

Quality Metrics Driven Functional Verification

for IP based SoC Design

Dissertation

A thesis submitted to the

 Faculty of Computer Science, Mathematics and Electrical Engineering

of the University of Paderborn in partial fulfillment

of the requirements for the degree of Dr. ret. nat.

by

Tao Xie

Paderborn, October 2013

Supervisors:

1. Prof. Dr. rer. nat. Franz J. Rammig, University of Paderborn

2. Prof. Dr. rer. nat. Sybille Hellebrand, University of Paderborn

1

Abstract

System-on-a-Chip (SoC), centered at reuse of silicon Intellectual Properties (IPs) and

characterized by separation of IP development and SoC system integration, becomes a

dominant paradigm for designing electronic systems. Complexity of both IP and SoC

system design grows exponentially and challenges the functional verification of these

designs. In this context, we consider it a necessity to have a systematic management of

verification quality by applying quantitative metrics. Therefore, the dissertation has the

general goal of establishing a beyond-state-of-the-art, metrics-driven verification

methodology that i) employs automated methods to efficiently improve the verification

quality measured under such metrics and ii) extends the application of these metrics to

accommodate emerging SoC system-level design language. Mutation analysis is the

focused metric in this research for developing new methods. It has a unique, complex test

generation problem to detect (kill) an error-injected design (called a mutant).

At IP level, verification handles designs in traditional hardware description languages

(HDLs) and mutant-targeted automatic test generation is the main objective. Firstly,

random simulation is considered appropriate for achieving a primary level of verification

quality under mutation analysis, where we see the specific problem that random test

generation becomes inefficient as being not metrics-tailored. An adaptive random

simulation method is developed. Based on a modeling of random tests with Markov chain

and constraints, the simulation process is continuously steered by a heuristic towards tests

that are regarded more efficient in killing mutants. The experiments show that this adaptive

simulation is effective of having more mutants killed with less simulation.

Secondly, with a portion of the mutants expected to be un-killed after random

simulation, we solve the problem of further generating tests that kill each individual

mutant. A search-based test generation method is developed, using real simulation results

to guide an iterative process of finding a target test. An objective cost function is defined

specifically for HDL mutation analysis, which calculates the progress of a test killing a

mutant. In the experiments, the cost function, when used to equip a local search algorithm,

delivers consistent performance for steering the search towards mutant-killing tests.

At SoC system level, an IP-XACT mutation analysis framework is developed, assuming

IP-XACT as the default language for SoC integration. Here, first, since IP-XACT designs

as XML data are not simulatable, a simulation engine for IP-XACT, in the form of an IP-

XACT-to-SystemC generator that incorporates Transaction-Level Modeling, is built as the

verification basis. Second, IP-XACT mutation operators are defined by compiling a table

of possible error injections on the IP-XACT schema. The experiments, using an Eclipse-

based tool implementation, shows that the proposal is practical and enables verification of

IP-XACT SoC designs as well as quality measurement of such verification via mutation

analysis.

i

Quality Metrics Driven Functional Verification for IP based SoC Design

2

3

Contents

Abstract ... i

Contents .. iii

CHAPTER 1: Introduction ... 1

1.1. Functional Verification Challenge .. 1

1.2. System-on-a-Chip Challenge .. 3

1.3. Thesis Goal and Organization .. 6

CHAPTER 2: Background .. 9

2.1. IP and SoC Design .. 9

2.1.1. A Reference Flow for IP-based SoC Design ..9

2.1.2. SystemC and Transaction Level Modeling ...17

2.1.3. IP-XACT Standard for IP Reuse and SoC Integration ..23

2.2. Simulation Based Functional Verification .. 31

2.2.1. Quality Metrics Driven Verification ..38

2.3. Quality Metrics for Functional Simulation ... 39

2.3.1. Statement Coverage ..39

2.3.2. Toggle Coverage ...40

2.3.3. Functional Coverage ..40

2.3.4. Observability Based Coverage..41

2.3.5. Mutation Analysis ..42

2.3.6. Comparison of Metrics ...50

2.3.7. Circuit Manufacturing Test and ATPG ..52

iii

Quality Metrics Driven Functional Verification for IP based SoC Design

4

2.4.Summary ... 54

CHAPTER 3: Methodology Overview ... 57

CHAPTER 4: Mutation Analysis Directed Adaptive Random Simulation 61

4.1. Introduction ... 61

4.2. Mutation Analysis Directed Adaptive Random Simulation ... 63

4.2.1. Random Test Generation with Constrained Markov Chain 66

4.2.2. Heuristic Closed-loop Adaptation to Test Generation ... 71

4.2.3. Dynamic Mutation Schemata .. 74

4.2.4. Summarized Procedure.. 77

4.3. Related Work ... 77

4.4. Summary ... 80

CHAPTER 5: Metaheuristic Search Based Test Generation for Mutation Analysis 83

5.1. Introduction ... 83

5.2. Applying Metaheuristic Search to Mutation Analysis ... 85

5.3. A Cost Function for Search Based Test Generation of HDL Mutation Analysis 88

5.3.1. A Control and Data Flow Graph (CDFG) ... 88

5.3.2. CDFG Based Cost Function Definition: Outline .. 90

5.3.3. Macro Propagation Distance ... 93

5.3.4. Local Propagation Cost .. 95

5.3.5. Algorithmic Summary and Complexity .. 101

5.4. Related Work ... 103

5.5. Summary ... 105

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT 107

6.1. Introduction ... 107

6.2. An IP-XACT Design Simulation and Mutation Analysis Framework 109

6.3. SystemC Based IP-XACT Design Synthesis and Simulation .. 111

6.4. Mutation Operators on IP-XACT .. 118

6.5. A Tool Implementation .. 120

6.6. Related Work ... 123

6.7. Summary ... 125

iv

5

CHAPTER 7: Evaluation .. 127

7.1. Objectives ... 127

7.2. MB-Lite Microprocessor IP Verification ... 128

7.2.1. Design Under Verification and Mutants ... 129

7.2.2. Adaptive Random Simulation ... 130

7.2.3. Metaheuristic Search based Test Generation ... 134

7.3. CoreConnect SoC Design Verification .. 139

7.3.1. Introduction to PEK: A TLM IP Libaray for SoC Design .. 139

7.3.2. Two SoC Case Studies on IP-XACT Tool ... 141

CHAPTER 8: Conclusion .. 147

8.1. Outlook ... 149

 Bibliography .. 151

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

v

Quality Metrics Driven Functional Verification for IP based SoC Design

6

1

CHAPTER 1: Introduction

The chapter presents the general research challenges that motivate this thesis.

1.1. Functional Verification Challenge

In the research area of Electronic Design Automation (EDA), functional verification,

where the functional correctness of a design is verified against its specification, is widely

regarded as the bottleneck of development and facing unsolved challenges [14] [15] [16].

Along the years, various automation techniques are proposed to tackle verification

challenges. However, since, on the one hand, the increase of design complexity seems

unstoppable and, on the other hand, new design languages and paradigms emerge

alongside this complexity increase, novel verification methodology has always been

needed to accommodate the changes.

For example, the functional verification of a micropcessor design should verify whether

the design correctly executes sequences of instructions that are specified by its instruction

set architecture (ISA). As the complexity of microprocessors increases following the

Moore’s Law – from the first commercial Intel 4004 processor containing about 2,300

transistors [17] to many over 1 billion nowadays, the design’s state space that we need to

verify increases exponentially, which is known as the state-space explosion problem in

verification. This then suppresses the amount of design that we can verify.

A design productivity gap is depicted in Figure 1.1 [18], which refers to the ever

expanding gap between the Moore’s Law and design productivity, i.e. between the number

of gates, or transistors that can be manufactured into a single chip and the number of gates

that we are actually able to accomplish in a chip design project, described in gates-per-

day. The International Technology Roadmap for Semiconductors (ITRS) updates this

graph every two years in their design chapter, as a high-level view of electronics design

challenges. The use of semiconductor Intellectual Properties (IP) is also mentioned in this

graph as a productivity promotion, which makes the gap not worse. IP-reuse will be a topic

of next section.

Quality Metrics Driven Functional Verification for IP based SoC Design

2

In many occasions [14] [15] [19] [20], the effort spent on verification is estimated to

account for 70% of the entire design activity, if not more. Considering that verification

occupies a constant and large portion of design effort, we may also find a verification gap

contained in the overall productivity gap.

In this context, a more specific question can be asked:

When can we say that the verification is done?

Accordingly, we may define the verification closure problem as finding a point that we

are certain of incompleteness and incorrectness no longer existing in the design under

verification. On the one hand, this confidence is partly a subjective matter. On the other

hand, it is our research task to find an objective and systematic solution. For this, we may

further consider two questions:

 How can we effectively measure the completeness, or thoroughness, or quality of

our verification?

 How can we efficiently improve the verification quality under such measurement?

In this work, we use simulation for functional verification. We consider building a

simulation-based verification methodology that i) relies on well-established coverage

metrics to systematically manage the simulation quality and ii) employs novel methods

for automatic simulation tests generation that targets the metrics. Therefore, we call this

quality metrics driven functional verification.

In particular, we intend to leverage a well-researched, state-of-the-art metric for HDL

(Hardware Description Language) simulation: mutation analysis, which has been

implemented by, for example, a recent EDA tool Certitude [21] [22] [23] from Synopsys.

Figure 1.1 International Technology Roadmap for Semiconductors (ITRS) 2011:

productivity gap [18].

log

1
9

8
1

1
9

8
5

1
9

8
9

2
0

0
9

2
0

1
3

2
0

1
7

2
0

2
1

2
0

2
5 time

1
9

9
3

1
9

9
7

2
0

0
1

2
0

0
5

Gates/Chip

Gates/Day

Technology capability
2× / 36-months

HW design productivity
(Filling with IP and memory)

If w/o IP, memory

SW productivity
LoC/Day

verification widely regarded
to account for ca.

70 percent of design effort

3

CHAPTER 1: Introduction

Exactly meant as an aid to answer the verification closure problem, mutation analysis

gives a quantitative, objective quality measure on simulation tests, by injecting artificial

but typical errors into a design under verification, and assessing how many of these errors

can be revealed by the tests. The individual metric points are called mutants.

Further, the thesis is focused on functional verification. No observation on non-

functional properties is considered, such as power or performance.

1.2. System-on-a-Chip Challenge

Nowadays, we are seeing increasingly more electronic systems in the form of System-

on-a-Chip (SoC, or System-on-Chip), where a system is built into a single integrated

circuit (IC) chip, instead of on a printed circuit board (PCB).

CoreConnect, as shown in Figure 1.2 is an on-chip bus architecture proposed around

2000 by IBM for SoC integration [24], which is widely used ever since. The Processor

Local Bus (PLB) bus provides separate 32-bit address and up to 128-buit data buses. With

a fully synchronous architecture, PLB can be connected with multiple masters and slaves.

High-throughput system cores, such as microprocessors, memory controllers, and Direct

Memory Controller (DMA), are supported by PLB. Other peripheral cores such as a UART

(Universal Asynchronous Receiver/Transmitter) controller can be connected to the low-

bandwidth On-chip Peripheral Bus (OPB). Another Device Control Register (DCR) bus is

intended specifically for register data move between a microprocessor and configuration

registers of other components, so as to free the bandwidth of PLB.

CoreConnect will be frequently used in our examples and case studies. Here, it gives a

first illustration of what defines a SoC: higher system integration on the chip level.

Previously, system components are implemented as separate ICs and then

interconnected on a PCB. Now, both computation and communication components are

Figure 1.2 CoreConnect on-chip bus architecture [24].

Processor Local Bus On-Chip Peripheral Bus

System
Cores

System
Cores

System
Cores

Peripheral
Cores

Peripheral
Cores

Processor
Cores

On-Chip
Memory

Auxiliary
Processor

A
rb

it
er

A
rb

iter

Bus
Bridge

Quality Metrics Driven Functional Verification for IP based SoC Design

4

integrated on-chip. They comprise an integrated design, to be verified, synthesized, and

then manufactured as a single chip.

Arguably, SoC is more of a design paradigm than a perfect reality, since in the end,

most systems still need to be embedded as PCBs.

Network-on-Chip (NoC) is another form of SoC, where system-level integrated

components communicate with each other through on-chip network and routers. Figure

1.3 shows the FAUST (Flexible Architecture of Unified System for Telecom) NoC [25]

[26], which we have employed in a recent European research project COCONUT (A

Correct-by-Construction Workbench for Design and Verification of Embedded Systems)

[27]. 23 IP blocks are included and connected to a network of 20 nodes, resulting in a

complexity of 8 M-gates.

Using a router-based, asynchronous network for communication, higher scalability and

data throughput are expected. Therefore, it is intended for dataflow-intensive, especially

4G-radio-targeted applications. The chip is categorized as a SoC, as it integrates most

system components that are previously off-chip now into a single IC, including, for

example, an ARM microprocessor, memory controllers, radio communications such as

OFDM and CDMA, and the network routers. More details on this NoC and its applications

can be found in [25].

 In the COCONUT project, a high-level, Transaction-Level Modeling (TLM) [28]

based model of this FAUST NoC has been employed as a target platform, to develop a

TLM based SoC design methodology. One of the project results is a TLM-based, RTOS

Figure 1.3 FAUST NoC [25]. A TLM model for this chip has been employed in the

COCONUT project to create a TLM based SoC design methodology.

OFDM
MOD.

ALAM.
MOD.

CDMA
MOD.

MAPP.
BIT

INTER.
TURBO
CODER

CONV.
CODER

NoC
Perf.

RAM CPU RAM
EXT.
RAM
CTRL

ROTOR EQUAL.
CHAN.

EST.
CONV.
DEC.

ETHER
NET

FRAME
SYNC.

ODFX
DEM.

CDMA
DEM.

DE-
MAPP.

DE-
INTER.

EXP

EXP

ARM sub-system

On-chip NoC IF

RAM IF

ETHERNET IF

SPort

APort

NoC2
PORT

Off-chip NoC IF

SPort

APort

NoC1
PORT

Clk & Test CTRL Clock, rst

CPU debug

NoC Node

5

CHAPTER 1: Introduction

(real-time operating system)–aware SoC refinement flow [8]. The previously mentioned

Certitude tool has also been involved in this project, for managing the verification quality

part of the design methodology.

In this work, we do not particularly differentiate NoC and SoC, yet with an emphasis

on traditional master-slave bus architectures.

SoC Design is Centered at IP-reuse

A prominent characteristic of SoC design is that it is centered at component reuse.

Here, component means design components, instead of fabricated devices. These

components are called semiconductor Intellectual Property (IP) in this context. Types of

IPs include encryption/decryption cores, video/audio codecs, telecommunication network

controllers – wired or radio-based, memory controllers, digital signal processors, general

purpose microprocessors, and so on.

Around IP reuse, two roles can be defined for SoC development. One is IP vendor,

whose task is to design and deliver an IP component for some specific functionality. The

other one is SoC integrator that takes a wide range of IPs as input and integrates them into

a complete system capable of hosting applications. At SoC integration phase, an IP can

come either from an internal design group, or from an external IP vendor.

This IP-centered SoC design paradigm has its significant impact on verification.

Besides the general verification gap from the increasing complexity of both IPs and SoCs,

we face these particular challenges:

 Separation of IP design and SoC system design leads to more stringent requirement

on the quality of IP verification. An IP design must be verified as thoroughly as

possible before its delivery to any SoC integration phase, when the in-system

debugging would become more difficult because of the SoC complexity, if not

entirely impossible when the IP is provided as a black-box without source code.

 Verification at SoC system level should accommodate new paradigms and

languages for SoC design. TLM is one example that we have just mentioned with

regard to project COCONUT. IP-XACT is another XML-based, IEEE standard

format specifically for describing IP reuse and SoC integration [29], which has

been seeing increasing acceptance [30]. By aligning verification to SoC-specific

languages, we will be able to focus verification on system-level integration and

cope with the complexity of SoCs.

These general motivations will be further elaborated alongside the background

presentation in next chapter, before we propose our methodology to meet the challenges.

Quality Metrics Driven Functional Verification for IP based SoC Design

6

1.3. Thesis Goal and Organization

Therefore, the thesis tries to provide one step towards solving the functional

verification challenge, in the context of system-on-a-chip becoming a prevailing design

paradigm.

We conclude this introduction chapter with the following considerations. We also

present the concrete problems to be solved in the rest of the thesis.

 To meet the functional verification challenge, we consider systematic application

and deployment of quality metrics to be a necessity. In particular, such application

of metrics should consistently cover both IP and SoC system verification stages.

 We consider mutation analysis, as a well-researched, state-of-the-art testing

technique, to be an advanced metric and the basis on which we build our

verification methodology.

 We further consider that emerging system-level languages, such as IP-XACT and

TLM, are used for SoC system design and, therefore, should be included in the

methodology.

Problems

Test generation is the major problem that we encounter at the stage of IP design

verification with mutation analysis.

 Considering that random simulation is a widely recognized technique for achieving

a primary level of verification quality and should also be used for mutation

analysis, we have the problem that random test generation becomes inefficient in

the context of metrics-oriented simulation. It is because that i) initially, the random

tests are usually not modeled for any specific metric and ii) a target metric also

changes during simulation as a consequence of its subsets being satisfied.

Moreover, mutation analysis is simulation intensive, which makes the problem

more critical. Therefore, we consider an adaptive simulation necessary, able to

consistently steer a random test generation process towards the mutation metric.

 Expecting a portion of the mutation analysis metric to be unsatisfied after random

simulation, we face the problem of further generating tests to kill individual

mutants. This test generation problem is unique to mutation analysis: tests are

required to reach a mutant, activate it, and propagate the erroneous behavior to

design output. Existing methods to the problem are based on symbolic

manipulation and not as scalable as HDL simulation itself. We consider it

necessary to develop a non-symbolic, purely simulation-based test generation

method for HDL mutation analysis.

7

CHAPTER 1: Introduction

Moving to SoC system design, we focus on the following two sub-problems:

 IP-XACT designs as XML data are not simulatable and, therefore, present a barrier

for us continuing the simulation-based, metrics-driven functional verification at

SoC system-level. A simulation engine for IP-XACT SoC designs needs first to be

built as the verification basis.

 Then, we find a general lack of systematic metric for SoC system verification.

Specifically, if we require mutation analysis to be consistently applied also at

system level, we should solve the problem of enabling IP-XACT mutation analysis,

i.e. how IP-XACT design mutants can be created and simulated.

Solutions to these problems will not be limited to mutation analysis, but apply to other

metrics in the general context of metrics-oriented IP and SoC verification too.

Our solution is called a metrics-driven methodology, as i) quantitative metrics are relied

on for systematic measurement of verification thoroughness and quality, ii) automation

methods are proposed to generate tests and improve such measured quality, and iii) for

places where such metrics lack for IP-based SoC design, we tries to create one. The overall

contribution can be stated as:

The thesis establishes a verification methodology that systematically manages and

automatically improves the quality/thoroughness of a functional design verification

process. In particular, it accommodates IP-based SoC design paradigm.

Organization

The thesis is then organized as shown in Figure 1.4:

 In Chapter 2, state-of-the-art techniques and methods for IP and SoC design are

introduced as the background of our proposals. It follows a thread from design, to

functional verification by simulation, to quality metrics for such simulation. In

particular, mutation analysis as the focused metric is extensively discussed and

compared to others.

 In Chapter 3, an overview of our proposals, which comprise a quality-metrics

driven functional verification methodology for IP-based SoC design, is given.

 From Chapter 4 to Chapter 6, three components of the methodology are presented.

Chapter 4 proposes an adaptive random simulation method, which uses mutation

analysis results as on-line feedback to dynamically steer a random test generation

process, so as to obtain an improved efficiency of mutation analysis. Chapter 5

proposes a search based test generation method for mutation analysis, where an

Quality Metrics Driven Functional Verification for IP based SoC Design

8

objective cost function, which is capable of guiding a metaheuristic search

algorithm stepwise towards target tests that uncover a HDL mutant, is defined.

These two methods are mainly for IP-level designs. In Chapter 6, an IP-XACT

based SoC system design simulation and mutation analysis framework is proposed,

to address the lack of systematic verification way at SoC system-level. The

implementation of a prototype IP-XACT tool, based on Eclipse, is also presented.

 Literature directly related to our proposals is respectively discussed in Chapter 4

through 6.

 In Chapter 7, feasibility, effectiveness, and efficiency of the proposed verification

methodology, based on simulation and mutation analysis, are investigated with real

designs. IP-level test generation methods are evaluated with a microprocessor

design. SoC system-level simulation methods are evaluated by exercising our IP-

XACT tool with several CoreConnect/PowerPC SoC designs in TLM.

 In Chapter 8, we give conclusions on the thesis, also addressing some outlook from

this research.

Figure 1.4 Thesis organization.

Methodology overview

IP and SoC design: flow and languages (SystemC, TLM, IP-XACT)

Simulation based functional verification, and its quality
metrics (code coverage, functional coverage, mutation analysis, etc.)

IP design SoC system design

Mutation Analysis Directed
Adaptive Random

Simulation

Metaheuristic Search Based
Test Generation for
Mutation Analysis

SoC System Design
Simulation and Mutation

Analysis with IP-XACT

Evaluation of methods

Chapter 2

Chapter 2

Chapter 3

Chapter 4

Chapter 7

Chapter 5 Chapter 6

9

CHAPTER 2: Background

In this chapter, we give the background discussion necessary for the identification of

what lacks in the state-of-the-art methods and techniques for IP and SoC designs, and

further as the basis for our enhancement proposal. The chapter follows the thesis

organization presented at the end of last chapter and is divided into three sections: design,

verification, and metrics for verification.

 The whole background is unfolded based on a reference flow for IP-based SoC

design, which is defined in Section 2.1.1. Advanced, state-of-the-art design

techniques and methods are introduced by Section 2.1.2 and 2.1.3, which are

focused on SystemC, Transaction Level Modeling, and IP-XACT.

 Discussion on functional design verification is limited to simulation, with common

parts and approaches in HDL simulation introduced in Section 2.2. We define

quality metrics driven verification, an approach that we follow for our verification

methods, in Section 2.2.1.

 In Section 2.3, we discuss a wide range of metrics that can be employed in such

metrics driven verification, with an emphasis on mutation analysis that will play a

central role in our own methods.

Literature closely related to our contributions will be left to each corresponding

chapter, for a better comparison. We further assume some mature languages and methods

familiar to readers and not included in this discussion, such as tradition HDLs like VHDL

and Verilog, designs at Register Transfer Level (RTL), and their simulation.

2.1. IP and SoC Design

2.1.1. A Reference Flow for IP-based SoC Design

In this Section, we introduce a reference design flow for IP-based SoC design, as shown

in Figure 2.1. The purpose of the flow is threefold. First, it serves our definition of IP-

Quality Metrics Driven Functional Verification for IP based SoC Design

10

based SoC design paradigm, in an abstract manner. Second, it constrains our discussion on

design and verification, with regard to background, state-of-the-art methods, and what still

lacks. Third, it is the basis flow upon which our proposal of a quality metrics driven

verification methodology will be constructed, so that in the end we have an enhanced,

integrated flow for IP-based SoC design.

In the figure, our key view of a typical IP-based SoC design flow is the division and

separation of IP design and SoC system integration, which leads to two separate design

phases. Main reasons for this division and separation are i) division between IP vendors

and SoC integrators and ii) increasing complexity of SoC and larger integration.

It is often the case that for the assembly of a SoC design, the SoC integrator needs one

or multiple components as IP from another specific component provider – or IP vendor.

Separation of the IP design phase from the whole SoC design flow is straightforward. Even

when a component is developed at the same place where the SoC should be assembled,

because of the complexity of SoCs nowadays, it is reasonable that a “divide-and-conquer”

paradigm is followed.

The specification for an IP does not necessarily comes from a SoC system specification.

The IP specification defines a specific functionality for a SoC component without, or only

partially, considering its final integration into a larger application scenario. An Instruction

Set Architecture (ISA) for the implementation of a microprocessor IP can be viewed as a

good example of such IP specification, which is quite independent from its final SoC

Figure 2.1 A reference IP-based SoC design flow.

TLM

RTL

behavioral /TLM

RTL

SoC System
Specification

IP Design

IP Specification

Functional
Verification

SoC
Design

Functional
System

Verification

Synthesis/
Hardening

Synthesis,
implement

Third-party
IP

IP repository

IP metadata

IP RTL

IP TLM
IP metadata

IP TLM

IP metadata

IP
H/E

IP metadata

IP RTL IP TLM

IP H/E: Hard or Encrypted IP

IP Component Design SoC System Design

11

CHAPTER 2: Background

application, although the target SoC group, for intensive digital signal processing or as

leisurely microcontroller, should have some impact on the selection of instruction set.

Most importantly, in most cases, we start with the specification, design, and verification

of an IP, before we embark on a SoC specification.

The design of an IP component – the first phase in the design flow – consists mainly of

the design activity itself, the verification, and design synthesis as well as implementation.

 One important aspect of the flow, in both IP component and SoC system design

phases, is the inclusion of a state-of-the-art design technique called Transaction-

Level Modelling (TLM) [31] [28] [32] [8]. Basically, TLM is a design level with

higher abstraction than traditional RTL. It is introduced in Section 2.1.3, together

with a language called SystemC, in which TLM is typically conducted. RTL is still

the major entry level for many design activities, in particular for IP level designs.

Nevertheless, we will spare the space and not give introduction to the quite mature

RTL methods and associated HDLs, like VHDL and Verilog. Basics of VHDL and

Verilog can be found in [33] [34].

 For IP verification, we consider mainly the aspect of functional design verification,

for example, whether a microprocessor design can correctly execute a test program

from a specified ISA. Other non-functional properties like timing and power are

not considered. Existing functional verification techniques, formal or simulation

based, are outlined in Section 2.2, with slightly more focus on simulation based

verification.

 The logic synthesis step is optional. There are generally three forms of IPs:

- Soft-IP: the IP is provided as its source code.

- Hard-IP: the IP is synthesized with a cell library to transistor layout

format, for example GDSII [35], or even to a specific fabrication process.

This is called an IP hardening process.

- Encrypted-IP: the IP is provided with its source code, but encrypted. Later

for the integration in a SoC, it is supposed to be decrypted by some specific

accompanying tool.

The advantage of a soft-IP is its flexibility for implementation. The advantage

of a hard-IP, in contrast, is its predictability, because it is nearer to the

implementation. IP hardening and IP protection by encryption are topics not

focused in this work. Still, we assume that a hard and encrypted IP is always

accompanied with a simulatable model for its integration in system design.

 Techniques on synthesis from a TLM design to RTL and automated abstraction

from a RTL design to TLM exist, which can be found in literature [36] [37], for

Quality Metrics Driven Functional Verification for IP based SoC Design

12

example. Equivalence checking between RTL and TLM is another verification

topic that is not covered by this work.

After the exhaustive verification of IP design, the IP is supposed to be delivered to a

SoC system integrator, either in-house or a third-party vendor. In both cases, the IP should

be imported in an IP repository [38] at the SoC integrator with metadata that document its

possible and correct usage in a system integration, such as its on-chip connection

interfaces, parameters, and reference to design files. An example later shows how

proprietary metadata may look like in a Xilinx IP based SoC design environment for

FPGA.

An IP repository may contain IPs in various forms. These include mainly RTL and

TLM IPs in our discussion. If an IP is provided as a hard core, it is usually accompanied

by a simulation model, say in TLM. Therefore, in a modern flow of IP-based SoC design,

the IP metadata format should be capable of both RTL and TLM.

A successful shift to SoC system level can only secured by thorough verification of IP

designs and their complete metadata. The system phase has similar steps as IP level – SoC

design, verification, and synthesis/implementation.

 As a component based design paradigm, a SoC system description should mainly

include the instantiation of IPs as components, their configuration, and their

interconnection. The description language or format for this SoC integration further

depends on the IP metadata format, since the metadata defines exactly the usage of

IP in SoC. Later, we will show this dependence in the example of Xilinx SoC

development environment, as well as in the introduction to IP-XACT standard.

 Inclusion of both RTL and TLM IPs implies another requirement that the SoC

system design phase should also cover both RTL and TLM, and even an RTL/TLM

mixed integration.

 We consider system simulation as a necessary step for verifying the functional

correctness of a SoC system design, before any of its implementation. This step is

also demonstrated in the Xilinx example. We will emphasize the provision of this

system simulation as a significant gap for the IP-XACT standard. Although other

system verification techniques, such as formal verification and emulation, should

complement the simulation, they are not the target of our proposal on verification

enhancement.

 Targeting a specific implementation technology, whether an ASIC implementation

library or a FPGA device, the SoC design can be synthesized and implemented as

an integrated circuit. In general, the circuit testing step is not included in our design

flow. However, we will introduced briefly alike test methods that are applied in

13

CHAPTER 2: Background

circuit testing, such as fault-modeling and fault-aiming automated test generation,

which can be compared to methods employed in our quality metric driven design

verification.

 The design steps, not only here at SoC system level but also at IP level, can all be

iterative. The functional verification certainly needs to be repeated, when a bug is

revealed and then corrected in design.

This IP/SoC division-and-separation and the resulted two-phase design flow gives a

significant impact on the verification aspect – the target of the thesis.

 Since that the design of an IP is separated from system integration, the IP design is

required to be verified as thoroughly as possible. This thoroughness is only

achievable through i) management of the verification process with quantitative,

systematic quality metrics and ii) automated methods for improving these metrics.

 Then at the system level, the verification of the SoC design is required to be focused

on the system integration, mainly as instantiation, configuration, and

interconnection of IP components. Internal structure of the components may

usually be not visible anymore. Any metric on verification quality should also

consider a focus on integration.

 The flow implies that a design under verification is not always synthesizable, in

both IP design and SoC system design.

We will propose our enhancement to this flow with a focus on verification and its

quality, considering state-of-the-art design and verification techniques, which are to be

introduced in the rest of this chapter. But before that, we present an example instance of

the reference design flow.

Example: Design of Hybrid-Task SoC with Xilinx FPGA Tools

With Figure 2.2, we present a hybrid-task SoC. The purpose is, less of presenting the

IPs and system themselves, to show the design steps and, in particular, the languages and

tools involved. It can be viewed as an instance of the reference design flow presented

above. We choose the Xilinx development environment and tools for this example, as they

indeed represent a typical and state-of-the-art IP-based SoC design flow, if we do not

compare the circuit implementation stage.

We have developed this Hybrid-task SoC as a demo system to show the concept of

unified task scheduling and task migration on a CPU-FPGA coupled platform [13] [11].

The idea is, for example with this hybrid triple-DES task, to enable a design flow with

which we are able to obtain two copies of the triple-DES encryption, one for running on

Quality Metrics Driven Functional Verification for IP based SoC Design

14

CPU and the other one for running on FPGA, whose execution can be decided then at

runtime by an operating system. The two copies of a so-called hybrid task have

corresponding states, so that each of them can have its execution suspended, execution

states extracted and retrieved, and the states restored to its counterpart for a seamless

execution resumption. The reason for such a hybrid-task migration between CPU and

FPGA can be, for example, some desired load-balancing on these two computation hosts.

Focusing on the hardware SoC part, the main system specification is certainly the

provision of functionality and interfaces for task migration, such as suspending, resuming,

and restarting task execution, as just mentioned.

a) The Hybrid-Task SoC

b) Design flow of IP component and SoC system

Figure 2.2 An instance of the reference flow: design of a Hybrid-Task SoC on Xilinx

FPGA.

PC Console:
Test input/output

Hybrid-Task SoC on FPGA

PLB_BUS
PLB
OPB

Bridge

O
P

B

PowerPC
405 wrapper

PowerPC 405

DDR SDRAN
Controller

DDR SDRAM

SW

UART
Controller

Serial IO
PC Console:
Test input

/output

Hybrid Task:
Triple-DES

PC Console:
Test input/output

HT TDES: IP Design RTL HT SoC: System Design RTL

 Synthesis (XST)
MAP, PAR

 Bitstream Gen.

HT TDES

(VHDL)

Simulation

(ModelSim)

IP Specification
• TDES conformance
• HT interfaces

HT SoC

(MHS)

Hybrid-Task (HT) System Specification

• HT interfaces

HT TDES
metadata

(MPD, PAO)

PowerPC
Wrapper
metadata

(MPD, PAO)

Xilinx FPGA IP library

VHDLVHDL

HT
Manager
metadata

(MPD, PAO)

VHDL

PLB
metadata

(MPD, PAO)

VHDL

DDR SDRAM
Controller
metadata

(MPD, PAO)

VHDL

…

Simulation

(ModelSim)

HDL
Generator

Xilinx
IP import

Xilinx
Virtex FPGA

MPD: Microprocessor
Peripheral Description

PAO: Peripheral
Analyzer Oder

MHS: Microprocessor
Hardware Specification

XST: Xilinx Synthesis
Technology

XST PAR: Place and
Route

constraints
(UCF)

15

CHAPTER 2: Background

Before the SoC integration, we made the design of two IP components, the Hybrid-task

Triple-DES and the Hybrid-Task Manager, besides the PowerPC, memory controller,

PLB/OPB buses and bridges, and UART controller directly from Xilinx IP repository.

Consider the design of Hybrid-task Triple-DES as the example for IP design phase.

Two main expectation on the task are the conformance to the Triple-DES encryption

standard and its implementation of the hybrid-task interfaces like suspend and resume.

As shown in Figure 2.3, the IP design is done in VHDL. With the DES encryption

code taken and reused from open-source [39] and the OPB IP Interface (IPIF) generated

by Xilinx tool, our design effort was mostly put on the hybrid-task controlling part. Then

the IP design as a whole was simulated with tool ModelSimTM. Correct production of

encryption stream and response to task migration commands are thoroughly verified and

debugged in ModelSim. ModelSim will be further mentioned in Section 2.2, with its

capability of multi-language co-simulation.

After our best-effort verification, the IP should be packed with its metadata for later

usage. In the Xilinx IP environment, this metadata consists mainly of two files – in two

Figure 2.3 Example IP design: Hybrid-task Triple-DES. It is designed in VHDL, with

functionality – encryption and task migration – simulated and verified with tool ModelSim.

OPB IPIF (IP interface to OPB)

OPB

Hybrid-task Triple-DES IP design (VHDL)

Task Out

Context

Task Out

State
Context

Task

Hardware

State Enable

…...

State

synchronization

signals

…...

…...

State

Synchronization

Contoller

(Code

pattern)

(Space for

user coding)

Task ProcessTask Process

(Code

pattern)

(Space for

user coding)

C
rfc

_
c
o

m
m

a
n

d

C
rfc

_
re

g
_

id

C
rfc

_
s
ta

tu
s

C
rfc

_
d

a
ta

_
in

C
rfc

_
d

a
ta

_
o

u
t

Task Out

Context

Task Out

StateContext

Task

Controller

Hardware

Task Context Manager

State Enable

Task Status

Contoller

Task

Synchronization

Control

Task

Status

Context Ready

Task

Control

Commnad

Task

Control

Status

Context Suspended

Suspending

Quality Metrics Driven Functional Verification for IP based SoC Design

16

formats called MPD and PAO – for each IP, as shown in Figure 2.4. For the triple-DES

hybrid-task IP, the MPD (Microprocessor Peripheral Definition) file describes:

 OPB as its single bus interface.

 Its possible parameters, such as the base and high addresses when connected an

OPB bus. They should be configured with new values during SoC integration, or

use their default values when appropriate.

 Its ports at the component level. The ports are exposed here either with a mapping

to the bus specification, for example here OPB signals, or for a later mapping to

the SoC system ports.

Another complementary PAO (Peripheral Analyze Order) file further lists the paths to

all files that consist the IP itself. These includes not only our VHDL design but also the

dependent libraries. The Order in the format name PAO means that the synthesis

dependences are implied by the order of the file listing. This IP metadata, as well as the IP

verification, prepares our shift to the SoC system design phase.

The SoC integration is described in a Xilinx MHS file – Microprocessor Hardware

Specification, as shown in Figure 2.5. The MHS format is mainly targeted at SoC

integration with memory-mapped buses. In brief, it describes instantiations of IP

components, their interconnections, and the corresponding configuration of their

parameters.

Though in a concise form, together with the implied reference to IP metadata and the

further referenced IP design files, the MHS file becomes a complete description of our SoC

design.

To verify our hybrid-task SoC system described in MHS, the functional simulation of

the whole system behavior was performed, before synthesizing and implementing the

Figure 2.4 Example IP metadata: MPD and PAO descriptions for IP Triple-DES.

MPD file for triple-DES IP

BEGIN tripple_des
…
Bus Interfaces
BUS_INTERFACE BUS = SOPB, BUS_TYPE = SLAVE, BUS_STD = OPB

Generics for VHDL or Parameters for Verilog
PARAMETER C_BASEADDR = 0x00000000, DT = std_logic_vector, BUS = SOPB,
ADDRESS = BASE, PAIR = C_HIGHADDR, MIN_SIZE = 0x100
PARAMETER C_HIGHADDR = 0x0000ffff, DT = std_logic_vector, BUS = SOPB,
ADDRESS = HIGH, PAIR = C_BASEADDR
PARAMETER C_OPB_AWIDTH = 32, DT = INTEGER, BUS = SOPB
PARAMETER C_OPB_DWIDTH = 32, DT = INTEGER, BUS = SOPB
PARAMETER C_FAMILY = virtex2p, DT = STRING

Ports
PORT OPB_Clk = "", DIR = I, SIGIS = Clk, BUS = SOPB
PORT OPB_Rst = OPB_Rst, DIR = I, SIGIS = Rst, BUS = SOPB
PORT OPB_ABus = OPB_ABus, DIR = I, VEC = [0:(C_OPB_AWIDTH-1)], BUS = SOPB
PORT OPB_DBus = OPB_DBus, DIR = I, VEC = [0:(C_OPB_DWIDTH-1)], BUS = SOPB
PORT OPB_RNW = OPB_RNW, DIR = I, BUS = SOPB
…
END

PAO file for triple-DES IP

lib proc_common_v2_00_a proc_common_pkg vhdl
lib proc_common_v2_00_a family vhdl
lib proc_common_v2_00_a or_muxcy vhdl
lib proc_common_v2_00_a or_gate vhdl
lib proc_common_v2_00_a counter_bit vhdl
lib proc_common_v2_00_a counter vhdl
…
lib opb_ipif_v3_01_a write_buffer vhdl
lib opb_ipif_v3_01_a opb_bam vhdl
lib opb_ipif_v3_01_a opb_ipif vhdl
lib tripple_des_v1_00_a user_logic vhdl
lib tripple_des_v1_00_a tripple_des vhdl
lib tripple_des_v1_00_a dual_port_reg_ctrl vhdl
lib tripple_des_v1_00_a fifo_channel_rd vhdl
lib tripple_des_v1_00_a fifo_channel_wt vhdl
lib tripple_des_v1_00_a reg_bank vhdl
lib tripple_des_v1_00_a reg_ctrl vhdl
lib tripple_des_v1_00_a task_section_0 vhdl
lib tripple_des_v1_00_a task_section_1 vhdl
lib tripple_des_v1_00_a task_section_2 vhdl
lib tripple_des_v1_00_a test_Task vhdl
lib tripple_des_v1_00_a test_wrapper vhdl

17

CHAPTER 2: Background

system onto FPGA. Since, on one side, the MHS description is not simulatable and, on the

other side, the involved IPs are provided as VHDL models, Xilinx provides us a generation

tool that transforms a MHS file into a VHDL model. With this generator, we were able to

obtain a VHDL top netlist for the hybrid-task SoC and compile it together with all other

IP models for a simulation, in which the system was tested and debugged.

After the simulation, with another UCF file – User Constraint File – that basically

specifies the binding between the MHS described SoC ports and real FPGA pins, we went

through the synthesis, mapping, place-and-route, and FPGA Bitstream generation steps.

Software part of the system was also developed and we was finally able to run the how

SoC with its software on FPGA and demonstrate the hybrid-task scheduling and migration

concept. More details of the system are given in [13] [11].

2.1.2. SystemC and Transaction Level Modeling

This section provides necessary background on the SystemC language for hardware and

system design, with an emphasis on Transaction Level Modeling that is unique to SystemC

based SoC modeling and also a focus of this work at system level.

The SystemC language comes in the form of a C++ library, as shown in Figure 2.6,

and therefore works with a standard C++ compiler such as GCC in a Linux environment.

At its core, no different than most other HDLs, SystemC provides facilities for hardware

description, simulation, and synthesis.

 A typical discrete-event driven simulation kernel is provided, for the modeling of

concurrent hardware and system elements. Events can be timed and delta-timed,

Figure 2.5 Example SoC system design: MHS description for Hybrid-task SoC.

MHS for Hybrid-Task SoC

PORT fpga_0_RS232_RX_pin = fpga_0_RS232_RX,
DIR = INPUT
PORT fpga_0_RS232_TX_pin = fpga_0_RS232_TX,
DIR = OUTPUT
…

BEGIN ppc405
PARAMETER INSTANCE = ppc405_0
BUS_INTERFACE JTAGPPC = jtagppc_0_0
BUS_INTERFACE IPLB = plb
BUS_INTERFACE DPLB = plb
…
PORT CPMC405CLOCK = sys_clk_s

END

BEGIN plb_v34
PARAMETER INSTANCE = plb
…
PORT PLB_Clk = sys_clk_s

END

BEGIN opb_v20
PARAMETER INSTANCE = opb
…
PORT OPB_Clk = sys_clk_s

END

BEGIN opb_uartlite
PARAMETER INSTANCE = RS232
PARAMETER HW_VER = 1.00.b
PARAMETER C_BAUDRATE = 38400
PARAMETER C_DATA_BITS = 8
PARAMETER C_ODD_PARITY = 0
PARAMETER C_USE_PARITY = 0
PARAMETER C_CLK_FREQ = 100000000
PARAMETER C_BASEADDR = 0xFFFE0300
PARAMETER C_HIGHADDR = 0xfffe03ff
BUS_INTERFACE SOPB = opb
PORT OPB_Clk = sys_clk_s
PORT RX = fpga_0_RS232_RX
PORT TX = fpga_0_RS232_TX

END

…

BEGIN tripple_des
PARAMETER INSTANCE = tripple_des_0
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0x78600000
PARAMETER C_HIGHADDR = 0x7860ffff
BUS_INTERFACE SOPB = opb

END

BEGIN plb2opb_bridge
PARAMETER INSTANCE = plb2opb
PARAMETER C_RNG0_BASEADDR = 0x40000000
PARAMETER C_RNG0_HIGHADDR = 0x7fffffff
PARAMETER C_RNG1_BASEADDR = 0xfffe0300
PARAMETER C_RNG1_HIGHADDR = 0xfffe03ff
…
BUS_INTERFACE SPLB = plb
BUS_INTERFACE MOPB = opb
…
PORT PLB_Clk = sys_clk_s
PORT OPB_Clk = sys_clk_s

END

BEGIN plb_ddr
PARAMETER INSTANCE = DDR_SDRAM_1
PARAMETER C_PLB_CLK_PERIOD_PS = 10000
PARAMETER C_DDR_DWIDTH = 32
PARAMETER C_DDR_AWIDTH = 13
…
BUS_INTERFACE SPLB = plb
PORT PLB_Clk_n = sys_clk_n_s
PORT DDR_Clk90_in = ddr_clk_90_s
PORT DDR_Clk90_in_n = ddr_clk_90_n_s
PORT DDR_Addr = DDR_Addr
PORT DDR_BankAddr = DDR_BankAddr
PORT DDR_CASn = DDR_CASn
…

END

Quality Metrics Driven Functional Verification for IP based SoC Design

18

with default resolution of picosecond.

 Additional data types for hardware modeling are pre-defined, besides the standard

C++ types.

 Then we have the core constructs for modeling hardware and concurrency.

Concurrent processes can be defined as sc_thread, which should be made sensitive

to some sc_events. The implementation is based on the QuickThread C++

threading library. Threads are encapsulated in sc_modules, similar to other

traditional HDLs.

 Modules communicate with each other through ports and interfaces. Figure 2.7

shows this mechanism. Basically, an interface class, inherited from sc_interface,

should first be defined, specifying the communication services to be provided at

this interface, for example, reading the value from a channel. Then this signature

of communication should be implemented by a module, and accessed by another

module through a port that is instantiated with this interface from template class

sc_port. Since the first module implements the same interface as expected by the

port of the second module, they are able to perform pre-defined communication

during SystemC simulation, after their binding at initialization. As the fundamental

mechanism for modeling communication in SystemC, this port-interface binding

is used to implement not only the more abstract TLM but also RTL connections

like sc_signal.

There are several reasons that we skip the detailed introduction to SystemC basics.

Figure 2.6 SystemC language: core facilities. Its usage for traditional RTL design,

hardware/software co-design, and analog/mixed-signal design is not a focus in this work.

Standard C++ Compiler
(e.g. GCC)

Event-Driven Simulation Kernel

Hardware Modeling Data Types

• logic, logic vector – 2 values ('0', '1'), 4 values ('0', '1', 'X', 'Z')
• Arbitrary-size integers
• Fixed-point numbers

Hardware
Design

RTL

Hardware and Concurrent Constructs

• Events, Processes, Modules
• Ports, Interfaces, Signals

Hardware
Design

TLM

Hardware/
Software
Co-Design

Analog/
Mixed-
Signal
Design

Simulation
Testbench
Modeling

19

CHAPTER 2: Background

Most importantly, for RTL design, SystemC provides modeling elements fundamentally

no different than other HDLs. At IP level, we will consider designs at RTL or behavioral

with traditional HDLs like VHDL. At system level, we will put an emphasis on TLM as a

new, state-of-the-art domain.

 Therefore, also assuming that our reader is not completely familiar with TLM, we

introduce in the following not only the principle of TLM, but also an example of its

application. The test-bench modeling capability of SystemC will be left to Section 2.2, in

particular on SystemC Verification Library.

In essence, with TLM in the context of SoC design we model on-chip communication

between system components as function calls, which carries commands and data specific

for that communication protocol. Several function calls are grouped into a TLM interface

as a class inherited from sc_interface, to be provided by a sc_module and accessed by

another module through sc_port. Use of low-level signals for communication are mostly

eliminated.

Figure 2.8 shows this principle of TLM. Processor Local Bus (PLB), a widely used

on-chip communication protocol, is used for demonstration.

The upper part of the figure shows the block diagram and a write-transfer operation

from the original PLB specification [40]. Structural and timing requirements for an RTL

implementation are specified. A PLB bus transaction is defined on a bunch of signals.

The lower part draws us a picture how PLB transactions are modeled at TLM, from a

PowerPC/CoreConnect based SoC design library [41]. Operations, read and write, from

Figure 2.7 SystemC inter-module communication through sc_interface. It is provided by

sc_module, required by sc_port, and bound at initialization.

class

sc_interface

class

sc_module

class template

sc_port

object
C++ object

class

Interface_A

read ()

class

Module_A

read ()

class

sc_port <Interface_A>

object

Module_A

class

Module_B

object

Module_B

class template instantiation

class inheritance

class member

class
C++ class

sc_interface

sc_port

interface/port binding

Quality Metrics Driven Functional Verification for IP based SoC Design

20

the PLB specification are abstracted as functional calls and grouped into two main TLM

interfaces, PLB_BUS_IF between a PLB master and a PLB bus and PLB_SLAVE_IF

between a PLB bus and a PLB slave.

Figure 2.8 TLM principle: function calls to model SoC on-chip communications.

PLB TLM

PLB RTL, from 128-bit-PLB-specification-v4.4 [28]

sc_module

PLB_Master

sc_module

PLB_Bus

sc_module

PLB_Slave

class PLB_REQUEST {
PLB_TRANS_TYPE rw;
PLB_ADDRESS_BUS address;
PLB_DATA_BUFFER data;
PLB_BURST_LENGTH burst_length;
PLB_DATA_WIDTH data_width;
PLB_REQ_PRIORITY_TYPE priority;
PLB_STATUS_TYPE bus_status;
PLB_MASTER_STATUS_TYPE master_status;
PLB_SLAVE_STATUS_TYPE slave_status;
int master_id;
....

};

class PLB_BUS_IF : public sc_interface {
public:

void blocking_read (PLB_REQUEST *tr) ;
void blocking_write (PLB_REQUEST *tr) ;
void nonblocking_read (PLB_REQUEST *tr) ;
void nonblocking_write (PLB_REQUEST *tr) ;
void direct_read (PLB_REQUEST *tr) ;
void direct_write (PLB_REQUEST *tr) ;
void lock (int id) ;
void unlock (void) ;
CC_SIZE get_plb_address_size (void) ;
CC_SIZE get_plb_data_size (void) ;
....

}

class PLB_SLAVE_IF : public sc_interface {
public:

int read (PLB_REQUEST *td) ;
int write (PLB_REQUEST *td) ;
int direct_read (PLB_REQUEST *td) ;
int direct_write (PLB_REQUEST *td) ;
CC_SIZE get_slave_data_size (void);
CC_SIZE get_slave_address_size (void);
PLB_ADDRESS_BUS get_slave_start_address (void);
PLB_ADDRESS_BUS get_slave_end_address (void);
....

}

PLB block diagram PLB read transfer

TLM interface

TLM port

PLB communication
modeled with TLM

21

CHAPTER 2: Background

PLB_REQUEST, which is carried by these function calls, is a protocol specific data

structure and contains fields that exactly represents signals specified by the protocol. The

communication parties, i.e. PLB_BUS and the corresponding ports, are responsible to

maintain state-machines that match the communication protocol, according to

PLB_REQUESTs that they send/receive through the TLM interfaces.

The rationale behind TLM is a separation of on-chip communication and computation

in SoC design, supposing communication generally to be modeled in a more abstract

manner than computation. By this, SoC IPs or components at various abstraction levels,

RTL or behavioral, can all be encapsulated and integrated into a TLM communication

platform. This enables the TLM based SoC modeling, simulation, and evaluation, which

is a focus of our verification method at SoC system level.

Timing in design and verification is not a focus in this work. TLM interfaces can be

implemented with different timing abstractions, cycle accurate or timing approximate –

for example, whether the read operation in the PLB_BUS_IF is implemented with clock

cycles strictly conforming to the original specification, or only in a functionally correct

way. TLM wrapped computation can also be of different timing accuracy, regardless of

communication timing. In [8], we have also proposed a system refinement process based

on TLM, taking into consideration both software and hardware.

The contribution of this thesis at SoC system level will focus on the gap between design

of system integration and TLM based functional system simulation, as well as the quality

of such simulation.

 Further, automated TLM extraction from RTL and TLM synthesis to RTL are both not

considered in our approach, though the equivalence checking between these two levels can

also be accounted as a task of functional verification. Interested readers can refer to [36]

[37] [42], for example.

Example: TLM based SoC Design Experiment with ARM/AMBA

We have carried out this small design experiment shown in Figure 2.9, as a further

demonstration of TLM design.

There are two inputs for the experiment. One is an ARM microprocessor model called

SWARM – SoftWare ARM [43] [44]. The other one is a TLM design library for AMBA

SoC architecture, called CASI AMBA – Cycle Accurate Simulation Interface AMBA [45].

Written in C++, SWARM models an ARM 7 processor that implements the ARMv4T

architecture. When used as Instruction Set Simulator (ISS), it executes ARM instructions in a cycle-

accurate manner. To be cycle accurate, it also models and simulates partially the

microarchitecture of the processor, as shown in the figure. Further, it includes several basic

Quality Metrics Driven Functional Verification for IP based SoC Design

22

peripheral models connected to an internal bus, such as a cache with configurable size. It

is able to run a porting of Linux.

SWARM has been used in several SoC research experiments such as [44] , because of

its open-source nature and the popularity of ARM/AMBA SoC architecture. This also

leads to our motivation of taking it as an ARM processor IP, packing it as a TLM

component, and composing a TLM SoC demonstration.

Figure 2.9 TLM based SoC design experiment. We have used ARM CASI TLM framwork

to wrap SWARM ISS and model a basic ARM/AMBA system.

SWARM ISS

ARM CASI TLM framework

ARM/AMBA SoC with TLM-wrapped SWARM ISS

Wrapping SWARM ISS in ARM CASI TLM framework,
for ARM/AMBA based SoC modeling

Fields of ctrl Mapping to AHB protocols [AMBA spec. v2.0]

ctrl [AHB_IDX_CYCLE]
If AHB_CYCLE_ADDR: address phase;
If AHB_CYCLE_DATA: data phase

ctrl [AHB_IDX_ACK] If AHB_ACK_DONE: transfer completed

ctrl [AHB_IDX_ACC]

(ctrl[AHB_IDX_ACC] & 0x1) : hlock
((ctrl[AHB_IDX_ACC] >> 1) & 0x7): hburst
((ctrl[AHB_IDX_ACC] >> 4) & 0x3): htrans
((ctrl[AHB_IDX_ACC] >> 6) & 0xF): hprot
((ctrl[AHB_IDX_ACC] >> 10) & 0x7): hsize
((ctrl[AHB_IDX_ACC] >> 13) & 0x1): astb
((ctrl[AHB_IDX_ACC] >> 14) & 0x1): ncmahb
((ctrl[AHB_IDX_ACC] >> 31) & 0x1): isasb

A

H

B

B

U

S

//Test_1.c

int main(){

 printf("--Test 1-- ");

 int i=1;

 for(;i<20; i+=2)

 printf("%x ", i);

 return 0;

}

//Test_2.c

int main(){

 printf("--Test 2-- ");

 int i=2;

 for(;i<20; i+=2)

 printf("%x ", i);

 return 0;

}

AHB_SWARM_1 (AHB master, start address: 0x00000000)

M

benable

pinout_done

addr

data

PINOUT

SWARM ISS

byte_word

communicate()update()

S

AHB_SWARM_2 (AHB master, start address: 0x10000000)

M

benable

pinout_done

addr

data

PINOUT

SWARM ISS

byte_word

communicate()update()

S

SWARM_Memory_1

(AHB slave, base: 0x00000000)

Memory (ARM

binary)
communicate()

update()

M S

SWARM_Memory_2

(AHB slave, base: 0x10000000)

Memory (ARM

binary)
communicate()

update()

M S

class AHB_casi: public casi_transaction_if {
public:

/* Synchronous access functions */
virtual CASIStatus read(CASIU64 addr, CASIU32*
value, CASIU32* ctrl);
virtual CASIStatus write(CASIU64 addr, CASIU32*
value, CASIU32* ctrl);
/* Arbitration functions */
virtual CASIGrant requestAccess(CASIU64 addr);
virtual CASIGrant checkForGrant(CASIU64 addr);
...

}

Arm Core

Core

Bus

Cache

INT CTRL

OS Timer

PINOUT

UART CTRL

LCD CTRL

SWARM ISS Memory

(ARM binary)

23

CHAPTER 2: Background

For this, we find the CASI AMBA TLM library that is directly provided by ARM. As

mentioned, the core of such TLM modeling is the abstraction of an on-chip communication

protocol into TLM interfaces that consist of function calls. In the figure, we show a TLM

interface from the CASI AMBA library, which abstracts AMBA AHB (Advanced High

performance Bus) protocol. We see how the read/write/requestAccess/checkForGrant

function calls represent the bus access and how the protocol signals are encapsulated and

carried by these calls. As pointed out by the name, such CASI AMBA communication is

modeled in TLM as cycle accurate to the original protocol specification, so that we can

make accurate simulation, performance evaluation, and design exploration.

This CASI AMBA library does not include any concrete SoC component, except for

the bus models. However, because of the advantage of TLM that provides a separation

between on-chip communication and computation, we are able to wrap IP components at

any level, RTL or behavioral, as TLM components and enable a TLM-based SoC system

integration.

As Figure 2.9 shows, using the CASI AMBA library we created a TLM wrapper for

SWARM ISS, which converts its original memory-accessing PINOUT into the TLM AHB

interface, and backward. We also wrapped a memory model as a TLM AHB slave, which

loads ARM binary at its initialization.

The simple system was then integrated by instantiating an AHB bus from the library

and at the same time attaching dual TLM SWARMs and two memory models to the bus.

Two test programs were supposed to exercise this system integration in a simulation.

In the end, we were able to compile the whole TLM system with SystemC, compile the

software programs with a cross-compiler gnuarm-3.4.3, and successfully simulate the

system with dual-SWARM execution.

2.1.3. IP-XACT Standard for IP Reuse and SoC Integration

Verification depends on the language that is used for design. For IP-level designs, for

example a microprocessor IP, we assume traditional HDLs or SystemC in use, either at

RTL or behavioral. For SoC system level, we try to propose a systematic verification

framework based on a standard IP reuse and SoC integration language, or format, called

IP-XACT. In this sense, IP-XACT is our HDL at SoC system level.

The IP-XACT standard has been made IEEE 1685-2009 [29] in 2010, with the effort

initiated even earlier by the SPIRIT consortium, formed by several major semiconductor

and EDA tool vendors. It intends to provide standardization support to an IP-based SoC

design flow, such as that previous example on Xilinx FPGA design environment. It is

exactly the formats of IP metadata and their integration – MPD, PAO, and MHS in the

Quality Metrics Driven Functional Verification for IP based SoC Design

24

Xilinx case – that IP-XACT tries to standardize. The idea is to have unified, vendor-neutral

exchange format for both IP vendors and SoC integrators.

Figure 2.10 from IEEE 1685-2009 [29] shows a blueprint for IP-XACT based IP reuse

and SoC integration. At its core, IP-XACT defines an XML Schema as the standard

electronic format for packaging reuse information of IPs, as well as for designing SoC

systems by IP integration. Several major XML schema elements are presented here,

including component, design, abstractor, design configuration, busDefinition,

abstractionDefinition, generator, and generator chains. Any top IP-XACT XML

document belongs to one type of them.

Based on these elements, we have two main use scenarios with IP-XACT, as an IP

provider or a SoC integrator. We give an explanatory listing of IP-XACT schema for these

two scenarios, instead of a comprehensive standard repetition. For this, we also prefer an

example based, graphical representation of the IP-XACT schema. Basics about XML

Schema can be found in [46].

 First, IP vendors use an IP-XACT component XML file to package all reuse-related

information of an IP core, which accompanies this IP as its electronic data sheet. The

information includes mainly how the IP can be configured and interconnected to other IPs

via a memory-mapped bus connection, which is the main focus of IP-XACT other than

more sophisticated on-chip architectures like Network-on-Chips. Figure 2.11 shows

several IP descriptions using IP-XACT component. Note that XML documents are

depicted in graphics, as in the rest of this section.

Figure 2.10 Overview of IP-XACT standard [29].

GeneratorGenerator

Component
IP

Component
XML

Component
IP

Abstractor
XML

Design
XML

Design
XML

Design
XML

Design
Configuration Design

XML

Bus
Definitions

Abstraction
Definitions

Component
IP

μP

mem

UART GPIO

system_bus

address

registers

protocol

bandwidth

interface

IP-XACT Compliant
Object Descriptions

IP-XACT Compliant
Design Environment

IP-XACT Compliant
Generators

IP-XACT Compliant
Object Descriptions

Generator
Chains

Generator

C
o

n
figu

ratio
n

IP

P
o

in
t

To
o

ls

G
en

erated
O

u
tp

u
t

IP-XACT
TGI

IP-XACT IP
Import
Export

25

CHAPTER 2: Background

 Multiple views of the IP could be described in its component XML document. If

the IP are provided with both VHDL source files and an abstract C simulation

model, we can then include two views, say, VHDLSourceView and CModelView

Figure 2.11 IP-XACT componnet XML schema for IP description.

IP-XACT component:
MicroBlaze_microprocessor .xml

IP-XACT busDefinition: PLB .xml

IP-XACT absDefinition:
PLB_TLM .xml

IP-XACT absDefinition:
PLB_RTL .xml

IP-XACT component: PLB_BUS .xml IP-XACT component:
PLB_BRAM_controller .xml

Parameters

Parameters

MicroBlaze
microprocessor IP

RTL

busInterface:
DataPLB

fileSet:
TLM-source

MicroBlaze
microprocessor IP

TLM ISS model

fileSet:
RTL-source

view:
tlm-view

view:
rtl-view

DPLB_ABus

ports

busInterface: PLB_TLM

DPLB_RNW

DPLB_wrDBus

DPLB_rdDBus

IPLB_ABus

...
...

DPLB_ABus
p

M_ABusl

DPLB_RNWp

M_RNWl

DPLB_wrDBus
p

M_wrDBusl

DPLB_rdDBus
p

M_rdDBusl

...

busInterface:
InstructionPLB

w

w

w

w

w

TLM_PLB_M_Portt

initiative: requires
typeName: PLB_BUS_IF

service

typeName: sc_port
typeDefinition: plb_bus_if.h

transTypeDef

master

addressSpace: 4G

master

portMaps

portMap

TLM_PLB_M_Port
p

PLB_Masterl

M_Abus
onMaster

w

M_RNW
onMaster

w

M_wrDBus
onMaster

w

M_rdDBus
onMaster

w

...

PLB_Abus
onSlave

w

PLB_RNW
onSlave

w

PLB Block RAM
controller IP

RTL

ports

busInterface: PLB_Slave

...

portMap ...

busInterface:
BRAM_interface

Processor Local
Bus (PLB) IP

RTL

ports

busInterface: Master...

portMap ...

mirroredMaster

busInterface: Slave

portMap ...

mirroredSlave

Direction out of wire port /
Initiative provides of transactional port

Reference, by file location, by name
within an IP-XACT document, or by VLNV

p physicalPort l logicalPort w wire port t transactional port
legend

PLB_Master

initiative: requires
typeName: PLB_BUS_IF

service

t

onMaster

PLB_Slave

initiative: provides
typeName: PLB_SLACE_IF

service

t

onSlave

maxMaster
16

maxSlave
16

directConnection
false

isAddressable
false

addressSpace

range: 4G
rId : DRANG

width: 32
rId : DWIDTH

Predefined configurable element
with its default value and referenceId (rID)

memoryMap

baseAddress: 0
rId : BADDR

range: 32KB
rId : RANG

slave

Num_master: 4
rId : NUMM

Num_slave: 8
rId : NUMS

DBUS_WIDTH:64
rId : DWIDTH

baseAddress:
0 rID : BADDR

param: DPLB_DWIDTH
32 rId : DDWIDTH

User-defined parameter (param) with name,
default value, and referenceId (rID)

param : IPLB_DWIDTH
32 rId : IDWIDTH

param : USE_HW_MUL
1 rID : UHM

param : USE_HW_DIV
0 rID : UHD

param: USE_HW_DIV
0 rID : UHD

param: DIV_ZERO_EXCEPTION
0 rID : DZE

param : USE_ICACHE
0 rID : UICACHE

param : USE_DCACHE
0 rID : UDCACHE

Direction in of wire port /
Initiative requires of transactional port

...

param: USE_FLOAT
0 rID : UFP

Quality Metrics Driven Functional Verification for IP based SoC Design

26

in its IP-XACT description. In each view, the used language could be described. A

view references a set of files that implements this view.

 A file set to be referenced from a view is first documented with fileSet. Each file in

a fileSet describes one of the real files or directories that comprise the IP.

Particularly, it contains extensive information that can be leveraged when later the

IP needs to be compiled or synthesized in design flows.

This includes a name as the exact path to the file or directory and a fileType as

the format of the file, which shall be selected from a pre-defined list with

systemCSource, vhdlSource, VerilogSource, swObject, swObjectLibrary, etc.

Other possible descriptions are includeFile as a Boolean tag to indicate whether the

file is an include file, logicalName for the name of a library file, and dependency

for a directory that this file depends on. Last, one can further specify with

buildCommand explicitly commands and options that should be used in the file

compilation.

 Ports of an IP to be exposed for connection can be declared as a collection of port,

which should be of either a wire type or a transactional type. A wire port

corresponds to a traditional scalar port or vectors of scalars in HDLs, such as

std_logic and std_logic_vector by default for VHDL. Direction of the port shall be

specified. If the port is a vector, its left and right bit should be also be specified.

With transactional port, the latest Transaction Level Modeling (TLM) and

TLM IPs are supported by IP-XACT. It is much tailored to SystemC transactional

modeling that has become the de-facto TLM standard. First, the type of the port in

SystemC can be expressed in typeName, such as the common sc_port, sc_module,

sc_export, sc_initiator, sc_target, or sc_socket. Second, more importantly, the

interface implemented by this port shall be detailed in a service structure, as TLM

connection is essentially centered at SystemC interfaces. The initiative of a service

is the direction of the interface implementation, having the value requires if it is a

sc_port, provides if a sc_export, or both for a sc_socket. Another typeName

included in service describes the exact SystemC type of the interface, along with

typeDefinition indicating the real SystemC file that declares the interface. Either a

wire port or a transactional port, it should have a name that is exactly how the port

is named in the real IP model.

 Later in IP-XACT system integration, there are two alternatives of connecting two

components. One is direct port-to-port connection and the other is based on pre-

specified bus interfaces. For the latter, another two top elements of IP-XACT

schema need to be explained first, namely busDefinition and

27

CHAPTER 2: Background

abstractionDefinition, which as a pair resemble a traditional signal specification

for a bus protocol.

BusDefinition specifies general properties of a bus, such as its maxMasters and

maxSlaves. Multiple abstractionDefinitions may belong to one busDefinition, as

now both RTL and TLM are supported by IP-XACT.

Each abstractionDefinition is a collection of port descriptions, which provide

quite similar information as those in a component element, but here for a

specification purpose instead of declaration of implemented IP ports. Besides, a

port in abstractionDefinition also specifies whether it is required, optional, or

illegal to be present on the bus interface and, when present, whether it should be

implemented as onMaster, onSlave, or onSystem. Signals like system clock and

reset should be grouped as onSystem.

 For the bus/abstractionDefinition based interconnection, the bus interfaces of an

IP are declared by busInterfaces in its component description. Each busInterface

possesses a unique reference to a pair of existing busDefinition and

abstractionDefinition, so that a busInterface based interconnection between two

components can be automatically verified by comparing the referenced

bus/abstractionDefinitions.

This also enables automated port connection during SoC integration, between

two IP components, via a portMaps structure. Such a list of portMap is defined

for each busInterface, which maps a physicalPort, as reference to a component

port, to a logicalPort that is reference to a port specified in abstractionDefinition.

This defines actually how the bus protocol abstractionDefinition is implemented

by this busInterface.

Common bus features like endianness, bitSteering, and bitsInLau may further

be described for busInterface. ConnectionRequired indicates whether the interface

shall be connected when integrated.

 For memory-mapped system integration, it is essential that we describe the

connection purpose of busInterface as one from seven types defined in IP-XACT -

master, slave, system, mirroredMaster, mirroredSlave, mirroredSystem, and

monitor.

Consider three typical IP components that are shown in Figure 2.11: a

microprocessor core, an on-chip bus, and a memory controller. The microprocessor

component description probably includes a busInterface in the mode of master,

which mainly defines an addressSpace as the addressable range from this master.

An executable image can also be referenced.

Quality Metrics Driven Functional Verification for IP based SoC Design

28

BusInterface of the memory controller component should have a mode slave,

where a memory-map block such as a single addressBlock with specification of its

baseAddress, range, and width can be defined. Specific registers within the

addressBlock can also be described by their size and addressOffset. The PLB bus

component exposes two busInterfaces, one as mirroredMaster and another as

mirroredSlave, to be connected to a matching master interface and a slave,

respectively. All the components may further have system as well as

mirroredSystem interfaces as in/outlets for system clock and reset signals.

We should note that in a portMap on master, slave, or system busInterface, the

physicalPort shall implement the same direction as specified by the logicalPort.

To the opposite, the physicalPort in a portMap on mirroredMaster, mirroredSlave,

or mirroredSystem busInterface shall implement the inversed direction from the

logicalPort specification. Mapping of component ports to bus specification enables

their seamless interconnection later. Further, monitor is a special interface to be

exposed by any component for verification purpose.

 In component and in IP-XACT generally, any element defined with an id attribute

is configurable. For a component description, its configuration is done at a system

design description that instantiates this component, by assigning the configurable

elements new values under references to their ids, if the default values should not

be effective. Slave baseAddress is a common use case of configurable element.

In addition to an id, more attributes may be defined on a configurable element,

to specify and constrain its value options. Input format of the element can be

specified as one from bitString, bool, float, long, and string. Attribute resolve

defines how the element value should be configured, such as user indicating the

value to be set by user input or dependent meaning that the value shall be calculated

from other element values. Candidate values may also be specified in a choice

structure as a list of enumerations. With minimum and maximum we further

specify the lower and upper bound of the element value.

 Moreover, there are basically two categories of configurable elements in a

component description. The first category is directly HDL derived, if the IP under

description is in the form of a HDL model. These parameters do not have a pre-

defined sematic, or meaning in IP-XACT schema, but they are immediate place

holders for HDL model parameters. They describe, for example, constructor

parameters of a SystemC module or generics of a VHDL entity. Such a parameter

has a name associated that is directly taken from the model, besides all the above

mentioned configuration attributes.

29

CHAPTER 2: Background

The second category includes those configuration elements with IP-XACT

semantics. For example, IP-XACT defines a baseAddress for a slave bus interface,

with this address specified as a configurable attribute. Being aware of this makes

difference for us, as a configurable element with IP-XACT specified semantic

means that we can take corresponding actions during the synthesis or manipulation

on the element.

In the second scenario, SoC integrators use an IP-XACT design XML document to

assemble an integrated system from existing components, as the example shows in Figure

2.11. This design mainly describes the instantiation of IP components, necessary

interconnections between them, and their correspondingly derived configurations.

 A design instantiates all its components –processing elements and on-chip buses –

by a list of componenInstances. A componentInstance is assigned a unique

instanceName within the design and has a reference to the concerned IP-XACT

component description.

Figure 2.12 IP-XACT design. It describes a SoC integration design with component

instantiation, configuration, and interconnection.

design: PLB_example_design

componentInstance: plb_bus

legend

componentInstance: plb_bram

componentInstance: microblaze

configurableElementValue, which configures value
for a component parameter, referenced by a
unique reference id (rID).

componentInstance: uart

Interconnection:
microblaze_plb_data

compnentRef:
microblaze

busRef:
DataPLB

compnentRef:
plb_bus
busRef:
Master

Interconnection:
microblaze_plb_instr

compnentRef:
microblaze

busRef:
InstructionPLB

compnentRef:
plb_bus
busRef:
Master

16K
rId : IRANG

16K
rId : DRANG

1
rId : NUMM

2
rId : NUMS

32
rId : DWIDTH

32K
rId : IRANG

16K
rID : IRANG

0
rId : BADDR

1K
rId : IRANG

0x8000
rId : BADDR

1
rId : UHD

vlnv : MicroBlaze_microprocessor

vlnv : PLB_BRAM_controller vlnv : PLB_UART_controller

Interconnection:
bram_plb

compnentRef:
plb_bus
busRef:
Slave

compnentRef:
plb_bram

busRef:
PLB_Slave

Interconnection:
uart_plb

compnentRef:
plb_bus
busRef:
Slave

compnentRef:
uart

busRef:
PLB_Slave

Quality Metrics Driven Functional Verification for IP based SoC Design

30

The component is identified by the vlnv unified cross-document referencing

mechanism of IP-XACT, as also used by abs/busDefinition references. In this vlnv

system, every IP-XACT top object/document shall possess a versionedIdentifier,

as a combination of vendor-library-name-version, which uniquely identifies the

document in all IP-XACT mentioned context. Then this top object can be

referenced within another document by a libraryRefType element that consists of

also vendor-library-name-version of that object. A single instanceName is enough

for further identification of this component within this design.

 IP-XACT facilitates mainly memory-mapped bus interconnection for system level

integration. Each connection between two components through a bus interface is

defined by an interconnection element. Besides a name for the connection, an

interconnection contains merely two references of component bus interfaces. Each

such reference is a pair of names, one for the component instance name assigned

within this design and the other for the name of the bus interface in the original

component description. As both interfaces not only have references to the same

abs/busDefinition that they intend to realize but also specify with portMaps how

the abs/busDefinition are implemented by the component ports, we are able to

resolve correct signal connections on this bus interface.

 In design, we also have the possibility of creating adHocConnections not via any

bus specification but on a port-by-port basis. Each adHocConnection is defined as

a list of two or more port references, to bundle multiple component ports together.

 We need to assign configurable elements of the instantiated and interconnected

components with appropriate values according to this integration, such as the

address offset of each slave interface, if they should vary from the default. For this,

we can define in componentInstance a list of configurableElementValue, each

with a referenceId that is the id of the configurable element in the component

description and its new value.

 Further, hierarchical design is also supported by IP-XACT, through the possibility

of wrapping a design further as a component.

Besides these two use scenarios for IP integration, IP-XACT generators define

standard integration interface between a main design environment and third-party tools:

how the main design environment can launch a third party tool and how the latter can

access the IP-XACT files in the former, through the interface called Tight Generator

Interface. This tool integration is not a focus here and one can refer to IP-XACT standard

for more information.

A general note here at the end of the section. A big challenge that we will address in

this thesis is the provision of systematic verification for an IP-XACT SoC design. We

31

CHAPTER 2: Background

definitely find a gap between SoC design with IP-XACT and its functional verification,

since an XML file in IP-XACT is not directly simulatable for verifying its behavior.

2.2. Simulation Based Functional Verification

Functional verification is the process of verifying whether a design conforms to its

specification, as shown in Figure 2.13. Take a microprocessor design for example. The

main specification to be verified regarding its functionality should be whether it can

execute correctly sequences of instructions defined in the ISA that it intends to

implement. Non-functional properties of a design, such as timing and power, are not the

topic of our work.

We assume simulation based verification, with its principle shown by Figure 2.14,

still the overwhelming technology employed for functional verification and therefore also

taken as the basis of our entire work, though other ways of design verification do exist,

such as model checking [47] or FPGA based prototyping. They are not discussed, since

our verification methodology to be proposes is purely based on simulation, even

eliminating symbolic execution that is be found in some literature on test generation.

Therefore, this background section on verification is concentrated on simulation.

A simulation based function verification process is depicted here with five

components: the design under verification, a test generator for generating input stimulus

of design, a monitor for observing the design behavior during simulation and a checker

for deciding the behavioral correctness, metrics and measurement on the quality of the

simulation, a simulator for actually executing the whole. Each is explained in the

following.

Through drawn as a one-direction process, the verification should be iterative. Mainly,

once we find a bug after some simulation, the design has to be debugged and corrected.

Then the simulation should be repeated as another iteration. The verification closure

problem – the done question – will be governed quantitatively by quality metrics.

Figure 2.13 Functional verification: whether a design conforms to its specification.

Specification Design

Functional Verification

conform to?

Design

Quality Metrics Driven Functional Verification for IP based SoC Design

32

Design Under Verification

Put in the context of our reference IP-based SoC design flow, a design under

verification (DUV) at IP level should be a RTL or behavioral model described in common

HDLs – VHDL, Verilog, C, or SystemC. At SoC system level, we assume IP-XACT the

default language for SoC integration. The IP-XACT design many integrate IPs in RTL,

TLM, or both. In all cases, we do not assume an IP design or SoC design to be

synthesizable, with it possibly at early design stage, or mature, near-complete stage.

With IP design, it is also reasonable that we assume a white-box testing scheme, a

general term understood in software testing, meaning that we are able to observe the

internal execution of the design. The introduction of simulation quality metrics will also

following this assumption.

IPs may become black-box in the SoC integration phase, meaning that their code, or

the observation possibility on the code is not available anymore, though they can still be

simulated together with each other. A case can be that an IP is provided as two pieces:

one as a compiled simulation model compatible with some specific simulation tool, the

other one as a synthesized or even hardened design only for further implementation. It is

one of the reasons that, in a later chapter on SoC system design, we will consider defining

a quality metric focused on IP-XACT as the design code.

Simulator

We assume the basic knowledge of HDL simulation with VHDL and Verilog, which

are well established languages. If necessary, a short introduction to discrete-event based

simulation, which is used in most HDL simulators, can be found in [28].

Figure 2.14 Simulation base functional design verification: common structure and

elements. DUV: Design Under Verification.

Simulation Based Functional Verification

Simulator

Done?
Monitor &

Checker

Reference
design

Metrics and Measurement for Simulation Quality

Test
Generator

DUV

33

CHAPTER 2: Background

In the context of IP-based SoC design, a new requirements on the simulator is that it

should support simulation of IPs in different forms [48], since the IPs can be developed

in different environments. As Figure 2.15 shows, ModelSim as a state-of-the-art

simulator does provide a multi-language, mixed-level simulation engine.

Multi-language simulation means that with ModelSim, several designs in various

languages – VHDL, Verilog, and SystemC – can be integrated and compiled as a single

object and simulated together, with all their original language semantics strictly reserved.

Such simulation can be also be mixed-level, meaning the integrated design components

be of different abstraction levels – RTL, behavioral, TLM.

This co-simulation is directly possible, since the original simulation engines behind

these languages and modeling levels are all discrete-event simulation.

Still, as mentioned, we find that for SoC system integration, there is a gap of between

IP-XACT design and simulation.

Test Generator

The test generator is responsible for the test generation task that selects a subset of

design input to be applied as tests, considering the whole design input space as candidate

set for selection. In general, as design input can be classified into different types, the

input space can be divided into regions. For example, the instructions as input for a

microprocessor design have strictly specified types.

For this test selection from a design input space, we can identify three fundamental

approaches, as shown in Figure 2.16:

 Directed test generation: A test set is planned and selected from the input space

before simulation, mainly manually by the tester. A fixed table listing this test set

is constructed. Then the entries of the table are applied one by one in design

simulation. Since all the test entries are constructed manually, test selection effort

will be high, taking into consideration both specification and implementation.

Figure 2.15 ModelSim(TM) simulator from MentorGraphics. It supports multi-language,

mixed-level, singel-kernel simulation of hardware designs.

ModelSim: single kernel for
discrete event simulation

VHDL:

RTL/
behavioral

Verilog:

RTL/
behavioral

SystemC:

RTL/
behavioral/

TLM

Quality Metrics Driven Functional Verification for IP based SoC Design

34

 Random test generation. At the opposite extreme, we have the pure random

approach that lays a (pseudo) random number generator upon the entire input

space, which then simply selects a test each time with an unbiased distribution on

that space. The application effort of this approach should be minimal.

 Constrained Random Test Generation. This is the approach in-between and

combines the advantages of both directed and random test generation. Instead of

listing all individual tests that are considered interesting, constraints are used to

divide design input space into regions. A constraint is selected each time and fed

into a constraint solver that solves this constraint and generates a concrete test from

this region. The selection of constraint can further be made with pre-defined

weights that together add up to one.

We also use Constrained Random Simulation (CRS) to call the constrained random

test generation based functional design simulation. Because of its employment in later

chapters, we use Figure 2.17 to explain more on the principle and advantage of CRS.

As shown by the upper part of the figure, with a set of constraints defined on the design

input space and each associated with a weight for selection, we actually obtain a

probability distribution of tests to be generated for simulation. The advantages are that

we are able to: i) generate a significant amount of tests for exercising the design, as in

Figure 2.16 Test generation approaches compared.

Design
Input
Space

Design
Specification

DUV

Directed Test Generator

Directed Verification Plan

Verification
Task

Test No. Test

1

1.1 ####

1.2 ####

1.3 ####

2
2.1 ####

… …

… … …

Design
Input
Space

Random Test Generator

Design
Input
Space

(Pseudo-)
Random
Number

Generator

Effort

Effort

Effort

Constrained Random Generator

Design
Input
Space

Constraint
Solver

Test

Test

Constrained Random Verification Plan

Constraint Weight (∑=1)

1 2<a≤3, 90<b≤100 0.05

2 1<a≤2, 90<b≤100 0.05

3 1<a≤3, 10<b≤90 0.7

4 … …

5 … …

6 … …

Test

35

CHAPTER 2: Background

random test, ii) at the same time, control the distribution of generated tests by assigning

more weights to constraints of more interests, and iii) even adapt this test distribution

during the simulation process, if our interest changes, for example the quality metrics to

be presented later.

The second part of the figure gives a real example of CRS – how some weighted

constraints are defined for test generation of a floating point unit (FPU) design, which is

a) Weighted constraints imply a probability distribution of tests

b) Example weighted constraints definition, on an input field of a FPU design, using

SystemC Verification Library

Figure 2.17 Constrained random test generation: principle and example.

Weight 0.7

Weight 0.1

X: Design Input Space

C
o

n
st

ra
in

t
1

0≤X≤ 1
Constraint 2

1<X≤ 95

C
o

n
st

ra
in

t
3

95<X≤ 100

Probability

Probability
Distribution

of Tests

Weight 0.2

class FPU_test_base: public scv_constraint_base {
public:

scv_smart_ptr< sc_uint<1> > sign;
scv_smart_ptr< sc_uint<11> > exp;
scv_smart_ptr< sc_uint<52> > frac;

};

class op_zero: public FPU_test_base {
public:
SCV_CONSTRAINT_CTOR(op_zero){

SCV_CONSTRAINT(exp()==0 && frac()==0);
} };

class op_subnorm: public op_base2{
public:
SCV_CONSTRAINT_CTOR(op_subnorm){

SCV_CONSTRAINT(exp()==0 && frac()!=0);
} };

class op_norm: public op_base2{
public:
SCV_CONSTRAINT_CTOR(op_norm){

SCV_CONSTRAINT(exp()>=1 && exp()<EXP_ALL_ONE);
} };

…
…

#define OP_ZERO 1
#define OP_SUBNORM 2
#define OP_NORM 3
…

FPU_test_base * fpu_operator_1;
scv_bag<int> distribution_fpu_operator_1;
scv_smart_ptr<int> i;

// set distribution of fpu_operator_1:
distribution_fpu_operator_1.add (OP_ZERO, 1);
distribution_fpu_operator_1.add (OP_SUBNORM , 1);
distribution_fpu_operator_1.add (OP_NORM , 20);

//more items in “bag”,
higher probability of being selected.

…
i ->set_mode(distribution_fpu_operator_1);

//select constraint according to distribution:
i->next();
switch (i->read()) {

case OP_ZERO :
fpu_operator_1 =new op_zero(); break;

case OP_SUBNORM :
fpu_operator_1 =new op_subnorm(); break;

case OP_NORM :
fpu_operator_1 =new op_norm(); break;

…
}

//generate test according to selected constraint:
generate_test_fpu_operator_1 (fpu_operator_1->read());

IEEE specified
double-precision float

Other inputs

DUV:

FPU
designsign

exponent
11 bit

fraction 52 bit

Quality Metrics Driven Functional Verification for IP based SoC Design

36

expected to conform to an IEEE standard for double precision float arithmetic [49]. One

float operator as one part of the entire design input is taken for example. The left part

shows the constraints defined with constructs from SystemC Verification Library (SCV),

on field exponent and fraction of the input. The right part shows how the scv_bag is used

to define the weights on each constraint, by throwing a corresponding amount of items

into the “bag” for that constrains. The code shows also how the constrained test generation

happens during simulation, with a constraint first selected according to the weighted bag

and the solved to generate a test.

SCV constraints are solved by an integrated constraint solver in SystemC. One can

find more discussion on this solver at, for example, [50]. The quality of constraint solving

is not an issue considered in this work.

 Monitor and Checker

 Simulation produces traces that should be observed and checked for a decision

whether the design had a correct behavior during this simulation. This observation and

checking task is performed by the monitor and checker, respectively. We actually do not

distinguish much between these two components of simulation.

 Such a simulation trace records the history of value changes on each variable or signal

included in the design under verification. As an example, Figure 2.18 shows the trace

from the simulation of a microprocessor design, using the ModelSim™ VHDL simulation

tool. As a synchronous design, the values may change at each clock cycle. Two interfaces

of the design, one to the instruction memory and the other one to the data memory, are

recorded in this trace and shown in a wave form. We can then check the trace against, for

example, another trace produced with a reference design – also called golden model in

some cases meaning that it is assumed to have an absolute correct behavior – and the

same tests, to see whether any deviation exists. The trace recording is usually a facility

provided by the simulation tool, although it is the task of a user to define what should be

recorded.

Regarding the format of such traces, Value Change Dump (VCD) has a ubiquitous

appearance across various simulators. It produces a quite compact structure by adding

each value change as a line of entry into the text-based trace file, after assign a symbol to

each variable under recording. SystemC provides its own VCD support with facilities like

sc_create_vcd_trace_file and sc_trace. The ModelSim tool uses a proprietary format

called Wave Log File (WLF), which is the data format behind Figure 2.18.

Simulation traces, such as that one in Figure 2.18, are an important input for our

iterative, simulation based test generation, to be introduced in a later chapter.

37

CHAPTER 2: Background

Metrics for Simulation Quality

At some time, we have to answer the question: “are we done with the verification?” –

which corresponds to the verification closure problem. We may recall verification closure

as a point that we are sure that incompleteness and incorrectness no longer exist in the

design under verification.

On one side, this sureness is indeed a subjective matter. On the other side, we are able

to use quantitative metrics to gauge an object distance between the current verification

status and the closure, and to use this gauge to decide a closure. This gauge is then also

said to be measurement of the thoroughness, adequacy, or completeness of verification.

Statement coverage is one such metric in a relatively basic form. The introduction to

a wide range of other metrics that can be used for hardware design simulation is made

separately in Section 2.3. Before that, we define the approach that we call quality metrics

driven verification.

Figure 2.18 Example simulation traces in WLF format, monitored from a

microprocessor design simulation with ModelSim. imem_o, imem_i, imem_o, and dmem_i

are microprocessor ports and selected for monitoring.

Quality Metrics Driven Functional Verification for IP based SoC Design

38

2.2.1. Quality Metrics Driven Verification

Quality metrics driven functional verification is a simulation based design verification

process that not only employs one or a set of effective, quantitative metrics to

systematically gauge a distance to verification closure – the quality of verification, but

also integrates metrics-directed, preferably also automated test generation procedures

for efficiently improving such quality measurement.

This idea is outlined in Figure 2.19, on top of an existing simulation flow. The quality

metrics should first be defined on the design under verification. The metrics measurement

is then used to guard a decision that “we are done with verification”. It should further

enhance an existing test generator, by an automated steering towards quality metrics.

From such a metrics driven simulation process, we can expect the following:

 Through strict governance of the simulation process by quality metrics, the

verification should automatically achieve a high-quality status, when we decide

verification closure according to these metrics. Certainly, this high-quality depends

on the quality, or effectiveness of the metrics themself.

 Through efficient, automated test generation methods, the test selection effort

should not be increased significantly and remain at the same levels.

These expected advantages are illustrated in Figure 2.20, on each of the three

simulation approaches just presented.

Moreover, as stated, this systematic, stringent quality management by metrics driven

simulation is a special necessity in an IP-based SoC design flow, since i) IP designs need

to be verified as thoroughly as possible – as high-quality as possible – to ensure its

Figure 2.19 Quality metrics driven functional verification.

Quality Metrics Driven Functional Simulation

Test
Generator

Simulator

Done?Monitor

Quality Metric Construction

Measurement of Simulation Quality

(Automated)Metric Directed Test Generation

DUV

39

CHAPTER 2: Background

successful integration in a possibly different place and ii) SoC system designs need also

verification in a more systematic way because of the higher IP integration and other

advanced techniques like TLM.

2.3. Quality Metrics for Functional Simulation

In the following, we introduce not only common basic metrics for HDL simulation,

such as statement and toggle coverage, but also several advanced metrics that are active

research topics, including functional coverage, the observability based coverage, and

mutation analysis.

An emphasis is granted to mutation analysis, as it will become the focus our

verification methods. Its problem of test generation is also compared to the automatic test

pattern generation (ATPG) in circuit manufacturing test, because of their similarity in the

use of fault modeling.

2.3.1. Statement Coverage

Statement coverage, also called line coverage, is defined as how many statements, or

how much percentage of statements of a design have been executed during its simulation.

It measures the degree of a design being exercised during simulation. In fact, because of

its definition relying merely on statement execution, which is a common observation in

software testing and hardware simulation, statement coverage has its wide application in

them both.

Consider the decoding part of a microprocessor design, which may probably consists

of several case or if branches, for the handling of individual instruction types. During

simulation and test generation, if one type of instruction has been omitted and statements

that belong to the corresponding branch of decoding then not been exercised, statement

coverage will report this incompleteness of verification.

The rationale for statement coverage is straightforward. Only when a portion of design

is executed, possible design errors residing in this portion may cause erroneous simulation

Figure 2.20 Expected enhancement from quality metrics driven verification.

Test
Selection

Effort

Verification Quality

Pure Random

Constrained Random

Directed

Enhancement through
“quality metrics

driven verification”

Quality Metrics Driven Functional Verification for IP based SoC Design

40

behavior and thereafter be observed.

Both the construction of the metric and its measurement should be of minimal cost. In

particular, the cost of simulation, i.e. the decrease of simulation performance due to

statement coverage measurement, should be negligible.

As one of the earliest metrics, and arguably the most basic one, statement coverage

has integrated support in many HDL simulation tools, like the ModelSim simulator that

we mentioned.

2.3.2. Toggle Coverage

Toggle coverage is another widely supported simulation metric by HDL simulators.

When a signal bit has been once toggled from ‘0’ to ‘1’ and also from ‘1’ to ‘0’ during

simulation, the bit has a 100% coverage. If only a one-way toggling has happened, it

receive a 50% coverage. Then the toggle coverage for the whole design simulation is

calculated by summing up results on all the bits.

This also measures the degree of design’s exercise during simulation. The idea is that

by enforcing a more intensive design activity in simulation – bit toggling, we should have

a greater chance to incite as well as observe hidden design errors.

Measuring toggle coverage requires only some extra monitoring on simulation traces.

No extra effort on metric construction is required and the original design simulation is

also not affected by the measurement.

2.3.3. Functional Coverage

With functional coverage, the metric must first be defined by a user, by defining a set

of functional coverage points that are interesting to the user. Each coverage point is

defined on a design variable or one of its multiple fields, as a collection of so-called

coverage bins, which represents specific ranges of that variable or field. For example, we

want monitor the history of transaction addresses that happened on a PLB bus during

simulation. A coverage point can be associated on the address of PLB transactions, with

the bins gathered as the address ranges of all salves. These are the specific functionalities

that should be exercised on PLB – therefore the name functional coverage.

The coverage bins records not only whether a variable range has been hit during

simulation, but also the number of such hits. Moreover, the product of two coverage

points can defined as a cross coverage point. To measure this cross coverage, values of

both variables, on which the two coverage points are defined, should be observed at the

same cycle of simulation.

41

CHAPTER 2: Background

We can further use a microprocessor design as another example. Assuming instruction

is the variable for instruction input and opcode is a field of instruction representing its

type – usually with a fixed bit-length in a RISC processor, we could easily define

coverage bins on opcode according to the microprocessor ISA specification: arithmetic,

logical, shift, branch, load/store, and so on. Then we are able to record the distribution

of opcode in an entire simulation.

In fact, we may view toggle coverage as a very basic form of functional coverage. The

toggling of one bit, back and force, is defined as a coverage point. This functional

coverage metric is defined without advanced knowledge of the meaning of variables or

signals, also without the user involvement.

Though the concept of functional coverage is quite natural, the native support from

languages and tools just surfaced in recent years. The SystemVerilog language [51], as

an effort to combine HDLs and Hardware Verification Languages and adopted as IEEE

standard 1899-2005, provides direct constructs for functional coverage: coverpoint, bins

that belong to a coverage point, and cross on a pair of coverage points. Recent research

tries also to enhance SystemC with a functional coverage library [52] [53].

2.3.4. Observability Based Coverage

In [54], a so-called observability-based coverage is defined. It addresses a

shortcoming of code coverage and functional coverage, both of which totally omit an

important criterion for a testing or simulation process to be successful: any erroneous

behavior of the design under testing must to be incited and propagated to specific design

location, so that it can be observed.

For this, observability-based coverage introduces symbolic tag to model this error

propagation. During design simulation, a symbolic tag ∆ can be attached to a design

variable, as a potential error that should be propagated through statements. The

calculation with tags then follows a set of rules, called ∆-calculus. Figure 2.21 shows two

examples. Note that for Boolean operations, such as AND, a tag equals the D-calculus in

gate-level test generation [55].

 However, this error-modeling tag is made suitable for functional design simulation

by defining also the calculus for other higher-level operations, such as addition or

multiplication. For a statement c = a + b, the result is defined to receive a positive tag, if

both operands are with a positive tag, or a positive tag versus a tag-free. If one operand

has a positive tag and the other one a negative tag, the tags are defined to compensate

each other and the result will have no tag. Also, propagation of tags through control

statements are defined.

Quality Metrics Driven Functional Verification for IP based SoC Design

42

Such definition is necessary, since, in contrary to D-calculus, the observability-based

coverage works with design simulation, without assuming the synthesizability of a

design. This is a general difference between simulation metrics and gate-level fault

models, which we will discuss more in a later section.

On the one hand, the observability-based coverage smartly addresses the problem with

other metrics omitting error-propagation. On the other hand, its biggest disadvantage is

the dependence on symbolic calculation, which i) requires an extra simulation engine and

ii) is usually considered not practical for real designs. Though in [56] [57], advanced

methods for calculating tags are proposed, meant to be more efficient compared to the

original definition, practical adoption is still restrained. Further, the correlation between

a tag and real design errors is neither straightforward nor investigated.

 This homogeneous modeling of design errors is different from the heterogeneous

error injection from mutation analysis in the next section.

2.3.5. Mutation Analysis

Mutation analysis, also called mutation based testing or just mutation testing, is a

unique, fault-injection based simulation, or testing metric. It manages systematically the

quality of functional simulation, by measuring the simulation’s capability of revealing

design errors – though artificially induced. This is similar to the observability-based

coverage that we previously introduced, but different in the way of fault-injection.

The process of mutation analysis is summarized in Figure 2.22. As other metrics, it

is supposed to be laid as an extra quality management layer upon a simulation based

functional verification process.

AND 0 1 0 + ∆ 1 - ∆

0 0 0 0 0

1 0 1 0 + ∆ 1 - ∆

0 + ∆ 0 0 + ∆ 0 + ∆ 0

1 - ∆ 0 1 - ∆ 0 1 - ∆

c = a + b b + ∆ b - ∆

a + ∆ c + ∆ c

a - ∆ c c - ∆

Figure 2.21 Example ∆-calculus for AND and addition operation.

43

CHAPTER 2: Background

 First, a copy of design under verification is created and a so-called mutation, which

is a single minor modification to the design code, is applied on that copy, such as:

Such mutation operations are defined by mutation operators. Each mutation operator

defines a certain type of code modification, such as “replacing an and operator to an or”

like above, “replacing a plus operator to a minus”, “changing a ‘0’ bit to ‘1’ ”. To enable

mutation analysis for a specific language, a set of mutation operators should be firstly

defined on the syntax of the language. This also brings the language-specific nature to a

mutation analysis metric. Later in this section, we will see how an industrial HDL

mutation analysis tool defines the mutation operators on, for example, VHDL.

The mutated copy is called a mutant of the design. A large amount of mutants can be

generated to form a metric database, since theoretically we may apply each mutation

operator to every possible location of the design code.

Each mutant is supposed to be simulated, separately, in addition to the simulation of

the original DUV. A mutant is said to be killed by a test, if during simulation, it produces

a := b and c;
𝑀𝑢𝑎𝑡𝑖𝑜𝑛
→ a := b or c;

Figure 2.22 Mutation analysis in the context of simulation based functional verification.

Quality Metrics Driven Functional Simulation

Test
Generator

Simulator

Done?
Monitor &

Checker

Quality Measurement: Percentage-of-Killed-Mutant

Mutant-directed Test Generation

Mutation Analysis

Mutants

Fault Injection by Mutation Operator

Mutant_i

DUV
test killed?

DUV

Mutant_i

compare

Quality Metrics Driven Functional Verification for IP based SoC Design

44

a different output under this test compared to the output of the original design simulation.

This can be decided by comparing the simulation traces of both at output ports.

The number, or percentage of mutants that were killed during a simulation process

with a certain tests becomes the quality measure of this simulation, or this set of tests.

Under this definition, a mutant can be removed from the metric database, as long as it

was killed at some point.

As with other metrics, using such a quantitative measure on simulation progress, we

are able to systematically handle the verification closure problem and answer that “are-

we-done” question.

Nevertheless, there are two general problems that make this functional verification

closure under mutation analysis difficult:

 Mutation analysis imposes a lot of extra simulation time upon the original

verification process. As mentioned, the amount of created mutants can be huge for

a design. If we apply each mutation operators to every possible operator or variable

at every line of design code, we may obtain the number of mutants as (Lines-of-

code × #-of-mutation-operators × K), assuming K a constant of average frequency

that mutation operators can find their possible usage at a line, approximately.

It means a design with, for example, a thousand lines may derive a mutation

analysis metric with ten thousand mutants. Combined with the fact that all the not-

yet-killed mutants need to be simulated separately with all tests generated, the

metric measurement time can largely exceed that used for the actual simulation,

and even become unmanageable without targeted, efficient test generation.

 The task of selecting a test that kills a mutant is itself a hard problem – as we will

discuss later with more details. If we could have an automated, efficient procedure

for generating mutant-killing tests, the first problem – too many mutants to be

killed – would even become directly solved, or at least largely alleviated.

Therefore, this high computation requirement from mutation analysis has long been

identified as the barrier of its adoption.

In the following, before going to define the test generation problem for mutation

analysis and introduce further advanced techniques for easing the computation

requirements on mutation analysis, we first try to explain the rationale behind mutation

analysis as a verification quality metric. At the end, we will introduce as example a

complex, industrial tool that implements HDL mutation analysis, by incorporating most

of the advanced mutation techniques from research.

45

CHAPTER 2: Background

Rationale: Double Effectiveness

We discuss why mutation analysis can be used as a quality metric for functional

verification, whose ultimate goal is to uncover any deviation between design and

verification – incompleteness or incorrectness. Such a metric should be used to gauge a

distance between the current verification status and the verification closure.

We discuss rationale behind using mutation analysis in two aspects:

 After the mutants are created, they are design errors and it is an intrinsic and

fundamental requirement for the simulation tests to be able to reveal these errors.

On the other side of this aspect, if the simulation cannot reveal the mutation

errors and killed the mutants, how can we be confident about the quality of the

simulation? It is similar to the other metrics in such consideration. If a statement

has not been executed in a simulation, or a functional coverage bins been missed,

we may have reasonable doubt about the thoroughness of the simulation – though

we still cannot exclude the existence of possible design errors, if we have a 100%

statement and functional coverage.

To support this effectiveness argument on mutation analysis, the mutation

operators should be defined to be representative of real design errors that a designer

can possibly make. They should best be concluded from extensive, statistical study

of such designer errors, for a specific language.

 A Coupling Effect is assumed, and partially proved by experimental studies, which

states that if a set of tests is able to kill more mutants created from a design under

verification, they will also be able to expose the real exiting bugs in the design.

At the origin of mutation analysis for software program testing, the coupling-

effect was proposed merely as premise [58]. Later, there has also been experimental

studies [59] [60] to evaluate this premise, with positive results. The investigation

on coupling effect is not included in this thesis, but with it used as a general

assumption.

We call them the double effectiveness of mutation analysis.

Test Generation Problem

We describe the problem of test generation for killing a certain mutant. The problem

is defined only to a necessary degree for this moment. A more accurate model for problem

discussion and solution will be presented in Chapter 5.

Quality Metrics Driven Functional Verification for IP based SoC Design

46

 A control flow graph (CFG) as shown in Figure 2.23 should be enough for the

moment. It extracts a structure from a software program – where mutation analysis

originates – or a HDL design in VHDL, Verilog, or SystemC.

The CFG also represents a mutant by marking the mutation. Three tasks, or conditions

must be fulfilled for killing this mutant.

 Reachability. The execution of simulation needs to first reach the location of

mutation. Only when the mutated statement has been executed, we may observe a

different mutant behavior from the original design.

 Activation. The mutant needs to be activated by the mutated statement being

executed in such a way that a local deviation is created. It means that in the example

mutation, the result of (b or c) is evaluated to a different value from that of the

original code (b and c), i.e. as a condition (b or c) ≠ (b and c).

 Propagation. Any local created deviation needs then to be propagated to the

design output, so as to result in deviation also at the output and therefore, the mutant

being killed according to definition.

Together, they form a necessary and sufficient condition for a test and the simulation

under this test to kill the mutant.

The literature discussion on existing test generation methods will be left to the related

work in later chapters. We only mention here than in general, the propagation problem

has not been tackled. It is even not possible for an analysis with CFG, as propagation is

naturally a data flow process.

At the opposite of mutant-killing test generation, there exists the problem of

identifying so-called equivalent mutants, which are those mutants that intrinsically cannot

Figure 2.23 A control flow graph with mutation marked.

branch 1

branch 2

exit

true false

false
true

entry

a := b and c; a := b or c;

statements
w/o branches

47

CHAPTER 2: Background

be killed by any mutants. Reasons for such impossibility for a mutant to be killed can be:

i) The mutated statement is not reachable under all cases, for example as a redundant

code; ii) The mutated statement, though syntactically different from the original one, will

never compute a different result in its context. For example, we cannot differentiate (a>0)

from mutated code (a>=0), when a is always assigned a valued greater than 0 before this

line. iii) Regarding propagation, the mutant is un-killable if, for example, the result of the

mutation statement is not even used in further computation at all.

In any of these cases, the mutant is equivalent to the original design, under our

observation at design output.

Automated identification of equivalent mutants is an un-tackled problem in mutation

analysis research [61]. It is not a focus in our work.

Techniques for Mutation Analysis

Since long years of research on mutation analysis, in software testing and hardware

design verification, advancing techniques have been proposed to reduce the cost of

mutation analysis and to improve its adoptability. Some influencing ones are selective

mutation [62], mutation schemata [63], and weak mutation [64] [65]. These have also be

implemented by the industrial EDA tool for HDL mutation analysis, which will be

introduced next and also used as a basis of our research.

 Selective Mutation. Recall the number of possible mutants to be generated by a

set of mutation operators on a design approximately as (Lines-of-code × #-of-

mutation-operators × K). With selective mutation, we make a simple trade-off and

generate selectively a much smaller subset from all possible mutants, as Figure

2.24 shows. We may exclude the application of some mutation operators. Or we

may choose to apply a mutation operator less frequently, i.e. not applying it at every

operator or variable where it can be applied. We may even just skip the mutation

at specific lines of design code. The purpose is to compress the mutant database in

a manageable size.

The degree of compression is a trade-off between effectiveness of mutation

analysis, in terms of its stringency of test qualification, and the required simulation

time. The minimal set of tests required to kill all possible mutants is certainly a

superset required in selective mutation. There are also early studies [66] to

experimentally evaluate this relation.

 Mutation Schemata. Simulation time is not the only cost of mutation analysis, in

fact. Time for mutant compilation is another, before we can simulate them. This

compilation time is huge, if we assume thousands of mutants. The situation is even

worse, if we consider the functional simulation as an iterative process and each

Quality Metrics Driven Functional Verification for IP based SoC Design

48

time the design is debugged and modified, all the mutants need to be created and

compiled again, alongside the original design compilation.

With mutation schemata, mutants are created as one copy of DUV. As Figure

2.24 shows, all the mutations are instrumented on that single copy, each coded with

an id parameter. To simulate one mutant and see whether it can be killed by a test,

the id parameter is set to select that corresponding mutant. The selection can be

implemented by, for example, if-then statement that governs each mutation with a

unique id.

Meta-mutant is used to call that single copy of DUV with all mutants coded in.

We finish the compilation of all mutants by compiling only the meta-mutant once.

Though the parameterization of meta-mutant introduces minor overhead, mutation

schemata is almost a necessity for handling designs with practical size and

thousands of mutants. Further, it has not any influence on the effectiveness of

mutation analysis.

 Weak Mutation. Weak mutation is a further trade-off between mutation analysis

effectiveness and the requirement on test generation. Instead of defining the kill of

Figure 2.24 Mutation analysis techniques.

Mutation analysis measurement in mutation schemata:
select one mutant for simulation by setting an id parameter

Mutants

DUV

Mutants

DUV

Meta-
mutant

DUV
test killed?

Meta-
mutant

id:1

id:2

id:3

id:4

…

…
…

…
…

…
…

…
…

…
…

id : 3

Selective
mutation
analysis

Mutation
schemata

Weak
mutation

Mutation analysis measurement in weak mutation :
observation point for killing mutant can be defined as not being at output

test killed?

decode ALU

compare

…

…

mutant

DUV

id:5

49

CHAPTER 2: Background

mutants as deviation of simulation at design output, kill can be defined at a point

anywhere along the path between mutated statement and output. As the example in

Figure 2.24 shows, the observation of whether a mutant being killed is defined

right after the decode unit, on the result of decoding.

At one extreme, if kill is defined immediately after the mutation, i.e. on the

result of the mutated statement, the requirement on propagation is eliminated and

kill equals activation. At the other extreme, kill is defined on design output and we

have the original mutation analysis, which is also called strong mutation for

distinguishing.

As with selective mutation, the minimal set required for any specific weak

mutation must be a subset of original, strong mutation.

Certitude: An Industrial EDA Tool for HDL Mutation Analysis

Mutation analysis has its origination in software testing [58] [67]. If we consider the

task of software testing and that of functional hardware design verification, they have

intrinsically no difference, to be finding any incompleteness and incorrectness of an

implementation from its specification. In [68], [69], and [70], the application of mutation

analysis to HDLs has been discussed for the first time.

From company Synopsys®, Certitude(TM) is an industrial EDA tool that implements

mutation analysis for several HDLs, which include VHDL, Verilog, and SystemC. It can

be used with most commercial simulation tools, such as ModelSim(TM) from

MentorGraphics or VCS(TM) from Synopsys itself, thanks to a seamless integration.

Figure 2.25 shows two screenshot from the tool, which report the result of mutation

analysis on the simulation of a VHDL floating point arithmetic design. As illustrated,

Certitude implements mutation schemata, by instrumenting all mutants into one design

copy. When we click on a colored mark, the mutation at this location and the induced

mutant with a unique ID is shown, along with the mutant status after simulation: activated

or non-activated, propagated or non-propagated when activated.

We list the names of several mutation operators – not complete – defied by Certitude,

without going into their details, since many of them are self-explaining:

 Operator-or-to-and; Operator-and-to-or; Operator-and-to-nand;

 SwapOperand;

 BitFlip-'0'-to-'1'; FlipFirst; FlipLast;

 DeadAssign;

 ConditionFalse; ConditionTrue; NegatedCondition; ElseDead;

Quality Metrics Driven Functional Verification for IP based SoC Design

50

Certitude also implements selective mutation, by allowing a user to set

MaxFaultPerLine as a parameter for the tool during the creation of mutants. Moreover,

weak mutation is implemented in a way that we can define any signal between units as

one of the points for observing the kill of mutants.

We used this tool to construct examples and for evaluations. However, it does not

imply any restriction of our methods, for mutation analysis enhancement, to this specific

tool. More literatures on Certitude can be found in [22] [23].

2.3.6. Comparison of Metrics

With Figure 2.26, we further summarize a comparison between the simulation quality

metrics that we introduced so far. In particular, we will compare the rest to mutation

analysis, as it is our focused metric and will play a central role in all later chapters.

 Metric construction. Though the definition of mutation operators for a specific

language, their implementation as code instrumentation, and the integration with

simulation tools for mutant measurement are all complicated tasks, once they are

finished as a tool, the mutation analysis becomes a fully automated process, except

for test improvement. For a design under verification, the construction and

compilation of its mutant database require little effort thanks to mutation schemata.

The other metrics are also to be established by automation, except for functional

coverage, which requires a user to define coverage points and bins for each design.

This leads to another issue of functional coverage: the quality, or effectiveness of

Figure 2.25 Certitude: an industrial EDA tool for HDL mutation analysis. The color

marks annotate not only the locations of muation but also the mutant status during simulation.

“Fault” here is used in equivalence with mutant.

51

CHAPTER 2: Background

the metric itself depends on the user capability and effort. Therefore, functional

coverage is a subjective metric and mutation analysis, and the rest metric, are

objective.

 Measuring metrics. As mentioned, the extra simulation time imposed by

mutation analysis is the biggest challenge of its adoption, lagging behind other

metrics. Still, we consider the symbolic simulation in observability-based

coverage even more computation-expensive and not always practical.

 Test generation. Mutation analysis highlights an intrinsic requirement on

simulation and its tests, namely their capability of stimulating potential design

errors and propagating the erroneous behavior to pre-defined observation points.

In this way, mutation analysis imposes a more stringent qualification on tests and,

correspondingly, a more difficult job for automated test generation.

This is not addressed by other metrics, except for the observability-based

coverage. Again, in contrast to the symbolic-tag manipulation, mutation analysis

relies totally on actual HDL simulation.

Metric Metric construction Measurement Test generation Problem

Statement coverage + automated + minimal cost reach

Toggle coverage + automated + minimal cost reach and toggle

Functional coverage - manual + minimal cost reach and hit

Observability-based

coverage [54]
+ automated symbolic

reach, symbolically activate

and propagate

Mutation analysis + automated - high cost
reach, activate, and

propagate

Figure 2.26 Comparison of metrics for simulation based functional verification.

Test generation for design simulation

Statement coverage

Data flow Control flowstatement

'0' to '1'
'1' to '0'

Toggle coverage

hit coverage bins
(specific ranges

of variable)

bit
deviation

1

2

1

2

1

2

2
Requirements of metric,
as well as sub-problem of test generation

3

Functional coverage

1

Mutation analysis

Legend:

Quality Metrics Driven Functional Verification for IP based SoC Design

52

We may further observe that a hundred percent toggle or functional coverage does not

necessarily lead to 100% statement. Also, full statement coverage does not imply 100%

toggle, or 100% functional coverage, neither. They can be complementarily used.

Further, it is clear that mutation analysis requires a 100% statement coverage, assuming

mutants are distributed to every lines of code.

2.3.7. Circuit Manufacturing Test and ATPG

Although circuit test after IC manufacturing is another separate phase in the whole

EDA flow and forms itself a big research area, we could immediately find its similarity to

functional design verification, when mutation analysis is used, as both employ fault models

to quality tests.

In the following, for a comparison we first introduce their differences in three aspects,

as summarized Figure 2.27, and then conclude why the test generation algorithms –

Automatic Test Pattern Generation (ATPG) – are not applied for mutation analysis.

First, the tasks of functional verification and manufacturing test are totally different in

an EDA flow, as shown in Figure 2.28. Function verification intends to uncover errors

that are introduced during HDL design, i.e. any deviation from specification.

Manufacturing test is applied to each circuit device after their fabrication, to ensure no

physical cell defects are introduced during this process. Presented only for a further

comparison, in an FPGA based implementation flow, such circuit testing is no longer

necessary, as there is simply no step of manufacturing, assuming the FPGA device is error-

free.

Second, the rationale and mechanism behind defining a test qualification metric by fault

modeling is different. This is shown by Figure 2.29, without going into the details of

various gate-level fault models.

 In mutation analysis, we have discussed the rationale of mutants as double

effectiveness: i) mutants model typical design errors and when they are created,

simulation should be able to reveal them; ii) mutants are coupled with real design

bugs, in a way that if simulation can kill mutants, it will also be able to find real

Figure 2.27 Aspects of comparison between circuit manufactring test and functional

design verification.

Functional
verification

Mutation analysis
Mutant targeted
test generation

Manufacturing
test

Fault models ATPG

Task Quality Metric Test Generation

versus

53

CHAPTER 2: Background

bug.

 In gate-level fault models, for example stuck-at fault, a logical gate fault abstracts

a physical defect of certain type that may happen during chip manufacturing, as a

direct mapping. Therefore, when tests are generated by ATPG that detect such a

fault, they will guarantee the catching of that manufacturing defect.

 Third, the test generation problem is usually on a different basis, for gate-level fault

models in circuit test and HDL mutants in functional verification.

Usually, ATPG algorithms – consider the earliest D-algorithm and the follow-ons [55]

[71] [72] on stuck-at faults for example – take only a combinational logic area as input.

Even with the appearance of sequential ATPGs later [73], for large synchronous sequential

logic, they still mostly follow a structural testing scheme and rely on scan-chain based

techniques to restrict the problem to small logic areas and to apply the tests generated

under such restriction, as illustrated by Figure 2.30. For the circuit under test in its scan

mode, the registers as input for that specific design portion are set by scanning-in test input.

The results to be checked are then scanned-out, be compared with expected results

according to the original netlist.

 For mutation analysis, tests are to be generated for the functional verification purpose

and applied to design input. The entire design should be the target of any test generation

Figure 2.29 Rationale behind fault modeling in mutation analyis and gate-level fault

models.

specification

design

netlist

ASIC chip
mutant

fault model

Simulation test
generation

1) Mutants represent typical design errors
2) Mutants coupled with real errors

ATPG

A fault model, e.g. stuck-at fault, is
direct abstraction of physical cell defects

Figure 2.28 Task of functional verification and manufacturing test.

specification

HDL design

specification

HDL design

√

netlist

mask

physical
design

√

√

ASIC chip

manufacturing

Functional
verification

Manufacturing
Defect Test

specification

HDL design

√

netlist

bitstream

physical
design

√

√

FPGA

download
√

Assume FPGA
device error-free

functional design functional design functional design

Quality Metrics Driven Functional Verification for IP based SoC Design

54

procedure. Three sub-problems – reach, activate, and propagate – have to be considered,

from design input to output.

To conclude, ATPGs are not used in test generation for mutation analysis, or any other

simulation quality metrics, since i) ATPGs follow structural testing and usually do not take

the entire design as algorithm input, for example a complete microprocessor design, and

ii) ATPGs work on gate-level netlist and we use mutation analysis, or other simulation

metrics, on any design that is simulatable, without assuming it to be synthesizable.

2.4. Summary

In this chapter, we have established the basis for our further discussion, by first

presenting a reference flow for IP-based SoC design, and then introducing both

fundamental and state-of-the-art methods and techniques that are employed at different

locations of the flow.

We have identified one of the most important characteristics of IP-based SoC design

to be the division and separation of IP design and SoC system integration. This has a key

implication on our consideration of verification. At IP level, an IP design needs to be

verified systematically and as thoroughly as possible. At system level, a SoC design also

needs a systematic verification, which should further be focused on the integration of IPs.

Our approach is to construct a series of metrics-driven verification methods that cover

both IP and SoC system level.

 The reference flow includes SystemC, TLM, and IP-XACT as state-of-the-art

techniques for IP and SoC system design, which should be taken into account for

verification. These are intensively studied topics in recent research on SoC design

methodology. Further literature will be discussed in the related work section of each

contribution chapter.

SystemC, with a discrete-event simulation core the same as most other HDLs, can be

used for both behavioral and RTL IP design. Such IP designs can be wrapped into TLM

components, where their interfaces for SoC on-chip communication are modeled by

Figure 2.30 Scan-chain for structural testing, used by ATPGs.

scan-chain for testingNormal operation

55

CHAPTER 2: Background

function calls and bundled as TLM interfaces, which serve the central basis of TLM IP

integration in SoC system design.

Therefore, at IP level, we will consider a design under verification to be RTL or

behavioral, in traditional HDLs – VHDL and Verilog – or SystemC. At system level, a

SoC design under verification can be integrated from RTL IPs, TLM IPs, or even mixed.

IP-XACT is the standard language for describing IP metadata – its design files,

exposed on-chip bus interfaces, and configurable parameters – and SoC integration based

on these metadata. By assuming IP-XACT as the default SoC design language, we should

be able to concentrate on the verification of system integration.

We further assume simulation as our way of functional design verification. We have

outlined the components in a simulation process: the DUV, a simulator that possibly

supports multi-language, RTL/TLM mixed-level simulation, a test generator, a monitor

and checker, and the quality metrics that stands at the center of our solution to the

verification closure challenge. In particular, we have introduced three different

approaches for test generation: directed, random, and constrained-random that combines

the advantages of the previous both and will be highly exploited in Chapter 4. Actually,

metaheuristic search based test generation may be classified as another alternative, which

will be considered in Chapter 5.

Then, we have defined what a quality metrics driven verification is and introduced

various metrics that are currently in use. In particular, we have compared mutation

analysis to other metrics and identified its unique requirement for test to reveal the typical,

purposely injected design errors. The rationale behind such stringent test qualification

have further been summarized by us as double effectiveness.

From now on, mutation analysis becomes a real focus of our research on quality metrics

driven verification, though in general, we do not see our methods restricted to mutation

analysis, meaning that their adaptability to other metrics should be straightforward.

Identification of equivalent mutants is a problem not tackled in this work.

The basic problem of mutant-aiming test generation has been defined as three sub-

problems: reachability, activation, propagation. Advanced techniques for alleviating the

problem of high computation requirement from mutation analysis have been introduced,

including selective mutation, mutation schemata, and weak mutation. Certitude, a

sophisticated HDL mutation analysis tool from the EDA industry, has been presented,

which will also be used in our evaluation.

Moreover, we have presented a brief but essential comparison between APTG in

manufacturing test and mutation analysis in functional verification. ATPGs are not used

in functional verification because of its structural working scheme at gate-level and the

assumption that our design under verification is not necessarily synthesizable.

Quality Metrics Driven Functional Verification for IP based SoC Design

56

In next chapter, we will present an overview of our methodology to systematically

enhance the quality of functional verification for IP-based SoC design, using the metrics

driven approach.

57

CHAPTER 3: Methodology Overview

In this short chapter, we give an outlook on the overall contribution of this thesis: a

systematic, simulation based, quality metrics driven functional verification methodology

for IP-based SoC design, as shown in Figure 3.1.

The bottom part of the figure refers to the IP and SoC design flow, languages, and

methods that we have discussed in the previous chapter. In particular, we have motivated

the need for metrics driven verification (MDV), as well as advanced metrics such as

mutation analysis, which is identified as the focus of this thesis. Recall that with MDV, a

verification process should not only be guarded by a quality metric, but also use metric-

targeted test generation to efficiently improve such quality.

Based on the discussions, we may generally identify the following gaps between state-

of-the-art techniques and our desire for an efficient yet quality-enhancing verification

flow. Concrete motivation for each chapter will be expanded later.

 At IP design phase, with the emerging of EDA tools for HDL mutation analysis

recently – such as Certitude, which leverage a long history of mutation analysis

research, we still lack efficient, practical test generation methods for this HDL

mutation analysis.

 At SoC system design phase, with the recent establishment of standard system-

level design languages and techniques, for example TLM and IP-XACT, we still

lack a systematic verification way for SoC system-level, in general, and any

quality metric for such verification, in particular.

For this, our verification methodology consists of three main components:

 For the functional verification of an IP design with HDL mutation analysis, we

first consider using random simulation to achieve a primary level of killed

mutants. We propose to integrate a feedback directed adaptation loop into

constrained random simulation (CRS). The goal is that by consistently adjusting

a test model in CRS, we will be able to obtain a more efficient process of killing

mutants. This will be discussed by Chapter 4.

Quality Metrics Driven Functional Verification for IP based SoC Design

58

 After random simulation, we expect some “hard” mutants left un-killed. We

further consider applying a metaheuristic search based test generation to each of

them. It means that a metaheuristic – for example a local search – is employed to

search the design input space, to iteratively move towards a target test that can kill

the mutant. To steer such search, we need to define a cost function that measures

the progress of a HDL mutant being killed. We will present a graph based

definition of such cost function in Chapter 5. With these first two components, we

expect an extensive, high-quality IP verification.

 Moving to system level, we first assume IP-XACT as the default language for SoC

integration. For a systematic SoC verification framework, we propose i) SystemC

based IP-XACT synthesis to enable SoC system designs simulation and ii) a set of

mutation operators on IP-XACT schema to enable mutation analysis for such

simulation. They will be detailed in Chapter 6.

Last, we want to emphasize the coherence of these chapters as an integrated

verification flow, which should find its scenarios of application by i) a SoC integrator,

who is usually required to build one or several of its own special, product-differentiating

IPs, which are then assembled together with third-party IPs – in such a case, it can benefit

Figure 3.1 Overview of our methodology. Main contributions are highlighted.

Metaheuristic Search Based Test
Generation for Mutation Analysis

(CHAPTER 5)

Metaheuristic
Search Based

Test Generation

HDL Simulator

Cost Function
for Killing a Mutant

HDL Mutation Analysis

IP
DUV

(HDLs)

SoC System Design Simulation and
Mutation Analysis with IP-XACT

(CHAPTER 6)

SystemC Simulator (TLM, RTL)

IP-XACT Mutation Analysis

SystemC model

SoC DUV (IP-XACT)

IP

IP-XACT Mutation
Operators

SystemC Based
IP-XACT Synthesis

Mutation Analysis Directed
Adaptive Random Simulation

(CHAPTER 4)

Constrained
Random

Test Generation

HDL Simulator

Mutation Analysis Feedback
Directed Adaptation

HDL Mutation Analysis

IP
DUV

(HDLs)

IP component design phase SoC system design phase

A simulation based, quality metrics driven functional verification (FV) methodology for IP based SoC design

Gap: lack of efficient test generation methods for HDL mutation analysis
Gap: lack of systematic verification method,

and quality metric for such verification

59

CHAPTER 3: Methodology Overview

from all three components, for both IP and SoC verification activities, and ii) an IP

provider/licenser, who only develops IP level designs and should find the first two

components as systematic enhancement to IP verification quality.

Quality Metrics Driven Functional Verification for IP based SoC Design

60

61

CHAPTER 4: Mutation Analysis-Directed Adaptive
Random Simulation

4.1. Introduction

This chapter presents the first component of our verification methodology. For the first

phase of an IP verification, which is meant to be as comprehensive as possible, it is yet

reasonable for us to rely on a random-simulation based, light-weight method to reach a

primary quality level under the mutation analysis metric.

We have explained the advantage of constrained random simulation (CRS) over pure

random. With a probability model defined by weighted constraints on design input, we are

not only able to generate a significant amount of tests for exercising the design, as in

random testing, but also able to control the distribution of generated tests by assigning

more weights to constraints of more interests, which we cannot do with pure-random

simulation.

Motivation for Metrics Directed Adaptive Random Simulation

However, when CRS being employed as the basis for our metrics driven verification

approach, there are several problems appearing, which can be viewed as the general

motivation of this chapter. Based on a microprocessor design example, Figure 4.1 gives

an illustration of these problems.

 First, initially, the probability model for random test generation is not defined with

the quality metric – the mutants – in mind. The tests to be generated are totally not

aimed at the target of our verification: killing the mutants. Therefore, we may

expect that the test generation is inefficient with regard to mutation analysis.

 Second, the metric changes over simulation time, as killed mutants are consistently

removed from the mutant database and the remaining mutants become the reduced

target. It is almost impossible to assume that the test probability model will just

Quality Metrics Driven Functional Verification for IP based SoC Design

62

match the changing metric. Therefore, again, inefficient tests are expected that are

not aimed at killing the remaining mutants.

 Further, inefficient test generation is a more severe problem in particular to

mutation analysis, since i) we have a stringent qualification on tests, with the

mutant-killing problem already difficult to satisfy, and ii) if tests are generated

aimlessly, mutation analysis requires high cost of simulation time to examine

whether each mutant can be killed, compared to other metrics, for example

functional coverage, where only one simulation is necessary for checking all

coverage bins.

In fact, the problems apply not only to the combination of random simulation and

mutation analysis, but also to other quality metrics like functional coverage. Only, they

will be exaggerated with mutation analysis, because of the high simulation requirement,

and become a more urgent motivation.

Therefore, to mitigate these problems, we consider an adaptive method for random test

Figure 4.1 Motivation of metric feedback directed random simulation.

Adaptation reason 1: test model originally not constructed as specific for the metric;

adaptation reason 2: test model needs adaptation to the continuously changing metric.

Quality Metrics

Design

fetch decode execute memory

Design

Metric directed, consistent
adjustment to test probability model

Constrained Random
Test Generation

Test
Probability

Model

fetch decode execute memory

Sim
u

latio
n

 tim
e

in
itial

after a p
erio

d
 o

f sim
u

latio
n

adjustment

feedback from metric measurement

adaptation 1

adaptation 2

tests

: Target point from a quality metric – e.g. a functional coverage bin, or a design mutant

63

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

generation, which should continuously steer the test model towards the mutation analysis

metric, so as to obtain a more efficient test generation process, i.e. having more mutants

killed with less tests.

There are three components in such an adaptation loop, as outlined by the figure. The

first is a constrained random test generation process, containing a test probability model

that should provide us the opportunity to tune and steer the test generation. The second is

the quality metric measurement process, with the metric consistently changing under the

randomly generated tests. The third is the adaptation block, which correlates observation,

or feedback from metric measurement to any desired adjustment on test model.

Contribution of the Chapter

This chapter, as the first component of our mutation analysis driven functional

verification methodology for IP-based SoC design, contributes by proposing a mutation

analysis-directed adaptive random simulation method, which is aimed at improving HDL

mutation analysis efficiency. For this, we propose i) first, a combined use of Markov chain

and weighted constraints for random test modeling, which enables dynamic adjustment to

a probability model, ii) second, dynamic mutation schemata that not only reduces the cost

of HDL mutation analysis but also enables detailed feedback collection, and iii) third, an

efficiency-improving heuristic that calculates and applies consistently adjustment to test

generation, with the expectation that more mutants will be killed with less tests.

Organization

After the general motivation, we unfold the rest of the chapter with an overview of our

proposal on this adaptive method, at the beginning of Section 4.2. The three constituent

parts of it – the random test modeling, the dynamic mutation schemata, and the adaptation

heuristic – are elaborated from Section 4.2.1 to 4.2.3, with the overall procedure again

summarized in Section 4.2.4. Related literature is comprehensively discussed in Section

4.3. And the chapter is concluded by Section 4.4.

4.2. Mutation Analysis-Directed Adaptive Random Simulation

As shown in Figure 4.2, we propose an adaptive random test generation method for

HDL design simulation, which is directed by mutation analysis as the simulation quality

metric as well as adaptation basis. The simulation framework consists of several

innovative components.

 Markov-chain and weighted constraints modeled random test generation. A

prerequisite for any adaptive random simulation is a probability model for test

generation, with parameters that can be adjusted dynamically at simulation time.

Quality Metrics Driven Functional Verification for IP based SoC Design

64

We employ a Markov chain augmented with weighted constraints for this

random test modeling purpose. Combined, they provide us the chance to steer test

generation towards particular types and sequences of tests. Further advantages and

definitions of this modeling will be explained.

 HDL mutation analysis with dynamic mutation schemata. For mutation analysis,

first, mutation schemata – using a meta-mutant to instrument all mutants into a

single design copy – should be leveraged to create the mutant database. Since we

are verifying IP level HDL designs, e.g. a microprocessor design, that usually have

thousands of lines of code, thousands of mutants can be generated. With mutation

schemata, we need only a single compilation with meta-mutant.

Second, we consider strong mutation analysis as the final measurement of

simulation quality: the killing of mutants is defined as whether there is any

deviation at design output, instead of at any of its internal intermediate signals in

the case of weak mutation analysis. As mentioned, the definition of a kill-point is

mainly a trade-off: if we use strong mutation for more stringent requirements on

simulation tests, more simulation time should also be expected. Since our goal is

indeed an as-thorough-as-possible verification for an IP design, it is reasonable for

us to choose the more strict quality metric.

Further, we propose an extension to mutation schemata as dynamic mutation

schemata. The dynamic means that the simulation of individual mutants is

dynamically created, or forked from the meta-mutant simulation. The mechanism

is specific for HDL mutation analysis and, by such, we not only obtain the

necessary information for test mode adaptation but also improve the efficiency of

mutation analysis

Killed mutants will be marked and kept out from further mutation analysis, as

we finally measure the overall quality of an entire simulation process, instead of

any subset of test data. It is not strictly specified by our framework which

percentage of killed mutants is the adequate level for the random simulation phase

and raises a signal for moving to the heavier-weight search based test generation

phase. One reasonable way of such decision may be that we exit the random

simulation as soon as the number fo killed mutants stops to increase for a certain

period of time.

 Mutation analysis-directed adaptation to test generation. During simulation,

we apply a continuous adaptation to the test model based on Markov chain and

weighted constraints, by adjusting their parameters. The purpose is to enhance the

efficiency of the simulation process under this test model, based on knowledge that

65

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

we can collect on-the-fly during simulation. Here, a higher efficiency can be

achieved with regard to our quality metric – mutation analysis, meaning more

killed mutants by less tests.

We define a heuristic for this adaptation. The goal of the heuristic is specified

by the fundamental problems of test generation in mutation analysis: reach,

activate, and propagate. They also specify what information we should observe

and collect from mutation analysis, i.e. the feedback. The heuristic then tries to

correlate the feedback to the goal, which will be explained and formulated in

Section 4.2.2.

This adaptive simulation is necessarily executed in a closed-loop style, since we

should not only close the gap between the initial test modeling and mutant database

– the quality metric, but also steer the model towards the dynamically changing

metric, whenever dead mutants are removed.

 Design Under Verification (DUV). This mutation analysis directed adaptive

random simulation framework applies mainly to IP-level designs, which usually

Figure 4.2 Mutation analysis directed adaptive random simulation.

Constrained Random Test Generation

HDL Simulator

Mutation Analysis Directed Adaptation to Test Generation

HDL Mutation Analysis

IP
DUV

Weighted constraints
Markov

chain

Meta-
mutant

mutation analysis feedback

reach

activate

propagate

P
ro

b
le

m
 o

f
te

st
 g

en
er

at
io

n
with

Dynamic
Mutation
Schemata

goal

Adaptation
heuristic

adjustment on test probability model

observation

Quality Metrics Driven Functional Verification for IP based SoC Design

66

have a strict interface specification on input-output behavior, for example the ISA

for a microprocessor design.

We consider the designs under verification to be RTL or behavioral, described

in HDLs including traditional VHDL and Verilog, SystemC, and even C. The

design can be in any development stage, early or near-complete. Therefore, there

is no assumption of its synthesizability.

For verification, we simply assume the existence of a golden model. This model

conforms fully to the design specification, for example an ISA. Randomly

generated tests are applied directly as design stimulation. Comparison of

simulation behavior between a golden model and DUV decides the design’s

correctness.

Also note that each time the design is modified – either through design

refinement or debugging, we need to restart the whole simulation procedure for

another round of verification.

 HDL simulator. Any HDL simulator capable of constrained random simulation,

such as the ModelSim tool that is employed in our evaluation later, should be able

to support this adaptive simulation. ModelSim supports also all the IP design

languages that we consider: VHDL, Verilog, and SystemC.

4.2.1. Random Test Generation with Constrained Markov Chain

We first introduce the some basics of Markov chain and how it can be mapped to a

random test generation model. Then, we present an extension to this modeling technique

by attaching weighted constraint. The resulting test generation iteration is summarized at

the end.

Markov Chain

In its basic form, a Markov chain with finite states can be described as a directed graph

𝑀 = (𝑉, 𝐸, 𝑃):

 𝑉 is a set of states, or nodes that form the Markov chain,

 𝐸 ⊆ 𝑉 × 𝑉 is a set of directed edges, in which there exists one edge from each node

to every node, including itself,

 𝑃 is a labeling function from 𝐸 to non-negative real numbers, which represents the

probability of each edge being selected for next transition from the present node.

 With 𝐸𝑜𝑢𝑡(𝑣) as all the edges out from 𝑣 ∈ 𝑉 , we have the probabilities

∑ 𝑃(𝑒𝑑𝑔𝑒𝑖)𝑒𝑑𝑔𝑒𝑖∈𝐸𝑜𝑢𝑡(𝑣)
= 1.

67

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

Figure 4.3-a) shows a simple Markov chain model with two states: 𝑠0 and 𝑠1. At state

𝑠0, we have a significantly higher probability 𝑃((𝑠0, 𝑠0)) = 0.9 of taking a transition back

to this current state, compared to the chance of moving to the other state 𝑠1: 𝑃((𝑠0, 𝑠1)) =

0.1. In contrast, after entering state 𝑠1, the model has an equal chance between staying at

𝑠1 or going back to 𝑠0. After a long sequence of transitions, we can image that a pattern of

consecutive 𝑠0 will frequently occur.

The probabilities on edges can also be tuned dynamically. This means that, if we

become more interested in pattern 𝑠0𝑠1, we can simply adjust the model by: 𝑃((𝑠0, 𝑠1)) =

0.9 and 𝑃((𝑠0, 𝑠0)) = 0.1.

The transition process of a Markov chain has the characteristic of being memoryless,

meaning that the next transition depends only on the current state, not on the earlier

transition history.

Test Modeling with Markov Chains

Figure 4.3-b) illustrates how a Markov chain can be used to model a random test

generation process, by an example with microprocessor test instructions.

This test modeling is intuitive. First, each node of the Markov chain represents one type

of tests that we consider to be specific for the design, such as an ISA (Instruction Set

Architecture) category that we model in the example. Then, a sequence of tests can be

generated by transitioning through the chain. Following each transition, a test is randomly

selected from the type that the transition destination represents. The starting point for a

transition sequence is not important.

Therefore, at each intermediate node, probabilities on the edges out from this node

model the chance of each destination node, a type of tests, being selected for next test

generation. In the microprocessor example, all the edges between ISA nodes are assigned

equal probabilities: 𝑃((𝐴𝑟𝑖𝑡ℎ, 𝐴𝑟𝑖𝑡ℎ)) = 𝑃((𝐴𝑟𝑖𝑡ℎ,𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦)) = 𝑃((𝐴𝑟𝑖𝑡ℎ, 𝑆ℎ𝑖𝑓𝑡)) =

𝑃((𝐴𝑟𝑖𝑡ℎ, 𝐵𝑟𝑎𝑛𝑐ℎ)) = 𝑃((𝐴𝑟𝑖𝑡ℎ, 𝑆𝑡𝑜𝑟𝑒/𝐿𝑜𝑎𝑑)) = 1 |𝐸𝑜𝑢𝑡(𝐴𝑟𝑖𝑡ℎ)|⁄ = 0.2. By such, we can

expect equally distributed tests for all nodes. This all-equal-probability further means that

initially, we model no biasing on the test generation process, but relying only on the basic

ISA information.

 The Markov-chain based random test modeling provides us the following possibilities:

 First, a Markov chain allows us to steer the distribution of a single test input

towards particular areas which we regard as more interesting.

Consider that we start test generation with an all-equal-probability Markov

chain. Assume that after some period, we see most of the un-killed mutants

remaining in the barrel shift unit of the design, because, somehow, they are a

Quality Metrics Driven Functional Verification for IP based SoC Design

68

difficult job. Then, we may expect an acceleration of the mutation analysis process,

if we generate more barrel-shift tests, by adjusting all five incoming edges on the

corresponding node to a relatively high level.

 Second, if the interaction between two adjacent test types/nodes is considered to

have a particular impact on design simulation, we can also steer the test generation

to encourage such a pattern. Note that in a Markov chain, any two nodes are

connected and therefore adjacent.

It is not possible to model the impact of a test pattern of longer sequence, since

only the immediate dependence between two nodes can be reflected in Markov

chain – its memoryless characteristic.

Weighted Constraints to Extend a Markov Chain Model

As an extension to the basic mechanism above, we further integrate constraint-based

random test generation into the Markov chain-based test modeling. The principle of

constrained random test generation and its advantage have been introduced in the

background chapter.

 To each node 𝑣 ∈ 𝑉 in a Markov chain 𝑀, we may extend 𝑀 by attaching to 𝑣 a

set of weighted constraints that are defined on design input, or sub-fields of the

input.

Figure 4.3 a) a simple Markove chain exmple; b) Example test modeling with

Markove chain for a microprocessor .

a)

S0
S1

0.9 0.1 0.5

0.5

Microprocessor test modeling with a Markov chain

Arith

MultiplyStore/Load

0.2

0.2

Branch

b)

Shift/
BarrelShift

0.2

0.20.2

69

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

 These constraints at 𝑣 are classified into groups. Constraints from different groups

are defined on non-overlapping input fields.

 With 𝑊(𝑐) representing the weight on a constraint 𝑐 and 𝐺𝑟𝑜𝑢𝑝(𝑐) as all

constraints in the same group with 𝑐 , their weights should sum up to 1:

∑ 𝑊(𝑐𝑖)𝑐𝑖∈𝐺𝑟𝑜𝑢𝑝(𝑐) = 1.

While each node 𝑣 should already represent a particular area from design input space,

the constraints further divide that area. As previously explained, these constraints again

specify a probability distribution on 𝑣.

By such, we have a two-level modeling of random test generation. The advantage is

that a finer adjustment to the test model is made possible, by adjusting the weights on

constraints.

 Figure 4.4 shows an example of such extension: how a Markov chain is augmented

with weighted constraints for a finer modeling of floating point tests. The original Markov

chain contains four nodes to represent four valid operations specified for a floating point

unit (FPU) design. The FPU design can be a stand-alone IP, or an auxiliary unit in a

microprocessor IP, which then makes this Markov chain also part of a larger ISA model.

The table lists the constraints defined and attached to node multiply. They are specified

with constraint structures from SystemC Verification Library (SCV). Further, they are

grouped by the input fields that they constrain, without overlapping: on the rounding mode,

the first operand, and the second operand. The classification of operand values and

rounding modes from the constraints definition is according to IEEE floating point

standard [49], which should be the specification for the FPU design. Initially, all

constraints in the same group share an equal weight for random selection.

The constraint satisfaction problem [74] imposed by this constraint extension for test

modeling is not the focus of our method. Verification languages, such as the SCV

mentioned here, commonly integrate constraint solving facility and can be seamlessly

leveraged to complete our test generation.

Test Generation Iteration

To summarize, the overall test generation process modeled as a constraint-extended

Markov chain follows the following steps:

1) From a current node 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 of the Markov chain model, we select the edge for

next transition 𝑣𝑛𝑒𝑥𝑡 ∈ 𝐸𝑜𝑢𝑡(𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡), following probabilities on the edges.

2) At node 𝑣𝑛𝑒𝑥𝑡 , for each constraint group associated with 𝑣𝑛𝑒𝑥𝑡 , we select one

constraint according to the weights in the group.

Quality Metrics Driven Functional Verification for IP based SoC Design

70

3) Solve the constraint to generate the corresponding test input that are specified by

this constraint. For any input field that does not receive a value from constraints,

generate it randomly.

4) Take the transition to 𝑣𝑛𝑒𝑥𝑡 and start next iteration, by setting it as the new

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡.

Initially, the test model is defined mainly with information on the design interface, with

little consideration on the design’s internal architecture. Therefore, at the beginning of a

simulation process, we assign equal probabilities to Markov-chain edges and equal weights

to node-attached constraints.

Figure 4.4 Weighted constraints to extend Markov-chain basd modeling of

random test.

A FPU design

Weighted constraints to extend node Mul

Markov chain model for FPU test generation

constraint_group: Operand_A

constraint SCV representation of constraint
weight:

W(constraint)

Zero SCV_CONSTRAINT(exp_a()==EXP_ALL_ONE && mantissa_a()!=0); 0.1

Min_Subnorm SCV_CONSTRAINT(exp_a()==0 && mantissa_a()==1); 0.1

Subnorm SCV_CONSTRAINT(exp_a()==0 && mantissa_a()==1); 0.1

Max_Subnorm SCV_CONSTRAINT(exp_a()==0 && mantissa_a()==FRAC_ALL_ONE); 0.1

Min_Norm SCV_CONSTRAINT(exp_a()==1 && mantissa_a()==0); 0.1

Norm SCV_CONSTRAINT(exp_a()>=1 && exp_a()<EXP_ALL_ONE); 0.1

Max_Norm
SCV_CONSTRAINT(exp_a()==(EXP_ALL_ONE -1) &&

mantissa_a()==FRAC_ALL_ONE);
0.1

Infinity SCV_CONSTRAINT(exp_a()==EXP_ALL_ONE && mantissa_a()==0); 0.1

NaN SCV_CONSTRAINT(exp_a()==EXP_ALL_ONE && mantissa_a()!=0); 0.1

One SCV_CONSTRAINT(exp_a()==EXP_ONE && mantissa_a()==0); 0.1

Add

Mul

Sub

Div

constraint_group: Operand_B

… … …

operation

enable
rst
clk

signA

rounding

mode

output

inexact

overflow

underflow

ready

exception

invalide

add

sub

mul

div

rounding exception

exponentA

mantissaA

signB

exponentB

mantissaB

constraint_group: Rounding

… … …

71

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

For later adjustment, we assume that each time a 𝑡𝑒𝑠𝑡 is generated, a record

(𝑡𝑒𝑠𝑡, 𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 = (𝑣𝑠𝑡𝑎𝑟𝑡 , 𝑣𝑒𝑛𝑑), 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡) is saved as further reference to the

origin of 𝑡𝑒𝑠𝑡 , where 𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 and 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡 are the edge transitioned and

constraint solved for the generation of 𝑡𝑒𝑠𝑡, respectively.

Note that actually, there can be not only 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡 but multiple constraints used

from different groups for generating 𝑡𝑒𝑠𝑡. Only for the simplicity of presentation, we

formulate the adjustment of constraint weights for one constraint group. The same

adjustment should be applied to each group.

4.2.2. Heuristic Closed-loop Adaptation to Test Generation

With Figure 4.5, we first show a motivation of how we formulate this mutation

analysis-directed, closed-loop test adaptation, as a heuristic approach. The final adaptation

heuristic, with the goal to improve mutation analysis efficiency, is devised by considering

i) the ultimate problem of test generation in mutation analysis, ii) the feedback from

mutation analysis as input for adaptation, and iii) hypotheses that we consider being

reasonable for correlating the mutation analysis feedback to the test generation problem.

 Test Generation Problem: we may recall that the test generation problem for

killing a HDL design mutant requires the mutant simulation to first reach the

mutation statement, then activate this mutant by executing the mutated statement

in such a manner that a local deviation is created, and propagate this deviation to

any output of the design.

 Adaptation Input: we use mainly the statistic of how many mutants were totally

activated by each test during mutation analysis, as input for calculating the

adjustment. Summarized as (𝑡𝑒𝑠𝑡, 𝑁𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛), this information comes from the

dynamic mutation schemata process that will be introduced in next section.

Besides, from last section, we record an entry (𝑡𝑒𝑠𝑡, 𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 , 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡) from

the Markov chain-based test generation process, for each test generated, with

𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 and 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡 as the edge and contraint that were used for generating

this test, respectively.

 Hypotheses: two simple hypotheses are proposed in order to correlate mutation

analysis feedback to the test generation goal. They also become the direct rationale

behind how we formulate the heuristic.

- Activation-propagation hypothesis: if a test activates a lot of mutants in

simulation, it also leads to simulation that kills many mutants in the end. In

other words, we assume that the mutant-activation capability of a test is

coupled with its final mutant-killing effect. This is reasonable in a

Quality Metrics Driven Functional Verification for IP based SoC Design

72

straightforward manner: activation precedes propagation and is a necessary

condition for killing a mutant.

- Similar-activation hypothesis: if a test activates a lot of mutants, the Markov-

chain edge and constraint that were used for generating this test should

further generate tests that similarly activates many mutants. Basically, a pair

of Markov-chain edge/constraint represents tests of a same type. We expect

them possessing similar mutant-activation capabilities.

Based on the considerations above, the adaptation heuristic works by adjusting the

probability/weight of the corresponding Markov-chain edge/constraint according the test’s

activation efficiency. We formulate the calculation of this adjustment in the following.

Adaptation Heuristic

Each time the adaption is triggered, with (𝑡𝑒𝑠𝑡, 𝑁𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 , 𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 =

(𝑣𝑠𝑡𝑎𝑟𝑡 , 𝑣𝑒𝑛𝑑), 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡) as input, we first calculate a test efficiency value as:

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑

𝑁𝑚𝑢𝑡𝑎𝑛𝑡𝑠−𝑢𝑛𝑘𝑖𝑙𝑙𝑒𝑑

where 𝑁𝑚𝑢𝑡𝑎𝑛𝑡𝑠−𝑢𝑛𝑘𝑖𝑙𝑙𝑒𝑑 is the number of un-killed mutants, which are constantly reducing

during mutation analysis. This efficiency becomes an estimation of the test’s potential to

kill mutants. Based on our second hypothesis, this estimation applies also to future tests to

be generated from (𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 , 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡).

Figure 4.5 How we devise the adaptation heuristic.

Mutation analysis directed adaptation to Markov-chain test model

Observation:

Mutant activation from
dynamic mutation schemata

Adaptation Heuristic :

Encourage Markov-chain edge/constraint
by increasing probability/weight,

if they produced high mutant activation

new probability/weight
on and

Hypotheses:

1) Activation-propagation
2) Similar-test

Expectation:

More mutants killed

reach

activate

propagate

P
ro

b
le

m
 o

f
te

st
 g

en
er

at
io

n

73

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

A certain amount of incremental adjustment to probability/weight of test generation is

then calculated as

{

 𝑃𝑖𝑛𝑐𝑟 =

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

|𝐸𝑜𝑢𝑡(𝑣𝑠𝑡𝑎𝑟𝑡)|

𝑊𝑖𝑛𝑐𝑟 =
𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

|𝐺𝑟𝑜𝑢𝑝(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡)|

where with 𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 = (𝑣𝑠𝑡𝑎𝑟𝑡 , 𝑣𝑒𝑛𝑑), 𝐸𝑜𝑢𝑡(𝑣𝑠𝑡𝑎𝑟𝑡) is the set of all edges that come out from

𝑣𝑠𝑡𝑎𝑟𝑡 and 𝐺𝑟𝑜𝑢𝑝(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡) represents all constraints that belong to the same

constraint group from which 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡 is selected.

By this, we try to manage an appropriate magnitude of adjustment each time, by taking

into account the total number of candidates for each random selection.

Then, the new probability/weight on 𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 and 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡 are increased by 𝑃𝑖𝑛𝑐𝑟

and 𝑊𝑖𝑛𝑐𝑟 respectively, as

{

𝑃′(𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡) = min

{𝑃𝑜𝑙𝑑(𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡) + 𝑃𝑖𝑛𝑐𝑟 , 𝑃𝑀𝐴𝑋}

𝑊′(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡) = min

{𝑊𝑜𝑙𝑑(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡) + 𝑊𝑖𝑛𝑐𝑟 ,𝑊𝑀𝐴𝑋}

where 𝑃′ and 𝑊′ represent the probability and weight after this adjustment and 𝑃𝑜𝑙𝑑 and

𝑊𝑜𝑙𝑑 are the old values . 𝑃𝑀𝐴𝑋 and 𝑊𝑀𝐴𝑋 play the role of two maximum bounds, so as to

prevent other edges as well as constraints from starving. In our evaluation with

microprocessor design, we have set both of them to be 0.9.

For each edge 𝑒𝑖 ∈ 𝐸𝑜𝑢𝑡(𝑣𝑠𝑡𝑎𝑟𝑡) and each constraint 𝑐𝑖 ∈ 𝐺𝑟𝑜𝑢𝑝(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡) except

(𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 , 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡), we distribute the remaining probability/weight by

{

 𝑃′(𝑒𝑖) = (1 − 𝑃

′(𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡)) ∗
𝑃𝑜𝑙𝑑(𝑒𝑖)

1 − 𝑃𝑜𝑙𝑑(𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡)

𝑊′(𝑐𝑖) = (1 −𝑊
′(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡)) ∗

1 −𝑊𝑜𝑙𝑑(𝑐𝑖)

1 −𝑊𝑜𝑙𝑑(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡)

such that i) their previously gained bonuses are proportionally preserved and ii)

∑ 𝑃′(𝑒𝑖)𝑒𝑖∈𝐸𝑜𝑢𝑡(𝑣𝑠𝑡𝑎𝑟𝑡)
= 1 and ∑ 𝑊′(𝑐𝑖)𝑐𝑖∈𝐺𝑟𝑜𝑢𝑝(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡)

= 1.

By such a gradual but consistent adaptation, we encourage those Markov chain edges

and constraints from which tests activating more mutants are generated. Based on the

activation-kill and similar-activation hypotheses, we expect that an improved mutant-

activation rate and therefore mutant-killing rate can be observed, i.e. a higher mutation

analysis result with less simulation effort with this adaptive random test generation.

Quality Metrics Driven Functional Verification for IP based SoC Design

74

4.2.3. Dynamic Mutation Schemata

We propose an extension to the original mutation schemata [63] which has been

introduced in the background chapter. The resulting process is called dynamic mutation

schemata.

For the convenience of presentation, we first introduce several notations for basic HDL

simulation and mutation schemata, as elementary constructs. We then define the dynamic

mutation schemata process based on these notations.

Notations for Original Mutation Schemata

For a HDL design under verification 𝐷 to be simulated, we first use:

 𝐷0 ⇐ 𝑆𝑖𝑚𝐼𝑁𝐼𝑇(𝐷) to denote the execution of a HDL simulation initialization phase

for design 𝐷 , with the result notated as 𝐷0 , i.e. the whole state of 𝐷 after

initialization.

 𝐷𝑡+1 ⇐ 𝑆𝑖𝑚(𝐷𝑡) , where 𝑡 = 0,1,2,3, … is used to represent the execution of one

HDL simulation cycle at 𝑡 + 1, which changes the state of 𝐷 fron 𝐷𝑡 to 𝐷𝑡+1.

Note that 𝑆𝑖𝑚𝐼𝑁𝐼𝑇 and 𝑆𝑖𝑚 represent a simulation with specific tests, without the tests

attached to the notation.

Recall that in mutation schemata, all mutants are encoded into one meta-mutant, each

with a unique mutant ID. This ID should be designated to select the corresponding mutant

for simulation. We use:

 𝑀𝑀 to denote the meta-mutant and 𝑀𝑀𝑘 to represent mutant 𝑘 by assigning the

mutant ID for 𝑀𝑀 to be 𝑘 ∈ [0, #_𝑜𝑓_𝑚𝑢𝑡𝑎𝑛𝑡𝑠]. During simulation of 𝑀𝑀𝑘, only

the mutated statement with ID 𝑘 is used, with all the other mutations unmasked

and the original statements executed.

 When mutant ID 𝑘 is assigned 0, 𝑀𝑀0 represents the meta-mutant with all

mutation masked. Simulation of 𝑀𝑀0 has the same trace as the original design 𝐷.

 𝑀𝑀𝑘,0 ⇐ 𝑆𝑖𝑚𝐼𝑁𝐼𝑇(𝑀𝑀𝑘) and 𝑀𝑀𝑘,𝑡+1 ⇐ 𝑆𝑖𝑚(𝑀𝑀𝑘,𝑡) according to the notation

above for HDL simulation, with 𝑀𝑀𝑘 as the design.

Extension as Dynamic Mutation Schemata

We propose an extension to this original mutation schemata, as shown by Figure 4.6.

We call it dynamic mutation schemata, since in the mutation analysis process, the meta-

mutant is continuously simulated as a main thread and the simulations of individual

mutants are dynamically forked and ended, if they are activated during meta-mutant

simulation.

75

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

At the beginning, we have only 𝑀𝑀0 launched for simulation, with tests consistently

generated as input from our random test generator. After initialization, 𝑀𝑀0 is simulated

at each cycle. In the illustration of Figure 4.6, we assume that the design is synchronized

at each clock rising edge.

Note that during 𝑆𝑖𝑚(𝑀𝑀0,𝑡), we are able to determine for each mutant whether it was

activated, and by which test it was activated. A list 𝐿𝑖𝑠𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 can be recorded as

𝐿𝑖𝑠𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 = (⋯ , (𝑀𝑀𝑖, 𝑡𝑒𝑠𝑡𝑀𝑀𝑖),⋯)

where 𝑡𝑒𝑠𝑡𝑀𝑀𝑖 represents the test that activated mutant 𝑀𝑀𝑖. This should be possible, if

Figure 4.6 Dynamic mutation schemata for HDL mutation analysis.

Dynamic Mutation Schemata:

①
At each cycle

②

during which we obtain

(⑩ adapt test generation with)

For each running forked mutant simulation:

⑥

⑦compare ,

⑧if no deviation found, delete and unmask in

⑨if deviation at design output, delete as it is killed

For each activated in

③update

④
⑤mask in as separate-running and no-check-for-activation

1

, during which and
were activated by and , respectively

2

4

3

85

9

6
c

t

7

Quality Metrics Driven Functional Verification for IP based SoC Design

76

during the meta-mutant simulation, i) we calculate a mutated statement in parallel to the

original one, for a comparison to see whether the mutant is activated ii) for each design

sub-unit, we maintain a record which test is currently resident at this unit. For example for

a microprocessor design simulation, in each pipeline unit there should be a corresponding

instruction that is currently executed by this unit. We assume that such a record can be

maintained during simulation, for any pipelined design. Then, when a mutant is activated

during meta-mutant simulation, we know the test that is responsible for the design unit

containing this mutant.

For each activated 𝑀𝑀𝑖 from 𝐿𝑖𝑠𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 , we first update the record entry of that

mutant-activating test: 𝑁𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 in (𝑡𝑒𝑠𝑡𝑀𝑀𝑖,, 𝑁𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛) is increased by 1.

Then, we try to fork a continuing simulation for 𝑀𝑀𝑖, from the current meta-mutant

simulation. For this, we further assume the availability of a fork functionality: 𝑀𝑀𝑖,𝑡 ⇐

𝐹𝑜𝑟𝑘(𝑀𝑀0,𝑡 , 𝑖), which first creates a copy of 𝑀𝑀0,𝑡 and then change the mutant ID of this

copy from 0 to 𝑖. Such a fork is possible, since mutant 𝑖 has never been activated until 𝑡

and, therefore, 𝑀𝑀0,𝑡 and 𝑀𝑀𝑖,𝑡 should represent the same design state in such a case.

The activated and forked mutants are masked in the meta-mutant simulation, since they

are now simulated in separate threads and no longer required to be checked for activation.

Each such forked mutant simulation thread, say 𝑀𝑀𝑗, is simulated at every clock cycle:

𝑀𝑀𝑗,𝑡+1 ⇐ 𝑆𝑖𝑚(𝑀𝑗,𝑡) . The result 𝑀𝑀𝑗,𝑡+1 is compared to 𝑀𝑀0,𝑡+1 from meta-mutant

simulation. There are just two outcomes from this comparison:

 If no deviation is found between them, it means that the simulation of mutant 𝑀𝑀𝑗

has converged back to the meta-mutant simulation. That thread for simulating

𝑀𝑀𝑗 can be aborted. We unmask it in 𝑀𝑀0 to resume the activation-checking for

𝑀𝑀𝑗.

 If any deviation appears at design output, it means the activation has been

successfully propagated and, by definition of mutation analysis, mutant 𝑀𝑀𝑗 is

killed.

The main advantage of this dynamic mutation schemata is the saving of simulation time

for HDL mutation analysis. Individual mutants are simulated in a dynamic, just-in-time

manner, based on meta-mutant simulation.

At the end, we are able to compile the input for the adaptation heuristic:

(𝑡𝑒𝑠𝑡, 𝑁𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛) for each 𝑡𝑒𝑠𝑡 , which are consistently updated during our dynamic

mutation schemata. Note that we should trigger the adaptation heuristic only when a 𝑡𝑒𝑠𝑡

will no longer receive any activation update.

77

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

4.2.4. Summarized Procedure

In Figure 4.7, the summarized procedure is presented for the proposed mutation analysis

directed adaptive random simulation. The purpose is to give the reader a clearer overview

on this simulation process.

We do not repeat the explanation of the steps. For the evaluation chapter, we have

implemented i) the constraint augmented Markov chain with the SystemC Verification

Library, ii) the dynamic mutation schemata by utilizing the Tcl interfaces of tool Certitude

and ModelSim, and iii) the adaptation heuristic also in Tcl.

4.3. Related Work

We review literature that has a focus as we have: random simulation methods that are

made adaptive and dynamically steered under a specific simulation quality metric.

First, in Figure 4.8, we give a tabular view of the literature and, in particular, which

metrics are targeted by the adaptive simulation. Note that in literature, term coverage

metric is used for the same meaning as quality metric in this work. Coverage-directed and

metrics-directed also refer to the same.

Test model preparation

From design specification, e.g. an ISA, construct a Markov chain model 𝑀 = (𝑉, 𝐸, 𝑃) and
extend it by attaching weighted constraints to 𝑉;

Initially, all edges and constrains are assigned equal probability/weight;

Create meta-mutation 𝑀𝑀 from design under verification;

Start simulation

WHILE still within simulation budget DO

Generate a 𝑡𝑒𝑠𝑡 from 𝑀 and record (𝑡𝑒𝑠𝑡, 𝑒𝑑𝑔𝑒𝑡𝑒𝑠𝑡 = (𝑣𝑠𝑡𝑎𝑟𝑡 , 𝑣𝑒𝑛𝑑), 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑒𝑠𝑡), as

described by Section 4.2.1;

Simulate 𝑀𝑀0 and each activated mutants 𝑀𝑀𝑖 for a cycle with 𝑡𝑒𝑠𝑡 as input, and update

activation statistics of tests, as described by Section 4.2.3;

FOR each test has not been updated for a certain time, if any, DO

Calculate and apply an adjustment (𝑃′,𝑊′) on constrained Markov chain model, as

described by Section 4.2.2.

End

END WHILE;

End

Figure 4.7 Summarized procedure for adaptive random test generation directed by

mutation analysis.

Quality Metrics Driven Functional Verification for IP based SoC Design

78

 The method in [15] begins with a test planning and the coverage is defined as the

amount of pre-planned verification tasks that have been simulated, e.g. specific

transactions from a CPU unit. It can be viewed as a functional coverage. Then, an

evolving Bayesian Network is constructed to model the correlation between test

generation directives and the verification-plan coverage.

 In [75], the adaption of random simulation is aimed at exciting more signal-

switching activities at specific locations. Based on the assumption that the increase

of such signal activities in simulation will also lead to higher chances of inciting

real design bugs in that portion, the final goal is to improve the efficiency of bug

detection, i.e. number of discovered design bugs by a certain number of simulation

effort.

Similar to our approach, the random test generation is modeled using a Markov

chain. However, no further constraints-based modeling is used as we do. Extra

monitors are necessary to be attached to those signals under consideration, so as to

collect a weighted score of switch activities. This score is then taken as input to the

calculation of adjustment to probabilities on Markov-chain edges.

Besides, the signal switching monitor is extended to also include signals that

precede a target signal under observation. They are assigned less weights when

summed up into the score, according to their distances to the target signal. This is

called depth-driven activity monitoring.

 [16] ([76] and [77] similarly) builds adaptive constrained simulation based on the

so-called observability-based coverage, which we have discussed in the

background chapter. Recall that in observability-based coverage, tags are

Metric as adaptation

target
Literature

Functional (verification-

plan) coverage

[15]: Coverage directed test generation for functional verification

using Bayesian networks (2003)

Functional (signal-

switching) coverage

[75]: Microprocessor verification via feedback-adjusted Markov

models (2007)

Observability-based

Coverage

[16]: A Functional Validation Technique: Biased Random

Simulation Guided By Observability-Based Coverage (2001)

Assertion based coverage
[78] Simulation knowledge extraction and reuse in constrained

random processor verification (2013)

Figure 4.8 Related work: metrics-directed adaptive random simulation.

79

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

introduced as symbolic disturbance to variable values. Their propagation during

simulation is defined on logic, arithmetic, and control operators.

 It forms a semi-formal method. First, the circuit design itself is modeled as a

Markov chain at steady state. The controllability and observability of the nodes,

with regard to tags, are estimated using a limited depth re-convergence. Targeting

this estimation, an optimization algorithm tries to iteratively perturb the probability

distribution on random input generation, each time when the tag coverage stops to

increase.

 [78] is one of the most recent effort on coverage-directed constrained random

simulation, which targets the assertion-based coverage. An assertions [79] in

simulation based verification is simply a statement embedded and co-executed with

the “actual” design, asserting whether a specific condition on design state, or a

sequence of states is satisfied at that point. Observing shortage of covered

assertions, in the verification of a microprocessor, the authors propose a

knowledge-learning methodology that tries to extract knowledge during simulation

and reuse them to i) further exercise the already covered assertions and ii) generate

tests that should hit those un-covered assertions.

A feature based rule learning approach is applied. First, an instruction sequence

as test input is converted into multiple snippets, each as a block with equal length.

These snippets are classified into two classes (𝑆𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and 𝑆𝑛𝑜𝑡−𝑐𝑜𝑣𝑒𝑟𝑒𝑑, as positive

and negative samples), by whether they covered assertions in simulation or not,

according to the simulation trace. Then, ISA dependent features are extracted from

the positive samples, such as the data dependences in a sequence of instructions

(this is also considered in our approach). Rules are mined, as the knowledge, each

representing a hypothetical proposition from a specific collection of features to

𝑆𝑐𝑜𝑣𝑒𝑟𝑒𝑑, i.e. assertions been covered. Concerning the techniques and procedures

used for rule mining, one can directly look into the literature.

Comparison of Literature to Our Work

Contribution from our method compared to other literature on adaptive random

simulation can be concluded as follows:

 First, our method uniquely takes the mutation analysis metric as the target of

adaptive simulation. Further, based on our consideration that mutation analysis is

an advanced emerging quality metric for HDL design simulation, we view our

method a step beyond state-of-the-art techniques.

 We employ a combination of constraints and Markov chain to model test

generation and enable adaptation, which is not to be found in other methods and

Quality Metrics Driven Functional Verification for IP based SoC Design

80

provides us a finer adaptation basis.

 Our adaptation heuristic is based on a unique, more complex test generation

problem in mutation analysis: reach, activation, and propagation of mutants. These

are aspects that are not covered by other adaptation methods.

To the best of our knowledge, it is the first effort on such mutation-analysis directed

adaptive random simulation, to improve the efficiency of HDL mutation analysis. Our

evaluation on the method efficiency, in a later chapter, is also based on a state-of-the-art

HDL mutation analysis tool: Certitude [21].

4.4. Summary

We have proposed a novel method to improve the efficiency of HDL mutation analysis

within constrain random simulation, being aware of the problem that i) initially, the

random test model is defined not specifically for a set of mutants and ii) along with the

advancing of simulation, un-killed mutants as the remaining target also change. They

become the motivation for adaptive random test generation.

The simulation method consists of three parts, for random test modeling and

generation, for HDL mutation analysis, and for a consistent adaptation to test generation.

 The Markov chain and constraints based test modeling enables us not only to steer

the distribution of a single test input towards our interest, but also to encourage the

generation of a certain pattern of two consecutive tests.

 The dynamic mutation schemata leverages the advantage of original mutation

schemata by creating and compiling only one meta-mutant. It extends this

efficiency by dynamically forking necessary executions of individual mutants and

merging them back when the executions succeeded or converged.

 The adaptation heuristic is devised based on the intrinsic problem, or conditions of

mutation analysis test generation: reach, activate, and propagate. Basically, test

patterns that activated more mutants are encouraged, with the expectation that they

will continue to activate many mutant and, therefore, also kill mutants. This

encouragement is realized through the adjustment of probabilities/weights on

Markov chain edges/constraints.

By this, we expect a derived simulation process that is not only measured under the

mutation analysis metric, but also self-steering towards this metric by adaptive, automatic

test generation – thus a metrics driven verification method. It severs the first component

of our methodology, and the first phase of an IP verification.

81

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

In the evaluation chapter, we will mainly investigate whether the adaptation heuristic

equipped simulation process is indeed able to improve the efficiency of HDL mutation

analysis, i.e. it killing more mutants with less random tests generated.

In general, we see the method not limited mutation analysis, with no restriction of its

application to other metrics.

This contribution has been first proposed in [7] and further elaborated in [1].

Quality Metrics Driven Functional Verification for IP based SoC Design

82

83

CHAPTER 5: Metaheuristic Search-Based Test
Generation for Mutation Analysis

5.1. Introduction

The feedback directed random simulation presented in last section is an advanced, yet

light-weight method to obtain a primary level of verification quality under mutation

analysis. Nevertheless, we expect that in most cases, the random simulation in general

cannot reach an adequately high percentage of killed mutants. For example, this adequacy

level can be a best-effort within the time budget for IP verification.

This chapter presents the second component of our verification methodology, a

heavier-weight, more complex method to handle each of the remaining mutants from

random simulation. It becomes also the second phase for a thorough IP verification.

The general problem is that there still lacks an efficient, practical test generation

method for HDL mutation analysis, i.e. to generate simulation tests that kill a HDL design

mutant, in particular, when we consider a complete microprocessor IP design, for example.

One reason is that professional EDA tool for HDL mutation analysis recently just emerged.

Related literature will be investigated after the presentation of our novel method.

Motivation for Metaheuristic Search Based Test Generation

Metaheuristic search, or simply metaheuristic, is a search algorithm on a discrete search

space that aims at finding an optimal solution on that space under a certain given objective

by trying to iteratively improve a current candidate solution. They are called metaheuristics

as the algorithms propose little constraints on the concrete problem that they can solve, i.e.

the search space and the search objective.

Figure 5.1 describes the basic principle of using such metaheuristic search for test

generation. The goal of the search is to find a target test and the search space is just design

Quality Metrics Driven Functional Verification for IP based SoC Design

84

input. Since we have a specific goal of test generation in the context of quality metrics

driven verification, for example killing a mutant, and the input space for a HDL design is

indeed discrete, it is fundamentally possible for us to apply metaheuristic search.

The key to enable a search algorithm for test generation is the definition of an objective

cost function, or simply cost function, which represents the goal of test generation, since a

metaheuristic already defines the basic iteration framework for improving such cost. As

shown in the figure, a metaheuristic tries to move iteratively to another test that has a

reduced cost from the current test. If the cost is reduced to zero, we automatically reach a

target that satisfies the test generation goal.

We can find a wide range of metaheuristics with different candidate-selection and

moving mechanisms, from simple to complex. One basic example is local search, which

selects the neighbors of a current solution as candidates for examination. A cost-improving

neighbor is then identified as the new coordinate for search. Some more advanced

examples that have been applied to test generation include simulated annealing, as a

variant of local search to escape so-called local-optima, and genetic algorithm [80].

Though in a metaheuristic search based approach as shown in Figure 5.1, a solution –

a target test that kills a design mutant – is not guaranteed for test generation, our method

has the significant advantage that it relies only on actual design simulation to evaluate

tests and therefore, avoids completely symbolic simulation or constraint solving, as we

will discuss and compare in the related work. Therefore, it can be just integrated into a

simulation process to iteratively optimize tests, which makes it a practical solution to

mutation analysis test generation for even complex IP designs, assuming simulation is

practical.

Figure 5.1 Principle of metaheuristic search based test generation. It can also be called

simulation-based test generation, since only simulation is relied on to “try-and-improve” tests.

design input
(as search space)

costgoal (test) that represents goal of test generation

target test found
(search goal achieved)

1.

2.

3.

3. improve
cost

1. current
test

2. select & try
new candidate tests

4. target found
if cost=0

4.

cost

0

85

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

Contribution of the Chapter

The contribution of this chapter, as the second component of our mutation analysis

driven functional verification methodology for IP-based SoC design, is the proposal of a

simulation test generation method which is based on metaheuristic search and aimed each

time at finding some functional test that kills a HDL design mutant. As the key of such

search, we propose an objective cost function that is able to perform effectively the search

steering towards mutant-killing tests.

Organization

The rest of the chapter is organized as follows. First, we introduce the overview of our

method that applies metaheuristic search to the test generation in HDL mutation analysis.

Here, a local search procedure is also outlined as a basic but concrete metaheuristic

example. Then, the major space of the chapter is devoted to Section 5.3, which defines a

cost function that should be able to effectively steer a metaheuristic search towards a

mutant-killing target test. Section 5.4 further discusses related work from literature and

why they do not qualify an appropriate solution. The chapter is summarized and concluded

by Section 5.5.

5.2. Applying Metaheuristic Search to Mutation Analysis

We propose a metaheuristic based test generation method for HDL mutation analysis,

as shown by Figure 5.2. Mutation analysis is employed as the consistently focused,

representative quality metric for IP design simulation. We do not restrict the method to a

specific search algorithm. Instead, we focus on the definition of a meaningful, effective

cost function that could be integrated into any metaheuristic to make a test generation

procedure.

The search targets every time one mutant left un-killed from the random simulation

phase. Its objective is to find a test that kills this mutant. The input of the cost function is

the simulation traces from mutation analysis, which makes the test generation pure

simulation based. The key is the definition of an objective cost function that measures the

progress of this mutant being killed, when it is still not the case.

Recall that to kill a specific mutant, a test is required to generate a simulation that (i)

reaches the mutation statement, (ii) executes the fault-injected expression with certain

values such that the expression evaluates to a different result from the original expression

and (iii) propagates this difference to the design output boundary. They are called

reachability, activation and propagation conditions, or sub-problems of mutation analysis

test generation.

Quality Metrics Driven Functional Verification for IP based SoC Design

86

Therefore, the core the cost function, to be presented as the main content of this chapter,

is a model that measures the degree of these three conditions from fully satisfied.

Before the elaboration of the cost function, we present a local search on HDL designs,

as an example metaheuristic that may be applied for our test generation method, assuming

the availability of a cost function. The simple local search is chose, since, as mentioned,

our focus if not the search algorithm but the cost function definition for HDL mutation

analysis. With a basic metaheuristic, we should already be able to evaluate the

effectiveness of a cost function as a search steering guidance.

A Local Search Example

The procedure in Figure 5.3 begins with a random selection of test and then iteratively

tries to move to a better local neighborhood test, so as to land hopefully on a target test.

With an initial test randomly selected, its cost is calculated and we enter the loop for

reducing the cost iteratively. First, a list of so-called neighbor_test based on the current

test are identified.

We may consider this neighborhood function in a general way based on HDL types. A

straightforward scheme is that we adjust one input variable each time. For an integer

Figure 5.2 Metaheuristic based test generation for HDL mutation analyisis. It targets each

of the remaing mutant unkilled from the random simulaiton phase.

Metaheuristic Search
On Design Input Space

HDL Simulator

costkill_mutant(test)

HDL Mutation Analysis

IP DUV
(HDL)

simulation tracetest

Problem of
test generation

reach

activate

propagate

A model to
measure
these 3

conditions

tracetest costtest

if not killed

test

costkill_mutant(test)

87

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

variable, we can have two neighborhood moves, one by increasing and another by

decreasing half from its current value. For a bit or bit-vector variable, its neighbor values

should be those with one single Hamming distance from the current bits. For an

enumeration type, the candidates should be all the other possible values.

We may also consider a neighborhood function more concretely, for example for a

microprocessor design, by defining it as adjusting one instruction field each time, such as

toggling the carry bit of an add instruction, or increasing/reducing slightly the immediate

field of an immediate-instruction.

In another inner loop, we examine the cost of neighbor tests one by one. When the cost

is reduced to zero, we find a target test that kills the mutant. When a smaller cost appears,

we assume that additional useful information for killing the mutant has been included into

test by the neighborhood move. It should be an improved test and therefore set as

current_test for further iterations.

If we unfortunately could not find any neighbor test that reduce the current cost, we

encounter a so-called local-optima. One basic solution can be that we just restart from

another initially picked point. Certainly, the total restart needs to be limited with some

Maximum_Iteration.

There can be more sophisticated variants to local search, as introduced. Still, the

optimal setting of a search algorithm, for example this neighborhood function in local

search, is not the focus of this work. With this simple local search, the main purpose is to

evaluate the steering effectiveness of the cost function, on real designs in later experiments.

Figure 5.3 Local search example.

current_test := an initial_test that is randomly
selected

current_cost := costmutant (current_cost);

neighbor_test_list := neighborhood (current_test)

remove a neighbor_test from list;

cost := costmutant (neighbor_test);

neighbor_test_list empty?

cost < current_cost ?

no

yes

yes

no

current_test := neighbor_test

cost 0

no

Target
found yes

Quality Metrics Driven Functional Verification for IP based SoC Design

88

5.3. A Cost Function for Search Based Test Generation of HDL

Mutation Analysis

We propose a cost function that is able to estimate the progress of a test killing a HDL

design mutant, so as to steer effectively a metaheuristic search. We define a Control and

Data Flow Graph (CDFG) as the underlying data structure, since i) similar structures have

been commonly used for analysis and synthesis of HDL designs, both RTL and behavioral,

and even designs in C/SystemC, and ii) it just enables us to handle the problems of

mutation analysis test generation – reachability, activation, and propagation – by the

inclusion of both control and data flow.

After the definition of this CDFG structure, we present the cost function by first

explaining its general idea and, then, formulating its calculation in details.

5.3.1. A Control and Data Flow Graph (CDFG)

Graph representations with both data and control dependencies have been used in HDL

synthesis as well as verification [81] [82] [83] [84] [85]. For the purpose of mutation

analysis, we propose a variation with explicit data nodes on both control and data flow.

Extracted from a HDL design under verification and taking into account one of its

mutation:

Definition 5.1: A Control and Data Flow Graph (CDFG) is a graph 𝐶𝐷𝐹𝐺𝐷𝑈𝑉,𝑚𝑢𝑡𝑎𝑛𝑡, or

simply 𝐶𝐷𝐹𝐺 = (𝑉, 𝑆, 𝐸, 𝛿, 𝑂, 𝑠𝑚𝑢𝑡𝑎𝑛𝑡) where

 𝑉 ∪ 𝑆 is the nodes of the graph and 𝐸 is the edges.

 𝑆 is the set of statement nodes that each represents either an assignment statement or

a branch statement in the design and 𝑉 = {𝑣1, … , 𝑣𝑛} are the data nodes each for a signal

variable.

- For each branch statement the branch evaluation is treated as a separate

statement generating an extra Boolean-valued data node, i.e., the branch

result. Only if statements are discussed in the following, as generally other

branches like a case statement can be transformed to if branches.

- We further distinguish 𝑉𝑏𝑟𝑎𝑛 ⊂ 𝑉 as data nodes from branch statements.

 𝐸 ⊂ (𝑉 × 𝑆 ∪ 𝑆 × 𝑉) is a set of directed edges, each representing either a control

dependence or a data flow dependence.

- For each statement in the design, the corresponding node has inflow edges

from data nodes of its operand signals, and a single outflow edge to the data

node of its assigned signal.

89

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

- Extra control edges connect a branch result node to all the statement nodes

that are contained in this branch, which represents control dependencies. Such

nodes comprise 𝑆𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 . Each 𝑠 ∈ 𝑆𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 may have one or

multiple control edges 𝑏𝑟𝑎𝑛𝑐ℎ(𝑠) ⊂ 𝑉𝑏𝑟𝑎𝑛 × {𝑠} . Every 𝑒 ∈ 𝑏𝑟𝑎𝑛𝑐ℎ(𝑠) is

labeled by 𝛿 with a Boolean value to indicate in which case it should be

executed in simulation according to the branch result. 𝛿 ∶ 𝐸 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}.

- 𝑂 ⊂ 𝑉 are the output ports of our design under verification, where simulation

results are compared to determine whether the mutant is killed.

- 𝑠𝑚𝑢𝑡𝑎𝑛𝑡 ∈ 𝑆 is the statement where the mutation is injected.

- We use 𝑠𝑚𝑢𝑡𝑎𝑛𝑡 to not only represent the node but also the original statement

and 𝑠𝑚𝑢𝑡𝑎𝑛𝑡
′ to represent the mutation injected statement.

We have further the following notations:

- We use 𝑜𝑢𝑡(𝑠) ∈ 𝑉 to represent the single out-flow data node of a statement,

i. e. the operation result, and 𝑖𝑛(𝑠) ⊂ 𝑉 as in-flow data nodes, i.e. the operands,

of 𝑠 for any 𝑠 ∈ 𝑆. If s

- We use 𝑜𝑢𝑡(𝑣) ⊂ 𝑆 to represent out-flow and 𝑖𝑛(𝑣) ⊂ 𝑆 as assignment nodes

for any 𝑣 ∈ 𝑉. We can assume that if 𝑣 is not assigned in any branch, 𝑖𝑛(𝑣)

should have a single statement that assigns it. If 𝑣 is indeed contained in some

Figure 5.4 Example control and data flow graph extracted from a piece of HDL design.

if u > c

a b

dc

w <= (u = d)

w

e f

x y

x <= '1'

if u = c

y <= w and e and f

u <= a +b

mutation

u <= a - b

u

s1

s2

s7

s3

s4

s8

true

false

1 u <= a + b; u <= a - b;

2

3 process begin

4 if u > c then

5 x <= '1' ;

6 elsif u = c

7 x <= '0' ;

8 else

9 x <= e or f ;

10 end if;

11 end process;

12

13 w <= (u = d) ;

14

15 y <= w and e and f ;

branchs2

branchs4

false

true
x <= '0'

e or fs5
s6

false

false

Quality Metrics Driven Functional Verification for IP based SoC Design

90

branch, 𝑖𝑛(𝑣) may have multiple statements. This 𝑉𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 ⊂ 𝑉 can be

simply identified by {𝑣| 𝑖𝑛(𝑣) ⊂ 𝑆𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑}.

Example 5.1-1:

Figure 5.4 shows an example design – declaration of signal and ports are left out – that

leads to a 𝐶𝐷𝐹𝐺 with 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑢, 𝑣, 𝑏𝑟𝑎𝑛𝑐ℎ𝑠2 , 𝑏𝑟𝑎𝑛𝑐ℎ𝑠4 , 𝑥, 𝑦} , 𝑉𝑏𝑟𝑎𝑛 =

{𝑏𝑟𝑎𝑛𝑐ℎ𝑠2 , 𝑏𝑟𝑎𝑛𝑐ℎ𝑠4}, 𝑂 = {𝑥, 𝑦}, 𝑠𝑚𝑢𝑡𝑎𝑛𝑡 = 𝑠1, and 𝑆, 𝐸, 𝛿 to be identified straightforward

in the figure. ■

This definition of CDFG should lead to an easy implementation of data structure and

algorithm. Since 𝑠𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 is the only difference for individual mutants, a CDFG structure

basically requires a single construction. Loop dependences are further included in such a

CDFG without extra effort. Moreover, the mapping of simulation traces onto a CDFG is

straightforward, by mapping values to variable nodes.

5.3.2. CDFG Based Cost Function Definition: Outline

With Figure 5.5, we outline the idea of our definition of a cost function for HDL

mutation analysis, which should measure the progress of a test killing a HDL mutant. It is

based on the CDFG example above.

Assume that we have mapped a pair of simulation traces, from the original design

simulation and mutant simulation, at one specific cycle both onto data nodes of the CDFG.

With this mapping, our ultimate task is to calculate a cost value that measures or estimates

whether the three sub-conditions of mutation-analysis test generation – reach, activate,

and propagate – are satisfied during this simulation and, if not, how far they are from

satisfied.

 Propagation. We first discuss the propagation after activation, which means that

some data nodes already receive a deviate value in mutant simulation compared to

original design simulation, such as node 𝑢 in the figure.

1) With one or multiple such mutant deviations, we first measure the number of

statement nodes on the shortest path from any deviation to design output, to

be a macro propagation distance. In the example figure, this is 2.

Used in a search algorithm, this distance becomes a quantitative, macro

estimation of the progress of the HDL mutant being killed in one simulation, since

our final goal of search is, since our final goal is exactly to make such deviation to

appear on design output. When it is reduced to zero, after some search iterations,

we automatically obtain a target test that generates a mutant simulation trace with

deviation on design output, and mutant killed by definition.

91

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

a) How CDFG handles problem of mutation analysis test generation

b) How propagation is handled.

c) How activation is also taken into account.

Figure 5.5 Idea and outline of CDFG based cost function.. Red data nodes mean a deviation

in mutant simulation trace.

CDFG

if u > c

a b

d
c

w <= (u = d)

w

e
f

x

x <= '1' if u = c

y <= w and e and f

u <= a +b
mutation
u <= a - b

u

s1

s2

s7

s3

s4

s8

true false

branchs2

branchs4

false

true
x <= '0' e or f

s5

s6

false

false

Test Input

... ...

youtput

Su
b

-p
ro

b
le

m
s/

C
o

n
d

it
io

n
s

fo
r

te
st

 g
en

er
at

io
n reach

activate

propagate

CDFG

d

w <= (u = d)

w

y <= w and e and f

u <= a +b

u

youtput 0 design inputwhen zero:
found target test that kills mutant

mutation
u <= a - b

deviation
of trace in
mutation

simulation

2

Goal

Consider, e.g., constraint for
propagating a deviation to w :

CONSTR:
original (u = d) != mutant (u’ = d’)

not satisfied with current test

2) Local Propagation Cost
=

boolean_cost (CONSTR)

, and normalized to between (0, 1)

why useful: can estimate degree
of CONSTR from being satisfied, so
as to steer the search of target test

1) Macro Propagation Distance
=

number of
statement nodes on
shortest way from
any trace deviation

to output

E.g. here, = 2

cost kill-mutant

(test)

=

macro
propagation

distance

-1

+ local
propagation

cost

s7
propagate

CDFG

d

w <= (u = d)

w

y <= w and e and f

u <= a +b

u

youtput
0 design input

mutation
u <= a - b

no
deviation
activated

2

Goal

Local propagation cost
applies automatically

to activation,
with activation-constraint

CONSTR:
original (a+b)

!= mutant (a’ - b’)

activate cost kill-mutant

(test)

=

macro
propagation

distance

-1

+ local
propagation

cost

Quality Metrics Driven Functional Verification for IP based SoC Design

92

The reason of us counting only statement nodes is that they are exactly the

obstacles of mutation effects propagating further, though they are the propagation

medium at the same time. On a CDFG, a mutation effect may spread as the input

of multiple statement nodes further to multiple data nodes. Such mutation effects

will also be blocked at a statement, if the statement despite one or multiple mutation

effect as its operands computes a same result as in the original design simulation.

2) Another local propagation cost is added to supplements macro propagation

distance. As a value between 0 and 1, it intends to bring a finer scale to our

cost function.

As illustrated in the figure with node 𝑢 as example, it is calculated on a

statement node that follows a mutant deviation. A closer look at how the

propagation is blocked by 𝑠7 is possible, if we consider a constraint for propagation

is exactly: the result of 𝑠7 in original design simulation is different from that in

mutant simulation, as CONSTR defined in the figure. That this constraint was not

satisfied with the current test and simulation is the exact reason why deviation at 𝑢

is blocked by 𝑠7.

Then, leveraging the table in Figure 5.6, we are able to estimate the closeness

of such a propagation constraint from being fully satisfied, by transforming the

constraint into a Boolean expression.

Consider another basic example why this boolean_cost from the table is just

useful. Since 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝑎 > 𝑏) = |𝑎 − 𝑏| , for 𝑎 = 5 and 𝑏 = 1 that do not

satisfy (𝑎 > 𝑏), we have a cost as 4. Assuming that we made a change, for example

in a search algorithm, by 𝑎 = 4 and 𝑏 remaining the same, we may conclude that it

was a good search direction, because the cost is reduced to 3.

In the end, this boolean_cost(CONSTR) should be normalized to a value

between 0 and 1, to be added to the macro propagation distanced, just like the

centimeter scale to meter on a ruler.

 Activation. Without further effort, the local propagation cost handles the

activation problem, since an activation-constraint can be derived similar to the

propagation constraint: result of mutant simulation deviated from that of original

design simulation.

The only difference here is that, at the right side of the not-equal constraint, the

mutated expression should be used, as the example shows in the bottom part of

Figure 5.5.

In such a case, with regard to macro propagation distance, to which the local

propagation cost should be added, since we do not have any deviation, we may

93

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

simply use that distance of 𝑢 plus 1, as a hypothetical distance even one step farther

than the very first possible deviation.

 Reachability. We assume reachability easy to be satisfied in any simulation and,

therefore, that it does not require particular guidance in a search algorithm. This is

in fact what we can observe in most HDL simulations.

5.3.3. Macro Propagation Distance

Following the idea from last section, in this section we detail the definition of macro

propagation distance, such that an implementation can also be easily derived.

With regard to a specific 𝑚𝑢𝑡𝑎𝑛𝑡, the mutation analysis process with 𝑡𝑒𝑠𝑡 ∈ 𝑇 produces

a pair of simulation traces. We denote with 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡 the original design simulation trace

and with 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡
′ the trace with the mutant. 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡 and 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡

′ contain values

from the real simulations. For the actual format of such simulation traces, as mentioned in

the background chapter, VCD (Value Change Dump) and WLF (Wave Log File) are

commonly used examples.

We define the cost function first for each cycle of the simulation trace pair 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡

and 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡
′ . The final cost is then the minimal from all cycles. We denote with (𝜔, 𝜔′)

such a cycle snapshot from 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡 and 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡
′ , with

{
𝜔 = { 𝜔(𝑣1), 𝜔(𝑣2),⋯ , 𝜔(𝑣𝑛) }

𝜔′ = { 𝜔′(𝑣1), 𝜔
′(𝑣2),⋯ , 𝜔

′(𝑣𝑛) }

where 𝜔(𝑣𝑖) represents the value of 𝑣𝑖 from 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡 at the cycle i and 𝜔′(𝑣𝑖) the value

of 𝑣𝑖 from 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡
′ at that cycle. This maps (𝜔, 𝜔′) directly onto the CDFG.

𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡 can be represented as { 𝜔1, 𝜔2, ⋯ } considering all simulated cycles and

𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡
′ as { 𝜔1

′ , 𝜔2
′ , ⋯ }.

Figure 5.6 boolean_cost() that estimates the degree of a Boolean expression from being

satisfied [90]. It can be applied to a propagation/activation constraint Boriginal ≠ Bmutant, if we

transfrom the constraint into Boriginal ∧ Bmutant ∨ Boriginal ∧ Bmutant.

Boolean Expression e boolean_cost(e) as Cost Function Value

Boolean 0 if true, 1 otherwise

a<b, a≤b, a=b, a>b, a≥b 0 if true, abs(a-b)+Ka otherwise

a≠b 0 if true, K otherwise

B1˄B2 boolean_cost(B1)+ boolean_cost(B2)

B1˅B2

0 if either is true,

boolean_cost(B1)×boolean_cost(B2) /

(boolean_cost(B1)+boolean_cost(B2))

otherwise

•a. K is a small constant

Quality Metrics Driven Functional Verification for IP based SoC Design

94

We use further 𝜔(𝑠) for an 𝑠 ∈ 𝑆 to represent the evaluation of statement 𝑠 with

variable values in 𝜔 and 𝜔′(𝑠) the evaluation of 𝑠 with values in 𝜔′.

With this mapping we define the macro propagation distance as the first component of

the cost function as

𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜔,𝜔′)

= min(𝑑𝑖𝑠𝑡(𝑣)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉 with 𝜔(𝑣) ≠ 𝜔′(𝑣) (5.1)

where, and in the following, 𝑑𝑖𝑠𝑡(𝑣) is defined as the number of statement nodes on the

shorted path from 𝑣 to any output node in 𝑂.

We call each pair of 𝜔(𝑣) ≠ 𝜔′(𝑣) a mutation effect on 𝑣. By this simple formula, we

basically measure how far the mutation effects in the simulation traces, if any exists, are

still away from reaching the output nodes, by the definition of a mutant being killed.

Example 5.1-2:

With an input (𝑎 = 4, 𝑏 = 1, 𝑐 = 0, 𝑑 = 2) for Example 5.1-1, we can calculate a

𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑𝑖𝑠𝑡(𝑢) = 2 , with 𝑢 receiving the only mutation effect

𝜔(𝑢) = 5, 𝜔′(𝑢) = 3.

Assume that in a next search iteration, we adjust the input a little and consider another

candidate with 𝑎 = 3. The new test will propagate the mutation effect through 𝑠7and lead

to a 𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑𝑖𝑠𝑡(𝑤) = 1. This implies then a guidance on the right

search direction. The new test can be designated as the coordinate for further search

iterations that follow. ■

In the case that no mutation effect exits, i.e. the mutant simulation trace matches totally

the original simulation trace, we define

𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜔, 𝜔′) = 𝑑𝑖𝑠𝑡(𝑜𝑢𝑡(𝑠𝑚𝑢𝑡𝑎𝑛𝑡)) + 1

i.e. the propagation distance of its outflow variable node.

With this inclusion, we are able to take into account the activation condition, since later

a local cost can be analyzed on 𝑠𝑚𝑢𝑡𝑎𝑛𝑡. This is also based on our assumption that statement

reachability is usually satisfied.

We notice that 𝑑𝑖𝑠𝑡(𝑣) for each variable node in a CDFG is a static value. They can be

computed directly after the construction of CDFG and attached to the nodes, for inquiry

when necessary.

Last, CDFGs with looped flows will encounter no special problem with regard to the

calculation of 𝑑𝑖𝑠𝑡(𝑣), since the distance is calculated with regard the shorted path and

therefore not following a loop.

95

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

For real-world designs, for example the microprocessor design or the floating point

design that are used in our evaluations we expect that their control and data flows have

much more stages and, therefore, 𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 measurement can serve

a reasonably fine-grained search directive. Moreover, the introduction of extra data nodes

for control flows enhances the measurement. With regard to implementation, an extra

Boolean signal needs to be inserted for each branch to record its value during simulation.

As another result during the calculation of 𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜔,𝜔′), We can

collect a set of nodes with farthest propagated mutation effects as 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝜔, 𝜔′) ⊂ 𝑉:

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝜔, 𝜔′)

= {𝑣|𝜔(𝑣) ≠ 𝜔′(𝑣) 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡(𝑣) = 𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜔,𝜔′)} (5.2)

They will be used as the basis for calculating a local propagation cost, since, as the name

mentions, these are the frontier of propagation.

5.3.4. Local Propagation Cost

In this section, we discuss the detail of local propagation cost. We first present an

example for its essential idea. Then we formulate the procedure of its calculation in

different situations and, in particular, how this can be implemented on a CDFG.

For each farthest propagated mutation effect, for example at node 𝑢 in Figure 5.5-b),

we take a closer look at why it is blocked by the statement nodes that have it as an operand

– there 𝑠2 and 𝑠7 . At each such statement, there is a straightforward condition for the

mutation effect to propagate through:

𝜔(𝑠7) ≠ 𝜔
′(𝑠7) for 𝑠7

Where 𝜔(𝑠7) is used to denote the computation of 𝑠3 with the values in 𝜔, as previously

defined. This corresponds to(𝜔(𝑢) = 𝜔(𝑑)) ≠ (𝜔′(𝑢) = 𝜔′(𝑑)).

The key here is that we can transform any condition, or constraint 𝜔(𝑠) ≠ 𝜔′(𝑠) for a

𝑠 ∈ 𝑆 with regard to mutation-analysis result (𝜔, 𝜔′) equally to a Boolean expression

𝜔(𝑠) ∧ 𝜔′(𝑠) ∨ 𝜔(𝑠) ∧ 𝜔′(𝑠), on which a satisfaction degree can then be calculated, by

leveraging the boolean_cost table from Figure 5.6.

We also note that such calculation relays purely on actual simulation values (𝜔, 𝜔′)

that are not symbolic.

Example 5.1-3: local propagation cost

On the CDFG from Example 5.1-1, with input (𝑎 = 4, 𝑏 = 1, 𝑑 = 0) the mutation

effect at 𝑢 will be blocked at 𝑠7, as condition 𝜔(𝑠7) ≠ 𝜔
′(𝑠7) is not satisfied with 𝜔(𝑢) =

5 , 𝜔′(𝑢) = 3 , and 𝜔(𝑑) = 𝜔′(𝑑) = 0 . Nevertheless, its satisfaction degree can be

Quality Metrics Driven Functional Verification for IP based SoC Design

96

estimated, as the local propagation cost that we call, by

𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠7)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑢) = 𝜔(𝑑)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(5 = 0) = 5

𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠7)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑢) ≠ 𝜔(𝑑)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 (5 ≠ 0) = 0

𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔′(𝑠7)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔
′(𝑢) = 𝜔′(𝑑)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(3 = 0) = 3

𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔′(𝑠7)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔
′(𝑢) ≠ 𝜔′(𝑑)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 (3 ≠ 0) = 0

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑠7(𝜔, 𝜔
′)

= 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠7) ≠ 𝜔
′(𝑠7))

= 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠7) ∧ 𝜔
′(𝑠7) ∨ 𝜔(𝑠7) ∧ 𝜔

′(𝑠7))
= 5 × 3 ∕ (5 + 3)
= 1.875

Consider that we are in some search procedure and another candidate test is selected

by a slight increase of 𝑎 to 5 . This leads to a new 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑠7 as 6 ×

4 (6 + 4)⁄ = 2.4 , which should be seen as a hint of wrong search direction as it increases

the cost. Going the opposite direction we could try 𝑎 = 3, which reduces the cost to 4×

2 (4 + 2)⁄ = 1.33. The reduction gives a sign of test improvement and the search should be

encouraged to follow this direction.

If we follow this way and further decrease 𝑎 to 1, we land on a test that satisfies the local

propagation condition at 𝑠3 . The mutation effect spread further through 𝑠3 and

automatically 𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is also reduced, by 1 at least. ■

To conclude the essential ideas of local propagation cost, for a mutation effect to

propagate through a HDL design statement 𝑠 ∈ 𝑆 on CDFG, we calculate

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 𝑠(𝜔, 𝜔
′)

= 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠) ≠ 𝜔′(𝑠)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠) ∧ 𝜔′(𝑠) ∨ 𝜔(𝑠) ∧ 𝜔′(𝑠)) (5.3)

In the following, we formulate a procedure for calculating such local cost for every 𝑣 ∈

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝜔, 𝜔′), as an extension to 𝐶𝐷𝐹𝐺.

1) We extend a CDFG by attaching a Boolean cost function to each variable node,

specifically for HDL mutation analysis.

Commonly, we can identify three types of HDL operations: arithmetic operations such

as addition or multiplication, bit manipulation operations such as concatenation or shift,

and Boolean operations that include logical operations as well as relational operations.

Our first observation is that it should be relatively easy for a mutation effect to propagate

through arithmetic operations and bit operations and, therefore, a finer scale with local cost

is not necessary at the corresponding nodes.

For example, a node with ℎ + 𝑖 will not be examined for local cost, since, if one of its

operands ℎ or 𝑖 has a mutation effect, it should be highly probable for the node also to of

97

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

compute a deviated value in mutant simulation. In contrast, Boolean operations may

expose particularly low probability for a mutation effect to get through. When 𝑎 receives

a mutation effect, it is easy for (𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑛𝑑 𝑐 𝑎𝑛𝑑 𝑑) to mask this deviation in mutant

simulation and block the propagation. For another example Boolean operation a > b ,

mutation effect on 𝑎 propagates through, only when deviation is of a big enough

magnitude.

Therefore, we consider calculating the local propagation cost only at variable nodes

from Boolean operations. Importantly, this includes all the branch nodes that we build into

CDFG, by which all the design control flows are taken into account.

For this, we first assume that 𝑆𝐵𝑜𝑜𝑙𝑒𝑎𝑛 ⊂ 𝑆 in a 𝐶𝐷𝐹𝐺 are statement nodes with Boolean

evaluation and 𝑉𝐵𝑜𝑜𝑙𝑒𝑎𝑛 ⊂ 𝑉 is {𝑣| 𝑖𝑛(𝑣) ⊂ 𝑆𝐵𝑜𝑜𝑙𝑒𝑎𝑛}. For each branch controlled statement

node 𝑠 ∈ 𝑆𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 and 𝑠 ∈ 𝑆𝐵𝑜𝑜𝑙𝑒𝑎𝑛 , we aggregate all its incoming control edges

𝑏𝑟𝑎𝑛𝑐ℎ(𝑠) = {𝑒1 = (𝑣1, 𝑠), 𝑒2 = (𝑣2, 𝑠),⋯ } and extend its evaluation 𝜔𝑒𝑥𝑡 as

𝜔𝑒𝑥𝑡(𝑠) = (𝜔(𝑣1) = 𝛿(𝑒1)) ∧ (𝜔(𝑣2) = 𝛿(𝑒2)) ∧ ⋯∧ 𝜔(𝑠) (5.4)

We have 𝜔′𝑒𝑥𝑡(𝑠) in the same way. Then, for each branch controlled Boolean variable

𝑣 ∈ 𝑉𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 and 𝑣 ∈ 𝑉𝐵𝑜𝑜𝑙𝑒𝑎𝑛, we consider all 𝑖𝑛(𝑣) = {𝑠1, 𝑠2, ⋯ } and attach to it a

local cost function

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑣(𝜔, 𝜔
′)

= 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡((𝜔𝑒𝑥𝑡(𝑠1) ∨ 𝜔𝑒𝑥𝑡(𝑠2) ∨ ⋯) ≠ (𝜔
′
𝑒𝑥𝑡(𝑠1) ∨ 𝜔

′
𝑒𝑥𝑡(𝑠2) ∨ ⋯)) (5.5)

The function is calculated by expansion with (5.3) and further with (5.4). In short, all

the control dependences of this variable node are taken into account when calculating the

local Boolean cost. This is no repetition of the design simulation, but only an analysis of

the simulation results, with already happened values from the simulation.

For 𝑣 ∉ 𝑉𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 and 𝑣 ∈ 𝑉𝐵𝑜𝑜𝑙𝑒𝑎𝑛, its 𝑖𝑛(𝑣) should be a single Boolean statement

{𝑠1} that 𝑠 ∉ 𝑆𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 and 𝑠 ∈ 𝑆𝐵𝑜𝑜𝑙𝑒𝑎𝑛. We simply attach to 𝑣 the local cost function

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑣(𝜔, 𝜔
′) = 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑠(𝜔, 𝜔

′) (5.6)

where 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑠(𝜔, 𝜔
′) is defined and explained with (5.3).

There is one small exception for 𝑣 ∈ 𝑉𝐵𝑜𝑜𝑙𝑒𝑎𝑛 when 𝑖𝑛(𝑣) just contains the mutation

statement 𝑠𝑚𝑢𝑡𝑎𝑛𝑡 . In such a case, if 𝑣 ∈ 𝑉𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 and 𝑖𝑛(𝑣) = {𝑠1, ⋯ , 𝑠𝑚𝑢𝑡𝑎𝑛𝑡 , ⋯ },

we adjust (5.5) and attach to 𝑣:

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑣(𝜔, 𝜔
′)

= 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡((𝜔𝑒𝑥𝑡(𝑠1) ∨ ⋯∨ 𝜔𝑒𝑥𝑡(𝑠𝑚𝑢𝑡𝑎𝑛𝑡) ∨ ⋯)

≠ (𝜔′𝑒𝑥𝑡(𝑠1) ∨ ⋯∨ 𝜔
′
𝑒𝑥𝑡(𝑠𝑚𝑢𝑡𝑎𝑛𝑡

′) ∨ ⋯)) (5.5′)

If 𝑣 ∉ 𝑉𝑏𝑟𝑎𝑛−𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 and 𝑖𝑛(𝑣) = {𝑠𝑚𝑢𝑡𝑎𝑛𝑡}, we adjust (5.6) as

Quality Metrics Driven Functional Verification for IP based SoC Design

98

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑣(𝜔, 𝜔
′)

= 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠𝑚𝑢𝑡𝑎𝑛𝑡) ≠ 𝜔
′(𝑠𝑚𝑢𝑡𝑎𝑛𝑡

′))

= 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 (𝜔(𝑠𝑚𝑢𝑡𝑎𝑛𝑡) ∧ 𝜔
′ (𝑠𝑚𝑢𝑡𝑎𝑛𝑡

′) ∨ 𝜔(𝑠𝑚𝑢𝑡𝑎𝑛𝑡) ∧ 𝜔
′(𝑠𝑚𝑢𝑡𝑎𝑛𝑡

′)) (5.6′)

Taking into account this exception enables us to take into account the activation

condition. When there are no mutation effect in the mutant simulation, (5.5′) or (5.6′)

calculates exactly the degree of the activation condition being satisfied.

If 𝑣 ∉ 𝑉𝐵𝑜𝑜𝑙𝑒𝑎𝑛 not from a Boolean statement, we attach to it a small constant number

K as its local cost, which reflect the assumption that it may very easily receive a mutation

effect.

We notice that this extension is also static to 𝐶𝐷𝐹𝐺. A mapping from this definition to

an implementation should be relatively straightforward, which we will have experiments

in our evaluation chapter.

Example 5.1-4: CDFG extension of Example 5.1-1 for calculation of

𝒍𝒐𝒄𝒂𝒍𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏𝑪𝒐𝒔𝒕.

As an example of the above defined extension, we attach local cost functions to the

𝐶𝐷𝐹𝐺 in Figure 5.4. Inputs {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} are ignored as they always receive the same

values in mutant simulation. It is also not necessary for node 𝑢, as it is not result from a

Boolean operation and we expect that it will probably have a deviation in mutant

simulation, i.e. the activation is probable, in this example.

For variable nodes{𝑣, 𝑦, 𝑏𝑟𝑎𝑛𝑐ℎ𝑠2 , 𝑏𝑟𝑎𝑛𝑐ℎ𝑠4 , 𝑥}:

 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑣 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠7) ≠ 𝜔
′(𝑠7)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 (𝜔(𝑔 =

𝑑) ∧ 𝜔′(𝑛𝑜𝑡 (𝑔 = 𝑑)) ∨ 𝜔(𝑛𝑜𝑡 (𝑔 = 𝑑)) ∧ 𝜔′(𝑔 = 𝑑)) , by (5.3)

 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑦 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠8) ≠ 𝜔
′(𝑠8)) =

𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 (𝜔(𝑣 𝑎𝑛𝑑 𝑒 𝑎𝑛𝑑 𝑓) ∧ 𝜔′(𝑛𝑜𝑡 (𝑣 𝑎𝑛𝑑 𝑒 𝑎𝑛𝑑 𝑓)) ∨

𝜔(𝑛𝑜𝑡 (𝑣 𝑎𝑛𝑑 𝑒 𝑎𝑛𝑑 𝑓)) ∧ 𝜔′(𝑣 𝑎𝑛𝑑 𝑒 𝑎𝑛𝑑 𝑓)), by (5.3)

 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑏𝑟𝑎𝑛𝑐ℎ𝑠2 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔(𝑠2) ≠ 𝜔
′(𝑠2)) =

𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 (𝜔(𝑢 > 𝑐) ∧ 𝜔′(𝑛𝑜𝑡 (𝑢 > 𝑐)) ∨ 𝜔(𝑛𝑜𝑡 (𝑢 > 𝑐)) ∧ 𝜔′(𝑢 > 𝑐)), by (5.3)

 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑏𝑟𝑎𝑛𝑐ℎ𝑠4 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔𝑒𝑥𝑡
(𝑠4) ≠ 𝜔

′
𝑒𝑥𝑡(𝑠4)) =

𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔𝑒𝑥𝑡(𝑠4) ∧ 𝜔
′
𝑒𝑥𝑡(𝑠4) ∨ 𝜔𝑒𝑥𝑡(𝑠4) ∧ 𝜔

′
𝑒𝑥𝑡(𝑠4)) by (5.5), where by (5.4):

- 𝜔𝑒𝑥𝑡(𝑠4) = (𝜔(𝑏𝑟𝑎𝑛𝑐ℎ𝑠2) = 𝑓𝑎𝑙𝑠𝑒) ∧ 𝜔(𝑢 = 𝑐)

- 𝜔′𝑒𝑥𝑡(𝑠4) = (𝜔
′(𝑏𝑟𝑎𝑛𝑐ℎ𝑠2) = 𝑓𝑎𝑙𝑠𝑒) ∧ 𝜔

′(𝑢 = 𝑐)

99

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

- 𝜔𝑒𝑥𝑡(𝑠4) = 𝑛𝑜𝑡 ((𝜔(𝑏𝑟𝑎𝑛𝑐ℎ𝑠2) = 𝑓𝑎𝑙𝑠𝑒) ∧ 𝜔(𝑢 = 𝑐))

- 𝜔′𝑒𝑥𝑡(𝑠4) = 𝑛𝑜𝑡 ((𝜔
′(𝑏𝑟𝑎𝑛𝑐ℎ𝑠2) = 𝑓𝑎𝑙𝑠𝑒) ∧ 𝜔

′(𝑢 = 𝑐))

 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑥 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 ((𝜔𝑒𝑥𝑡(𝑠3) ∨ 𝜔𝑒𝑥𝑡(𝑠5) ∨ 𝜔𝑒𝑥𝑡(𝑠6)) ≠

(𝜔′𝑒𝑥𝑡(𝑠3) ∨ 𝜔
′
𝑒𝑥𝑡(𝑠5) ∨ 𝜔

′
𝑒𝑥𝑡(𝑠6))) by (5.5), where by (5.4):

- 𝜔𝑒𝑥𝑡(𝑠3) = (𝜔(𝑏𝑟𝑎𝑛𝑐ℎ𝑠2) = 𝑡𝑟𝑢𝑒) ∧ 𝜔(𝑠3)

- 𝜔𝑒𝑥𝑡(𝑠5) = (𝜔(𝑏𝑟𝑎𝑛𝑐ℎ𝑠2) = 𝑓𝑎𝑙𝑠𝑒) ∧ (𝜔(𝑏𝑟𝑎𝑛𝑐ℎ𝑠4) = 𝑓𝑎𝑙𝑠𝑒) ∧ 𝜔(𝑠5)

- 𝜔𝑒𝑥𝑡(𝑠6) = (𝜔(𝑏𝑟𝑎𝑛𝑐ℎ𝑠2) = 𝑓𝑎𝑙𝑠𝑒) ∧ (𝜔(𝑏𝑟𝑎𝑛𝑐ℎ𝑠4) = 𝑡𝑟𝑢𝑒) ∧ 𝜔(𝑒 𝑜𝑟 𝑓)

- 𝜔′𝑒𝑥𝑡(𝑠3), 𝜔
′
𝑒𝑥𝑡(𝑠5), 𝜔

′
𝑒𝑥𝑡(𝑠6), 𝜔𝑒𝑥𝑡(𝑠3), 𝜔𝑒𝑥𝑡(𝑠5), 𝜔𝑒𝑥𝑡(𝑠6), 𝜔

′
𝑒𝑥𝑡(𝑠3), 𝜔

′
𝑒𝑥𝑡(𝑠5)

and 𝜔′𝑒𝑥𝑡(𝑠6) follow the same way and we leave out the description.

Note that ∧ and HDL native 𝑎𝑛𝑑 are used interchangeably and single bits are also

treated as Boolean, which are minor implementation issues.

Consider that our current test as search coordinate is simply {𝑎 = 1, 𝑏 = 1, 𝑐 = 0, 𝑒 =

1, 𝑓 = 1}. Output 𝑥 does not receive a mutation effect but we can calculate

 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔𝑒𝑥𝑡(𝑠3) ∨ 𝜔𝑒𝑥𝑡(𝑠5) ∨ 𝜔𝑒𝑥𝑡(𝑠6)) = 0

 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 (𝜔𝑒𝑥𝑡(𝑠3) ∨ 𝜔𝑒𝑥𝑡(𝑠5) ∨ 𝜔𝑒𝑥𝑡(𝑠6)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔𝑒𝑥𝑡(𝑠3) ∧

𝜔𝑒𝑥𝑡(𝑠5) ∧ 𝜔𝑒𝑥𝑡(𝑠6)) = 1 × 1 (1 + 1)⁄ + 0 + 0 = 0.5

 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔′𝑒𝑥𝑡(𝑠3) ∨ 𝜔
′
𝑒𝑥𝑡(𝑠5) ∨ 𝜔

′
𝑒𝑥𝑡(𝑠6)) = 0

 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 (𝜔′𝑒𝑥𝑡(𝑠3) ∨ 𝜔′𝑒𝑥𝑡(𝑠5) ∨ 𝜔′𝑒𝑥𝑡(𝑠6)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔
′
𝑒𝑥𝑡(𝑠3) ∧

𝜔′𝑒𝑥𝑡(𝑠5) ∧ 𝜔
′
𝑒𝑥𝑡(𝑠6)) = 0 + 0 + 1 × 1 × 2 (1 + 1 + 2)⁄ = 0.5

 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑥 = 0.5 × 0.5 (0.5 + 0.5) = 𝟎. 𝟐𝟓⁄

Suppose that we are in a local search and have a neighborhood test {𝑎 = 1, 𝑏 = 1, 𝑐 =

0, 𝑒 = 0, 𝑓 = 1} by adjusting only 𝑒. The new local cost at 𝑥 is then

 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡 (𝜔′𝑒𝑥𝑡(𝑠3) ∨ 𝜔′𝑒𝑥𝑡(𝑠5) ∨ 𝜔′𝑒𝑥𝑡(𝑠6)) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑐𝑜𝑠𝑡(𝜔
′
𝑒𝑥𝑡(𝑠3) ∧

𝜔′𝑒𝑥𝑡(𝑠5) ∧ 𝜔
′
𝑒𝑥𝑡(𝑠6)) = 0 + 0 + 1 × 1 × 1 (1 + 1 + 1)⁄ = 0.33

 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑥 = 0.5 × 0.33 (0.5 + 0.33) = 𝟎. 𝟐⁄

This shows how 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 reflects the gradual improvement of test, with

regard to propagation of HDL mutation effect. ■

2) We calculate local cost at each variable node that are the potential propagation

points from 𝑭𝒓𝒐𝒏𝒕𝒊𝒆𝒓(𝝎,𝝎′) and select a minimal among all.

Quality Metrics Driven Functional Verification for IP based SoC Design

100

Recall that 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝜔, 𝜔′) ⊂ 𝑉 are the farthest propagated mutation effects that we

have collected during the calculation of macro propagation distance.

But first, we can define for each 𝑣 ∈ 𝑉 , 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑣) ⊂ 𝑉

{𝑣′| 𝑖𝑛(𝑣′)⋂𝑜𝑢𝑡(𝑣) ≠ ∅, and 𝑑𝑖𝑠𝑡(𝑣′) = 𝑑𝑖𝑠𝑡(𝑣) − 1} . They are variable nodes that are

connected to 𝑣 by two edges over one statement node and, at the same time, one-step

nearer to design output than 𝑣. They represent potential destination of propagation of any

mutation effect on 𝑣. As long as they receive a propagated mutation effect, the macro

propagation distance will be reduced too.

Note that 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑣) is also a static properties of 𝑣 , which can be computed

directly on 𝐶𝐷𝐹𝐺.

Then, 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝜔,𝜔′) ⊂ 𝑉 is collected as

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝜔,𝜔′) = ⋃ 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑣) (5.7)

𝑣∈𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝜔,𝜔′)

And an overall minimal local cost can be calculated as:

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝜔, 𝜔′) = min
𝑣∈𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝜔,𝜔′)

(𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑣(𝜔, 𝜔
′))

In a simple example with Figure 5.7, only the 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑒 function

attached to node 𝑒 will be used for cost calculation, since i) 𝑥 does not belong to

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝜔, 𝜔′), ii)) 𝑔 is not from a Boolean operation, and iii) 𝑓does not belong to

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑎).

3) If 𝑭𝒓𝒐𝒏𝒕𝒊𝒆𝒓(𝝎,𝝎′) = ∅ , we calculate the local propagation cost at the result

variable from the mutation statement, by

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝜔, 𝜔′) = 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑜𝑢𝑡(𝑠𝑚𝑢𝑡𝑎𝑛𝑡)(𝜔, 𝜔
′)

 This measures a degree for the activation condition to be satisfied, in order to generate

the mutation effect.

4) The overall cost on trace (𝝎,𝝎′) is summed up as:

𝑐𝑜𝑠𝑡(𝜔, 𝜔′)
= 𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜔,𝜔′) − 1 + 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝜔, 𝜔′) 𝐻⁄

where 𝐻 is a big constant that intends to always reduce the impact of local cost under 1.

Since we consider only the simulation and verification of synchronous HDL designs,

𝑐𝑜𝑠𝑡(𝜔, 𝜔′) is calculated for all cycles and the smallest one is selected as 𝑐𝑜𝑠𝑡(𝑡𝑒𝑠𝑡).

101

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

5.3.5. Algorithmic Summary and Complexity

In Figure 5.8, we give an algorithmic summary for the calculation of 𝑐𝑜𝑠𝑡𝑚𝑢𝑡𝑎𝑛𝑡(𝑡𝑒𝑠𝑡),

which measures the progress of killing a specific HDL 𝑚𝑢𝑡𝑎𝑛𝑡, in particular, with regard

to activation and propagation.

We briefly discuss the complexity of this algorithm:

 𝑑𝑖𝑠𝑡(𝑣) as a static value, 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑣) as a static list of nodes, and a function

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑣 are all statically prepared on CDFG and, therefore, impose

no impact on simulation time.

 With 𝑑𝑖𝑠𝑡(𝑣) available, the calculation of (5.1) and (5.2) requires only value

comparison for each variable which should require little effort. Also, (5.7) requires

little effort as a simple aggregation of the static 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑣).

 For each node collected by (5.7), the effort of calculation with

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑣 should be at the same level as the original statement that

computes 𝑣. Assuming that the set of candidate nodes for propagation will be a

small fraction of all variables, the calculation of such local cost should be minor

compared to the original simulation time.

 Therefore, we conclude that the overall time for calculating this 𝑐𝑜𝑠𝑡𝑚𝑢𝑡𝑎𝑛𝑡(𝑡𝑒𝑠𝑡) for

each test, based on the exiting simulation trace values from this test, should be minor to

the original simulation time, which is important for its integration into a search algorithm.

And we should be able to observe this property in our evaluation experiment with

microprocessor and floating point unit design.

Figure 5.7 This example shows that only 𝒍𝒐𝒄𝒂𝒍𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏𝑪𝒐𝒔𝒕𝒆 will be used for cost

calculation.

a = c

a

e

a > b

f

a+b

output

x

x > y

g

output output output

Quality Metrics Driven Functional Verification for IP based SoC Design

102

Algorithm of 𝒄𝒐𝒔𝒕𝒎𝒖𝒕𝒂𝒏𝒕(𝒕𝒆𝒔𝒕)

// To be used as the cost function in Figure 5.2, for each specific mutant

𝐻 is a big constant and 𝐾 is a small constant, which reduces the impact of local cost to be between (0,1);

Data Structure Preparation

Construct from design a 𝐶𝐷𝐹𝐺 = (𝑉, 𝑆, 𝐸, 𝛿, 𝑂, 𝑠𝑚𝑢𝑡𝑎𝑛𝑡), by Definition 5.3.1;

Compute 𝑑𝑖𝑠𝑡(𝑣) and 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑣) for each 𝑣 in 𝑉;

Extend 𝐶𝐷𝐹𝐺 and attach local cost functions to variable nodes, based on (5.5) (5.6) (5.5’) and (5.6’);

Input

Input is 𝑡𝑒𝑠𝑡 ∈ 𝑇, which makes 𝑐𝑜𝑠𝑡𝑚𝑢𝑡𝑎𝑛𝑡 a function: Treal value, 𝑇 is …

𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡 and 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡
′ are a pair of simulation traces from 𝑡𝑒𝑠𝑡, consisting of {𝜔1, 𝜔2, ⋯ } and

{𝜔1
′ , 𝜔2

′ , ⋯ } for simulation cycles

Start

Set 𝑚𝑎𝑐𝑟𝑜_𝑐𝑜𝑠𝑡 = 𝑑𝑖𝑠𝑡(𝑜𝑢𝑡(𝑠𝑚𝑢𝑡𝑎𝑛𝑡)) + 1;

FOR each cycle 𝑖 in 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡 and 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡
′ DO

// (𝜔𝑖 , 𝜔𝑖
′) is from 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡 and 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡

′ , as described;

Set 𝑚𝑎𝑐𝑟𝑜_𝑐𝑜𝑠𝑡𝑖 = 𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜔𝑖 , 𝜔𝑖
′), by (5.1);

Set 𝑚𝑎𝑐𝑟𝑜_𝑐𝑜𝑠𝑡 = min{𝑚𝑎𝑐𝑟𝑜_𝑐𝑜𝑠𝑡𝑖 ,𝑚𝑎𝑐𝑟𝑜_𝑐𝑜𝑠𝑡};

END FOR;

Set 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 = 𝐻;

FOR each value changed cycle 𝑖 in 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡 and 𝑊𝑚𝑢𝑡𝑎𝑛𝑡,𝑡𝑒𝑠𝑡
′ again DO

IF 𝑚𝑎𝑐𝑟𝑜_𝑐𝑜𝑠𝑡𝑖 equals 𝑚𝑎𝑐𝑟𝑜_𝑐𝑜𝑠𝑡 THEN

Identify a list 𝐹𝑖 = 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝜔𝑖 , 𝜔𝑖
′), by (5.2);

IF 𝐹 is not empty THEN

Identify a list of candidate nodes for propagation 𝑃𝑖 = 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝐹𝑖) by (5.7);

FOR each 𝑣 𝑖𝑛 𝑃 DO

 Set 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡𝑖 = 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑣(𝜔, 𝜔
′) as attached to 𝑣;

 Set 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 = min{𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡𝑖 , 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡}

END FOR;

ELSE

Set 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡𝑖 = 𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑜𝑢𝑡(𝑠𝑚𝑢𝑡𝑎𝑛𝑡)(𝜔𝑖 , 𝜔𝑖
′) as attached;

Set 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 = min{𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡𝑖 , 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡};

END IF;

END IF;

END FOR;

Set 𝑐𝑜𝑠𝑡 = 𝑚𝑎𝑐𝑟𝑜_𝑐𝑜𝑠𝑡 − 1 + 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 𝐻⁄

End

Figure 5.8 Algorithmic summary of cost function.

103

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

5.4. Related Work

We have proposed metaheuristic search based test generation for killing HDL mutants.

In this section, related literature is discussed. On one hand, we review several fault oriented

test generation methods and discuss why they do not suite our problem of killing HDL

mutants. On the other hand, we also discuss search based test generation methods that

targets other metrics and why they do not apply to HDL mutation analysis.

 In the background chapter, we have compared the HDL mutation and gate-level

fault models, as well as mutation-based simulation test generation to traditional

Automatic Test Pattern Generation (ATPG) algorithms [55] [71] [72] [73]. ATPGs

does not directly apply to HDL mutation analysis in functional verification, as i)

relying on scan-chain techniques, they are basically based on structural testing

scheme and do not take a whole design as input and ii) with HDL mutation, we do

not assume the synthesizability of a design under verification, which can be VHDL,

Verilog, or C/SystemC. In our search based approach, we define the objective cost

function based on a control and data flow data structure, which can be extracted

from both RTL/behavioral designs. The final test generation applies to any HDL

designs that are simulatable.

 The observability-based coverage [54], also discussed in the background chapter,

has a similar test generation problem to mutation analysis, since a tag also models

an error to be propagated. In [86], it is transformed to a Hybrid Boolean

Satisfiability (HSAT) problem. Based on a structural graph compiled from the

HDL design description, a mixed set of Boolean and linear constraints is generated

for both the tagged and untagged versions. Then, for each output data node, another

constraint is added to guarantee the tag detection. At last, the collected HSAT

problem is solved to obtain the target test data.

 The original mutation analysis based test generation [87] relies on linear constraint

solving. First, the program is symbolically executed to establish the path from input

to a fault location. At each branch predicate, a constraint is collected for the

intended path. When the fault statement is reached, another constraint is added to

handle the activation condition. Then tests are generated by solving the entire set

of constraints. The propagation problem is not considered.

 In [68], VHDL designs are translated to SW programs and fed into the software

mutation analysis tool in [87] , so as to generate mutation-oriented test data for both

design verification and manufacturing testing.

We can see that these fault-oriented test generation methods rely mostly on symbolic

execution and constraint solving to obtain a definitive target test. As symbolic execution

Quality Metrics Driven Functional Verification for IP based SoC Design

104

may encounter the path explosion problem [88] and constraint satisfaction problems also

face high complexity [89], they are regarded not scalable to large designs, in general.

In contrary, search-based test generation methods intend to find target tests based only

on actual design or program execution, in an iterative manner. Therefore, they are

expected to scale well in line with HDL simulation, when applied for functional design

verification. The trade-off is that a search success is not guaranteed and the search

performance may vary. A survey on search based software test generation can be further

found in [80].

 [90] systematically discusses how to apply search based test generation to a specific

coverage metric: path coverage, i.e. to achieve complete execution of a specific

program path. Sub-goals are defined as satisfaction of intended branches. For each

such branch, a cost function is defined to steer the branch satisfaction, which is

evaluated with the variable values during actual program execution, to be

minimized to zero.

Actually, path coverage subsumes the reachability problem in mutation

analysis and could be complementary to our method. However, as mentioned, we

assume that in HDL simulation, reachability (line coverage) is easy to satisfy.

Therefore, we focus our cost function definition as well as search on activation and

propagation.

 This search-for-path-coverage principle is applied in [91] to mutation analysis. A

similar cost function is defined on the test input space and reflects the progress of

path-following. Ant Colony search is employed to minimize the cost and find the

target test. Again, only mutation reachability is taken into account by the cost

function.

 Further, we can find hybrid techniques combining simulation based search and

formal methods for test generation, such as the abstraction-guided simulation

presented in [92] [93] and [94]. Coverage of a specific set of design states is their

search goal. A Finite State Machine (FSM) abstracted from the design is used to

guide the search of test inputs that reach a target state. [92] builds the abstraction

by selecting the design module containing the verification property and the

modules that interacts closely with it, under some complexity constraint with

regard to the final product FSM. With data-mining techniques, this abstraction can

be also done as in [93] and [94] by partitioning state variables that are high

correlated to the target state.

Based on the abstract FSM model, pre-images of the targets state are iteratively

computed via a Satisfiability (SAT) engine. Then, a simulation trace can be mapped

to the abstract model to obtain the current state. The distance from the current state

105

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

to the target state becomes the cost function of search, guiding the search towards

a target test input.

Equipped with such guidance, the search algorithms employed include a simple

random walk in [92], more sophisticatedly a cultural algorithm in [93] and a genetic

algorithm in [94]. The SAT engine also intervenes during search to bridge the

current state to a closer state, when the search heuristics get stuck at a dead-end

state.

Comparison of Literature to Our Work

We conclude the distinction between our search-based test generation method for

mutation analysis and those found in the literature as follows.

 The most significant difference is that our method is purely based on actual HDL

design simulation. It can be integrated into any simulation-based verification

process. No design synthesizability needs to be assumed. Also, no symbolic

manipulation or simulation is required. Moreover, compared to the abstraction-

based hybrid approaches, the graph structure that we extract from a design to define

the search cost function represents the static structure of the design instead of its

state transitions. No symbolic methods or SAT is needed for the computation on

this graph and we resort only to actual simulation values for the cost calculation.

 Compared to other metric-oriented, search-based test generation methods, only our

cost function definition handles all three problems in mutation analysis: reaching,

activating, and propagating a mutant.

To the best of our knowledge, it is the first such effort to develop a search-based, non-

symbolic test generation method for HDL mutation analysis.

There is also discussion in [83] related to automated extraction of similar CDFG

structures as used in our cost function. We view this as reasonable future work to

complement the automation flow of our method.

5.5. Summary

We have considered the problem of test generation for killing a specific design mutant,

for HDL mutation analysis. This corresponds to the problem of handling each of the un-

killed IP design mutant after the adaptive random simulation phase, in the context of our

metrics driven functional verification flow for IP-based SoC design.

We have proposed a novel, metaheuristic search based method for such test generation.

The idea is that we apply a search algorithm on the design input space. In iterations, the

Quality Metrics Driven Functional Verification for IP based SoC Design

106

search evaluates and improve the candidate tests, towards some final target that kills the

mutant. This approach has the advantage of relying only on actual design simulation, in

contrast to symbolic execution or constraint solving that we have seen in the related work.

As the key of enabling such a search with the goal of killing a mutant, an objective cost

function has been proposed. It is devised exactly with the three conditions for killing a

HDL design mutations in mind: reach the mutation statement, activate the mutant with a

local deviation, and propagate such deviation to output.

Therefore, we have modeled and analyzed these conditions on a Control and Data Flow

Graph, since it enables a direct mapping of the conditions onto that graph and then a

quantitative measurement of them from being satisfied – in particular, the activation and

propagation.

This quantitative measurement, after we mapping a mutation-analysis simulation trace

onto the CDFG, consists of a macro propagation distance as a general distance of mutation

effects to design output and a local propagation cost, which transforms local propagation

conditions to Boolean expressions and then leverages a boolean_cost to estimate the

satisfaction degree of such conditions. Together, they provides a complete search guidance

with regard to HDL mutant activation and propagation. Also, the cost function takes

existing simulation traces as input and impose minor calculation effort to the actual

simulation.

In the evaluation chapter, we will mainly investigate the effectiveness of the cost

function as the steering of a local search algorithm, i.e. whether it can consistently lead the

search to a target mutant-killing test, for a real IP design and simulation. The evaluation

or comparison with more complex metaheuristics is seen as reasonable future work.

Although the method is established with mutation analysis as the quality metric, we see

no restriction on its application to other metrics.

This contribution has been first published in [6] and further elaborated in [1].

107

CHAPTER 6: SoC System Design Simulation and
Mutation Analysis with IP-XACT

6.1. Introduction

In this chapter, we present a systematic verification method for SoC system design. The

method is simulation-based and with mutation analysis integrated as the quality metric for

such simulation. In the IP-based SoC design paradigm, this is where we assemble pre-

verified IP components into an integrated SoC system.

Motivation for System Simulation and Mutation Analysis with IP-XACT

First, we assume IP-XACT [29] as the default language that we use for SoC system

design, since:

 IP-XACT is the standard for IP re-use and SoC integration, therefore just suit our

overall methodology. It should be more reasonable for us to establish this system

verification method with IP-XACT, as opposed to a proprietary language, such as

MHS (Microprocessor Hardware Specification) that we mentioned for SoC design

on Xilinx FPGA. Also, SoC design in IP-XACT is more evident, if we assume that

IPs are provided with IP-XACT as metadata

 Creating a system verification method based on IP-XACT should enable the

verification to focus on IP integration – their instantiation, interconnection, and

parameter configuration.

This focus of verification on IP integration through IP-XACT is even necessary, since

i) we cannot expect the availability of IP code and a white-box system test and ii) we need

to handle the increasing complexity of IP and IP integration by assuming the correctness

of delivered IPs. This has been elaborated in our background chapter requirement as

division and separation of IP design and SoC system integration. The previous two

methods for mutation analysis driven verification – adaptive random simulation and

Quality Metrics Driven Functional Verification for IP based SoC Design

108

metaheuristic based test generation– are exactly our effort towards a thorough IP

verification and, thus, its correctness.

Further, we assume system simulation as a necessary verification step for SoC system

design, before its final implementation to ASIC or FPGA. Even for FPGA based

implementation with relatively low cost, system simulation provides a far better

observability compared to a final testing on FPGA. Nevertheless, system simulation does

not intend to replace emulation or FPGA prototyping.

Therefore, the first problem for establishing an IP-XACT based, systematic verification

methods is that SoC system designs in IP-XACT are not directly simulatable. Since they

are in the form of XML files and XML is not executable, we need at first a simulation

engine for IP-XACT. Our approach is to transform an IP-XACT design to another system

model that is simulatable. The destination language that we choose for this transformation

is SystemC.

The second question is, how can we systematically manage the quality of such system

verification based on IP-XACT simulation? Following our consistent focus on metrics

driven verification for IP-based SoC design, and assuming mutation analysis the advanced,

effective metric that we employ, we consider the problem of enabling mutation analysis

with IP-XACT. Here, a key should be the definition of mutation operators on IP-XACT –

how XML errors are to be injected into IP-XACT system designs.

Contribution of the Chapter

With this chapter, we contribute by proposing a SoC system design simulation and

mutation analysis framework based on IP-XACT, to be the third, system-level component

of our mutation analysis driven functional verification methodology for IP-based SoC

design. The framework consists further of two contributions. The first is a SystemC based

IP-XACT design synthesis and simulation flow that enables the functional verification of

SoC designs. The second is the definition of a set of mutation operators on IP-XACT

schema, which enables IP-XAXT mutation analysis as an advanced quality metric for

system simulation.

Organization

In Section 6.2, we first give an overview of our proposal for an IP-XACT based SoC

design simulation and mutation analysis framework and, in particular, why SystemC is

chosen as the target platform. Then, Section 6.3 details the IP-XACT-to-SystemC

synthesis flow and rules. Section 6.4 introduces a list of IP-XACT mutation operators. In

Section 6.5, we present an Eclipsed-based tool that we have implemented for our proposal.

Related work in literature is discussed in Section 6.6 and the chapter is concluded by

Section 6.7.

109

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

6.2. An IP-XACT Design Simulation and Mutation Analysis

Framework

Figure 6.1 shows an overview of our proposal: an IP-XACT design simulation and

mutation analysis framework, for systematic functional verification of SoC system

designs. The framework consists further of two components, or interacting flows.

The first is a SystemC based IP-XACT synthesis flow, which takes an IP-XACT XML

design file as input and generates a SystemC model as output. It is proposed as a well-

defined transformation process by a set of checking and mapping rules, to be introduced

in next section. The generated simulation should match the original functionality of the IP-

XACT design. This functionality is how we should interpret the execution behavior of an

IP-XACT design, i.e. its semantics.

Although there is no formal definition on the behavioral semantics of IP-XACT as a

structural and HDL-neutral format, the execution behavior of an IP-XACT system design,

to be either simulation or real circuit operation, is already implied by a combination of

individual behaviors from the included IP components and their integration described by

IP-XACT. For this, we also assume that IPs are always packaged being accompanied by

a simulation model. For example, in the Xilinx FPGA design environment, although the

MicroBlaze microprocessor IP comes only as a hard IP without source code, another model

is provided for system integrated simulation. If an IP is presented as a soft core, RTL or

TLM, it is directly simulatable.

The reason for us making SystemC the synthesis destination is that only it provides a

single platform for multi-language, mixed-level simulation – RTL, behavioral, or TLM, as

we have introduced in Chapter 2. We assume that TLM is a state-of-the-art method

necessary for inclusion and our SoC system design may contain TLM IPs. IP-XACT

indeed handles both RTL and TLM.

With a modern simulation tool such as ModelSim, SystemC and other HDLs – VHDL

and Verilog – can be simulated above a single kernel with all their original semantics

retained.

The second component of the framework is an IP-XACT mutation analysis flow,

referring to the creation of IP-XACT design mutants and the measurement of whether they

can be killed under simulation, by seeing whether they produce deviated simulation traces.

For this, our main effort is devoted to the definition of a set of mutation operators on IP-

XACT.

Mutation analysis is language specific. The rationale behind applying the principle of

mutation analysis to any new design language is that i) each mutation operator models a

small syntactic error that may commonly be made by a designer and should be uncovered

Quality Metrics Driven Functional Verification for IP based SoC Design

110

by simulation and ii) these single small errors are supposed to be coupled with more

complex potential bugs, in the sense that if a set of tests can kill those artificially generated

mutants, they should also be able to reveal the real bugs in the design. We call it the double

effectiveness of mutation analysis as a quality metric for functional verification, which is

expected to be also applicable to SoC system design with IP-XACT.

Therefore, IP-XACT mutation operators are defined on IP-XACT XML schema as the

target language. They represent errors that we can implant into an IP-XACT XML design

document, to mimic representative errors that one can make with IP-XACT design.

The derived mutation analysis flow is then intended to qualify the simulation based IP-

XACT design verification. As interaction between these two flows, each mutant should be

fed into the synthesis and simulation flow, with the traces retrieved for measuring the kill

of this mutant.

In the end, we have this systematic verification framework for IP-XACT based SoC

system design, as one important step towards solving the verification closure problem at

system-level – are we done with system verification.

At the moment, we see the software running on a SoC to be the system tests. We leave

the automated improvement of system tests as part of further work.

Figure 6.1 IP-XACT SoC system design simulation and mutation analysis framework.

Systematic verification of SoC system designs

IP-XACT Design Synthesis and Simulation

IP-XACT Mutation Analysis as quality metric for simulation

SystemC Simulator

IP-XACT
Synthesis to

SystemC

IP-XACT
Mutation
Operators

system
mutant
killed?

SystemC
Simulation

(RTL/TLM)

done

IP-XACT SoC
Design (XML)

IP
repository

system
design
error?

Mutants

IP-XACT
mutant

111

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

6.3. SystemC Based IP-XACT Design Synthesis and Simulation

As shown in Figure 6.2, the SystemC based IP-XACT synthesis is defined as a straight

one-pass flow, which goes through a series of processors that are derived from a set of pre-

defined rules. The processors require and retrieve also information from an IP repository

that contains IP-XACT described IPs and bus/abstraction definitions. An IP-XACT-to-

SystemC model generator is implied from this flow, which we have implemented as an

Eclipse tool for further experiments.

Parser

The parser, as detailed in Figure 6.3, parses not only the IP-XACT design but also all

the IP-XACT components instantiated in the design and all the bus/abstractionDefinitions

that are referenced by the design and components.

Figure 6.2 SystemC based IP-XACT synthesis flow.

“make simulation”

Parser

Semantic
Consistency Rules

Checker

TLM
Compatibility
Rule Checker

SystemC Code
Generator by

Mapping Rules

Makefile
Generator by

Compilation Rules

SystemC
Model

Makefile

internal data structure representing all
referenced, valid information

IP repository

IP-XACT
component

XML

component

TLM

……

IP-XACT busDefinition XML

IP-XACT abstractionDefinition XML

IP RTL
model

component

RTL

component

Hard
IP

Sim. Model

IP-XACT SoC
Design (XML)

IP TLM
model

Quality Metrics Driven Functional Verification for IP based SoC Design

112

The parser itself should be derived directly from XSD schema definitions in IP-XACT

standard, so as to make sure that a design is both well-formed and valid according IP-

XACT schema. For this purpose, it needs interaction to the Semantic Consistency Rules

Checker and TLM Compatibility Rule Checker, as shown in the figure.

After the parsing, we have a one-to-one internal representation of the design, which

consists of the component instances, their configurations and their connections. Although

Java classes are used for this purpose in our implementation, we propose no definition or

restriction on this internal representation. It should be straightforward since XML is a total

structured representation. No intermediate code is generated before the final SystemC and

Makefile generation.

The final output of the parser is a one-to-one, both syntactically and semantically

correct internal representation of the IP-XACT design and all the components instantiated.

Semantic Consistency Rules Checker

The Semantic Consistency Rules (SCRs) are a set of rules defined in the IP-XACT

standard that IP-XACT documents should conform to in addition to the IP-XACT schema.

Figure 6.3 Flow of parser and its interactions with other parts.

Parser Flow and Interactions

Component2

Parser

Design

instance1

Component1

internal data structure

Semantic
Consistency
Rules (SCR)

Checker

TLM
Compatibility

Rule (TCR)
Checker

Bus/Abstraction
Definition 1

IP repository

IP-XACT
component

XML

… check SCRs

Parse each instantiated component

Parse each referenced
bus/abstractionDefinition

Parse XML design

check SCRs

check SCRs

adHocConnection1

configuration1

adHocConnection2…

check SCRs

configuration2…

instance2…

interconnection1

interconnection2…

Bus/Abstraction
Definition 2

check TCR for each TLM port
connection

1

2

3

4

5

6

7

8

2 4

6 7

1

1

3

3

5 IP-XACT
busDefinition

XML

IP-XACT
abstraction

Definition XML

IP-XACT design
XML

8

5

…

RTL ports

TLM ports

parameters

files

…

…

113

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

They define the required consistency among the IP-XACT elements in one document or

across several documents.

There are a total of 185 such rules listed in IP-XACT [29] Annex B. They will all be

examined by the Semantic Consistency Rules Checker, when they are concerned. The table

in Figure 6.4 gives several examples of these rules.

For example with SCR 2.4, for each bus interconnection, our checker must retrieve first

both components and then both bus interfaces that are referenced by the interconnection

and check their types in the scope of those seven possibilities. Here single document check

means that the elements consistency cannot be determined in a single file but only by

checking multiple documents. For example, the uniqueness of a VLNV required under

SCR 1.1 can be only claimed after seeing all the documents that we maintain.

TLM Compatibility Rule Checker

We propose a TLM compatibility rule to ensure the semantically correct integration of

TLM components. This rule specifies how SystemC TLM ports should be described in IP-

Rule

number
Rule description

Single

document

check

SCR 1.1
Every IP-XACT document visible to a tool shall have a unique

VLNV.
No

SCR 2.4
An interconnection element shall only connect a master interface

to a slave interface or a mirroredmaster interface.
No

SCR 5.7

configurableElement elements within componentInstance

elements shall only reference configurable elements that exist

in the component referenced by the enclosing

componentInstance element; the value of the referenceId

attribute of the configurableElement element shall match the

value of the id attribute of some configurable element of the

component.

No

SCR 6.26 A wire port with a direction of out shall not have adriver element. Yes

SCR 8.1
The width of an address block included in a memory map shall

be a multiple of the memory map’s addressUnitBits.
Yes

Figure 6.4 Example Semantic Consistency Rules from IP-XACT standard [29]. They

need to be implemented in IP-XACT synthesis.

Quality Metrics Driven Functional Verification for IP based SoC Design

114

XACT, such that our SoC synthesizer can unambiguously, automatically determine

whether and how two TLM components can be connected.

This is necessary as IP-XACT does not provide enough specification on TLM port

semantics. We do assume that traditional RTL compatibility between signals is well

resolved by IP-XACT standard.

SystemC TLM semantics is established on an interface-port binding mechanism, as we

have discussed in the background of TLM. Based on this, we notice that that SystemC

interface classes for TLM communication can be considered as a non-private inheritance

tree starting from sc_interface.

For IP-XACT based description and integration of TLM ports, our TLM compatibility

rule states:

 If an IP-XACT transactional port describes a TLM port that implements a SystemC

interface to provide for binding, its IP-XACT service types description should

include names of all the inherited interfaces, or interface implementation classes,

from this interface, besides the name of itself.

 If an IP-XACT transactional port describes a TLM port that requires a SystemC

interface for binding, its service types should include name the interface that it

expects.

 The compatibility of two IP-XACT transactional ports are determined by seeing

whether the provided interface names contain the required interface name.

Figure 6.5 shows one such example.

 The IP-XACT description for TLM_port_1 should include TLM_IF_1, TLM_IF_2,

TLM_IF_3, TLM_IF_4, and TLM_IF_6. It is indeed capable of providing all these

communication services.

 The IP-XACT description for TLM_port_2 is only required to include TLM_IF_2.

 Then, the compatibility of TLM_port_1 and TLM_port_2 during IP-XACT based

system integration can be directly decided as positive.

For SystemC code generation later, two TLM ports can be bound safely by casting the

type of the providing port to that of the requiring port, after checking their TLM

compatibility.

SystemC Code Generator

After all the parsing and consistency/compatibility checking procedures, the mapping

from IP-XACT to SystemC is relatively straightforward, as IP-XACT design has a concise

115

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

structure for instantiation, parameterization, and interconnection of components, which

correspond directly SystemC.

 A component is instantiated as a SystemC module object. It is required that the

referenced component has a name reflecting its actual module class name. The

instanceName is used as the name of the object as well as the SystemC module

name string.

 We require the component to have a uniform parameterization interface as

setParameter, which expects the name of the parameter and its

configurableElementValue in design.

 With interconnection, ports of two components are connected via bus interfaces.

We can conclude two essential cases for TLM port binding, as we have discussed

in TLM introduction: a TLM sc_port to sc_export binding or a TLM sc_port to

TLM module direct binding. The case is selected by seeing whether the require

port is a sc_export type in its IP-XACT description. More importantly, the

compatibility between the two TLM ports is determined by the TLM compatibility

rule beforehand.

 For an adHocConnection, two ports are connected directed for a particular purpose,

such as a reset signal. We consider such RTL signal binding straightforward if not

trivial.

Figure 6.5 Example for TLM compatibility rule.

IP-XACTSystemC

sc_interface

TLM_IF_1

TLM_IF_3

TLM_IF_2

TLM_IF_4 TLM_IF_5

TLM_IF_6

TLM_port_2

TLM_port_1

IP-XACT
transactional port

requires service types:

{TLM_IF_2}

require interface

provides interface implementation

IP-XACT
transactional port

provides service types:

{TLM_IF_1, TLM_IF_2,
TLM_IF_3, TLM_IF_4,

TLM_IF_6 }

TLM
compatibility

checking

Quality Metrics Driven Functional Verification for IP based SoC Design

116

 More interestedly, we consider how multi-language, mixed-level integration of IP

components can be enabled in SystemC generation, as shown in Figure 6.6:

 Multi-language all RTL components. Firstly, a SystemC wrapper can generated

for each component that is not in SystemC. Since at its core SystemC has an event-

based simulation engine and it provides comprehensive hardware specific data

types, a SystemC wrapper for a VHDL/Verilog module is straightforward.

Modern simulators, for example ModelSim [95], even integrate such automated

SystemC wrapper generation function for other HDLs.

 All TLM components. We need only a SystemC top design to instantiate and

bind them in.

 TLM-RTL mixed components. In this case, we further assume that for a RTL

component to be integrated, no matter in which HDL, it is packaged with an

accompanying RTL-TLM transactor, which we have introduced in SystemC and

TLM background. We view it as a natural assumption, since if a designer wants

Figure 6.6 SystemC enabled multi-language, mixed-level IP-XACT simulation.

Legend

IP-XACT

component
C1

C1
VHDL
RTL

design

C1

C2 C3

component
C2

C2
VHDL
RTL

component
C3

C3
SystemC

RTL

SystemC

C3
SystemC

C2
VHDL

C1
VHDL

IP-XACT

component
C1

C1
SystemC

RTL

component
C2

C2
SystemC

TLM

component
C3

C3
SystemC

TLM

SystemC

C2
TLM

C3
TLM

design

C1 C2

C3

C1
Transactor

C1
Transactor

C1
RTL

Multi-language all RTL components

TLM/RTL mixed components

C1
VHDL

automated
generation
of SystemC
wrapper:

C1.h, C1.cpp

SystemC RTL wrapper
for VHDL/Verilog

SystemC RTL connection SystemC TLM connection

117

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

to do a TLM based system design integration, the components to be integrated

should necessarily expose TLM interfaces.

Further, as stated for the parser, this SystemC generation does not impose any

restriction on the internal data representation, though in our implementation Java classes

are used.

Makefile Generator

The objective of generating a Makefile is to have a fully automated compilation and

simulation process. Together with SystemC code generation, we are then able to launch

immediately a system simulation with an IP-XACT design as input, if the design is

correctly integrated. As we have stated, this automated process not only becomes itself a

simulation based verification tool for SoC system-level design but also satisfies

prerequisite for mutation analysis.

Until now we have not designated any SystemC simulator as the target environment of

our SystemC based IP-XACT synthesis and simulation. However, this last step for a

Makefile generation is meant to be bound to a specific SystemC simulator, since the

compilation and simulation commands need to be specific.

We may have two candidates. Either we use the reference SystemC simulator that

comes from the SystemC standard working group, or we take another commercial HDL

simulation tool that implements the SystemC standard.

In this section, we assume ModelSim [95] as our destination simulator, because, on the

one hand, it is one of the leading industrial simulation tool and, on the other and more

significantly, it is capable of co-simulating all the other major HDLs with SystemC, such

as VHDL, Verilog, and SystemVerilog.

Such compilation rules are illustrated in Figure 6.7. They define how the compilation

related information, mainly the fileSets description, from the design-referenced IP

components can be combined to valid ModelSim commands in a Makefile script. The

commands are composed according to the type of each file declared in IP-XACT fileSets

and for the generated SystemC design file:

 For each systemCSource typed file, a compilation command is created using sccom

and takes into account all the include files declared for this component. The other

SystemC typed files – systemCSource-2.0, systemCSource-2.0.1, systemCSource-

2.1, and systemCSource-2.2 – are treated the same way.

 For each vhdlSource typed file, a vcom compilation command is created. Other

files typed as HDL source files receive the same handling, including vhdlSource-

87, vhdlSource-93, VerilogSource, systemVerilogSource, etc.

Quality Metrics Driven Functional Verification for IP based SoC Design

118

 The generated top SystemC design file is then compiled by sccom.

 A linking command with all SystemC objects, SystemC libraries, and other HDL

libraries is generated with sccom -link.

 A simulation command is added such that the Makefile becomes a complete script

for compilation and simulation of the generated SystemC design.

 As mentioned, with advanced facilities from ModelSim, IP components in other HDLs

can be easily wrapped in SystemC. Such wrapper source files should be similarly compiled

and linked, using the compilation rules.

6.4. Mutation Operators on IP-XACT

We define a set of mutation operators on IP-XACT design schema. When applied on

an IP-XACT design, each such operator introduces a small modification to that IP-XACT

XML document. The result is another valid IP-XACT design document.

An example can be a perturbation to a parameter configuration, such as changing the

design configured transmission rate of a UART component. This rate modification, as a

Figure 6.7 Makefile generation that targets ModelSim.

Design-referenced IP-XACT component

fileSets

file

name: PATH_1/FILE_1

fileType: systemCSource
includeFile: true

file

name: PATH_2/FILE_2

fileType: systemCSource

includeFile: false

buildCommand: CMD1

file

name: PATH_3/FILE_3

fileType: vhdlSource

file

name: PATH_4/FILE_4

fileType: swObject
file

name: PATH_5/FILE_5

fileType: swObjectLibrary
logicalName: LIB_5

file

name: PATH_6/FILE_6

fileType: vhdlBinaryLibrary

logicalName: LIB_6

Makefile

sccom -I PATH_1/FILE_1 CMD1 PATH_2/FILE_2

……

//for each systemCSource file in each referenced component

vcom PATH_2/FILE_2

……

//for each vhdlSource file in each referenced component

sccom -I PATH_1/FILE_1 DESIGN_1.cpp

sccom -link PATH_4/FILE_4 -L PATH_5/FILE_5 -l LIB_5 -lib LIB_6

vsim -sclib LIB_1 -lib LIB_2 DESIGN_1

IP-XACT design

name: DESIGN_1

119

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

bug injection, is supposed to be discovered by the system verification, i.e. the SystemC

simulation derived from the design mutant produces a different trace compared to that

from the original design.

We take a define-and-evaluate approach to obtain a set of mutation operators. In this

section, we first try to consider and formulate several possible and reasonable mutation

operators for IP-XACT design schema. They must be valid, meaning that the modification

to be introduced by an operator should not break the syntax and consistency/compatibility

rules for IP-XACT.

Later in the evaluation chapter, the effectiveness of these mutation operators will be

investigated with real SoC design examples, by whether they can somehow reveal the

quality weakness of system simulation, i.e. any generated mutant cannot be distinguished.

This evaluation is also viewed as a selection process to sieve out ineffective operators for

IP-XACT mutation analysis.

Our first effort to define such a set of mutation operators for IP-XACT, as listed in

Figure 6.8. They are explained in three groups:

 Parameter modification operators: The mutation operators in this class perturb

a parameter configuration. The parameters can be, for example, the model generics

of a UART component, the type of an Ethernet controller, the address/data-width

of a bus, or its arbitration scheme. Mutation of these parameters introduces small

errors into the system integration and may result in erroneous data flows among

components.

The first operator ParRep uses another valid value, for example a pre-defined

choice in IP-XACT, to replace an existing parameter configuration. Operator

ParIns inserts into the design a configuration for some parameter. The replacement

or insertion value can be chosen randomly. A third operator called ParDel deletes

a configuration, so that the default value of this parameter takes into effect.

 Connection deletion operators: Designers can omit some connections between

components. The mutation operators in this class model such errors and delete

completely a connection description. In IP-XACT design, we have two kinds of

component interconnections. One is the connections through pre-defined bus

interfaces and another one is ad-hoc connections, i.e. not through any bus protocol.

Operator BusDel operates on the former and AdhocDel operates on the latter.

 Memory-maps modification operators: This class of operators introduces

deviations on the address spaces of slave components from their original

configurations, which makes the testing software have a wrong view of the

hardware system. With erroneous interaction between software and hardware, it

Quality Metrics Driven Functional Verification for IP based SoC Design

120

may further lead to a wrong behavior of the system and a negative test verdict, if

the testing software is comprehensive enough.

Operator BAddrIncr increases the base address of a slave component by a small

value, with the caution that it should not exceed the upper address boundary of the

component. Respectively, operator HAddrDecr decreases a slave high address to a

level not less than the base address. Another AddrExch operator chooses two slave

components and makes an exchange of their address spaces.

 Another contribution from our side is an experimental implementation of IP-XACT

mutant generation, based on such mutation operators.

6.5. A Tool Implementation

We have implemented an Eclipse-based tool for the whole proposal on SystemC based

IP-XACT design synthesis, simulation, and mutation analysis. It provides also basic

editing functionality of IP-XACT documents. This implementation, on the one hand,

investigates the feasibility of our proposal and, on the other hand, provides the prerequisite

to further experiment based evaluation.

Figure 6.8 IP-XACT mutation operators.

Mutation

Operator Name
Description Example

ParRep
Replace a parameter configuration with

another valid value
ABus_width = 64 128

ParIns
Insert a parameter configuration with a

valid value
 DBus_width = 128

ParDel Delete a configuration Arbitration_policy = priority

InterConnDel Delete a bus interconnection Bus_Interconnection: Comp_1 - Bus_1

AdhocConnDel Delete an ad-hoc connection AdHoc_Connection: Comp_1 - Comp_2

BAddrIncr
Increase the base address of a slave

component
Base_address= 0x10000 0x10040

HAddrDecr
Lower the high address of a slave

component
High_address= 0x10000 0x0FFF0

AddrExch
Exchange the address spaces of two
memory-mapped slave components

Component_1_Addr_block =0x00000~0x01FFF


Component_2_Addr_block =0x08000~0x09FFF

121

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

 Figure 6.9 shows an overview of how the tool was constructed, as well as a screen

shot. First, we leveraged Eclipse Modeling Framework (EMF) [96] to obtain a basic IP-

XACT editor. EMF is a Java framework that facilitates the building of Eclipse based

modeling tools, by automatically generating a set of Java classes from a structured meta-

model, such as XML Schema or UML, among others. The generation is based on a one-

to-one mapping from the types and elements of the meta-model. The mapped Java classes

are then able to create, parse, manipulate, and output documents that are instances of the

meta-model. They are further integrated by EMF into Eclipse as a fully functioning Eclipse

editor.

We made IP-XACT schema the input of EMF. The output was a basic editor for all

kinds of IP-XACT documents. We used the standard schema version in IEEE-1685 [29].

Figure 6.9 An Eclipse based tool implementation, for the proposal of IP-XACT system

design synthesis, simulation, and mutation analysis.

Eclipse tool for IP-XACT SoC design editing, simulation, and mutation analysis

IEEE-1685
IP-XACT

XML Schema

Eclipse
Modeling

Framework

Basic Editor
for IP-XACT

(Eclipse)

SystemC
Synthesis

(JAVA)

Mutants
Operators

(JAVA)

Quality Metrics Driven Functional Verification for IP based SoC Design

122

 Then, following the proposal and definitions from previous sections, both mutation

operators and SystemC synthesis were coded into the basic editor, on top of the Java

classes mapped from IP-XACT schema. When an IP-XACT design is read in by the editor,

corresponding Java objects are created that reflects exactly the same structure as in the IP-

XACT document. With these objects, the extended editor can, for example, change a

parameter value according to mutation operator as well as write a code line of component

instantiation to a SystemC file.

Figure 6.10 sketches the detailed working flow of this Eclipse tool at runtime.

Essentially, it is implemented as an instance of the systematic system verification

framework that has been presented in Section 6.2. The runtime functionality for IP-XACT

can be seen as divided into three interacting domains: the elementary editing domain, the

mutation analysis domain, and the functional simulation domain, which further rely on an

external SystemC simulator – ModelSim in this case.

In the flow, it is only one implementation decision that system design mutants are

created in the form of synthesized SystemC models, instead of fault injected IP-XACT

documents. We chose this implementation way since, on the one hand, it is insignificant

Figure 6.10 Detailed working flow of our IP-XACT tool.

Eclipse tool

IP repository

IP-XACT
component

XML

IP-

IP-XACT
busDefinition XML

IP-XACT
abstractionDefinitio

n XML

IP-XACT editing domain

Mutation
Operators

on Java
objects

IP-XACT mutation
analysis domain

IP-XACT functional
simulation domain

original system
simulation

SystemC traces
comparison



of killed mutants


Simulation quality

SystemC
Model

Makefile

bug?

correct
system
design

SystemC Simulator (ModelSim)

improve
system
tests

IP-XACT
design
XML

design mutant

Basic
Parser

SystemC/
Makefile
Synthesis

…

SystemC
Model

Makefile

Java
objects

123

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

for the mutation analysis to eliminate the intermediate step of having mutants as IP-XACT

documents and, on the other hand, it saves the tool effort at runtime. Still, we view the IP-

XACT mutation analysis remaining not restricted to SystemC but relatively independent,

if we suppose another simulation engine for IP-XACT.

6.6. Related Work

We have presented a SystemC based IP-XACT design simulation flow and an IP-

XACT mutation analysis layer upon this simulation. On the one hand, we can find the

following literature that proposes other system simulation and verification methods based

on IP-XACT:

 In [97], a small IP-XACT extension, called IP-XACT++ is proposed to support

Model Driven Engineering (MDE) in SoC design. The authors consider that in

MDE, various abstraction levels as meta-models and the transformations between

them should be clearly defined. In this work, a specific level called Transaction

Accurate (TA) is focused. A TA meta-model is defined in XML schema that

represents an extension to IP-XACT. In the schema, TA elements such as

“TAComponents” are defined.

Further, they mention that through the definition of a SystemC meta-model (not

detailed) and the transformation between it and the TA meta-model by an ATL

(ATLAS Transformation Language) transformation language, an extended IP-

XACT-to-SystemC generation can be obtained, for this particular TA level.

 In [98], IP-XACT is combined with another computation model UNIVERCM

(UNIversal VERsatile Computational Model) [99], to support system integration

with not only digital IP components, but also analog IPs as well as hardware-

dependent software. First, UNIVERCM is capable of generating homogeneous

representation and simulation of heterogeneous components. Then, IP-XACT

(extended) descriptions are extract from UNIVERCM components. Last, an IP-

XACT system design can be built and, with the help of UNIVERCM, a system

simulation model with all types of components can be generation and simulation.

The benefit is that IP-XACT is now used as unified platform for all components

and system description, with automated round-trip between UNIVERCM and IP-

XACT. IP-XACT standard components can be directly integrated.

 In [100] [101], the authors try to integrate IP-XACT and also benefit from its

capability of component description and integration, into a UML/MARTE [102]

based design framework, called COMPLEX. In this context, IP-XACT is also

Quality Metrics Driven Functional Verification for IP based SoC Design

124

extended to be able to describe i) performance-related semantic information and ii)

embedded software such as drivers as well as operating system.

The reason for such component extension is that the COMPLEX framework

has an emphasis on performance evaluation. In the end, a specific performance

model is generated from IP-XACT system design, to be simulated by a proprietary

engine.

 [103] [104] are novel application of IP-XACT to partially reconfigurable system

design with FPGA. UML/MARTE is similarly employed as the design frontend.

IP-XACT is used to describe both static components and partially reconfigurable

components. Interestedly, in the evaluation chapter, we will also present an IP-

XACT tool experiment with reconfigurable system. We will have a focus to show

the simulation capability of the tool.

On the other hand, we can find the following work that also proposes applying mutation

analysis to other high-level languages, especially to SystemC/TLM, since they are widely

employed in the research area of SoC system modeling.

 In [105], a SystemC error and mutation injection tool is presented. Four types of

error injection are defined: OPR (Operator Replacement),VCR (VAR=>Constant

Replacement), CCR (Constant Replacement), and ROR (Relational Operator

Replacement). A unique feature of this tool is that, instead of creating source code

mutants directly, the error injection is implemented as a plugin for the GCC

compiler.

 In [106] [107], mutation analysis is also considered for SystemC. However, the

author concentrated on the concurrency aspect of SystemC designs, for example,

how to stir a deadlock situation by error injection. Such concurrency mutation

operators include:

- Modify Function Timeout, e.g. by changing wait(time) to wait(time/2), or

to wait(time*2),

- Modify Concurrency Construct Count, e.g. changing sc_semaphore(num)

to sc_semaphore(num-1), or to sc_semaphore(num+1),

- Remove Concurrency Construct: e.g. by removing a wait, or notify

statement,

and so on. The mutation operators are evaluated with several standard TLM

examples.

 In [108], a mutation model is proposed specifically for TLM communication

interface. First, primitives defined in SystemC TLM 2.0 are modeled by EFSMs

125

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

(Extended Finite State Machines). For example, a nb_get(data) is modeled as a

state transition with a true trigger, meaning the transition will immediately happen

when called, without waiting for any event.

Then, a total of 19 faults, or mutation operators are defined on these EFSM

models for TLM 2.0 communication primitives. The 19 operators belong to three

categories. The first is modification on destination states of an EFSM model, such

that, for example, the misuse of a blocking/non-blocking communication is

modeled. The second is modification on the transition triggering functions. The

third is directly replacement of a TLM communication primitive with another one

from the library. These operators are then evaluated with standard TLM 2.0

examples.

Comparing Literature to Our Work

Compared to the literature on SoC system simulation and metrics that are mentioned

above, the work in this chapter has its own unique contribution, since:

 Our work is among the first to propose this systematic simulation of IP-XACT SoC

designs by SystemC generation, incorporating both RTL and TLM. As SystemC

and TLM prevail and become required elements for system modeling, the IP-

XACT-to-SystemC generator serves a non-replaceable bridge between IP-based

SoC assembly and its functional verification with the underlying IPs.

 We define a mutation analysis-based simulation metric directly on IP-XACT

schema. This contrasts with other emerging metrics that are mostly built for

SystemC. Assuming IP-XACT the starting language for SoC system integration,

and following the principle of mutation analysis that errors should be modeled on

language syntax, IP-XACT mutation analysis should make a unique, effective

quality metric for SoC design verification.

As we do not have the availability of other SystemC related tools mentioned in the

literature, a direct comparison of the metrics have not been conducted in our evaluation.

6.7. Summary

We have considered the problem of providing a systematic verification method for SoC

system design. In particular, we assume IP-XACT the target design language to be used.

Also assuming simulation a necessary and significant step for any systematic system

verification, we have considered the problem of enabling simulation for IP-XACT designs.

For this, we have proposed an IP-XACT-to-SystemC synthesis flow, by a set of semantics,

compatibility, and mapping rules. With an IP-XACT XML design as input, the flow is able

Quality Metrics Driven Functional Verification for IP based SoC Design

126

to generate a SystemC model that is directly simulatable. A Makefile is generated by this

flow too, which incorporates compilation of the generated system model and all the

involved IP components, so as to provide a fully automated process from IP-XACT to

simulation.

SystemC is selected as the synthesis target, since it provides the only platform for

RTL/TLM, VHDL/Verilog/SystemC multi-language, mixed-level simulation. And we

view such inclusion of TLM and SystemC a necessity.

Further, following our consistent employment of mutation analysis driven verification

for IP-based SoC design, we have considered the problem of enabling mutation analysis

on IP-XACT. Based on the principle of mutation analysis, we have defined a set of

mutation operators on IP-XACT XML schema, as representative error that can be made.

The derived IP-XACT mutation analysis interacts with the SystemC based simulation and

lays a quality metric layer upon this simulation.

Together, they form an integrated framework that enables a systematic verification for

SoC system designs with IP-XACT.

As an experimental implementation of this framework, an Eclipsed-base prototype tool

has also been presented. The tool is a prerequisite for further experiment-based evaluation

of our proposals.

In the evaluation chapter, by exercising the tool with several real SoC designs, we will

mainly investigate i) the feasibility of the SystemC-based IP-XACT synthesis and

simulation and ii) the effectiveness of the defined IP-XACT mutation operators.

The contribution in this chapter has been summarized in [5], with the SystemC-based

IP-XACT synthesis and simulation further presented in several other occasions: [12] [10]

[9] and [2].

127

CHAPTER 7: Evaluation

This chapter provides an experimental evaluation of the proposed methods from

Chapter 4 to Chapter 6, based on real IP and SoC designs.

7.1. Objectives

First, by Figure 7.1 we give an overview of the evaluation. The methods and flows

from the previous chapters were applied to what we see as an instance of IP based SoC

design. The three arrows of application reflect the following main evaluation objectives

that we have identified:

 Evaluation objective 1: To validate that the constrained Marko chain-based,

feedback-directed adaptive random simulation from Chapter 4 is able to improve

the efficiency of mutation analysis. The efficiency should be measured as the

number of tests required to kill a certain number of mutant. It should be compared

with random simulation without feedback adaption.

 Evaluation objective 2: To validate that the CDFG-based cost function defined in

Chapter 5 is able to serve as an effective search directive, so that it consistently

steers a metaheuristic search to some target mutant-killing test. The success rate

and performance of such a metaheuristic search will be measured on those difficult

mutants that are left un-killed in random simulation, as the search is meant to

succeed the random simulation phase.

 Evaluation objective 3: To validate the general feasibility of the concepts on

SystemC based synthesis, simulation, and mutation analysis of IP-XACT SoC

designs. The concept validation should be based on our prototype tool

implementation in Eclipse. Further, as a secondary goal, the effects of the defined

IP-XACT mutation operators should be investigated – i.e. how the mutants are

generated and killed under these operators.

Quality Metrics Driven Functional Verification for IP based SoC Design

128

As Figure 7.1 shows, for IP level, we took a microprocessor IP as the design under

verification, which is called MB-Lite [109] implementing the MicroBlaze ISA from

Xilinx. It served evaluating objective 1 and 2, by exercising the first two components of

our methodology – the adaptive random simulation and metaheuristic-based test

generation. For system level, we exercised the IP-XACT tool with several designs based

on CoreConnect SoC architecture. Here, the evaluation objective 3 was the target. The

experiments further comprise an integrated evaluation of the mutation-analysis-driven

verification methodology.

For the selection of these study objects, we took two aspects into account. First, we

intended to evaluate the methods on real working designs. The microprocessor core and

its associated FPU are both synthesizable and able to execute standard-specified

instructions. The SoC system designs host software, too. Second, we considered that

MicroBlaze microprocessors, FPU, and CoreConnect are all popular employment in SoC

research [110] [111] [112] [113].

As mentioned, Certitude from Synopsys, as a state-of-the-art EDA tool for HDL

mutation analysis, was used for IP level mutation analysis.

7.2. MB-Lite Microprocessor IP Verification

This section presents the microprocessor IP verification that goes through the

proposed adaptive random simulation and metaheuristic search-based test generation,

targeting the mutation analysis metric provided by Certitude.

Figure 7.1 Objectives of evaluation.

Chapter 6:

SoC System Design Simulation
and MA With IP-XACT

(SoC system verification)

Chapter 5:

Metaheuristic Search Based
Test Generation for MA

(IP verification)

Chapter 4:

Mutation Analysis (MA) Directed
Adaptive Random Simulation

(IP verification)

Proposed verification methods and flow

Application and evaluation of
verification methods

CoreConnect SoC

system designs
MB-Lite microprocessor IP design

IP component design & verification SoC system design & verification

Instance of IP based SoC design

129

CHAPTER 7: Evaluation

7.2.1. Design Under Verification and Mutants

Microprocessor is considered an essential component in most SoCs and MicroBlaze

is a popular ISA from Xilinx. Various IPs that implement this architecture have been used

in literature for SoC and embedded systems research [110] [111] [112] [113]. The

specification of MicroBlaze ISA can be found in [114].

MB-Lite is a VHDL IP core that implements MicroBlaze ISA. It has been first

presented at Design Automation and Test in Europe 2010 [109], Further, there is an open

source description to be found at [115], for others to review the verification.

Nevertheless, it lacks the support for floating point instructions. Therefore, we

extended this MB-Lite by integrating into it another IEEE-754 compatible floating point

unit (FPU) – IEEE-754 [49] is the specified format by MicroBlaze ISA.

Figure 7.2 shows the outlined microarchitecture for the MB-Lite IP design with FPU.

The main microprocessor consists of a five stage pipeline: Instruction Fetch (IF),

Instruction Decode (ID), Execute (EX), Memory (MEM) and Write-back (WB). The FPU

supports pipelined as well as non-pipelined operations.

 By such, the IP core is ready to execute binary code compiled by the standard

MicroBlaze compiler mb-gcc, included in XILINX FPGA tools. All together, the IP has

about 4K lines of code.

This is a near-mature IP design. Again, the goal of the experiments is not finding any

real bug in the design, but to show the efficiency and effectiveness of the simulation

methods with regard to mutation analysis metric.

Figure 7.3 lists a summarized report from the Certitude tool, after it creating the initial

mutant database as verification quality metric. In total, 1662 valid mutants were

generated, scattered on all the VHDL files. Another 85 mutants were generated but then

Figure 7.2 Design Under Verification: MB-LITE microprocessor design with FPU.

add

sub

mul

div

rounding exception

fetch decode execute memory

M
ic

ro
B

la
ze

 I
SA

IEEE-754 FPU

write-
back

Quality Metrics Driven Functional Verification for IP based SoC Design

130

identified as equivalent mutants by Certitude. We will have a short discussion on both

equivalent and non-equivalent mutants that could not be killed at the end of verification.

7.2.2. Adaptive Random Simulation

For the implementation of the adaptive random simulation:

 We modeled the Markov chain and constraints for random test generation with the

SystemC Verification Library (SCV). MicroBlaze instructions [114] as well as the

contained IEEE-754 FPU operations are modeled with 12 Markov-chain nodes and

17 constraints. Similar instructions are not distinguished and grouped into one

node, such as add, addc, addk and addkc. Example constraints have been

previously discussed. SystemC and VHDL co-simulation is supported by the

simulation tool ModelSim.

 We realized the dynamic mutation schemata by utilizing the Tcl interfaces of the

tools Certitude and ModelSim.

 We also implemented the adaptation heuristic in Tcl, both the calculation and the

adjustment to the SCV model. At initialization, all the edges and constraints are

assigned equal probabilities/weights for being selected.

To investigate the efficiency of our method – evaluation objective 1, we compared three

simulation processes: i) the adaptive random simulation, ii) a random simulation process

with test generation under the same Markov chain model, but without the in-loop

Figure 7.3 Initially generated mutants (report sumary from Ceritude).

File name

Mutants

Total

Valid

Disabled By

Certitude

(Equivalent)

Mutants

Total (incl.

Equivalent)

Killed Non-Killed

[mblite]/core/std_Pkg.vhd 167 2 169 0 167

[mblite]/core/decode.vhd 445 37 482 0 445

[mblite]/core/execute.vhd 216 0 216 0 216

[mblite]/core/fetch.vhd 31 2 33 0 31

[mblite]/core/mem.vhd 47 2 49 0 47

[mblite]/core/core_Pkg.vhd 45 0 45 0 45

[mblite]/FPU/fpupack.vhd 12 5 17 0 12

[mblite]/FPU/fpu_add.vhd 52 1 53 0 52

[mblite]/FPU/fpu_div.vhd 113 0 113 0 113

[mblite]/FPU/fpu_mul.vhd 84 0 84 0 84

[mblite]/FPU/fpu_sub.vhd 65 2 67 0 65

[mblite]/FPU/fpu_round.vhd 40 2 42 0 40

[mblite]/FPU/fpu_exception.vhd 209 14 223 0 209

[mblite]/FPU/fpu.vhd 136 18 154 0 136

All Source Files (6) 1662 85 1747 0 1662

131

CHAPTER 7: Evaluation

adaptation heuristic, and iii) the dhrystone benchmark as a software program that is

compiled with the Xilinx compiler mb-gcc for MicroBlaze ISA, with another 150 directed

FPU tests planned in.

Figure 7.4-a) shows as the main result this efficiency comparison: the total number of

killed mutants until a certain number of tests being simulated.

The adaptive random simulation managed to kill 1579 (95.0%) out of the total 1662

mutants after 1000K tests (MicroBlaze instructions). This compares to the non-adaptive

version that was only able to kill 1308 (78.7%) with this amount of tests. Both random

simulations were repeated three times to obtain these average values, each time with a

different random seed.

We see this as the first evidence that the adaptation heuristic, based on mutation

analysis feedback, is indeed able to improve the efficiency of a HDL mutation analysis

process.

 The bottom part of Figure 7.4 just provides another view of the result data. The

motivation is from an easy observation that there is a certain set of mutants that were

trivially easy to be killed. In fact, around 800 mutants – about half of the total – could be

eliminated by the first thousands tests, in all simulation experiments. Therefore, to limit

the impact of these trivial mutants and amplify the significance of those non-trivial

mutants, we devised a quality index (QI) as an adjusted result of mutation analysis, simply

by

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑁𝑘𝑖𝑙𝑙𝑒𝑑−𝑚𝑢𝑡𝑎𝑛𝑡𝑠 𝑁𝑡𝑜𝑡𝑎𝑙−𝑚𝑢𝑡𝑎𝑛𝑡𝑠⁄)2 × 100

By this, we are able to highlight the progress of killing hard-to-kill mutants. These are

exactly the verification holes that we need to cover. The improvement by our method is

made more prominent.

The software binary was outperformed by both random simulations. The dhrystone

benchmark program together with the planed FPU tests was only able to kill 1085 mutants,

or 65.3% of the total. After an initial period, it delivered only waste of cycles without

increasing the killed mutants any more, since it was a benchmark and not built for

exercising this specific design. It was inferior to the continuous progress in random

simulations. We used it merely as a reference, though it has some competence by

exploiting the knowledge from the compiler.

Figure 7.5 is an attempt to explain the efficiency improvement from the adaptive

random simulation, compared to the non-adaptive one. It shows the record on the number

of activated and killed mutants by each thousand test – in one experiment from the three

repetitions. We can see that as the remaining, un-killed mutants decreased, the adaptive

test generation managed to maintain a relative high rate of activation, by adjusting the

Markov chain model. In contrast, the non-adaptive simulation lost the percentage of

Quality Metrics Driven Functional Verification for IP based SoC Design

132

activated mutants a lower level, when the initial easy-to-kill mutants were removed from

the metric and it was not able to adjust itself to this change.

In average, the adaptive random simulation needed about 12.5 hours to finish the

1000K tests and the non-adaptive random took 7.4. Indeed, more mutant activation will

lead to increase of HDL simulation time. However, this increase is limited thanks to the

a) Efficiency as number of killed mutants

b) Efficiency as adjusted quality index

Figure 7.4 Mutation analysis efficiency compared (average from 3 repetitions, each with

a different random seed).

0

200

400

600

800

1000

1200

1400

1600

1800

1 101 201 301 401 501 601 701 801 901

K
ill

e
d

 m
u

ta
n

ts
 t

o
ta

l

n-thousands tests simulated

adaptive random

non-adaptive random

SW (benchmark)

78.7%

95.0%

65.3%

90,2

61,9

42,6

0

10

20

30

40

50

60

70

80

90

100

1 101 201 301 401 501 601 701 801 901

Q
u

al
it

y
in

d
e

x
0

-1
0

0

n-thousands tests simulated

adaptive random

non-adaptive random

SW (benchmark)

133

CHAPTER 7: Evaluation

use of dynamic mutation schemata with Certitude, since activated mutants require only

temporarily forked simulation.

Therefore, even considering simulation time for efficiency instead of number-of-test,

Figure 7.6 shows the advantage from adaptive random simulation. Within the same period

of 10 hours simulation, the adaptive simulation reached a quality index of 89.6 compared

Figure 7.6 Mutation analysis efficiency in simulation time used.

89,6

63,2

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

Q
u

al
it

y
in

d
e

x
(1

-1
0

0
)

Simulation time used (hours)

w/ adaptation

w/o adaptation

Figure 7.5 Explanation to the efficiency improvement. Adaptive rando simulation saw

more activated/killed mutants by each thounsand tests.

Quality Metrics Driven Functional Verification for IP based SoC Design

134

to 63.2 from non-adaptive. The simulations time was measured on a Linux PC with 2.4

GHz processor.

As mentioned, the transition point – until which time the random simulation should be

stopped and we move to the search based test generation for each un-killed mutant – was

not optimized.

7.2.3. Metaheuristic Search-based Test Generation

As the starting point for experimenting the metaheuristic search based test generation,

the table in Figure 7.7 gives a summarized report from Certitude after one adaptive

random simulation process (one of the three repetitions). There were 83 mutants that could

not be killed by the preceding random simulation, which becomes exactly the objects of

our experiments in this section.

Basically, we implemented the example local search presented in Section 5.2,

integrating a CDFG-based cost function following the principle of Section 5.3. Some more

implementation details:

 We extracted the control and data flow graph manually from the design VHDL

code, which contains five main microprocessor pipeline stages and another 6 FPU

data flow units. Local cost functions are also manually programmed and attached

to the CDFG structure.

 Some input fields are considered type integer for neighborhood selection, for

example the exponent field of a FPU operand. Recall that for an integer input, we

have two neighborhood candidates, one by increasing and another by decreasing

half from its current value. Others are treated as simple bit or bit-vector.

 In each search iteration, we simulated a test sequence with MicroBlaze 100

instructions. The neighbor candidates were limited to 100. It means a simulation

effort of 10,000 instructions in each iteration.

 We allow moving to a non-improving (but best-in-the-iteration) neighbor in case

of local optimum. Each search experiment was terminated after 200 local search

iterations.

To investigate the effectiveness of the CDFG-based cost function – evaluation

objection 2, we compared two search processes: i) the local search steered by CDFG cost

function and ii) the same local search but only with a dummy cost function that always

delivers the same value.

Figure 7.8 shows the results after applying the local search implementation on each of

the 83 remaining hard-to-kill mutants. The top part shows separate experiments on each

135

CHAPTER 7: Evaluation

mutant, with search performance by the required iterations until a success, or a fail after

the maximally allowed 200 iterations. The bottom part provides a summary of the search

results.

We can observe that in most cases – 77 search instances, the search steered by our

CDFG-based cost function was able to reach a target mutant-killing test, before the

maximally allowed number of iteration. In average, it required 108 iterations until the

target was found. This effectiveness of steering becomes obvious, when it is compared to

the performance of the dummy function, which only succeeded in 4 cases by chance.

There were indeed failed cases, but only a few. It has not been further investigated

whether these in-the-end un-killed mutants are actually equivalent mutants, or just tricky

enough to avoid all our effort.

 Overhead of the local search, mainly from calculating the cost function, was measured

to be always minor in comparison to the time of design simulation itself, which conforms

to our previous analysis in the arithmetic summary. Note that although a large number of

neighbor tests must be examined in the search, they was no wasted time, since this

simulation-based examination is a direct part of the verification.

Further, a specific search instance is discussed in the following, to provide a closer

observation on the search steering under the CDFG cost function.

Figure 7.7 Un-killed mutants after adaptive random simulation (report sumary from

Ceritude). Each became the target of a search experiment .

File name

Mutants

Total

Valid

Disabled By

Certitude

(Equivalent)

Mutants

Total (incl.

Equivalent)

Killed Non-Killed

[mblite]/core/std_Pkg.vhd 167 2 169 156 11

[mblite]/core/decode.vhd 445 37 482 421 24

[mblite]/core/execute.vhd 216 0 216 210 6

[mblite]/core/fetch.vhd 31 2 33 31 0

[mblite]/core/mem.vhd 47 2 49 47 0

[mblite]/core/core_Pkg.vhd 45 0 45 42 3

[mblite]/FPU/fpupack.vhd 12 5 17 12 0

[mblite]/FPU/fpu_add.vhd 52 1 53 46 6

[mblite]/FPU/fpu_div.vhd 113 0 113 110 3

[mblite]/FPU/fpu_mul.vhd 84 0 84 77 7

[mblite]/FPU/fpu_sub.vhd 65 2 67 63 2

[mblite]/FPU/fpu_round.vhd 40 2 42 36 4

[mblite]/FPU/fpu_exception.vhd 209 14 223 192 17

[mblite]/FPU/fpu.vhd 136 18 154 136 0

All Source Files (6) 1662 85 1747 1579 83

Quality Metrics Driven Functional Verification for IP based SoC Design

136

Example Search Instance with Mutant-76

We discuss one example search instance, with the mutant that has an ID 76. The

purpose is to provide a closer observation on how the cost function was able to steer a local

search towards a target test.

Figure 7.9 first shows the mutant. It is created by Certitude at the FPU add unit, as

changing the VHDL signal assignment at line 148 from one to zero. A small portion of the

CDFG, which contains those variable and statement nodes that are close to the mutation

Figure 7.8 Performance of local search. CDFG based cost function compared with a

dummy cost function, to demonstrate the steering effectiveness.

0 50 100 150 200 250

761

799

840

841

870

872

889

925

936

956

992

996

1035

1057

1092

1110

1114

1115

1211

1232

1267

1270

1309

1334

1336

1355

1391

1424

1426

1442

1471

1472

1492

1504

1521

1550

1553

1584

1598

1634

1672

of search iterations until mutant killed, or terminated

Mutant ID

Search (guided by CDFG cost function) Search (dummy cost function)

0 50 100 150 200 250

21

23

50

66

76

78

79

106

127

146

180

195

230

244

247

263

287

308

315

339

340

380

411

427

430

431

495

517

538

544

553

588

609

611

618

644

664

688

707

724

753

756

of search iterations until mutant killed, or terminated

Mutant ID

Search (guided by CDFG cost function) Search (dummy cost function)

Search applied
Mutants left un-killed
after adaptive random

simulation

Search instances that
succeeded /failed-

after-200-iterations

Average iterations until
a success

Local search guided by
CDFG cost function

83 77 /6 108

Local search with
dummy cost function

83 4 /79 N/A

137

CHAPTER 7: Evaluation

statement, is also shown in the figure. Propagation distances of those nodes relevant to the

discussion are also annotated.

Figure 7.10 draws the reappearance of a search instance with mutant-76. In particular,

it details the iterations that are executed just before a target test was found, by listing the

cost function calculation at each step.

In iteration 83 in the search, we found a good test that was able to activate mutant-76

and propagate deviation in mutant simulation to as far as node small_add and

exponent_diff (marked as red), but did not manage to propagate this to node small_shift

through statement 163: small_shift <= shr (small_add, exponent_diff). The local cost

function that we attached to node small_shift when creating the CDFG is

𝑙𝑜𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑠𝑚𝑎𝑙𝑙_𝑠ℎ𝑖𝑓𝑡

= 𝑙𝑒𝑓𝑡_𝑚𝑜𝑠𝑡_𝑜𝑛𝑒(𝑠𝑚𝑎𝑙𝑙_𝑎𝑑𝑑 𝑥𝑜𝑟 𝑠𝑚𝑎𝑙𝑙_𝑎𝑑𝑑′) − max(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡_𝑑𝑖𝑓𝑓, 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡_𝑑𝑖𝑓𝑓′)

where left_most_one returns the index of the left most bit that is '1'. Recall that such a local

cost function is defined to exactly reflex the condition that a mutation deviation can be

generated at this node. Also note that a local cost should be normalized to a value between

(0, 1) and then added to the propagation distance. By such, the cost was calculated as 4.71

under this test, which is also the best for this iteration.

In iteration 84, we could find another better test by decreasing test input exponent_small

– recall that in our local search, we adjust a single test input field to get a neighbor test.

The improved cost was 4.35.

Figure 7.9 Mutant with ID 76 and a portion of design CDFG.

exponent_small

branch145

145

small_is_denorm

146 148

exponent_large

branch150

150

large_is_denorm

151 153

155

branch155

156 158

small_add

162

exponent_diff

160

mantissa_small

small_shift

163

large_norm_small_denorm

145 if (exponent_small > 0) then
146 small_is_denorm <= '0' ;
147 else
148 small_is_denorm <= '1' ; -- mutant-76: small_is_denorm <= '0';
149 end if;
150 if (exponent_large > 0) then
151 large_is_denorm <= '0' ;
152 else
153 large_is_denorm <= '1' ;
154 end if;
155 if (small_is_denorm = '1' and large_is_denorm = '0') then
156 large_norm_small_denorm <= "00000000001" ;
157 else
158 large_norm_small_denorm <= "00000000000" ;
159 end if;
160 exponent_diff <= exponent_large - exponent_small -
large_norm_small_denorm;
161 large_add <= '0' & mantissa_large & not large_is_denorm &
"00" ;
162 small_add <= '0' & mantissa_small & not small_is_denorm &
"00" ;
163 small_shift <= shr(small_add, exponent_diff);

7

6

5

5 propagation distance (relative to unit) 4

Quality Metrics Driven Functional Verification for IP based SoC Design

138

In the following iterations, from iteration 85 to 88, the search could consecutively find

cost-improving tests, which reduced the cost to 4.01. Thanks to that guidance from the

local cost, the search could continuously move nearer to the full satisfaction of the

propagation condition at statement node 163. Note that, without this guidance, the

probability of small_shift receiving a mutant deviation is extremely low, which is why it

could not be killed during the random simulation phase.

Figure 7.10 A search instance with mutant 76. Local cost guided the propagation

through node 163 and, consequently, to a target test.

cost

search iteration

It
er

a
ti

o
n

 8
3 8
4

8
5

Iteration 83: best test found was
operation: 00, rounding mode: 10,
operand 1: 0 00001001001(73) 00100010 (sign1, exponent1, mantissa1),
operand 2: 0 00000000000 00 (sign2, exponent2, mantissa2)
propagation_distance = 5, local_cost=71, cost= 5-1+0.71=4.71

Iteration 84:
neighbor test 1 : only increase exponent1 to 00001101101 (109 as integer, increased by 36 from 73)
propagation_distance = 5, local_cost=72, cost= 5-1+0.72=4.72  worsened, wrong search direction ×

neighbor test 2 : only decrease exponent1 to 00000100101 (37 as integer, decreased by 36 from 73)
propagation_distance = 5, local_cost=35, cost= 5-1+0.35=4.35  improved from 4.71, use for next iteration √

(other neighbor tests also led to worsened cost)

Iteration 85:
neighbor test 1 : exponent1 =00000110111 (55)propagation_distance = 5, local_cost=53, cost= 5-1+0.53=4.53 worsened ×
neighbor test 2 : exponent1 =00000010011 (19)propagation_distance = 5, local_cost=17, cost= 5-1+0.17=4.17 improved √
(other neighbor tests also led to worsened cost)

Iteration 86:
neighbor test 1 : exponent1 =00000011100 (28)propagation_distance = 5, local_cost=26, cost= 5-1+0.26=4.26 worsened ×
neighbor test 2 : exponent1 =00000001010 (10)propagation_distance = 5, local_cost=8, cost= 5-1+0.08=4.08 improved √
(other neighbor tests also led to worsened cost)

Iteration 87:
neighbor test 1 : exponent1 =00000001111 (15)propagation_distance = 5, local_cost=13, cost= 5-1+0.13=4.13 worsened ×
neighbor test 2 : exponent1 =00000000101 (5) propagation_distance = 5, local_cost=3, cost= 5-1+0.03=4.03 improved √
(other neighbor tests also led to worsened cost)

Iteration 88:
neighbor test 1 : exponent1 =00000000111 (7) propagation_distance = 5, local_cost=5, cost= 5-1+0.13=4.05  worsened ×
neighbor test 2 : exponent1 =00000000011 (3) propagation_distance = 5, local_cost=1, cost= 5-1+0.01=4.01  improved √
(other neighbor tests also led to worsened cost)

Iteration 89:
neighbor test 1 : exponent1 =00000000100 (4)propagation_distance = 5, local_cost=2, cost= 5-1+0.02=4.02  worsened ×
neighbor test 2 : exponent1 =00000000011 (2)local_cost=0, propagation_distance as well as cost was automatically reduced
too – in fact also reduced to zeromutant killed

4

5 4.71

4.35
4.17 4.08 4.03 4.01

8
6

8
7

8
8

8
9

small_add exponent_diff

small_shift

163

139

CHAPTER 7: Evaluation

And at iteration 89, we finally reached a test that reduced the local cost to zero, leading

to a successful propagation at node 163. Therefore, the propagation distance should

automatically be reduced, by one at least. In this instance, the mutant deviation created at

small_shift was luckily able to propagate all the way directly to the FPU output and further

microprocessor output, which made mutant-76 be killed by definition.

7.3. CoreConnect SoC Design Verification

We implemented several case studies to exercise our Eclipse-based IP-XACT tool and

the concepts behind: IP-XACT based SoC system simulation and mutation analysis. It was

our main objective to demonstrate the general feasibility of these concepts. A secondary

objective was to evaluate the effect of the IP-XACT mutation operators.

The case studies were constructed using a TLM design library from IBM, which is

provided for the TLM based modeling and evaluation of CoreConnect/PowerPC SoC. In

the following, we will briefly introduce this library and, in particular, the relevant IP cores

to be used in the case study designs, so that we can easily understand the design scenarios.

Then, two case studies are detailed, one based on reference designs from the library, and

the other one as a TLM based verification scenario for an existing FPGA design.

7.3.1. Introduction to PEK: A TLM IP Libaray for SoC Design

IBM provides this PEK [41]– PowerPC Evaluation Kit – as a library to facilitate the

TLM enabled system-level modeling, exploration, and evaluation of CoreConnect/

PowerPC based SoCs. For this, it consists mainly of an extensive collection of IP

components in TLM for the CoreConnect architecture, as well as several reference designs.

Not only functional but also other aspects can be modelled with this library, such as the

timing and power consumption of a SoC. We focused only on the functional integration.

Figure 7.11 shows how PEK models the CoreConnect architecture as a TLM

framework. We list several IP models to be used later:

 PLB, OPB, PLBOPBBridge, and DCR: These are the TLM models for the SoC

on-chip communication defined by the CoreConnect architecture, which includes

the PLB, OPB, and DCR bus specifications. As mentioned, the communication

realized by these bus models is cycle-accurate, with regard to the original timing

specification. It means if we model and integrate the computation components, for

example a CPU, also in a cycle-accurate way, we should have the possibility to

obtain a fully cycle-accurate system model. The data and hand-shake protocols are

transmitted through particular data structures: PLB_REQUEST, OPB_REQUEST,

and DCR_REQUEST.

Quality Metrics Driven Functional Verification for IP based SoC Design

140

 PPC_ISS: a PowerPC 405/440 Instruction Set Simulator (ISS) wrapped as a TLM

component. It models a PowerPC microprocessor in a CoreConnect system, with

three main TLM ports to be connected: a PLB master port for instruction, another

one for data, and a DCR master port. It implements further the interrupt interface

in TLM, accepting control from an interrupt controller. Parameters that can be

configured during instantiation of this component include, for example, size of

instruction/data cache, width of each PLB connection, master IDs on PLB as well

as DCR, path to the executable file, and other ISS related options. The ISS is

synchronized with PLB and DCR through SystemC clocks.

 DDR_MC2PLB4_MODULE: a Double Data Rate (DDR) memory controller,

which contains also a cycle-approximate memory model that mimics the industry

standard DDR SDRAM interface. The controller is supposed to be connected to a

PLB bus through the PLB slave interface. It can be used together with the ISS

component and loaded with a binary cross-compiled for the ISS. Then all the bus

protocol, DDR controller, and the memory model will be exercised during ISS

execution. Possible configurations of this controller are PLB data/address width,

high/low address on PLB, mode of cycle accuracy, other timing as well as

row/bank number for the memory model, and so on.

Figure 7.11 PEK (PowerPC Evaluation Kit) SoC library [41].

Communication IP: Cycle Accurate; Computation IP: Programmer’s View with Timing

PEK: a TLM IP library for PowerPC/CoreConnect based SoC design

TLM interface TLM port TLM communication

DCR
Arbiter

DCR Bus

PLB Master
(PowerPC ISS)

PLB Master

PLB Bus

PLB
Arbiter

PLB
Slave

DMA
Controller

PLB_OPB
Bridge

OPB_PLB
Bridge

OPB
Bus

UIC

OPB
Slave

OPB
Master

OPB
Arbiter

dcr_arbiter_if dcr_bus_if

intrpt_ctr_if intrpt_req_if
dcr_slave_if

opb_slave_if

opb_bus_if

opb_arbiter_if

opb_bus_if

plb_bus_ifplb_slave_if

plb_bus_if

plb_arbiter_if

Architecture overview

141

CHAPTER 7: Evaluation

 UIC: it models a Universal Interrupt Controller that handle interrupts for a CPU.

Up to 32 inputs can be connected and configured. Further, two types of interrupts

– critical and non-critical – are supported. All such communications are carried

out through an INTRP_REQUEST data structure, as with the buses.

 UART16750: a Universal Asynchronous Receiver/Transmitter (UART) device

that can be attached to OPB. It receives data from, or transmits data to its serial

port, during which it also initiates interrupt to a CPU. The serial port can be

connected to a component called file_reader_writer, that reads a file as the UART

input or record the UART output. The FIFO size can be configured for this

component.

 Console: this models an input/output terminal external to a SoC model. When

connected to a UART, it facilitates an interaction with the SoC, for example for

testing purpose.

 IoDevice: an IO model that mimics several file accessing interfaces. When it is

attached to PLB through its PLB slave interface, a program running on the ISS can

use these interfaces – close, fstat, isatty, lseek, open, read, stat, and write – to access

this model and perform file operations, as real files are available . The buffer size

of an IoDevice can be configured.

 EMAC, GMII, GmiiDevice, and MAL_CONTROLLER: together, these cores

provide modeling facility for SoC design with Ethernet interfacing. EMAC models

an Ethernet media access controller that complies with the IEEE standard 802.3 for

Ethernet Media Access Control protocol. In 1000-Mbps mode, it operates in

connection with a GMII (Gigabit Media Independent Interface), which in turn

connects to a GmiiDevice that models a standard Ethernet PHY. On the other side,

an EMAC connects to a MAL_CONTROLLER core, which transfers packet directly

between memory and EMAC, by behaving as a master on PLB. Then an Ethernet

software stack maintains merely the memory descriptor from this

 MAL_CONTROLLER: it provides mainly a data transfer facility between memory

and a packet-oriented core, such as the EMAC core just mentioned. It minimizes

the involvement of a CPU in such Ethernet traffic.

7.3.2. Two SoC Case Studies on IP-XACT Tool

In the first case study, we excised our Eclipse-based IP-XACT tool with two reference

designs from PEK. We show only the first exercise with Figure 7.12. Basically, the design

is a SoC scenario that exercises two Ethernet 1-GB high speed serial (HSS) link cores.

Quality Metrics Driven Functional Verification for IP based SoC Design

142

There are three main traffic flows being generated, which at the same time serves the

test of this SoC system integration: i) the Ethernet traffic on top of Ethernet controllers,

the MAL controller, the cycle-accurate DDR memory model, and SW stack, ii) the UART

traffic, and ii) the additional file operation traffic, through the mimic of files by IoDevice.

All the related TLM IPs in PEK were first carefully documented as IP-XACT

components, with necessary bus/abstractionDefinitions for PLB, OPB, and DCR. Then, a

corresponding IP-XACT design for the Ethernet SoC is modeled.

The working process of our IP-XACT tool has been introduced before. Here we do not

go to the details again. Some statistics from the tool exercise will be presented later

together with the second case study.

In the second case study, we reused the hybrid-task SoC design that has been presented

in the background chapter for discussing the reference flow. As mentioned, we designed

and implemented this hybrid-task SoC and required IPs as a demonstration of the CPU-

FPGA task migration idea [13] [11].

To exercise the IP-XACT tool, we considered this experiment: TLM based simulation

and verification of this hybrid-task SoC design, as presented by Figure 7.13. A

corresponding TLM system was created to model, simulate and, based on such simulation,

verify the functional correctness of the hybrid-task SoC that is originally described as RTL.

On top the existing IP-XACT components and bus/abstractionDefinitions for PEK, IP-

XACT descriptions for the hybrid-task TripleDES and hybrid-task manger IPs were first

created. To integrate them into TLM simulation, TLM wrappers are also created for RTL,

on their OPB interfaces. Then the hybrid-task SoC described in format MHS –

Microprocessor Hardware Specification – was transformed into an IP-XACT design.

Tests for the original system were written as scripts running on a PC console that is

connected to the FPGA board through a serial interface. Such a script consists of operation

commands for the hybrid-task system: restart_task [sw|hw], suspend_task, migrate_task,

resume_task, step_task, etc. Data streams for the TripleDES task were also fed through

these commands.

We constructed tests for the TLM based hybrid-task SoC by imitating this mechanism.

It is possible, since all the required components, including a UART and console model,

are provided by PEK. In this way, all the TripleDES encryption/decryption and CPU-

FPGA task migration scenarios were be tested with TLM.

The first result that we can report is that, in both case studies – on two PEK reference

designs and a SoC design of our own, the IP-XACT tool was able to complete the

generation and simulation of mutants, SystemC and Makefiles for all three SoC designs in

IP-XACT.

143

CHAPTER 7: Evaluation

Figure 7.14 shows more statistics from the IP-XACT tool exercises, in particular, with

regard to IP-XACT mutation analysis: the number of generated and killed mutants. At the

end of the TLM system simulations, 79%, 81%, and 71% mutants were killed respectively,

out of the 151, 134, and 68 mutants that were generated in total under the seven basic

mutation operators on the IP-XACT schema. The tests were improved manually by, for

example, generating more Ethernet traffic and simply repeating more commands for

hybrid-task operations, to make a reference and compare the mutation analysis results from

the original tests. For the simulation of each mutant, we measured it as killed, if a different

system simulation trace was recorded.

A large part of the total mutants were generated by the parameter group of mutation

operators, such as reducing or increasing the FIFO size in the UART component, trying

different cache sizes in PowerPC configuration, setting another priority scheme for the

Figure 7.12 IP-XACT tool exercise with PEK reference SoC design (two Ethernet 1-GB

high speed serial (HSS) link cores).

PEK : PowerPC SoC Evaluation Kit with TLM

TLM
IP

Library

Eclipse IP-XACT tool

PEK reference SoC design Ethernet (PEK format)

PowerPC
ISS_TLM

PLB_BUS

Io
Device

DDR_
MC2PLB4_
MODULE

DCR_BUS

OPB_BUS

EMAC
1

PLB
OPB

Bridge

GMII
1

Gmii
Device 1

INTRPT_
CTR

TLM connection
TLM port TLM interface

UART
16750

Serial
_File
_writer

MAL_CONTROLLER

EMAC
2

GMII
2

Gmii
Device 2

IP-XACT
PEK SoC
design
XML

IP-XACT editing domain

IP-XACT IP repository

IP-XACT CoreConnect
component XML

IP-XACT PLB/OPB/DCR
busDefinition XML

IP-XACT PLB/OPB/DCR
abstractionDefinition XML

IP-XACT mutation
analysis domain

IP-XACT functional
simulation domain

Java
objects

Mutants Generation
on Java objects

SystemC/Makefile
Synthesis

SystemC Simulator (ModelSim)

Quality Metrics Driven Functional Verification for IP based SoC Design

144

PLB arbitration, configuring TX/RX FIFO sizes for the Ethernet controller, etc. The

InterConnDel operator was observed to be trivial (generating mutants that are too easy to

be killed), if not totally unnecessary.

Indeed, at this moment, the selection and completion of IP-XACT mutation operators

have not been optimized. Still, this represents our first effort, and the first published effort

towards i) definition of mutation operators for IP-XACT, which we assume as the standard

SoC system-level design format, and ii) a tool implementation for such mutation analysis.

We have argued its necessity as a systematic metric for SoC system design. Our

experimental tool and the case studies demonstrated this effort.

Figure 7.13 IP-XACT tool case study 2: TLM based simulation and verification of a

hybrid-task SoC.

PEK:
PowerPC/
CoreConnect
SoC with TLM

TLM
IP

Library

Eclipse IP-XACT tool

IP-XACT
Hybrid-Task
SoC design

XML

IP-XACT editing domain

IP-XACT IP repository

IP-XACT mutation
analysis domain

IP-XACT functional
simulation domain

Java
objects

Mutants Generation
on Java objects

SystemC/Makefile
Synthesis

SystemC Simulator (ModelSim)

Xilinx ISE Tool: PowerPC/CoreConnect SoC design on FPGA

LUT
Utili-

zation

System 6193 62.8%

FPGA
total

9856 100%

Hybrid-task SoC system design

PLB_BUS

PLB
OPB

Bridge
OPB

PowerPC
405 wrapper

PowerPC
405

DDR SDRAN
Controller

DDR SDRAM

TripleDES SW,
DREAMS OS

UART
Controller

Serial IO

PC: Console:
Test input/output

Hybrid -Task
Manager

Hybrid- Task:
TripleDES

IP-XACT PLB/OPB/DCR
abstractionDefinition XML

IP-XACT Hybrid-Task
component XML

IP-XACT PEK
component XML

IP-XACT PLB/OPB/DCR
busDefinition XML

145

CHAPTER 7: Evaluation

Figure 7.14 More information on IP-XACT tool case studies: statistics of mutation

analysis.

IP-XACT

SoC

exercise

IP-XACT
IP

included
Mutants

By Original system tests By

improved

tests

(Total)
ParRep ParIns ParDel

Baddr-

Incr

Haddr-

Decr

Addr-

Exch

Inter-

Conn-

Del

Total

PEK

Reference

Design 1

17

Generated 69 18 20 16 19 4 5 151 151

Killed 54 15 14 15 14 3 4 119 137

Percentage 78% 83% 70% 94% 74% 75% 80% 79% 91%

PEK

Reference

Design 2

14

Generated 71 12 11 17 15 4 4 134 134

Killed 59 10 7 14 13 2 4 109 126

Percentage 83% 83% 64% 82% 87% 50% 100% 81% 90%

Hybrid-

Task

Design

8

Generated 28 11 8 7 7 3 4 68 68

Killed 17 7 6 6 5 3 4 48 64

Percentage 61% 64% 75% 86% 71% 100% 100% 71% 94%

Quality Metrics Driven Functional Verification for IP based SoC Design

146

147

CHAPTER 8: Conclusion

In this thesis, we have proposed a simulation-based functional verification

methodology for IP-based SoC design, which is driven by mutation analysis as a

consistent metric for verification quality.

The background for our methodology includes mainly i) the increasing prevalence of

SoCs, with IP-reuse and integration as the central design paradigm, ii) the emerging EDA

tools and application of HDL mutation analysis, and iii) the emerging new languages and

standards for SoC design, such as TLM and IP-XACT.

In this context, we have been able to identify the general problems as: i) at IP design

phase, we lack efficient, practical test generation methods for HDL mutation analysis and

ii) at SoC system design phase, we lack a systematic verification way as well as a quality

metric for such verification. Therefore, our proposed verification enhancement flow

consists of three components to address these problems.

First, considering the verification of an IP design, it is reasonable for us to employ

light-weight constrained random simulation (CRS) to obtain a primary level of killed

mutants. However, CRS can be inefficient, as it is defined neither for the original nor for

the changing metric. The problem can be particularly amplified, since mutation analysis

is a time-consuming metric. This has motivated us to integrate a continuous, heuristic

adaptation loop into CRS. We have proposed using a constraint-extended Markov chain

to model random test and provide the basis for such adaptation. We have also presented

dynamic mutation schemata to efficiently carry out HDL mutation analysis and provide

feedback. Then, the adaptation heuristic works by encouraging Markov-chain

edges/constraints that could activate more mutants. In the evaluation experiment with the

MB-Lite/FPU IP, we were able to observe the adaptation indeed leading to more activated

as well as killed mutants. We achieved our goal of enhancing the mutation analysis

efficiency in CRS.

Second, there are “hard” mutants expected to be left un-killed after this adaptive

random simulation. Avoidance of any symbolic simulation has motivated us to apply

Quality Metrics Driven Functional Verification for IP based SoC Design

148

metaheuristic search based test generation to handle each of the remaining mutants. Such

a metaheuristic, for example a simple local search, searches the design input space and

tries to move gradually to a mutant-killing target test, relying only on guidance from real

design simulation, though a solution is not guaranteed. As the key contribution here, we

have defined an objective cost function to effectively steer such search for HDL mutation

analysis. The basis of the cost function is a Control and Data Flow Graph (CDFG), which

is exactly capable of modeling the test generation problem: reach-activate-propagate.

The cost function is then comprised of a macro propagation distance and a local

propagation cost, which measures the degree of activation and propagation conditions

being fully satisfied. The MB-Lite/FPU IP evaluation showed that this cost function was

consistently able to steer a local search procedure successfully towards mutant-killing

tests.

Third, moving to SoC system design, the consideration of TLM and IP-XACT as well

as the need to provide a consistent quality metric by mutation analysis has motivated us

to propose a SystemC based framework for IP-XACT design simulation and IP-XACT

mutation analysis. An IP-XACT-to-SystemC synthesis flow is defined to enable IP-XACT

simulation. It provides a single platform for multi-language, mixed-level simulation,

including RTL, behavioral, or TLM, at SoC system level. For this synthesis, we have also

considered important TLM compatibility rules for IP-XACT-based compatibility check

and safe binding of TLM components. Generation has been defined not only for IP-XACT-

to-SystemC, but also for a Makefile composition, so as to provide a fully automated

simulation process. Upon this simulation facility, IP-XACT mutation analysis has been

added by the definition of a set of mutation operators on IP-XACT schema, which represent

possible errors within an IP-XACT system design. We have also implemented an Eclipse-

based prototype tool realizing all these functionalities. In the evaluation with several

CoreConnect/PowerPC SoC integrations, we were able to confirm the tool’s capability of

completing the generation as well as simulation of mutants, SystemC and Makefiles and,

therefore, also prove the general feasibility of the concepts behind the tool. We showed

also the capability of the defined IP-XACT mutation operations of qualifying system tests.

Together, our methods provide a systematic, novel enhancement to functional design

verification, based on HDL mutation analysis, TLM, and IP-XACT that are state-of-the-

art techniques. In particular, they accommodates IP-based SoC design paradigm, by

increasing the thoroughness of IP verification and focusing on IP integration at SoC

system level. We view the thesis as a meaningful step towards closing the verification

gap in the context of SoC design.

149

CHAPTER 8: Conclusion

8.1. Outlook

The following aspects have not been fully explored by this thesis, at the moment, but

are considered as reasonable future work.

 Parameters of the methods have not been optimized or strictly evaluated, such

as the optimal transition point from random simulation to search based test

generation, the best manner of modeling a Markov chain, the best move

mechanism in local search, and so on. The thesis has focused on firstly

establishing the methods as valid and effective.

 The CDFG serves the basis data structure in our cost function definition for

HDL mutation analysis. One limitation is that we still lack an automation tool

for extracting such CDFG. In the evaluation experiment, we built the CDFG

manually from the MB-Lite and FPU design. It limits us from evaluating the

metaheuristic test generation on further examples. This can be a practical step

for further work.

 It is reasonable for us also to investigate and compare the performance of other

metaheuristics when applied for HDL mutation analysis and test generation,

under steering from the CDFG cost function. For example, advance Ant

Colony algorithm has been employed in related work for test generation [91].

If we have an automatic CDFG extraction, such investigation would be with

less burden.

 As mentioned, more comprehensive evaluation of IP-XACT mutation

operators will be future work.

 In this work, the functional verification at SoC system level has been limited to

hardware IP integration, without considering a software-integrated system

testing. This comes from the thesis’s focus on hardware design verification,

without touching the area of hardware-software co-design. Indeed, embedded

software is becoming an increasingly significant part of the whole SoC

development effort. Systematic, metrics-managed testing of SoC system

together with embedded software should be investigated. In fact, together with

our colleagues, we have made the first step towards a unified covering of all

hardware, embedded software, and system aspects with mutation analysis. In

[4] and [3], we have proposed using a dynamic translation based emulator –

called QEMU [116] – to enable mutation analysis of embedded software

binaries, for scenarios where they are provided in a hard-IP-like manner

without source code.

Quality Metrics Driven Functional Verification for IP based SoC Design

150

151

 Bibliography1

[1] T. Xie, W. Mueller and F. Letombe, "Mutation-analysis driven functional verification of a

soft microprocessor," in Proc. of 25th IEEE System On Chip Conference (SOCC), Niagara

Falls, NY, USA, 2012.

[2] T. Xie and W. Mueller, "An IP-XACT-to-SystemC Model Generator for Mutation

Analysis," in Proc. of International Workshop on Metamodelling and Code Generation for

Embedded Systems (at ESWeek), Tampere, Finland, 2012.

[3] M. Becker, C. Kuznik, M. M. Joy, T. Xie and W. Mueller, "Binary mutation testing through

dynamic translation," in Proc. of 42nd Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Boston, USA, 2012.

[4] M. Becker, D. Baldin, C. Kuznik, M. M. Joy, T. Xie and W. Mueller, "XEMU: an efficient

QEMU based binary mutation testing framework for embedded software," in Proceedings

of the 10th ACM international conference on Embedded software, Tampere, Finland , 2012.

[5] T. Xie, W. Mueller and F. Letombe, "IP-XACT based system level mutation testing," in

Proc. of 16th IEEE International High-Level Design Validation and Test Workshop

(HLDVT), Napa Valley, USA, 2011.

[6] T. Xie, W. Mueller and F. Letombe, "HDL-Mutation Based Simulation Data Generation

by Propagation Guided Search," in Proc. of 14th Euromicro Conference on Digital System

Design (DSD), Oulu, Finland, 2011.

[7] T. Xie, W. Mueller and F. Letombe, "Efficient mutation-analysis coverage for constrained

random verification," in Distributed, Parallel and Biologically Inspired Systems, Springer,

2010, pp. 114-124.

[8] M. Becker, G. Di Guglielmo, F. Fummi, W. Mueller, G. Pravadelli and T. Xie, "RTOS-

aware refinement for TLM2.0-based HW/SW designs," in Proc. of the Conference on

Design, Automation and Test in Europe (DATE), Dresden, Germany, 2010.

[9] T. Xie, G. B. Defo and W. Mueller, "An Eclipse-based Framework for the IP-XACT-

enabled Assembly of Mixed-Level IPs," in Proc. of Intl. Workshop on Hands-on Platforms

and Tools for Model-based Engineering of Embedded Systems (HoPES), Paris, France,

2010.

[10] T. Schattkowsky, T. Xie and W. Mueller, "A uml frontend for ip-xact-based ip

management," in Proc. of the Conference on Design, Automation and Test in Europe

(DATE), Nice, France, 2009.

[11] M. Goetz, F. Dittmann and T. Xie, "Dynamic relocation of hybrid tasks: Strategies and

methodologies," Microprocessors and Microsystems, vol. 33, no. 1, pp. 81-90, February

2009.

[12] T. Schattkowsky and T. Xie, "UML and IP-XACT for Integrated SPRINT IP

Management," in Proc. of 5th International UML-SoC Workshop (at DAC), Anaheim,

USA, 2008.

[13] M. Goetz, T. Xie and F. Dittmann, "Dynamic Relocation of Hybrid Tasks: A Complete

Design Flow," in Proc. of Intl. Workshop on Reconfigurable Communication-centric

System-on-Chip (ReCoSoC), Montpellier, France, 2007.

[14] P. Rashinkar, P. Paterson and L. Singh, System-on-a-chip verification: methodology and

techniques, Springer, 2001.

[15] S. Fine and A. Ziv, "Coverage Directed Test Generation for Functional," in Proc. of the

40th Design Automation Conference, Anaheim, CA, USA, 2003.

[16] S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber and K. Keutzer, "A Functional Validation

Technique: Biased Random Simulation Guided By Observability-Based Coverage," in

1 [1]-[13] are cited publications as author or co-author

Quality Metrics Driven Functional Verification for IP based SoC Design

152

Proc. of the IEEE Intl Conf. on Computer Design: VLSI in Computers & Processors

(ICCD), Austin, TX, 2001.

[17] F. Faggin, M. E. Hoff Jr, S. Mazor and M. Shima, "The History of the 4004," IEEE Micro,

vol. 16, no. 6, pp. 10-20, 1996.

[18] ITRS, "International Technology Roadmap for Semiconductors 2011 Edition - Design,"

Available at http://www.itrs.net/Links/2011ITRS/Home2011.htm, 2011.

[19] J. Bergeron, Writing testbenches: functional verification of HDL models, vol. 2, Kluwer

Academic Publishers Dordrecht, 2003.

[20] P. Wilcox, Professional Verification: A Guide to Advanced Functional Verification,

Springer, 2004.

[21] Synopsys, "Certitude," 2013. [Online]. Available:

http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/certitude-

ds.aspx.

[22] M. Hampton and S. Petithomme, "Leveraging a commercial mutation analysis tool for

research," in Testing: Academic and Industrial Conference Practice and Research

Techniques-MUTATION, 2007. TAICPART-MUTATION 2007, 2007.

[23] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton and F. Letombe, "Functional

qualification of TLM verification," in Design, Automation & Test in Europe Conference &

Exhibition, 2009. DATE'09., 2009.

[24] IBM, "CoreConnect Bus Architecture," Available at https://www-

01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture, 1999.

[25] D. Lattard, E. Beigne, C. Bernard, C. Bour, F. Clermidy, Y. Durand, J. Durupt, D. Varreau,

P. Vivet, P. Penard and others, "A telecom baseband circuit based on an asynchronous

network-on-chip," in IEEE International Solid-State Circuits Conference (ISSCC 2007),

Digest of Technical Papers, 2007.

[26] P. Vivet, D. Lattard, F. Clermidy, E. Beigne, C. Bernard, Y. Durand, J. Durupt and D.

Varreau, "FAUST, an Asynchronous Network-on-Chip based Architecture for Telecom

Applications," in Proc. of Design, Automation and Test in Europe (DATE'07), 2007.

[27] C-LAB, "COCONUT project: A Correct-by-Construction Workbench for Design and

Verification of Embedded Systems," Available at http://www.c-

lab.de/en/rd_projects/completed_research_projects/2010/coconut/, 2010.

[28] S. Liao, G. Martin, S. Swan and T. Grötker, System design with SystemC, Kluwer

Academic Pub, 2002.

[29] IEEE, 1685-2009 - IEEE Standard for IP-XACT, Standard Structure for Packaging,

Integrating, and Reusing IP within Tool Flows, 2009.

[30] W. Kruijtzer, P. van der Wolf, E. de Kock, J. Stuyt, W. Ecker, A. Mayer, S. Hustin, C.

Amerijckx, S. de Paoli and E. Vaumorin, "Industrial IP Integration Flows based on IP-

XACT™ Standards," in Proc. of DATE'08, Munich, Germany, 2008.

[31] L. Cai and D. Gajski, "Transaction level modeling: an overview," in Proc. of the 1st

IEEE/ACM/IFIP international conference on Hardware/software codesign and system

synthesis, 2003.

[32] S. Pasricha, "Transaction level modeling of SoC with SystemC 2.0," in Synopsys User

Group Conference (SNUG), 2002.

[33] P. J. Ashenden, The Designer's Guide to VHDL, Third Edition, Morgan Kaufmann, 2010.

[34] D. E. Thomas and P. R. Moorby, The Verilog® Hardware Description Language, vol. 2,

Springer, 2002.

[35] S. M. Rubin, Computer aids for VLSI design, Massachusetts, USA: Addison-Wesley

Reading, 1987.

153

Bibliography

[36] A. Bruce, M. Kamal Hashmi, A. Nightingale, S. Beavis, N. Romdhane and C. Lennard,

"Maintaining consistency between SystemC and RTL system designs," in Proceedings of

the 43rd annual Design Automation Conference (DAC), 2006.

[37] N. Bombieri and F. Fummi, "On the Automatic Transactor Generation for TLM-based

Design Flows," in Proc. of 11th IEEE International High-Level Design Validation and Test

Workshop (HLDVT), 2006.

[38] T. Zhang, L. Benini and G. De Micheli, "Component selection and matching for IP-based

design," in Proc. of Conference and Exhibition on Design, Automation and Test in Europe

(DATE), 2001.

[39] OpenCore, "Triple DES encryption core," Available at http://opencores.org/.

[40] IBM, "Processor Local Bus 128-bit Specification," Available at https://www-

01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture, 2007.

[41] IBM, "PowerPC 405 Evaluation Kit with CoreConnect SystemC TLMs," Available at

http://www.ibm.com/developerworks/power/pek/index.html.

[42] N. Bombieri, F. Fummi and G. Pravadelli, "On the evaluation of transactor-based

verification for reusing TLM assertions and testbenches at RTL," in Proc. of the conference

on Design, automation and test in Europe (DATE), 2006.

[43] M. Dales, "SWARM 0.44 Documentation," Department of Computing Science, University

of Glasgow, 2000.

[44] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli and M. Olivieri, "Mparm: Exploring the

multi-processor soc design space with systemc," Journal of VLSI signal processing systems

for signal, image and video technology, vol. 41, no. 2, pp. 169-182, 2005.

[45] N. Romdhane, "ARM RealView ESL APIs," in 5th North American SystemC User's Group

(NASCUG) Meeting, 2006.

[46] E. Van der Vlist, XML Schema: The W3C's Object-Oriented Descriptions for XML,

O'Reilly Media, Inc., 2011.

[47] E. M. Clarke, O. Grumberg and D. A. Peled, Model checking, MIT press, 1999.

[48] M. Bombana and F. Bruschi, "SystemC-VHDL co-simulation and synthesis in the HW

domain," in Proc. of the conference on Design, Automation and Test in Europe: Designers'

Forum-Volume 2, 2003.

[49] IEEE Computer Society, "IEEE Std 754-2008: IEEE Standard for Floating-Point

Arithmetic," Available at http://dx.doi.org/10.1109%2FIEEESTD.2008.4610935, 2008.

[50] D. Große, R. Ebendt and R. Drechsler, "Improvements for Constraint Solving in the

SystemC Verification Library," in Proceedings of the 17th ACM Great Lakes symposium

on VLSI, 2007.

[51] IEEE, 1800-2009 Standard for SystemVerilog - Unified Hardware Design, Specification,

and Verification Language, 2009.

[52] C. Kuznik and W. Müller, "Aspect enhanced functional coverage driven verification in the

SystemC HDVL," in Proc. of the 8th International SoC Design Conference, 2011.

[53] M. F. S. Oliveira, C. Kuznik, H. M. Le, D. Große, F. Haedicke, W. Müller, R. Drechsler,

W. Ecker and V. Esen, "The System Verification Methodology for Advanced TLM

Verification," in Proc. of Eighth IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis (CODES/ISSS'12) , 2012.

[54] S. Devadas, A. Ghosh and K. Keutzer, "An Observability-Based Code Coverage Metric for

Functional Simulation," in Proc. of the IEEE/ACM International Conference on Computer-

Aided Design, San Jose, CA, USA, 1996.

[55] J. P. Roth, "Diagnosis of automata failures: A calculus and a method," IBM journal of

Research and Development, vol. 10, no. 4, pp. 278-291, 1966.

Quality Metrics Driven Functional Verification for IP based SoC Design

154

[56] F. Fallah, S. Devadas and K. Keutzer, "OCCOM: Efficient Computation of Observability-

Based Code Coverage Metrics for Functional Verification," in Proc. of the 35th annual

Design Automation Conference (DAC), San Francisco, CA, USA, 1998.

[57] F. Fallah, S. Devadas and K. Keutzer, "OCCOM-efficient computation of observability-

based code coverage metrics for functional verification," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 20, no. 8, pp. 1003-1015, 2001.

[58] R. A. DeMillo, R. J. Lipton and F. G. Sayward, "Hints on Test Data Selection: Help for the

Practicing Programmer," IEEE Computer, vol. 11, no. 4, pp. 34-41, April 1978.

[59] A. Offutt, "The coupling effect: fact or fiction," ACM SIGSOFT Software Engineering

Notes, vol. 14, no. 8, pp. 131-140, 1989.

[60] A. J. Offutt, "Investigations of the software testing coupling effect," ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 1, no. 1, pp. 5-20, 1992.

[61] Y. Jia and M. Harman, "An analysis and survey of the development of mutation testing,"

IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649-678, 2011.

[62] A. P. Mathur, "Performance, effectiveness, and reliability issues in software testing," in

Proc. of the Fifteenth Annual International Computer Software and Applications

Conference (COMPSAC'91), 1991.

[63] R. H. Untch, A. J. Offutt and M. J. Harrold, "Mutation analysis using mutant schemata,"

ACM SIGSOFT Software Engineering Notes, vol. 18, no. 3, pp. 139-148, 1993.

[64] W. E. Howden, "Weak mutation testing and completeness of test sets," IEEE Transactions

on Software Engineering, no. 4, pp. 371-379, 1982.

[65] A. J. Offutt and S. D. Lee, "An empirical evaluation of weak mutation," IEEE Transactions

onSoftware Engineering, vol. 20, no. 5, pp. 337-344, 1994.

[66] A. J. Offutt, G. Rothermel and C. Zapf, "An experimental evaluation of selective mutation,"

in Proceedings of the 15th international conference on Software Engineering, 1993.

[67] R. A. DeMillo, D. S. Guindi, W. McCracken, A. Offutt and K. King, "An extended

overview of the Mothra software testing environment," in Proc. of the Second Workshop

on Software Testing, Verification, and Analysis, 1988.

[68] G. Al Hayek and C. Robach, "From specification validation to hardware testing: A unified

method," in Proceedings of International Test Conference 1996, 1996.

[69] C. Aktouf, G. Al-Hayek and C. Robach, "Concurrent testing of VLSI digital signal

processors using mutation based testing," in Proceedings of 1997 IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, 1997.

[70] G. Al-Hayek and C. Robach, "From design validation to hardware testing: A unified

approach," Journal of Electronic Testing, vol. 14, no. 1-2, pp. 133-140, 1999.

[71] P. Goel, "An implicit enumeration algorithm to generate tests for combinational logic

circuits," IEEE Transactions on Computers, vol. 100, no. 3, pp. 215-222, 1981.

[72] H. Fujiwara and T. Shimono, "On the acceleration of test generation algorithms," IEEE

Transactions on Computers, vol. 100, no. 12, pp. 1137-1144, 1983.

[73] T. Niermann and J. H. Patel, "HITEC: A test generation package for sequential circuits,"

in Proc. of the European Conference on Design Automation, 1991.

[74] S. C. Brailsford, C. N. Potts and B. M. Smith, "Constraint satisfaction problems:

Algorithms and applications," European Journal of Operational Research, vol. 119, no. 3,

pp. 557-581, 1999.

[75] I. Wagner, V. Bertacco and T. Austin, "Microprocessor Verification via Feedback-

Adjusted Markov Models," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 26, no. 6, pp. 1126-1138, June 2007.

[76] S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber and K. Keutzer, "Coverage-Directed

Generation of Biased Random Inputs for Functional Validation of Sequential Circuits," in

Proc. of the 10th IEEE International Workshop on Logic and Synthesis, 2001.

155

Bibliography

[77] S. Tasiran and K. Keutzer, "Coverage metrics for functional validation of hardware

designs," IEEE Design & Test of Computers, vol. 18, no. 4, pp. 36-45, 2001.

[78] W. Chen, L.-C. Wang, J. Bhadra and M. Abadir, "Simulation knowledge extraction and

reuse in constrained random processor verification," in Proceedings of the 50th Annual

Design Automation Conference (DAC), 2013.

[79] M. F. S. Oliveira, H. Zabel and W. Müller, "Assertion-Based Verification of RTOS

Properties," in Proceedings of the Conference on Design, Automation and Test in Europe

(DATE'10), 2010.

[80] P. McMinn, "Search-based software test data generation: a survey," Software Testing,

Verification and Reliability, vol. 14, no. 2, pp. 105-156, 2004.

[81] G. G. De Jong, "Data flow graphs: system specification with the most unrestricted

semantics," in Proceedings of the conference on European design automation, 1991.

[82] R. Camposano, "Path-based scheduling for synthesis," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 10, no. 1, pp. 85-93, 1991.

[83] R. Namballa, N. Ranganathan and A. Ejnioui, "Control and data flow graph extraction for

high-level synthesis," in Proceedings. IEEE Computer society Annual Symposium on VLSI,

2004.

[84] R. A. Bergamaschi, "Behavioral network graph: unifying the domains of high-level and

logic synthesis," in Proceedings of the 36th annual ACM/IEEE Design Automation

Conference (DAC'99), 1999.

[85] Q. Zhang and I. G. Harris, "A data flow fault coverage metric for validation of behavioral

hdl descriptions," in Proceedings of the 2000 IEEE/ACM international conference on

Computer-aided design (ICCAD), 2000.

[86] F. Fallah, P. Ashar and S. Devadas, "Simulation vector generation from HDL descriptions

for observability-enhanced statement coverage," in Proc. of the 36th annual ACM/IEEE

Design Automation Conference (DAC'99), 1999.

[87] R. DeMillo and A. J. Offutt, "Constraint-based automatic test data generation," IEEE

Transactions onSoftware Engineering, vol. 17, no. 9, pp. 900-910, 1991.

[88] C. S. Păsăreanu and W. Visser, "A survey of new trends in symbolic execution for software

testing and analysis," International journal on software tools for technology transfer, vol.

11, no. 4, pp. 339-353, 2009.

[89] E. Tsang, Foundations of constraint satisfaction, Academic press London, 1993.

[90] B. Korel, "Automated software test data generation," IEEE Transactions on Software

Engineering, vol. 16, no. 8, pp. 870-879, 1990.

[91] K. Ayari, S. Bouktif and G. Antoniol, "Automatic mutation test input data generation via

ant colony," in Proc. of the 9th annual conference on Genetic and evolutionary

computation, 2007.

[92] S. Shyam and V. Bertacco, "Distance-guided hybrid verification with GUIDO," in Proc. of

the conference on Design, automation and test in Europe (DATE'06), 2006.

[93] W. Wu and M. S. Hsiao, "Efficient design validation based on cultural algorithms," in Proc.

of Design, Automation and Test in Europe (DATE'08), 2008.

[94] A. Parikh, W. Wu and M. S. Hsiao, "Mining-guided state justification with partitioned

navigation tracks," in Proc. of IEEE International Test Conference (ITC'07), 2007.

[95] Mentor Graphics, "ModelSim," Available at http://model.com/.

[96] D. Steinberg, F. Budinsky, M. Paternostro and E. Merks, EMF: Eclipse Modeling

Framework, 2nd Edition ed., Addison-Wesley, 2009.

[97] A. El Mrabti, F. Pétrot and A. Bouchhima, "Extending IP-XACT to support an MDE based

approach for SoC design," in Proc. of DATE'09., 2009.

Quality Metrics Driven Functional Verification for IP based SoC Design

156

[98] D. Braga, F. Fummi, G. Pravadelli and S. Vinco, "The strange pair: IP-XACT and

univerCM to integrate heterogeneous embedded systems," in IEEE International High

Level Design Validation and Test Workshop (HLDVT), 2012.

[99] L. D. Guglielmo, F. Fummi, G. Pravadelli, F. Stefanni and S. Vinco, "UNIVERCM: The

UNIversal VERsatile Computational Model for Heterogeneous System Integration," IEEE

Transactions on Computers, vol. 62, no. 2, pp. 225-241, 2013.

[100] F. Herrera and E. Villar, "A framework for the generation from UML/MARTE models of

IPXACT HW platform descriptions for multi-level performance estimation," in Proc. of

IEEE 2011 Forum on Specification and Design Languages (FDL), 2011.

[101] F. Herrera, H. Posadas, E. Villar and D. Calvo, "Enhanced ip-xact platform descriptions

for automatic generation from UML/MARTE of fast performance models for DSE," in

Proc. of 15th Euromicro Conference on Digital System Design (DSD), 2012.

[102] Object Management Group, "UML Profile for MARTE v1.0," 2009.

[103] G. Ochoa, E.-B. Bourennane, O. Labbani and K. Messaoudi, "IP-XACT and marte based

approach for partially reconfigurable systems-on-chip," in Proc. of IEEE 2011 Forum on

Specification and Design Languages (FDL), 2011.

[104] G. Ochoa-Ruiz, O. Labbani, E.-B. Bourennane, P. Soulard and S. Cherif, "A high-level

methodology for automatically generating dynamic partially reconfigurable systems using

IP-XACT and the UML MARTE profile," Design Automation for Embedded Systems, pp.

1-36, 2012.

[105] P. Lisherness and K.-T. (. Cheng, "SCEMIT: a SystemC error and mutation injection tool,"

in 47th ACM/IEEE Design Automation Conference (DAC'10), 2010.

[106] A. Sen, "Mutation operators for concurrent SystemC designs," in 10th International

Workshop on Microprocessor Test and Verification (MTV'09), 2009.

[107] A. Sen and M. S. Abadir, "Coverage metrics for verification of concurrent SystemC designs

using mutation testing," 2010.

[108] N. Bombieri, F. Fummi and G. Pravadelli, "A mutation model for the SystemC TLM 2.0

communication interfaces," in Proc. of Design, Automation and Test in Europe (DATE'08),

2008.

[109] T. Kranenburg and R. van Leuken, "MB-LITE: A robust, light-weight soft-core

implementation of the MicroBlaze architecture," in Proc. of the Conference on Design,

Automation and Test in Europe (DATE'10), 2010.

[110] S. Xu and H. Pollitt-Smith, "A multi-microblaze based SOC system: from SystemC

modeling to FPGA prototyping," in Proc. of 19th IEEE/IFIP International Symposium on

Rapid System Prototyping (RSP'08), 2008.

[111] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose and E. Deprettere,

"Daedalus: toward composable multimedia MP-SoC design," in Proceedings of the 45th

annual Design Automation Conference, 2008.

[112] X. Guo, Z. Chen and P. Schaumont, "Energy and Performance Evaluation of an FPGA-

Based SoC Platform with AES and PRESENT Coprocessors," in Embedded Computer

Systems: Architectures, Modeling, and Simulation, Springer Berlin Heidelberg, 2008, pp.

106-115.

[113] G. Kornaros, "A soft multi-core architecture for edge detection and data analysis of

microarray images," Journal of Systems Architecture, vol. 56, no. 1, pp. 48-62, 2010.

[114] Xilinx, "MicroBlaze Processor Reference Guide v10.1i,"

http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf, 2010.

[115] T. Kranenburg, "MB-Lite," Available at http://opencores.org/project,mblite, 2012.

[116] F. Bellard, "QEMU, a Fast and Portable Dynamic Translator," in USENIX Annual

Technical Conference, FREENIX Track, 2005.

157

