previous example (shown in (7.1)) is re-
computed using (7.2)), the deadline miss can be predicted.

20ms—|—2-5ms+3Oms-|—2-5ms§>1 (7.3)
N 40 ms 80 ms 4 ’

Clearly, Theorem gives a conservative analysis of processor utilization.
In general, the test overestimates the real utilization of processor. This
is mainly due to two reasons: i) not every task causes exact two context
switches and i1) not every context switch is accompanied with a DVS state
switch and thus a delay. However, the system schedulability is of utmost
importance in a hard real-time system. The analysis must work on all the
scenarios, even in the worst case.

DVS Overhead Handling for RTMC

As shown in Chapter 4, the HSAMC algorithm is belonging to the cate-
gory of partitioned scheduling. The schedulability analysis can be performed
on each processor core independently. Thus, the problem described in the
previous section applies here as well. However, due to the special prop-
erty of cluster-based multi-core processor platforms, the previously proposed
enhanced schedulability analysis is not sufficient enough. This section ad-
dresses these issues and proposes two solutions: the conservative protocol
and the speed inheritance protocol.

Problem Description

In order to better explain, the problem is illustrated by a simple example
shown in Figure The processor is equipped with two processor cores

103

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

grouped in one cluster. Both processor cores share the same power model
and support two P-states with F(S}) = F(S?) = 1 and F(S}) = F(53) = 0.5.
The switching latency between the two states is 5 ms. Moreover, there are
two real-time tasks, which are partitioned to the first core and the second
core, respectively. The task T; is assigned with S% and the task 7 is assigned
with § % The tasks T; and 7T, have a speed conflict during the time interval
between 0 ms and 5 ms, because they run in parallel but require different
operating speeds. The strategy is to select the highest speed as the cluster-
wide operating speed. Taking the schedulability test from Theorem[7.2.1] the
utilization of the processor cores can be computed.

80ms+2-5ms 9
U(O:) = = <1 7.4
(01) 100 ms 10< (7.4)

Sms+2-5ms 3

According to this result, the tasks are clearly schedulable on both processor
cores, provided that the EDF scheduling algorithm is applied. However, in
the actual task execution (cf. Figure the task t; will miss its deadline
at 100 ms. The previously proposed schedulability test is obviously not suf-
ficient any more for the RTMC problem. This situation is quite plausible,
because additional delays are introduced into the execution of the task Tj.
For instance, at 5 ms the task T, is finished and the task T; can run at its
originally assigned speed, however, it will first take 5 ms to switch the speed
from S} to S1. At 20 ms, the task T, becomes active again and will require
$2. it will also need 5 ms to switch the speed from S% back to S%. Note that
T sometimes runs at a higher than its assigned speed, one may expect that T
will finish earlier than its WCET. However, this will only shorten the task ex-
ecution time but not the completion time. In this example, there are too many
delays caused by P-state switching that can not be compensated by the short-
ening of execution time. One important observation here is that these delays
are caused by the so-called Inter-Core Preemption (ICP), which is generated
by tasks from other cores in the same cluster. Formally, ICP is defined as
follows:

Definition 7.3.1 (ICP). An Inter-Core Preemption of a task T; is a preemption
of its execution due to core speed change, which is caused by the arrival or
the completion of another task T; with the conditions:

group(alloc(t;)) = group(alloc(t;)) (7.6)

alloc(t;) # alloc(t;) (7.7)

104

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

7.3.2

[77 [E 7 [DVSstate switch

S% deadline miss

10 20 30 40 50 60 70 80 90 100 t/ms

0, Ah Switch on/off [Idle task

10 20 30 40 50 60 70 80 90 100 t/ms

Figure 7.3: An example with two tasks running on a platform with two
cores grouped into one cluster. Both processor cores support two operating
speeds with the switching latency L, = 5 ms, W(t1) = 40 ms, W(12) =5
ms, T(t;) = 100 ms, T(t2) = 20 ms, alloc(t)) = Oy, alloc(ty) = O»,
assign(t1) = S} and assign(12) = S3.

Enhanced Schedulability Analysis

The following sections present solutions to enhance the schedulability anal-
ysis by taking non-negligible DVS state switching overhead into considera-
tion.

Conservative Protocol (CP)

As mentioned earlier in the problem description, the main cause of deadline
misses is due to additional delays introduced by ICPs. Therefore, the most
straightforward idea is to estimate the maximal number of such delays for
each task and account them into their task WCETs. Formally, Theorem
defines the schedulability test of the conservative protocol.

Theorem 7.3.1. Given a cluster-based multi-core processor platform and a
set of independent periodic real-time tasks, a solution of the RTMC problem
containing a task partition and a speed assignment can guarantee the system
feasibility, if the following condition for each core O; holds:
W(%)-F(S])
e +2 - Ly, +num; - L,
Z F(assign(t;)) < Us (7.8)

T(t) B

alloc(7;)=0;
where num; is the maximal number of delays that can be introduced into the
execution of the task t; due to ICPs. Formally it is computed by ([7.9).

T(T:
num; = Z[%} -2, T satisfies cond. in De finition(7.3.1 (7.9)
J

Tj

105

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

Proof. The proof starts with the correctness of (7.9), which estimates the
maximal number of delays for each task t;. Clearly, only the tasks satisfying
the conditions in Definition [7.3.1 may generate ICPs for t;. Additionally, it
is obvious that the number of ICPs generated by a task t; is limited by the
number of its occurrence during the period of the task t;. Thus, for each
task the maximal number of its occurrence can be computed by the term
f%} Since each ICP may cause two delays at most (as shown in Figure
[7.3), once at the arriving and once at the completion, the maximal number of
delays is equal to the number of occurrence multiplied with 2. Furthermore,
in order to cover the problem that already exists on single-core processor
platforms, Theorem [7.2.1|1s applied. As a result, a sufficient condition for
the schedulability analysis is obtained in ((7.8]). [

If the schedulability analysis of the conservative protocol is applied to the
example shown in Figure The utilization on the first processor core O
is computed as follows.

80ms+2-5ms+10-5 ms 7
100 ms 5

U(0) = > 1 (7.10)

This clearly indicates that the system is not feasible. Theorem gives
a sufficient condition for the schedulability test. It is not hard to see that
this test is rather pessimistic. It is not necessary that each occurrence will
generate an ICP. Many solutions may fail the test, even though they are indeed
schedulable. This is also the reason why this approach is called conservative
protocol. However, one of the advantages by this protocol is that there is no
need to modify task execution. In the next step a more sophisticated approach
is presented, where the test is much tighter.

Speed Inheritance Protocol (SIP)

The speed inheritance protocol is based on an above mentioned observation.
In Figure due to ICPs the task T; runs occasionally at a higher than its
assigned speed. Thus, the execution time of T; is shorter than its original
WCET. However, T; still missed its deadline, because too many delays are
introduced and the amount of saved execution time is not enough to break
even the delays. The basic idea of SIP is then to further shorten the execu-
tion time of such tasks, so that the delays can be compensated. In sum, each
time a task is interrupted by an ICP, its operating speed is usually increased.
Therefore, the task will also run faster. The speed inheritance protocol uti-
lizes this property to compensate the delays caused by ICPs by enforcing the

106

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

AFC;(ty)

01 01 the Ly
st st “ > <>

Y1 EFcity EFc, EFC; h ; AFCy(ts)
st i(t1) i(t2) Ci(t3) s1 | AFC;(t,)

1 1
Cl T T T | Cl

ty ty t3 t ty t, t3 t

(a) Expected case of the task execution

s34
O v B r; [DvVsstateswitch S% 4
2 E
C1

t
(b) Actual case of the task execution

Figure 7.4: Task execution in the expected and actual case. assign(t;) = S,
assign(t;) = S7 and 1; arrives at t,

task running at that higher speed for a certain amount of time. This idea is
similar to the DPM break-even time. In this way the delays do not need to be
accounted into task WCETs any more. The name, speed inheritance, comes
from the fact that this protocol tries to run tasks at a higher speed inherited
from other tasks.

In order to calculate the break-even time, there is a need to analyze how much
the execution of a task is delayed. For this, the definition of finished cycles
of a task is introduced. Hereby one distinguishes the expected case and the
actual case.

Definition 7.3.2. EFC;(t) is defined as the Expected Finished Cycles of task
T; until a time point t. This describes the finished cycles of a task until t in
the expected case where no ICP happens.

Definition 7.3.3. AFC;(t) is defined as the Actually Finished Cycles of task
T; until a time point t. This describes the finished cycles of a task until t in
the actual case of task execution.

Figure shows the execution of a task 7; in the expected and actual case,
respectively. The expected case reflects the task execution as planned. If all
the tasks are executed as expected, then clearly no task will miss its deadline.
However, due to ICPs a task execution may vary in the actual case. For
instance, at the time point #; in Figure[7.4 EFC;(t;) = AFC;(1;) clearly holds,
because no delay has been introduced before ¢;. However, at 1, AFC;(t;)
is already behind EFC;(t;), as no work has been done during the interval
between #1 and #, in the actual case. The main idea here is to compute the time
tpe needed at least to compensate the delays. In other words, the task T; needs
to run at the higher speed S% for at least 7, so that the actual case execution
can catch up the progress in the expected case. Formally, the equation (/.11
is to be ensured.

AFC;(13) = EFCi(13) (7.11)

107

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

Moreover, the equations (7.12)) and (7.13]) compute the actually and expected
finished cycles of t; until 73, respectively. According to their definitions, they
are equal to the already finished cycles until #, plus the cycles executed in
[t2,13]. Note that no cycles are executed during DVS state switching in the
actual case and 13 — 1, = 1, + L, holds.

AFCi(13) = AFCi(t2) +tp - F(S}) (7.12)

EFC(t3) = EFCi(ty) + (tpe + L) - F(S}) (7.13)

By applying (7.12)) and (7.13)) in (7.11)), the formula to compute the break-

even time fp, is obtained.

_ EFCi(1y) —AFCi(t2) + L, F(S))

fre = F(sh)— F(s}) 719

The speed inheritance protocol does not modify the actual scheduling algo-
rithm, but rather has the impact on the selection of task execution speed. Now
the additional effort is described that has to be taken at run-time to enable the
speed inheritance protocol. The AFC and EFC values for each task are ini-
tialized with O at task arrival and updated at each scheduling point. Once a
task is interrupted by an ICP, 7, needs to be computed by means of (7.14).
The system ensures that this task runs at the higher speed at least for #,,. Af-
terward the task can run at its originally assigned speed again. If an intra-core
preemption occurs during this time interval, which is caused by a task with
higher priority in the same processor core, then the system remembers the
time that has been consumed and the remaining time will be consumed after
the task is resumed. However, if another ICP happens and the task operating
speed is increased again, then there is a need to recalculate #,, and ensure
the task runs at the new speed for #,,. Before deriving the schedulability test,
Lemma([7.3.1]shows one important feature of the EFC;(t) and AFC;(t) values
for each task 7;, i.e., the maximal cycles that the AFC; value may lag behind
the EFC; value is limited.

Lemma 7.3.1. If a task t; is running on Oy, then the following condition
holds at any time point t 3:

EFCi(t) — AFC(t) < num;- L, - F' (assign(T;)) (7.15)
where

num; = \{S]]‘\F(Slj‘) > F(assign(t;)) and F(S’;) < F(SH} (7.16)

SHereby F'(S) denotes the real frequency in MHz of the P-state S. This is unlike F(S), which gives the
normalized frequency with regard to the full performance state 1. More explanation is presented in the definition
of single-core processor power model in Chapter@

108

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

Finished
cycles

—..— EFC;
— AFC;

t

Figure 7.5: The relationship between EFC and AFC based on the example in

Figure

Proof. At the task arrival, the EFC; and AFC; values are clearly equal, since
they are initialized with 0. This equality will not be broken, unless an ICP
occurs. The curves in Figure illustrate the value trend of EFC; and AFC;
based on the example shown in Figure Obviously, at the time point 7,
AFC; lags behind EFC; the most. Afterward AFC; starts to catch up EFC;,
because the task T; runs now at a higher speed. In order to find the maximal
value of EFC; — AFC;, it requires to consider the worst case, i.e., several
ICPs happen consecutively. For instance in Figure if at 1, +€ (€ 1s an
indefinitely small positive value) a third task interrupts the task t; due to ICP
and requires an even higher speed, then the distance between the EFC; curve
and the AFC; curve will become larger. However, since each of these ICPs for
T; is always accompanied with the speed increase of the task T;, the number
of the consecutive ICPs is limited by the number of available speeds, which
is expressed in ((7.16)). Finally, if the time delays are transformed into cycles,
the condition is obtained. O

In Figure one assumes that there are enough cycles to be executed at
higher speed and therefore delays can be compensated. However, it may
happen that an ICP occurs at the near end of a task execution and the re-
maining cycles are not sufficient. To overcome this problem, Theorem
provides a solution which as well serves as a schedulability test for the speed
inheritance protocol.

Theorem 7.3.2. Given a cluster-based multi-core processor platform and a
set of independent periodic real-time tasks, a solution of the RTMC problem
containing a task partition and a speed assignment can guarantee the system
feasibility under the speed inheritance protocol, if the following condition for
each core O; holds

W (t;)-F(S]) /
Z F(assign(’c;)) +2- Ly +num;- L),

T(t)

< U (7.17)
alloc(7;)=0;

109

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

7.4

0 [7y [E t, [DVSstate switch
1

st
53
ci

10 20 30 40 50 60 70 80 t/ms

0, Ah Switch on/off [Idle task
s?
5%]

&1

L
10 20 30 40 50 60 70 80 t/ms

Figure 7.6: The example running under SIP

Proof. By applying Lemma [7.3.1| the maximal cycles that AFC; may lag be-
hind EFC; can be obtained. In most cases this lag will be compensated by
using the speed inheritance technique. However, it is under the assumption
that a task has enough time to do it, i.e., the remaining cycles of the task are
enough for #.. In other words, if there is not enough time, there is no chance
to compensate these delays. In this case, SIP uses the old fashion where
these non-compensable delays are accounted to task WCETSs. Therefore, a
sufficient condition for the schedulability test by using the speed in-
heritance protocol is obtained.]

If the example shown in Figure is re-considered with the application of
SIP, the task execution looks like as in Figure where all the tasks can
be scheduled without any deadline miss. Hereby the time that T; runs at the
higher than its assigned speed is longer than in Figure That is, the saved
execution time is now enough to compensate the delays due to ICPs.

Clearly, the speed inheritance protocol makes a tighter bound than the con-
servative protocol, because the number of delays added into task WCETs is
now limited by the number of available speeds, which is usually relatively
small. However, the speed inheritance protocol requires run-time support by
maintaining the EFC and AFC values as mentioned above.

Chapter Summary

This chapter considered explicitly the non-negligible overhead of DVS state
switching. The problem is first investigated for single-core processor plat-
forms and subsequently extended for cluster-based multi-core processor plat-
forms. In particular, two protocols with their enhanced schedulability anal-
ysis are provided. The conservative protocol requires no run-time modifica-

110

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

tion of task execution, however, its schedulability test is rather pessimistic.
In contrast, the speed inheritance protocol bounds the test much tighter but
needs additional run-time management effort. In total, both protocols provide
sufficient condition test for schedulability analysis.

111

Chapter 7. Consideration of Non-Negligible DVS State Switching Overhead

112

Chapter 8

Evaluation

8.1

In this chapter, the previously proposed approaches are thoroughly evaluated.
The first section introduces an overview of evaluation objectives. Afterward,
a more detailed description of evaluation results is presented. In general,
the evaluation work is divided into two parts. The first part concentrates on
synthetic test scenarios, where a large number of randomly generated test in-
puts are studied through simulation in order to obtain statistically significant
results. In the second part, real-life case studies are investigated using real
target platforms to prove the practical applicability. Finally, the last section
concludes this chapter.

Objectives

As a remainder, the main contributions of the dissertation are the HSASC
and HSAMC algorithms as well the ES-AS approach allowing them to be
executed in an online fashion. Consequently, the first objective is to evalu-
ate energy reduction efficiency of the algorithms, i.e., how much energy the
proposed algorithms can save, especially in comparison with existing tech-
niques. Since the proposed algorithms are running online by means of the
ES-AS approach, the run-time plays an important role. Therefore, the sec-
ond objective is to evaluate the duration of the algorithms based on the pro-
posed termination criterion, i.e., how long the exploration stage takes. The
termination criterion is derived using regression technique, which provides
an estimated measurement of algorithm performance. In order to justify the
correctness and efficiency of the termination criterion, the third objective of
the evaluation is to investigate estimation accuracy. Moreover, though an
asymptotic behavior of run-time overhead of the ES-AS approach is given
in Chapter [0] the absolute overhead is quite interesting as well, because the
theoretical results do not care about the constants. The forth objective is to
evaluate the real run-time overhead introduced by the ES-AS approach. Fur-
thermore, two extensions of the real-time scheduling analysis are proposed to

113

Chapter 8. Evaluation

deal with non-negligible DVS state switching overhead. The fifth objective
is evaluation of the impact of the conservative protocol and speed inheritance
protocol. Finally, in order to prove the practical applicability of the proposed
approaches, evaluations are conducted on real target platforms using real-life
case studies. The main objectives are summarized as follows.

* Ol: Energy reduction efficiency of the HSASC and HSAMC algo-
rithms

* O2: Run-time of the HSASC and HSAMC algorithms

* O3: Accuracy of the performance estimation using regression tech-
nique

* O4: Run-time overhead of the ES-AS approach

* O5: Impact of the conservative protocol and the speed inheritance pro-
tocol

* O6: Practical applicability

For the objectives O1, 02, O3, O4 and OS5, the evaluation is performed in
a simulation framework by running synthetic task sets, which are randomly
generated. The objective O6 is achieved by implementing the approaches in
real target platforms. In what follows, they are described in detail.

8.2 Synthetic Test Scenarios

Before evaluation results are presented, the experiment setup will be first
explained. As this evaluation process involves simulation and synthetic task
sets, the following two subsections introduce some general information about
the simulation framework and the random task set generator.

8.2.1 Abstract RTOS Simulation Framework

As an execution environment, this work adopted an abstract Real-Time Op-
erating System (RTOS) simulation framework described in [ZMGO09]. The
simulator is implemented using SystemC, which is a C++ based system level
design language. SystemC [Ass|] was initiated by the Open SystemC Initia-
tive (OSCI) consortium (now merged with Accellera [Ini]) and later approved
as an [EEE standard. Technically, SystemC is implemented as a C++ library
providing an event-driven simulation semantic. The primary usage of the
SystemC language is for system-level modeling and simulation.

114

Chapter 8. Evaluation

The basic idea of abstract RTOS simulation is to utilize the advantage of
SystemC to omit unnecessary information and only concentrates on real-time
scheduling aspects. More specifically, the abstraction is mainly made in two
aspects:

* The actual task execution on a target processor is abstracted to the sim-
ulation of required execution time.

* The details of RTOS behavior, such as task management, memory man-
agement and resource management, are abstracted to a real-time sched-
uler, which dispatches real-time tasks at the proper time.

The key benefit of this abstraction enables early evaluation of scheduling
behavior, i.e., the impacts and effects of different real-time scheduling al-
gorithms can be investigated without knowing a concrete target processor
architecture and RTOS in advance. This feature perfectly matches the needs
of the evaluation process in the context of this dissertation, because the pro-
posed approaches are independent of concrete target platforms. As inputs,
the abstract RTOS simulator accepts a set of software tasks with specified
real-time properties including deadlines, periods and task WCETs. The well-
established real-time scheduling strategies like EDF and RM are already im-
plemented in the simulation framework and can be simply selected through a
configuration file. As outputs, the simulator produces, on one side, a human
readable log file and on the other side a Value Change Dump (VCD) [Bey|
file of signal traces. The VCD file can be shown graphically using popular
tools like GTKWave |GTK].

Unfortunately, the original abstract RTOS simulator lacks the ability of power
aware simulation, i.e., DPM and DVS are not available. Therefore, some
extensions and modifications are made in the implementation. In short, two
C++ classes are essentially declared for processors and devices, respectively.
For each concrete processor or device, an object of the corresponding class
with proper power characteristics is created at run-time. In fact, the objects
represent the power model of processors and devices. As shown in Chapter
Bl the power model is defined in form of a finite state machine, based on
which the behavior part of the objects is implemented. For instance, there
is a state variable inside the processor class always indicating the current
running frequency. This variable can be changed by a power aware real-
time scheduler and the respective task WCETSs need to be scaled up or down
accordingly. In case of the device class, there is a variable representing the
current DPM state. Moreover, as this dissertation deals with non-negligible
state switching overhead, they are implemented as a delay of simulation time.

In order to make the evaluation more realistic, the power model of processors
and devices are not arbitrarily generated, but rather taken from either data

115

Chapter 8. Evaluation

State ‘ F ‘ P (mW) ‘ Ton—>off Toff—>on Pon—mff4 P0ff—>0n4
S B 925 n.a.b n.a. n.a. n.a.
Sy 1 0.83 747 n.a. n.a. n.a. n.a.
S3 | 0.67 570 n.a. n.a. n.a. n.a.
Sa 0.5 390 n.a. n.a. n.a. n.a.
Ss | 0.33 279 n.a. n.a. n.a. n.a.
C n.a. 15.4 1 us 1 us 110 mW | 110 mW
G n.a. 1.72 340 pus | 430 pus | 100 mW | 100 mW
C3 | na. 0.16 560ps | 500pus | 90 mW | 90 mW
Cs | na. 0.1 660pus | 600pus | 90 mW | 90 mW

Table 8.1: The power model of the Intel XScale® processor [Inte]]

State ‘ F ‘ P (mW) ‘ Ton—>0ff Toff—>0n Pon—>0ff4 ‘ POff—>0n4

S 17 999.9 n.a. n.a. n.a. n.a.
Sy, 10.70 | 548.64 n.a. n.a. n.a. n.a.
S3 | 0.17 | 90.55 n.a. n.a. n.a. n.a.
C n.a. 1.94 163 pus | 163 pus | 60mW | 60 mW
C, | na. | 0.095 |2852ps | 2852pus | 60 mW | 60 mW

Table 8.2: The power model of ARM Cortex' -A8 [OMA[[Insal]

sheets or other related studies. The processors used in the test are the Intel
XScale® processor and the ARM Cortex' -A8 processor. The power model
of the former, which is shown in Table [8.1] is taken from [Inte]. The power
model of the latter, which is shown in Table [8.2] is taken from [OMA] and
[Insa]. In fact, this model is the one used in OMAP3530 [Insb|] from Texas
Instruments. More concretely, [Insa] provides a spreadsheet, which is able
to estimate chip power consumption in different DVS and DPM states. Note
that the OMAP3530 chip contains more than one power domain and the most
interesting part is the MPU power domain, which mainly contains the ARM
core. Furthermore, the state switching latency is obtained from [OMA].

In order to build a cluster-based multi-core processor, the power model of
the two aforementioned processors are adopted and simply multiplied. In
other words, each processor core either has the power model of the Intel
XScale® processor or the power model of the ARM Cortex'"-A8 processor.
Formally, they are referred to as I-core and A-core, respectively. Note that
the processor cores inside a cluster must share the same power model. To
simplify the evaluation, this work concentrates on the symmetry architecture,

“This value is not given in the data sheet, therefore it is arbitrarily chosen between the power consumption of
the active state and the low power state.

SThe operating frequency without normalization is 624 MHz.

®not applicable.

"The operating frequency without normalization is 600 MHz.

116

Chapter 8. Evaluation

Device ‘ P(DO) ‘ P(Dl) ‘ Ton%off/Toffﬁc)n ‘ Pon%off/Poffﬁon

MSWM | 750 mW 5mW 40 ms 100 mW
IBMM | 1300 mW | 100 mW 12 ms 500 mW
SSTF 125 mW 1 mW 1 ms 50 mW
STFC 225 mW 20 mW 2 ms 100 mW
REC 190 mW 85 mW 10 ms 125 mW
FHD 2300 mW | 1000 mW 20 ms 1500 mW

Table 8.3: The power model of applied I/O devices [CGO6]

1.e., each cluster contains the same number of processor cores and the number
of clusters is power of two. However, it is worth mentioning that the proposed
approaches are not only constraint to the symmetry architecture.

A quad-core processor with two clusters may be built by using two I-cores
in the first cluster and two A-cores in the second cluster. This multi-core
processor is denoted by I2A2. In general, the letters indicate the type of
processor cores in the cluster and the digits give the size of the cluster. To
further simplify the notation, same clusters are merged and its number is
denoted by index. For instance, (I1)4 denotes a platform with 4 cores in
total that are grouped into 4 clusters, i.e., a per-core platform and all the
cores are I-cores. In this evaluation work, the investigated variants are shown
below.

¢ Processor with 2 cores: (I1)z2and I2

¢ Processor with 4 cores: (I1)4, (I2)2, I2A2 and I4

Since this dissertation addresses system-wide power consumption, where I/O
peripherals are taken into consideration, the following devices are applied in
the evaluation scenario.

¢ MaxStream Wireless Module (MSWM)

Realtek Ethernet Chip (REC)

IBM Microdrive (IBMM)

SST Flash SST39LF020 (SSTF)
* SimpleTech Flash Card (STFC)

Fujitsu 2300AT Hard Disk (FHD)

Their power models are taken from [CGO06] and shown in Table |8.3

117

Chapter 8. Evaluation

Platforms \ Number of tests \ Size \ Utilization

With 2 cores 1600 5,12] | [0.4,1.6]
With 4 cores 1600 [7,14] | [0.8,3.2]

Table 8.4: Properties of generated task sets for multi-core processor plat-
forms

8.2.2 Generation of Synthetic Task Sets

Another important element in the synthetic test scenario is task set, which
serves as inputs of the abstract RTOS simulation framework. In order to
obtain statistically significant results, a large number of task sets need to be
generated. Hereby an open source tool Task Graph For Free (TGFF) [RDV] is
applied to accomplish this job. The main intend of TGFF is to facilitate users
to generate pseudo-random test benches for task scheduling and resource al-
location related research. Its usage can be found in a large number of studies.
For instance, some of them are [FNOS|, [CYW10], [[Cha+12], [Gan+12] and
[Wan+12]]. In general, TGFF is able to produce a set of tasks as a collec-
tion of task graphs, each of which is expressed by a Directed Acyclic Graph
(DAG). In other words, each task graph represents a set of dependent tasks
and a complete task set is composed of several task graphs. In addition, TGFF
generates WCET for each task and period/deadline for each task graph. Note
that all the tasks inside a DAG share the same deadline and period. Since this
work concentrates on independent tasks, all the tasks in a task graph (DAG)
are merged into one real-time task. A DAG usually is in form of a tree-like
structure. TGFF provides a configuration possibility that the maximum in-
degree and out-degree of task nodes in a DAG can be defined. Thus, setting
them to 1 results in a directed linear task graph, in which all the tasks are then
combined into a single real-time task. The WCET of the new task is the sum
of generated WCETs of all the tasks in the DAG and the period remains as
the same. Furthermore, the deadline of each new task is assumed to be equal
to the period.

In case of the RTSC problem, 1600 task sets are randomly generated. The
size of each produced task set is within [5, 12]. More specifically, there are
200 task sets generated in average for each size. The period of each task is
randomly chosen in the range of [5 ms, 150 ms]. The processor utilization
of each task set is uniformly distributed in (0, 1). Furthermore, for each task
0 ~ 2 devices are randomly selected from Table[8.3|as the required devices.

The case of RTMC is slightly more complicated and more task sets need to
be generated. Since the investigated multi-core processor platforms can be
classified into two categories according to the number of cores, i.e., processor
with 2 cores or with 4 cores, 1600 task sets are randomly generated for each
type of them. In general, a task set generated for the processor with 4 cores

118

Chapter 8. Evaluation

8.2.3

1,2

1

0,8
0,6
0,4
0,2
0

5

B NoDVS m PureDVS CSDVS HSA0.1 mHSA0.05 mHSA0.01

normalized power consumption

6 7 8 9 10 11 12
size of task sets

Figure 8.1: Energy reduction efficiency comparison among different algo-
rithms in terms of task number (Intel XScale processor based platform)

contains more tasks and the utilization is higher. Table [8.4] summarizes the
properties of generated task sets.

Energy Reduction Efficiency (Static Slack)

In this subsection, the proposed HSASC and HSAMC algorithms are com-
pared with existing approaches in terms of energy reduction efficiency in the
absence of dynamic slack, i.e., all the tasks run until their WCETs. Before
the evaluation results are presented, a set of relevant reference algorithms are
first explained.

In the context of the RTSC problem, 3 algorithms from existing studies are
selected for comparison:

* NoDVS: There is no DVS strategy at all. All the tasks run at the highest
speed. This algorithm is in fact a DPM preferred version, because all
the tasks are finished as soon as possible. There is more idle time for
the DPM usage. Note that the solution computed by this strategy is
also used as the initial solution for the HSASC algorithm.

* PureDVS: This is the counterpart of NoDVS, where all the tasks are ex-
ecuted at the lowest possible speed. This algorithm is a DVS preferred
version. Since running all the tasks at the lowest speed may violate
hard real-time constraints, i.e., the lowest speed may not always ensure
system schedulability, hereby a solution described in Proposition 1 in
[Ayd+04] is adopted. In brief, they computed a constant speed S for all
the tasks within a continuous range of speeds, i.e., they have assumed
an ideal DVS model. This work, however, focuses on a more realistic

119

Chapter 8. Evaluation

model, which provides a finite number of discrete operating frequen-
cies. Thus, their solution is adapted by selecting the next available
speed above S.

* CSDVS: This is a critical speed oriented DVS strategy, where all the
tasks are executed at the respective critical speed. There is a similar
problem here as for PureDVS, because the critical speed is computed
without taking into consideration system feasibility. Therefore, the
speed assignment scheme from [JGO4] is adopted in this case. Ba-
sically, all the tasks are initially assigned with their critical speeds.
Afterward, a heuristic is developed to incrementally and iteratively in-
crease the assigned speeds until system schedulability is ensured. More
specifically, in each iteration all the tasks are investigated and one task
will be selected, so that its assigned speed is increased by one level, i.e.,
to the next higher speed. Concerning task selection, the one resulting
in minimal energy increase is selected.

Figure [8.1] shows the simulation results on the Intel XScale processor plat-
form comparing the HSASC algorithm with the other algorithms in terms of
energy reduction efficiency. Hereby HSAx indicates the HSASC algorithm
with the termination parameter 3 = x, e.g., HSA0.01 has the termination pa-
rameter § = 0.01. Moreover, the shown results are classified in terms of num-
ber of tasks in a task set, which is indicated by the x-axis. In addition, the
y-axis shows solution values, i.e., system energy consumption, by applying
different algorithms. Note that hereby all the solution values are normalized
with regard to the value obtained by NoDVS.

By looking at the HSASC algorithm, it is obvious that the smaller the [3, the
better result the HSASC algorithm can achieve. As expected, HSA0. 01 saves
more energy than HSA0. 05 and HSAQ . 1. Furthermore, this experiment shows
that HSAQ. 01 algorithm outperforms all the other reference algorithms in all
cases. More interestingly, the energy reduction efficiency of the HSASC
algorithm remains at the same level, as the number of tasks increases. This
obviously indicates that the HSASC algorithm scales well in terms of input
size.

Similar results can be observed for ARM based platforms as well, which are
shown in Figure 8.2

In the context of RTMC, the LA+LTF+FF algorithm from [CHKO06] is chosen
as a reference. LA+LTF+FF is a two stage static approach where in the first
stage it tries to perform a balanced task partition and in the second stage
some tasks are reallocated, so that some processor cores could become idle
and therefore may be completely shut down at run-time. More concretely,
the first stage adopts the worst fit and largest task first strategy, i.e., the tasks
are sorted in a non-increasing order of their utilization at the beginning. The

120

Chapter 8. Evaluation

1,1

1,05

0,95
0,9

0,85

normalized power consumption

0,8
5 6 7 8 9 10 11 12

size of task sets

B NoDVS m PureDVS CSDVS HSA0.1 mHSA0.05 mHSA0.01

Figure 8.2: Energy reduction efficiency comparison among different algo-
rithms in terms of task number (ARM Cortex-A8 processor based platform)

algorithm then partitions a task, in the task order, to the processor core with
the smallest utilization among all the cores, i.e., the most lightly loaded core.
After the task partition, for each processor core there will be a frequency
selected and then assigned to all the tasks on the core. This frequency is
chosen as low as possible, however above the respective critical speed. In the
second stage, the set of processor cores with relatively lower utilization are
considered, i.e., the cores with the utilization lower than a defined threshold.
The main idea is to “reshuffle” the tasks on such processor cores, so that some
cores may become completely idle. Hereby the first fit strategy is adopted
for task reallocation. As has been proven by the authors, the LA+LTF+FF
algorithm is in fact an 1.667-approximation algorithm for per-core platforms,
provided that the processor cores may operate at any frequency within a given
range.

According to Chapter 4} the HSAMC algorithm starts with an initial solution
generated by partitioning tasks using the worst fit strategy. In this evaluation,
however, the algorithm adopts the solution of the LA+LTF+FF algorithm as
the starting point. The main reason is due to extremely large solution space
of the RTMC problem and starting with a ”good” solution will significantly
improve the search performance.

Figures [8.3] and [8.4] show the simulation results on the (I2)2z and I2A2 plat-
forms. Hereby the algorithms are denoted in a similar way as for single-core
processor platforms, e.g., HSAMC0.01 denotes the HSAMC algorithm with
B =0.01. In the figures, the x-axis shows the number of tasks and the y-axis
gives the power consumption of output solution normalized to the solution of
the LA+LTF+FF algorithm. Clearly, HSAMCO. 01 achieved the best results in
all the cases and the smaller the 3, the more power saving can be obtained.
The similar observation can be found as well according to further simula-

121

Chapter 8. Evaluation

1,05

1
0,
0
0,
0,8
7 8 9 10 1 12 13 14

size of task sets

~ o
-] (V]

normalized power consumption
[+
wv

B LALTFFF m HSAMCO.1 HSAMCO.05 HSAMCO0.01

Figure 8.3: Energy reduction efficiency comparison among different algo-
rithms in terms of task number ((I2)2)

tion results on the I2, (I1)2, I4 and (I1)4 platforms, which are provided in
Appendix [AT]

8.2.4 Energy Reduction Efficiency (Dynamic Slack)

In this section the focus is on energy reduction efficiency taking into consid-
eration task run-time variation, which is the actual execution time of tasks.
The test inputs are the same task sets from the previous section. However,
run-time variation is allowed and simulated by altering the execution time of
each task according to Gaussian distribution [Bry95]. Note that this variation
is made in the application stage of the ES-AS approach. For each generated
task set, 50 iterations are simulated by using the best solution found in the
exploration stage. The average power consumption over 50 iterations is com-
puted. Basically, the results in this subsection provides the energy reduction
in application stage, whereas the results from previous subsection presented
the energy reduction in exploration stage. In other words, the results here
show further energy reduction in addition to the previous results by consid-
ering dynamic slack.

To simulate run-time variation, let W; and B; denote the worst case and best
case execution time of the task 1;, respectively. B; is defined by B; =W;- (1 —
v) with 0 <y < 1. The Gaussian function is then defined with dependence to
W; and 7, namely the mean is

Wi+ B; 2—y
=W, —— A
2 Wi-— (8.1)

and the variance is

122

Chapter 8. Evaluation

1,05

1
0,9
0
0,
0
0,75
7 8 9 10 11 12 13 14

size of task sets

-] ~
v (-} (V]

normalized power consumption
o

= LALTFFF = HSAMCO.1 HSAMCO0.05 HSAMCO0.01

Figure 8.4: Energy reduction efficiency comparison among different algo-
rithms in terms of task number (I2A2)

o’ =04 ——

=02-y-W, (8.2)

Obviously, the greater the v, the more variation is allowed. In what follows,
the simulation results on single-core based platforms are first presented and
the results on multi-core processor platforms are discussed afterward.

Based on the Intel XScale processor, Figure [8.5] [8.6] and [8.7] show the eval-
uation results for the algorithms HSA0.01, HSA0.05 and HSAO.1l. Again,
hereby the results are classified in terms of task number shown by the x-axis.
In addition, the y-axis shows the average energy consumption normalized
with regard to the respective algorithm without run-time variation. The bars
with different colors indicate different y values. As expected, the larger the
Y, the more the actual task execution time varies from the WCET and there-
fore the more dynamic slack is available. As a result, more power can be
saved. Besides, the energy reduction clearly scales well as the number of
tasks increases.

Based on the ARM processor, similar simulation results are observed and

shown in Figure 8.8 [8.9)and [8.10]

In the context of multi-core processor platforms, Figure 8.11] and [8.12] show
the simulation results with regard to the HSAMCO. 01 algorithm on the (I2):
and I2A2 platforms, respectively. The x-axis shows the number of tasks and
the y-axis gives the normalized power consumption, where HSAMCO.01 is
selected as the reference. As expected, the larger the vy, the more power can
be saved, because more dynamic slack can be utilized. Besides, the power
reduction is independent of task number. Similar results are as well observed
onthe I2, (I1)2,I4 and (I1): platforms, which are shown in Appendix@

123

Chapter 8. Evaluation

1,2

1
0
0
0
0
0
5 6 7 8 9 10 11 12

size of tsak sets

~ < <
» L)) -]

normalized power consumption
w~

B HSA0.01 my=0.2 my=0.4 my=0.6 my=0.8

Figure 8.5: Average power consumption comparison using different y in
terms of task number (Intel XScale processor based platform, HSA0.01)

1,2

1
0,8
0,
0,
0,
0
5 6 7 8 9 10 11 12

size of task sets

P o =

normalized power consumption
~

EHSA0.05 my=0.2 my=0.4 my=0.6 my=0.8

Figure 8.6: Average power consumption comparison using different y in
terms of task number (Intel XScale processor based platform, HSA0.05)

124

Chapter 8. Evaluation

12

0,8
0,
0,
0,
0
5 6 7 8 9 10 11 12

size of task sets

P o =

normalized power consumption
~

B HSAO0.1 my=0.2 my=0.4 my=0.6 my=0.8

Figure 8.7: Average power consumption comparison using different y in
terms of task number (Intel XScale processor based platform, HSA0. 1)

1,2

0,
0
0
0
0
5 6 7 8 9 10 11 12

size of task sets

o =

normalized power consumption
N

HHSA0.01 my=0.2 wmy=04 my=0.6 my=0.8

Figure 8.8: Average power consumption comparison using different y in
terms of task number (ARM Cortex-A8 processor based platform, HSA0.01)

125

Chapter 8. Evaluation

1,2

0,8
0
0
0
0
5 6 7 8 9 10 11 12

size of task sets

~ ~ ~
) (=)}

normalized power consumption
w~

B HSA0.05 my=0.2 my=04 my=0.6 my=0.8

Figure 8.9: Average power consumption comparison using different y in
terms of task number (ARM Cortex-A8 processor based platform, HSA0.05)

1,2

0,8
0
0,
0,
0
5 6 7 8 9 10 11 12

size of task sets

P o =

normalized power consumption
~

EHSAO.l Wy=0.2 my=0.4 my=0.6 my=0.8

Figure 8.10: Average power consumption comparison using different y in
terms of task number (ARM Cortex-A8 processor based platform, HSA0.1)

126

Chapter 8. Evaluation

1.2

0.
0.
0.
0.
0
7 8 9 10 11 12 13 14

size of task sets

B)} -}

normalized power consumption
N

B HSAMCO0.01 wmy=0.2 my=0.4 y=0.6 my=0.8

Figure 8.11: Average power consumption comparison using different y in
terms of task number ((I2)2)

1.2

0.
0.
0.
0.
0
7 8 9 10 11 12 13 14

size of task sets

»)] o«

normalized power consumption
N

B HSAMCO0.01 my=0.2 my=0.4 1 y=0.6 my=0.8

Figure 8.12: Average power consumption comparison using different y in
terms of task number (I222)

127

Chapter 8. Evaluation

8.2.5 Run-Time Analysis

The previous results show the improvement in terms of energy reduction effi-
ciency by applying the HSASC and HSAMC algorithms. Another important
concern is the run-time of these algorithms, i.e., how many iterations they will
take to stop according to the proposed termination criterion. Clearly, this is
a crucial factor on the duration of exploration stage. Ideally, the exploration
stage should be as short as possible. The results shown in this subsection are
recorded from the same simulation run in the previous subsections. In what
follows, the HSASC algorithm is to be first investigated and the HSAMC
algorithm is analyzed afterward.

Figure|8.13|shows the simulation result on Intel XScale processor based plat-
forms by comparing the run-time of different algorithms. The y-axis shows
the number of iterations needed by the algorithms while the x-axis shows
task numbers. As explained before, HSAx indicates the HSASC algorithm
with the termination parameter 3 = x. SAx algorithms are newly introduced,
which are presenting the original simulated annealing algorithm without the
guideline of neighbor selection, i.e., the neighbors are selected with equal
probability. One can clearly observe that HSA0.01, HSA0.05 and HSAO.1
terminate faster than SA0.01, SA0.05 and SA0. 1, respectively. More impor-
tantly, Figure [8.14] shows that the energy reduction efficiency (shown by the
y-axis and normalized with regard to the NoDVS algorithm) obtained by the
HSASC and original SA algorithms is comparably equal. This confirms the
expectation that the neighbor selection guidelines, which are introduced in
the HSASC algorithm, can significantly accelerate termination speed with-
out deteriorating energy reduction efficiency. Another important observation
from Figure [8.13]1s that the algorithm run-time increases only linearly to the
task number, which indicates that the HSASC algorithm scales very well in
terms of problem input size. Moreover, if one looks at the case with 12 tasks,
the average number of iterations needed by HSA0.01 is ca. 1100, which is
significantly less than the size of the solution space, i.e., 5'% = 244140625
(Note that the number of available speeds in the Intel XScale processor is 5
as shown in Table [8.1).

The similar behavior can be found on ARM Cortex-A8 processor based plat-
forms as well. The simulation results are shown in Figure [8.15| and Figure
Note that the algorithm run-time hereby is generally faster than the
case on Intel XScale processor based platforms, because the ARM processor
provides only 3 frequencies (Table [8.2), which is less than the 5 frequencies
offered by the Intel XScale processor (Table [8.1)). In other words, the solu-
tion space here is smaller and therefore a faster termination is expected and
reasonable.

In the context of multi-core processor platforms, Figure and [8.18] show

128

Chapter 8. Evaluation

1800

1400
1200
1000
800
60
2 1))
1l
o —=f-ml _H ol ol ml _af nl _uloml _aRomd _abomR nild
5 6 7 8 9 10 1 12

size of task sets

[y
=)
[=]
o

o ©O o

algorithm run-time (iterations)

B HSA0.1 ™ HSA0.05 ®HSA0.01 SA0.1 ESA0.05 mSA0.01

Figure 8.13: Run-time comparison among different algorithms in terms of
task number (Intel XScale processor based platform)

1,2

0,
0,
0,
0,
0
5 6 7 8 9 10 11 12

size of task sets

2 o w

normalized power consumption
~

= NoDVS mHSAO0.1 = HSAO0.05 HSA0.01 mSA0.1 mSA0.05 mSA0.01

Figure 8.14: Energy reduction efficiency comparison between HSASC and
original SA in terms of task number (Intel XScale processor based platform)

129

Chapter 8. Evaluation

800

N
o O o
o © o

algorithm run-time (iterations)
= N w B 1%
o O ©o o
o O o o

o

_-| -| _-I l‘ _-| l‘ _l‘ l| -l‘ l| _l| ll -l| I| -l‘ l|
5 6 7 8 9 10 11 12

size of task sets

B HSA0.1 mHSA0.05 = HSA0.01 SA0.1 mSA0.05 mSA0.01

Figure 8.15: Run-time comparison among different algorithms with regard
to task number (ARM Cortex-A8 processor based platform)

1,02

[y

0,98

0,96
’
: ‘ ‘ ‘ ‘ ‘ ‘ ‘ | |
0,86 ‘
5 6 7 8 9 10 11 12

size of task sets

(=)
o ©
© s

normalized power consumption
K
[
-]

H NoDVS mHSAO0.1 = HSA0.05 HSA0.01 mSA0.1 mSA0.05 mSA0.01

Figure 8.16: Energy reduction efficiency comparison between HSASC and
original SA in terms of task number (ARM Cortex-A8 processor based plat-
form)

130

Chapter 8. Evaluation

8.2.6

9000
8000
7000
6000
5000
4000
3000
2000
1000

algorithm run-time (iterations)

o

7 8 9 10 11 12 13 14
size of task sets

HSAMCO.1 HSAMCO0.05 HSAMCO0.01

Figure 8.17: Run-time comparison among different algorithms in terms of
task number ((I2)2)

the simulation results regarding the algorithm run-time on the (I2):2 and
I12A2 platforms, respectively. The x-axis shows the number of tasks and the
y-axis gives the number of iterations required to terminate the exploration
stage. This is also the run-time of the HSAMC algorithm. The results clearly
confirm the expectation that the smaller the [, the longer the algorithm takes.
Besides, the algorithm run-time increases only linearly in terms of the task
number. Similar observation can be as well obtained on the I2, (I1)2, I4
and (I1)4 platforms, which are provided in Appendix

Furthermore, Figure[8.19|shows the comparison of the HSAMCO. 01 algorithm
with the original simulated annealing algorithm, where neighbors are selected
according to the uniform distribution. Obviously, HSAMCO. 01 terminates sig-
nificantly faster than the SA0.01 algorithm. Hereby the x-axis in the figure
shows the different platforms and the y-axis gives the average algorithm run-
time over all the generated test cases. More interestingly, though HSAMC0. 01
has a lower run-time, its performance in terms of energy reduction efficiency
is even slightly better than SA0. 01 on almost all the platforms. This observa-
tion is illustrated in Figure 8.20] Note that hereby the y-axis gives the power
consumption of the respective algorithms, which are normalized with regard
to the LA+LTF+FF algorithm.

Estimation Accuracy

Chapter 5| introduced a regression based technique, which is able to estimate
algorithm performance in an online fashion. The main objective of this sub-
section is to evaluate the accuracy of the algorithm termination criterion. As
shown in Chapter [5] the approximation ratio &(®), defined in (5.13), plays
the most important role. It provides the estimated quality of a solution. The

131

Chapter 8. Evaluation

8000
7000
6000
5000

4000
3000
2000 I
1000
—m —m - - | - | —n . | =
7 8 9 10 11 12 13 14

algorithm run-time (iterations)

0
size of task sets
B HSAMC0.1 ® HSAMCO0.05 = HSAMCO0.01

Figure 8.18: Run-time comparison among different algorithms in terms of
task number (I2A2)

__ 12000
(7]
s
2 10000
o
(7
£ 8000
£
= 6000
S
~ 4000
£
<
£ 2000 I I
o
50
© 0
12 (11)2 14 (12)2 (11)4 12A2
platforms

® HSAMC0.01 = SA0.01

Figure 8.19: Run-time comparison of HSAMC and original SA on different
platforms

132

Chapter 8. Evaluation

0.94
c
2 0.92
2
£ 0.9
2 0.88
c
S 0.86
§ 0.84
o 0.82
o
- 038
S
= 0.78
©
g 0.76
2 0.7

12 (11)2 14 (12)2 (11)a 12A2
platforms

B HSAMC0.01 = SA0.01

Figure 8.20: Energy reduction efficiency comparison of HSAMC and origi-
nal SA on different platforms

algorithm terminates, if €(®) is less or equal to the specified termination pa-
rameter 3. For instance, HSA0.01 shown above describes the algorithm that
will terminate when the estimated solution approximation ratio is less than
or equal to 0.01. That is, B indicates the expected approximation ratio of the
output solution when the algorithm terminates. However, the main question
is that whether the actual approximation ratio of the solution is indeed less
than or equal to .

In order to investigate the actual approximation ratio, the value of the op-
timal solution must be present. Unfortunately, obtaining the real optimum
value is extremely difficult. Since the RTSC and RTMC problems admit no
closed-form to compute a solution value, i.e., J(®), well-known optimiza-
tion problem solver, such as the integer linear programming solver, may not
be applied here. The only remaining option is to use the exhaustive search
method, which goes through all the possible solutions in a search space. In
other words, all the solutions need to be simulated in the abstract RTOS sim-
ulation framework. Due to the extremely large size of solution space, this
method is not always realizable in practice. For example, one instance of the
RTSC problem, which applies the Intel XScale processor (with 5 DVS states)
and contains 11 tasks, has a search space with 511 — 48828125 solutions.
Since the simulation of each solution usually takes several milliseconds, the
whole process will take ca. 13 hours. As shown in the previous subsections,
200 instances of the RTSC problem (with 11 tasks) are generated, therefore
one needs ca. 108 days to complete the tests, which is clearly not feasible.
The situation by the RTMC problem is even worse. As a result, this section
only shows the evaluation result for the HSASC algorithm applied on the task
sets, where the size is less or equal to 10.

Figure [8.21] and [8.22] illustrate the simulation results on Intel and ARM pro-

133

Chapter 8. Evaluation

normalized power consumption
r
o
[+

5 6 7 8 9
size of task sets

-Optimal HSA0.1 HSAO0.05 HSA0.01

Figure 8.21: Estimation accuracy in terms of task number (Intel XScale pro-
cessor based platform)

cessor based platforms, respectively. The test input remains the same as in
the previous subsections. The y-axis gives the normalized solution value with
regard to the optimum value. In fact, the y-axis shows 1 4 &(®), which im-
plies the actual approximation ratio of a solution. As mentioned before, the
optimum value is obtained by using the exhaustive search method in the sim-
ulation framework. In addition, the x-axis shows the number of tasks in a
task set. This figure confirms that almost all the actual approximation ratios
are quite close to the expected ratio 3. One exception is the case with HSA(. 1
on ARM processor based platforms (Figure [8.22). Hereby the main reason is
that the approximation ratio of the initial solution (using NoDVS) is already
very close to f = 0.1.

Unfortunately, Figure [8.21] shows a trend that the approximation ratio be-
comes more inaccurate, as the number of tasks increases. This effect can be
eliminated by putting more weight of task number 7 in the calculation (5.12)
of the smoothing constant o, which plays a key role to steer the convergence
speed. However, this improvement comes at the cost of an increase of al-
gorithm run-time. More discussion on this issue can be found in Chapter

ol

8.2.7 ES-AS Run-Time Overhead

In Chapter] the run-time overhead introduced by the ES-AS approach for
the RTSC and RTMC problems is formally analyzed. However, this theo-
retical analysis gave only an asymptotic result, i.e., how fast the overhead
will increase in terms of input size. There is no information about the con-
stants, which could influence the real overhead as well. Therefore, the main
objective of this subsection is to study the actual run-time overhead. Since

134

Chapter 8. Evaluation

1,12
1,1 \/‘\/‘
1,08
1,06
1,04

1,02

normalized power consumption

5 6 7 8 9
size of task sets

«=@-=Optimal HSA0.1 HSAO0.05 HSA0.01 ==@==NoDVS

Figure 8.22: Estimation accuracy in terms of task number (ARM Cortex-A8
processor based platform)

the evaluation is made by simulation, the overhead of the ES-AS approach is
compared with the scheduling overhead caused by the traditional EDF strat-
egy, which is originally implemented in the abstract RTOS simulation frame-
work. More specifically, two metrics to evaluate the run-time overhead are

defined in (8.3)) and (8.4).

0 ES-AS overhead at each hyper period boundary
1 prm—

8.3
EDF overhead at each scheduling point 8-3)

ES-AS overhead at each scheduling point

= 8.4
P2 EDF overhead at each scheduling point 84)

Basically, p, also referred to as HP-overhead, reflects the ratio between the
overhead coming from the ES-AS approach at each hyper period bound-
ary and the EDF overhead. Note that at each boundary one iteration of the
HSASC or HSAMC algorithm is executed. Thus the overhead is measured
as how long one iteration will take in average. p», also referred to as SC-
overhead, gives the ratio between the total overhead of the ES-AS approach
at each scheduling point and the EDF overhead. In what follows, the over-
head for the RTSC problem is first evaluated and afterward the overhead for
the RTMC problem is investigated.

Figure and illustrate the HP- and SC-overhead (y-axis) in terms of
task number (x-axis) on Intel and ARM processor based platforms, respec-
tively. One can observe that the HP-overhead is generally higher than the
SC-overhead. The main reason is due to Theorem [6.3.2] which shows that
the overhead introduced by the ES-AS approach at each hyper period bound-
ary is O(n) being higher than the overhead at each scheduling point, which

135

Chapter 8. Evaluation

= N w

ES-AS run-time overhead

o
o U =B U N U1 W U &

5 6 7 8 9 10 11 12
size of task sets

-HP-overhead SC-overhead

Figure 8.23: ES-AS run-time overhead in terms of task number (Intel XScale
processor based platform)

is O(m - c)®. More interestingly, hereby the HP-overhead increases slightly
while the SC-overhead decreases slightly, as the task number increases. This
is accounted to the fact that the HP- and SC-overhead are defined as ratios
between the actual overhead and the EDF overhead. The actual HP-overhead
has a complexity of O(n) and SC-overhead of O(m - ¢)® while the time com-
plexity of EDF is O(logn). In total, it is reasonable to conclude that the
actual run-time overhead caused by the ES-AS approach is in the same order
of magnitude as the EDF scheduling algorithm.

In case of multi-core processor platforms, the experiments are conducted for
the following platforms: I2, (I1)z, I4, (I2)zand (I1)a. Figure[8.25shows
the HP- and SC-overhead on the I2 and (I1): platforms in terms of task
number. The x-axis shows the number of tasks in a generated task set and
the y-axis shows the run-time overhead. In general, the overhead is compa-
rable to the case on single-core platforms, which indicates that the overhead
introduced by the ES-AS approach for RTMC is in the same order of magni-
tude as the EDF scheduling overhead as well. Furthermore, the HP-overhead
increases as the number of tasks increases. This is due to the fact that the ac-
tual overhead at each hyper period boundary is O(n) and the EDF overhead is
O(logn). Moreover, since the ES-AS overhead for multi-core processor plat-
forms at each scheduling point is O(logn + c)® according to Theorem
the SC-overhead keeps constant as the number of tasks increases.

In addition, if one looks at Figure [8.25] and focuses on the results obtained
for task sets with the same size, it is clear that both the HP- and SC-overhead
decrease as the number of clusters increases, i.e., the cluster size decreases.

8The overhead hereby is O(m - c) according to Theorem Since the number of devices m and the number of
supported low power states ¢ are relatively small and constant, the overhead can be considered as O(1) in practice.
°Tf the number of low power states c is considered as a constant, this overhead becomes O(logn).

136

Chapter 8. Evaluation

8.2.8

3,5

2,5

15

ES-AS run-time overhead

0,5

5 6 7 8 9 10 11 12
size of task sets

HP-overhead SC-overhead

Figure 8.24: ES-AS run-time overhead in terms of task number (ARM
Cortex-A8 processor based platform)

For instance, in case of task sets with 7 or 8 tasks, the HP- and SC-Overhead
on I2 are higher than them on (I1)2, respectively. Through inspection of the
simulation results, the main reason is due to the fact that the EDF overhead
decreases as the cluster size increases while the actual HP- and SC-overhead
remains. The main reason in turn for the EDF overhead decrease is that a
processor with larger cluster size incurs more scheduling points. A processor
core O; may need to change its operating speed, if a scheduling point on
another core O; in the same cluster occurs, even though there is no task event
on O;. In such case the EDF scheduling overhead on O; is rather low, because
there is no need to change the running task but only the speed. Since the final
result is a mean value over all the scheduling points, a multi-core processor
with larger cluster size yields a lower overhead in average.

Moreover, Figure |8.26[shows the simulation results on multi-core processors
with 4 cores. As shown in the x-axis, hereby the range of considered task
number is different to them for dual-core processors (cf. Table [8.4). Gener-
ally, the same trend as described previously can be observed as well.

Impact of CP and SIP

This subsection investigates the impact of the conservative protocol and the
speed inheritance protocol, which are described in Chapter Since they
are proposed for multi-core processor platforms, especially for full-chip and
cluster-based multi-core processors, hereby the simulation is focused on two
platforms: I4 and (I2):2. In total, two experiments are made in this evalua-
tion work.

In the first experiment the main goal is to show the necessity of handling

137

Chapter 8. Evaluation

4,5
®
P /—/‘
K-
s
(Y]
>
© 35
Q
£
T 3
3 N N : N
" @ ® ® =0
< 25
b}
2
5--6 7--8 9--10 11--12

size of task sets

—@=SC(12) =®=HP (12) ==0=SC ((I1)2) HP ((11)2)

Figure 8.25: ES-AS run-time overhead in terms of task number (I2 and

(I1)2)
5,5
-g 5 //.
(V]
<
o 45
>
o
v 4 ./—./‘
E
% 35
c
S
o 3
<
825 $ 3 : 3
2
7--8 9--10 11--12 13--14
size of task sets
«=@==SC (14) ==@=HP (14) —0-SC ((12)2) HP ((12)2) ==@=SC ((I1)s) ==@=HP ((11)s)

Figure 8.26: ES-AS run-time overhead in terms of task number (14, (I2):
and (I1)a)

138

Chapter 8. Evaluation

250

200

150

100

50

number of tests with deadline miss

0,1 0,15 0,2 0,25 0,3
DVS state switching latency

—0—14 —0=—(12)2

Figure 8.27: Number of tests with deadline miss when DVS state switching
overhead is not handled

DVS state switching latency. The simulation runs each generated task set
(cf. Table [8.4) for one hyper period using the solution computed by the
LA+LTF+FF algorithm. Hereby difference in DVS state switching latency
is investigated. Figure [8.27|shows the result, where DVS state switching la-
tency is not treated. The x-axis shows different settings of DVS state switch-
ing latency, which is normalized with regard to the average execution time of
all the tasks in the generated task sets. The y-axis shows the number of tests,
where a deadline miss occurs. This figure clearly confirms the expectation
that deadline can not be always ensured, if non-negligible DVS state switch-
ing latency is not handled appropriately. It is obvious that the higher the
overhead, the more cases with deadline miss exist. Besides, one can observe
that there are generally more cases with deadline miss on I4 than (I2)2. This
is rather plausible, because I4 has a larger cluster size and there is more po-
tential for ICPs (Definition [7.3.1)). Note that ICP is the main cause for delays
and thus also for deadline misses.

Furthermore, the second experiment is to investigate the difference between
CP and SIP. Since both protocols provide only sufficient schedulability test,
hereby the main focus is to compare the overestimation. That is, how many
tests are predicted as non-schedulable, but they are indeed feasible. Formally,
it is defined as false negative errors shown below.

Definition 8.2.1. A false negative error in the context of CP and SIP is a task
set that fails the schedulability test, however, the task set is indeed schedula-
ble using the respective protocol.

Based on this definition, the false negative error rate of CP (pcp) and SIP
(pszp) are introduced as follows.

139

Chapter 8. Evaluation

0,5
0,45

0,4
0,35

0,3
0,25
0,2
0,15
0,1
0,05
0
0,1 0,15 0,2 0,25 0,3

DVS state switching latency

< ~

false negative error rate

mCP mSIP

Figure 8.28: The comparison of false negative error rate of CP and SIP on 14

0,4
0,35

0,3
0,25
0,2
0,15
0,1
0,05
0
0,1 0,15 0,2 0,25 03

DVS state switching latency

<

false negative error rate

mCP mSIP

Figure 8.29: The comparison of false negative error rate of CP and SIP on
(I2)2

number of false negative errors using CP

pcp = (8.5)

total number of tests

number of false negative errors using SIP

psip = (8.6)

total number of tests

In this case, 1600 task sets (cf. Table [8.4)) are simulated by applying CP and
SIP, respectively. Figure [8.28] and [8.29] show the evaluation results on the
I4 and (I2): platforms, respectively. In both figures, the x-axis shows the
different settings of DVS state switching latency while the y-axis gives the
respective false negative error rate. The result confirms the expectation that
SIP yields lower error rate than CP on all the platforms.

140

Chapter 8. Evaluation

8.3

8.3.1

Real-Life Case Studies

In order to further demonstrate the applicability of the proposed algorithms
and approaches, this section presents two experiments implementing real-
life case studies on real target platforms. More concretely, the first subsec-
tion concentrates on a single-core processor platform, where the BeagleBoard
[Beaa]] produced by Texas Instruments [Inse]] is applied. Afterward, the sub-
sequent subsection shows an evaluation addressing multi-core processor plat-
forms, where the Intel® Core' 2 Duo [Intd] processor is used.

Single-Core Processor Platform: BeagleBoard

This subsection investigates the applicability of the proposed algorithms and
approaches by means of the BeagleBoard, which is a low-cost single-board
computer produced by Texas Instruments. Before the evaluation results are
discussed, a short introduction of the BeagleBoard, specially with focus on
the power model of the processor and peripheral devices, is given. Besides,
the energy aware real-time scheduling in this experiment is implemented on
the basis of an open source real-time operating system, Organic Reconfig-
urable Operating System (ORCOS) [[ORC]. Thus a brief review of ORCOS
is presented as well.

In general, the BeagleBoard provides functionality of a basic computer and
is designed primarily with the focus on open source software development.
The core component in the BeagleBoard is the OMAP3530 application pro-
cessor [Insc|], which is an ARM Cortex-A8 based System-on-a-Chip (SoC)
from Texas Instruments using 65 nm process technology. The OMAP3530 is
mainly composed of several subsystems shown as follows [Insd].

* MPU subsystem: mainly it contains an ARM Cortex-A8 processor and
a NEON SIMD coprocessor.

* IVA2.2 subsystem: it mainly includes a video and audio accelerator
based on the Texas Instruments TMS320DMC64x+ VLIW DSP core.

* On-chip memory: 112 KB ROM and 64 KB SRAM.

* External memory interfaces: general purpose memory controller and
SDRAM controller.

* DMA controller: it allows memory-to-memory, memory-to-peripheral
and peripheral-to-memory transfer.

* Graphic accelerator subsystem: it mainly contains a 3D graphics ac-
celerator (SGX) to enable high-performance graphic processing.

141

Chapter 8. Evaluation

State ‘ F ‘ P (mW) ‘ Tan%off Toff%on Pon%off Poff%on
S 110 999.9 n.a.ll n.a. n.a. n.a.
S» 0.7 | 548.64 n.a. n.a. n.a. n.a.
S3 | 0.17 | 90.55 n.a. n.a. n.a. n.a.
C n.a. 1.94 163 pus | 163 us | 60 mW | 60 mW

Do | na. 700 n.a. n.a. n.a. n.a.
D, n.a. 0 50 ms 50ms | 50mW | 50 mW

Table 8.5: The power model of the ARM processor and the display subsystem
in the BeagleBoard

* Multimedia accelerators: camera subsystem for image capture and dis-
play subsystem for image output to an external monitor.

* Power management subsystem: in particular it enables DPM and DVS
for processors and peripheral devices.

* Diverse peripherals: for instance, USB host controller, UART con-
troller, I>C controller, etc..

In order to apply these features, the BeagleBoard provides external connec-
tors that can be used to access them [Beab|]. For instance, a DVI-D and an
S-Video connector are offered to connect external monitors with the display
subsystem. A USB host port is provided for serial communication between
external devices and the USB host controller in OMAP3530. Because the
BeagleBoard is particularly constructed to evaluate the basic capability of
OMAP3530 and is not indented as a full development board, not all the in-
terfaces and controllers in OMAP3530 are accessible.

One main reason why the BeagleBoard is selected here is that it provides
fairly advanced power management possibilities. The previously mentioned
subsystems are managed in separated power domains and thus can be shut-
down independently. In the context of this evaluation, the main components
under consideration are the ARM Cortex-A8 processor and the display sub-
system. The power model of the ARM processor is taken from Table[8.2] For
the display subsystem, the power consumption of the entire board is mea-
sured using a digital energy meter [AG|]. Hereby one measures the case
where the display subsystem is activated and the case where it is disabled.
Thus the difference of the two measurements gives the power consumption
of the display subsystem. As a summary, Table [8.5]lists the power model of
the considered components.

10The operating frequency without normalization is 600 MHz.
not applicable.
2power states of the display subsystem.

142

Chapter 8. Evaluation

Figure 8.30: The experiment setup with BeagleBoard

Task | WCET (ms)"? | Period/Deadline (ms) | Dev
GUI control (1) 2.5 100 (%}
Image processing (T3) 50 500 1%}
Visualization (13) 25 500 {R}1*
EC (14) 12.5 1000 %]
Servo control !> (ts) 10 100 %]
Sensor control!® (t¢) 5 100 1)

Table 8.6: Case study: X-Ray machine ||

In order to debug and program the OMAP3530 chip, a compact USB to JTAG
in-circuit debugger/programmer called Flyswatter from Tin Can Tools
together with the OpenOCD (version 0.7.0) debugging software
are used. In total, the experiment setup is illustrated in Figure [8.30]

In order to implement an energy aware real-time scheduling, an RTOS is
needed. Hereby ORCOS [ORC], which is an open-source project developed
at the University of Paderborn, is applied. The main property of ORCOS
is that it has a fairly small footprint and is highly configurable. Currently,
ORCOS supports PowerPC, SPARC and ARM architectures. The EDF and
RM real-time scheduling algorithms are already implemented in ORCOS. In
this evaluation work, ORCOS is extended in two aspects. First, the DPM and
DVS techniques for the processor and devices are implemented. Second, the
proposed ES-AS approach is implemented in ORCOS.

3Running at 600 MHz.
4R\ denotes the display subsystem.

5To simplify the implementation, the two servo tasks with the same period || are combined into one task.
16To simplify the implementation, the two sensor tasks with the same period [Grol0] are combined into one

task.

143

Chapter 8. Evaluation

Task Tt ults| %
Speed assignment | S3 [2 | S2 [$2[S3 [S,

Table 8.7: Computed speed assignment of the tasks

For the application, this experiment selects one case study from [Grol0], i.e.,
the X-ray machine. This scenario shows a typical application in the medi-
cal domain, which mainly controls the actuators to position the X-ray beam
properly. This application is composed of two subsystems, where the first
subsystem is responsible for user interface and the second one is the con-
trol software of the X-ray unit. In brief, the user interface subsystem con-
tains three tasks including GUI control, image processing and visualization.
Hereby one assumes that the visualization task needs the display subsystem
of the BeagleBoard. The X-ray control software contains sensor tasks, actua-
tor controlling tasks and an automatic exposure control (EC), which performs
the X-ray termination if it is not done by a human operator. Table|8.6|gives a
summary of the tasks in this case study.

As the result by using the HSA0. 01 algorithm, the system needs 341 hyper pe-
riods to terminate the exploration stage and the computed speed assignment
is shown in Table The application has a hyper period of 1 s. Therefore
the exploration stage takes 341 s in total. By reading the measured average
power consumption of the BeagleBoard from the energy meter, the computed
solution consumes 2.6 W, whereas running all the tasks at the highest speed
consumes 2.9 W. This indicates a 10% power reduction by using the proposed
HSASC algorithm.

8.3.2 Multi-Core Processor Platform: Intel Core 2 Duo Processor

This subsection focuses on the evaluation of real-life case studies on multi-
core processor platforms. For this, the Lenovo ThinkPad T400 notebook
[Len] is selected as the hardware platform. The main component involved in
this experiment is the built-in Intel Core 2 Duo P9500 processor [Intbf], which
in total supports three operating frequencies: 2533 MHz, 1600 MHz and 800
MHz. This processor presents a full-chip platform, which means that all the
cores may only operate at the same speed at the same time. Based on the data
sheet [Intal], unfortunately, the power consumption of the three active states
can not be directly acquired. However, its power consumption in low power
state (Deeper Sleep) is available and equal to 4.75 W. In order to obtain
the complete power model, the power consumption of the entire notebook
is measured using the aforementioned energy meter. In the measurement,
all the unneeded devices or services (e.g., bluetooth, wireless lan, off-chip
graphic card, etc.) are deactivated and the battery is removed. As a result,
Table [8.8| shows the average power consumption measured by running the

144

Chapter 8. Evaluation

Frequency (MHz) | 2533 | 1600 | 800

Pl (W) 425 | 31.8 [23.4
Praoo (W) 174 | 174 [174

Table 8.8: Power consumption measured for the Lenovo T400 notebook

’stress” program [Man] (denoted by Ptl400) as well as keeping system idle
(denoted by P,400) under different operating frequencies, respectively. Note
that the “stress” program was used only with the option "—cpu”, which means
that only the processor is stressed.

Clearly hereby the measured result contains not only power consumption of
the processor, but also of other components in the notebook that can not be
deactivated. To simplify the explanation, P400, Pepy and Ppye, denote the
power consumption of the notebook, the processor and the other compo-
nents, respectively, when the notebook is idle. Conversely, if the notebook
18 stressed, Ptl400, Pépu and Péth ., denote the power consumption of the note-
book, the processor and the other components, respectively. It is obvious that

the following equations hold.

Praoo = Pcpu + Pother (8.7)
/ / /
Pz400 = Pcpu +Pother (88)

P,py s obviously the processor power consumption in low power state, which
is 4.75 W as given previously. According to Table [8.8] P00 is 17.4 W and
is independent of operating speed. The reason is rather obvious, because in
this case the processor is idle and thus stays in a low power state. As a result,
P,i1er can be approximated as follows.

Pother = Praoo — Pcpu
=174W—-4775W=12.65W (8.9)

As mentioned above, the “’stress” program generates only load on the proces-
sor, it is reasonable to assume that P, remains constant regardless whether
the notebook is loaded or not, i.e., Py, is equal to Pét ner- Thus, the proces-
sor power consumption by running tasks at different operating frequencies
can be derived as follows.

Pl = Plaoo — Pother (8.10)

145

Chapter 8. Evaluation

Frequency (MHz) | 2533 | 1600 | 800

Pl W)

[29.85 [19.15 | 10.8

Table 8.9: Power consumption of the processor operating at different speeds

State ‘ F ‘ P(W) ‘ Ton%off ‘ Toff%on ‘ Pon—)off ‘ Poff%on ‘ Tpe
S% 1 15 n.a. n.a. n.a. n.a. n.a.
Sé 0.64 | 9.58 n.a. n.a. n.a. n.a. n.a.
S; 032] 54 n.a. n.a. n.a. n.a. n.a.
C! | na | 23 [00lms|00lms| 3W 3W | 0.02 ms
S% 1 15 n.a. n.a. n.a. n.a. n.a.
S% 0.64 | 9.58 n.a. n.a. n.a. n.a. n.a.
S% 0.32 54 n.a. n.a. n.a. n.a. n.a.
C? | na | 23 [00lms|00lms| 3W 3W | 0.02 ms

Table 8.10: The power model of the Intel Core 2 Duo P9500 processor

For instance, Pll400 by operating at 800 MHz is 23.4 W according to Table
By subtracting P,;.,, the power consumption of the processor (Pclpu)
running at 800 MHz is approximately 10.8 W. Table [8.9] gives an overview
of the derived power consumption of the processor.

Note that Table [8.9] shows the power consumption of the entire processor,
which contains two cores. Thus by further dividing the power consumption,
Table [8.10] summaries the complete power model of the Intel Core 2 Duo
P9500 processor.

Furthermore, as the real-time operating system this experiment uses RTLinux
[THK], which is a patched Linux kernel with capability of real-time comput-
ing. More specifically, the RT-PREEMPT patch is able to transform Linux
into a fully preemptable kernel. Some of the main features of RTLinux are
mentioned below.

In-kernel locking primitives (e.g., spinlock) are preemptible.

Interrupt handlers are becoming preemptible.

» User space real-time tasks can be created with specific real-time prior-
ity.

Priority based real-time scheduling is supported.

» User space applications can still use the traditional Linux API.

In this experiment, the Linux kernel 3.4.19 with the RT-PREEMPT patch
3.4.19-rt30 and the RM scheduling algorithm is applied.

146

Chapter 8. Evaluation

Task ‘ WCET (ms)!” ‘ Period/Deadline (ms)
Detection task (T;) 1.5 15
Sensor task 1 18 (1,) 1.8 15
Sensor task 2 17 (13) 1.2 15
Brake pressure control (T4) 20 100
Sensor task (Ts) 10 50
CAN communication (Tg) 1 5

Table 8.11: Case study: air bag control and anti-lock braking system [Gro10]]

As the case study, an application in automotive domain is taken from [Gro10].
The original application is composed of three subsystems: an Airbag Control
Unit (ACU), an Anti-lock Braking System (ABS) and an Electric Stability
Control (ESC). These control systems are commonly referred to as Advanced
Driver Assistance Systems (ADAS). Since the total utilization of all the sub-
systems exceeds the capability of Intel Core 2 Duo P9500, the ACU and ABS
are selected for evaluation in this subsection.

The ACU contains one detection task and 8 sensor tasks. The detection task
is responsible for monitoring the output of the sensor tasks and inflating the
cushion during a collision. To simplify the implementation, this experiment
combines the sensor tasks with the same WCET and period into one task. The
ABS mainly contains three tasks: the first task is called brake pressure control
task, which computes the proper pressure applied for the target actuator. The
input of the brake pressure control task is coming from the sensor task (the
second task), which provides the rational speed of wheels. The third task is in
charge of communication with other systems in car through Controller Area
Network (CAN). A summary of the tasks is specified in Table [8.11]

As the result by using the HSAMCO. 01 algorithm, the system needs 200 itera-
tions to terminate the exploration stage. The computed solution is illustrated
in Table[8.12] The application has a hyper period of 1.5 s, thus the exploration
stage takes 5 minutes in total. By reading the average power consumption of
the notebook from the energy meter, the computed solution consumes 26
W whereas the solution of the LA+LTF+FF algorithm consumes 26.5 W. If
only the processor power consumption is considered, then power consump-
tion of the HSAMCO. 01 algorithm is 13.35 W and the LA+LTF+FF algorithm
consumes 13.85 W. This indicates a 3.6% improvement in terms of energy
reduction efficiency, which is rather decent with regard to the “short” explo-
ration stage (5 minutes).

7Running at 2.53 GHz.

1879 simplify the implementation, the 6 sensor tasks with the same WCET (0.3 ms) and period (15 ms) [Gro10]
are combined into one task.

19To simplify the implementation, the 2 sensor tasks with the same WCET (0.6 ms) and period (15 ms) [Gro10]
are combined into one task.

147

Chapter 8. Evaluation

8.4

Task || w w1
Core allocation | O1 | Oy | Oy | O2 | O1 | O
Speed assignment | S} | S3 [ST | S5 | S| S}

Table 8.12: Computed allocation and speed assignment of the tasks

Chapter Summary

This chapter provided detailed evaluation of the proposed algorithms and
approaches. In short, the evaluation is performed in two steps. The first
part concentrates on synthetic test cases, where statistically relevant results
are obtained. Hereby the evaluation addressed various aspects and mainly

answered the following questions.

* Energy reduction efficiency: How much energy can the proposed algo-

rithms save?

* Algorithm run-time: How long will the proposed algorithms take, i.e.,

how many iterations will the exploration stage need?

* Estimation accuracy: How accurate is the proposed solution quality

estimation mechanism?

¢ ES-AS run-time overhead: How much is the online overhead incurred

by the ES-AS approach?

* Impact of CP and SIP: What is the impact of CP and SIP?

In the second part, the evaluation focuses on real-life case studies running on
real target platforms. Two experiments demonstrate the applicability of the
proposed algorithms and approaches. More concretely, the first experiment
addresses single-core processor platforms by focusing on the BeagleBoard
with ORCOS, whereas the second experiment is conducted on the Intel Core
2 Duo P9500 processor (a multi-core processor platform) with RTLinux.

148

Chapter 9

Conclusion and Future Work

There is no doubt that energy consumption has become one of the most
important design concerns in electronic system development, especially for
battery-driven devices. From the system level point of view, there exist two
well-established energy reduction techniques: DPM and DV, which are able
to dynamically adjust system energy consumption at run-time. However, this
energy reduction comes at the cost of performance loss, which is a crucial
point if running tasks have timing constraints. This work exactly addresses
this problem and proposes solutions for energy efficient scheduling in hard
real-time systems. This chapter concludes the dissertation by summarizing
the main contributions and gives an outlook for future work.

Conclusion

In general, the main objective of this dissertation is to optimize system energy
consumption by taking the advantage of DPM and DVS while meeting all the
task deadlines. Hereby there are several important requirements, which are
defined in Chapter |1} In what follows, these requirements are reviewed by
showing how they are fulfilled with the main contributions in this work.

* The first requirement is system schedulability, where all the tasks must
meet their deadlines. This is solved by the proposed ES-AS approach,
which is divided into two stages: exploration stage (ES) and applica-
tion stage (AS). In ES, the main job is to explore the solution space of
a given problem, i.e., one candidate solution in one hyper period. After
ES is finished, the best solution found is then applied in AS. This con-
tribution is described in Chapter [6] where its correctness is explicitly
proven in terms of system schedulability.

* The second requirement is system-wide energy optimization. In or-
der to address this point, a system model and a problem formulation

149

Chapter 9. Conclusion and Future Work

are first formally introduced in Chapter (3| Unfortunately, the defined
problem is proven to be A'P-hard in the strong sense. Thus, Chapter
M| proposes the HSASC and HSAMC algorithms to fulfill this require-
ment. Both algorithms are extended simulated annealing by incorporat-
ing problem domain specific knowledge. In particular, concrete guide-
lines in terms of penalty and reward values are defined for neighbor
selection, which can significantly accelerate the algorithm termination
speed. In order to efficiently estimate the algorithm performance and
derive a termination criterion, Chapter [5 further provides a regression
based mechanism, which is able to estimate solution values at run-time.

* The third requirement is consideration of state switching overhead.
There are two types of switching overhead: DPM overhead and DVS
overhead. The former is addressed in the proposed ES-AS approach.
More specifically, the event recording activity and the idle time pre-
diction solve this requirement for the RTSC and RTMC problems, re-
spectively. In the context of DVS overhead, Chapter [/| explicitly deals
with the problem, especially for RTMC. As solutions, a speed inheri-
tance protocol and a conservative protocol are proposed. Both proto-
cols provide sufficient schedulability analysis, which is extended from
the traditional schedulability test.

* The next requirement is online. This point is clearly solved by the
ES-AS approach, which runs the HSASC and HSAMC algorithms in
a completely online fashion. The main challenge hereby is to integrate
an iterative search algorithm into the execution of hard real-time tasks.
For this, the ES-AS approach maps one iteration of the algorithm to
one hyper period of the execution. As a result, the approach is able
to consider dynamic changes, such as dynamic slack of tasks, a task
joining or leaving a system.

* The final requirement is consideration of multi-core processors. For
this, the dissertation addresses a general form of multi-core processors
with regard to the DPM and DVS capabilities, namely cluster-based
multi-core processors. Its power model is presented in Chapter 3] In
short, hereby the processor cores are grouped into clusters, where the
cores in the same cluster can only operate at the same speed at the same
time. According to this constraint, Chapter 4] proposes special rules for
neighbor selection in the HSAMC algorithm and Chapter [0 explicitly
describes the application of ES-AS approach for this type of multi-core
processors.

Besides, a state-of-the-art analysis is given in Chapter[2] where the main con-
tributions of this dissertation are highlighted in comparison with related work
in terms of several important aspects. Of course, the proposed algorithms and

150

Chapter 9. Conclusion and Future Work

9.2

approaches are thoroughly evaluated in Chapter (8] to justify their efficiency
and applicability.

Before the future work is discussed, a list of relevant publications is summa-
rized as follows: [HM13al], [HM13b], [HM12al], [HM12b]] and [HM12c].

Open Issues and Future Work

In general, this work addresses the problem of energy efficient scheduling
for hard real-time systems. However, there are several assumptions and lim-
itations in the dissertation. In what follows, they are roughly discussed and
some ideas are proposed for future work.

The first limitation is that this work addresses only independent tasks. How-
ever, systems with dependent tasks are quite usual as well in practice. In
principle, there are two difficulties by considering dependent tasks in the pro-
posed ES-AS approach. The first one is due to schedulability test, which has
to be made at each hyper period boundary to ensure that the newly generated
solution is feasible. Unlike the test for EDF or RM with independent tasks,
hereby the check can not be solved efficiently and thus will incur significant
run-time overhead. For instance, there exists one elegant solution by trans-
forming a set of dependent tasks to a set of independent tasks [CSB90]], which
then can be scheduled by EDF. Hereby task release time and deadline need to
be modified accordingly. Because the transformation requires knowledge of
task WCET, which changes as speed assignment changes, this modification
needs to be executed for each newly generated solution. Clearly, this will
significantly increase the run-time overhead at each hyper period boundary.
Nevertheless, this process is after all deterministic and will not harm system
real-time constraint, provided that the increased overhead is affordable. The
second difficult comes from the application on multi-core processors. In fact,
partitioning a set of dependent tasks is a fairly tough job and belongs to an-
other research area. Basically, if a solution with an efficient schedulability
test exists, then it can also be applied in the ES-AS approach.

Furthermore, the second limitation is that the RTMC problem ignores I/0
devices. This is also mainly due to the complexity of task partition, where
resource sharing needs to be considered. Similar to the task partition with
dependent tasks, this problem is out of the scope of the dissertation. Never-
theless, if there is a solution with an efficient schedulability test, it can also
be applied in the ES-AS approach.

In the RTSC problem, it is assumed that there is no critical section by device
access, i.e., there is no need for device lock and task blocking. However, if
critical sections are present, the problem can be solved by using EDF with
priority inheritance protocol. The proposed ES-AS approach and the HSASC

151

Chapter 9. Conclusion and Future Work

algorithm are in fact independent of real-time scheduling strategies, as long
as an efficient schedulability test is available, i.e., they are compatible to EDF
with priority inheritance protocol.

The HSAMC algorithm is provided in Chapter @ and the neighbor generation
process is illustrated in Figure [4.2] There are three steps to select a neighbor
solution: i) select a task, ii) reallocate the task to a new processor core and
1i1) reassign the task with a new frequency. Instead, there is another possi-
bility to perform this work by changing the order of the last two steps. As
already indicated in Chapter 4}, in this case the reallocation step is dependent
on the result of the reassignment step, if a multi-core processor with hetero-
geneous cores in terms of power model is considered. As part of the future
work, this possibility can be investigated and compared with the version in
this dissertation. For this, there is then a need to adapt the guide rules, i.e.,
redefining the award function. For instance, one may associate each available
frequency (note that not each processor core) with a reward value by taking
into consideration on how many processor cores it is supported.

Another assumption is related to the power consumption of DVS state switch-
ing, which has been ignored so far. Note that Chapter [/| considers only the
switching latency, because it is more crucial for hard real-time constraints.
In future work, however, the corresponding power consumption can be taken
into account by extending the calculation of break-even time ([7.14)).

There is an issue in Chapter [§|related to the accuracy of the proposed mecha-
nism for performance estimation. More concretely, Figure(3.21|shows a trend
that the accuracy becomes worse as the task number increases. This can be
improved by adapting the calculation of the smoothing constant o in ([5.12)
by adding more influence of the task number n. For instance, one possible
solution is shown as follows.

1
“= 7 e , ©.1)
n2 - o exp(il lanisn() P

Clearly, now a becomes more smaller, as n grows. As a result, the termina-
tion speed is more slowed down and more time is used for solution search.
Surely this will help finding better solutions and subsequently improve the
estimation accuracy. However, this adaptation comes at the cost of run-time
increase. In brief, a more detailed investigation regarding the computation of
o can be carried out in the future.

152

Appendices

153

Appendix A

Additional Evaluation Results

A.1

A.2

A3

Energy Reduction Efficiency (Static Slack)

This section shows additional simulation results in terms of energy reduction
efficiency for multi-core processor platforms. More specifically, Figure [A.1]
[A.2] [A.3] and [A.4] show the comparison of different algorithms with regard
to the size of task sets. In the figures, the x-axis shows the number of tasks
and the y-axis gives the power consumption of output solution normalized to
the solution of the LA+LTF+FF algorithm. Clearly, HSAMCO0. 01 achieved the
best results in all the cases and the smaller the 3, the more power saving can
be obtained.

Energy Reduction Efficiency (Dynamic Slack)

This section shows further evaluation results in terms of energy reduction
efficiency concerning dynamic slack. Figure [A.5] [A.6] [A.7] and [A.8] show
the comparison using different y value on different platforms. Hereby the
x-axis shows the size of task sets and the y-axis gives the normalized power
consumption with regard to the HSAMCO.01 algorithm, where no dynamic
slack is present. Obviously, the larger the vy, the more power can be saved,
because more dynamic slack can be utilized. Besides, the power reduction is
independent upon task number.

Run-Time Analysis

This section shows additional simulation results in terms of algorithm run-
time analysis for multi-core processor platforms. More concretely, Figure
A9 [A.T0L [A.TT|and [A.12] show the comparison of different algorithms with
regard to the size of task sets. In the figures, the x-axis shows the number

155

Chapter A. Additional Evaluation Results

1,05

0,

[t
v

0

~
(-]

0,8

(4]

0

normalized power consumption
©

o
~N
w

5 6 7 8 9 10 11 12

size of task sets

B LALTFFF ® HSAMCO0.1 = HSAMCO0.05 " HSAMCO0.01

Figure A.1: Energy reduction efficiency comparison among different algo-
rithms in terms of task number (12)

1,05

0,95

5 6 7 8 9 10 1 12

size of task sets

0

~
©o

00
(9]

ol

0

normalized power consumption
©

o
<
~N

B LALTFFF ®m HSAMCO0.1 = HSAMCO0.05 " HSAMCO0.01

Figure A.2: Energy reduction efficiency comparison among different algo-
rithms in terms of task number ((I1)2)

156

Chapter A. Additional Evaluation Results

1,05

1
0,
0
°' il LI
0,38
7 8 9 10 11 12 13 14

size of task sets

~ o
o (9]

normalized power consumption
[+
v

B LALTFFF ®m HSAMCO0.1 = HSAMCO0.05 © HSAMCO0.01

Figure A.3: Energy reduction efficiency comparison among different algo-
rithms in terms of task number (14)

1,05

0,95
0
0,75
7 8 9 10 11 12 13 14

size of task sets

00 ~ o
(] o

normalized power consumption
o
[}

M LALTFFF ® HSAMCO0.1 = HSAMCO0.05 " HSAMCO0.01

Figure A.4: Energy reduction efficiency comparison among different algo-
rithms in terms of task number ((I1)4)

157

Chapter A. Additional Evaluation Results

1.2

0.
0.
0.
0.
0
5 6 7 8 9 10 11 12

size of task sets

» ()] -]

normalized power consumption
N

B HSAMC0.01 Hy=0.2 ®y=0.4 =y=0.6 Hy=0.8

Figure A.5: Average power consumption comparison using different y in
terms of task number (12)

1.2

0.
0.
0.
0.
0
5 6 7 8 9 10 11 12

size of task sets

B o -]

normalized power consumption
N

B HSAMC0.01 my=0.2 my=0.4 ©y=0.6 my=0.8

Figure A.6: Average power consumption comparison using different y in
terms of task number ((I1)2)

158

Chapter A. Additional Evaluation Results

1.2

0.
0.
0.
0.
0
7 8 9 10 11 12 13 14

size of task sets

B)})

normalized power consumption
N

®HSAMC0.01 my=0.2 my=0.4 =y=0.6 my=0.8

Figure A.7: Average power consumption comparison using different vy in
terms of task number (14)

1.2

0.
0.
0.
0.
0
7 8 9 10 11 12 13 14

size of task sets

) o -}

normalized power consumption
N

®HSAMC0.01 my=0.2 my=0.4 =y=0.6 my=0.8

Figure A.8: Average power consumption comparison using different vy in
terms of task number ((I1)4)

159

Chapter A. Additional Evaluation Results

4000
3500
3000

2500
2000
1500
1000 I
50
—- — —m —- . | —m . | - |
5 6 7 8 9 10 11 12

algorithm run-time (iterations)
o

0
size of task sets

®HSAMCO0.1 = HSAMCO0.05 = HSAMCO0.01

Figure A.9: Run-time comparison among different algorithms in terms of
task number (12)

4000
3500

3000
2500
2000
1500
1000
50
- — —. | . | | i | |
5 6 7 8 9 10 1 12

algorithm run-time (iterations)
o

0
size of task sets

B HSAMCO0.1 = HSAMCO0.05 =™ HSAMCO0.01

Figure A.10: Run-time comparison among different algorithms in terms of
task number ((I1)2)

160

Chapter A. Additional Evaluation Results

9000
8000
7000

6000
5000
4000
3000
2000
1000

— - — - —m —m. — - - -l -~

7 8 9 10 11 12 13 14

size of task sets

algorithm run-time (iterations)

B HSAMCO0.1 = HSAMCO0.05 = HSAMCO0.01

Figure A.11: Run-time comparison among different algorithms in terms of
task number (14)

12000
10000

8000

6000
4000
2000 I I
- —- —m. —m —m | . | . |
7 8 9 10 11 12 13 14

algorithm run-time (iterations)

0
size of task sets

® HSAMCO0.1 = HSAMCO0.05 = HSAMCO0.01

Figure A.12: Run-time comparison among different algorithms in terms of
task number ((I1)4)

161

Chapter A. Additional Evaluation Results

of tasks and the y-axis gives the number of iterations required by algorithms.
Clearly, the smaller the B, the longer the algorithm takes and the algorithm
run-time increases linearly as the size of task sets increases.

162

List of Figures

(1.1 The trend of the power consumption vs. performance of ARM application pro- [

cessors [Ltd] [ITP] [Shalf 2
[2.1 A real-time task with 1ts properties| Lo 9
2.2 Different task execution under EDFandRMI 12
[2.3 Power state machine of the StrongARM SA-1100 processor [BBMOO]| 15
[2.4~ Power state machine of a component with two states [BBMOO] 16
[2.5 Comparison of energy consumption with and without component shutdown| . . 17
[2.6 'The curves of the task active energy consumption| 21
[2.7 Comparison of the DPM and DVS preferred strategies|. 23
[2.8 Three different categories of multi-core processor platforms| 24
2.9 ACPI System Structure [ACP]] 30
[3.1 The power state machine of a processor with 3 P-states and 4 C-states| 34
[3.2 'The power state machine of R; with4 D-states| 37
(3.3 An example task execution at the speed level S» with Dev(t1) ={R1}| 38
[3.4 The task execution on a single-core processor| 43
[3.5 The task execution of the multi-core processor example| 45
4.1 Neighbor generation process for the RI'SC problem| 51
4.2 Neighbor generation process for RTMC| 55
4.3 An example task execution on a dual-core processor|. 56
[5.1 Run-time behavior of the HSASC algorithm (example 1), 64
[5.2 Run-time behavior of the HSAMC algorithm (example 2){ 64
[5.3 Run-time behavior of the solution value improvement (example 1)] 66
[5.4 Run-time behavior of the solution value improvement (example 2) 67
[5.5 'The original data vs. the smoothed data (example I)[. 69
[5.6 The original data vs. the smoothed data (example 2)[. 69
[5.7 'The impact of different smoothing constants (example 2)[. 69
[5.8 The exponential regression function| 71
[6.1 An example with a single-core processor and adevice|. 80
[6.2 The observer/controller architecture of organic computing| 81
6.3 Events recording in one example with Dev(t;) = {R;} and Dev(T2) =2|. . . . 85
6.4 Application stage in one example with Dev(t;) = {R;} and Dev(t)) =@| ... 87

163

LIST OF FIGURES

(6.5 Dynamic slack reclaiming in one example with Dev(t;) = {R;} and Dev(t,) = &| 88
[6.6 Overview of the activities taken in ES-AS approach| 90
(6.7 An example with two cores grouped in one cluster. 7(t;) =40 ms, 7 (1) = 80 |
ms, T; is partitioned onto O and T, onto O3, S } is assigned to T; and S% to 12| . 9
[6.8 Dynamic slack reclaiming for DPM application| 96
[6.9 Activities performed 1n the ES-AS approach for the RTMC problem| 97
[7.1 A comparison of task execution with and without DVS state switching overhead| 101
[7.2 A single-core processor example with 4 real-time tasks| 102
[7.3 An example with two tasks running on a platform with two cores grouped 1nto [
one cluster. Both processor cores support two operating speeds with the switch-
ing latency L, =5 ms, W(t;) =40 ms, W(t2) =5ms, 7(t;) =100 ms, 7 (12) =
20 ms, alloc(t)) = Oy, alloc(T2) = O, assign(t1) = S, and assign(t2) = S . 105
7.4 Task execution in the expected and actual case. assign(t;) = S5, assign(t;) = Sj |
and T arrives atf|. 107
[7.5 The relationship between EFC and AFC based on the example in Figure[/.4l| . 109
[/.6 The example runningunder SIP 000 110
(8.1 Energy reduction efficiency comparison among different algorithms in terms of [
task number (Intel XScale processor based platform), 119
(8.2 Energy reduction efficiency comparison among different algorithms in terms of [
task number (ARM Cortex-A8 processor based platform)| 121
(8.3 Energy reduction efficiency comparison among different algorithms in terms of [
task number ((I2)2)] 122
(8.4 Energy reduction efficiency comparison among different algorithms 1n terms of [
task number (I2A2) e 123
[8.5 Average power consumption comparison using different y in terms of task num- [
ber (Intel XScale processor based platform, HSA0.01) 124
[8.6 Average power consumption comparison using different y in terms of task num- [
ber (Intel XScale processor based platform, HSA0.05)(. 124
[8.7 Average power consumption comparison using different y in terms of task num- |
ber (Intel XScale processor based platform, HSA0.1) 125
[8.8 Average power consumption comparison using different y in terms of task num- [
ber (ARM Cortex-A8 processor based platform, HSA0.0L)[. 125
[8.9 Average power consumption comparison using different y in terms of task num- |
ber (ARM Cortex-A8 processor based platform, HSA0.05), 126
[8.10 Average power consumption comparison using different y in terms of task num- [
ber (ARM Cortex-A8 processor based platform, HSA0. 1) 126
[8.11 Average power consumption comparison using different y in terms of task num- [
ber ((I2)2) - . v v v e e e e e e e 127
[8.12 Average power consumption comparison using different y in terms of task num- [
ber (T2A2) . . . o o o o 127
[8.13 Run-time comparison among different algorithms in terms of task number (Intel [
XScale processor based platform)[. 0 00000 129

164

LIST OF FIGURES

[8.14 Energy reduction efficiency comparison between HSASC and original SA 1n [
| terms of task number (Intel XScale processor based platform)[. 129
[8.15 Run-time comparison among different algorithms with regard to task number [
| (ARM Cortex-AS8 processor based platform)| 130
[8.16 Energy reduction efficiency comparison between HSASC and original SA 1n [
| terms of task number (ARM Cortex-AS8 processor based platform), 130
[8.17 Run-time comparison among different algorithms 1n terms of task number ((I2)2)[131
[8.18 Run-time comparison among different algorithms in terms of task number (I222)(132
[8.19 Run-time comparison of HSAMC and original SA on different platforms|. . . . 132
[8.20 Energy reduction efficiency comparison of HSAMC and original SA on differ- [
| entplatforms| L 133
[8.21 Estimation accuracy in terms of task number (Intel XScale processor based plat- [
| form)l e 134
[8.22 Estimation accuracy 1n terms of task number (ARM Cortex-A8 processor based [
| platform)| 135
[8.23 ES-AS run-time overhead in terms of task number (Intel XScale processor [
| based platform)| Lo 136
[8.24 ES-AS run-time overhead 1n terms of task number (ARM Cortex-AS8 processor [
| based platform)| 137
[8.25 ES-AS run-time overhead in terms of task number (T2 and (I1)2) 138
[8.26 ES-AS run-time overhead 1n terms of task number (I4, (I2)2 and (I1))| 138
[8.27 Number of tests with deadline miss when DVS state switching overhead 1s not [
I handledl 139
[8.28 The comparison of false negative error rate of CP and SIPon I4] 140
[8.29 The comparison of false negative error rate of CP and SIPon (I2)2 140
[8.30 The experiment setup with BeagleBoard| 143
[A.1 Energy reduction efficiency comparison among different algorithms in terms of [
| task number (I2)]o 156
[A.2 Energy reduction efficiency comparison among different algorithms in terms of [
| task number ((I1)2)] 156
[A.3 Energy reduction efficiency comparison among different algorithms 1n terms of [
| task number (T4)| 157
[A.4 Energy reduction efficiency comparison among different algorithms in terms of [
| task number ((I1)4)] e 157
[A.5 Average power consumption comparison using different y in terms of task num- |
| ber (I2)] o o 158
[A.6 Average power consumption comparison using different y in terms of task num- [
| ber ((T1)2) - v v v v e e e e e e e e e e e e e e e 158
[A.7 Average power consumption comparison using different y in terms of task num- [
| ber (T4) o e 159
[A.8 Average power consumption comparison using different y in terms of task num- [
| ber ((I1)4)l . v v v o e e e e e e 159
[A.9 Run-time comparison among different algorithms in terms of task number (I2)] 160

[A.10 Run-time comparison among different algorithms in terms of task number ((I1) 2)[160

165

LIST OF FIGURES

[A.11 Run-time comparison among different algorithms in terms of task number (I4)[161
[A.12 Run-time comparison among different algorithms in terms of task number ((I1)4)[161

166

List of Tables

[2.1 An example to compute the critical speed [Xu+04] 22
[2.2 A comparison among the existing approaches (single-core processor). 29
[2.3 A comparison among the existing approaches (multi-core processor)[. 29
[3.1 The processor and device power model|. 42
[3.2 The task specification| 42
[3.3 'The power model of a dual-core processorf 44
[3.4 The task specification|o oL 44

4.1 An example computation of the task penalty value and the task selection prob- [

ability| 52
4.2 Aseries of possible solutions| L Lo 54
4.3 The task specification| 56
4.4 Aseries of possible solutions| Lo 59
[5.1 The processor and device powermodel|. 72
[5.2 Thetask specification| Lo 73
[5.3 The data set indicating an execution trace of the HSASC algorithm| 73
[5.4 'The power model of a dual-core processorf 74
[5.5 The task specification| oo 74
[5.6 The data set indicating an execution trace of the HSAMC algorithm| 74
8.1 The power model of the Intel XScale® processor [Inte]| 116
8.2 The power model of ARM Cortex -A8 [OMA[[Insall. 116
[8.3 The power model of applied I/O devices [CGO6]|. 117
[8.4 Properties of generated task sets for multi-core processor platforms|. 118
[8.5 The power model of the ARM processor and the display subsystem in the Bea- [

gleBoard|. 142
[8.6 Case study: X-Ray machine [GrolOJf 143
(8.7 Computed speed assignment of the tasks| 144
(8.8 Power consumption measured for the Lenovo T400 notebook| 145
(8.9 Power consumption of the processor operating at different speeds|. 146
[8.10 The power model of the Intel Core 2 Duo P9500 processor] 146
[B.1T Case study: air bag control and anti-lock braking system [GrolO] 147
[8.12 Computed allocation and speed assignment of the tasks| 148

167

List of Algorithms

(1 Simulated Annealing Algorithm| 0o 0oL 50
[2 Heuristic Search Algorithm for RTSC (HSASC) 53
[3 Heuristic Search Algorithm for RTMC (HSAMC)| 58
4 The Regression Procedure| 68
5 Computation of J'(wppr) for RTSC| 72
6 Computation of J'(wppr) for RTMC| 73
[7 Heuristic Search Algorithm for RTSC (HSASC) 75
(8 Heuristic Search Algorithm for RTMC (HSAMC)| 76
9 Algorithm Activity at the end of each hyper period in ES (RTSC)|. 83
(10 Recording Activity at each scheduling pomntin ES (RTSC)[. 86
(1T DPM Activity at each scheduling point in AS (RTSC)| 89
(12 Algorithm Activity at each hyper period boundary in ES (RTMC)| 92
(13 Energy Recording at each scheduling point in ES (RTMC), 93
(14 Heuristic Information Update at each scheduling point in ES (RTMC)[. 93
(15 Manage task arrival time 1n a sorted queue and predict the length of 1dle time at [

each scheduling point in ES (RTMC)[. 95

169

List of Abbreviations

AA
ABS
ACPI
ACU
AEC
AET
AS

BF

CP

DA

DAG

DPM

DVS or DVES
EDF

ES

ESC

FF
FPTAS

HSAMC
HSASC

ICP

NF

Algorithm Activity

Anti-lock Braking System

Advanced Configuration & Power Interface
Airbag Control Unit

Active Energy Consumption

Actual Execution Time

Application Stage

Best Fit
Conservative Protocol

DPM Activity

Directed Acyclic Graph

Dynamic Power Management

Dynamic Voltage and Frequency Scaling

Earliest Deadline First
Exploration Stage
Electric Stability Control

First Fit
Fully Polynomial Time Approximation Scheme

Heuristic Search Algorithm for RTMC
Heuristic Search Algorithm for RTSC

Intel-Core Preemption

Next Fit

171

List of Abbreviations

ORCOS

RM
RTMC

RTOS

RTSC

SA

SIP

TGFF

VCD

WCET
WF

Organic Reconfigurable Operating System

Rate Monotonic

The Real-Time Energy Optimization Problem on
Multi-Core Processor Platforms

Real-Time Operating System

The Real-Time Energy Optimization Problem on
Single-Core Processor Platforms

Simulated Annealing
Speed Inheritance Protocol

Task Graph For Free
Value Change Dump

Worst Case Execution Time
Worst Fit

172

List of Symbols

AFC,’(I)
CS(’C,')

CS/ (1))

Ci

The actually finished cycles of t; until the time
point ¢

The critical speed state of T; on a single-core pro-
cessor

The critical speed state of T;, if T; is partitioned
onto O; in a multi-core processor

The i-th power state (DPM state) of a single-core
processor

The i-th power state (DPM state) of the j-th core
in a multi-core processor

The i-th power state (DPM state) of the j-th de-
vice

The set of required devices by 7T;

The expected finished cycles of T; until the time
point ¢

The energy consumed by the processor and all
the required devices during the execution of T; at
a particular speed state S

The operating speed of S;

The operating speed of S{

The i-th cluster in a multi-core processor

The hyper period of a task set

The upper bound to the iteration number speci-
fied by the user to stop the algorithm

The cost function

The uniform switching latency among the pro-
cessor P-states (DVS states)

The set of neighbors of the solution ®

The i-th core in a multi-core processor

The power consumption of C;

The power consumption of C/

173

List of Symbols

P(D})
P(S;)
P(S;,S;)

P(S})
Poff—)on (Cl)

Posfon(C))
Poffon(D})
Ponsoff(Ci)
Ponsofs(C))

Pon—>0ff(Dlj)

Praccepr - Q> x N — [0, 1]

T(Si,Sj)
T(t;)
Tbe(Ci>
Tbe<cij)
Tye(D))

The power consumption of D{

The power consumption of S;

The power consumption of the switching be-
tween S; and S

The power consumption of S{

The power consumption of the switching from C;
to Cy

The power consumption of the switching from C; l]
to C(j,

The power consumption of the switching from
D] to D}

The power consumption of the switching from Cy
to C;

The power consumption of the switching from Cé
to C/

The power consumption of the switching from
D} to D/

The probability function for the solution accep-
tance in the simulated annealing algorithm

The i-th device

The i-th performance state (DVS state) of a
single-core processor

The i-th performance state (DVS state) of the j-th
core in a multi-core processor

The switching latency between S; and §;

The period of T;

The break-even time of C;

The break-even time of C/

The break-even time of D{

The switching latency from C; to Cy

The switching latency from C/ to C}

The switching latency from D{ to D(])

The switching latency from Cy to C;

The switching latency from C(J) to Cl-]

The switching latency from D) to D!

The cooling temperature at the time or iteration ¢
The processor utilization of the single-core pro-
cessor

174

List of Symbols

Ot

P1

P2

Pcp

psip

Ti

alloc:T'—= O

The processor utilization of the j-th core in a
multi-core processor

The utilization of the task ©

The processor utilization upper bound on single-
core processors to ensure system schedulability
The processor utilization upper bound on the j-
th core in a multi-core processor to ensure the
system schedulability on that core

The worst case execution time of T;

A set of real-time tasks

The solution space of the simulated annealing al-
gorithm

The set of the optimal solutions

The user parameter specifying the required ap-
proximation ratio to stop the algorithm

The approximation ratio of the solution ®

The factor of task run-time variation

The set of power states (DPM states) of a single-
core processor

The set of power states (DPM states) of the j-th
core in a multi-core processor

The set of power states (DPM states) of the j-th
device

The set of clusters in a multi-core processor

The set of cores in a multi-core processor

The set of I/O devices

The set of performance states (DVS states) of a
single-core processor

The set of performance states (DVS states) of the
J-th core in a multi-core processor

A solution in

The initial solution of the simulated annealing al-
gorithm

The HP-overhead

The SC-overhead

The false negative error rate of CP

The false negative error rate of SIP

A real-time task with index i

The function partitioning the tasks to the proces-
sor cores

175

List of Symbols

assign : I' — S The function assigning the speeds to the tasks

group The function grouping the processor cores to
clusters

pen(T) The penalty value of the task T

prob(0;) The selection probability of the processor core O;

prob(t) The selection probability of the task T

rew(0) The reward value of the processor core O

176

Bibliography

List of Publications

[HM12a]

[HM12b]

[HM12c]

[HM13a]

[HM13b]

[HMM11]

[MHM10a]

[MHM10b]

[MHM11]

D. He and W. Miiller. “A Heuristic Energy-Aware Approach for Hard Real-Time
Systems on Multi-Core Platforms”. In: Proceedings of the 15th IEEE Euromicro
Conference on Digital System Design (DSD). Best Paper Nomination. 2012.

D. He and W. Miiller. “Enhanced Schedulability Analysis of Hard Real-Time
Systems on Power Manageable Multi-Core Platforms”. In: Proceedings of the
9th IEEFE Int. Conference on Embedded Software and Systems (ICESS). 2012.

Da He and Wolfgang Miiller. “Online Energy-Efficient Hard Real-Time Schedul-
ing for Component Oriented Systems”. In: Proceedings of the 15th IEEE In-

ternational Symposium on Object-/Component-/Service-Oriented Real-Time Dis-
tributed Computing (ISORC). Best Paper Award. 2012.

D. He and W. Miiller. “An Energy-Efficient Heuristic for Hard Real-Time Sys-
tem on Multi-Core Processors”. In: Proceedings of International Conference on
Applied Computing (AC). 2013.

Da He and Wolfgang Miiller. “A heuristic energy-aware approach for hard real-
time systems on multi-core platforms”. In: Microprocessors and Microsystems
37.8 (2013), pp. 858-870.

D. He, F. Mischkalla, and W. Miiller. “A SysML-based Framework with QEMU-
SystemC Code Generation”. In: Proceedings of Ist international QEMU Users
Forum. 2011,

F. Mischkalla, D. He, and W. Miiller. “A UML Profile for SysML-Based Comod-
eling for Embedded Systems Simulation and Synthesis”. In: Proceedings of 1st
Workshop on Model Based Engineering for Embedded Systems Design. 2010.

F. Mischkalla, D. He, and W. Miiller. “Closing the Gap between UML-based
Modeling and Simulation of Combined HW/SW Systems”. In: Proceedings of
Design, Automation and Test in Europe (DATE). 2010.

F. Mischkalla, D. He, and W. Miiller. “A Retargetable SysML-based Front-End
for High-Level Synthesis”. In: Proceedings of 2nd Workshop on Model Based
Engineering for Embedded Systems Design. 2011.

177

BIBLIOGRAPHY

[Mul+10]

[Van+11]

Wolfgang Miiller et al. “The SATURN Approach to SysML-Based HW/SW Co-
design”. In: Proceedings of IEEE Computer Society Annual Symposium on VLSI.
2010.

Yves Vanderperren et al. “Extending UML for Electronic Systems Design: A
Code Generation Perspective”. In: Design Technology for Heterogeneous Em-
bedded Systems. Springer, 2011.

178

BIBLIOGRAPHY

List of References

[AAO5]

[AB02]

[Abo+03]

[ACP]
[AG]

[Aga+06]

[AMD]
[ARM]

[Ass]

[AYO3]

[Ayd+04]

[Bac96]

[BBMOO]

T. A AlEnawy and H. Aydin. “Energy-aware task allocation for rate monotonic
scheduling”. In: Proceddings of the 11th IEEE Real Time and Embedded Tech-
nology and Applications Symposium (RTAS). Mar. 2005, pp. 213-223.

James H. Anderson and Sanjoy K. Baruah. “Energy-Aware Implementation of
Hard-Real-Time Systems Upon Multiprocessor Platforms”. In: In Proceedings of
the 16th International Conference on Parallel and Distributed Computing Sys-
tems (ISCA). 2002, pp. 430-435.

Nevine AbouGhazaleh et al. “Collaborative operating system and compiler power
management for real-time applications”. In: Proceedings of the 9th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS’03). 2003,
pp. 133-141.

ACPI. ACPI Specification. URL: http://www.acpi.info/.

ELV Elektronik AG. User Manual of Energy Master Basic. URL: http://www.
elv-downloads.de/Assets/Produkte/9/994/99434 /Downloads/ 99434 |
energymaster_basic_um.pdf.

Amit Agarwal et al. “Leakage Power Analysis and Reduction for Nanoscale Cir-
cuits”. In: IEEE Micro 26.2 (2006), pp. 68—80.

AMD. AMD Product Specification. URL: http://support.amd.com/.

ARM. ARM big.LITTLE Processing. URL: http://www.arm.com/products/
processors/technologies/biglittleprocessing.php.

IEEE Stanadrs Association. 1666-2011 - IEEE Standard for Standard SystemC
Language Reference Manual. URL: http://standards.ieee.orqg/findstds/
standard/1666-2011.html.

Hakan Aydin and Qi Yang. “Energy-Aware Partitioning for Multiprocessor Real-
Time Systems”. In: Proceedings of the 17th International Symposium on Parallel
and Distributed Processing (IPDPS). IEEE Computer Society, 2003, p. 113.2.

H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. “Power-aware scheduling
for periodic real-time tasks”. In: IEEE Transactions on Computers 53.5 (May
2004), pp. 584-600.

T. Bick. Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, 1996.

Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. “A survey of design
techniques for system-level dynamic power management”. In: IEEE Transactions
on Very Large Scale Integration Systems 8.3 (2000), pp. 299-316.

179

http://www.acpi.info/
http://www.elv-downloads.de/Assets/Produkte/9/994/99434/Downloads/99434_energymaster_basic_um.pdf
http://www.elv-downloads.de/Assets/Produkte/9/994/99434/Downloads/99434_energymaster_basic_um.pdf
http://www.elv-downloads.de/Assets/Produkte/9/994/99434/Downloads/99434_energymaster_basic_um.pdf
http://support.amd.com/
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://standards.ieee.org/findstds/standard/1666-2011.html
http://standards.ieee.org/findstds/standard/1666-2011.html

BIBLIOGRAPHY

[Beaa]

[Beab]

[Bey]

[Bry95]

[BT93]

[Butl1]

[BWOS]

[Cer85]

[CGO6]

[CGO9]

[Cha+12]

[Che+04]

[Che+07]

[CHKO06]

BeagleBoard.org. BeagleBoard. URL: http://beagleboard.org/Products/
BeagleBoard.

BeagleBoard.org. BeagleBoard (Rev C4) System Reference Manual. URL: http:
//circuitco.com/ support/files/BeagleBoard-RevC3/BeagleBoard_
revC3_SRM.pdf.

BeyondTTL. Value Change Dump (VCD). URL: http://www.beyondttl.com/
vcd. php.

Wlodzimierz Bryc. The Normal Distribution: Characterizations with Applica-
tions. Springer, 1995.

Dimitris Bertsimas and John Tsitsiklis. “Simulated Annealing”. In: Statistical
Science 8.1 (1993), pp. 10-15.

G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications. 3rd. Springer, 2011.

D. M. Bates and D. G. Watts. “Nonlinear Regression Analysis and Its Applica-
tions”. In: John Wiley & Sons, Inc., 2008. Chap. Nonlinear Regression: Iterative
Estimation and Linear Approximations.

V. Cerny. “Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm”. In: Journal of Optimization Theory and Applica-
tions 45 (1 1985), pp. 41-51.

H. Cheng and S. Goddard. “Online energy-aware I/O device scheduling for hard
real-time systems”. In: Proceedings of Design, Automation and Test in Europe
(DATE). 2006.

H. Cheng and S. Goddard. “SYS-EDF: a system-wide energy-efficient scheduling
algorithm for hard real-time systems”. In: International Journal of Embedded
Systems (2009).

Hung-Lin Chao et al. “Congestion-aware scheduling for NoC-based reconfig-
urable systems”. In: Proceedings of Design, Automation Test in Europe Confer-
ence Exhibition (DATE). 2012, pp. 1561-1566.

Jian-Jia Chen et al. “Multiprocessor energy-efficient scheduling with task mi-
gration considerations”. In: Proceedings of the 16th Euromicro Conference on
Real-Time Systems (ECRTS). July 2004, pp. 101-108.

Jian-Jia Chen, Chuan-Yue Yang, Tei-Wei Kuo, and C.-S. Shih. “Energy-Efficient
Real-Time Task Scheduling in Multiprocessor DVS Systems”. In: Proceedings
of the Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE
Computer Society, 2007, pp. 342-349.

J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. “Leakage-Aware Energy-Efficient Schedul-
ing of Real-Time Tasks in Multiprocessor Systems”. In: Proceedings of the 12th
IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE
Computer Society, 2006, pp. 408—417.

180

http://beagleboard.org/Products/BeagleBoard
http://beagleboard.org/Products/BeagleBoard
http://circuitco.com/support/files/BeagleBoard-RevC3/BeagleBoard_revC3_SRM.pdf
http://circuitco.com/support/files/BeagleBoard-RevC3/BeagleBoard_revC3_SRM.pdf
http://circuitco.com/support/files/BeagleBoard-RevC3/BeagleBoard_revC3_SRM.pdf
http://www.beyondttl.com/vcd.php
http://www.beyondttl.com/vcd.php

BIBLIOGRAPHY

[CKO5]

[CKO7]

[CR11]

[CSBY0]

[CYWIO]

[DAO8a]

[DAO8b]

[DA10]

[DB11]

[Des92]

[Des99]

[Dev03]

[DNMO6]

[Dor92]

Jian-Jia Chen and Tei-Wei Kuo. “Multiprocessor energy-efficient scheduling for
real-time tasks with different power characteristics”. In: Proceedings of the 34th
International Conference on Parallel Processing (ICPP). 2005, pp. 13-20.

Jian-Jia Chen and Chin-Fu Kuo. “Energy-Efficient Scheduling for Real-Time
Systems on Dynamic Voltage Scaling (DVS) Platforms”. In: Proceedings of the
13th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). 2007, pp. 28-38.

K. Chakraborty and S. Roy. “Topologically homogeneous power-performance
heterogeneous multicore systems”. In: Proceedings of the Design, Automation &
Test in Europe Conference & Exhibition (DATE). Mar. 2011, pp. 1-6.

H. Chetto, M. Silly, and T. Bouchentouf. “Dynamic scheduling of real-time tasks
under precedence constraints”. In: Real-Time Systems 2.3 (1990), pp. 181-194.
ISSN: 0922-6443.

Yi-Jung Chen, Chia-Lin Yang, and Po-Han Wang. “PM-COSYN: PE and memory
co-synthesis for MPSoCs”. In: Proceedings of Design, Automation Test in Europe
Conference Exhibition (DATE). 2010, pp. 1590-1595.

V. Devadas and H. Aydin. “Real-Time Dynamic Power Management through De-
vice Forbidden Regions”. In: Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 2008, pp. 34—44.

Vinay Devadas and Hakan Aydin. “On the interplay of dynamic voltage scaling
and dynamic power management in real-time embedded applications”. In: Pro-
ceedings of the 8th ACM international conference on Embedded software. ACM,
2008, pp. 99-108.

V. Devadas and H. Aydin. “DFR-EDF: A Unified Energy Management Frame-
work for Real-Time Systems”. In: Proceedings of the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 2010.

Robert I. Davis and Alan Burns. “A survey of hard real-time scheduling for mul-
tiprocessor systems”. In: ACM Computing Surveys 43.4 (2011), 35:1-35:44.

M. P. Desai. “An eigenvalue-based approach to the finite time behavior of simu-
lated annealing”. PhD thesis. University of Illinois at Urbana-Champaign, 1992.

M. P. Desai. “Some results characterizing the finite time behaviour of the simu-
lated annealing algorithm”. In: Sadhana 24 (4-5 1999), pp. 317-337.

U.C. Devi. “An improved schedulability test for uniprocessor periodic task sys-

tems”. In: Proceedings of the 15th Euromicro Conference on Real-Time Systems.
2003, pp. 23-30.

D. Dal, A. Nunez, and N. Mansouri. “Power islands: a high-level technique for
counteracting leakage in deep sub-micron”. In: Proceedings of the 7th Interna-
tional Symposium on Quality Electronic Design (ISQED). Mar. 2006.

M. Dorigo. “Optimization, Learning and Natural Algorithms”. PhD thesis. Po-
litecnico di Milano, Italy, 1992.

181

BIBLIOGRAPHY

[DS86]

[Edm65]

[ESO3]

[FNO8]

[FZ08]

[Gan+12]

[GCO04]

[GJ75]

[GJ78]

[GJ90]

[GKO1]

[Gro10]

[Gru00]

[GTK]
[Han+12]

Fabio Romeo Debasis Mitra and Alberto Sangiovanni-Vincentelli. “Convergence
and Finite-Time Behavior of Simulated Annealing”. In: Advances in Applied
Probability 18.3 (1986), pp. 747-771.

Jack Edmonds. “Paths, trees, and flowers”. In: Canadian Journal of Mathematics
17 (1965), pp. 449-467.

Agoston E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. 1st.
Springer, 2003.

Ge Fen and Wu Ning. “A minimum-path mapping algorithm for 2D mesh Net-
work on Chip architecture”. In: Proceedings of the IEEE Asia Pacific Conference
on Circuits and Systems (APCCAS). 2008, pp. 1542-1545.

G. Fettweis and E. Zimmermann. “ICT Energy Consumption - Trends and Chal-
lenges”. In: The 11th International Symposium on Wireless Personal Multimedia
Communications (WPMC). 2008.

Junhe Gan, P. Pop, F. Gruian, and J. Madsen. “Robust and flexible mapping for
real-time distributed applications during the early design phases”. In: Proceed-
ings of Design, Automation Test in Europe Conference Exhibition (DATE). 2012,
pp- 935-940.

Michael A. Golberg and Hokwon A. Cho. Introduction to Regression Analysis.
WIT Press, 2004.

M. R. Garey and D. S. Johnson. “Complexity Results for Multiprocessor Schedul-
ing under Resource Constraints”. In: SIAM J. on Computing 4.4 (1975), pp. 397—
411.

M. R. Garey and D. S. Johnson. “’Strong” NP-Completeness Results: Motiva-
tion, Examples, and Implications”. In: Journal of the ACM (JACM) 25.3 (1978),
pp- 499-508.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

F. Gruian and K. Kuchcinski. “LEneS: task scheduling for low-energy systems
using variable supply voltage processors”. In: Proceedings of the Asia and South
Pacific Design Automation Conference (ASP-DAC). 2001, pp. 449-455.

Stefan Grosbrink. “Comparison of alternative hierarchical scheduling techniques
for the virtualization of embedded real-time systems”. MA thesis. University of
Paderborn, 2010.

Flavius Gruian. “System-Level Design Methods for Low-Energy Architectures
Containing Variable Voltage Processors”. In: In Proceedings of the Workshop on
Power-Aware Computing Systems (PACS). 2000, pp. 1-12.

GTKWave. Welcome to GTKWave. URL: http://gtkwave.sourceforge.net/.

Jian-Jun Han et al. “Synchronization-Aware Energy Management for VFI-Based
Multicore Real-Time Systems”. In: IEEE Transactions on Computers 61.12 (Dec.
2012), pp. 1682-1696.

182

http://gtkwave.sourceforge.net/

BIBLIOGRAPHY

[HJJO3]

[Hu+04]

[Ini]

[Insa]

[Insb]

[Insc]

[Insd]

[Inse]
[Inta]

[Intb]

[Intc]

[Intd]

[Inte]
[ITP]

[Jac+05]

[Jef]

Darrall Henderson, SheldonH. Jacobson, and AlanW. Johnson. “The Theory and
Practice of Simulated Annealing”. In: Handbook of Metaheuristics. Ed. by Fred
Glover and GaryA. Kochenberger. Vol. 57. International Series in Operations Re-
search and Management Science. Springer US, 2003, pp. 287-319.

Jingcao Hu, Youngsoo Shin, Nagu Dhanwada, and Radu Marculescu. “Archi-
tecting voltage islands in core-based system-on-a-chip designs”. In: Proceed-

ings of the 2004 international symposium on Low power electronics and design
(ISLPED). ACM, 2004, pp. 180-185.

Accellera Systems Initiative. Accellera Systems Initiative. URL: http://www.
accellera.org/home/.

Texas Instruments. OMAP3530 Power Estimation Spreadsheet. URL: http: //
processors.wiki.ti.com/index .php/OMAP3530_Power_Estimation_
Spreadsheet.

Texas Instruments. OMAP3530 Technical DOcuments. URL: http://www.ti.
com/product /omap3530L.

Texas Instruments. OMAP3530/25 Applications Processor (Rev. F). URL: http:
//www.tl.com/lit/gpn/omap3530.

Texas Instruments. OMAP35x Technical Reference Manual (Rev. X). URL: http:
//www.tl.com/litv/pdf/spruf98x.

Texas Instruments. Texas Instruments. URL: http://www.ti.com/.

Intel. Intel Core 2 Duo P9500 Processor Datasheet. URL: http://download.
intel.com/design/mobile/datashts/32012001.pdf.

Intel. Intel Core 2 Duo Processor P9500. URL: |http://ark.intel.com/de/
products/35566/Intel-Core2-Duo-Processor-P9500-6M-Cache-2_53-
GHz-1066-MHz-FSBL

Intel. Intel Processor Specification. URL: http://www.intel.com/products/
processor/core2quad.

Intel. Intel Processor Specification. URL: http://www.intel.com/products/
processor/core2duo/1index.htm.

Intel. Intel PXA270 Processor Electrical, Mechanical, and Thermal Specification.

ITProPortal. Exclusive : ARM Cortex-Al5 40 Per Cent” Faster Than Cortex-
A9. URL: http://www.itproportal.com/2011/03/14/exclusive—arm-
cortex—-al5-40-cent-faster-cortex—-ao.

S. H. Jacobson, S. N. Hall, L. A. McLay, and J. E. Orosz. “Performance Analysis
of Cyclical Simulated Annealing Algorithms”. In: Methodology and Computing
in Applied Probability 7 (2 2005), pp. 183-201.

Brian Jeff. Advances in big. LITTLE Technology for Power and Energy Savings.
URL: http://www.arm.com/ files/pdf /Advances_in_big.LITTLE |
Technology_for_Power_and_FEnergy_Savings.pdf.

183

http://www.accellera.org/home/
http://www.accellera.org/home/
http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet
http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet
http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet
http://www.ti.com/product/omap3530
http://www.ti.com/product/omap3530
http://www.ti.com/lit/gpn/omap3530
http://www.ti.com/lit/gpn/omap3530
http://www.ti.com/litv/pdf/spruf98x
http://www.ti.com/litv/pdf/spruf98x
http://www.ti.com/
http://download.intel.com/design/mobile/datashts/32012001.pdf
http://download.intel.com/design/mobile/datashts/32012001.pdf
http://ark.intel.com/de/products/35566/Intel-Core2-Duo-Processor-P9500-6M-Cache-2_53-GHz-1066-MHz-FSB
http://ark.intel.com/de/products/35566/Intel-Core2-Duo-Processor-P9500-6M-Cache-2_53-GHz-1066-MHz-FSB
http://ark.intel.com/de/products/35566/Intel-Core2-Duo-Processor-P9500-6M-Cache-2_53-GHz-1066-MHz-FSB
http://www.intel.com/products/processor/core2quad
http://www.intel.com/products/processor/core2quad
http://www.intel.com/products/processor/core2duo/index.htm
http://www.intel.com/products/processor/core2duo/index.htm
http://www.itproportal.com/2011/03/14/exclusive-arm-cortex-a15-40-cent-faster-cortex-a9
http://www.itproportal.com/2011/03/14/exclusive-arm-cortex-a15-40-cent-faster-cortex-a9
http://www.arm.com/files/pdf/Advances_in_big.LITTLE_Technology_for_Power_and_Energy_Savings.pdf
http://www.arm.com/files/pdf/Advances_in_big.LITTLE_Technology_for_Power_and_Energy_Savings.pdf

BIBLIOGRAPHY

[JGO4]

[JGO5]

[JHMO6]

[Joh+91]

[Kim+02]

[Kir+83]

[Kon+10]

[Kopl1]

[KYDI11]

[KZS11]

[Lam+12]

[Lee09]

[Len]

R. Jejurikar and R. Gupta. “Dynamic voltage scaling for systemwide energy min-
imization in real-time embedded systems”. In: Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED). 2004, pp. 78-81.

R. Jejurikar and R. Gupta. “Energy aware non-preemptive scheduling for hard
real-time systems”. In: Proceedings of the 17th Euromicro Conference on Real-
Time Systems (ECRTS). July 2005.

SheldonH. Jacobson, ShaneN. Hall, and LauraA. McLay. “Visiting near-optimal
solutions using local search algorithms”. In: Compstat 2006 - Proceedings in
Computational Statistics. Ed. by Alfredo Rizzi and Maurizio Vichi. Physica-
Verlag HD, 2006, pp. 471-481.

David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon.
“Optimization by simulated annealing: an experimental evaluation; part II, graph

coloring and number partitioning”. In: Operations Research 39.3 (1991), pp. 378—
406.

Woonseok Kim et al. “Performance comparison of dynamic voltage scaling al-
gorithms for hard real-time systems”. In: Proceedings of the 8th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). 2002, pp. 219—
228.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. “Optimization by Simulated
Annealing”. In: Science 220 (1983), pp. 671-680.

F. Kong, Y. Wang, Q. Deng, and W. Yi. “Minimizing Multi-resource Energy for
Real-Time Systems with Discrete Operation Modes”. In: Proceedings of the 22nd
Euromicro Conference on Real-Time Systems (ECRTS). 2010, pp. 113-122.

Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embed-
ded Applications. 2nd. Springer, 2011.

Fanxin Kong, Wang Yi, and Qingxu Deng. “Energy-Efficient Scheduling of Real-
Time Tasks on Cluster-Based Multicores”. In: Proceedings of the Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). 2011.

Tejaswini Kolpe, Antonia Zhai, and Sachin S Sapatnekar. “Enabling improved
power management in multicore processors through clustered DVES”. In: Pro-
ceedings of the Design, Automation & Test in Europe Conference & Exhibition
(DATE). Mar. 2011, pp. 1-6.

Sofie Lambert et al. “Worldwide electricity consumption of communication net-
works”. In: Optics Express 20.26 (Dec. 2012), B513-B524.

W. Y. Lee. “Energy-Saving DVES Scheduling of Multiple Periodic Real-Time
Tasks on Multi-core Processors”. In: Proceedings of the 13th International Sym-
posium on Distributed Simulation and Real Time Applications (DS-RT). 2009,
pp- 216-223.

Lenovo. ThinkPad T400 Datasheet. URL: http://www.lenovo.com/pdf/us/
en/t400_and_t500_datasheet.pdfl

184

http://www.lenovo.com/pdf/us/en/t400_and_t500_datasheet.pdf
http://www.lenovo.com/pdf/us/en/t400_and_t500_datasheet.pdf

BIBLIOGRAPHY

[LHC11]

[LL73]

[LocO1]

[LS04]

[Ltd]

[Man]

[Mar03]
[Mil12]

[Mo0098]

[MPV12]

[MRS85]

[MT13]

[Nik+11]

[Niul0]

[Niul1]

K. Lampka, K. Huang, and J.-J. Chen. “Dynamic counters and the efficient and ef-
fective online power management of embedded real-time systems”. In: Proceed-
ings of the 7th IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis (CODES+1SSS). ACM, 2011, pp. 267-276.

C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment”. In: Journal of the ACM 20.1 (1973), pp. 46—
61.

M. Locatelli. “Convergence and first hitting time of simulated annealing algo-
rithms for continuous global optimization”. In: Mathematical Methods of Opera-
tions Research 54 (2 2001), pp. 171-199.

Cheol-Hoon Lee and K.G. Shin. “On-line dynamic voltage scaling for hard real-
time systems using the EDF algorithm”. In: Proceedings of the 25th IEEE Inter-
national Real-Time Systems Symposium (RTSS). 2004, pp. 319-335.

ARM Ltd. ARM Cortex-A Series. URL: http://www.arm. com/products/
processors/cortex-a/index.php.

Linux Manual. stress - Linux man page. URL: http://linux.die.net/man/1/
stress.

P. Marwedel. Embedded System Design. Kluwer, 2003.

M.J. Miller. Intel Enters Smartphone Chip Race For Real. 2012. URL: http://
forwardthinking.pcmag.com/ces/292745-1intel -enters-smartphone-
chip-race-for-reall

G.E. Moore. “Cramming More Components Onto Integrated Circuits”. In: Pro-
ceedings of the IEEE 86.1 (Jan. 1998), pp. 82-85.

Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining. Introduc-
tion to Linear Regression Analysis. John Wiley & Sons, Inc., 2012.

D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli. “Convergence and finite-
time behavior of simulated annealing”. In: Proceedings of the 24th IEEE Confer-
ence on Decision and Control. Vol. 24. 1985, pp. 761-767.

Jérome Monnot and Sophie Toulouse. “The Traveling Salesman Problem and its
Variations”. In: Paradigms of Combinatorial Optimization. John Wiley & Sons,
Inc., 2013, pp. 173-214.

AlexanderG. Nikolaev, SheldonH. Jacobson, ShaneN. Hall, and Darrall Hender-
son. “A framework for analyzing sub-optimal performance of local search algo-
rithms”. In: Computational Optimization and Applications 49 (3 2011), pp. 407—
433.

L. Niu. “Energy efficient scheduling for hard real-time systems with fixed-priority
assignment”. In: Proceedings of the 29th IEEE International Performance Com-
puting and Communications Conference (IPCCC). Dec. 2010, pp. 153-160.

Linwei Niu. “System-level energy-efficient scheduling for hard real-time embed-
ded systems”. In: Proceedings of the Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). Mar. 2011.

185

http://www.arm.com/products/processors/cortex-a/index.php
http://www.arm.com/products/processors/cortex-a/index.php
http://linux.die.net/man/1/stress
http://linux.die.net/man/1/stress
http://forwardthinking.pcmag.com/ces/292745-intel-enters-smartphone-chip-race-for-real
http://forwardthinking.pcmag.com/ces/292745-intel-enters-smartphone-chip-race-for-real
http://forwardthinking.pcmag.com/ces/292745-intel-enters-smartphone-chip-race-for-real

BIBLIOGRAPHY

[NJ10]

[NL11]

[NSO0]

[0J02]

[OMA]

[Ope]
[ORC]

[Qua+04]

[QZ08]

[RDV]

[Ric+06]

[Row+08]

[RWep]

A. G. Nikolaev and S. H. Jacobson. “Simulated Annealing”. In: Handbook of
Metaheuristics. Ed. by M. Gendreau and J.-Y. Potvin. International Series in Op-
erations Research and Management Science. Springer US, 2010, pp. 1-40.

Linwei Niu and Wei Li. “Energy-efficient fixed-priority scheduling for real-time
systems based on threshold work-demand analysis™. In: Proceedings of the 7th

international conference on hardware/software codesign and system synthesis
(CODES+ISSS). 2011.

Andreas Nolte and Rainer Schrader. “A Note on the Finite Time Behavior of
Simulated Annealing”. In: Mathematics of Operations Research 25.3 (2000),
pp. 476-484. 1SSN: 0364-765X.

Jeffrey E. Orosz and Sheldon H. Jacobson. “Finite-Time Performance Analysis
of Static Simulated Annealing Algorithms”. In: Computational Optimization and
Applications 21.1 (2002), pp. 21-53.

OMAPpedia. Power Management Device Latencies Measurement. URL: http :
/ /www . omappedia .org/wiki/Power_Management _Device_Latencies_
Measurementl

OpenOCD. Open On-Chip Debugger. URL: http://openocd. sourceforge.
net/.

ORCOS. Organic Reconfigurable Operating System. URL: https://orcos.cs.
uni-paderborn.del

Gang Quan, Linwei Niu, X.S. Hu, and B. Mochocki. “Fixed priority schedul-
ing for reducing overall energy on variable voltage processors”. In: Proceed-
ings of the 25th IEEE International Real-Time Systems Symposium (RTSS). 2004,
pp- 309-318.

Xuan Qi and Dakai Zhu. “Power Management for Real-Time Embedded Sys-
tems on Block-Partitioned Multicore Platforms™. In: Proceedings of the 5th In-
ternational Conference on Embedded Software and Systems (ICESS). July 2008,
pp- 110-117.

David Rhodes, Robert Dick, and Keith Vallerio. Task Graph For Free. URL:
http://ziyang.eecs.umich.edu/~dickrp/tgff/.

U. Richter et al. “Towards a generic observer/controller architecture for Organic
Computing”. In: GI Jahrestagung. Ed. by Christian Hochberger and Riidiger
Liskowsky. Vol. 93. LNI. GI, 2006, pp. 112-119.

Anthony Rowe, Karthik Lakshmanan, Haifeng Zhu, and Ragunathan Rajkumar.
“Rate-Harmonized Scheduling for Saving Energy”. In: Proceedings of the IEEE
Real-Time Systems Symposium (RTSS). IEEE Computer Society, 2008, pp. 113—
122.

S. Raman and B. Wah. “Quality-time tradeoffs in simulated annealing for VLSI
placement”. In: Proceedings of the 15th Annual International Computer Software
and Applications Conference (COMPSAC). Sep, pp. 430-435.

186

http://www.omappedia.org/wiki/Power_Management_Device_Latencies_Measurement
http://www.omappedia.org/wiki/Power_Management_Device_Latencies_Measurement
http://www.omappedia.org/wiki/Power_Management_Device_Latencies_Measurement
http://openocd.sourceforge.net/
http://openocd.sourceforge.net/
https://orcos.cs.uni-paderborn.de
https://orcos.cs.uni-paderborn.de
http://ziyang.eecs.umich.edu/~dickrp/tgff/

BIBLIOGRAPHY

[SCO5]

[SchO5]

[Seo+08]

[SH88]

[Shi]

[THK]

[Tooa]

[Toob]

[Vaz02]
[VK&3]

[Wan+12]

[Xu+04]

[YCKO5]

[YDS95]

V. Swaminathan and K. Chakrabarty. “Pruning-based, energy-optimal, determin-
istic I/O device scheduling for hard real-time systems”. In: ACM Transactions on
Embedded Computing Systems 4 (1 Feb. 2005), pp. 141-167.

Hartmut Schmeck. “Organic computing - a new vision for distributed embedded
systems”. In: Proceedings of the 8th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC). May 2005, pp. 201-203.

Euiseong Seo, Jinkyu Jeong, Seonyeong Park, and Joonwon Lee. “Energy Effi-
cient Scheduling of Real-Time Tasks on Multicore Processors™. In: IEEE Trans-
actions on Parallel and Distributed Systems 19.11 (Nov. 2008), pp. 1540-1552.

Galen H. Sasaki and Bruce Hajek. “The time complexity of maximum matching
by simulated annealing”. In: Journal of the ACM 35.2 (1988), pp. 387—403.

Shimpi. The ARM vs x86 Wars Have Begun: In-Depth Power Analysis of Atom,
Krait & Cortex A15. URL: http://www.anandtech.com/show/6536/arm-vs-
x86-the-real-showdown.

T. Ts’o, D. Hart, and J. Kacur. Real-Time Linux Wiki. URL: https://rt.wiki.
kernel.orqg/.

Tin Can Tools. Flyswatter. URL: http : //www . tincantools . com/wiki /
Flyswatter.

Tin Can Tools. Tin Can Tools Homepage. URL: http://www.tincantools.
com/home.php.

Vijay V. Vazirani. Approximation Algorithms. 2nd. Springer, 2002.

M.P. Vecchi and S. Kirkpatrick. “Global Wiring by Simulated Annealing”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
2.4 (Oct. 1983), pp. 215-222.

Tianyi Wang, Gang Quan, Shangping Ren, and Meikang Qiu. “Topology Virtual-
ization for Throughput Maximization on Many-Core Platforms”. In: Proceedings
of IEEE 18th International Conference on Parallel and Distributed Systems (IC-
PADS). 2012, pp. 408—415.

Ruibin Xu, Chenhai Xi, Rami Melhem, and Daniel Moss. “Practical PACE for
embedded systems”. In: Proceedings of the 4th ACM international conference on
Embedded software (EMSOFT). 2004, pp. 54-63.

Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. “An approximation algorithm
for energy-efficient scheduling on a chip multiprocessor”. In: Proceedings of the
Design, Automation & Test in Europe Conference & Exhibition (DATE). 2005,
pp. 468—473.

F. Yao, A. Demers, and S. Shenker. “A scheduling model for reduced CPU en-
ergy”’. In: Proceedings of the 36th Annual Symposium on Foundations of Com-
puter Science (FOCS). Oct. 1995, pp. 374-382.

187

http://www.anandtech.com/show/6536/arm-vs-x86-the-real-showdown
http://www.anandtech.com/show/6536/arm-vs-x86-the-real-showdown
https://rt.wiki.kernel.org/
https://rt.wiki.kernel.org/
http://www.tincantools.com/wiki/Flyswatter
http://www.tincantools.com/wiki/Flyswatter
http://www.tincantools.com/home.php
http://www.tincantools.com/home.php

BIBLIOGRAPHY

[YPO2]

[2C02]

[ZCKO7]

[ZMCO03]

[ZMGO09]

[2X06]

Yang Yu and V. K Prasanna. “Power-aware resource allocation for independent
tasks in heterogeneous real-time systems”. In: Proceedings of the 9th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS). Dec. 2002,
pp- 341-348.

Fan Zhang and Samuel T Chanson. “Processor Voltage Scheduling for Real-Time
Tasks with Non-Preemptible Sections”. In: Proceedings of the 23rd IEEE Real-
Time Systems Symposium (RTSS). IEEE Computer Society, 2002.

Sushu Zhang, Karam S. Chatha, and Goran Konjevod. “Approximation algo-
rithms for power minimization of earliest deadline first and rate monotonic sched-
ules”. In: Proceedings of the international symposium on Low power electronics
and design (ISLPED). 2007, pp. 225-230.

D. Zhu, R. Melhem, and B. R. Childers. “Scheduling with Dynamic Voltage
Speed Adjustment Using Slack Reclamation in Multiprocessor Real-Time Sys-
tems”. In: IEEE Transactions on Parallel and Distributed Systems 14.7 (2003),
pp- 686—700.

H. Zabel, W. Miiller, and A. Gerstlauer. “Accurate RTOS Modeling and Analysis
with SystemC”. In: Hardware-dependent Software. Springer, 2009.

Xiliang Zhong and Cheng-Zhong Xu. “System-Wide Energy Minimization for
Real-Time Tasks: Lower Bound and Approximation”. In: Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’06).
2006, pp. 516-521.

188

	Introduction
	Motivation
	Objectives
	Problem Statement
	Contributions
	Organization of the Dissertation

	Background
	Real-Time Systems and Scheduling
	Run-Time Energy Management Techniques
	Dynamic Power Management (DPM)
	Dynamic Voltage and Frequency Scaling (DVS)
	Interplay of DPM and DVS
	DPM and DVS on Multi-Core Processor Platforms

	Energy Efficient Real-Time Scheduling
	Advanced Configuration & Power Interface
	Chapter Summary

	System Models and Problem Formulation
	Processor Power Model
	Single-Core Processor
	Multi-Core Processor

	Device Power Model
	Real-Time Task Model
	Problem Formulation
	Problem for Single-Core Processor Platforms (RTSC)
	Problem for Multi-Core Processor Platforms (RTMC)

	Chapter Summary

	Guided Search Algorithm based on Simulated Annealing
	Introduction
	The HSASC Algorithm for RTSC
	The HSAMC Algorithm for RTMC
	Chapter Summary

	Run-Time Behavior Analysis
	Introduction
	Run-Time Behavior Analysis through Exponential Regression
	Quality Estimation
	Termination Criterion
	Chapter Summary

	ES-AS: An Online Approach
	Motivation
	Overview of ES-AS Approach
	ES-AS Approach for RTSC
	Exploration Stage
	Application Stage
	Correctness and Complexity

	ES-AS Approach for RTMC
	Exploration Stage
	Application Stage
	Correctness and Complexity

	Chapter Summary

	Consideration of Non-Negligible DVS State Switching Overhead
	Introduction
	DVS Overhead Handling for RTSC
	Problem Description
	Enhanced Schedulability Analysis

	DVS Overhead Handling for RTMC
	Problem Description
	Enhanced Schedulability Analysis

	Chapter Summary

	Evaluation
	Objectives
	Synthetic Test Scenarios
	Abstract RTOS Simulation Framework
	Generation of Synthetic Task Sets
	Energy Reduction Efficiency (Static Slack)
	Energy Reduction Efficiency (Dynamic Slack)
	Run-Time Analysis
	Estimation Accuracy
	ES-AS Run-Time Overhead
	Impact of CP and SIP

	Real-Life Case Studies
	Single-Core Processor Platform: BeagleBoard
	Multi-Core Processor Platform: Intel Core 2 Duo Processor

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Open Issues and Future Work

	Appendices
	Additional Evaluation Results
	Energy Reduction Efficiency (Static Slack)
	Energy Reduction Efficiency (Dynamic Slack)
	Run-Time Analysis

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	List of Symbols
	Bibliography

