Quality Metrics Driven Functional Verification
for IP based SoC Design

Dissertation

A thesis submitted to the
Faculty of Computer Science, Mathematics and Electrical Engineering
of the University of Paderborn in partial fulfillment
of the requirements for the degree of Dr. ret. nat.

by
Tao Xie

Paderborn, October 2013

Supervisors:
1. Prof. Dr. rer. nat. Franz J. Rammig, University of Paderborn
2. Prof. Dr. rer. nat. Sybille Hellebrand, University of Paderborn

Abstract

System-on-a-Chip (SoC), centered at reuse of silicon Intellectual Properties (IPs) and
characterized by separation of IP development and SoC system integration, becomes a
dominant paradigm for designing electronic systems. Complexity of both IP and SoC
system design grows exponentially and challenges the functional verification of these
designs. In this context, we consider it a necessity to have a systematic management of
verification quality by applying quantitative metrics. Therefore, the dissertation has the
general goal of establishing a beyond-state-of-the-art, metrics-driven verification
methodology that i) employs automated methods to efficiently improve the verification
quality measured under such metrics and ii) extends the application of these metrics to
accommodate emerging SoC system-level design language. Mutation analysis is the
focused metric in this research for developing new methods. It has a unique, complex test
generation problem to detect (kill) an error-injected design (called a mutant).

At IP level, verification handles designs in traditional hardware description languages
(HDLs) and mutant-targeted automatic test generation is the main objective. Firstly,
random simulation is considered appropriate for achieving a primary level of verification
quality under mutation analysis, where we see the specific problem that random test
generation becomes inefficient as being not metrics-tailored. An adaptive random
simulation method is developed. Based on a modeling of random tests with Markov chain
and constraints, the simulation process is continuously steered by a heuristic towards tests
that are regarded more efficient in killing mutants. The experiments show that this adaptive
simulation is effective of having more mutants killed with less simulation.

Secondly, with a portion of the mutants expected to be un-killed after random
simulation, we solve the problem of further generating tests that kill each individual
mutant. A search-based test generation method is developed, using real simulation results
to guide an iterative process of finding a target test. An objective cost function is defined
specifically for HDL mutation analysis, which calculates the progress of a test killing a
mutant. In the experiments, the cost function, when used to equip a local search algorithm,
delivers consistent performance for steering the search towards mutant-killing tests.

At SoC system level, an IP-XACT mutation analysis framework is developed, assuming
IP-XACT as the default language for SoC integration. Here, first, since IP-XACT designs
as XML data are not simulatable, a simulation engine for IP-XACT, in the form of an IP-
XACT-to-SystemC generator that incorporates Transaction-Level Modeling, is built as the
verification basis. Second, IP-XACT mutation operators are defined by compiling a table
of possible error injections on the IP-XACT schema. The experiments, using an Eclipse-
based tool implementation, shows that the proposal is practical and enables verification of
IP-XACT SoC designs as well as quality measurement of such verification via mutation
analysis.

Contents

ADSEIFACT e bbbt b e be e eenree e nre e naeenreenee i
CONEENTS e e et b bbbt b e e b e e e e b b e bRttt e bbb b b nes iii
CHAPTER 1: INErOAUCEION ... e 1
1.1. Functional Verification ChalleNgeooocuuieeiiiiee e e avee e 1
1.2. System-0on-a-Chip Challenge........cc.coouiiiiiiiiiiiic e 3
1.3. Thesis Goal and Organizationceeeiieiiiiiiiee e e e e e arree e e e e e e e 6
CHAPTER 2: BaCKZIrOUNGooiiiiiiic ettt e e e et e e e etre e e s enaeeas 9
2.1, 1P and SOC DESIZN ...vuviiiinietiitcetcctcet sttt e e e 9
2.1.1. A Reference Flow for IP-based SOC DESIZNcccccuveiiviiiieeiiieeeeciie e ceeee e e e 9
2.1.2. SystemC and Transaction Level Modelingccceeeeieiiiiiieiei e 17
2.1.3. IP-XACT Standard for IP Reuse and SoC Integrationcccceeeeevveeeecieeecciieeeeiiee e 23

2.2. Simulation Based Functional Verificationcc.cccoeveeriiieieeniiieeececeee e 31
2.2.1. Quality Metrics Driven Verification......cccccooicciiiiiee et 38

2.3. Quality Metrics for Functional Simulationc.cceeeveeriiiiieeniieeee e 39

B T B = (=T 0 0[] o L A 01V =T - =TS 39
2.3.2. TOEEIE COVEIAZEuuueeieieeeeeectieeeetee e eete e e st e e ettt e e esnaeeeesnteeeesssaeeesnsseeesssseeeesnseeeennnes 40
2.3.3. FUNCLIONAI COVEIAEE coiiiiiiieiiiiiiee e ettt e e ttte e e e e e e et e e e e e e s e aatbeeeeeeeeenntaaseaaeaennes 40
2.3.4. Observability Based COVEIage......cccicuiiiieeeieiciiiiiiee e e e secittee e e e e eeeatre e e e e e s eesnnbreseaaeeeanes 41
2.3.5. MULAtION ANGIYSIS ..uvviieiiiiieeciiee e eeee st e e et e e ere e e sta e e e s aae e e sanaeeeesnneeeesnseeeeennes 42
2.3.6. ComPaAriSON Of IMIBLIICS......uuiiiiiiee ettt e e e et e e e e e e e e nrreeeeaeeeeaas 50
2.3.7. Circuit Manufacturing Test and ATPG.......cooiciiiiiieeeee et e e e rree e e e e e 52

2. SUMMANY oo 54

CHAPTER 3: Methodology OVEIVIEWcccooiiiiiiiiiiieit e e 57
CHAPTER 4: Mutation Analysis Directed Adaptive Random Simulation..............c..cccoccevvivinenn. 61
B L INEFOTUCKION ettt ettt et e st e s bt e sab e st esab e e e neesbeeenneesanes 61
4.2. Mutation Analysis Directed Adaptive Random Simulationccccccveeeeiiieieiiiieeecciiee s 63
4.2.1. Random Test Generation with Constrained Markov Chainccccceecvevirveineeneennenns 66
4.2.2. Heuristic Closed-loop Adaptation to Test Generationcccccceeeeeieeeeiciieeeecveee e 71
4.2.3. Dynamic Mutation SChemataccocueeeiieeiiiieiie et 74
4.2.4. SUMMaArized ProCeUIE.....ccoiiiiiiieiiieceeeee e e 77

4.3, REIALEH WOTK ...ttt ettt ettt s b e nbe e e e 77
L W14 0] o - 1 VAP PPPPPPPPPPPPPPPPPPPRE 80
CHAPTER 5: Metaheuristic Search Based Test Generation for Mutation Analysis 83
LT O [0 o Yo [0 o o o ST S 83
5.2. Applying Metaheuristic Search to Mutation ANalysiscccocveeeeiiiiiecciiee e 85
5.3. A Cost Function for Search Based Test Generation of HDL Mutation Analysis 88
5.3.1. A Control and Data FIow Graph (CDFG)ccvueeeiieiieeiiiereeecieeesieeeetee e eevne e snae e 88
5.3.2. CDFG Based Cost Function Definition: OUtliNeccceceeeieiieninieniene e 90
5.3.3. Macro Propagation DIiStancCecccccceeiiiiiiiiiiiiiiiiiiiciin e 93
5.3.4. LOCal Propagation COStccuuiiiecuiereiiieeeeiiee e eeitee e stee s e sitee e seeae e e snaeeeenreeessnneeeesnnaeeeas 95
5.3.5. Algorithmic Summary and COmMPIeXityccecveeriiiiiieiiiiieene e 101

5.4, ReIGLEA WOTK ...eiiiieiiiiiieeeiee ettt bbb e s e snee s 103

D S UMY oo, 105
CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT 107
6.0, INErOAUCTION ...t st et sre e 107
6.2. An IP-XACT Design Simulation and Mutation Analysis Frameworkcccccceeevecnnnneen. 109
6.3. SystemC Based IP-XACT Design Synthesis and Simulationccccccceevevieriiiciee e 111
6.4. Mutation Operators 0N IP-XACTuuiiiiiiiiiiieies s eeriireee e e ssirrrees e e s ssbarreeeeessenssnsenenas 118
6.5. ATOOl IMPIEMENTAtIONuuiiiiii e e e e et e e e e e e aaaaeeeas 120
6.6. REIATEA WOTK ...eiiiiiiiiii ettt s sbe e s e nnee s 123
B. 7. SUMIMAIY oo 125

CHAPTER 7: EVAlUGEIONouvviiiiiiiiiiiiiiice ettt e e e s e ab b r e e e e e e s s saabbrreeeeeennnaes 127

7.0, ODJECEIVES ceeeeiieeit ettt sttt ettt st e s s b e eab e sreeearee s 127
7.2. MB-Lite Microprocessor [P Verification......ccccccceevevieiiiiiieieniie e s 128
7.2.1. Design Under Verification and MUtantsccoeccuieeieiiiiieeciee e 129
7.2.2. Adaptive Random Simulationccceeiiiiiiiiiiienie e 130
7.2.3. Metaheuristic Search based Test Generationcccccevveeviienieniiienieeneeeseeeeen 134

7.3. CoreConnect SOC Design Verificationcccccuviiieciii e 139
7.3.1. Introduction to PEK: A TLM IP Libaray for SOC DESIgNccoeerveerueeniieeineenienieeniens 139
7.3.2. Two SoC Case Studies 0N IP-XACT TOOI......cccuerrerierererierie et 141
CHAPTER 8: CONCIUSIONoeiiiiiiiiiiiiit ettt ettt ettt sir e sb e sar e rbeesnne e e 147
S R 11 e Y | SRR 149
BiblIOBraphy e e e et e aaa e e earaeaans 151

CHAPTER 1: Introduction

The chapter presents the general research challenges that motivate this thesis.

1.1. Functional Verification Challenge

In the research area of Electronic Design Automation (EDA), functional verification,
where the functional correctness of a design is verified against its specification, is widely
regarded as the bottleneck of development and facing unsolved challenges [14] [15] [16].
Along the years, various automation techniques are proposed to tackle verification
challenges. However, since, on the one hand, the increase of design complexity seems
unstoppable and, on the other hand, new design languages and paradigms emerge
alongside this complexity increase, novel verification methodology has always been
needed to accommodate the changes.

For example, the functional verification of a micropcessor design should verify whether
the design correctly executes sequences of instructions that are specified by its instruction
set architecture (ISA). As the complexity of microprocessors increases following the
Moore’s Law — from the first commercial Intel 4004 processor containing about 2,300
transistors [17] to many over 1 billion nowadays, the design’s state space that we need to
verify increases exponentially, which is known as the state-space explosion problem in
verification. This then suppresses the amount of design that we can verify.

A design productivity gap is depicted in Figure 1.1 [18], which refers to the ever
expanding gap between the Moore’s Law and design productivity, i.e. between the number
of gates, or transistors that can be manufactured into a single chip and the number of gates
that we are actually able to accomplish in a chip design project, described in gates-per-
day. The International Technology Roadmap for Semiconductors (ITRS) updates this
graph every two years in their design chapter, as a high-level view of electronics design
challenges. The use of semiconductor Intellectual Properties (IP) is also mentioned in this
graph as a productivity promotion, which makes the gap not worse. IP-reuse will be a topic
of next section.

Quality Metrics Driven Functional Verification for IP based SoC Design

log : _ Technology capability
__{verification widely regarded) 2x / 36-months
. to account for ca. T P Gates/Chip

7770

HW design productivity
(Filling with IP and memory)

Gates/Day
If w/o IP, memory

| SW productivity
LoC/Day

time

1989
1993
1997
2001
2009

[Te}
o~
[=}
~N

1981
1985
2005
2013
2017
2021

Figure 1.1 International Technology Roadmap for Semiconductors (ITRS) 2011:
productivity gap [18].

In many occasions [14] [15] [19] [20], the effort spent on verification is estimated to
account for 70% of the entire design activity, if not more. Considering that verification
occupies a constant and large portion of design effort, we may also find a verification gap
contained in the overall productivity gap.

In this context, a more specific question can be asked:
When can we say that the verification is done?

Accordingly, we may define the verification closure problem as finding a point that we
are certain of incompleteness and incorrectness no longer existing in the design under
verification. On the one hand, this confidence is partly a subjective matter. On the other
hand, it is our research task to find an objective and systematic solution. For this, we may
further consider two questions:

e How can we effectively measure the completeness, or thoroughness, or quality of
our verification?

e How can we efficiently improve the verification quality under such measurement?

In this work, we use simulation for functional verification. We consider building a
simulation-based verification methodology that i) relies on well-established coverage
metrics to systematically manage the simulation quality and ii) employs novel methods
for automatic simulation tests generation that targets the metrics. Therefore, we call this
quality metrics driven functional verification.

In particular, we intend to leverage a well-researched, state-of-the-art metric for HDL
(Hardware Description Language) simulation: mutation analysis, which has been
implemented by, for example, a recent EDA tool Certitude [21] [22] [23] from Synopsys.

CHAPTER 1: Introduction

Exactly meant as an aid to answer the verification closure problem, mutation analysis
gives a quantitative, objective quality measure on simulation tests, by injecting artificial
but typical errors into a design under verification, and assessing how many of these errors
can be revealed by the tests. The individual metric points are called mutants.

Further, the thesis is focused on functional verification. No observation on non-
functional properties is considered, such as power or performance.

1.2. System-on-a-Chip Challenge

Nowadays, we are seeing increasingly more electronic systems in the form of System-
on-a-Chip (SoC, or System-on-Chip), where a system is built into a single integrated
circuit (IC) chip, instead of on a printed circuit board (PCB).

CoreConnect, as shown in Figure 1.2 is an on-chip bus architecture proposed around
2000 by IBM for SoC integration [24], which is widely used ever since. The Processor
Local Bus (PLB) bus provides separate 32-bit address and up to 128-buit data buses. With
a fully synchronous architecture, PLB can be connected with multiple masters and slaves.
High-throughput system cores, such as microprocessors, memory controllers, and Direct
Memory Controller (DMA), are supported by PLB. Other peripheral cores such asa UART
(Universal Asynchronous Receiver/Transmitter) controller can be connected to the low-
bandwidth On-chip Peripheral Bus (OPB). Another Device Control Register (DCR) bus is
intended specifically for register data move between a microprocessor and configuration
registers of other components, so as to free the bandwidth of PLB.

CoreConnect will be frequently used in our examples and case studies. Here, it gives a
first illustration of what defines a SoC: higher system integration on the chip level.

Previously, system components are implemented as separate ICs and then
interconnected on a PCB. Now, both computation and communication components are

On-Chip Processor Auxiliary
Memory Cores Processor

}

2 >
5 Processor Local Bus B.US On-Chip Peripheral Bus A
= I I I Bridge I I 3
System System System Peripheral Peripheral
Cores Cores Cores Cores Cores

Figure 1.2 CoreConnect on-chip bus architecture [24].

Quality Metrics Driven Functional Verification for IP based SoC Design

integrated on-chip. They comprise an integrated design, to be verified, synthesized, and
then manufactured as a single chip.

Arguably, SoC is more of a design paradigm than a perfect reality, since in the end,
most systems still need to be embedded as PCBs.

Network-on-Chip (NoC) is another form of SoC, where system-level integrated
components communicate with each other through on-chip network and routers. Figure
1.3 shows the FAUST (Flexible Architecture of Unified System for Telecom) NoC [25]
[26], which we have employed in a recent European research project COCONUT (A
Correct-by-Construction Workbench for Design and Verification of Embedded Systems)
[27]. 23 IP blocks are included and connected to a network of 20 nodes, resulting in a
complexity of 8 M-gates.

Using a router-based, asynchronous network for communication, higher scalability and
data throughput are expected. Therefore, it is intended for dataflow-intensive, especially
4G-radio-targeted applications. The chip is categorized as a SoC, as it integrates most
system components that are previously off-chip now into a single IC, including, for
example, an ARM microprocessor, memory controllers, radio communications such as
OFDM and CDMA, and the network routers. More details on this NoC and its applications
can be found in [25].

In the COCONUT project, a high-level, Transaction-Level Modeling (TLM) [28]
based model of this FAUST NoC has been employed as a target platform, to develop a
TLM based SoC design methodology. One of the project results is a TLM-based, RTOS

NoC1

Clk & Test CTRL Clock, rst

PORT
| l CPU debug
OFDM ALAM. CDMA MAPP. BIT TURBO CONV.
MOD. MOD. MOD. ' INTER. CODER CODER
I
| |
NoC Node NoC
—HElRAM IF
4 Perf.
On-chip NoC IF
S ! RoToR| | |equaL.| | [TAN-| || COMY- || | ETHER WETHERNET IF
Off-chip NoC IF i)
ARM sub-system FRAME ODFX CDMA DE- DE-
SYNC. DEM. DEM. MAPP. INTER.
NoC2

PORT

Figure 1.3 FAUST NoC [25]. A TLM model for this chip has been employed in the
COCONUT project to create a TLM based SoC design methodology.

CHAPTER 1: Introduction

(real-time operating system)-aware SoC refinement flow [8]. The previously mentioned
Certitude tool has also been involved in this project, for managing the verification quality
part of the design methodology.

In this work, we do not particularly differentiate NoC and SoC, yet with an emphasis
on traditional master-slave bus architectures.

SoC Design is Centered at IP-reuse

A prominent characteristic of SoC design is that it is centered at component reuse.
Here, component means design components, instead of fabricated devices. These
components are called semiconductor Intellectual Property (IP) in this context. Types of
IPs include encryption/decryption cores, video/audio codecs, telecommunication network
controllers — wired or radio-based, memory controllers, digital signal processors, general
purpose microprocessors, and so on.

Around IP reuse, two roles can be defined for SoC development. One is IP vendor,
whose task is to design and deliver an IP component for some specific functionality. The
other one is SoC integrator that takes a wide range of IPs as input and integrates them into
a complete system capable of hosting applications. At SoC integration phase, an IP can
come either from an internal design group, or from an external IP vendor.

This IP-centered SoC design paradigm has its significant impact on verification.
Besides the general verification gap from the increasing complexity of both IPs and SoCs,
we face these particular challenges:

e Separation of IP design and SoC system design leads to more stringent requirement
on the quality of IP verification. An IP design must be verified as thoroughly as
possible before its delivery to any SoC integration phase, when the in-system
debugging would become more difficult because of the SoC complexity, if not
entirely impossible when the IP is provided as a black-box without source code.

e Verification at SoC system level should accommodate new paradigms and
languages for SoC design. TLM is one example that we have just mentioned with
regard to project COCONUT. IP-XACT is another XML-based, IEEE standard
format specifically for describing IP reuse and SoC integration [29], which has
been seeing increasing acceptance [30]. By aligning verification to SoC-specific
languages, we will be able to focus verification on system-level integration and
cope with the complexity of SoCs.

These general motivations will be further elaborated alongside the background
presentation in next chapter, before we propose our methodology to meet the challenges.

1.3.

Quality Metrics Driven Functional Verification for IP based SoC Design

Thesis Goal and Organization

Therefore, the thesis tries to provide one step towards solving the functional
verification challenge, in the context of system-on-a-chip becoming a prevailing design
paradigm.

We conclude this introduction chapter with the following considerations. We also
present the concrete problems to be solved in the rest of the thesis.

To meet the functional verification challenge, we consider systematic application
and deployment of quality metrics to be a necessity. In particular, such application
of metrics should consistently cover both IP and SoC system verification stages.

We consider mutation analysis, as a well-researched, state-of-the-art testing
technique, to be an advanced metric and the basis on which we build our
verification methodology.

We further consider that emerging system-level languages, such as IP-XACT and
TLM, are used for SoC system design and, therefore, should be included in the
methodology.

Problems

Test generation is the major problem that we encounter at the stage of IP design
verification with mutation analysis.

Considering that random simulation is a widely recognized technique for achieving
a primary level of verification quality and should also be used for mutation
analysis, we have the problem that random test generation becomes inefficient in
the context of metrics-oriented simulation. It is because that i) initially, the random
tests are usually not modeled for any specific metric and ii) a target metric also
changes during simulation as a consequence of its subsets being satisfied.
Moreover, mutation analysis is simulation intensive, which makes the problem
more critical. Therefore, we consider an adaptive simulation necessary, able to
consistently steer a random test generation process towards the mutation metric.

Expecting a portion of the mutation analysis metric to be unsatisfied after random
simulation, we face the problem of further generating tests to kill individual
mutants. This test generation problem is unique to mutation analysis: tests are
required to reach a mutant, activate it, and propagate the erroneous behavior to
design output. Existing methods to the problem are based on symbolic
manipulation and not as scalable as HDL simulation itself. We consider it
necessary to develop a non-symbolic, purely simulation-based test generation
method for HDL mutation analysis.

CHAPTER 1: Introduction

Moving to SoC system design, we focus on the following two sub-problems:

IP-XACT designs as XML data are not simulatable and, therefore, present a barrier
for us continuing the simulation-based, metrics-driven functional verification at
SoC system-level. A simulation engine for IP-XACT SoC designs needs first to be
built as the verification basis.

Then, we find a general lack of systematic metric for SoC system verification.
Specifically, if we require mutation analysis to be consistently applied also at
system level, we should solve the problem of enabling IP-XACT mutation analysis,
i.e. how IP-XACT design mutants can be created and simulated.

Solutions to these problems will not be limited to mutation analysis, but apply to other
metrics in the general context of metrics-oriented IP and SoC verification too.

Our solution is called a metrics-driven methodology, as i) quantitative metrics are relied

on for systematic measurement of verification thoroughness and quality, ii) automation
methods are proposed to generate tests and improve such measured quality, and iii) for
places where such metrics lack for IP-based SoC design, we tries to create one. The overall
contribution can be stated as:

The thesis establishes a verification methodology that systematically manages and

automatically improves the quality/thoroughness of a functional design verification

process. In particular, it accommodates IP-based SoC design paradigm.

Organization

The thesis is then organized as shown in Figure 1.4:

In Chapter 2, state-of-the-art techniques and methods for IP and SoC design are
introduced as the background of our proposals. It follows a thread from design, to
functional verification by simulation, to quality metrics for such simulation. In
particular, mutation analysis as the focused metric is extensively discussed and
compared to others.

In Chapter 3, an overview of our proposals, which comprise a quality-metrics
driven functional verification methodology for IP-based SoC design, is given.

From Chapter 4 to Chapter 6, three components of the methodology are presented.
Chapter 4 proposes an adaptive random simulation method, which uses mutation
analysis results as on-line feedback to dynamically steer a random test generation
process, so as to obtain an improved efficiency of mutation analysis. Chapter 5
proposes a search based test generation method for mutation analysis, where an

Quality Metrics Driven Functional Verification for IP based SoC Design

Chapter 7 Evaluation of methods
L

Chapter 3 Methodology overview

Chapter 4 Chapter 5 Chapter 6
Mutation Analysis Directed Metaheuristic Search Based SoC System Design
Adaptive Random g Test Generation for M Simulation and Mutation
Simulation Mutation Analysis Analysis with IP-XACT
S —
Chapter 2 Simulation based functional verification, and its quality
metrics (code coverage, functional coverage, mutation analysis, etc.)

7

Chapter 2 .

IP and SoC design: flow and languages (SystemC, TLM, IP-XACT)

——

IP design SoC system design

Figure 1.4 Thesis organization.

objective cost function, which is capable of guiding a metaheuristic search
algorithm stepwise towards target tests that uncover a HDL mutant, is defined.
These two methods are mainly for IP-level designs. In Chapter 6, an IP-XACT
based SoC system design simulation and mutation analysis framework is proposed,
to address the lack of systematic verification way at SoC system-level. The
implementation of a prototype IP-XACT tool, based on Eclipse, is also presented.

o Literature directly related to our proposals is respectively discussed in Chapter 4
through 6.

o In Chapter 7, feasibility, effectiveness, and efficiency of the proposed verification
methodology, based on simulation and mutation analysis, are investigated with real
designs. IP-level test generation methods are evaluated with a microprocessor
design. SoC system-level simulation methods are evaluated by exercising our IP-
XACT tool with several CoreConnect/PowerPC SoC designs in TLM.

e In Chapter 8, we give conclusions on the thesis, also addressing some outlook from
this research.

CHAPTER 2: Background

In this chapter, we give the background discussion necessary for the identification of
what lacks in the state-of-the-art methods and techniques for IP and SoC designs, and
further as the basis for our enhancement proposal. The chapter follows the thesis
organization presented at the end of last chapter and is divided into three sections: design,
verification, and metrics for verification.

e The whole background is unfolded based on a reference flow for IP-based SoC
design, which is defined in Section 2.1.1. Advanced, state-of-the-art design
technigues and methods are introduced by Section 2.1.2 and 2.1.3, which are
focused on SystemC, Transaction Level Modeling, and IP-XACT.

¢ Discussion on functional design verification is limited to simulation, with common
parts and approaches in HDL simulation introduced in Section 2.2. We define
quality metrics driven verification, an approach that we follow for our verification
methods, in Section 2.2.1.

e In Section 2.3, we discuss a wide range of metrics that can be employed in such
metrics driven verification, with an emphasis on mutation analysis that will play a
central role in our own methods.

Literature closely related to our contributions will be left to each corresponding
chapter, for a better comparison. We further assume some mature languages and methods
familiar to readers and not included in this discussion, such as tradition HDLs like VHDL
and Verilog, designs at Register Transfer Level (RTL), and their simulation.

2.1. IP and SoC Design

2.1.1. A Reference Flow for IP-based SoC Design

In this Section, we introduce a reference design flow for IP-based SoC design, as shown
in Figure 2.1. The purpose of the flow is threefold. First, it serves our definition of IP-

Quality Metrics Driven Functional Verification for IP based SoC Design

SoC System

1 Specifiﬂj
P Specifica/tion_J]

R

[P)
i \
i \
1 '
i \ .

. Functional \Synthesis/ | SoC REHEEL Synthesis,
EDES e Verification | {Hardening / Design S implement

{ & 8 Verification P
i 1
i |
o U

IP Component Design RTL SoC System Design RTL

behavioral /TLM | TLM

IP repository

IP metadata IP metadata IP metadata

N IP RTL IP TLM
Third-party ‘| 7 IP RTL

L - IP metadata g
H/E
IP TLM
| S

IP H/E: Hard or Encrypted IP

Figure 2.1 A reference IP-based SoC design flow.

based SoC design paradigm, in an abstract manner. Second, it constrains our discussion on
design and verification, with regard to background, state-of-the-art methods, and what still
lacks. Third, it is the basis flow upon which our proposal of a quality metrics driven
verification methodology will be constructed, so that in the end we have an enhanced,
integrated flow for IP-based SoC design.

In the figure, our key view of a typical IP-based SoC design flow is the division and
separation of IP design and SoC system integration, which leads to two separate design
phases. Main reasons for this division and separation are i) division between IP vendors
and SoC integrators and ii) increasing complexity of SoC and larger integration.

It is often the case that for the assembly of a SoC design, the SoC integrator needs one
or multiple components as IP from another specific component provider — or IP vendor.
Separation of the IP design phase from the whole SoC design flow is straightforward. Even
when a component is developed at the same place where the SoC should be assembled,
because of the complexity of SoCs nowadays, it is reasonable that a “divide-and-conquer”
paradigm is followed.

The specification for an IP does not necessarily comes from a SoC system specification.
The IP specification defines a specific functionality for a SoC component without, or only
partially, considering its final integration into a larger application scenario. An Instruction
Set Architecture (ISA) for the implementation of a microprocessor IP can be viewed as a
good example of such IP specification, which is quite independent from its final SoC

10

CHAPTER 2: Background

application, although the target SoC group, for intensive digital signal processing or as
leisurely microcontroller, should have some impact on the selection of instruction set.
Most importantly, in most cases, we start with the specification, design, and verification
of an IP, before we embark on a SoC specification.

The design of an IP component — the first phase in the design flow — consists mainly of
the design activity itself, the verification, and design synthesis as well as implementation.

One important aspect of the flow, in both IP component and SoC system design
phases, is the inclusion of a state-of-the-art design technique called Transaction-
Level Modelling (TLM) [31] [28] [32] [8]. Basically, TLM is a design level with
higher abstraction than traditional RTL. It is introduced in Section 2.1.3, together
with a language called SystemC, in which TLM is typically conducted. RTL is still
the major entry level for many design activities, in particular for IP level designs.
Nevertheless, we will spare the space and not give introduction to the quite mature
RTL methods and associated HDLs, like VHDL and Verilog. Basics of VHDL and
Verilog can be found in [33] [34].

For IP verification, we consider mainly the aspect of functional design verification,
for example, whether a microprocessor design can correctly execute a test program
from a specified ISA. Other non-functional properties like timing and power are
not considered. Existing functional verification techniques, formal or simulation
based, are outlined in Section 2.2, with slightly more focus on simulation based
verification.

The logic synthesis step is optional. There are generally three forms of IPs:
- Soft-1P: the IP is provided as its source code.

- Hard-IP: the IP is synthesized with a cell library to transistor layout
format, for example GDSII [35], or even to a specific fabrication process.
This is called an IP hardening process.

- Encrypted-1P: the IP is provided with its source code, but encrypted. Later
for the integration in a SoC, it is supposed to be decrypted by some specific
accompanying tool.

The advantage of a soft-IP is its flexibility for implementation. The advantage
of a hard-1P, in contrast, is its predictability, because it is nearer to the
implementation. IP hardening and IP protection by encryption are topics not
focused in this work. Still, we assume that a hard and encrypted IP is always
accompanied with a simulatable model for its integration in system design.

Techniques on synthesis from a TLM design to RTL and automated abstraction
from a RTL design to TLM exist, which can be found in literature [36] [37], for

11

Quality Metrics Driven Functional Verification for IP based SoC Design

example. Equivalence checking between RTL and TLM is another verification
topic that is not covered by this work.

After the exhaustive verification of IP design, the IP is supposed to be delivered to a
SoC system integrator, either in-house or a third-party vendor. In both cases, the IP should
be imported in an IP repository [38] at the SoC integrator with metadata that document its
possible and correct usage in a system integration, such as its on-chip connection
interfaces, parameters, and reference to design files. An example later shows how
proprietary metadata may look like in a Xilinx IP based SoC design environment for
FPGA.

An IP repository may contain IPs in various forms. These include mainly RTL and
TLM IPs in our discussion. If an IP is provided as a hard core, it is usually accompanied
by a simulation model, say in TLM. Therefore, in a modern flow of 1P-based SoC design,
the IP metadata format should be capable of both RTL and TLM.

A successful shift to SoC system level can only secured by thorough verification of IP
designs and their complete metadata. The system phase has similar steps as IP level — SoC
design, verification, and synthesis/implementation.

e As acomponent based design paradigm, a SoC system description should mainly
include the instantiation of IPs as components, their configuration, and their
interconnection. The description language or format for this SoC integration further
depends on the IP metadata format, since the metadata defines exactly the usage of
IP in SoC. Later, we will show this dependence in the example of Xilinx SoC
development environment, as well as in the introduction to IP-XACT standard.

¢ Inclusion of both RTL and TLM IPs implies another requirement that the SoC
system design phase should also cover both RTL and TLM, and even an RTL/TLM
mixed integration.

e We consider system simulation as a necessary step for verifying the functional
correctness of a SoC system design, before any of its implementation. This step is
also demonstrated in the Xilinx example. We will emphasize the provision of this
system simulation as a significant gap for the IP-XACT standard. Although other
system verification techniques, such as formal verification and emulation, should
complement the simulation, they are not the target of our proposal on verification
enhancement.

e Targeting a specific implementation technology, whether an ASIC implementation
library or a FPGA device, the SoC design can be synthesized and implemented as
an integrated circuit. In general, the circuit testing step is not included in our design
flow. However, we will introduced briefly alike test methods that are applied in

12

CHAPTER 2: Background

circuit testing, such as fault-modeling and fault-aiming automated test generation,
which can be compared to methods employed in our quality metric driven design
verification.

e The design steps, not only here at SoC system level but also at IP level, can all be
iterative. The functional verification certainly needs to be repeated, when a bug is
revealed and then corrected in design.

This IP/SoC division-and-separation and the resulted two-phase design flow gives a
significant impact on the verification aspect — the target of the thesis.

¢ Since that the design of an IP is separated from system integration, the IP design is
required to be verified as thoroughly as possible. This thoroughness is only
achievable through i) management of the verification process with quantitative,
systematic quality metrics and ii) automated methods for improving these metrics.

e Then at the system level, the verification of the SoC design is required to be focused
on the system integration, mainly as instantiation, configuration, and
interconnection of IP components. Internal structure of the components may
usually be not visible anymore. Any metric on verification quality should also
consider a focus on integration.

e The flow implies that a design under verification is not always synthesizable, in
both IP design and SoC system design.

We will propose our enhancement to this flow with a focus on verification and its
quality, considering state-of-the-art design and verification techniques, which are to be
introduced in the rest of this chapter. But before that, we present an example instance of
the reference design flow.

Example: Design of Hybrid-Task SoC with Xilinx FPGA Tools

With Figure 2.2, we present a hybrid-task SoC. The purpose is, less of presenting the
IPs and system themselves, to show the design steps and, in particular, the languages and
tools involved. It can be viewed as an instance of the reference design flow presented
above. We choose the Xilinx development environment and tools for this example, as they
indeed represent a typical and state-of-the-art IP-based SoC design flow, if we do not
compare the circuit implementation stage.

We have developed this Hybrid-task SoC as a demo system to show the concept of
unified task scheduling and task migration on a CPU-FPGA coupled platform [13] [11].
The idea is, for example with this hybrid triple-DES task, to enable a design flow with
which we are able to obtain two copies of the triple-DES encryption, one for running on

13

Quality Metrics Driven Functional Verification for IP based SoC Design

PowerPC
405 wrapper

PLB_BUS
DDR SDRAN
Controller

; ‘
{ DDR SDRAM |

Hybrid-Task SoC on FPGA

Hybrid Task:
Triple-DES

4do

a) The Hybrid-Task SoC

Hybrid-Task (HT) System Specification

i j
i PCConsole: !

™ Testinput

! Joutput

Xilinx
Virtex FPGA

MPD: Microprocessor
Peripheral Description

PAO: Peripheral
Analyzer Oder

\ * HT interfaces
IP Specification
* TDES conformance
* HT interfa
HT S0C Simulation
MHS) T
HT TDES N ((Mc n)
St e N Synthesis (XST)
(VHDL) (ModelSim) N MAP, PAR
HDL N Bitstream Gen,
Generator A
constraints
(UCF)
HT TDES: IP Design RTL HT SoC: System Design RTL
Xilinx FPGA IP library
Xilinx HT TDES HT PowerPC PLB DDR SDRAM|
IP import metadata Manager Wrapper metadata || Controller
(MPD, PAO)|| metadata metadata ||(MPD, PAO)|| metadata | ,,,
(MPD, PAO)| |(MPD, PAO) (MPD, PAO)
VHDL VHDL VHDL VHDL VHDL

MHS: Microprocessor
Hardware Specification

XST: Xilinx Synthesis
Technology

XST PAR: Place and
Route

b) Design flow of IP component and SoC system

Figure 2.2 An instance of the reference flow: design of a Hybrid-Task SoC on Xilinx

CPU and the other one for running on FPGA, whose execution can be decided then at
runtime by an operating system. The two copies of a so-called hybrid task have
corresponding states, so that each of them can have its execution suspended, execution

states extracted and retrieved, and the states restored to its counterpart for a seamless
execution resumption. The reason for such a hybrid-task migration between CPU and

FPGA can be, for example, some desired load-balancing on these two computation hosts.

Focusing on the hardware SoC part, the main system specification is certainly the

provision of functionality and interfaces for task migration, such as suspending, resuming,

and restarting task execution,

14

as just mentioned.

CHAPTER 2: Background

(Hybrid-task Triple-DES IP design (VHDL)

(" Task
Hardware

(Code) Task Process Task Process
pattern)] F L.

(Space for
user coding)

State

signals

Yy _/‘p‘;;"r:)

> State
>
(Space for
Contoller user coding)
|

Context State Enable Task Out a
Context State

N

Task Out Task Out
Context Context State State

4

Task

Controller Task

Hardware q Synchronization
Control

Y A

Y

Enable

Suspending Task

Status
Task Context Manager -+
Task Status
Context Ready Contoller
Context Suspended

A

—>

Task Task
Control Control
Status Commna d

snjels oo

__pUeLILod ouD

ui"elep o0

R)

" piboi o

A\

[OPB IPIF (IP interface to OPB)]

Figure 2.3 Example IP design: Hybrid-task Triple-DES. It is designed in VHDL, with
functionality — encryption and task migration — simulated and verified with tool ModelSim.

Before the SoC integration, we made the design of two IP components, the Hybrid-task
Triple-DES and the Hybrid-Task Manager, besides the PowerPC, memory controller,
PLB/OPB buses and bridges, and UART controller directly from Xilinx IP repository.

Consider the design of Hybrid-task Triple-DES as the example for IP design phase.
Two main expectation on the task are the conformance to the Triple-DES encryption
standard and its implementation of the hybrid-task interfaces like suspend and resume.

As shown in Figure 2.3, the IP design is done in VHDL. With the DES encryption
code taken and reused from open-source [39] and the OPB IP Interface (IPIF) generated
by Xilinx tool, our design effort was mostly put on the hybrid-task controlling part. Then
the IP design as a whole was simulated with tool ModelSim™. Correct production of
encryption stream and response to task migration commands are thoroughly verified and
debugged in ModelSim. ModelSim will be further mentioned in Section 2.2, with its
capability of multi-language co-simulation.

After our best-effort verification, the IP should be packed with its metadata for later
usage. In the Xilinx IP environment, this metadata consists mainly of two files — in two

15

Quality Metrics Driven Functional Verification for IP based SoC Design

MPD file for triple-DES IP ## PAO file for triple-DES IP
lib proc_common_v2_00_a proc_common_pkg vhdl
BEGIN tripple_des lib proc_common_v2_00_a family vhdl
lib proc_common_v2_00_a or_muxcy vhd|
#1# Bus Interfaces lib proc_common_v2_00_a or_gate vhdl
BUS_INTERFACE BUS = SOPB, BUS_TYPE = SLAVE, BUS_STD = OPB lib proc_common_v2_00_a counter_bit vhd|
lib proc_common_v2_00_a counter vhd|
Generics for VHDL or Parameters for Verilog
PARAMETER C_BASEADDR = 0x00000000, DT = std_logic_vector, BUS = SOPB, lib opb_ipif_v3_01_a write_buffer vhdl
ADDRESS = BASE, PAIR = C_HIGHADDR, MIN_SIZE = 0x100 lib opb_ipif_v3_01_a opb_bam vhdl
PARAMETER C_HIGHADDR = 0x0000ffff, DT = std_logic_vector, BUS = SOPB, lib opb_ipif_v3_01_a opb_ipif vhdl
ADDRESS = HIGH, PAIR = C_BASEADDR lib tripple_des_v1_00_a user_logic vhdl
PARAMETER C_OPB_AWIDTH = 32, DT = INTEGER, BUS = SOPB lib tripple_des_v1_00_a tripple_des vhdl
PARAMETER C_OPB_DWIDTH = 32, DT = INTEGER, BUS = SOPB lib tripple_des_v1_00_a dual_port_reg_ctrl vhdl
PARAMETER C_FAMILY = virtex2p, DT = STRING lib tripple_des_v1_00_a fifo_channel_rd vhdl
lib tripple_des_v1_00_a fifo_channel_wt vhdl
Ports lib tripple_des_v1_00_a reg_bank vhdl
PORT OPB_Clk ="", DIR =, SIGIS = Clk, BUS = SOPB lib tripple_des_v1_00_a reg_ctrl vhdl
PORT OPB_Rst = OPB_Rst, DIR = |, SIGIS = Rst, BUS = SOPB lib tripple_des_v1_00_a task_section_0 vhdl
PORT OPB_ABus = OPB_ABus, DIR =1, VEC = [0:(C_OPB_AWIDTH-1)], BUS = SOPB lib tripple_des_v1_00_a task_section_1 vhdl
PORT OPB_DBus = OPB_DBus, DIR = |, VEC = [0:(C_OPB_DWIDTH-1)], BUS = SOPB lib tripple_des_v1_00_a task_section_2 vhdl
PORT OPB_RNW = OPB_RNW, DIR = |, BUS = SOPB lib tripple_des_v1_00_a test_Task vhd|
lib tripple_des_v1_00_a test_wrapper vhdl
END 7 7

Figure 2.4 Example IP metadata: MPD and PAO descriptions for IP Triple-DES.

formats called MPD and PAO — for each IP, as shown in Figure 2.4. For the triple-DES
hybrid-task IP, the MPD (Microprocessor Peripheral Definition) file describes:

e OPB as its single bus interface.

e Its possible parameters, such as the base and high addresses when connected an
OPB bus. They should be configured with new values during SoC integration, or
use their default values when appropriate.

e Its ports at the component level. The ports are exposed here either with a mapping
to the bus specification, for example here OPB signals, or for a later mapping to
the SoC system ports.

Another complementary PAO (Peripheral Analyze Order) file further lists the paths to
all files that consist the IP itself. These includes not only our VHDL design but also the
dependent libraries. The Order in the format name PAO means that the synthesis
dependences are implied by the order of the file listing. This IP metadata, as well as the IP
verification, prepares our shift to the SoC system design phase.

The SoC integration is described in a Xilinx MHS file — Microprocessor Hardware
Specification, as shown in Figure 2.5. The MHS format is mainly targeted at SoC
integration with memory-mapped buses. In brief, it describes instantiations of IP
components, their interconnections, and the corresponding configuration of their
parameters.

Though in a concise form, together with the implied reference to IP metadata and the
further referenced IP design files, the MHS file becomes a complete description of our SoC
design.

To verify our hybrid-task SoC system described in MHS, the functional simulation of
the whole system behavior was performed, before synthesizing and implementing the

16

CHAPTER 2: Background

MHS for Hybrid-Task SoC BEGIN plb2opb_bridge BEGIN opb_uartlite
PARAMETER INSTANCE = plb2opb PARAMETER INSTANCE = RS232
PORT fpga_0_RS232_RX_pin = fpga_0_RS232_RX, PARAMETER C_RNGO_BASEADDR = 0x40000000 PARAMETER HW_VER = 1.00.b
DIR = INPUT PARAMETER C_RNGO_HIGHADDR = Ox7fffffff PARAMETER C_BAUDRATE = 38400
PORT fpga_0_RS232_TX_pin = fpga_0_RS232_TX, PARAMETER C_RNG1_BASEADDR = 0xfffe0300 PARAMETER C_DATA_BITS=8
DIR = OUTPUT PARAMETER C_RNG1_HIGHADDR = Oxfffe03ff PARAMETER C_ODD_PARITY =0
PARAMETER C_USE_PARITY =0
BUS_INTERFACE SPLB = plb PARAMETER C_CLK_FREQ = 100000000
BEGIN ppc405 BUS_INTERFACE MOPB = opb PARAMETER C_BASEADDR = OxFFFE0300
PARAMETER INSTANCE = ppc405_0 PARAMETER C_HIGHADDR = Oxfffe03ff
BUS_INTERFACE JTAGPPC = jtagppc_0_0 PORT PLB_Clk = sys_clk_s BUS_INTERFACE SOPB = opb
BUS_INTERFACE IPLB = plb PORT OPB_Clk = sys_clk_s PORT OPB_Clk = sys_clk_s
BUS_INTERFACE DPLB = plb END PORT RX = fpga_0_RS232_RX
PORT TX = fpga_0_RS232_TX
PORT CPMC405CLOCK = sys_clk_s BEGIN plb_ddr END
END PARAMETER INSTANCE = DDR_SDRAM_1
PARAMETER C_PLB_CLK_PERIOD_PS = 10000
BEGIN plb_v34 PARAMETER C_DDR_DWIDTH =32
PARAMETER INSTANCE = plb PARAMETER C_DDR_AWIDTH =13 BEGIN tripple_des
PARAMETER INSTANCE = tripple_des_0
PORT PLB_Clk = sys_clk_s BUS_INTERFACE SPLB = plb PARAMETER HW_VER = 1.00.a
END PORT PLB_Clk_n = sys_clk_n_s PARAMETER C_BASEADDR = 078600000
PORT DDR_CIk90_in = ddr_clk_90_s PARAMETER C_HIGHADDR = 0x7860ffff
BEGIN opb_v20 PORT DDR_CIk90_in_n = ddr_clk_90_n_s BUS_INTERFACE SOPB = opb
PARAMETER INSTANCE = opb PORT DDR_Addr = DDR_Addr END
PORT DDR_BankAddr = DDR_BankAddr
PORT OPB_Clk = sys_clk_s PORT DDR_CASn = DDR_CASn
END
END
4 4 7

Figure 2.5 Example SoC system design: MHS description for Hybrid-task SoC.

system onto FPGA. Since, on one side, the MHS description is not simulatable and, on the
other side, the involved IPs are provided as VHDL models, Xilinx provides us a generation
tool that transforms a MHS file into a VHDL model. With this generator, we were able to
obtain a VHDL top netlist for the hybrid-task SoC and compile it together with all other
IP models for a simulation, in which the system was tested and debugged.

After the simulation, with another UCF file — User Constraint File — that basically
specifies the binding between the MHS described SoC ports and real FPGA pins, we went
through the synthesis, mapping, place-and-route, and FPGA Bitstream generation steps.
Software part of the system was also developed and we was finally able to run the how
SoC with its software on FPGA and demonstrate the hybrid-task scheduling and migration
concept. More details of the system are given in [13] [11].

2.1.2. SystemC and Transaction Level Modeling

This section provides necessary background on the SystemC language for hardware and
system design, with an emphasis on Transaction Level Modeling that is unique to SystemC
based SoC modeling and also a focus of this work at system level.

The SystemC language comes in the form of a C++ library, as shown in Figure 2.6,
and therefore works with a standard C++ compiler such as GCC in a Linux environment.
At its core, no different than most other HDLs, SystemC provides facilities for hardware
description, simulation, and synthesis.

o A typical discrete-event driven simulation kernel is provided, for the modeling of
concurrent hardware and system elements. Events can be timed and delta-timed,

17

Quality Metrics Driven Functional Verification for IP based SoC Design

,o——— -

,——— -

1 |
]
1 ! | |
Analo, ! !
| Hardware ;| Hardware |! X 8/ 1 Hardware/ | | Simulation
' Desi 1| Desi I Mixed-) !
i esign | esign I signal 1 Software Testbench
CORTL o TM e R Co-Design | | Modeling
i | , Design I]
1 ! |

Hardware and Concurrent Constructs

* Events, Processes, Modules
* Ports, Interfaces, Signals

Hardware Modeling Data Types

* logic, logic vector — 2 values ('0', '1'), 4 values ('0', '1', 'X', 'Z')
* Arbitrary-size integers
* Fixed-point numbers

Event-Driven Simulation Kernel

Standard C++ Compiler
(e.g. GCC)

Figure 2.6 SystemC language: core facilities. Its usage for traditional RTL design,
hardware/software co-design, and analog/mixed-signal design is not a focus in this work.

with default resolution of picosecond.

o Additional data types for hardware modeling are pre-defined, besides the standard
C++ types.

e Then we have the core constructs for modeling hardware and concurrency.
Concurrent processes can be defined as sc_thread, which should be made sensitive
to some sc_events. The implementation is based on the QuickThread C++
threading library. Threads are encapsulated in sc_modules, similar to other
traditional HDLSs.

¢ Modules communicate with each other through ports and interfaces. Figure 2.7
shows this mechanism. Basically, an interface class, inherited from sc_interface,
should first be defined, specifying the communication services to be provided at
this interface, for example, reading the value from a channel. Then this signature
of communication should be implemented by a module, and accessed by another
module through a port that is instantiated with this interface from template class
sc_port. Since the first module implements the same interface as expected by the
port of the second module, they are able to perform pre-defined communication
during SystemC simulation, after their binding at initialization. As the fundamental
mechanism for modeling communication in SystemC, this port-interface binding
is used to implement not only the more abstract TLM but also RTL connections
like sc_signal.

There are several reasons that we skip the detailed introduction to SystemC basics.

18

CHAPTER 2: Background

class class template
sc_interface sc_port
class I
Interface_A class
sc_port <Interface_A> ot class
read class
——{) object .
4 sc_module C++ object
—— class inheritance
class class ———> class template instantiation
Module_A Module_B ——= class member
@ sc_interface
read () g sc_port
@ g interface/port binding
object] object
Module_A ? Module_B

Figure 2.7 SystemC inter-module communication through sc_interface. It is provided by
sc_module, required by sc_port, and bound at initialization.

Most importantly, for RTL design, SystemC provides modeling elements fundamentally
no different than other HDLs. At IP level, we will consider designs at RTL or behavioral
with traditional HDLs like VHDL. At system level, we will put an emphasis on TLM as a
new, state-of-the-art domain.

Therefore, also assuming that our reader is not completely familiar with TLM, we
introduce in the following not only the principle of TLM, but also an example of its
application. The test-bench modeling capability of SystemC will be left to Section 2.2, in
particular on SystemC Verification Library.

In essence, with TLM in the context of SoC design we model on-chip communication
between system components as function calls, which carries commands and data specific
for that communication protocol. Several function calls are grouped into a TLM interface
as a class inherited from sc_interface, to be provided by a sc_module and accessed by
another module through sc_port. Use of low-level signals for communication are mostly
eliminated.

Figure 2.8 shows this principle of TLM. Processor Local Bus (PLB), a widely used
on-chip communication protocol, is used for demonstration.

The upper part of the figure shows the block diagram and a write-transfer operation
from the original PLB specification [40]. Structural and timing requirements for an RTL
implementation are specified. A PLB bus transaction is defined on a bunch of signals.

The lower part draws us a picture how PLB transactions are modeled at TLM, from a
PowerPC/CoreConnect based SoC design library [41]. Operations, read and write, from

19

Quality Metrics Driven Functional Verification for IP based SoC Design

N PLB block diagram PLB read transfer
N r-: ’Ji cycle [0 [1 [2 [3 4 [56 [6788 |
|
Central Bus Arbiter 1 d 8YS_piaCik m
Arbitration [PLB Transfer Qualifiers | : : ' : : :
[Slaves i iR : ; : : :
" Mn_request | i : : : :
> [5 T
I Mn_priority(0:1) | velid 7/ X ! ! i i
Address Address | | | o :X ; T
& Transfer ||| » & Transter —— n_busLock | 1| (- ; ; ; ;
Qualifiers Qualifiers | | | Mn_RNW | 7] |7 ! ! ! !
N 1 ! Mn_BE(0:3) | X Vi [| i i i i
Write Bus Write | | 1 Mn_size(0:3) | LM“D: R | . L i L i
Data * Control Data @ Mn_type(0:2) | ¥/ ooa W4 1 1 1 1
Bus & Gating Bus ;m} Mn_abort | i \ ; ; ; i
»| Logic \E} Mn_ABus(0:31) | iAo N : : :
L2 ; i i i ;
Control > Control |12 N pLaPavals [Next Wi Avaligie |
I Slwait |]] i ;
1 i SI_AddrAck | ; ; I i [
< i « Write Data Bus | H H i
|
L gizf i lor Read Mn_wDBUs(0:31) | ;
Bus PLB U fe—] paa S1_wrDAck | ;
e e Core 1 1 3 Bus Si_wrComp |
1 ! :
Masters L Status & I Status & Mn_wrBurst T
s Control | : Control Read Data Bus | |
i E SI_rdDBus{0:31) | [
SI_rdWdAddr(0:3) | 0090
| Additional L S_rdDAck | :
OR - : :
- ‘ Dutputs - Si_rdComp |
Mn_rdBurst

PLB TLM

class PLB_BUS_IF : public sc_interface {

public:
void blocking_read (PLB_REQUEST *tr) ;
void blocking_write (PLB_REQUEST *tr) ;
void nonblocking_read (PLB_REQUEST *tr);
void nonblocking_write (PLB_REQUEST *tr) ;
void direct_read (PLB_REQUEST *tr);
void direct_write (PLB_REQUEST *tr);
void lock (int id) ;

PLB communication
modeled with TLM

void unlock (void) ; J
CC_SIZE get_plb_address_size (void) ; class PLB_REQUEST {
CC_SIZE get_plb_data_size (void) ; PLB_TRANS_TYPE rw;
PLB_ADDRESS_BUS address;
} 7 PLB_DATA_BUFFER data;
PLB_BURST_LENGTH burst_length;
PLB_DATA_WIDTH data_width;
PLB_REQ_PRIORITY_TYPE priority;
PLB_STATUS_TYPE bus_status;
sc_module sc_module sc_module PLB_MASTER_STATUS_TYPE master_status;
PLB_SLAVE_STATUS_TYPE slave_status;
PLB_Master PLB_Bus PLB_Slave int master_id;
% 7
A
class PLB_SLAVE_IF : public sc_interface {
public:
int read (PLB_REQUEST *td);
int write (PLB_REQUEST *td) ;
int direct_read (PLB_REQUEST *td) ;
int direct_write (PLB_REQUEST *td) ;
CC_SIZE get_slave_data_size (void);
CC_SIZE get_slave_address_size (void);
PLB_ADDRESS_BUS get_slave_start_address (void);
PLB_ADDRESS_BUS get_slave_end_address (void); @ TLM interface
} 7 g TLM port

Figure 2.8 TLM principle: function calls to model SoC on-chip communications.

the PLB specification are abstracted as functional calls and grouped into two main TLM
interfaces, PLB_BUS_IF between a PLB master and a PLB bus and PLB_SLAVE_IF
between a PLB bus and a PLB slave.

20

CHAPTER 2: Background

PLB_REQUEST, which is carried by these function calls, is a protocol specific data
structure and contains fields that exactly represents signals specified by the protocol. The
communication parties, i.e. PLB_BUS and the corresponding ports, are responsible to
maintain state-machines that match the communication protocol, according to
PLB_REQUESTS that they send/receive through the TLM interfaces.

The rationale behind TLM is a separation of on-chip communication and computation
in SoC design, supposing communication generally to be modeled in a more abstract
manner than computation. By this, SoC IPs or components at various abstraction levels,
RTL or behavioral, can all be encapsulated and integrated into a TLM communication
platform. This enables the TLM based SoC modeling, simulation, and evaluation, which
is a focus of our verification method at SoC system level.

Timing in design and verification is not a focus in this work. TLM interfaces can be
implemented with different timing abstractions, cycle accurate or timing approximate —
for example, whether the read operation in the PLB_BUS_IF is implemented with clock
cycles strictly conforming to the original specification, or only in a functionally correct
way. TLM wrapped computation can also be of different timing accuracy, regardless of
communication timing. In [8], we have also proposed a system refinement process based
on TLM, taking into consideration both software and hardware.

The contribution of this thesis at SoC system level will focus on the gap between design
of system integration and TLM based functional system simulation, as well as the quality
of such simulation.

Further, automated TLM extraction from RTL and TLM synthesis to RTL are both not
considered in our approach, though the equivalence checking between these two levels can
also be accounted as a task of functional verification. Interested readers can refer to [36]
[37] [42], for example.

Example: TLM based SoC Design Experiment with ARM/AMBA

We have carried out this small design experiment shown in Figure 2.9, as a further
demonstration of TLM design.

There are two inputs for the experiment. One is an ARM microprocessor model called
SWARM — SoftWare ARM [43] [44]. The other one is a TLM design library for AMBA
SoC architecture, called CASI AMBA — Cycle Accurate Simulation Interface AMBA [45].

Written in C++, SWARM models an ARM 7 processor that implements the ARMv4T
architecture. When used as Instruction Set Simulator (ISS), it executes ARM instructions in a cycle-
accurate manner. To be cycle accurate, it also models and simulates partially the
microarchitecture of the processor, as shown in the figure. Further, it includes several basic

21

Quality Metrics Driven Functional Verification for IP based SoC Design

|
1 SWARM ISS SWARM 1SS Memory !
| (ARM binary) :
| Am Core Cach
! ache :
: -
' BE |
- :
1
- !
: UART CTRL :
L e mmmeeo - N
Wrapping SWARM ISS in ARM CASI TLM framework,
for ARM/AMBA based SoC modeling
4] N
ARM/AMBA SoC with TLM-wrapped SWARM ISS
AHB_SWARM_L1 (AHB master, start address: 0x00000000) SWARM_Memory_1 N ITest Lo
(AHB slave, base: 0x00000000) -
int main(){
update() communicate() update() printf(*--Test 1-- *);
SWARM 1SS
Memory (ARM o
frenable binary) |7 inti=1;
ginout_done communicate() for(;i<20; i+=2)
i () (s print("56x ", 1);
data M ﬁ
% byte_worg return 0;
L1
"
B
B
AHB_SWARM_2 (AHB master, start address: 0x10000000) u
g s
SWARM_Memory_2
update() communicate() (AHB slave, base: 0x10000000) ITest 2.c
SWARM ISS benabi -
| e updteD int maing{
pe 0(,% S) Memory (ARM printf(*--Test 2-- *);
— binary)
] data Y inti=2;
byte_wor for(;i<20; i+=2)
| e Y ¢) printi("06x ", 1);
L]
return 0;
J
- / J
| ARM CASI TLM framework .
: Fields of ctr/ Mapping to AHB protocols [AMBA spec. v2.0] :
1 |
class AHB_casi: public casi_transaction_ij
: o B L fon_if { If AHB_CYCLE_ADDR: address phase; !
' public: ctrl [AHB_IDX_CYCLE] 1f AHB_CYCLE DATA: data ph !
\ /* Synchronous access functions */ — — s data phase :
1| virtual CASiStatus read(CASIUG4 addr, CASIU32™ || ctr/ [AHB_IDX_ACK] | If AHB_ACK_DONE: transfer completed !
h value, CASIU32* ctrl); h
1 virtual CASIStatus write(CASIU64 addr, CASIU32* (ctrl[AHB_IDX_ACC] & 0x1) : hlock 1
: value, CASIU32* ctrl); ((ctrl[AHB_IDX_ACC] >> 1) & 0x7): hburst :
| /* Arbitration functions */ ((ctrl[AHB_IDX_ACC] >> 4) & 0x3): htrans 1
: virtual CASIGrant requestAccess(CASIU64 addr); tr/ TAHB DX ACC ((ctrl[AHB_IDX_ACC] >> 6) & OxF): hprot !
\ virtual CASIGrant checkForGrant(CASIU64 addr); ctr/ [AHB_IDX_ACC] ((ctrl[AHB_IDX_ACC] >> 10) & 0x7): hsize :
1 . ((ctrl[AHB_IDX_ACC] >> 13) & Ox1): astb]
: } 7 ((ctrl[AHB_IDX_ACC] >> 14) & 0x1): ncmahb :
| ((ctrl[AHB_IDX_ACC] >> 31) & 0x1): isasb |
1 |
MM UN M SS L MU UL UAMU 4

Figure 2.9 TLM based SoC design experiment. We have used ARM CASI TLM framwork
to wrap SWARM ISS and model a basic ARM/AMBA system.

peripheral models connected to an internal bus, such as a cache with configurable size. It
is able to run a porting of Linux.

SWARM has been used in several SoC research experiments such as [44] , because of
its open-source nature and the popularity of ARM/AMBA SoC architecture. This also
leads to our motivation of taking it as an ARM processor IP, packing it as a TLM
component, and composing a TLM SoC demonstration.

22

CHAPTER 2: Background

For this, we find the CASI AMBA TLM library that is directly provided by ARM. As
mentioned, the core of such TLM modeling is the abstraction of an on-chip communication
protocol into TLM interfaces that consist of function calls. In the figure, we show a TLM
interface from the CASI AMBA library, which abstracts AMBA AHB (Advanced High
performance Bus) protocol. We see how the read/write/requestAccess/checkForGrant
function calls represent the bus access and how the protocol signals are encapsulated and
carried by these calls. As pointed out by the name, such CASI AMBA communication is
modeled in TLM as cycle accurate to the original protocol specification, so that we can
make accurate simulation, performance evaluation, and design exploration.

This CASI AMBA library does not include any concrete SoC component, except for
the bus models. However, because of the advantage of TLM that provides a separation
between on-chip communication and computation, we are able to wrap IP components at
any level, RTL or behavioral, as TLM components and enable a TLM-based SoC system
integration.

As Figure 2.9 shows, using the CASI AMBA library we created a TLM wrapper for
SWARM ISS, which converts its original memory-accessing PINOUT into the TLM AHB
interface, and backward. We also wrapped a memory model as a TLM AHB slave, which
loads ARM binary at its initialization.

The simple system was then integrated by instantiating an AHB bus from the library
and at the same time attaching dual TLM SWARMSs and two memory models to the bus.
Two test programs were supposed to exercise this system integration in a simulation.

In the end, we were able to compile the whole TLM system with SystemC, compile the
software programs with a cross-compiler gnuarm-3.4.3, and successfully simulate the
system with dual-SWARM execution.

2.1.3. IP-XACT Standard for IP Reuse and SoC Integration

Verification depends on the language that is used for design. For IP-level designs, for
example a microprocessor IP, we assume traditional HDLs or SystemC in use, either at
RTL or behavioral. For SoC system level, we try to propose a systematic verification
framework based on a standard IP reuse and SoC integration language, or format, called
IP-XACT. In this sense, IP-XACT is our HDL at SoC system level.

The IP-XACT standard has been made IEEE 1685-2009 [29] in 2010, with the effort
initiated even earlier by the SPIRIT consortium, formed by several major semiconductor
and EDA tool vendors. It intends to provide standardization support to an IP-based SoC
design flow, such as that previous example on Xilinx FPGA design environment. It is
exactly the formats of IP metadata and their integration — MPD, PAO, and MHS in the

23

Quality Metrics Driven Functional Verification for IP based SoC Design

IP-XACT Compliant IP-XACT Compliant IP-XACT Compliant
Object Descriptions Design Environment Generators

Component
XML

address P>
interface P> protocol
registers | bandwidth

Component
P

Design
I XML l CompIJ;nent P

1 system_bus

IP-XACT IP
Import
Export

Generator
Chains

Abstractor
XML

0

<:> Generator

Component
IP

Design I -
Configuration Bus Abstraction
Definitions Definitions

IP-XACT Compliant
Object Descriptions

dl
uopjeinsiyyuo)

nding
paiesauan

Figure 2.10 Overview of IP-XACT standard [29].

Xilinx case —that IP-XACT tries to standardize. The idea is to have unified, vendor-neutral
exchange format for both IP vendors and SoC integrators.

Figure 2.10 from IEEE 1685-2009 [29] shows a blueprint for IP-XACT based IP reuse
and SoC integration. At its core, IP-XACT defines an XML Schema as the standard
electronic format for packaging reuse information of IPs, as well as for designing SoC
systems by IP integration. Several major XML schema elements are presented here,
including component, design, abstractor, design configuration, busDefinition,
abstractionDefinition, generator, and generator chains. Any top IP-XACT XML
document belongs to one type of them.

Based on these elements, we have two main use scenarios with IP-XACT, as an IP
provider or a SoC integrator. We give an explanatory listing of IP-XACT schema for these
two scenarios, instead of a comprehensive standard repetition. For this, we also prefer an
example based, graphical representation of the IP-XACT schema. Basics about XML
Schema can be found in [46].

First, IP vendors use an IP-XACT component XML file to package all reuse-related
information of an IP core, which accompanies this IP as its electronic data sheet. The
information includes mainly how the IP can be configured and interconnected to other IPs
via a memory-mapped bus connection, which is the main focus of IP-XACT other than
more sophisticated on-chip architectures like Network-on-Chips. Figure 2.11 shows
several IP descriptions using IP-XACT component. Note that XML documents are
depicted in graphics, as in the rest of this section.

24

CHAPTER 2: Background

IP-XACT component: IP-XACT busDefinition: PLB .xml
MicroBlaze_microprocessor .xml| businterface:
DataPLB 16 16
master directConnection
ow ports addressSpace false
. MicroBlaze isAddressable
fileSet: microprocessor IP W DPLB ABus rid : DRANG false
RTL-source > — . 4
W width: 32
RTL > DPLB_RNW rld : DWIDTH f
w DPLB_wrDBus IP-XACT absDefinition:
N— portMaps PLB_TLM .xml
icroBlaze
. " DPLB_rdDBus P DPLB_ABuS -
microprocessor |P PLB Master
: I M_ABus -
onMaster
TLM 1SS model Y IPLB_ABus le== |° DPLB_RNW service
: I M_RNW initiative: requires
D typeName: PLB_BUS_IF
t TLM_PLB_M_Port DPLB_wrDBus —> >
- / M_wrDBus
transTypeDef service t I
P PLB_Slave
typeName: sc_port initiative: requires DPLB_rdDBus onslave
typeDefinition: plb_bus_if.h| | typeName: PLB_BUS_IF ! M_rdDBus .
service
- :
initiative: provides
1 typeName: PLB_SLACE_IF
businterface: PLB_TLM -~ 7
Imaster portMap buslinterface:
InstructionPLB o
addressspace: 46| | [TLM_PLB_M_Port |/ PLB_Master IP-XACT absDefinition:
PLB_RTL .xml
[w w
M_Abus || M_RNW
Parameters onMaster || onMaster
> >
/param: DPLB_DWIDTH / / param : USE_LHW_MUL | [param: DIV_ZERO_EXCEPTI07’ - -
2 : rID : UHM 0 rlD : DZE
3 rid: DOWIDTH/ [1 > |M_wrDBus||M_rdDBus
param : IPLB_DWIDTH param : USE_HW_DIV /param: USE_FLOAT / onMaster || onMaster
32 rid : IDWIDTH/ [o rID:UHD [[0 riD : UFP > l<
param : USE_ICACHE /param TUSE_DCACHE | - -
0 riD : UICACHE [[0 riD : UDCACHE PLB_Abus || PLB_RNW
7 onSlave onSlave
> >
> © p
3
IP-XACT component: PLB_BUS .xml IP-XACT component:
PLB_BRAM_controller .xml
orts
Processor Local g buslinterface: PLB_Slave
Bus (PLB) IP businterface: Master
mirroredMaster slave
RTL PLB Block RAM NFZels<]
_IpurTMup . | controller IP memoryMap
| H —
baseAddress: 0
Parameters RTL rid : BADDR
Num_master: 4 bU_SI"te’f ace: Slave range: 32KB
rld : NUMM mirroredSlave ————— | rld : RANG
Num_slave: 8
— ortMa, .
i) | s] AN e
DBUS_WIDTH 64, BRAM_interface :
rid : DWIDTH 7 7

legend

D physicalPort logicalPort wire port

Direction out of wire port /
Initiative provides of transactional port

baseAddress: Predefined configurable element
0 rID:BADDR/ with its default value and referenceld (riD)

- Direction in of wire port /
Initiative requires of transactional port

transactional port

Reference, by file location, by name
within an IP-XACT document, or by VLNV

param: USE_HW_DIV | User-defined parameter (param) with name,
0 71D - UHD/ default value, and referenceld (rID)

Figure 2.11 IP-XACT componnet XML schema for IP description.

e Multiple views of the IP could be described in its component XML document. If
the IP are provided with both VHDL source files and an abstract C simulation

model, we can then include two views, say, VHDLSourceView and CModelView

25

26

Quality Metrics Driven Functional Verification for IP based SoC Design

in its IP-XACT description. In each view, the used language could be described. A
view references a set of files that implements this view.

A file set to be referenced from a view is first documented with fileSet. Each file in
a fileSet describes one of the real files or directories that comprise the IP.
Particularly, it contains extensive information that can be leveraged when later the
IP needs to be compiled or synthesized in design flows.

This includes a name as the exact path to the file or directory and a fileType as
the format of the file, which shall be selected from a pre-defined list with
systemCSource, vhdISource, VerilogSource, swObject, swObjectLibrary, etc.
Other possible descriptions are includeFile as a Boolean tag to indicate whether the
file is an include file, logicalName for the name of a library file, and dependency
for a directory that this file depends on. Last, one can further specify with
buildCommand explicitly commands and options that should be used in the file
compilation.

Ports of an IP to be exposed for connection can be declared as a collection of port,
which should be of either a wire type or a transactional type. A wire port
corresponds to a traditional scalar port or vectors of scalars in HDLs, such as
std_logic and std_logic_vector by default for VHDL. Direction of the port shall be
specified. If the port is a vector, its left and right bit should be also be specified.

With transactional port, the latest Transaction Level Modeling (TLM) and
TLM IPs are supported by IP-XACT. It is much tailored to SystemC transactional
modeling that has become the de-facto TLM standard. First, the type of the port in
SystemC can be expressed in typeName, such as the common sc_port, sc_module,
sc_export, sc_initiator, sc_target, or sc_socket. Second, more importantly, the
interface implemented by this port shall be detailed in a service structure, as TLM
connection is essentially centered at SystemC interfaces. The initiative of a service
is the direction of the interface implementation, having the value requires if itis a
sc_port, provides if a sc_export, or both for a sc_socket. Another typeName
included in service describes the exact SystemC type of the interface, along with
typeDefinition indicating the real SystemC file that declares the interface. Either a
wire port or a transactional port, it should have a name that is exactly how the port
is named in the real IP model.

Later in IP-XACT system integration, there are two alternatives of connecting two
components. One is direct port-to-port connection and the other is based on pre-
specified bus interfaces. For the latter, another two top elements of IP-XACT
schema need to be explained first, namely busDefinition and

CHAPTER 2: Background

abstractionDefinition, which as a pair resemble a traditional signal specification
for a bus protocol.

BusDefinition specifies general properties of a bus, such as its maxMasters and
maxSlaves. Multiple abstractionDefinitions may belong to one busDefinition, as
now both RTL and TLM are supported by IP-XACT.

Each abstractionDefinition is a collection of port descriptions, which provide
quite similar information as those in a component element, but here for a
specification purpose instead of declaration of implemented IP ports. Besides, a
port in abstractionDefinition also specifies whether it is required, optional, or
illegal to be present on the bus interface and, when present, whether it should be
implemented as onMaster, onSlave, or onSystem. Signals like system clock and
reset should be grouped as onSystem.

For the bus/abstractionDefinition based interconnection, the bus interfaces of an
IP are declared by buslInterfaces in its component description. Each buslnterface
possesses a unique reference to a pair of existing busDefinition and
abstractionDefinition, so that a businterface based interconnection between two
components can be automatically verified by comparing the referenced
bus/abstractionDefinitions.

This also enables automated port connection during SoC integration, between
two IP components, via a portMaps structure. Such a list of portMap is defined
for each buslnterface, which maps a physicalPort, as reference to a component
port, to a logicalPort that is reference to a port specified in abstractionDefinition.
This defines actually how the bus protocol abstractionDefinition is implemented
by this buslnterface.

Common bus features like endianness, bitSteering, and bitsinLau may further
be described for businterface. ConnectionRequired indicates whether the interface
shall be connected when integrated.

For memory-mapped system integration, it is essential that we describe the
connection purpose of businterface as one from seven types defined in IP-XACT -
master, slave, system, mirroredMaster, mirroredSlave, mirroredSystem, and
monitor.

Consider three typical IP components that are shown in Figure 2.11: a
microprocessor core, an on-chip bus, and a memory controller. The microprocessor
component description probably includes a businterface in the mode of master,
which mainly defines an addressSpace as the addressable range from this master.
An executable image can also be referenced.

27

28

Quality Metrics Driven Functional Verification for IP based SoC Design

Buslinterface of the memory controller component should have a mode slave,
where a memory-map block such as a single addressBlock with specification of its
baseAddress, range, and width can be defined. Specific registers within the
addressBlock can also be described by their size and addressOffset. The PLB bus
component exposes two businterfaces, one as mirroredMaster and another as
mirroredSlave, to be connected to a matching master interface and a slave,
respectively. All the components may further have system as well as
mirroredSystem interfaces as in/outlets for system clock and reset signals.

We should note that in a portMap on master, slave, or system buslnterface, the
physicalPort shall implement the same direction as specified by the logicalPort.
To the opposite, the physicalPort in a portMap on mirroredMaster, mirroredSlave,
or mirroredSystem buslnterface shall implement the inversed direction from the
logicalPort specification. Mapping of component ports to bus specification enables
their seamless interconnection later. Further, monitor is a special interface to be
exposed by any component for verification purpose.

In component and in IP-XACT generally, any element defined with an id attribute
is configurable. For a component description, its configuration is done at a system
design description that instantiates this component, by assigning the configurable
elements new values under references to their ids, if the default values should not
be effective. Slave baseAddress is a common use case of configurable element.

In addition to an id, more attributes may be defined on a configurable element,
to specify and constrain its value options. Input format of the element can be
specified as one from bitString, bool, float, long, and string. Attribute resolve
defines how the element value should be configured, such as user indicating the
value to be set by user input or dependent meaning that the value shall be calculated
from other element values. Candidate values may also be specified in a choice
structure as a list of enumerations. With minimum and maximum we further
specify the lower and upper bound of the element value.

Moreover, there are basically two categories of configurable elements in a
component description. The first category is directly HDL derived, if the IP under
description is in the form of a HDL model. These parameters do not have a pre-
defined sematic, or meaning in IP-XACT schema, but they are immediate place
holders for HDL model parameters. They describe, for example, constructor
parameters of a SystemC module or generics of a VHDL entity. Such a parameter
has a name associated that is directly taken from the model, besides all the above
mentioned configuration attributes.

CHAPTER 2: Background

design: PLB_example_design

componentinstance: microblaze

l vinv : MicroBlaze_microprocessor l

/ 16K / / 16K / / 1 /
rld : IRANG rld : DRANG rld : UHD

compnentRef: compnentRef:
microblaze microblaze
busRef: busRef:
DataPLB InstructionPLB
Interconnection: Interconnection:

microblaze_plb_data microblaze_plb_instr

compnentRef: compnentRef:
plb_bus plb_bus
busRef: busRef:
Master Master
/ 1] / 2 / componentinstance: plb_bus
rld : NUMM rid : NUMS rld : DWIDTH
compnentRef: compnentRef:
plb_bus plb_bus
busRef: busRef:
Slave Slave
Interconnection: Interconnection:
bram_plb uart_plb
compnentRef: compnentRef:

plb_bram uart

busRef: busRef:

PLB_Slave PLB_Slave

componentinstance: plb_bram componentinstance: uart
l vinv : PLB_BRAM_controller l l vinv : PLB_UART_controller l
{ o /(32K / / 0x8000 /{ 1K /
rld : BADDR rld ; IRANG . i 7
legend

configurableElementValue, which configures value

for a component parameter, referenced by a
riD : IRAN

unique reference id (rID).

Figure 2.12 IP-XACT design. It describes a SoC integration design with component
instantiation, configuration, and interconnection.

The second category includes those configuration elements with IP-XACT
semantics. For example, IP-XACT defines a baseAddress for a slave bus interface,
with this address specified as a configurable attribute. Being aware of this makes
difference for us, as a configurable element with IP-XACT specified semantic
means that we can take corresponding actions during the synthesis or manipulation
on the element.

In the second scenario, SoC integrators use an IP-XACT design XML document to
assemble an integrated system from existing components, as the example shows in Figure
2.11. This design mainly describes the instantiation of IP components, necessary
interconnections between them, and their correspondingly derived configurations.

e A design instantiates all its components —processing elements and on-chip buses —
by a list of componeninstances. A componentinstance is assigned a unique
instanceName within the design and has a reference to the concerned IP-XACT
component description.

29

Quality Metrics Driven Functional Verification for IP based SoC Design

The component is identified by the vinv unified cross-document referencing
mechanism of IP-XACT, as also used by abs/busDefinition references. In this vinv
system, every IP-XACT top object/document shall possess a versionedldentifier,
as a combination of vendor-library-name-version, which uniquely identifies the
document in all IP-XACT mentioned context. Then this top object can be
referenced within another document by a libraryRefType element that consists of
also vendor-library-name-version of that object. A single instanceName is enough
for further identification of this component within this design.

o IP-XACT facilitates mainly memory-mapped bus interconnection for system level
integration. Each connection between two components through a bus interface is
defined by an interconnection element. Besides a name for the connection, an
interconnection contains merely two references of component bus interfaces. Each
such reference is a pair of names, one for the component instance name assigned
within this design and the other for the name of the bus interface in the original
component description. As both interfaces not only have references to the same
abs/busDefinition that they intend to realize but also specify with portMaps how
the abs/busDefinition are implemented by the component ports, we are able to
resolve correct signal connections on this bus interface.

¢ In design, we also have the possibility of creating adHocConnections not via any
bus specification but on a port-by-port basis. Each adHocConnection is defined as
a list of two or more port references, to bundle multiple component ports together.

e We need to assign configurable elements of the instantiated and interconnected
components with appropriate values according to this integration, such as the
address offset of each slave interface, if they should vary from the default. For this,
we can define in componentinstance a list of configurableElementValue, each
with a referenceld that is the id of the configurable element in the component
description and its new value.

e Further, hierarchical design is also supported by IP-XACT, through the possibility
of wrapping a design further as a component.

Besides these two use scenarios for IP integration, IP-XACT generators define
standard integration interface between a main design environment and third-party tools:
how the main design environment can launch a third party tool and how the latter can
access the IP-XACT files in the former, through the interface called Tight Generator
Interface. This tool integration is not a focus here and one can refer to IP-XACT standard
for more information.

A general note here at the end of the section. A big challenge that we will address in
this thesis is the provision of systematic verification for an IP-XACT SoC design. We

30

CHAPTER 2: Background

definitely find a gap between SoC design with IP-XACT and its functional verification,
since an XML file in IP-XACT is not directly simulatable for verifying its behavior.

2.2. Simulation Based Functional Verification

Functional verification is the process of verifying whether a design conforms to its
specification, as shown in Figure 2.13. Take a microprocessor design for example. The
main specification to be verified regarding its functionality should be whether it can
execute correctly sequences of instructions defined in the ISA that it intends to
implement. Non-functional properties of a design, such as timing and power, are not the
topic of our work.

Design

Specification Design

conform to?

Functional Verification

Figure 2.13 Functional verification: whether a design conforms to its specification.

We assume simulation based verification, with its principle shown by Figure 2.14,
still the overwhelming technology employed for functional verification and therefore also
taken as the basis of our entire work, though other ways of design verification do exist,
such as model checking [47] or FPGA based prototyping. They are not discussed, since
our verification methodology to be proposes is purely based on simulation, even
eliminating symbolic execution that is be found in some literature on test generation.
Therefore, this background section on verification is concentrated on simulation.

A simulation based function verification process is depicted here with five
components: the design under verification, a test generator for generating input stimulus
of design, a monitor for observing the design behavior during simulation and a checker
for deciding the behavioral correctness, metrics and measurement on the quality of the
simulation, a simulator for actually executing the whole. Each is explained in the
following.

Through drawn as a one-direction process, the verification should be iterative. Mainly,
once we find a bug after some simulation, the design has to be debugged and corrected.
Then the simulation should be repeated as another iteration. The verification closure
problem — the done question — will be governed quantitatively by quality metrics.

31

Quality Metrics Driven Functional Verification for IP based SoC Design

Simulation Based Functional Verification

Metrics and Measurement for Simulation Quality

Test
Generator

Monitor &

Checker

| Reference !
design

Simulator

Figure 2.14 Simulation base functional design verification: common structure and
elements. DUV: Design Under Verification.

Design Under Verification

Put in the context of our reference IP-based SoC design flow, a design under
verification (DUV) at IP level should be a RTL or behavioral model described in common
HDLs — VHDL, Verilog, C, or SystemC. At SoC system level, we assume IP-XACT the
default language for SoC integration. The IP-XACT design many integrate IPs in RTL,
TLM, or both. In all cases, we do not assume an IP design or SoC design to be
synthesizable, with it possibly at early design stage, or mature, near-complete stage.

With IP design, it is also reasonable that we assume a white-box testing scheme, a
general term understood in software testing, meaning that we are able to observe the
internal execution of the design. The introduction of simulation quality metrics will also
following this assumption.

IPs may become black-box in the SoC integration phase, meaning that their code, or
the observation possibility on the code is not available anymore, though they can still be
simulated together with each other. A case can be that an IP is provided as two pieces:
one as a compiled simulation model compatible with some specific simulation tool, the
other one as a synthesized or even hardened design only for further implementation. It is
one of the reasons that, in a later chapter on SoC system design, we will consider defining
a quality metric focused on IP-XACT as the design code.

Simulator

We assume the basic knowledge of HDL simulation with VHDL and Verilog, which
are well established languages. If necessary, a short introduction to discrete-event based
simulation, which is used in most HDL simulators, can be found in [28].

32

CHAPTER 2: Background

In the context of IP-based SoC design, a new requirements on the simulator is that it
should support simulation of IPs in different forms [48], since the IPs can be developed
in different environments. As Figure 2.15 shows, ModelSim as a state-of-the-art
simulator does provide a multi-language, mixed-level simulation engine.

4 N\

SystemC:

RTL/
behavioral/
TLM

VHDL: Verilog:

RTL/ RTL/
behavioral behavioral

A& J

ModelSim: single kernel for
discrete event simulation

Figure 2.15 ModelSim(TM) simulator from MentorGraphics. It supports multi-language,
mixed-level, singel-kernel simulation of hardware designs.

Multi-language simulation means that with ModelSim, several designs in various
languages — VHDL, Verilog, and SystemC — can be integrated and compiled as a single
object and simulated together, with all their original language semantics strictly reserved.
Such simulation can be also be mixed-level, meaning the integrated design components
be of different abstraction levels — RTL, behavioral, TLM.

This co-simulation is directly possible, since the original simulation engines behind
these languages and modeling levels are all discrete-event simulation.

Still, as mentioned, we find that for SoC system integration, there is a gap of between
IP-XACT design and simulation.

Test Generator

The test generator is responsible for the test generation task that selects a subset of
design input to be applied as tests, considering the whole design input space as candidate
set for selection. In general, as design input can be classified into different types, the
input space can be divided into regions. For example, the instructions as input for a
microprocessor design have strictly specified types.

For this test selection from a design input space, we can identify three fundamental
approaches, as shown in Figure 2.16:

o Directed test generation: A test set is planned and selected from the input space
before simulation, mainly manually by the tester. A fixed table listing this test set
is constructed. Then the entries of the table are applied one by one in design
simulation. Since all the test entries are constructed manually, test selection effort
will be high, taking into consideration both specification and implementation.

33

Quality Metrics Driven Functional Verification for IP based SoC Design

Directed Test Generator

Directed Verification Plan

Verification

Task Test No. Test
Design 1.1 i
I t o Test
nput o 1 12 Hit
Space &7
13 i

2.1 Hit
- 2
Effort

Design
Specification

Random Test Generator

Design
Input
Space

>
Effort

Design
Input
Space

Constrained Random Generator

Constrained Random Verification Plan

Constraint Weight (3=1)

TS

2<as3, 90<b<100 0.05

i i
' o
. Design | 1<as2, 90<b<100 0.05

1<as<3, 10<b<90 0.7

530 IRT. FSS VURN NV S

Figure 2.16 Test generation approaches compared.

e Random test generation. At the opposite extreme, we have the pure random
approach that lays a (pseudo) random number generator upon the entire input
space, which then simply selects a test each time with an unbiased distribution on
that space. The application effort of this approach should be minimal.

e Constrained Random Test Generation. This is the approach in-between and
combines the advantages of both directed and random test generation. Instead of
listing all individual tests that are considered interesting, constraints are used to
divide design input space into regions. A constraint is selected each time and fed
into a constraint solver that solves this constraint and generates a concrete test from
this region. The selection of constraint can further be made with pre-defined
weights that together add up to one.

We also use Constrained Random Simulation (CRS) to call the constrained random
test generation based functional design simulation. Because of its employment in later
chapters, we use Figure 2.17 to explain more on the principle and advantage of CRS.

As shown by the upper part of the figure, with a set of constraints defined on the design
input space and each associated with a weight for selection, we actually obtain a
probability distribution of tests to be generated for simulation. The advantages are that
we are able to: i) generate a significant amount of tests for exercising the design, as in

34

CHAPTER 2: Background

Weight 0.7
Probability A v Weight 0.2
. 1<X< 95
Weight 0.1 X 95<X< 100
0<X< 1 Constraint 2 -
=n= N -
— =
€ 4
i g
3 5]
S Probability °©
o
Distribution 9
fAW of Tests
»
»

X: Design Input Space
a) Weighted constraints imply a probability distribution of tests

IEEE specified DUV:
double-precision float
. exponent fraction 52 bit A
sign f i

N /

#define OP_ZERO 1
#define OP_SUBNORM 2

class FPU_test_base: public scv_constraint_base { EUSHneOERRORETE

public:
scv_smart_ptr< sc_uint<1> > sign;
= P — an; FPU_test_base * fpu_operator_1;
scv_smart_ptr< sc_uint<11> > exp; - -
. scv_bag<int> distribution_fpu_operator_1;
scv_smart_ptr< sc_uint<52> > frac; N N
% scv_smart_ptr<int> i;

// set distribution of fpu_operator_1:
oublic: distribution_fpu_operator_1.add (OP_ZERO, 1);
y distribution_fpu_operator_1.add (OP_SUBNORM, 1);
SOV _CeNBIRARL CHCR{Er 2 distribution_fpu_operator_1.add (OP_NORM, 20);
SCV_CONSTRAINT(exp()==0 && frac()==0); ¥ //more items in “bag”.
b) higher probability of being selected.

class op_zero: public FPU_test_base {

ElEE0 Gl beiing PUHIE e beeer i ->set_mode(distribution_fpu_operator_1);

public:

SCV_CONSTRAINT_CTOR(op_subnorm){ . , . By i
SCV_CONSTRAINT] exp()==0 && frac()i=0); | i//:ﬂeéi:(t) .constramt according to distribution:

137 T 3

“switch (i->read()) {
"~ case OP_ZERO :

class op_norm: public op_base2{ fpu_operator_1 =new op_zero(); break;

public: i

QY @ONSRARIL CIC e e OP_SUBNfOpENclnﬁerator 1 =new op_subnorm(); break;
=, . g----_1___ — - = A 9

L SCV_CONSTRAINT(exp()>=1 && exp()<EXP_ALL_ONE); case OP_NORM :

fpu_operator_1 =new op_norm(); break;
}

//generate test according to selected constraint:
generate_test_fpu_operator_1 (fpu_operator_1->read());

/4 /4

b) Example weighted constraints definition, on an input field of a FPU design, using
SystemC Verification Library

Figure 2.17 Constrained random test generation: principle and example.

random test, ii) at the same time, control the distribution of generated tests by assigning
more weights to constraints of more interests, and iii) even adapt this test distribution
during the simulation process, if our interest changes, for example the quality metrics to
be presented later.

The second part of the figure gives a real example of CRS — how some weighted
constraints are defined for test generation of a floating point unit (FPU) design, which is

35

Quality Metrics Driven Functional Verification for IP based SoC Design

expected to conform to an IEEE standard for double precision float arithmetic [49]. One
float operator as one part of the entire design input is taken for example. The left part
shows the constraints defined with constructs from SystemC Verification Library (SCV),
on field exponent and fraction of the input. The right part shows how the scv_bag is used
to define the weights on each constraint, by throwing a corresponding amount of items
into the “bag” for that constrains. The code shows also how the constrained test generation
happens during simulation, with a constraint first selected according to the weighted bag
and the solved to generate a test.

SCV constraints are solved by an integrated constraint solver in SystemC. One can
find more discussion on this solver at, for example, [50]. The quality of constraint solving
is not an issue considered in this work.

Monitor and Checker

Simulation produces traces that should be observed and checked for a decision
whether the design had a correct behavior during this simulation. This observation and
checking task is performed by the monitor and checker, respectively. We actually do not
distinguish much between these two components of simulation.

Such a simulation trace records the history of value changes on each variable or signal
included in the design under verification. As an example, Figure 2.18 shows the trace
from the simulation of a microprocessor design, using the ModelSim™ VHDL simulation
tool. As a synchronous design, the values may change at each clock cycle. Two interfaces
of the design, one to the instruction memory and the other one to the data memory, are
recorded in this trace and shown in a wave form. We can then check the trace against, for
example, another trace produced with a reference design — also called golden model in
some cases meaning that it is assumed to have an absolute correct behavior — and the
same tests, to see whether any deviation exists. The trace recording is usually a facility
provided by the simulation tool, although it is the task of a user to define what should be
recorded.

Regarding the format of such traces, Value Change Dump (VCD) has a ubiquitous
appearance across various simulators. It produces a quite compact structure by adding
each value change as a line of entry into the text-based trace file, after assign a symbol to
each variable under recording. SystemC provides its own VVCD support with facilities like
sc_create_vcd_trace_file and sc_trace. The ModelSim tool uses a proprietary format
called Wave Log File (WLF), which is the data format behind Figure 2.18.

Simulation traces, such as that one in Figure 2.18, are an important input for our
iterative, simulation based test generation, to be introduced in a later chapter.

36

CHAPTER 2: Background

Eile Edit WYiew Add Format Iools Hindow

—--_—————— T

rme
]
[[|| <
2418 ns to 3225 ns I A

Figure 2.18 Example simulation traces in WLF format, monitored from a
microprocessor design simulation with ModelSim. imem_o, imem_i, imem_o, and dmem_i
are microprocessor ports and selected for monitoring.

Metrics for Simulation Quality

At some time, we have to answer the question: “are we done with the verification?” —
which corresponds to the verification closure problem. We may recall verification closure
as a point that we are sure that incompleteness and incorrectness no longer exist in the
design under verification.

On one side, this sureness is indeed a subjective matter. On the other side, we are able
to use quantitative metrics to gauge an object distance between the current verification
status and the closure, and to use this gauge to decide a closure. This gauge is then also
said to be measurement of the thoroughness, adequacy, or completeness of verification.

Statement coverage is one such metric in a relatively basic form. The introduction to
a wide range of other metrics that can be used for hardware design simulation is made
separately in Section 2.3. Before that, we define the approach that we call quality metrics
driven verification.

37

Quality Metrics Driven Functional Verification for IP based SoC Design

2.2.1. Quality Metrics Driven Verification

Quality metrics driven functional verification is a simulation based design verification
process that not only employs one or a set of effective, quantitative metrics to
systematically gauge a distance to verification closure — the quality of verification, but
also integrates metrics-directed, preferably also automated test generation procedures
for efficiently improving such quality measurement.

Quality Metrics Driven Functional Simulation

[(Automated)Metric Directed Test Generation]

L)
— [Measurement of Simulation Quality]
L)

1
|
1
: ‘ Quality Metric Construction
|

____________ pommmmmeaees

Generator
r

Monitor

=

Simulator

Figure 2.19 Quality metrics driven functional verification.

This idea is outlined in Figure 2.19, on top of an existing simulation flow. The quality
metrics should first be defined on the design under verification. The metrics measurement
is then used to guard a decision that “we are done with verification”. It should further
enhance an existing test generator, by an automated steering towards quality metrics.

From such a metrics driven simulation process, we can expect the following:

e Through strict governance of the simulation process by quality metrics, the
verification should automatically achieve a high-quality status, when we decide
verification closure according to these metrics. Certainly, this high-quality depends
on the quality, or effectiveness of the metrics themself.

e Through efficient, automated test generation methods, the test selection effort
should not be increased significantly and remain at the same levels.

These expected advantages are illustrated in Figure 2.20, on each of the three
simulation approaches just presented.

Moreover, as stated, this systematic, stringent quality management by metrics driven
simulation is a special necessity in an IP-based SoC design flow, since i) IP designs need
to be verified as thoroughly as possible — as high-quality as possible — to ensure its

38

CHAPTER 2: Background

A
Test
Selection
Effort

Constrained Rando

Enhancement through
“quality metrics
driven verification”

Verification Quality=
Figure 2.20 Expected enhancement from quality metrics driven verification.

successful integration in a possibly different place and ii) SoC system designs need also
verification in a more systematic way because of the higher IP integration and other
advanced techniques like TLM.

2.3. Quality Metrics for Functional Simulation

In the following, we introduce not only common basic metrics for HDL simulation,
such as statement and toggle coverage, but also several advanced metrics that are active
research topics, including functional coverage, the observability based coverage, and
mutation analysis.

An emphasis is granted to mutation analysis, as it will become the focus our
verification methods. Its problem of test generation is also compared to the automatic test
pattern generation (ATPG) in circuit manufacturing test, because of their similarity in the
use of fault modeling.

2.3.1. Statement Coverage

Statement coverage, also called line coverage, is defined as how many statements, or
how much percentage of statements of a design have been executed during its simulation.
It measures the degree of a design being exercised during simulation. In fact, because of
its definition relying merely on statement execution, which is a common observation in
software testing and hardware simulation, statement coverage has its wide application in
them both.

Consider the decoding part of a microprocessor design, which may probably consists
of several case or if branches, for the handling of individual instruction types. During
simulation and test generation, if one type of instruction has been omitted and statements
that belong to the corresponding branch of decoding then not been exercised, statement
coverage will report this incompleteness of verification.

The rationale for statement coverage is straightforward. Only when a portion of design
is executed, possible design errors residing in this portion may cause erroneous simulation

39

Quality Metrics Driven Functional Verification for IP based SoC Design

behavior and thereafter be observed.

Both the construction of the metric and its measurement should be of minimal cost. In
particular, the cost of simulation, i.e. the decrease of simulation performance due to
statement coverage measurement, should be negligible.

As one of the earliest metrics, and arguably the most basic one, statement coverage
has integrated support in many HDL simulation tools, like the ModelSim simulator that
we mentioned.

2.3.2. Toggle Coverage

Toggle coverage is another widely supported simulation metric by HDL simulators.
When a signal bit has been once toggled from ‘0’ to ‘1” and also from ‘1’ to ‘0’ during
simulation, the bit has a 100% coverage. If only a one-way toggling has happened, it
receive a 50% coverage. Then the toggle coverage for the whole design simulation is
calculated by summing up results on all the bits.

This also measures the degree of design’s exercise during simulation. The idea is that
by enforcing a more intensive design activity in simulation — bit toggling, we should have
a greater chance to incite as well as observe hidden design errors.

Measuring toggle coverage requires only some extra monitoring on simulation traces.
No extra effort on metric construction is required and the original design simulation is
also not affected by the measurement.

2.3.3. Functional Coverage

With functional coverage, the metric must first be defined by a user, by defining a set
of functional coverage points that are interesting to the user. Each coverage point is
defined on a design variable or one of its multiple fields, as a collection of so-called
coverage hins, which represents specific ranges of that variable or field. For example, we
want monitor the history of transaction addresses that happened on a PLB bus during
simulation. A coverage point can be associated on the address of PLB transactions, with
the bins gathered as the address ranges of all salves. These are the specific functionalities
that should be exercised on PLB — therefore the name functional coverage.

The coverage bins records not only whether a variable range has been hit during
simulation, but also the number of such hits. Moreover, the product of two coverage
points can defined as a cross coverage point. To measure this cross coverage, values of
both variables, on which the two coverage points are defined, should be observed at the
same cycle of simulation.

40

CHAPTER 2: Background

We can further use a microprocessor design as another example. Assuming instruction
is the variable for instruction input and opcode is a field of instruction representing its
type — usually with a fixed bit-length in a RISC processor, we could easily define
coverage bins on opcode according to the microprocessor ISA specification: arithmetic,
logical, shift, branch, load/store, and so on. Then we are able to record the distribution
of opcode in an entire simulation.

In fact, we may view toggle coverage as a very basic form of functional coverage. The
toggling of one bit, back and force, is defined as a coverage point. This functional
coverage metric is defined without advanced knowledge of the meaning of variables or
signals, also without the user involvement.

Though the concept of functional coverage is quite natural, the native support from
languages and tools just surfaced in recent years. The SystemVerilog language [51], as
an effort to combine HDLs and Hardware Verification Languages and adopted as IEEE
standard 1899-2005, provides direct constructs for functional coverage: coverpoint, bins
that belong to a coverage point, and cross on a pair of coverage points. Recent research
tries also to enhance SystemC with a functional coverage library [52] [53].

2.3.4. Observability Based Coverage

In [54], a so-called observability-based coverage is defined. It addresses a
shortcoming of code coverage and functional coverage, both of which totally omit an
important criterion for a testing or simulation process to be successful: any erroneous
behavior of the design under testing must to be incited and propagated to specific design
location, so that it can be observed.

For this, observability-based coverage introduces symbolic tag to model this error
propagation. During design simulation, a symbolic tag A can be attached to a design
variable, as a potential error that should be propagated through statements. The
calculation with tags then follows a set of rules, called A-calculus. Figure 2.21 shows two
examples. Note that for Boolean operations, such as AND, a tag equals the D-calculus in
gate-level test generation [55].

However, this error-modeling tag is made suitable for functional design simulation
by defining also the calculus for other higher-level operations, such as addition or
multiplication. For a statement ¢ = a + b, the result is defined to receive a positive tag, if
both operands are with a positive tag, or a positive tag versus a tag-free. If one operand
has a positive tag and the other one a negative tag, the tags are defined to compensate
each other and the result will have no tag. Also, propagation of tags through control
statements are defined.

41

Quality Metrics Driven Functional Verification for IP based SoC Design

AND 0 1 0+A 1-A
0 0 0 0 0
1 0 1 0+A 1-A

0+A 0 0+A 0+A 0

1-A 0 1-A 0 1-A

c=a+b b+A b-A
at+A C+A c
a-A c c-A

Figure 2.21 Example A-calculus for AND and addition operation.

Such definition is necessary, since, in contrary to D-calculus, the observability-based
coverage works with design simulation, without assuming the synthesizability of a
design. This is a general difference between simulation metrics and gate-level fault
models, which we will discuss more in a later section.

On the one hand, the observability-based coverage smartly addresses the problem with
other metrics omitting error-propagation. On the other hand, its biggest disadvantage is
the dependence on symbolic calculation, which i) requires an extra simulation engine and
ii) is usually considered not practical for real designs. Though in [56] [57], advanced
methods for calculating tags are proposed, meant to be more efficient compared to the
original definition, practical adoption is still restrained. Further, the correlation between
a tag and real design errors is neither straightforward nor investigated.

This homogeneous modeling of design errors is different from the heterogeneous
error injection from mutation analysis in the next section.

2.3.5. Mutation Analysis

Mutation analysis, also called mutation based testing or just mutation testing, is a
unique, fault-injection based simulation, or testing metric. It manages systematically the
quality of functional simulation, by measuring the simulation’s capability of revealing
design errors — though artificially induced. This is similar to the observability-based
coverage that we previously introduced, but different in the way of fault-injection.

The process of mutation analysis is summarized in Figure 2.22. As other metrics, it
is supposed to be laid as an extra quality management layer upon a simulation based
functional verification process.

42

CHAPTER 2: Background

Quality Metrics Driven Functional Simulation

Mutation Analysis

Mutant-directed Test Generation

Ly

Quality Measurement: Percentage-of-Killed-Mutant

1
1
1
1
1
1
1
1
compare L
H @ 1
1
1
1
1
1
1
1
1
1
1
1

buv

A J
L

Mutants

b4
Test Monitor & Doned
Generator Checker g

Simulator

=

Figure 2.22 Mutation analysis in the context of simulation based functional verification.

First, a copy of design under verification is created and a so-called mutation, which
is a single minor modification to the design code, is applied on that copy, such as:

Muation
a:=bandc; —— a:=borc;

Such mutation operations are defined by mutation operators. Each mutation operator
defines a certain type of code modification, such as “replacing an and operator to an or”
like above, “replacing a plus operator to a minus”, “changing a ‘0’ bit to ‘1’ ”. To enable
mutation analysis for a specific language, a set of mutation operators should be firstly
defined on the syntax of the language. This also brings the language-specific nature to a
mutation analysis metric. Later in this section, we will see how an industrial HDL
mutation analysis tool defines the mutation operators on, for example, VHDL.

The mutated copy is called a mutant of the design. A large amount of mutants can be
generated to form a metric database, since theoretically we may apply each mutation
operator to every possible location of the design code.

Each mutant is supposed to be simulated, separately, in addition to the simulation of
the original DUV. A mutant is said to be killed by a test, if during simulation, it produces

43

Quality Metrics Driven Functional Verification for IP based SoC Design

a different output under this test compared to the output of the original design simulation.
This can be decided by comparing the simulation traces of both at output ports.

The number, or percentage of mutants that were killed during a simulation process
with a certain tests becomes the quality measure of this simulation, or this set of tests.
Under this definition, a mutant can be removed from the metric database, as long as it
was killed at some point.

As with other metrics, using such a quantitative measure on simulation progress, we
are able to systematically handle the verification closure problem and answer that “are-
we-done” question.

Nevertheless, there are two general problems that make this functional verification
closure under mutation analysis difficult:

e Mutation analysis imposes a lot of extra simulation time upon the original
verification process. As mentioned, the amount of created mutants can be huge for
a design. If we apply each mutation operators to every possible operator or variable
at every line of design code, we may obtain the number of mutants as (Lines-of-
code x #-of-mutation-operators x K), assuming K a constant of average frequency
that mutation operators can find their possible usage at a line, approximately.

It means a design with, for example, a thousand lines may derive a mutation
analysis metric with ten thousand mutants. Combined with the fact that all the not-
yet-killed mutants need to be simulated separately with all tests generated, the
metric measurement time can largely exceed that used for the actual simulation,
and even become unmanageable without targeted, efficient test generation.

e The task of selecting a test that kills a mutant is itself a hard problem — as we will
discuss later with more details. If we could have an automated, efficient procedure
for generating mutant-killing tests, the first problem — too many mutants to be
killed — would even become directly solved, or at least largely alleviated.

Therefore, this high computation requirement from mutation analysis has long been
identified as the barrier of its adoption.

In the following, before going to define the test generation problem for mutation
analysis and introduce further advanced techniques for easing the computation
requirements on mutation analysis, we first try to explain the rationale behind mutation
analysis as a verification quality metric. At the end, we will introduce as example a
complex, industrial tool that implements HDL mutation analysis, by incorporating most
of the advanced mutation techniques from research.

44

CHAPTER 2: Background

Rationale: Double Effectiveness

We discuss why mutation analysis can be used as a quality metric for functional
verification, whose ultimate goal is to uncover any deviation between design and
verification — incompleteness or incorrectness. Such a metric should be used to gauge a
distance between the current verification status and the verification closure.

We discuss rationale behind using mutation analysis in two aspects:

e After the mutants are created, they are design errors and it is an intrinsic and
fundamental requirement for the simulation tests to be able to reveal these errors.

On the other side of this aspect, if the simulation cannot reveal the mutation
errors and Killed the mutants, how can we be confident about the quality of the
simulation? It is similar to the other metrics in such consideration. If a statement
has not been executed in a simulation, or a functional coverage bins been missed,
we may have reasonable doubt about the thoroughness of the simulation — though
we still cannot exclude the existence of possible design errors, if we have a 100%
statement and functional coverage.

To support this effectiveness argument on mutation analysis, the mutation
operators should be defined to be representative of real design errors that a designer
can possibly make. They should best be concluded from extensive, statistical study
of such designer errors, for a specific language.

¢ A Coupling Effect is assumed, and partially proved by experimental studies, which
states that if a set of tests is able to kill more mutants created from a design under
verification, they will also be able to expose the real exiting bugs in the design.

At the origin of mutation analysis for software program testing, the coupling-
effect was proposed merely as premise [58]. Later, there has also been experimental
studies [59] [60] to evaluate this premise, with positive results. The investigation
on coupling effect is not included in this thesis, but with it used as a general
assumption.

We call them the double effectiveness of mutation analysis.

Test Generation Problem

We describe the problem of test generation for killing a certain mutant. The problem
is defined only to a necessary degree for this moment. A more accurate model for problem
discussion and solution will be presented in Chapter 5.

45

Quality Metrics Driven Functional Verification for IP based SoC Design

A control flow graph (CFG) as shown in Figure 2.23 should be enough for the
moment. It extracts a structure from a software program — where mutation analysis
originates — or a HDL design in VHDL, Verilog, or SystemC.

| entry |

branch 1

true

) statements
Muation
X a:=bandc;—— a:=borg; w/o branches

— L

branch 2
true
[exit]

Figure 2.23 A control flow graph with mutation marked.

The CFG also represents a mutant by marking the mutation. Three tasks, or conditions
must be fulfilled for killing this mutant.

e Reachability. The execution of simulation needs to first reach the location of
mutation. Only when the mutated statement has been executed, we may observe a
different mutant behavior from the original design.

e Activation. The mutant needs to be activated by the mutated statement being
executed in such a way that a local deviation is created. It means that in the example
mutation, the result of (b or c) is evaluated to a different value from that of the
original code (b and c), i.e. as a condition (b or ¢) # (b and c).

e Propagation. Any local created deviation needs then to be propagated to the
design output, so as to result in deviation also at the output and therefore, the mutant
being killed according to definition.

Together, they form a necessary and sufficient condition for a test and the simulation
under this test to kill the mutant.

The literature discussion on existing test generation methods will be left to the related
work in later chapters. We only mention here than in general, the propagation problem
has not been tackled. It is even not possible for an analysis with CFG, as propagation is
naturally a data flow process.

At the opposite of mutant-killing test generation, there exists the problem of
identifying so-called equivalent mutants, which are those mutants that intrinsically cannot

46

CHAPTER 2: Background

be killed by any mutants. Reasons for such impossibility for a mutant to be killed can be:
i) The mutated statement is not reachable under all cases, for example as a redundant
code; ii) The mutated statement, though syntactically different from the original one, will
never compute a different result in its context. For example, we cannot differentiate (a>0)
from mutated code (a>=0), when a is always assigned a valued greater than 0 before this
line. iii) Regarding propagation, the mutant is un-killable if, for example, the result of the
mutation statement is not even used in further computation at all.

In any of these cases, the mutant is equivalent to the original design, under our
observation at design output.

Automated identification of equivalent mutants is an un-tackled problem in mutation
analysis research [61]. It is not a focus in our work.

Techniques for Mutation Analysis

Since long years of research on mutation analysis, in software testing and hardware
design verification, advancing techniques have been proposed to reduce the cost of
mutation analysis and to improve its adoptability. Some influencing ones are selective
mutation [62], mutation schemata [63], and weak mutation [64] [65]. These have also be
implemented by the industrial EDA tool for HDL mutation analysis, which will be
introduced next and also used as a basis of our research.

e Selective Mutation. Recall the number of possible mutants to be generated by a
set of mutation operators on a design approximately as (Lines-of-code x #-of-
mutation-operators x K). With selective mutation, we make a simple trade-off and
generate selectively a much smaller subset from all possible mutants, as Figure
2.24 shows. We may exclude the application of some mutation operators. Or we
may choose to apply a mutation operator less frequently, i.e. not applying it at every
operator or variable where it can be applied. We may even just skip the mutation
at specific lines of design code. The purpose is to compress the mutant database in
a manageable size.

The degree of compression is a trade-off between effectiveness of mutation
analysis, in terms of its stringency of test qualification, and the required simulation
time. The minimal set of tests required to kill all possible mutants is certainly a
superset required in selective mutation. There are also early studies [66] to
experimentally evaluate this relation.

e Mutation Schemata. Simulation time is not the only cost of mutation analysis, in
fact. Time for mutant compilation is another, before we can simulate them. This
compilation time is huge, if we assume thousands of mutants. The situation is even
worse, if we consider the functional simulation as an iterative process and each

47

48

Quality Metrics Driven Functional Verification for IP based SoC Design

Mutants

] [
Selective r - [oxa
mutation]] y .]
analysis 4
| “
4

4 N\
Mutation analysis measurement in mutation schemata:
select one mutant for simulation by setting an id parameter

Mutants

Meta-
mutant

Mutation
schemata
4 N J
4)))) N
Mutation analysis measurement in weak mutation :
observation point for killing mutant can be defined as not being at output
Weak

mutation

compare
»<killed?.

A J

Figure 2.24 Mutation analysis techniques.

time the design is debugged and modified, all the mutants need to be created and
compiled again, alongside the original design compilation.

With mutation schemata, mutants are created as one copy of DUV. As Figure
2.24 shows, all the mutations are instrumented on that single copy, each coded with
an id parameter. To simulate one mutant and see whether it can be killed by a test,
the id parameter is set to select that corresponding mutant. The selection can be
implemented by, for example, if-then statement that governs each mutation with a
unique id.

Meta-mutant is used to call that single copy of DUV with all mutants coded in.
We finish the compilation of all mutants by compiling only the meta-mutant once.
Though the parameterization of meta-mutant introduces minor overhead, mutation
schemata is almost a necessity for handling designs with practical size and
thousands of mutants. Further, it has not any influence on the effectiveness of
mutation analysis.

o Weak Mutation. Weak mutation is a further trade-off between mutation analysis
effectiveness and the requirement on test generation. Instead of defining the kill of

CHAPTER 2: Background

mutants as deviation of simulation at design output, kill can be defined at a point
anywhere along the path between mutated statement and output. As the example in
Figure 2.24 shows, the observation of whether a mutant being killed is defined
right after the decode unit, on the result of decoding.

At one extreme, if kill is defined immediately after the mutation, i.e. on the
result of the mutated statement, the requirement on propagation is eliminated and
kill equals activation. At the other extreme, kill is defined on design output and we
have the original mutation analysis, which is also called strong mutation for
distinguishing.

As with selective mutation, the minimal set required for any specific weak
mutation must be a subset of original, strong mutation.

Certitude: An Industrial EDA Tool for HDL Mutation Analysis

Mutation analysis has its origination in software testing [58] [67]. If we consider the
task of software testing and that of functional hardware design verification, they have
intrinsically no difference, to be finding any incompleteness and incorrectness of an
implementation from its specification. In [68], [69], and [70], the application of mutation
analysis to HDLs has been discussed for the first time.

From company Synopsys®, Certitude(TM) is an industrial EDA tool that implements
mutation analysis for several HDLs, which include VHDL, Verilog, and SystemC. It can
be used with most commercial simulation tools, such as ModelSim(TM) from
MentorGraphics or VCS(TM) from Synopsys itself, thanks to a seamless integration.

Figure 2.25 shows two screenshot from the tool, which report the result of mutation
analysis on the simulation of a VHDL floating point arithmetic design. As illustrated,
Certitude implements mutation schemata, by instrumenting all mutants into one design
copy. When we click on a colored mark, the mutation at this location and the induced
mutant with a unique ID is shown, along with the mutant status after simulation: activated
or non-activated, propagated or non-propagated when activated.

We list the names of several mutation operators — not complete — defied by Certitude,
without going into their details, since many of them are self-explaining:

e Operator-or-to-and; Operator-and-to-or; Operator-and-to-nand;
e SwapOperand;

e BitFlip-'0'-to-'1"; FlipFirst; FlipLast;

e DeadAssign;

e ConditionFalse; ConditionTrue; NegatedCondition; ElseDead,;

49

Quality Metrics Driven Functional Verification for IP based SoC Design

160 exponent diff &= exponent large - exponent small - large norm small denorm;
161 large add €5 [f0f & HOE large is denorm & rn.an.'i"..';ai\arf:e & [roo" ;
162 small add €8 HOF & RAGE. small is denorm § mantissa small § [HOOS ;

163 small_shift B8 shr(small_aNd, exponent_diff);
164 B (small fraction fnable = '} then

165 small shift 3 €8 fmall shift 2\

166 else

167 small shift 3 EB
168 end if;

small_shift;

169 sum €% large add + small shift 3;

170 BE (sum overflfw = '1') then

171 sum 2 <= shrfsum, conv_std logic vector("l'
172 else

173 sum_2 &5 sym;

174 end if;

[Fault ID] Fault type [Status D
| 116 | Remove operator not | Non-Propagated |

Affected code:

162 small_add <= "0' & mot small is ¢

Is changed into:

162 small add <= '0' & =small is deng

Figure 2.25 Certitude: an industrial EDA tool for HDL mutation analysis. The color
marks annotate not only the locations of muation but also the mutant status during simulation.
“Fault” here is used in equivalence with mutant.

Certitude also implements selective mutation, by allowing a user to set
MaxFaultPerLine as a parameter for the tool during the creation of mutants. Moreover,
weak mutation is implemented in a way that we can define any signal between units as
one of the points for observing the kill of mutants.

We used this tool to construct examples and for evaluations. However, it does not
imply any restriction of our methods, for mutation analysis enhancement, to this specific
tool. More literatures on Certitude can be found in [22] [23].

2.3.6. Comparison of Metrics

With Figure 2.26, we further summarize a comparison between the simulation quality
metrics that we introduced so far. In particular, we will compare the rest to mutation
analysis, as it is our focused metric and will play a central role in all later chapters.

e Metric construction. Though the definition of mutation operators for a specific
language, their implementation as code instrumentation, and the integration with
simulation tools for mutant measurement are all complicated tasks, once they are
finished as a tool, the mutation analysis becomes a fully automated process, except
for test improvement. For a design under verification, the construction and
compilation of its mutant database require little effort thanks to mutation schemata.

The other metrics are also to be established by automation, except for functional
coverage, which requires a user to define coverage points and bins for each design.
This leads to another issue of functional coverage: the quality, or effectiveness of

50

CHAPTER 2: Background

Metric

Metric construction

Measurement

Test generation Problem

Statement coverage

+ automated

+ minimal cost

reach

Toggle coverage

+ automated

+ minimal cost

reach and toggle

Functional coverage

- manual

+ minimal cost

reach and hit

Observability-based

reach, symbolically activate

+ automated symbolic
coverage [54] and propagate
. . . reach, activate, and
Mutation analysis + automated - high cost
propagate
Test generation for design simulation
) v v v
,,,,,,,,,,,,,,,,,,,,,,,,,, @ Vot O AVERO
e i
bit| hit coverage bins
'0'to "1 (specific ranges
'1'to'0' of variable)

Statement coverage

Functional coverage Mutation analysis

Toggle coverage

Legend: statement

¢ @ Requirements of metric,
Data flow Control flow as well as sub-problem of test generation

Figure 2.26 Comparison of metrics for simulation based functional verification.

the metric itself depends on the user capability and effort. Therefore, functional
coverage is a subjective metric and mutation analysis, and the rest metric, are
objective.

Measuring metrics. As mentioned, the extra simulation time imposed by
mutation analysis is the biggest challenge of its adoption, lagging behind other
metrics. Still, we consider the symbolic simulation in observability-based
coverage even more computation-expensive and not always practical.

Test generation. Mutation analysis highlights an intrinsic requirement on
simulation and its tests, namely their capability of stimulating potential design
errors and propagating the erroneous behavior to pre-defined observation points.
In this way, mutation analysis imposes a more stringent qualification on tests and,
correspondingly, a more difficult job for automated test generation.

This is not addressed by other metrics, except for the observability-based
coverage. Again, in contrast to the symbolic-tag manipulation, mutation analysis
relies totally on actual HDL simulation.

51

Quality Metrics Driven Functional Verification for IP based SoC Design

We may further observe that a hundred percent toggle or functional coverage does not
necessarily lead to 100% statement. Also, full statement coverage does not imply 100%
toggle, or 100% functional coverage, neither. They can be complementarily used.
Further, it is clear that mutation analysis requires a 100% statement coverage, assuming
mutants are distributed to every lines of code.

2.3.7. Circuit Manufacturing Test and ATPG

Although circuit test after IC manufacturing is another separate phase in the whole
EDA flow and forms itself a big research area, we could immediately find its similarity to
functional design verification, when mutation analysis is used, as both employ fault models
to quality tests.

In the following, for a comparison we first introduce their differences in three aspects,
as summarized Figure 2.27, and then conclude why the test generation algorithms —
Automatic Test Pattern Generation (ATPG) — are not applied for mutation analysis.

Task Quality Metric Test Generation

Functional . . Mutant targeted
. Mutation analysis X
verification test generation

versus

(Manufacturing H Fault models ’4—? ATPG
test

Figure 2.27 Aspects of comparison between circuit manufactring test and functional
design verification.

First, the tasks of functional verification and manufacturing test are totally different in
an EDA flow, as shown in Figure 2.28. Function verification intends to uncover errors
that are introduced during HDL design, i.e. any deviation from specification.
Manufacturing test is applied to each circuit device after their fabrication, to ensure no
physical cell defects are introduced during this process. Presented only for a further
comparison, in an FPGA based implementation flow, such circuit testing is no longer
necessary, as there is simply no step of manufacturing, assuming the FPGA device is error-
free.

Second, the rationale and mechanism behind defining a test qualification metric by fault
modeling is different. This is shown by Figure 2.29, without going into the details of
various gate-level fault models.

e In mutation analysis, we have discussed the rationale of mutants as double
effectiveness: i) mutants model typical design errors and when they are created,
simulation should be able to reveal them; ii) mutants are coupled with real design
bugs, in a way that if simulation can kill mutants, it will also be able to find real

52

CHAPTER 2: Background

specification specification specification
functional design Functional functional design functional design
v X verification vV vV

HDL design

HDL design

HDL design

———————————————————————————————————

' |
h sicali physical! §
phvsical design | !
! 1

design |
'

]
i
i
!
manufacturing X Manufacturing download v Assume FPGA
v Defect Test 3 device error-free
ASIC chip FPGA

Figure 2.28 Task of functional verification and manufacturing test.

bug.

¢ In gate-level fault models, for example stuck-at fault, a logical gate fault abstracts
a physical defect of certain type that may happen during chip manufacturing, as a
direct mapping. Therefore, when tests are generated by ATPG that detect such a
fault, they will guarantee the catching of that manufacturing defect.

Third, the test generation problem is usually on a different basis, for gate-level fault
models in circuit test and HDL mutants in functional verification.

Usually, ATPG algorithms — consider the earliest D-algorithm and the follow-ons [55]
[71] [72] on stuck-at faults for example — take only a combinational logic area as input.
Even with the appearance of sequential ATPGs later [73], for large synchronous sequential
logic, they still mostly follow a structural testing scheme and rely on scan-chain based
techniques to restrict the problem to small logic areas and to apply the tests generated
under such restriction, as illustrated by Figure 2.30. For the circuit under test in its scan
mode, the registers as input for that specific design portion are set by scanning-in test input.
The results to be checked are then scanned-out, be compared with expected results
according to the original netlist.

For mutation analysis, tests are to be generated for the functional verification purpose
and applied to design input. The entire design should be the target of any test generation

specification fault model
v
Simulation test
generation

1) Mutants represent typical design errors A fault model, e.g. stuck-at fault, is
2) Mutants coupled with real errors direct abstraction of physical cell defects

netlist

design

Figure 2.29 Rationale behind fault modeling in mutation analyis and gate-level fault
models.

53

Quality Metrics Driven Functional Verification for IP based SoC Design

> Normal operation g scan-chain for testing
b i

Figure 2.30 Scan-chain for structural testing, used by ATPGs.

procedure. Three sub-problems — reach, activate, and propagate — have to be considered,
from design input to output.

To conclude, ATPGs are not used in test generation for mutation analysis, or any other
simulation quality metrics, since i) ATPGs follow structural testing and usually do not take
the entire design as algorithm input, for example a complete microprocessor design, and
ii) ATPGs work on gate-level netlist and we use mutation analysis, or other simulation
metrics, on any design that is simulatable, without assuming it to be synthesizable.

2.4. Summary

In this chapter, we have established the basis for our further discussion, by first
presenting a reference flow for IP-based SoC design, and then introducing both
fundamental and state-of-the-art methods and techniques that are employed at different
locations of the flow.

We have identified one of the most important characteristics of IP-based SoC design
to be the division and separation of IP design and SoC system integration. This has a key
implication on our consideration of verification. At IP level, an IP design needs to be
verified systematically and as thoroughly as possible. At system level, a SoC design also
needs a systematic verification, which should further be focused on the integration of IPs.
Our approach is to construct a series of metrics-driven verification methods that cover
both IP and SoC system level.

The reference flow includes SystemC, TLM, and IP-XACT as state-of-the-art
techniques for IP and SoC system design, which should be taken into account for
verification. These are intensively studied topics in recent research on SoC design
methodology. Further literature will be discussed in the related work section of each
contribution chapter.

SystemC, with a discrete-event simulation core the same as most other HDLSs, can be
used for both behavioral and RTL IP design. Such IP designs can be wrapped into TLM
components, where their interfaces for SoC on-chip communication are modeled by

54

CHAPTER 2: Background

function calls and bundled as TLM interfaces, which serve the central basis of TLM IP
integration in SoC system design.

Therefore, at IP level, we will consider a design under verification to be RTL or
behavioral, in traditional HDLs — VHDL and Verilog — or SystemC. At system level, a
SoC design under verification can be integrated from RTL IPs, TLM IPs, or even mixed.

IP-XACT is the standard language for describing IP metadata — its design files,
exposed on-chip bus interfaces, and configurable parameters — and SoC integration based
on these metadata. By assuming IP-XACT as the default SoC design language, we should
be able to concentrate on the verification of system integration.

We further assume simulation as our way of functional design verification. We have
outlined the components in a simulation process: the DUV, a simulator that possibly
supports multi-language, RTL/TLM mixed-level simulation, a test generator, a monitor
and checker, and the quality metrics that stands at the center of our solution to the
verification closure challenge. In particular, we have introduced three different
approaches for test generation: directed, random, and constrained-random that combines
the advantages of the previous both and will be highly exploited in Chapter 4. Actually,
metaheuristic search based test generation may be classified as another alternative, which
will be considered in Chapter 5.

Then, we have defined what a quality metrics driven verification is and introduced
various metrics that are currently in use. In particular, we have compared mutation
analysis to other metrics and identified its unique requirement for test to reveal the typical,
purposely injected design errors. The rationale behind such stringent test qualification
have further been summarized by us as double effectiveness.

From now on, mutation analysis becomes a real focus of our research on quality metrics
driven verification, though in general, we do not see our methods restricted to mutation
analysis, meaning that their adaptability to other metrics should be straightforward.
Identification of equivalent mutants is a problem not tackled in this work.

The basic problem of mutant-aiming test generation has been defined as three sub-
problems: reachability, activation, propagation. Advanced techniques for alleviating the
problem of high computation requirement from mutation analysis have been introduced,
including selective mutation, mutation schemata, and weak mutation. Certitude, a
sophisticated HDL mutation analysis tool from the EDA industry, has been presented,
which will also be used in our evaluation.

Moreover, we have presented a brief but essential comparison between APTG in
manufacturing test and mutation analysis in functional verification. ATPGs are not used
in functional verification because of its structural working scheme at gate-level and the
assumption that our design under verification is not necessarily synthesizable.

55

Quality Metrics Driven Functional Verification for IP based SoC Design

In next chapter, we will present an overview of our methodology to systematically
enhance the quality of functional verification for IP-based SoC design, using the metrics
driven approach.

56

CHAPTER 3: Methodology Overview

In this short chapter, we give an outlook on the overall contribution of this thesis: a
systematic, simulation based, quality metrics driven functional verification methodology
for IP-based SoC design, as shown in Figure 3.1.

The bottom part of the figure refers to the IP and SoC design flow, languages, and
methods that we have discussed in the previous chapter. In particular, we have motivated
the need for metrics driven verification (MDV), as well as advanced metrics such as
mutation analysis, which is identified as the focus of this thesis. Recall that with MDV, a
verification process should not only be guarded by a quality metric, but also use metric-
targeted test generation to efficiently improve such quality.

Based on the discussions, we may generally identify the following gaps between state-
of-the-art techniques and our desire for an efficient yet quality-enhancing verification
flow. Concrete motivation for each chapter will be expanded later.

e At IP design phase, with the emerging of EDA tools for HDL mutation analysis
recently — such as Certitude, which leverage a long history of mutation analysis
research, we still lack efficient, practical test generation methods for this HDL
mutation analysis.

e At SoC system design phase, with the recent establishment of standard system-
level design languages and techniques, for example TLM and IP-XACT, we still
lack a systematic verification way for SoC system-level, in general, and any
quality metric for such verification, in particular.

For this, our verification methodology consists of three main components:

e For the functional verification of an IP design with HDL mutation analysis, we
first consider using random simulation to achieve a primary level of killed
mutants. We propose to integrate a feedback directed adaptation loop into
constrained random simulation (CRS). The goal is that by consistently adjusting
a test model in CRS, we will be able to obtain a more efficient process of killing
mutants. This will be discussed by Chapter 4.

57

Quality Metrics Driven Functional Verification for IP based SoC Design

Mutation Analysis Directed
Adaptive Random Simulation

Metaheuristic Search Based Test
Generation for Mutation Analysis

Constrained
Random
Test Generation

HDL Simulator

(CHAPTER 4) (CHAPTER 5)
1 P |
g Y g N\
Mutation Analysis Feedback Cost Function
Directed Adaptation for Killing a Mutant
. J . J
\ HDL Mutation Analysis m
) L

Metaheuristic

Search Based
Test Generation

HDL Simulator

SoC System Design Simulation and
Mutation Analysis with IP-XACT
(CHAPTER 6)

i P-XACT Mutation Analysis I
IP-XACT Mutation
Operators

A simulation based, quality metrics driven functional verification (FV) methodology for IP based SoC design

= =

= =

Gap: lack of efficient test generation methods for HDL mutation analysis

Gap: lack of systematic verification method,
and quality metric for such verification

IP component design phase >|

SoC system design phase >

Figure 3.1 Overview of our methodology. Main contributions are highlighted.

e After random simulation, we expect some “hard” mutants left un-killed. We
further consider applying a metaheuristic search based test generation to each of
them. It means that a metaheuristic — for example a local search — is employed to
search the design input space, to iteratively move towards a target test that can kill
the mutant. To steer such search, we need to define a cost function that measures
the progress of a HDL mutant being killed. We will present a graph based
definition of such cost function in Chapter 5. With these first two components, we
expect an extensive, high-quality IP verification.

e Moving to system level, we first assume IP-XACT as the default language for SoC

integration. For a systematic SoC verification framework, we propose i) SystemC
based IP-XACT synthesis to enable SoC system designs simulation and ii) a set of
mutation operators on IP-XACT schema to enable mutation analysis for such
simulation. They will be detailed in Chapter 6.

Last, we want to emphasize the coherence of these chapters as an integrated
verification flow, which should find its scenarios of application by i) a SoC integrator,
who is usually required to build one or several of its own special, product-differentiating
IPs, which are then assembled together with third-party IPs — in such a case, it can benefit

58

CHAPTER 3: Methodology Overview

from all three components, for both IP and SoC verification activities, and ii) an IP
provider/licenser, who only develops IP level designs and should find the first two
components as systematic enhancement to IP verification quality.

59

60

Quality Metrics Driven Functional Verification for IP based SoC Design

CHAPTER 4: Mutation Analysis-Directed Adaptive
Random Simulation

4.1. Introduction

This chapter presents the first component of our verification methodology. For the first
phase of an IP verification, which is meant to be as comprehensive as possible, it is yet
reasonable for us to rely on a random-simulation based, light-weight method to reach a
primary quality level under the mutation analysis metric.

We have explained the advantage of constrained random simulation (CRS) over pure
random. With a probability model defined by weighted constraints on design input, we are
not only able to generate a significant amount of tests for exercising the design, as in
random testing, but also able to control the distribution of generated tests by assigning
more weights to constraints of more interests, which we cannot do with pure-random
simulation.

Motivation for Metrics Directed Adaptive Random Simulation

However, when CRS being employed as the basis for our metrics driven verification
approach, there are several problems appearing, which can be viewed as the general
motivation of this chapter. Based on a microprocessor design example, Figure 4.1 gives
an illustration of these problems.

e First, initially, the probability model for random test generation is not defined with
the quality metric — the mutants — in mind. The tests to be generated are totally not
aimed at the target of our verification: killing the mutants. Therefore, we may
expect that the test generation is inefficient with regard to mutation analysis.

e Second, the metric changes over simulation time, as killed mutants are consistently
removed from the mutant database and the remaining mutants become the reduced
target. It is almost impossible to assume that the test probability model will just

61

Quality Metrics Driven Functional Verification for IP based SoC Design

Metric directed, consistent
adjustment to test probability model

adjustment

Tfeedback from metric measurement
4)

Quality Metrics
=) @@
= 3
g |£
£l
- v N execute | [memory 8
Constrained Random) X X X X §
Test Generation | @daptafion 1 X X X X =
B X X X X
X X X X
Test
Probability

Model S

[]

Q

el

decode execute memory o

8

X x 9

©,

x 3

c

2

=

_ v)

X : Target point from a quality metric — e.g. a functional coverage bin, or a design mutant

Figure 4.1 Motivation of metric feedback directed random simulation.
Adaptation reason 1: test model originally not constructed as specific for the metric;
adaptation reason 2: test model needs adaptation to the continuously changing metric.

match the changing metric. Therefore, again, inefficient tests are expected that are
not aimed at killing the remaining mutants.

o Further, inefficient test generation is a more severe problem in particular to
mutation analysis, since i) we have a stringent qualification on tests, with the
mutant-killing problem already difficult to satisfy, and ii) if tests are generated
aimlessly, mutation analysis requires high cost of simulation time to examine
whether each mutant can be killed, compared to other metrics, for example
functional coverage, where only one simulation is necessary for checking all
coverage bins.

In fact, the problems apply not only to the combination of random simulation and
mutation analysis, but also to other quality metrics like functional coverage. Only, they
will be exaggerated with mutation analysis, because of the high simulation requirement,
and become a more urgent motivation.

Therefore, to mitigate these problems, we consider an adaptive method for random test

62

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

generation, which should continuously steer the test model towards the mutation analysis
metric, So as to obtain a more efficient test generation process, i.e. having more mutants
killed with less tests.

There are three components in such an adaptation loop, as outlined by the figure. The
first is a constrained random test generation process, containing a test probability model
that should provide us the opportunity to tune and steer the test generation. The second is
the quality metric measurement process, with the metric consistently changing under the
randomly generated tests. The third is the adaptation block, which correlates observation,
or feedback from metric measurement to any desired adjustment on test model.

Contribution of the Chapter

This chapter, as the first component of our mutation analysis driven functional
verification methodology for IP-based SoC design, contributes by proposing a mutation
analysis-directed adaptive random simulation method, which is aimed at improving HDL
mutation analysis efficiency. For this, we propose i) first, a combined use of Markov chain
and weighted constraints for random test modeling, which enables dynamic adjustment to
a probability model, ii) second, dynamic mutation schemata that not only reduces the cost
of HDL mutation analysis but also enables detailed feedback collection, and iii) third, an
efficiency-improving heuristic that calculates and applies consistently adjustment to test
generation, with the expectation that more mutants will be killed with less tests.

Organization

After the general motivation, we unfold the rest of the chapter with an overview of our
proposal on this adaptive method, at the beginning of Section 4.2. The three constituent
parts of it — the random test modeling, the dynamic mutation schemata, and the adaptation
heuristic — are elaborated from Section 4.2.1 to 4.2.3, with the overall procedure again
summarized in Section 4.2.4. Related literature is comprehensively discussed in Section
4.3. And the chapter is concluded by Section 4.4.

4.2. Mutation Analysis-Directed Adaptive Random Simulation

As shown in Figure 4.2, we propose an adaptive random test generation method for
HDL design simulation, which is directed by mutation analysis as the simulation quality
metric as well as adaptation basis. The simulation framework consists of several
innovative components.

e Markov-chain and weighted constraints modeled random test generation. A
prerequisite for any adaptive random simulation is a probability model for test
generation, with parameters that can be adjusted dynamically at simulation time.

63

64

Quality Metrics Driven Functional Verification for IP based SoC Design

We employ a Markov chain augmented with weighted constraints for this
random test modeling purpose. Combined, they provide us the chance to steer test
generation towards particular types and sequences of tests. Further advantages and
definitions of this modeling will be explained.

HDL mutation analysis with dynamic mutation schemata. For mutation analysis,
first, mutation schemata — using a meta-mutant to instrument all mutants into a
single design copy — should be leveraged to create the mutant database. Since we
are verifying IP level HDL designs, e.g. a microprocessor design, that usually have
thousands of lines of code, thousands of mutants can be generated. With mutation
schemata, we need only a single compilation with meta-mutant.

Second, we consider strong mutation analysis as the final measurement of
simulation quality: the killing of mutants is defined as whether there is any
deviation at design output, instead of at any of its internal intermediate signals in
the case of weak mutation analysis. As mentioned, the definition of a kill-point is
mainly a trade-off: if we use strong mutation for more stringent requirements on
simulation tests, more simulation time should also be expected. Since our goal is
indeed an as-thorough-as-possible verification for an IP design, it is reasonable for
us to choose the more strict quality metric.

Further, we propose an extension to mutation schemata as dynamic mutation
schemata. The dynamic means that the simulation of individual mutants is
dynamically created, or forked from the meta-mutant simulation. The mechanism
is specific for HDL mutation analysis and, by such, we not only obtain the
necessary information for test mode adaptation but also improve the efficiency of
mutation analysis

Killed mutants will be marked and kept out from further mutation analysis, as
we finally measure the overall quality of an entire simulation process, instead of
any subset of test data. It is not strictly specified by our framework which
percentage of killed mutants is the adequate level for the random simulation phase
and raises a signal for moving to the heavier-weight search based test generation
phase. One reasonable way of such decision may be that we exit the random
simulation as soon as the number fo killed mutants stops to increase for a certain
period of time.

Mutation analysis-directed adaptation to test generation. During simulation,
we apply a continuous adaptation to the test model based on Markov chain and
weighted constraints, by adjusting their parameters. The purpose is to enhance the
efficiency of the simulation process under this test model, based on knowledge that

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

adjustment on test probability model

(A
Mutation Analysis Directed Adaptation to Test Generation
c
58 bservati
© observation
£ s s adaptaton (G
S & heuristic
a B
g

propagate —» goal

7}
mutation analysis feedback

HDL Mutation Analysis

N L pih
I D R B Ve ynam
B R R B i | Mutation
[N N N N N N Schemata

Constrained Random Test Generation

Weighted constraints

HDL Simulator

Figure 4.2 Mutation analysis directed adaptive random simulation.

we can collect on-the-fly during simulation. Here, a higher efficiency can be
achieved with regard to our quality metric — mutation analysis, meaning more
killed mutants by less tests.

We define a heuristic for this adaptation. The goal of the heuristic is specified
by the fundamental problems of test generation in mutation analysis: reach,
activate, and propagate. They also specify what information we should observe
and collect from mutation analysis, i.e. the feedback. The heuristic then tries to
correlate the feedback to the goal, which will be explained and formulated in
Section 4.2.2.

This adaptive simulation is necessarily executed in a closed-loop style, since we
should not only close the gap between the initial test modeling and mutant database
— the quality metric, but also steer the model towards the dynamically changing
metric, whenever dead mutants are removed.

e Design Under Verification (DUV). This mutation analysis directed adaptive
random simulation framework applies mainly to IP-level designs, which usually

65

Quality Metrics Driven Functional Verification for IP based SoC Design

have a strict interface specification on input-output behavior, for example the ISA
for a microprocessor design.

We consider the designs under verification to be RTL or behavioral, described
in HDLs including traditional VHDL and Verilog, SystemC, and even C. The
design can be in any development stage, early or near-complete. Therefore, there
IS no assumption of its synthesizability.

For verification, we simply assume the existence of a golden model. This model
conforms fully to the design specification, for example an ISA. Randomly
generated tests are applied directly as design stimulation. Comparison of
simulation behavior between a golden model and DUV decides the design’s
correctness.

Also note that each time the design is modified — either through design
refinement or debugging, we need to restart the whole simulation procedure for
another round of verification.

HDL simulator. Any HDL simulator capable of constrained random simulation,
such as the ModelSim tool that is employed in our evaluation later, should be able
to support this adaptive simulation. ModelSim supports also all the IP design
languages that we consider: VHDL, Verilog, and SystemC.

4.2.1. Random Test Generation with Constrained Markov Chain

We first introduce the some basics of Markov chain and how it can be mapped to a
random test generation model. Then, we present an extension to this modeling technique
by attaching weighted constraint. The resulting test generation iteration is summarized at
the end.

Markov Chain

In its basic form, a Markov chain with finite states can be described as a directed graph
M = (V,E,P):

66

V is a set of states, or nodes that form the Markov chain,

E €V x V isaset of directed edges, in which there exists one edge from each node
to every node, including itself,

P is a labeling function from E to non-negative real numbers, which represents the
probability of each edge being selected for next transition from the present node.

With E,,:(v) as all the edges out from v € V, we have the probabilities
ZedgeieEout(v)P(edgei) =1

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

Figure 4.3-a) shows a simple Markov chain model with two states: s, and s,. At state
So, We have a significantly higher probability P((so, so)) = 0.9 of taking a transition back
to this current state, compared to the chance of moving to the other state s;: P((so, 51)) =
0.1. In contrast, after entering state s;, the model has an equal chance between staying at
s, Or going back to s,. After a long sequence of transitions, we can image that a pattern of
consecutive s, will frequently occur.

The probabilities on edges can also be tuned dynamically. This means that, if we
become more interested in pattern s,s,, we can simply adjust the model by: P((so, 51)) =
0.9 and P((so,s0)) = 0.1.

The transition process of a Markov chain has the characteristic of being memoryless,
meaning that the next transition depends only on the current state, not on the earlier
transition history.

Test Modeling with Markov Chains

Figure 4.3-b) illustrates how a Markov chain can be used to model a random test
generation process, by an example with microprocessor test instructions.

This test modeling is intuitive. First, each node of the Markov chain represents one type
of tests that we consider to be specific for the design, such as an ISA (Instruction Set
Architecture) category that we model in the example. Then, a sequence of tests can be
generated by transitioning through the chain. Following each transition, a test is randomly
selected from the type that the transition destination represents. The starting point for a
transition sequence is not important.

Therefore, at each intermediate node, probabilities on the edges out from this node
model the chance of each destination node, a type of tests, being selected for next test
generation. In the microprocessor example, all the edges between ISA nodes are assigned
equal probabilities: P((Arith, Arith)) = P((Arith, Multiply)) = P((Arith, Shift)) =
P((Arith, Branch)) = P((Arith, Store/Load)) = 1/|Ey,.(Arith)| = 0.2. By such, we can
expect equally distributed tests for all nodes. This all-equal-probability further means that
initially, we model no biasing on the test generation process, but relying only on the basic
ISA information.

The Markov-chain based random test modeling provides us the following possibilities:

e First, a Markov chain allows us to steer the distribution of a single test input
towards particular areas which we regard as more interesting.

Consider that we start test generation with an all-equal-probability Markov
chain. Assume that after some period, we see most of the un-killed mutants
remaining in the barrel shift unit of the design, because, somehow, they are a

67

Quality Metrics Driven Functional Verification for IP based SoC Design

b)

=

Figure 4.3 a) a simple Markove chain exmple; b) Example test modeling with
Markove chain for a microprocessor .

difficult job. Then, we may expect an acceleration of the mutation analysis process,
if we generate more barrel-shift tests, by adjusting all five incoming edges on the
corresponding node to a relatively high level.

e Second, if the interaction between two adjacent test types/nodes is considered to
have a particular impact on design simulation, we can also steer the test generation
to encourage such a pattern. Note that in a Markov chain, any two nodes are
connected and therefore adjacent.

It is not possible to model the impact of a test pattern of longer sequence, since
only the immediate dependence between two nodes can be reflected in Markov
chain — its memoryless characteristic.

Weighted Constraints to Extend a Markov Chain Model

As an extension to the basic mechanism above, we further integrate constraint-based
random test generation into the Markov chain-based test modeling. The principle of
constrained random test generation and its advantage have been introduced in the
background chapter.

e To each node v € V in a Markov chain M, we may extend M by attaching to v a
set of weighted constraints that are defined on design input, or sub-fields of the
input.

68

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

e These constraints at v are classified into groups. Constraints from different groups
are defined on non-overlapping input fields.

e With W(c) representing the weight on a constraint ¢ and Group(c) as all
constraints in the same group with c, their weights should sum up to 1:

ZcieGroup(c) W(Ci) =1

While each node v should already represent a particular area from design input space,
the constraints further divide that area. As previously explained, these constraints again
specify a probability distribution on v.

By such, we have a two-level modeling of random test generation. The advantage is
that a finer adjustment to the test model is made possible, by adjusting the weights on
constraints.

Figure 4.4 shows an example of such extension: how a Markov chain is augmented
with weighted constraints for a finer modeling of floating point tests. The original Markov
chain contains four nodes to represent four valid operations specified for a floating point
unit (FPU) design. The FPU design can be a stand-alone IP, or an auxiliary unit in a
microprocessor 1P, which then makes this Markov chain also part of a larger ISA model.

The table lists the constraints defined and attached to node multiply. They are specified
with constraint structures from SystemC Verification Library (SCV). Further, they are
grouped by the input fields that they constrain, without overlapping: on the rounding mode,
the first operand, and the second operand. The classification of operand values and
rounding modes from the constraints definition is according to IEEE floating point
standard [49], which should be the specification for the FPU design. Initially, all
constraints in the same group share an equal weight for random selection.

The constraint satisfaction problem [74] imposed by this constraint extension for test
modeling is not the focus of our method. Verification languages, such as the SCV
mentioned here, commonly integrate constraint solving facility and can be seamlessly
leveraged to complete our test generation.

Test Generation lteration

To summarize, the overall test generation process modeled as a constraint-extended
Markov chain follows the following steps:

1) From a current node v,,-.n: OF the Markov chain model, we select the edge for
next transition vy, et € Eout (Wewrrent), fOllowing probabilities on the edges.

2) At node v,,,:, for each constraint group associated with v,.,;, we select one
constraint according to the weights in the group.

69

Quality Metrics Driven Functional Verification for IP based SoC Design

A FPU design Markov chain model for FPU test generation
—operation-m|
rounding div ——output—m- A
— -
mode —underflows @ @
— signA—m| P\
SignA —overflow-m-
—exponentAm-| mul
] > I
——signB—| —invalide—m <>
—exponentB| sub I—exceptionm
—mantissaB|
—ov
—as [| e >
——TSt—p| '
—enablew-

Weighted constraints to extend node Mul

constraint_group: Operand_A

constraint SCV representation of constraint w(:;?\isgt}::int)
8 SCV_CONSTRAINT(exp_a()==EXP_ALL_ONE && mantissa_a()!=0); 01
Min_Subnorm SCV_CONSTRAINT(exp_a()==0 && mantissa_a()==1); 0.1
Subnorm SCV_CONSTRAINT(exp_a()==0 && mantissa_a()==1); 0.1
Max_Subnorm SCV_CONSTRAINT(exp_a()==0 && mantissa_a()==FRAC_ALL_ONE); 01
Min_Norm SCV_CONSTRAINT(exp_a()==1 && mantissa_a()==0); 0.1
Norm SCV_CONSTRAINT(exp_a()>=1 && exp_a()<EXP_ALL_ONE); 0.1
s ORI g A e
LTy SCV_CONSTRAINT(exp_a()==EXP_ALL_ONE && mantissa_a()==0); 01
WELY SCV_CONSTRAINT(exp_a()==EXP_ALL_ONE &8& mantissa_a()!=0); 01
Qi SCV_CONSTRAINT(exp_a()==EXP_ONE && mantissa_a()==0); 0.1

constraint_group: Operand_B
constraint_group: Rounding

4

Figure 4.4 Weighted constraints to extend Markov-chain basd modeling of
random test.

3) Solve the constraint to generate the corresponding test input that are specified by
this constraint. For any input field that does not receive a value from constraints,
generate it randomly.

4) Take the transition to v,.,; and start next iteration, by setting it as the new

vcurrent :

Initially, the test model is defined mainly with information on the design interface, with
little consideration on the design’s internal architecture. Therefore, at the beginning of a
simulation process, we assign equal probabilities to Markov-chain edges and equal weights
to node-attached constraints.

70

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

For later adjustment, we assume that each time a test is generated, a record
(test,edgeiest = (Wstart) Vena), CONStraint,.g:) is saved as further reference to the
origin of test, where edge;.s; and constraint,.s are the edge transitioned and
constraint solved for the generation of test, respectively.

Note that actually, there can be not only constraint;,.s: but multiple constraints used
from different groups for generating test. Only for the simplicity of presentation, we
formulate the adjustment of constraint weights for one constraint group. The same
adjustment should be applied to each group.

4.2.2. Heuristic Closed-loop Adaptation to Test Generation

With Figure 4.5, we first show a motivation of how we formulate this mutation
analysis-directed, closed-loop test adaptation, as a heuristic approach. The final adaptation
heuristic, with the goal to improve mutation analysis efficiency, is devised by considering
i) the ultimate problem of test generation in mutation analysis, ii) the feedback from
mutation analysis as input for adaptation, and iii) hypotheses that we consider being
reasonable for correlating the mutation analysis feedback to the test generation problem.

e Test Generation Problem: we may recall that the test generation problem for
killing a HDL design mutant requires the mutant simulation to first reach the
mutation statement, then activate this mutant by executing the mutated statement
in such a manner that a local deviation is created, and propagate this deviation to
any output of the design.

e Adaptation Input: we use mainly the statistic of how many mutants were totally
activated by each test during mutation analysis, as input for calculating the
adjustment. Summarized as (test, Nyceivation). this information comes from the
dynamic mutation schemata process that will be introduced in next section.
Besides, from last section, we record an entry (test, edge;.s, constraint,.g.) from
the Markov chain-based test generation process, for each test generated, with
edge.... and constraint,,, asthe edge and contraint that were used for generating
this test, respectively.

e Hypotheses: two simple hypotheses are proposed in order to correlate mutation
analysis feedback to the test generation goal. They also become the direct rationale
behind how we formulate the heuristic.

- Activation-propagation hypothesis: if a test activates a lot of mutants in
simulation, it also leads to simulation that kills many mutants in the end. In
other words, we assume that the mutant-activation capability of a test is
coupled with its final mutant-killing effect. This is reasonable in a

71

Quality Metrics Driven Functional Verification for IP based SoC Design

Mutation analysis directed adaptation to Markov-chain test model

- - B
QO Observation:
Mutant activation from
L dynamic mutation schemata)
c @ Adaptation Heuristic :
5 2
IS g = Hypotheses: Encourage Markov-chain edge/constraint
2 g activate 1) Activation-propagation by increasing probability/weight,
o oo L
a 7 2) Similar-test if they produced high mutant activation
- propagate
\/ Expectation:
More mutants killed
L J
v I
new probability/weight

. test, Noctivati test is from (edge, constraint
on edgees; and constraint,es, (s Nactivation) f (edgetest, test)

Figure 4.5 How we devise the adaptation heuristic.

straightforward manner: activation precedes propagation and is a necessary
condition for killing a mutant.

- Similar-activation hypothesis: if a test activates a lot of mutants, the Markov-
chain edge and constraint that were used for generating this test should
further generate tests that similarly activates many mutants. Basically, a pair
of Markov-chain edge/constraint represents tests of a same type. We expect
them possessing similar mutant-activation capabilities.

Based on the considerations above, the adaptation heuristic works by adjusting the
probability/weight of the corresponding Markov-chain edge/constraint according the test’s
activation efficiency. We formulate the calculation of this adjustment in the following.

Adaptation Heuristic

Each time the adaption is triggered, with (test, Nyctivation, €dG€tese =
(Vstart, Vena), CONStraint,.g,) as input, we first calculate a test efficiency value as:

Nactivated
ef ficiency =

Nmutants—unkilled

Where Ny ianes—unkitiea 1S the number of un-killed mutants, which are constantly reducing
during mutation analysis. This efficiency becomes an estimation of the test’s potential to
kill mutants. Based on our second hypothesis, this estimation applies also to future tests to
be generated from (edge,.s;, constraint,.s).

72

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

A certain amount of incremental adjustment to probability/weight of test generation is
then calculated as

|Eout (vstart) |
ef ficiency
" |Group(constraint,,g)|

ef ficiency
Pincr =T .

lVVinCT

where With edge,esr = (Wstares Vena)r Eour (Wseare) 1S the set of all edges that come out from
Vgare @NA Group(constraint,.s.) represents all constraints that belong to the same
constraint group from which constraint,., is selected.

By this, we try to manage an appropriate magnitude of adjustment each time, by taking
into account the total number of candidates for each random selection.

Then, the new probability/weight on edge,.s; and constraint,,, are increased by P, .,
and w;,., respectively, as
P,(edgetest) = min{Pold(edgetest) + Pincrs PMAX}

W'(constraint,es:) = min{W,,; (constraint,est) + Winer Waax}

where P’ and W' represent the probability and weight after this adjustment and P,,,; and
W4 are the old values . Py 4y and Wy 4y play the role of two maximum bounds, so as to
prevent other edges as well as constraints from starving. In our evaluation with
microprocessor design, we have set both of them to be 0.9.

For each edge e; € E,,;: (vsqre) and each constraint ¢; € Group(constraint,,g) except
(edge,es:, constraint,,s.), We distribute the remaining probability/weight by

(Poia(e;)
P’ L) = 1 — P’ d
(el) ((e getest)) * 1—-Pyqa (edgetest)
1= Woalcy)
W)= (1-w' traint
| (c) = ((constraint,es.)) * 1 — W, (constraint,ge)

such that i) their previously gained bonuses are proportionally preserved and ii)

ZeiEEout(vsmrt) P’(ei) =1and ZciEGroup(constrainttest) W’(Ci) =1.

By such a gradual but consistent adaptation, we encourage those Markov chain edges
and constraints from which tests activating more mutants are generated. Based on the
activation-kill and similar-activation hypotheses, we expect that an improved mutant-
activation rate and therefore mutant-killing rate can be observed, i.e. a higher mutation
analysis result with less simulation effort with this adaptive random test generation.

73

Quality Metrics Driven Functional Verification for IP based SoC Design

4.2.3. Dynamic Mutation Schemata

We propose an extension to the original mutation schemata [63] which has been
introduced in the background chapter. The resulting process is called dynamic mutation
schemata.

For the convenience of presentation, we first introduce several notations for basic HDL
simulation and mutation schemata, as elementary constructs. We then define the dynamic
mutation schemata process based on these notations.

Notations for Original Mutation Schemata
For a HDL design under verification D to be simulated, we first use:

e D, & Simyyr (D) to denote the execution of a HDL simulation initialization phase
for design D, with the result notated as D,, i.e. the whole state of D after
initialization.

e D, <Sim(D,) , where ¢t =0,1,2,3, ... is used to represent the execution of one
HDL simulation cycle at ¢ + 1, which changes the state of D fron D, to D, ;.

Note that Sim,,r and Sim represent a simulation with specific tests, without the tests
attached to the notation.

Recall that in mutation schemata, all mutants are encoded into one meta-mutant, each
with a unique mutant ID. This ID should be designated to select the corresponding mutant
for simulation. We use:

e MM to denote the meta-mutant and MM, to represent mutant k by assigning the
mutant ID for MM to be k € [0, #_of_mutants]. During simulation of MM,, only
the mutated statement with ID k is used, with all the other mutations unmasked
and the original statements executed.

e When mutant ID k is assigned 0, MM, represents the meta-mutant with all
mutation masked. Simulation of MM, has the same trace as the original design D.

o MM,y < Simyyr(MM,) and MM, ., < Sim(MM,,) according to the notation
above for HDL simulation, with MM, as the design.

Extension as Dynamic Mutation Schemata

We propose an extension to this original mutation schemata, as shown by Figure 4.6.
We call it dynamic mutation schemata, since in the mutation analysis process, the meta-
mutant is continuously simulated as a main thread and the simulations of individual
mutants are dynamically forked and ended, if they are activated during meta-mutant
simulation.

74

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

MM, 5 < Sim(M,), during which My, and My,
were activated by test, and tests, respectively@

compare

'@Mu,lo

to My 10

MM, 1 MMy 4

Dynamic Mutation Schemata:

OMM,, < Simy;r(My)
Ateachcyclet+1,t =0,1,2,3,...:
@MMo,t+1 & Sim(My),
during which we obtain List,ctivated = (, (MML-, testMMi),)

For each activated MM; in List,ctivatea
(®update(testym,, Nactivation)
®MM;; < Fork(My, i)
@mask MM; in MM, as separate-running and no-check-for-activation

For each running forked mutant j simulation:
®MM; ., < Sim(M;,)
compare MMy <> MMj ;1 q,
if no deviation found, delete MM; and unmask MM; in MM,
@if deviation at design output, delete MM; as it is killed

(40 adapt test generation with (test, Nycrivation))

Figure 4.6 Dynamic mutation schemata for HDL mutation analysis.

At the beginning, we have only MM, launched for simulation, with tests consistently
generated as input from our random test generator. After initialization, MM, is simulated
at each cycle. In the illustration of Figure 4.6, we assume that the design is synchronized
at each clock rising edge.

Note that during Sim(MM,), we are able to determine for each mutant whether it was
activated, and by which test it was activated. A list List,c¢ipateq CaN b€ recorded as

Listactivatea = (’ (MMi' teStMMi)’)

where test,,,, represents the test that activated mutant MM;. This should be possible, if

75

Quality Metrics Driven Functional Verification for IP based SoC Design

during the meta-mutant simulation, i) we calculate a mutated statement in parallel to the
original one, for a comparison to see whether the mutant is activated ii) for each design
sub-unit, we maintain a record which test is currently resident at this unit. For example for
a microprocessor design simulation, in each pipeline unit there should be a corresponding
instruction that is currently executed by this unit. We assume that such a record can be
maintained during simulation, for any pipelined design. Then, when a mutant is activated
during meta-mutant simulation, we know the test that is responsible for the design unit
containing this mutant.

For each activated MM; from List,.iparea, We first update the record entry of that
mutant-activating test: Nyctivation iN (testum,, Nactivation) 1S inCreased by 1.

Then, we try to fork a continuing simulation for MM;, from the current meta-mutant
simulation. For this, we further assume the availability of a fork functionality: MM;, <
Fork(MM,,,i), which first creates a copy of MM, and then change the mutant ID of this
copy from 0 to i. Such a fork is possible, since mutant i has never been activated until ¢
and, therefore, MM, . and MM;, should represent the same design state in such a case.

The activated and forked mutants are masked in the meta-mutant simulation, since they
are now simulated in separate threads and no longer required to be checked for activation.

Each such forked mutant simulation thread, say MM;, is simulated at every clock cycle:
MM;,, < Sim(M;,) . The result MM;,,, is compared to MM,,,, from meta-mutant
simulation. There are just two outcomes from this comparison:

e If no deviation is found between them, it means that the simulation of mutant MM;
has converged back to the meta-mutant simulation. That thread for simulating
MM; can be aborted. We unmask it in MM, to resume the activation-checking for

MM;.

e If any deviation appears at design output, it means the activation has been
successfully propagated and, by definition of mutation analysis, mutant MM; is
killed.

The main advantage of this dynamic mutation schemata is the saving of simulation time
for HDL mutation analysis. Individual mutants are simulated in a dynamic, just-in-time
manner, based on meta-mutant simulation.

At the end, we are able to compile the input for the adaptation heuristic:
(test, Nyctivation) TOr each test, which are consistently updated during our dynamic
mutation schemata. Note that we should trigger the adaptation heuristic only when a test
will no longer receive any activation update.

76

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

4.2.4. Summarized Procedure

In Figure 4.7, the summarized procedure is presented for the proposed mutation analysis
directed adaptive random simulation. The purpose is to give the reader a clearer overview
on this simulation process.

Test model preparation

From design specification, e.g. an ISA, construct a Markov chain model M = (V, E, P) and
extend it by attaching weighted constraints to V;

Initially, all edges and constrains are assigned equal probability/weight;

Create meta-mutation MM from design under verification;

Start simulation

WHILE still within simulation budget DO

Generate a test from M and record (test, edgeios: = (Vstare» Vena)» CONStraint,eg;), as
described by Section 4.2.1;

Simulate MM, and each activated mutants MM; for a cycle with test as input, and update
activation statistics of tests, as described by Section 4.2.3;
FOR each test has not been updated for a certain time, if any, DO

Calculate and apply an adjustment (P’, W") on constrained Markov chain model, as
described by Section 4.2.2.

End
END WHILE;

End

Figure 4.7 Summarized procedure for adaptive random test generation directed by
mutation analysis.

We do not repeat the explanation of the steps. For the evaluation chapter, we have
implemented i) the constraint augmented Markov chain with the SystemC Verification
Library, ii) the dynamic mutation schemata by utilizing the Tcl interfaces of tool Certitude
and ModelSim, and iii) the adaptation heuristic also in Tcl.

4.3. Related Work

We review literature that has a focus as we have: random simulation methods that are
made adaptive and dynamically steered under a specific simulation quality metric.

First, in Figure 4.8, we give a tabular view of the literature and, in particular, which
metrics are targeted by the adaptive simulation. Note that in literature, term coverage
metric is used for the same meaning as quality metric in this work. Coverage-directed and
metrics-directed also refer to the same.

77

Quality Metrics Driven Functional Verification for IP based SoC Design

Metric as adaptation

Literature
target

Functional (verification- |[15]: Coverage directed test generation for functional verification

plan) coverage using Bayesian networks (2003)

switching) coverage models (2007)

Functional (signal- [75]: Microprocessor verification via feedback-adjusted Markov

Observability-based [16]: A Functional Validation Technique: Biased Random

Coverage Simulation Guided By Observability-Based Coverage (2001)

Assertion based coverage

[78] Simulation knowledge extraction and reuse in constrained
random processor verification (2013)

Figure 4.8 Related work: metrics-directed adaptive random simulation.

78

The method in [15] begins with a test planning and the coverage is defined as the
amount of pre-planned verification tasks that have been simulated, e.g. specific
transactions from a CPU unit. It can be viewed as a functional coverage. Then, an
evolving Bayesian Network is constructed to model the correlation between test
generation directives and the verification-plan coverage.

In [75], the adaption of random simulation is aimed at exciting more signal-
switching activities at specific locations. Based on the assumption that the increase
of such signal activities in simulation will also lead to higher chances of inciting
real design bugs in that portion, the final goal is to improve the efficiency of bug
detection, i.e. number of discovered design bugs by a certain number of simulation
effort.

Similar to our approach, the random test generation is modeled using a Markov
chain. However, no further constraints-based modeling is used as we do. Extra
monitors are necessary to be attached to those signals under consideration, so as to
collect a weighted score of switch activities. This score is then taken as input to the
calculation of adjustment to probabilities on Markov-chain edges.

Besides, the signal switching monitor is extended to also include signals that
precede a target signal under observation. They are assigned less weights when
summed up into the score, according to their distances to the target signal. This is
called depth-driven activity monitoring.

[16] ([76] and [77] similarly) builds adaptive constrained simulation based on the
so-called observability-based coverage, which we have discussed in the
background chapter. Recall that in observability-based coverage, tags are

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

introduced as symbolic disturbance to variable values. Their propagation during
simulation is defined on logic, arithmetic, and control operators.

It forms a semi-formal method. First, the circuit design itself is modeled as a
Markov chain at steady state. The controllability and observability of the nodes,
with regard to tags, are estimated using a limited depth re-convergence. Targeting
this estimation, an optimization algorithm tries to iteratively perturb the probability
distribution on random input generation, each time when the tag coverage stops to
increase.

[78] is one of the most recent effort on coverage-directed constrained random
simulation, which targets the assertion-based coverage. An assertions [79] in
simulation based verification is simply a statement embedded and co-executed with
the “actual” design, asserting whether a specific condition on design state, or a
sequence of states is satisfied at that point. Observing shortage of covered
assertions, in the verification of a microprocessor, the authors propose a
knowledge-learning methodology that tries to extract knowledge during simulation
and reuse them to i) further exercise the already covered assertions and ii) generate
tests that should hit those un-covered assertions.

A feature based rule learning approach is applied. First, an instruction sequence
as test input is converted into multiple snippets, each as a block with equal length.
These snippets are classified into two classes (Scoperea AN Snot—covered, aS POSItive
and negative samples), by whether they covered assertions in simulation or not,
according to the simulation trace. Then, ISA dependent features are extracted from
the positive samples, such as the data dependences in a sequence of instructions
(this is also considered in our approach). Rules are mined, as the knowledge, each
representing a hypothetical proposition from a specific collection of features to
Scoverear 1-€. asSertions been covered. Concerning the techniques and procedures
used for rule mining, one can directly look into the literature.

Comparison of Literature to Our Work

Contribution from our method compared to other literature on adaptive random
simulation can be concluded as follows:

First, our method uniquely takes the mutation analysis metric as the target of
adaptive simulation. Further, based on our consideration that mutation analysis is
an advanced emerging quality metric for HDL design simulation, we view our
method a step beyond state-of-the-art techniques.

We employ a combination of constraints and Markov chain to model test
generation and enable adaptation, which is not to be found in other methods and

79

Quality Metrics Driven Functional Verification for IP based SoC Design

provides us a finer adaptation basis.

e Our adaptation heuristic is based on a unique, more complex test generation
problem in mutation analysis: reach, activation, and propagation of mutants. These
are aspects that are not covered by other adaptation methods.

To the best of our knowledge, it is the first effort on such mutation-analysis directed
adaptive random simulation, to improve the efficiency of HDL mutation analysis. Our
evaluation on the method efficiency, in a later chapter, is also based on a state-of-the-art
HDL mutation analysis tool: Certitude [21].

4.4, Summary

We have proposed a novel method to improve the efficiency of HDL mutation analysis
within constrain random simulation, being aware of the problem that i) initially, the
random test model is defined not specifically for a set of mutants and ii) along with the
advancing of simulation, un-killed mutants as the remaining target also change. They
become the motivation for adaptive random test generation.

The simulation method consists of three parts, for random test modeling and
generation, for HDL mutation analysis, and for a consistent adaptation to test generation.

e The Markov chain and constraints based test modeling enables us not only to steer
the distribution of a single test input towards our interest, but also to encourage the
generation of a certain pattern of two consecutive tests.

e The dynamic mutation schemata leverages the advantage of original mutation
schemata by creating and compiling only one meta-mutant. It extends this
efficiency by dynamically forking necessary executions of individual mutants and
merging them back when the executions succeeded or converged.

e The adaptation heuristic is devised based on the intrinsic problem, or conditions of
mutation analysis test generation: reach, activate, and propagate. Basically, test
patterns that activated more mutants are encouraged, with the expectation that they
will continue to activate many mutant and, therefore, also kill mutants. This
encouragement is realized through the adjustment of probabilities/weights on
Markov chain edges/constraints.

By this, we expect a derived simulation process that is not only measured under the
mutation analysis metric, but also self-steering towards this metric by adaptive, automatic
test generation — thus a metrics driven verification method. It severs the first component
of our methodology, and the first phase of an IP verification.

80

CHAPTER 4: Mutation Analysis-Directed Adaptive Random Simulation

In the evaluation chapter, we will mainly investigate whether the adaptation heuristic
equipped simulation process is indeed able to improve the efficiency of HDL mutation
analysis, i.e. it killing more mutants with less random tests generated.

In general, we see the method not limited mutation analysis, with no restriction of its
application to other metrics.

This contribution has been first proposed in [7] and further elaborated in [1].

81

82

Quality Metrics Driven Functional Verification for IP based SoC Design

CHAPTER 5: Metaheuristic Search-Based Test
Generation for Mutation Analysis

5.1. Introduction

The feedback directed random simulation presented in last section is an advanced, yet
light-weight method to obtain a primary level of verification quality under mutation
analysis. Nevertheless, we expect that in most cases, the random simulation in general
cannot reach an adequately high percentage of killed mutants. For example, this adequacy
level can be a best-effort within the time budget for IP verification.

This chapter presents the second component of our verification methodology, a
heavier-weight, more complex method to handle each of the remaining mutants from
random simulation. It becomes also the second phase for a thorough IP verification.

The general problem is that there still lacks an efficient, practical test generation
method for HDL mutation analysis, i.e. to generate simulation tests that kill a HDL design
mutant, in particular, when we consider a complete microprocessor IP design, for example.
One reason is that professional EDA tool for HDL mutation analysis recently just emerged.
Related literature will be investigated after the presentation of our novel method.

Motivation for Metaheuristic Search Based Test Generation

Metaheuristic search, or simply metaheuristic, is a search algorithm on a discrete search
space that aims at finding an optimal solution on that space under a certain given objective
by trying to iteratively improve a current candidate solution. They are called metaheuristics
as the algorithms propose little constraints on the concrete problem that they can solve, i.e.
the search space and the search objective.

Figure 5.1 describes the basic principle of using such metaheuristic search for test
generation. The goal of the search is to find a target test and the search space is just design

83

Quality Metrics Driven Functional Verification for IP based SoC Design

cost e
oSt o4 (test) that represents goal of test generation)

1. current
test

v
2. select & try

| new candidate tests
v
3. improve

cost

\J 4.targetfound

if cost=0
0 4
target test found design input
(search goal achieved) (as search space)

Figure 5.1 Principle of metaheuristic search based test generation. It can also be called
simulation-based test generation, since only simulation is relied on to “try-and-improve” tests.

input. Since we have a specific goal of test generation in the context of quality metrics
driven verification, for example killing a mutant, and the input space for a HDL design is
indeed discrete, it is fundamentally possible for us to apply metaheuristic search.

The key to enable a search algorithm for test generation is the definition of an objective
cost function, or simply cost function, which represents the goal of test generation, since a
metaheuristic already defines the basic iteration framework for improving such cost. As
shown in the figure, a metaheuristic tries to move iteratively to another test that has a
reduced cost from the current test. If the cost is reduced to zero, we automatically reach a
target that satisfies the test generation goal.

We can find a wide range of metaheuristics with different candidate-selection and
moving mechanisms, from simple to complex. One basic example is local search, which
selects the neighbors of a current solution as candidates for examination. A cost-improving
neighbor is then identified as the new coordinate for search. Some more advanced
examples that have been applied to test generation include simulated annealing, as a
variant of local search to escape so-called local-optima, and genetic algorithm [80].

Though in a metaheuristic search based approach as shown in Figure 5.1, a solution —
a target test that kills a design mutant — is not guaranteed for test generation, our method
has the significant advantage that it relies only on actual design simulation to evaluate
tests and therefore, avoids completely symbolic simulation or constraint solving, as we
will discuss and compare in the related work. Therefore, it can be just integrated into a
simulation process to iteratively optimize tests, which makes it a practical solution to
mutation analysis test generation for even complex IP designs, assuming simulation is
practical.

84

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

Contribution of the Chapter

The contribution of this chapter, as the second component of our mutation analysis
driven functional verification methodology for IP-based SoC design, is the proposal of a
simulation test generation method which is based on metaheuristic search and aimed each
time at finding some functional test that kills a HDL design mutant. As the key of such
search, we propose an objective cost function that is able to perform effectively the search
steering towards mutant-killing tests.

Organization

The rest of the chapter is organized as follows. First, we introduce the overview of our
method that applies metaheuristic search to the test generation in HDL mutation analysis.
Here, a local search procedure is also outlined as a basic but concrete metaheuristic
example. Then, the major space of the chapter is devoted to Section 5.3, which defines a
cost function that should be able to effectively steer a metaheuristic search towards a
mutant-killing target test. Section 5.4 further discusses related work from literature and
why they do not qualify an appropriate solution. The chapter is summarized and concluded
by Section 5.5.

5.2. Applying Metaheuristic Search to Mutation Analysis

We propose a metaheuristic based test generation method for HDL mutation analysis,
as shown by Figure 5.2. Mutation analysis is employed as the consistently focused,
representative quality metric for IP design simulation. We do not restrict the method to a
specific search algorithm. Instead, we focus on the definition of a meaningful, effective
cost function that could be integrated into any metaheuristic to make a test generation
procedure.

The search targets every time one mutant left un-killed from the random simulation
phase. Its objective is to find a test that kills this mutant. The input of the cost function is
the simulation traces from mutation analysis, which makes the test generation pure
simulation based. The key is the definition of an objective cost function that measures the
progress of this mutant being killed, when it is still not the case.

Recall that to Kill a specific mutant, a test is required to generate a simulation that (i)
reaches the mutation statement, (ii) executes the fault-injected expression with certain
values such that the expression evaluates to a different result from the original expression
and (iii) propagates this difference to the design output boundary. They are called
reachability, activation and propagation conditions, or sub-problems of mutation analysis
test generation.

85

Quality Metrics Driven Functional Verification for IP based SoC Design

e N
cos tkill_ mutant(tes t)

Problem of
test generation

A model to

measure COSt st
. these 3
conditions
propagate
L J

. .]
simulation trace,,,, [F==""——

if not killed

HDL Mutation Analysis

} test

h 4

p
Metaheuristic Search
On Design Input Space IP DUV
jcostkiu_ mutant{t€St) (HDL)

\ 4
HDL Simulator

Figure 5.2 Metaheuristic based test generation for HDL mutation analyisis. It targets each

Therefore, the core the cost function, to be presented as the main content of this chapter,
is a model that measures the degree of these three conditions from fully satisfied.

Before the elaboration of the cost function, we present a local search on HDL designs,
as an example metaheuristic that may be applied for our test generation method, assuming
the availability of a cost function. The simple local search is chose, since, as mentioned,
our focus if not the search algorithm but the cost function definition for HDL mutation
analysis. With a basic metaheuristic, we should already be able to evaluate the
effectiveness of a cost function as a search steering guidance.

A Local Search Example

The procedure in Figure 5.3 begins with a random selection of test and then iteratively
tries to move to a better local neighborhood test, so as to land hopefully on a target test.

With an initial test randomly selected, its cost is calculated and we enter the loop for
reducing the cost iteratively. First, a list of so-called neighbor_test based on the current
test are identified.

We may consider this neighborhood function in a general way based on HDL types. A
straightforward scheme is that we adjust one input variable each time. For an integer

86

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

current_test := an initial_test that is randomly
selected

current_cost := cost,,,..n; (CUrrent_cost);

neighbor_test_list := neighborhood (current_test)

[
<

neighbor_test_list empty?

remove a neighbor_test from list;

cost := cost,,,..n: (Neighbor_test);

current_test := neighbor_test

Figure 5.3 Local search example.

variable, we can have two neighborhood moves, one by increasing and another by
decreasing half from its current value. For a bit or bit-vector variable, its neighbor values
should be those with one single Hamming distance from the current bits. For an
enumeration type, the candidates should be all the other possible values.

We may also consider a neighborhood function more concretely, for example for a
microprocessor design, by defining it as adjusting one instruction field each time, such as
toggling the carry bit of an add instruction, or increasing/reducing slightly the immediate
field of an immediate-instruction.

In another inner loop, we examine the cost of neighbor tests one by one. When the cost
is reduced to zero, we find a target test that kills the mutant. When a smaller cost appears,
we assume that additional useful information for killing the mutant has been included into
test by the neighborhood move. It should be an improved test and therefore set as
current_test for further iterations.

If we unfortunately could not find any neighbor test that reduce the current cost, we
encounter a so-called local-optima. One basic solution can be that we just restart from
another initially picked point. Certainly, the total restart needs to be limited with some
Maximum_Iteration.

There can be more sophisticated variants to local search, as introduced. Still, the
optimal setting of a search algorithm, for example this neighborhood function in local
search, is not the focus of this work. With this simple local search, the main purpose is to
evaluate the steering effectiveness of the cost function, on real designs in later experiments.

87

Quality Metrics Driven Functional Verification for IP based SoC Design

5.3. A Cost Function for Search Based Test Generation of HDL
Mutation Analysis

We propose a cost function that is able to estimate the progress of a test killing a HDL
design mutant, so as to steer effectively a metaheuristic search. We define a Control and
Data Flow Graph (CDFG) as the underlying data structure, since i) similar structures have
been commonly used for analysis and synthesis of HDL designs, both RTL and behavioral,
and even designs in C/SystemC, and ii) it just enables us to handle the problems of
mutation analysis test generation — reachability, activation, and propagation — by the
inclusion of both control and data flow.

After the definition of this CDFG structure, we present the cost function by first
explaining its general idea and, then, formulating its calculation in details.

5.3.1. A Control and Data Flow Graph (CDFG)

Graph representations with both data and control dependencies have been used in HDL
synthesis as well as verification [81] [82] [83] [84] [85]. For the purpose of mutation
analysis, we propose a variation with explicit data nodes on both control and data flow.
Extracted from a HDL design under verification and taking into account one of its
mutation:

Definition 5.1: A Control and Data Flow Graph (CDFG) is a graph CDFGpyy mutant OF
simply CDFG = (V,S,E, 5,0, Spytant) Where

e VY u S isthe nodes of the graph and E is the edges.

e Sis the set of statement nodes that each represents either an assignment statement or
a branch statement in the designand v = {v,, ..., .} are the data nodes each for a signal
variable.

- For each branch statement the branch evaluation is treated as a separate
statement generating an extra Boolean-valued data node, i.e., the branch
result. Only if statements are discussed in the following, as generally other
branches like a case statement can be transformed to if branches.

- We further distinguish v,,..,, € V as data nodes from branch statements.

e Ec(VxSusSxV)is a set of directed edges, each representing either a control
dependence or a data flow dependence.

- For each statement in the design, the corresponding node has inflow edges
from data nodes of its operand signals, and a single outflow edge to the data
node of its assigned signal.

88

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

O ~NOO O WNBRF

13 w<=(u=d);

15 y<=wandeandf;

u<=a+h;——u<=a-b;

process begin
if u>cthen

elsifu=c
else

end if;
11 end process;

mutation

mutation

x<="1";
x<='0";

x<=eorf;

Figure 5.4 Example control and data flow graph extracted from a piece of HDL design.

Extra control edges connect a branch result node to all the statement nodes
that are contained in this branch, which represents control dependencies. Such
nodes COMPrise Sp,an—controiied - EACN S € Spran—controuea May have one or
multiple control edges branch(s) € Vy,an X {s}. Every e € branch(s) is
labeled by § with a Boolean value to indicate in which case it should be
executed in simulation according to the branch result. § : E - {true, false}.

0 c V are the output ports of our design under verification, where simulation
results are compared to determine whether the mutant is killed.

Smutant € S 1S the statement where the mutation is injected.

We use s,..cane 10 NOL ONly represent the node but also the original statement
and s;...qne t0 represent the mutation injected statement.

We have further the following notations:

We use out(s) € V to represent the single out-flow data node of a statement,
i. e. the operation result, and in(s) c V as in-flow data nodes, i.e. the operands,
ofs foranys e S.Ifs

We use out(v) c S to represent out-flow and in(v) c S as assignment nodes
for any v € V. We can assume that if v is not assigned in any branch, in(v)
should have a single statement that assigns it. If v is indeed contained in some

89

Quality Metrics Driven Functional Verification for IP based SoC Design

branch, in(v) may have multiple statements. This Vy,qn—contronea € V Can be
simply identified by {v| in(v) € Spran—controtiedl-

Example 5.1-1:

Figure 5.4 shows an example design — declaration of signal and ports are left out — that
leads to a CDFG with V = {a, b,c,d,e, f,u,v,branchs,, branch,, x, y} v Voran =
{branchs,, branch,}, 0 = {x,¥}, Smutant = 51, and S, E, & to be identified straightforward
in the figure. m

This definition of CDFG should lead to an easy implementation of data structure and
algorithm. Since s,,,cqrion 1S the only difference for individual mutants, a CDFG structure
basically requires a single construction. Loop dependences are further included in such a
CDFG without extra effort. Moreover, the mapping of simulation traces onto a CDFG is
straightforward, by mapping values to variable nodes.

5.3.2. CDFG Based Cost Function Definition: Outline

With Figure 5.5, we outline the idea of our definition of a cost function for HDL
mutation analysis, which should measure the progress of a test killing a HDL mutant. It is
based on the CDFG example above.

Assume that we have mapped a pair of simulation traces, from the original design
simulation and mutant simulation, at one specific cycle both onto data nodes of the CDFG.
With this mapping, our ultimate task is to calculate a cost value that measures or estimates
whether the three sub-conditions of mutation-analysis test generation — reach, activate,
and propagate — are satisfied during this simulation and, if not, how far they are from
satisfied.

e Propagation. We first discuss the propagation after activation, which means that
some data nodes already receive a deviate value in mutant simulation compared to
original design simulation, such as node w in the figure.

1) With one or multiple such mutant deviations, we first measure the number of
statement nodes on the shortest path from any deviation to design output, to
be a macro propagation distance. In the example figure, this is 2.

Used in a search algorithm, this distance becomes a quantitative, macro
estimation of the progress of the HDL mutant being killed in one simulation, since
our final goal of search is, since our final goal is exactly to make such deviation to
appear on design output. When it is reduced to zero, after some search iterations,
we automatically obtain a target test that generates a mutant simulation trace with
deviation on design output, and mutant killed by definition.

90

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

CDFG
reach

Test Input

v N
a b
mutation
u<=a+b ; u<=a-b

Sy

act;v;ate {
—

c
S
)
o
9]
c
o
&0
oy
]
Q
2
o
o
2
)
c
9]
B
©
c
]
Q
=
3
£
K}
o
3]
2
S
e}
>
a

A 4
propagate ~

a) How CDFG handles problem of mutation analysis test generation

CDFG mutation

deviation

of trace in
mutation
simulation

Consider, e.g., constraint for
1) Macro Propagation Distance propagating a deviation to w :
- CONSTR:
number of - P
original (u = d) != mutant (u" = d
statement nodes on
shortest way from > not satisfied with current test
any trace deviation
to output 2) Local Propagation Cost
E.g. here,=2 boolean_cost (CONSTR)
, and normalized to between (0, 1)
N
N
NN \\ =>why useful: can estimate degree
AN .. of CONSTR from being satisfied, so
i R ::::::3 as to steer the search of target test
"""" whenzeror CTTTTTTTTTTTTTT

found target test that kills mutant

b) How propagation is handled.

CDFG

no
deviation
activated

mutation
u<=a-b
SN
7| €Ot kimutant
\) (test)
————— e bbb b
' 12 =
1
i Lacal.propagatm{r cost I‘ macro
\ applies au.tom.atlcally ! propagation
to activation, ! distance
| with activation-constraint | /
> s -1
CONSTR: +local
original (a+b) propagation
1= mutant (a’ - b’ cost

---------------------------- > ﬁ
0 design inpu

¢) How activation is also taken into account.

2
€OSt il mutant
7 (test)

'

' =
I
i
1 macro
'

h propagation

distance
-1
+local

propagation
cost

Figure 5.5 Idea and outline of CDFG based cost function.. Red data nodes mean a deviation

in mutant simulation trace.

91

92

Quality Metrics Driven Functional Verification for IP based SoC Design

The reason of us counting only statement nodes is that they are exactly the
obstacles of mutation effects propagating further, though they are the propagation
medium at the same time. On a CDFG, a mutation effect may spread as the input
of multiple statement nodes further to multiple data nodes. Such mutation effects
will also be blocked at a statement, if the statement despite one or multiple mutation
effect as its operands computes a same result as in the original design simulation.

2) Another local propagation cost is added to supplements macro propagation
distance. As a value between 0 and 1, it intends to bring a finer scale to our
cost function.

As illustrated in the figure with node w as example, it is calculated on a
statement node that follows a mutant deviation. A closer look at how the
propagation is blocked by s, is possible, if we consider a constraint for propagation
is exactly: the result of s, in original design simulation is different from that in
mutant simulation, as CONSTR defined in the figure. That this constraint was not
satisfied with the current test and simulation is the exact reason why deviation at u
is blocked by s,.

Then, leveraging the table in Figure 5.6, we are able to estimate the closeness
of such a propagation constraint from being fully satisfied, by transforming the
constraint into a Boolean expression.

Consider another basic example why this boolean_cost from the table is just
useful. Since boolean_cost(a > b) =|a—b|, for a=5 and b =1 that do not
satisfy (a > b), we have a cost as 4. Assuming that we made a change, for example
in a search algorithm, by a = 4 and b remaining the same, we may conclude that it
was a good search direction, because the cost is reduced to 3.

In the end, this boolean_cost(CONSTR) should be normalized to a value
between 0 and 1, to be added to the macro propagation distanced, just like the
centimeter scale to meter on a ruler.

Activation. Without further effort, the local propagation cost handles the
activation problem, since an activation-constraint can be derived similar to the
propagation constraint: result of mutant simulation deviated from that of original
design simulation.

The only difference here is that, at the right side of the not-equal constraint, the
mutated expression should be used, as the example shows in the bottom part of
Figure 5.5.

In such a case, with regard to macro propagation distance, to which the local
propagation cost should be added, since we do not have any deviation, we may

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

Boolean Expression e boolean_cost(e) as Cost Function Value
Boolean 0 if true, 1 otherwise
a<b, ash, a=b, a>b, a=b 0 if true, abs(a-b)+K? otherwise
a#b 0if true, K otherwise
B,AB, boolean_cost(B,)+ boolean_cost(B,)

0 if either is true,

B.VB boolean_cost(B;) X boolean_cost(B,) /
e (boolean_cost(B,)+boolean_cost(B,))
otherwise

«a. K is a small constant

Figure 5.6 boolean_cost() that estimates the degree of a Boolean expression from being
satisfied [90]. It can be applied to a propagation/activation constraint Byyiginai # Bmutant, if We

transfrom the constraint into Byyiginal A Bmutant V Boriginal A Bmutant-

simply use that distance of u plus 1, as a hypothetical distance even one step farther
than the very first possible deviation.

¢ Reachability. We assume reachability easy to be satisfied in any simulation and,
therefore, that it does not require particular guidance in a search algorithm. This is
in fact what we can observe in most HDL simulations.

5.3.3. Macro Propagation Distance

Following the idea from last section, in this section we detail the definition of macro
propagation distance, such that an implementation can also be easily derived.

With regard to a specific mutant, the mutation analysis process with test € T produces
a pair of simulation traces. We denote With W,,,.cane rese the original design simulation trace
and With Wi,can rese the trace with the mutant. Wi,,cant cese @ Winyrant cese CONtain values
from the real simulations. For the actual format of such simulation traces, as mentioned in
the background chapter, VCD (Value Change Dump) and WLF (Wave Log File) are
commonly used examples.

We define the cost function first for each cycle of the simulation trace pair W,,yrant rest
and Wiyycane cese- 1he final cost is then the minimal from all cycles. We denote with (w, w")
such a cycle snapshot from Wy, cant cese aNd Winueane rese, With

{w ={oW),0®,), -, 0, }

o' ={w' (), 0 (), 0 (v)}
where w(v;) represents the value of v; from W,,,cane cese at the cycle i and o’ (v;) the value
of v; from Wyurantrese at that cycle. This maps (w,w") directly onto the CDFG.
Winutant,cese Can be represented as { w,, w,, -} considering all simulated cycles and

! ! !
Wmutant,test as { W1, Wy, " }

93

Quality Metrics Driven Functional Verification for IP based SoC Design

We use further w(s) for an s € S to represent the evaluation of statement s with
variable values in w and w'(s) the evaluation of s with values in w’.

With this mapping we define the macro propagation distance as the first component of
the cost function as

macroPropagationDistance (w, w")
= min(dist(v)) for all v € V with w(v) # «'(v) (5.1)

where, and in the following, dist(v) is defined as the number of statement nodes on the
shorted path from v to any output node in O.

We call each pair of w(v) # w'(v) a mutation effect on v. By this simple formula, we
basically measure how far the mutation effects in the simulation traces, if any exists, are
still away from reaching the output nodes, by the definition of a mutant being killed.

Example 5.1-2:

With an input (a=4,b=1, c =0,d =2) for Example 5.1-1, we can calculate a
macroPropagationDistance = dist(u) = 2, with u receiving the only mutation effect
w) =50'() =3.

Assume that in a next search iteration, we adjust the input a little and consider another
candidate with a = 3. The new test will propagate the mutation effect through s-and lead
to a macroPropagationDistance = dist(w) = 1. This implies then a guidance on the right
search direction. The new test can be designated as the coordinate for further search
iterations that follow. m

In the case that no mutation effect exits, i.e. the mutant simulation trace matches totally
the original simulation trace, we define

macroPropagationDistance(w, w") = dist(out(smutant)) +1
i.e. the propagation distance of its outflow variable node.

With this inclusion, we are able to take into account the activation condition, since later
a local cost can be analyzed on s,;,,,.q4n:- This is also based on our assumption that statement
reachability is usually satisfied.

We notice that dist(v) for each variable node in a CDFG is a static value. They can be
computed directly after the construction of CDFG and attached to the nodes, for inquiry
when necessary.

Last, CDFGs with looped flows will encounter no special problem with regard to the
calculation of dist(v), since the distance is calculated with regard the shorted path and
therefore not following a loop.

94

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

For real-world designs, for example the microprocessor design or the floating point
design that are used in our evaluations we expect that their control and data flows have
much more stages and, therefore, macroPropagationDistance measurement can serve
a reasonably fine-grained search directive. Moreover, the introduction of extra data nodes
for control flows enhances the measurement. With regard to implementation, an extra
Boolean signal needs to be inserted for each branch to record its value during simulation.

As another result during the calculation of macroPropagationDistance (w, w"), We can
collect a set of nodes with farthest propagated mutation effects as Frontier(w, w") c V:

Frontier(w, w")

= {vlw() # w'(v) and dist(v) = macroPropagationDistance(w, w')} (5.2)

They will be used as the basis for calculating a local propagation cost, since, as the name
mentions, these are the frontier of propagation.

5.3.4. Local Propagation Cost

In this section, we discuss the detail of local propagation cost. We first present an
example for its essential idea. Then we formulate the procedure of its calculation in
different situations and, in particular, how this can be implemented on a CDFG.

For each farthest propagated mutation effect, for example at node u in Figure 5.5-b),
we take a closer look at why it is blocked by the statement nodes that have it as an operand
— there s, and s,. At each such statement, there is a straightforward condition for the
mutation effect to propagate through:

w(sy) # w'(s,) for s,
Where w(s;) is used to denote the computation of s; with the values in w, as previously
defined. This corresponds to(w(w) = w(d)) # (@' (W) = w'(d)).

The key here is that we can transform any condition, or constraint w(s) # w’(s) for a
s € S with regard to mutation-analysis result (w, w") equally to a Boolean expression
w(s)Aw'(5) Vw(s) Aw'(s), on which a satisfaction degree can then be calculated, by
leveraging the boolean_cost table from Figure 5.6.

We also note that such calculation relays purely on actual simulation values (w, ")
that are not symbolic.

Example 5.1-3: local propagation cost

On the CDFG from Example 5.1-1, with input (a = 4,b = 1,d = 0) the mutation
effect at u will be blocked at s, as condition w(s;) # w'(s;) is not satisfied with w(u) =
5, w'(w) =3, and w(d) = w'(d) = 0. Nevertheless, its satisfaction degree can be

95

Quality Metrics Driven Functional Verification for IP based SoC Design

estimated, as the local propagation cost that we call, by
boolean_cost(w(s7)) = boolean_cost(a)(u) = w(d)) = boolean_cost(5 =0) =5

boolean_cost(w(g)) = boolean_cost(a)(u) * a)(d)) = boolean_cost (5+0) =0
boolean_cost(a)’(s7)) = boolean_cost(w’(u) = a)’(d)) = boolean_cost(3 = 0) = 3
boolean_cost(w’(@)) = boolean_cost(a)’(u) * a)’(d)) = boolean_cost (3 #0) =0
localPropagationCost, (w, ")
= boolean_cost(a)(s7) * a)’(s7))
= boolean_cost(a)(s7) Aw' (57)Vw(s;) A w’(s7))

=5%3/(5+3)
= 1.875

Consider that we are in some search procedure and another candidate test is selected
by a slight increase of a to 5. This leads to a new localPropagationCost,, as 6 x
4/(6 + 4) = 2.4, which should be seen as a hint of wrong search direction as it increases
the cost. Going the opposite direction we could try a = 3, which reduces the cost to 4x
2/(4 + 2) = 1.33. The reduction gives a sign of test improvement and the search should be
encouraged to follow this direction.

If we follow this way and further decrease a to 1, we land on a test that satisfies the local
propagation condition at s; . The mutation effect spread further through s; and
automatically macroPropagationDistance is also reduced, by 1 at least. m

To conclude the essential ideas of local propagation cost, for a mutation effect to
propagate through a HDL design statement s € S on CDFG, we calculate

localPropagationCost ;(w, w")

= boolean_cost(w(s) * a)’(s)) = boolean_cost(w(s) Aw' G)Vwls)A w’(s)) (5.3)

In the following, we formulate a procedure for calculating such local cost for every v €
Frontier(w,w'), as an extension to CDFG.

1) We extend a CDFG by attaching a Boolean cost function to each variable node,
specifically for HDL mutation analysis.

Commonly, we can identify three types of HDL operations: arithmetic operations such
as addition or multiplication, bit manipulation operations such as concatenation or shift,
and Boolean operations that include logical operations as well as relational operations.
Our first observation is that it should be relatively easy for a mutation effect to propagate
through arithmetic operations and bit operations and, therefore, a finer scale with local cost
is not necessary at the corresponding nodes.

For example, a node with h + i will not be examined for local cost, since, if one of its
operands h or i has a mutation effect, it should be highly probable for the node also to of

96

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

compute a deviated value in mutant simulation. In contrast, Boolean operations may
expose particularly low probability for a mutation effect to get through. When a receives
a mutation effect, it is easy for (a and b and c and d) to mask this deviation in mutant
simulation and block the propagation. For another example Boolean operation a > b,
mutation effect on a propagates through, only when deviation is of a big enough
magnitude.

Therefore, we consider calculating the local propagation cost only at variable nodes
from Boolean operations. Importantly, this includes all the branch nodes that we build into
CDFG, by which all the design control flows are taken into account.

For this, we first assume that Sz,0.4n € S iNa CDFG are statement nodes with Boolean
evaluation and Vgzygieqn © V IS {v] in(v) € Sgeeieant. FOr each branch controlled statement
Node s € Spran—controtiea @Nd S € Spooiean, WE aggregate all its incoming control edges
branch(s) = {e; = (vy,5),e, = (v,,), } and extend its evaluation w,,; as

Wext (5) = (w(v) = 8(e)) A (w(v2) = 8(ex)) A A w(s) (54)

We have w',,.(s) in the same way. Then, for each branch controlled Boolean variable
v € Viran—controtiea @Nd ¥ € Vgoorean, We consider all in(v) = {s;,s,,--+} and attach to it a
local cost function

localPropagationCost,(w, w")

= bOOlean_COSt((wext(Sl) V Wext(S2) Vo) # (0 exe (1) V @ ey (52) Vo)) (5.5)

The function is calculated by expansion with (5.3) and further with (5.4). In short, all
the control dependences of this variable node are taken into account when calculating the
local Boolean cost. This is no repetition of the design simulation, but only an analysis of
the simulation results, with already happened values from the simulation.

FOr v € Vyyan—controtiea @Nd ¥ € Vioorean, ItS in(v) should be a single Boolean statement
{si}that s & Sy an—controuea @NA S € Spoorean- We simply attach to v the local cost function

localPropagationCost, (w, w") = localPropagationCost,(w, w") (5.6)
where localPropagationCost,(w, w") is defined and explained with (5.3).

There is one small exception for v € Vgyo10qn When in(v) just contains the mutation
statement s,,eane- 1N SUCh a case, if v € Vi, an—controtea @A in(v) = {s1,**, Smutane "+ h
we adjust (5.5) and attach to v:

localPropagationCost,(w, w")

= boozean_COSt((wext(sl) VeV Were (Smutane) V ++)

* (w,ext(sl) VeV w’ext(sr’nutant) Ve)) (5-5’)

Ifv ¢ Vbran—controlied and in() = {Smutant}» W€ adeSt (5.6) as

97

Quality Metrics Driven Functional Verification for IP based SoC Design

localPropagationCost,(w, w")

= boolean_cost(w(smumm) * w’(s,’numnt))

= boolean_cost (w(smumnt) Aw' (s,’numm) V @0 GSmutant) N w’(s,’numm)) (5.6")

Taking into account this exception enables us to take into account the activation
condition. When there are no mutation effect in the mutant simulation, (5.5") or (5.6")
calculates exactly the degree of the activation condition being satisfied.

If v & Voorean NOt from a Boolean statement, we attach to it a small constant number
K as its local cost, which reflect the assumption that it may very easily receive a mutation
effect.

We notice that this extension is also static to CDFG. A mapping from this definition to
an implementation should be relatively straightforward, which we will have experiments
in our evaluation chapter.

Example 5.1-4: CDFG extension of Example 5.1-1 for calculation of
localPropagationCost.

As an example of the above defined extension, we attach local cost functions to the
CDFG in Figure 5.4. Inputs {a, b, c,d, e, f} are ignored as they always receive the same
values in mutant simulation. It is also not necessary for node u, as it is not result from a
Boolean operation and we expect that it will probably have a deviation in mutant
simulation, i.e. the activation is probable, in this example.

For variable nodes{v, y, branchs,, branchs,, x}:

localPropagationCost, = boolean_cost(w(s7) +* w’(s7)) = boolean_cost (w(g =
d) A w’(not (g = d)) v a)(not (g = d)) ANw'(g = d)),by (5.3)

e localPropagationCost, = boolean_cost(w(sg) # w'(sg)) =

boolean_cost (w(v and e and f) A a)’(not (v and e and f)) %

w(not (v and e and f)) Aw'(vand e and f)), by (5.3)

. localPropagationCos1:bmnchs2 = boolean_cost(w(sz) * w’(sz)) =

boolean_cost (w(u >c)A w’(not (u> c)) \% w(not (u> c)) Aw'(u> c)), by (5.3)

. localPropagationCostbmnch54 = boolean_cost(wext(s4) * w’ext(s4)) =

boolean_cost(Weyt (S4) A @' ext (55) V Wert (53) A @' exe(s4)) bY (5.5), where by (5.4):
Wext (54) = (a)(branchSZ) = false) A w(u = c)

- Woext(sy) = (w'(branchSZ) = false) A wu=c)

98

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

- wexe(3) = not ((w(branch,) = false) A w(u=rc))
- W't (54) = not ((w’(branchSZ) = false) A w'(u = c))
« localPropagationCost, = boolean cost ((@ext(53) V Wexe (55) V @exe (55)) #
(@' ext(53) V @' et (55) V w’ext(s(,))) by (5.5), where by (5.4):
Wext(s3) = (w(branchs,) = true) A w(s;)
- Wexe(ss) = (w(branchy,) = false) A (w(branch,,) = false) A w(ss)
- Wext(se) = (w(branchy,) = false) A (w(branch,) = true) A w(e or f)

- w,ext(53): w’ext(ss)v w’ext(sé): wext(g): wext@)v wext(%)x w’ext(g)x w’ext(g)
and w',,.(5¢) follow the same way and we leave out the description.

Note that A and HDL native and are used interchangeably and single bits are also
treated as Boolean, which are minor implementation issues.

Consider that our current test as search coordinate is simply{a =1,b =1,c =0,e =
1, f = 1}. Output x does not receive a mutation effect but we can calculate

. boolean_cost(wext(sg,) V Weyt (S5) V wext(sé)) =0

® hoolean_cost (wext (53) V Wyt (S5) V wext(SG)) = boolean_cost(wext(g) A

Wext (55) N Wext(56)) =1x1/(1+1)+0+0=05

. boolean_cost(w’ext(s3) V@ oy (Ss) V w’ext(sé)) =0

e boolean_cost (w’ext(s3) VW ort (S5) V@ oyt (56)) = boolean_cost(w’ o (S3) A
W et () AW ext(56)) =0+0+1x1x2/(1+1+2)=05
e localPropagationCost, = 0.5x 0.5/(0.5 + 0.5) = 0.25

Suppose that we are in a local search and have a neighborhood test {a =1,b =1,c =
0,e = 0, f = 1} by adjusting only e. The new local cost at x is then

e boolean_cost (w’ext(s3) VW rt (S5) V@ oyt (56)) = boolean_cost(’ o (S3) A
0 ext(E) AW eyt(56)) =0+0+1x1x1/(1+1+1) =033
e localPropagationCost, = 0.5 % 0.33/(0.5+0.33) = 0.2

This shows how localPropagationCost reflects the gradual improvement of test, with
regard to propagation of HDL mutation effect. m

2) We calculate local cost at each variable node that are the potential propagation
points from Frontier(w, ") and select a minimal among all.

99

Quality Metrics Driven Functional Verification for IP based SoC Design

Recall that Frontier (w, ') c V are the farthest propagated mutation effects that we
have collected during the calculation of macro propagation distance.

But first, we can define for each wveV |, Propagation(v) cV
{v'| in(v)Nout(v) # @,and dist(v') = dist(v) — 1}. They are variable nodes that are
connected to v by two edges over one statement node and, at the same time, one-step
nearer to design output than v. They represent potential destination of propagation of any
mutation effect on v. As long as they receive a propagated mutation effect, the macro
propagation distance will be reduced too.

Note that Propagation(v) is also a static properties of v, which can be computed
directly on CDFG.

Then, Propagation(w,w") c V is collected as

Propagation(w, w") = U Propagation(v) (5.7)

vEFrontier(w,w’)

And an overall minimal local cost can be calculated as:

localPropagationCost(w, w") = min (localPropagationCostv(a), a)’))
vEPropagation(w,w’)

In a simple example with Figure 5.7, only the localPropagationCost, function
attached to node e will be used for cost calculation, since i) x does not belong to
Frontier(w, "), ii)) g is not from a Boolean operation, and iii) fdoes not belong to
Propagation(a).

3) If Frontier(w, ') = ¢, we calculate the local propagation cost at the result
variable from the mutation statement, by

localPropagationCost(w, ") = localPropagationCost oyt (s,ran) (@ @)

This measures a degree for the activation condition to be satisfied, in order to generate
the mutation effect.

4) The overall cost on trace (w, ") is summed up as:

cost(w, w")
= macroPropagationDistance(w, w") — 1 + localPropagationCost(w,w")/H

where H is a big constant that intends to always reduce the impact of local cost under 1.

Since we consider only the simulation and verification of synchronous HDL designs,
cost(w, ") is calculated for all cycles and the smallest one is selected as cost(test).

100

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

localPropagationCost,

(Coutput) (Coutput) (Coutput)

Figure 5.7 This example shows that only localPropagationCost, will be used for cost
calculation.

5.3.5. Algorithmic Summary and Complexity

In Figure 5.8, we give an algorithmic summary for the calculation of cost . iqn: (test),
which measures the progress of killing a specific HDL mutant, in particular, with regard
to activation and propagation.

We briefly discuss the complexity of this algorithm:

dist(v) as a static value, Propagation(v) as a static list of nodes, and a function
localPropagationCost, are all statically prepared on CDFG and, therefore, impose
no impact on simulation time.

With dist(v) available, the calculation of (5.1) and (5.2) requires only value
comparison for each variable which should require little effort. Also, (5.7) requires
little effort as a simple aggregation of the static Propagation(v).

For each node collected by (5.7), the effort of calculation with
localPropagationCost, should be at the same level as the original statement that
computes v. Assuming that the set of candidate nodes for propagation will be a
small fraction of all variables, the calculation of such local cost should be minor
compared to the original simulation time.

Therefore, we conclude that the overall time for calculating this cost ., cqn: (test) for
each test, based on the exiting simulation trace values from this test, should be minor to

the original simulation time, which is important for its integration into a search algorithm.
And we should be able to observe this property in our evaluation experiment with

microprocessor and floating point unit design.

101

Quality Metrics Driven Functional Verification for IP based SoC Design

Algorithm of cost,,,tqn:(test)

/I To be used as the cost function in Figure 5.2, for each specific mutant
H is a big constant and K is a small constant, which reduces the impact of local cost to be between (0,1);

Data Structure Preparation

Construct from design a CDFG = (V,S,E, 8, 0, Spputant), DY Definition 5.3.1;
Compute dist(v) and Propagation(v) foreach v in V;
Extend CDFG and attach local cost functions to variable nodes, based on (5.5) (5.6) (5.5”) and (5.6°);

Input

Input is test € T, which makes cost,ytane @ function: T->real value, T is ...

Wnutant test A Wiyrane rese are a pair of simulation traces from test, consisting of {w;, w,,--- } and
{w1, w}, -+ } for simulation cycles

Start

Setmacro_cost = dist(out(Smutant)) + 1;

FOR each cycle i in Winyrane test a0 Winytant test DO
Il (w;, w7) 1S from Wyeant rese @Nd Wipyeant tese as described;
Set macro_cost; = macroPropagationDistance(w;, w;), by (5.1);
Set macro_cost = min{macro_cost;, macro_cost};

END FOR,;

Set local_cost = H;
FOR each value changed cycle i in Wyeane test aNd Winyeant rest @9ain DO
IF macro_cost; equals macro_cost THEN
Identify a list F; = Frontier(w;, w;), by (5.2);
IF F is not empty THEN
Identify a list of candidate nodes for propagation P; = Propagation(F;) by (5.7);
FOR each v in P DO
Set local_cost; = localPropagationCost,(w, w") as attached to v;
Set local_cost = min{local_cost;, local_cost}
END FOR;
ELSE
Set local_cost; = localPropagationCostgys, .. (w;, w;) as attached;
Set local_cost = minf{local_cost;, local_cost};
END IF;
END IF;
END FOR;

Set cost = macro_cost — 1 + local_cost/H

End

Figure 5.8 Algorithmic summary of cost function.

102

5.4.

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

Related Work

We have proposed metaheuristic search based test generation for killing HDL mutants.
In this section, related literature is discussed. On one hand, we review several fault oriented
test generation methods and discuss why they do not suite our problem of killing HDL
mutants. On the other hand, we also discuss search based test generation methods that
targets other metrics and why they do not apply to HDL mutation analysis.

In the background chapter, we have compared the HDL mutation and gate-level
fault models, as well as mutation-based simulation test generation to traditional
Automatic Test Pattern Generation (ATPG) algorithms [55] [71] [72] [73]. ATPGs
does not directly apply to HDL mutation analysis in functional verification, as i)
relying on scan-chain techniques, they are basically based on structural testing
scheme and do not take a whole design as input and ii) with HDL mutation, we do
not assume the synthesizability of a design under verification, which can be VHDL,
Verilog, or C/SystemC. In our search based approach, we define the objective cost
function based on a control and data flow data structure, which can be extracted
from both RTL/behavioral designs. The final test generation applies to any HDL
designs that are simulatable.

The observability-based coverage [54], also discussed in the background chapter,
has a similar test generation problem to mutation analysis, since a tag also models
an error to be propagated. In [86], it is transformed to a Hybrid Boolean
Satisfiability (HSAT) problem. Based on a structural graph compiled from the
HDL design description, a mixed set of Boolean and linear constraints is generated
for both the tagged and untagged versions. Then, for each output data node, another
constraint is added to guarantee the tag detection. At last, the collected HSAT
problem is solved to obtain the target test data.

The original mutation analysis based test generation [87] relies on linear constraint
solving. First, the program is symbolically executed to establish the path from input
to a fault location. At each branch predicate, a constraint is collected for the
intended path. When the fault statement is reached, another constraint is added to
handle the activation condition. Then tests are generated by solving the entire set
of constraints. The propagation problem is not considered.

In [68], VHDL designs are translated to SW programs and fed into the software
mutation analysis tool in [87] , so as to generate mutation-oriented test data for both
design verification and manufacturing testing.

We can see that these fault-oriented test generation methods rely mostly on symbolic
execution and constraint solving to obtain a definitive target test. As symbolic execution

103

Quality Metrics Driven Functional Verification for IP based SoC Design

may encounter the path explosion problem [88] and constraint satisfaction problems also
face high complexity [89], they are regarded not scalable to large designs, in general.

In contrary, search-based test generation methods intend to find target tests based only
on actual design or program execution, in an iterative manner. Therefore, they are
expected to scale well in line with HDL simulation, when applied for functional design
verification. The trade-off is that a search success is not guaranteed and the search
performance may vary. A survey on search based software test generation can be further
found in [80].

104

[90] systematically discusses how to apply search based test generation to a specific
coverage metric: path coverage, i.e. to achieve complete execution of a specific
program path. Sub-goals are defined as satisfaction of intended branches. For each
such branch, a cost function is defined to steer the branch satisfaction, which is
evaluated with the variable values during actual program execution, to be
minimized to zero.

Actually, path coverage subsumes the reachability problem in mutation
analysis and could be complementary to our method. However, as mentioned, we
assume that in HDL simulation, reachability (line coverage) is easy to satisfy.
Therefore, we focus our cost function definition as well as search on activation and
propagation.

This search-for-path-coverage principle is applied in [91] to mutation analysis. A
similar cost function is defined on the test input space and reflects the progress of
path-following. Ant Colony search is employed to minimize the cost and find the
target test. Again, only mutation reachability is taken into account by the cost
function.

Further, we can find hybrid techniques combining simulation based search and
formal methods for test generation, such as the abstraction-guided simulation
presented in [92] [93] and [94]. Coverage of a specific set of design states is their
search goal. A Finite State Machine (FSM) abstracted from the design is used to
guide the search of test inputs that reach a target state. [92] builds the abstraction
by selecting the design module containing the verification property and the
modules that interacts closely with it, under some complexity constraint with
regard to the final product FSM. With data-mining techniques, this abstraction can
be also done as in [93] and [94] by partitioning state variables that are high
correlated to the target state.

Based on the abstract FSM model, pre-images of the targets state are iteratively
computed via a Satisfiability (SAT) engine. Then, a simulation trace can be mapped
to the abstract model to obtain the current state. The distance from the current state

CHAPTER 5: Metaheuristic Search-Based Test Generation for Mutation Analysis

to the target state becomes the cost function of search, guiding the search towards
a target test input.

Equipped with such guidance, the search algorithms employed include a simple
random walk in [92], more sophisticatedly a cultural algorithm in [93] and a genetic
algorithm in [94]. The SAT engine also intervenes during search to bridge the
current state to a closer state, when the search heuristics get stuck at a dead-end
state.

Comparison of Literature to Our Work

We conclude the distinction between our search-based test generation method for
mutation analysis and those found in the literature as follows.

e The most significant difference is that our method is purely based on actual HDL
design simulation. It can be integrated into any simulation-based verification
process. No design synthesizability needs to be assumed. Also, no symbolic
manipulation or simulation is required. Moreover, compared to the abstraction-
based hybrid approaches, the graph structure that we extract from a design to define
the search cost function represents the static structure of the design instead of its
state transitions. No symbolic methods or SAT is needed for the computation on
this graph and we resort only to actual simulation values for the cost calculation.

e Compared to other metric-oriented, search-based test generation methods, only our
cost function definition handles all three problems in mutation analysis: reaching,
activating, and propagating a mutant.

To the best of our knowledge, it is the first such effort to develop a search-based, non-
symbolic test generation method for HDL mutation analysis.

There is also discussion in [83] related to automated extraction of similar CDFG
structures as used in our cost function. We view this as reasonable future work to
complement the automation flow of our method.

5.5. Summary

We have considered the problem of test generation for killing a specific design mutant,
for HDL mutation analysis. This corresponds to the problem of handling each of the un-
killed IP design mutant after the adaptive random simulation phase, in the context of our
metrics driven functional verification flow for IP-based SoC design.

We have proposed a novel, metaheuristic search based method for such test generation.
The idea is that we apply a search algorithm on the design input space. In iterations, the

105

Quality Metrics Driven Functional Verification for IP based SoC Design

search evaluates and improve the candidate tests, towards some final target that Kills the
mutant. This approach has the advantage of relying only on actual design simulation, in
contrast to symbolic execution or constraint solving that we have seen in the related work.

As the key of enabling such a search with the goal of killing a mutant, an objective cost
function has been proposed. It is devised exactly with the three conditions for killing a
HDL design mutations in mind: reach the mutation statement, activate the mutant with a
local deviation, and propagate such deviation to output.

Therefore, we have modeled and analyzed these conditions on a Control and Data Flow
Graph, since it enables a direct mapping of the conditions onto that graph and then a
guantitative measurement of them from being satisfied — in particular, the activation and
propagation.

This quantitative measurement, after we mapping a mutation-analysis simulation trace
onto the CDFG, consists of a macro propagation distance as a general distance of mutation
effects to design output and a local propagation cost, which transforms local propagation
conditions to Boolean expressions and then leverages a boolean_cost to estimate the
satisfaction degree of such conditions. Together, they provides a complete search guidance
with regard to HDL mutant activation and propagation. Also, the cost function takes
existing simulation traces as input and impose minor calculation effort to the actual
simulation.

In the evaluation chapter, we will mainly investigate the effectiveness of the cost
function as the steering of a local search algorithm, i.e. whether it can consistently lead the
search to a target mutant-killing test, for a real IP design and simulation. The evaluation
or comparison with more complex metaheuristics is seen as reasonable future work.

Although the method is established with mutation analysis as the quality metric, we see
no restriction on its application to other metrics.

This contribution has been first published in [6] and further elaborated in [1].

106

CHAPTER 6: SoC System Design Simulation and
Mutation Analysis with IP-XACT

6.1. Introduction

In this chapter, we present a systematic verification method for SoC system design. The
method is simulation-based and with mutation analysis integrated as the quality metric for
such simulation. In the IP-based SoC design paradigm, this is where we assemble pre-
verified IP components into an integrated SoC system.

Motivation for System Simulation and Mutation Analysis with IP-XACT

First, we assume IP-XACT [29] as the default language that we use for SoC system
design, since:

o IP-XACT is the standard for IP re-use and SoC integration, therefore just suit our
overall methodology. It should be more reasonable for us to establish this system
verification method with IP-XACT, as opposed to a proprietary language, such as
MHS (Microprocessor Hardware Specification) that we mentioned for SoC design
on Xilinx FPGA. Also, SoC design in IP-XACT is more evident, if we assume that
IPs are provided with IP-XACT as metadata

e Creating a system verification method based on IP-XACT should enable the
verification to focus on IP integration — their instantiation, interconnection, and
parameter configuration.

This focus of verification on IP integration through IP-XACT is even necessary, since
i) we cannot expect the availability of IP code and a white-box system test and ii) we need
to handle the increasing complexity of IP and IP integration by assuming the correctness
of delivered IPs. This has been elaborated in our background chapter requirement as
division and separation of IP design and SoC system integration. The previous two
methods for mutation analysis driven verification — adaptive random simulation and

107

Quality Metrics Driven Functional Verification for IP based SoC Design

metaheuristic based test generation— are exactly our effort towards a thorough IP
verification and, thus, its correctness.

Further, we assume system simulation as a necessary verification step for SoC system
design, before its final implementation to ASIC or FPGA. Even for FPGA based
implementation with relatively low cost, system simulation provides a far better
observability compared to a final testing on FPGA. Nevertheless, system simulation does
not intend to replace emulation or FPGA prototyping.

Therefore, the first problem for establishing an IP-XACT based, systematic verification
methods is that SoC system designs in IP-XACT are not directly simulatable. Since they
are in the form of XML files and XML is not executable, we need at first a simulation
engine for IP-XACT. Our approach is to transform an IP-XACT design to another system
model that is simulatable. The destination language that we choose for this transformation
is SystemC.

The second question is, how can we systematically manage the quality of such system
verification based on IP-XACT simulation? Following our consistent focus on metrics
driven verification for IP-based SoC design, and assuming mutation analysis the advanced,
effective metric that we employ, we consider the problem of enabling mutation analysis
with IP-XACT. Here, a key should be the definition of mutation operators on IP-XACT —
how XML errors are to be injected into IP-XACT system designs.

Contribution of the Chapter

With this chapter, we contribute by proposing a SoC system design simulation and
mutation analysis framework based on IP-XACT, to be the third, system-level component
of our mutation analysis driven functional verification methodology for IP-based SoC
design. The framework consists further of two contributions. The first is a SystemC based
IP-XACT design synthesis and simulation flow that enables the functional verification of
SoC designs. The second is the definition of a set of mutation operators on IP-XACT
schema, which enables IP-XAXT mutation analysis as an advanced quality metric for
system simulation.

Organization

In Section 6.2, we first give an overview of our proposal for an IP-XACT based SoC
design simulation and mutation analysis framework and, in particular, why SystemC is
chosen as the target platform. Then, Section 6.3 details the IP-XACT-to-SystemC
synthesis flow and rules. Section 6.4 introduces a list of IP-XACT mutation operators. In
Section 6.5, we present an Eclipsed-based tool that we have implemented for our proposal.
Related work in literature is discussed in Section 6.6 and the chapter is concluded by
Section 6.7.

108

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

6.2. An IP-XACT Design Simulation and Mutation Analysis
Framework

Figure 6.1 shows an overview of our proposal: an IP-XACT design simulation and
mutation analysis framework, for systematic functional verification of SoC system
designs. The framework consists further of two components, or interacting flows.

The first is a SystemC based IP-XACT synthesis flow, which takes an IP-XACT XML
design file as input and generates a SystemC model as output. It is proposed as a well-
defined transformation process by a set of checking and mapping rules, to be introduced
in next section. The generated simulation should match the original functionality of the IP-
XACT design. This functionality is how we should interpret the execution behavior of an
IP-XACT design, i.e. its semantics.

Although there is no formal definition on the behavioral semantics of IP-XACT as a
structural and HDL-neutral format, the execution behavior of an IP-XACT system design,
to be either simulation or real circuit operation, is already implied by a combination of
individual behaviors from the included IP components and their integration described by
IP-XACT. For this, we also assume that IPs are always packaged being accompanied by
a simulation model. For example, in the Xilinx FPGA design environment, although the
MicroBlaze microprocessor IP comes only as a hard IP without source code, another model
is provided for system integrated simulation. If an IP is presented as a soft core, RTL or
TLM, it is directly simulatable.

The reason for us making SystemC the synthesis destination is that only it provides a
single platform for multi-language, mixed-level simulation — RTL, behavioral, or TLM, as
we have introduced in Chapter 2. We assume that TLM is a state-of-the-art method
necessary for inclusion and our SoC system design may contain TLM IPs. IP-XACT
indeed handles both RTL and TLM.

With a modern simulation tool such as ModelSim, SystemC and other HDLs — VHDL
and Verilog — can be simulated above a single kernel with all their original semantics
retained.

The second component of the framework is an IP-XACT mutation analysis flow,
referring to the creation of IP-XACT design mutants and the measurement of whether they
can be killed under simulation, by seeing whether they produce deviated simulation traces.
For this, our main effort is devoted to the definition of a set of mutation operators on IP-
XACT.

Mutation analysis is language specific. The rationale behind applying the principle of
mutation analysis to any new design language is that i) each mutation operator models a
small syntactic error that may commonly be made by a designer and should be uncovered

109

Quality Metrics Driven Functional Verification for IP based SoC Design

Systematic verification of SoC system designs

4 N\
IP-XACT Mutation Analysis as quality metric for simulation

IP-XACT
Mutation
Operators

system
mutant
killed?

IP-XACT SoC
Design (XML)

P
repository

<r

| IP-XACT SystemC system v

Synthesis to Simulation design -)@

SystemC (RTL/TLM) error?

SystemC Simulator

L IP-XACT Design Synthesis and Simulation

Figure 6.1 IP-XACT SoC system design simulation and mutation analysis framework.

by simulation and ii) these single small errors are supposed to be coupled with more
complex potential bugs, in the sense that if a set of tests can kill those artificially generated
mutants, they should also be able to reveal the real bugs in the design. We call it the double
effectiveness of mutation analysis as a quality metric for functional verification, which is
expected to be also applicable to SoC system design with IP-XACT.

Therefore, IP-XACT mutation operators are defined on IP-XACT XML schema as the
target language. They represent errors that we can implant into an IP-XACT XML design
document, to mimic representative errors that one can make with IP-XACT design.

The derived mutation analysis flow is then intended to qualify the simulation based IP-
XACT design verification. As interaction between these two flows, each mutant should be
fed into the synthesis and simulation flow, with the traces retrieved for measuring the kill
of this mutant.

In the end, we have this systematic verification framework for IP-XACT based SoC
system design, as one important step towards solving the verification closure problem at
system-level — are we done with system verification.

At the moment, we see the software running on a SoC to be the system tests. We leave
the automated improvement of system tests as part of further work.

110

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

IP-XACT SoC
Design (XML)

IP repository

—
(\ A IP-XACT I component
Semantic
. component N
> Consistency Rules XML nm
Checker
IPTLM Hard
Parser model component /4
TLM — RTL
Compatibilit
P Y model —
Rule Checker 7

v | IP-XACT busDefinition XML J

internal data structure representing all IP-XACT abstractionDefinition XML
referenced, valid information

v 2
SystemC Code Makefile
Generator by Generator by
Mapping Rules Compilation Rules

‘ \
' '
' '
' '
' '

SystemC '
' .

\ELG il

' "
1 Model '
' '
' '
' '
' '

“make simulation”

Figure 6.2 SystemC based IP-XACT synthesis flow.

6.3. SystemC Based IP-XACT Design Synthesis and Simulation

As shown in Figure 6.2, the SystemC based IP-XACT synthesis is defined as a straight
one-pass flow, which goes through a series of processors that are derived from a set of pre-
defined rules. The processors require and retrieve also information from an IP repository
that contains IP-XACT described IPs and bus/abstraction definitions. An IP-XACT-to-
SystemC model generator is implied from this flow, which we have implemented as an
Eclipse tool for further experiments.

Parser

The parser, as detailed in Figure 6.3, parses not only the IP-XACT design but also all
the IP-XACT components instantiated in the design and all the bus/abstractionDefinitions
that are referenced by the design and components.

111

Quality Metrics Driven Functional Verification for IP based SoC Design

IP-XACT design

XML 2
o |
i (C__IPrepository 4) b
00 cSematnt|c & Y Parser Flow and Interactions
onsistency IPXACT
60 RUIES (kSCR) component
Checker
XML @ | Parse XML design
Parser k— © O Leatiay
— busDefinition @ |_check SCRs
LM XML 7 .
) Compatibility IP-XACT ’ 6| Parse each instantiated component
Rule (TCR) abstraction
Checker L_Definition XML
— J O | check SCRs
‘o ©
(1} () Parse each referenced
o | S I bus/abstractionDefinition

check SCRs
check SCRs

instancel RTL ports

configurationl

Design Componentl ‘ Bus/Abstraction
' Definition 1

N

configuration2 || [TM ports P check TCR for each TLM port
B connection
: parameters
[instancez | Bus/Abstraction
Definition 2 e -

interconnectionl

interconnection2
adHocConnectionl

Component2
adHocConnection2 X

internal data structure

Figure 6.3 Flow of parser and its interactions with other parts.

The parser itself should be derived directly from XSD schema definitions in IP-XACT
standard, so as to make sure that a design is both well-formed and valid according IP-
XACT schema. For this purpose, it needs interaction to the Semantic Consistency Rules
Checker and TLM Compatibility Rule Checker, as shown in the figure.

After the parsing, we have a one-to-one internal representation of the design, which
consists of the component instances, their configurations and their connections. Although
Java classes are used for this purpose in our implementation, we propose no definition or
restriction on this internal representation. It should be straightforward since XML is a total
structured representation. No intermediate code is generated before the final SystemC and
Makefile generation.

The final output of the parser is a one-to-one, both syntactically and semantically
correct internal representation of the IP-XACT design and all the components instantiated.
Semantic Consistency Rules Checker

The Semantic Consistency Rules (SCRs) are a set of rules defined in the IP-XACT
standard that IP-XACT documents should conform to in addition to the IP-XACT schema.

112

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

Rule Single
Rule description document
number
check
SCR 1.1 Every IP-XACT document visible to a tool shall have a unique NO
VLNV.
SCR 2.4 An interconnection element shall only connect a master interface No

to a slave interface or a mirroredmaster interface.

configurableElement elements within componentinstance
elements shall only reference configurable elements that exist
in the component referenced by the enclosing

SCR 5.7 | componentlnstance element; the value of the referenceld No
attribute of the configurableElement element shall match the
value of the id attribute of some configurable element of the
component.

SCR 6.26 | A wire port with a direction of out shall not have adriver element. Yes

The width of an address block included in a memory map shall

SCR8.1 be a multiple of the memory map’s addressUnitBits.

Yes

Figure 6.4 Example Semantic Consistency Rules from IP-XACT standard [29]. They
need to be implemented in IP-XACT synthesis.

They define the required consistency among the IP-XACT elements in one document or
across several documents.

There are a total of 185 such rules listed in IP-XACT [29] Annex B. They will all be
examined by the Semantic Consistency Rules Checker, when they are concerned. The table
in Figure 6.4 gives several examples of these rules.

For example with SCR 2.4, for each bus interconnection, our checker must retrieve first
both components and then both bus interfaces that are referenced by the interconnection
and check their types in the scope of those seven possibilities. Here single document check
means that the elements consistency cannot be determined in a single file but only by
checking multiple documents. For example, the uniqueness of a VLNV required under
SCR 1.1 can be only claimed after seeing all the documents that we maintain.

TLM Compatibility Rule Checker

We propose a TLM compatibility rule to ensure the semantically correct integration of
TLM components. This rule specifies how SystemC TLM ports should be described in IP-

113

Quality Metrics Driven Functional Verification for IP based SoC Design

XACT, such that our SoC synthesizer can unambiguously, automatically determine
whether and how two TLM components can be connected.

This is necessary as IP-XACT does not provide enough specification on TLM port
semantics. We do assume that traditional RTL compatibility between signals is well
resolved by IP-XACT standard.

SystemC TLM semantics is established on an interface-port binding mechanism, as we
have discussed in the background of TLM. Based on this, we notice that that SystemC
interface classes for TLM communication can be considered as a non-private inheritance
tree starting from sc_interface.

For IP-XACT based description and integration of TLM ports, our TLM compatibility
rule states:

o Ifan IP-XACT transactional port describes a TLM port that implements a SystemC
interface to provide for binding, its IP-XACT service types description should
include names of all the inherited interfaces, or interface implementation classes,
from this interface, besides the name of itself.

o If an IP-XACT transactional port describes a TLM port that requires a SystemC
interface for binding, its service types should include name the interface that it
expects.

e The compatibility of two IP-XACT transactional ports are determined by seeing
whether the provided interface names contain the required interface name.

Figure 6.5 shows one such example.

e The IP-XACT description for TLM_port_1 should include TLM_IF_1, TLM_IF_2,
TLM_IF_3, TLM_IF_4,and TLM_IF_6. It is indeed capable of providing all these
communication services.

e The IP-XACT description for TLM_port_2 is only required to include TLM_IF_2.

e Then, the compatibility of TLM_port_1 and TLM_port_2 during IP-XACT based
system integration can be directly decided as positive.

For SystemC code generation later, two TLM ports can be bound safely by casting the
type of the providing port to that of the requiring port, after checking their TLM
compatibility.

SystemC Code Generator

After all the parsing and consistency/compatibility checking procedures, the mapping
from IP-XACT to SystemC is relatively straightforward, as IP-XACT design has a concise

114

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

IP-XACT

sc_interface

e

TLM_IF_1

IP-XACT
transactional port
requires service types:

{TLM_IF_2}

require interface
TLM_port_2

A

M
compatibility
checking

‘ TLM_IF_3 ’ ‘ TLM_IF_4 H TLM_IF_S ’

IP-XACT
transactional port

\
\

\

\

\

:

\

| provides service types:
\

| LG provides interface implementation YL il {TLM_IF_1, TLM_IF_2,
|

|

|

|

|

|

TLM_IF_3, TLM_IF_4,
TLM_IF_6}

Figure 6.5 Example for TLM compatibility rule.

structure for instantiation, parameterization, and interconnection of components, which

correspond directly SystemC.

e A component is instantiated as a SystemC module object. It is required that the
referenced component has a name reflecting its actual module class name. The
instanceName is used as the name of the object as well as the SystemC module

name string.

e We require the component to have a uniform parameterization interface as

setParameter, which expects the name of the parameter and

configurableElementValue in design.

its

e With interconnection, ports of two components are connected via bus interfaces.
We can conclude two essential cases for TLM port binding, as we have discussed
in TLM introduction: a TLM sc_port to sc_export binding or a TLM sc_port to
TLM module direct binding. The case is selected by seeing whether the require
port is a sc_export type in its IP-XACT description. More importantly, the
compatibility between the two TLM ports is determined by the TLM compatibility

rule beforehand.

e ForanadHocConnection, two ports are connected directed for a particular purpose,
such as a reset signal. We consider such RTL signal binding straightforward if not

trivial.

115

Quality Metrics Driven Functional Verification for IP based SoC Design

)
IP-XACT Lo
[
' 1
! 1
1
1
component component component design : :
c1 Q2 = ‘ \ (automated
1
o generation
c1 c2 a = | of systemC
VHDL VHDL SystemC| [wrapper:
RTL RTL RTL , " \c1h, Cl.cpp
' 1
! 1
' 1
! 1
' 1
! 1
1
N e e e e e o = = = = —————— - ——— ! N ’
Multi-language all RTL components
IP-XACT
component component component design
C1 Cc2 c3
C1 (o c
SystemC SystemC SystemC
RTL
Cc1
Transactor
R 4
TLM/RTL mixed components
Legend

SystemC RTL wrapper

_— L i
for VHDL/Verilog SystemC RTL connection

[

1
1
e SystemC TLM connection ,
1
1

Figure 6.6 SystemC enabled multi-language, mixed-level IP-XACT simulation.

116

More interestedly, we consider how multi-language, mixed-level integration of IP
components can be enabled in SystemC generation, as shown in Figure 6.6:

Multi-language all RTL components. Firstly, a SystemC wrapper can generated
for each component that is not in SystemC. Since at its core SystemC has an event-
based simulation engine and it provides comprehensive hardware specific data
types, a SystemC wrapper for a VHDL/Verilog module is straightforward.
Modern simulators, for example ModelSim [95], even integrate such automated
SystemC wrapper generation function for other HDLSs.

All TLM components. We need only a SystemC top design to instantiate and
bind them in.

TLM-RTL mixed components. In this case, we further assume that for a RTL
component to be integrated, no matter in which HDL, it is packaged with an
accompanying RTL-TLM transactor, which we have introduced in SystemC and
TLM background. We view it as a natural assumption, since if a designer wants

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

to do a TLM based system design integration, the components to be integrated
should necessarily expose TLM interfaces.

Further, as stated for the parser, this SystemC generation does not impose any
restriction on the internal data representation, though in our implementation Java classes
are used.

Makefile Generator

The objective of generating a Makefile is to have a fully automated compilation and
simulation process. Together with SystemC code generation, we are then able to launch
immediately a system simulation with an IP-XACT design as input, if the design is
correctly integrated. As we have stated, this automated process not only becomes itself a
simulation based verification tool for SoC system-level design but also satisfies
prerequisite for mutation analysis.

Until now we have not designated any SystemC simulator as the target environment of
our SystemC based IP-XACT synthesis and simulation. However, this last step for a
Makefile generation is meant to be bound to a specific SystemC simulator, since the
compilation and simulation commands need to be specific.

We may have two candidates. Either we use the reference SystemC simulator that
comes from the SystemC standard working group, or we take another commercial HDL
simulation tool that implements the SystemC standard.

In this section, we assume ModelSim [95] as our destination simulator, because, on the
one hand, it is one of the leading industrial simulation tool and, on the other and more
significantly, it is capable of co-simulating all the other major HDLs with SystemC, such
as VHDL, Verilog, and SystemVerilog.

Such compilation rules are illustrated in Figure 6.7. They define how the compilation
related information, mainly the fileSets description, from the design-referenced IP
components can be combined to valid ModelSim commands in a Makefile script. The
commands are composed according to the type of each file declared in IP-XACT fileSets
and for the generated SystemC design file:

o For each systemCSource typed file, a compilation command is created using sccom
and takes into account all the include files declared for this component. The other
SystemC typed files — systemCSource-2.0, systemCSource-2.0.1, systemCSource-
2.1, and systemCSource-2.2 — are treated the same way.

e For each vhdlSource typed file, a vcom compilation command is created. Other
files typed as HDL source files receive the same handling, including vhdISource-
87, vhdISource-93, VerilogSource, systemVerilogSource, etc.

117

Quality Metrics Driven Functional Verification for IP based SoC Design

IP-XACT design
name: DESIGN_1 Makefile

Design-referenced IP-XACT component

fileSets sccom -1 PATH_1/FILE_1 CMD1 PATH_2/FILE_2
file
name: PATH_1/FILE_1 [[for each systemCSource file in each referenced component

fileType: systemCSource
includeFile: true

file

veom PATH_2/FILE_2

name: PATH_2/FILE_2 //for each vhdiSource file in each referenced component

fileType: systemCSource

includefFile: false sccom -1 PATH_1/FILE_1 DESIGN_1.cpp

buildCommand: CMD1

file sccom -link PATH_4/FILE_4 -L PATH_5/FILE_5 -I LIB_5-lib LIB_6
name: PATH_3/FILE_3

fileType: vhdiSource vsim -sclib LIB_1 -lib LIB_2 DESIGN_1
file

name: PATH_4/FILE_4

fileType: swObject
file

name: PATH_5/FILE_5
fileType: swObjectLibrary
logicalName: LIB_5
file
name: PATH_6/FILE_6
fileType: vhdIBinaryLibrary
logicalName: LIB_6

Figure 6.7 Makefile generation that targets ModelSim.

e The generated top SystemC design file is then compiled by sccom.

¢ A linking command with all SystemC objects, SystemC libraries, and other HDL
libraries is generated with sccom -link.

e Asimulation command is added such that the Makefile becomes a complete script
for compilation and simulation of the generated SystemC design.

As mentioned, with advanced facilities from ModelSim, IP components in other HDLs
can be easily wrapped in SystemC. Such wrapper source files should be similarly compiled
and linked, using the compilation rules.

6.4. Mutation Operators on IP-XACT

We define a set of mutation operators on IP-XACT design schema. When applied on
an IP-XACT design, each such operator introduces a small modification to that IP-XACT
XML document. The result is another valid IP-XACT design document.

An example can be a perturbation to a parameter configuration, such as changing the
design configured transmission rate of a UART component. This rate modification, as a

118

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

bug injection, is supposed to be discovered by the system verification, i.e. the SystemC
simulation derived from the design mutant produces a different trace compared to that
from the original design.

We take a define-and-evaluate approach to obtain a set of mutation operators. In this
section, we first try to consider and formulate several possible and reasonable mutation
operators for IP-XACT design schema. They must be valid, meaning that the modification
to be introduced by an operator should not break the syntax and consistency/compatibility
rules for IP-XACT.

Later in the evaluation chapter, the effectiveness of these mutation operators will be
investigated with real SoC design examples, by whether they can somehow reveal the
quality weakness of system simulation, i.e. any generated mutant cannot be distinguished.
This evaluation is also viewed as a selection process to sieve out ineffective operators for
IP-XACT mutation analysis.

Our first effort to define such a set of mutation operators for IP-XACT, as listed in
Figure 6.8. They are explained in three groups:

e Parameter modification operators: The mutation operators in this class perturb
a parameter configuration. The parameters can be, for example, the model generics
of a UART component, the type of an Ethernet controller, the address/data-width
of a bus, or its arbitration scheme. Mutation of these parameters introduces small
errors into the system integration and may result in erroneous data flows among
components.

The first operator ParRep uses another valid value, for example a pre-defined
choice in IP-XACT, to replace an existing parameter configuration. Operator
Parlns inserts into the design a configuration for some parameter. The replacement
or insertion value can be chosen randomly. A third operator called ParDel deletes
a configuration, so that the default value of this parameter takes into effect.

e Connection deletion operators: Designers can omit some connections between
components. The mutation operators in this class model such errors and delete
completely a connection description. In IP-XACT design, we have two kinds of
component interconnections. One is the connections through pre-defined bus
interfaces and another one is ad-hoc connections, i.e. not through any bus protocol.
Operator BusDel operates on the former and AdhocDel operates on the latter.

e Memory-maps modification operators: This class of operators introduces
deviations on the address spaces of slave components from their original
configurations, which makes the testing software have a wrong view of the
hardware system. With erroneous interaction between software and hardware, it

119

Quality Metrics Driven Functional Verification for IP based SoC Design

Mutation
Description Example
Operator Name
ParRep Replace a parameterc'onﬂguratlon with ABus_width =64 €123
another valid value
Parins Insert a paramete.r configuration with a N DBus width = 128
valid value
ParDel Delete a configuration Arbitrationpalicy = priority
InterConnDel Delete a bus interconnection -Bus_Interconnection: Comp-1 -Bus 1
AdhocConnDel Delete an ad-hoc connection AdHeeConnection—Comp—l-LComp-2
BAddrincr Increase the base address of a slave Base_address= 0x10000 €0x10040
component
HAddrDecr Lower the high address of a slave High_address= 0x10000 € O0xOFFFO
component
Exchange the address spaces of two Component_1_Addr_block =0x00000~0x01FFF
AddrExch Nz
memory-mapped slave components
Component_2_Addr_block =0x08000~0x09FFF

Figure 6.8 IP-XACT mutation operators.

may further lead to a wrong behavior of the system and a negative test verdict, if

the testing software is comprehensive enough.

Operator BAddrIncr increases the base address of a slave component by a small
value, with the caution that it should not exceed the upper address boundary of the
component. Respectively, operator HAddrDecr decreases a slave high address to a
level not less than the base address. Another AddrExch operator chooses two slave

components and makes an exchange of their address spaces.

Another contribution from our side is an experimental implementation of IP-XACT

mutant generation, based on such mutation operators.

6.5. A Tool Implementation

We have implemented an Eclipse-based tool for the whole proposal on SystemC based
IP-XACT design synthesis, simulation, and mutation analysis. It provides also basic
editing functionality of IP-XACT documents. This implementation, on the one hand,
investigates the feasibility of our proposal and, on the other hand, provides the prerequisite

to further experiment based evaluation.

120

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

|IEEE-1685
IP-XACT

XML Schema
- =

Eclipse
Modeling
Framework

- =

Mutants Basic Editor SystemC
Operators for IP-XACT Synthesis
(JAVA) (Eclipse) (JAVA)

4 =

Eclipse tool for IP-XACT SoC design editing, simulation, and mutation analysis

Java - SPRINTAP XACT/Designs/cJab. de/Mixed-Level-Demos/TLM RTL._1 - Eclipse SDK.

fle Edit Mavigste Search Project Bun _1Edior window Help

#-0- Q- |8 ¥ e & 9 |G - o [&javal
% Package Explorer &5 Tt Hierarchy 5 % T =0 @IMALa D [St T AL =0
v IPXACT = Resource Set
b BusDefintions = (4 platformijrasource SPRINTP XACT/Designs/c lab. dejMoxad:-Level- Demas/TLM_ATL,_L
b & Designs <+ Document Roat
b & generators -4 <dasign= Dasign Typa tim il
- — New Child .
s + Campanent Instances Trpe g
v & clabde = 4 Component instance Type CPU o * T generotel
b & CoraConn-SCTLM star_generic_TLM
- oM
P = core Configurable Elernent Type
b G pLE_UARY o cut
b = UaRT Copy
BLE_UART_SLM,_1
bt X Delete
e validate
b o
b = DDR_Memaory_Cantraller
fun As
b & rLEBUS Debug A
ebug As
b e plb. Cr-e
Taam
b el

Compare With

Replace With

Load Resource,

b Ad Hoc Connection Type rt_enabled_connection

- ot Befresh
- Show Broperties iew
Ly
L
Ly
b
b G Tansact
Selection Parent |List Tree Table Tree with Celumns
@ javadoc & Daclaration | @ Console £ Problems | = proparties £ FE =0
C ||| property value H
b (e cuctarn. H)GT o)
1 Selected Gbject: <design> Design Type tim_stl

Figure 6.9 An Eclipse based tool implementation, for the proposal of IP-XACT system
design synthesis, simulation, and mutation analysis.

Figure 6.9 shows an overview of how the tool was constructed, as well as a screen
shot. First, we leveraged Eclipse Modeling Framework (EMF) [96] to obtain a basic IP-
XACT editor. EMF is a Java framework that facilitates the building of Eclipse based
modeling tools, by automatically generating a set of Java classes from a structured meta-
model, such as XML Schema or UML, among others. The generation is based on a one-
to-one mapping from the types and elements of the meta-model. The mapped Java classes
are then able to create, parse, manipulate, and output documents that are instances of the
meta-model. They are further integrated by EMF into Eclipse as a fully functioning Eclipse
editor.

We made IP-XACT schema the input of EMF. The output was a basic editor for all
kinds of IP-XACT documents. We used the standard schema version in IEEE-1685 [29].

121

Quality Metrics Driven Functional Verification for IP based SoC Design

Eclipse tool IP-XACT mutation
analysis domain
IP-XACT editing domain ' [aooon s i
SystemC traces

Mutation comparison

Operators r >
0 .
\WMW/ on_Java # of killed mutants

objects | | t------- . >

IP-XACT Simulation quality

component

XML
design

XML

IP-XACT
busDefinition XML
Basic
Parser
IP-XACT
abstractionDefinitio o
objects

improvel
system
tests

IP-XACT

; correct
i
| system
H
E design

original system
SystemC/ simulation
s ————— Makefile SystemC
Synthesis Model
A
IP-XACT functional
k simulation domain
v \4

SystemC Simulator (ModelSim)

Figure 6.10 Detailed working flow of our IP-XACT tool.

Then, following the proposal and definitions from previous sections, both mutation
operators and SystemC synthesis were coded into the basic editor, on top of the Java
classes mapped from IP-XACT schema. When an IP-XACT design is read in by the editor,
corresponding Java objects are created that reflects exactly the same structure as in the 1P-
XACT document. With these objects, the extended editor can, for example, change a
parameter value according to mutation operator as well as write a code line of component
instantiation to a SystemC file.

Figure 6.10 sketches the detailed working flow of this Eclipse tool at runtime.
Essentially, it is implemented as an instance of the systematic system verification
framework that has been presented in Section 6.2. The runtime functionality for IP-XACT
can be seen as divided into three interacting domains: the elementary editing domain, the
mutation analysis domain, and the functional simulation domain, which further rely on an
external SystemC simulator — ModelSim in this case.

In the flow, it is only one implementation decision that system design mutants are
created in the form of synthesized SystemC models, instead of fault injected IP-XACT
documents. We chose this implementation way since, on the one hand, it is insignificant

122

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

for the mutation analysis to eliminate the intermediate step of having mutants as IP-XACT
documents and, on the other hand, it saves the tool effort at runtime. Still, we view the IP-
XACT mutation analysis remaining not restricted to SystemC but relatively independent,
if we suppose another simulation engine for IP-XACT.

6.6. Related Work

We have presented a SystemC based IP-XACT design simulation flow and an IP-
XACT mutation analysis layer upon this simulation. On the one hand, we can find the
following literature that proposes other system simulation and verification methods based
on IP-XACT:

e In [97], a small IP-XACT extension, called IP-XACT++ is proposed to support
Model Driven Engineering (MDE) in SoC design. The authors consider that in
MDE, various abstraction levels as meta-models and the transformations between
them should be clearly defined. In this work, a specific level called Transaction
Accurate (TA) is focused. A TA meta-model is defined in XML schema that
represents an extension to IP-XACT. In the schema, TA elements such as
“TAComponents” are defined.

Further, they mention that through the definition of a SystemC meta-model (not
detailed) and the transformation between it and the TA meta-model by an ATL
(ATLAS Transformation Language) transformation language, an extended IP-
XACT-to-SystemC generation can be obtained, for this particular TA level.

e In [98], IP-XACT is combined with another computation model UNIVERCM
(UNlversal VERsatile Computational Model) [99], to support system integration
with not only digital IP components, but also analog IPs as well as hardware-
dependent software. First, UNIVERCM is capable of generating homogeneous
representation and simulation of heterogeneous components. Then, IP-XACT
(extended) descriptions are extract from UNIVERCM components. Last, an IP-
XACT system design can be built and, with the help of UNIVERCM, a system
simulation model with all types of components can be generation and simulation.

The benefit is that IP-XACT is now used as unified platform for all components
and system description, with automated round-trip between UNIVERCM and IP-
XACT. IP-XACT standard components can be directly integrated.

e In [100] [101], the authors try to integrate IP-XACT and also benefit from its
capability of component description and integration, into a UML/MARTE [102]
based design framework, called COMPLEX. In this context, IP-XACT is also

123

124

Quality Metrics Driven Functional Verification for IP based SoC Design

extended to be able to describe i) performance-related semantic information and ii)
embedded software such as drivers as well as operating system.

The reason for such component extension is that the COMPLEX framework
has an emphasis on performance evaluation. In the end, a specific performance
model is generated from IP-XACT system design, to be simulated by a proprietary
engine.

[103] [104] are novel application of IP-XACT to partially reconfigurable system
design with FPGA. UML/MARTE is similarly employed as the design frontend.
IP-XACT is used to describe both static components and partially reconfigurable
components. Interestedly, in the evaluation chapter, we will also present an IP-
XACT tool experiment with reconfigurable system. We will have a focus to show
the simulation capability of the tool.

On the other hand, we can find the following work that also proposes applying mutation
analysis to other high-level languages, especially to SystemC/TLM, since they are widely
employed in the research area of SoC system modeling.

In [105], a SystemC error and mutation injection tool is presented. Four types of
error injection are defined: OPR (Operator Replacement),VCR (VAR=>Constant
Replacement), CCR (Constant Replacement), and ROR (Relational Operator
Replacement). A unique feature of this tool is that, instead of creating source code
mutants directly, the error injection is implemented as a plugin for the GCC
compiler.

In [106] [107], mutation analysis is also considered for SystemC. However, the
author concentrated on the concurrency aspect of SystemC designs, for example,
how to stir a deadlock situation by error injection. Such concurrency mutation
operators include:

- Modify Function Timeout, e.g. by changing wait(time) to wait(time/2), or
to wait(time*2),
- Modify Concurrency Construct Count, e.g. changing sc_semaphore(num)

to sc_semaphore(num-1), or to sc_semaphore(num+1),

- Remove Concurrency Construct: e.g. by removing a wait, or notify
statement,

and so on. The mutation operators are evaluated with several standard TLM
examples.

In [108], a mutation model is proposed specifically for TLM communication
interface. First, primitives defined in SystemC TLM 2.0 are modeled by EFSMs

CHAPTER 6: SoC System Design Simulation and Mutation Analysis with IP-XACT

(Extended Finite State Machines). For example, a nb_get(data) is modeled as a
state transition with a true trigger, meaning the transition will immediately happen
when called, without waiting for any event.

Then, a total of 19 faults, or mutation operators are defined on these EFSM
models for TLM 2.0 communication primitives. The 19 operators belong to three
categories. The first is modification on destination states of an EFSM model, such
that, for example, the misuse of a blocking/non-blocking communication is
modeled. The second is modification on the transition triggering functions. The
third is directly replacement of a TLM communication primitive with another one
from the library. These operators are then evaluated with standard TLM 2.0
examples.

Comparing Literature to Our Work

Compared to the literature on SoC system simulation and metrics that are mentioned
above, the work in this chapter has its own unique contribution, since:

Our work is among the first to propose this systematic simulation of IP-XACT SoC
designs by SystemC generation, incorporating both RTL and TLM. As SystemC
and TLM prevail and become required elements for system modeling, the IP-
XACT-to-SystemC generator serves a non-replaceable bridge between IP-based
SoC assembly and its functional verification with the underlying IPs.

We define a mutation analysis-based simulation metric directly on IP-XACT
schema. This contrasts with other emerging metrics that are mostly built for
SystemC. Assuming IP-XACT the starting language for SoC system integration,
and following the principle of mutation analysis that errors should be modeled on
language syntax, IP-XACT mutation analysis should make a unique, effective
quality metric for SoC design verification.

As we do not have the availability of other SystemC related tools mentioned in the
literature, a direct comparison of the metrics have not been conducted in our evaluation.

6.7.

Summary

We have considered the problem of providing a systematic verification method for SoC

system design. In particular, we assume IP-XACT the target design language to be used.

Also assuming simulation a necessary and significant step for any systematic system

verification, we have considered the problem of enabling simulation for IP-XACT designs.
For this, we have proposed an IP-XACT-to-SystemC synthesis flow, by a set of semantics,
compatibility, and mapping rules. With an IP-XACT XML design as input, the flow is able

125

Quality Metrics Driven Functional Verification for IP based SoC Design

to generate a SystemC model that is directly simulatable. A Makefile is generated by this
flow too, which incorporates compilation of the generated system model and all the
involved IP components, so as to provide a fully automated process from IP-XACT to
simulation.

SystemC is selected as the synthesis target, since it provides the only platform for
RTL/TLM, VHDL/Verilog/SystemC multi-language, mixed-level simulation. And we
view such inclusion of TLM and SystemC a necessity.

Further, following our consistent employment of mutation analysis driven verification
for IP-based SoC design, we have considered the problem of enabling mutation analysis
on IP-XACT. Based on the principle of mutation analysis, we have defined a set of
mutation operators on IP-XACT XML schema, as representative error that can be made.
The derived IP-XACT mutation analysis interacts with the SystemC based simulation and
lays a quality metric layer upon this simulation.

Together, they form an integrated framework that enables a systematic verification for
SoC system designs with IP-XACT.

As an experimental implementation of this framework, an Eclipsed-base prototype tool
has also been presented. The tool is a prerequisite for further experiment-based evaluation
of our proposals.

In the evaluation chapter, by exercising the tool with several real SoC designs, we will
mainly investigate i) the feasibility of the SystemC-based IP-XACT synthesis and
simulation and ii) the effectiveness of the defined IP-XACT mutation operators.

The contribution in this chapter has been summarized in [5], with the SystemC-based
IP-XACT synthesis and simulation further presented in several other occasions: [12] [10]
[9] and [2].

126

CHAPTER 7: Evaluation

This chapter provides an experimental evaluation of the proposed methods from
Chapter 4 to Chapter 6, based on real IP and SoC designs.

7.1.

Objectives

First, by Figure 7.1 we give an overview of the evaluation. The methods and flows
from the previous chapters were applied to what we see as an instance of IP based SoC
design. The three arrows of application reflect the following main evaluation objectives
that we have identified:

Evaluation objective 1: To validate that the constrained Marko chain-based,
feedback-directed adaptive random simulation from Chapter 4 is able to improve
the efficiency of mutation analysis. The efficiency should be measured as the
number of tests required to kill a certain number of mutant. It should be compared
with random simulation without feedback adaption.

Evaluation objective 2: To validate that the CDFG-based cost function defined in
Chapter 5 is able to serve as an effective search directive, so that it consistently
steers a metaheuristic search to some target mutant-killing test. The success rate
and performance of such a metaheuristic search will be measured on those difficult
mutants that are left un-killed in random simulation, as the search is meant to
succeed the random simulation phase.

Evaluation objective 3: To validate the general feasibility of the concepts on
SystemC based synthesis, simulation, and mutation analysis of IP-XACT SoC
designs. The concept validation should be based on our prototype tool
implementation in Eclipse. Further, as a secondary goal, the effects of the defined
IP-XACT mutation operators should be investigated — i.e. how the mutants are
generated and killed under these operators.

127

Quality Metrics Driven Functional Verification for IP based SoC Design

Proposed verification methods and flow

1
1
1
1
\
Chapter 4: Chapter 5: Chapter 6: 1
1
Mutation Analysis (MA) Directed Metaheuristic Search Based SoC System Design Simulation i
Adaptive Random Simulation Test Generation for MA and MA With IP-XACT H
1
1
(IP verification) (IP verification) (SoC system verification) ,"
1
1
1

] N A /]

Application and evaluation of
verification methods

y

\
1
1
\
)
1
CoreConnect SoC \
MB-Lite microprocessor IP design I
1
1
1
1
1
1
H

system designs

‘-‘ Instance of IP based SoC design

\

A}
‘ IP component design & verification > ‘ SoC system design & verification >:"
1

Figure 7.1 Objectives of evaluation.

As Figure 7.1 shows, for IP level, we took a microprocessor IP as the design under
verification, which is called MB-Lite [109] implementing the MicroBlaze ISA from
Xilinx. It served evaluating objective 1 and 2, by exercising the first two components of
our methodology — the adaptive random simulation and metaheuristic-based test
generation. For system level, we exercised the IP-XACT tool with several designs based
on CoreConnect SoC architecture. Here, the evaluation objective 3 was the target. The

experiments further comprise an integrated evaluation of the mutation-analysis-driven
verification methodology.

For the selection of these study objects, we took two aspects into account. First, we
intended to evaluate the methods on real working designs. The microprocessor core and
its associated FPU are both synthesizable and able to execute standard-specified
instructions. The SoC system designs host software, too. Second, we considered that
MicroBlaze microprocessors, FPU, and CoreConnect are all popular employment in SoC
research [110] [111] [112] [113].

As mentioned, Certitude from Synopsys, as a state-of-the-art EDA tool for HDL
mutation analysis, was used for IP level mutation analysis.

7.2. MB-Lite Microprocessor IP Verification
This section presents the microprocessor IP verification that goes through the

proposed adaptive random simulation and metaheuristic search-based test generation,
targeting the mutation analysis metric provided by Certitude.

128

CHAPTER 7: Evaluation

7.2.1. Design Under Verification and Mutants

Microprocessor is considered an essential component in most SoCs and MicroBlaze
is a popular ISA from Xilinx. Various IPs that implement this architecture have been used
in literature for SoC and embedded systems research [110] [111] [112] [113]. The
specification of MicroBlaze ISA can be found in [114].

MB-Lite is a VHDL IP core that implements MicroBlaze ISA. It has been first
presented at Design Automation and Test in Europe 2010 [109], Further, there is an open
source description to be found at [115], for others to review the verification.

Nevertheless, it lacks the support for floating point instructions. Therefore, we
extended this MB-Lite by integrating into it another IEEE-754 compatible floating point
unit (FPU) — IEEE-754 [49] is the specified format by MicroBlaze ISA.

Figure 7.2 shows the outlined microarchitecture for the MB-Lite IP design with FPU.
The main microprocessor consists of a five stage pipeline: Instruction Fetch (IF),
Instruction Decode (ID), Execute (EX), Memory (MEM) and Write-back (WB). The FPU
supports pipelined as well as non-pipelined operations.

4 N\
fetch decode execute memory write-
back
3 —> — — —>
2
©
)
o
S
= $ 3
' IEEE-754 FPU !
1 1
' | add || mul | .
: ->| rounding |—>|exception | '
1
! |sub | div | '
! |
___ """ TTmmmmmmm T TR J

Figure 7.2 Design Under Verification: MB-LITE microprocessor design with FPU.

By such, the IP core is ready to execute binary code compiled by the standard
MicroBlaze compiler mb-gcc, included in XILINX FPGA tools. All together, the IP has
about 4K lines of code.

This is a near-mature IP design. Again, the goal of the experiments is not finding any
real bug in the design, but to show the efficiency and effectiveness of the simulation
methods with regard to mutation analysis metric.

Figure 7.3 lists a summarized report from the Certitude tool, after it creating the initial
mutant database as verification quality metric. In total, 1662 valid mutants were
generated, scattered on all the VHDL files. Another 85 mutants were generated but then

129

Quality Metrics Driven Functional Verification for IP based SoC Design

Mutants Disabled By Mutants
File name Total Certitude Total (incl. Killed Non-Killed
Valid (Equivalent) Equivalent)
[mblite]/core/std_Pkg.vhd 167 2 169 0 167
[mblite]/core/decode.vhd 445 37 482 0 445
[mblite]/core/execute.vhd 216 0 216 0 216
[mblite]/core/fetch.vhd 31 2 33 0 31
[mblite])/core/mem.vhd 47 2 49 0 47
[mblite]/core/core_Pkg.vhd 45 0 45 0 45
[mblite]/FPU/fpupack.vhd 12 5 17 0 12
[mblite]/FPU/fpu_add.vhd 52 1 53 0 52
[mblite]/FPU/fpu_div.vhd 113 0 113 0 113
[mbilite]/FPU/fpu_mul.vhd 84 0 84 0 84
[mblite]/FPU/fpu_sub.vhd 65 2 67 0 65
[mblite]/FPU/fpu_round.vhd 40 2 42 0 40
[mblite]/FPU/fpu_exception.vhd 209 14 223 0 209
[mblite]/FPU/fpu.vhd 136 18 154 0 136
All Source Files (6) 1662 85 1747 0 1662

Figure 7.3 Initially generated mutants (report sumary from Ceritude).

identified as equivalent mutants by Certitude. We will have a short discussion on both
equivalent and non-equivalent mutants that could not be killed at the end of verification.

7.2.2. Adaptive Random Simulation

For the implementation of the adaptive random simulation:

We modeled the Markov chain and constraints for random test generation with the
SystemC Verification Library (SCV). MicroBlaze instructions [114] as well as the
contained IEEE-754 FPU operations are modeled with 12 Markov-chain nodes and
17 constraints. Similar instructions are not distinguished and grouped into one
node, such as add, addc, addk and addkc. Example constraints have been
previously discussed. SystemC and VHDL co-simulation is supported by the
simulation tool ModelSim.

We realized the dynamic mutation schemata by utilizing the Tcl interfaces of the
tools Certitude and ModelSim.

We also implemented the adaptation heuristic in Tcl, both the calculation and the
adjustment to the SCV model. At initialization, all the edges and constraints are
assigned equal probabilities/weights for being selected.

To investigate the efficiency of our method — evaluation objective 1, we compared three

simulation processes: i) the adaptive random simulation, ii) a random simulation process
with test generation under the same Markov chain model, but without the in-loop

130

CHAPTER 7: Evaluation

adaptation heuristic, and iii) the dhrystone benchmark as a software program that is
compiled with the Xilinx compiler mb-gcc for MicroBlaze ISA, with another 150 directed
FPU tests planned in.

Figure 7.4-a) shows as the main result this efficiency comparison: the total number of
killed mutants until a certain number of tests being simulated.

The adaptive random simulation managed to kill 1579 (95.0%) out of the total 1662
mutants after 1000K tests (MicroBlaze instructions). This compares to the non-adaptive
version that was only able to kill 1308 (78.7%) with this amount of tests. Both random
simulations were repeated three times to obtain these average values, each time with a
different random seed.

We see this as the first evidence that the adaptation heuristic, based on mutation
analysis feedback, is indeed able to improve the efficiency of a HDL mutation analysis
process.

The bottom part of Figure 7.4 just provides another view of the result data. The
motivation is from an easy observation that there is a certain set of mutants that were
trivially easy to be killed. In fact, around 800 mutants — about half of the total — could be
eliminated by the first thousands tests, in all simulation experiments. Therefore, to limit
the impact of these trivial mutants and amplify the significance of those non-trivial
mutants, we devised a quality index (QI) as an adjusted result of mutation analysis, simply
by

Quality Index = (Nyjea-mutants/ Neotai-mutants)* X 100

By this, we are able to highlight the progress of killing hard-to-kill mutants. These are
exactly the verification holes that we need to cover. The improvement by our method is
made more prominent.

The software binary was outperformed by both random simulations. The dhrystone
benchmark program together with the planed FPU tests was only able to kill 1085 mutants,
or 65.3% of the total. After an initial period, it delivered only waste of cycles without
increasing the killed mutants any more, since it was a benchmark and not built for
exercising this specific design. It was inferior to the continuous progress in random
simulations. We used it merely as a reference, though it has some competence by
exploiting the knowledge from the compiler.

Figure 7.5 is an attempt to explain the efficiency improvement from the adaptive
random simulation, compared to the non-adaptive one. It shows the record on the number
of activated and killed mutants by each thousand test — in one experiment from the three
repetitions. We can see that as the remaining, un-killed mutants decreased, the adaptive
test generation managed to maintain a relative high rate of activation, by adjusting the
Markov chain model. In contrast, the non-adaptive simulation lost the percentage of

131

Quality Metrics Driven Functional Verification for IP based SoC Design

1800
1600
J'__,_/Jff 95.0%
1400
g 100 f emmmmmmmmTTTTTTTTITIOOOT 78.7%
- J P
4] -
£ MNP, g U U U g
£ 1000 - 65.3%
E (i
k-1 .
2 800 H
= L
600 adaptive random —
200 - --- non-adaptive random
— - —-SW (benchmark)
200
0 T T T T T T T T T 1
1 101 201 301 401 501 601 701 801 901
n-thousands tests simulated
a) Efficiency as number of killed mutants
100
%0 90,2
80 ’f,__/-’(f"_"fr_’—
70
§ ’,r;J— . _6_1,9
S 60 Jm— ===
= R
B 50 "'Jr S
£ {{ -7 42,6
> T S
2 40)=
S [
g i
30 f adaptive random
20 - - - - non-adaptive random —
"€+ - SW (benchmark) -
0 T T T T T T T T T 1
1 101 201 301 401 501 601 701 801 901
n-thousands tests simulated

b) Efficiency as adjusted quality index

Figure 7.4 Mutation analysis efficiency compared (average from 3 repetitions, each with
a different random seed).

activated mutants a lower level, when the initial easy-to-kill mutants were removed from
the metric and it was not able to adjust itself to this change.

In average, the adaptive random simulation needed about 12.5 hours to finish the
1000K tests and the non-adaptive random took 7.4. Indeed, more mutant activation will
lead to increase of HDL simulation time. However, this increase is limited thanks to the

132

400

250

200

Activated/kiled mutants by each thousand tests

300 i

150 -

350 it

CHAPTER 7: Evaluation

+—activated w/o adaptation
- killed w/o adaptation
- activated w/ adaptation

killed w/ adaptation

Each thousand tests

Figure 7.5 Explanation to the efficiency improvement. Adaptive rando simulation saw
more activated/killed mutants by each thounsand tests.

use of dynamic mutation schemata with Certitude, since activated mutants require only

temporarily forked simulation.

Therefore, even considering simulation time for efficiency instead of number-of-test,
Figure 7.6 shows the advantage from adaptive random simulation. Within the same period
of 10 hours simulation, the adaptive simulation reached a quality index of 89.6 compared

Quality index (1-100)

100
90
80
70
60
50
40
30
20
10

0

89,6

Fﬁj

632

—— w/ adaptation

,,,,,,,, w/o adaptation

4 6 8

Simulation time used (hours)

10

Figure 7.6 Mutation analysis efficiency in simulation time used.

133

Quality Metrics Driven Functional Verification for IP based SoC Design

to 63.2 from non-adaptive. The simulations time was measured on a Linux PC with 2.4
GHz processor.

As mentioned, the transition point — until which time the random simulation should be
stopped and we move to the search based test generation for each un-killed mutant — was
not optimized.

7.2.3. Metaheuristic Search-based Test Generation

As the starting point for experimenting the metaheuristic search based test generation,
the table in Figure 7.7 gives a summarized report from Certitude after one adaptive
random simulation process (one of the three repetitions). There were 83 mutants that could
not be killed by the preceding random simulation, which becomes exactly the objects of
our experiments in this section.

Basically, we implemented the example local search presented in Section 5.2,
integrating a CDFG-based cost function following the principle of Section 5.3. Some more
implementation details:

e We extracted the control and data flow graph manually from the design VHDL
code, which contains five main microprocessor pipeline stages and another 6 FPU
data flow units. Local cost functions are also manually programmed and attached
to the CDFG structure.

e Some input fields are considered type integer for neighborhood selection, for
example the exponent field of a FPU operand. Recall that for an integer input, we
have two neighborhood candidates, one by increasing and another by decreasing
half from its current value. Others are treated as simple bit or bit-vector.

e In each search iteration, we simulated a test sequence with MicroBlaze 100
instructions. The neighbor candidates were limited to 100. It means a simulation
effort of 10,000 instructions in each iteration.

o We allow moving to a non-improving (but best-in-the-iteration) neighbor in case
of local optimum. Each search experiment was terminated after 200 local search
iterations.

To investigate the effectiveness of the CDFG-based cost function — evaluation
objection 2, we compared two search processes: i) the local search steered by CDFG cost
function and ii) the same local search but only with a dummy cost function that always
delivers the same value.

Figure 7.8 shows the results after applying the local search implementation on each of
the 83 remaining hard-to-kill mutants. The top part shows separate experiments on each

134

CHAPTER 7: Evaluation

Mutants Disabled By Mutants
File name Total Certitude Total (incl. Killed Non-Killed
Valid (Equivalent) Equivalent)
[mblite]/core/std_Pkg.vhd 167 2 169 156 11
[mblite]/core/decode.vhd 445 37 482 421 24
[mblite]/core/execute.vhd 216 0 216 210 6
[mblite]/core/fetch.vhd 31 2 33 31 0
[mblite]/core/mem.vhd 47 2 49 47 0
[mblite]/core/core_Pkg.vhd 45 0 45 42 3
[mblite]/FPU/fpupack.vhd 12 5 17 12 0
[mblite]/FPU/fpu_add.vhd 52 1 53 46 6
[mblite)/FPU/fpu_div.vhd 113 0 113 110 3
[mblite]/FPU/fpu_mul.vhd 84 0 84 7 7
[mblite]/FPU/fpu_sub.vhd 65 2 67 63 2
[mblite]/FPU/fpu_round.vhd 40 2 42 36 4
[mblite]/FPU/fpu_exception.vhd 209 14 223 192 17
[mblitel/FPU/fpu.vhd 136 18 154 136 0
All Source Files (6) 1662 85 1747 1579 83

Figure 7.7 Un-killed mutants after adaptive random simulation (report sumary from
Ceritude). Each became the target of a search experiment .

mutant, with search performance by the required iterations until a success, or a fail after
the maximally allowed 200 iterations. The bottom part provides a summary of the search
results.

We can observe that in most cases — 77 search instances, the search steered by our
CDFG-based cost function was able to reach a target mutant-killing test, before the
maximally allowed number of iteration. In average, it required 108 iterations until the
target was found. This effectiveness of steering becomes obvious, when it is compared to
the performance of the dummy function, which only succeeded in 4 cases by chance.

There were indeed failed cases, but only a few. It has not been further investigated
whether these in-the-end un-killed mutants are actually equivalent mutants, or just tricky
enough to avoid all our effort.

Overhead of the local search, mainly from calculating the cost function, was measured
to be always minor in comparison to the time of design simulation itself, which conforms
to our previous analysis in the arithmetic summary. Note that although a large number of
neighbor tests must be examined in the search, they was no wasted time, since this
simulation-based examination is a direct part of the verification.

Further, a specific search instance is discussed in the following, to provide a closer
observation on the search steering under the CDFG cost function.

135

Quality Metrics Driven Functional Verification for IP based SoC Design

M Search (guided by CDFG cost function) 1Search (dummy cost function) W Search (guided by CDFG cost function) 1Search (dummy cost function)
of search iterations until mutant killed, or terminated # of search iterations until mutant killed, or terminated
0 50 100 150 200 250 0 50 100 150 200 250
; ; . ; ; ;
|
21 761
T J
§— o E——
J 1 1 I
50 ; 840
B 1 1 1
66 ; ‘ ‘ 841
41 1 1
e — w
1 L L
78 : : J 872 ; ; ‘
79 T T : 889 I
106 1 1 I [
0 : ! 925 | : ‘ :
7 ; I 936
1 1 1
146 - : [956 | ;]
180 - : ‘ 992 ; I I
195 T 7 I 996 ‘ ‘
1 i
230 ; ; : 1035] L
1 L L
244 : T 1057 ; ‘
247 ; " T 1092] [
1 L L
i:: [I I 1110 ‘
1 1
308 I I I 1114 ; ‘ ‘
T T | 1115 | |
315 3 | | |
T ' [1211
339 1 T 1 I
320 T | T 1232 | ;
380 i i [1267 ‘ ‘
4 1 1
a1 T | | 1270 ; ‘
s w I I 1309 I I
) :] |
430 . . [1334 | r i i
41 !] I 1336 ‘
295 T 1 I 1355 I I
1 1
517 .]] 1391 ' | [
538 . .] 1424 I]
1 1) - | ‘
544 I 1426 | :] [
553 - 1 ‘ 1442
1 i
588 ! I I 1471 ‘ ‘
1 T T
609 - . | 1472 ;] I
1 1 ‘ N
611 1492
I I)) -] |
618 1504 D
644 . .] 1521 L L
g 1
664 ‘ ‘ . 1550 I ‘
1 1
688 . . I 1553 |
. .] i |] |
1584
it . .]) : I |
724 1598
L 1 ‘ 1 1 ‘ ‘
753 1634
756 ‘ ‘ ‘ 1672 | 3] [
Mutant ID Mutant ID

Search applied

Mutants left un-killed
after adaptive random

Search instances that
succeeded /failed-

Average iterations until
a success

simulation after-200-iterations
Local search guided by
CDFG cost function 83 7716 108
Local search with 83 4/79 N/A

dummy cost function

Figure 7.8 Performance of local search. CDFG based cost function compared with a
dummy cost function, to demonstrate the steering effectiveness.

Example Search Instance with Mutant-76

We discuss one example search instance, with the mutant that has an ID 76. The
purpose is to provide a closer observation on how the cost function was able to steer a local
search towards a target test.

Figure 7.9 first shows the mutant. It is created by Certitude at the FPU add unit, as
changing the VHDL signal assignment at line 148 from one to zero. A small portion of the
CDFG, which contains those variable and statement nodes that are close to the mutation

136

CHAPTER 7: Evaluation

145 if (exponent_small > 0) then

146 small_is_denorm <= '0';

147 else

148 small_is_denorm <= '1'; -- mutant-76: small_is_denorm <='0";
149 endif;

150 if (exponent_large > 0) then

151 large_is_denorm <= '0';

152 else

153 large_is_denorm <= '1';

154 endif;

155 if (small_is_denorm = '1' and large_is_denorm = '0') then
156 large_norm_small_denorm <= "00000000001" ;

157 else

158 large_norm_small_denorm <= "00000000000" ;

159 endif;

160 exponent_diff <= exponent_large - exponent_small -
large_norm_small_denorm;

161 large_add <= '0' & mantissa_large & not large_is_denorm &

[exponent_small] [exponent_large]

162 small_add <= '0' & mantissa_small & not small_is_denorm &

163 small_shift <= shr(small_add, exponent_diff);

@ propagation distance (relative to unit) small_shift

Figure 7.9 Mutant with ID 76 and a portion of design CDFG.

statement, is also shown in the figure. Propagation distances of those nodes relevant to the
discussion are also annotated.

Figure 7.10 draws the reappearance of a search instance with mutant-76. In particular,
it details the iterations that are executed just before a target test was found, by listing the
cost function calculation at each step.

In iteration 83 in the search, we found a good test that was able to activate mutant-76
and propagate deviation in mutant simulation to as far as node small_add and
exponent_diff (marked as red), but did not manage to propagate this to node small_shift
through statement 163: small_shift <= shr (small_add, exponent_diff). The local cost
function that we attached to node small_shift when creating the CDFG is

localPropagationCostsma shift

= left_most_one(small_add xor small_add") — max(exponent_dif f,exponent_dif f")

where left_most_one returns the index of the left most bit that is *1'. Recall that such a local
cost function is defined to exactly reflex the condition that a mutation deviation can be
generated at this node. Also note that a local cost should be normalized to a value between
(0, 1) and then added to the propagation distance. By such, the cost was calculated as 4.71
under this test, which is also the best for this iteration.

In iteration 84, we could find another better test by decreasing test input exponent_small
— recall that in our local search, we adjust a single test input field to get a neighbor test.
The improved cost was 4.35.

137

Quality Metrics Driven Functional Verification for IP based SoC Design

cost
¥ ~
5| [small_add] """ { exponent_diff }
= = 4.71
435
417 4
. 417 408 403 401
8 X < 8 > 3 S search iteration
$

Iteration 83: best test found was

operation: 00, rounding mode: 10,

operand 1: 0 00001001001(73) 00100010 (sign1, exponentl, mantissal),

operand 2: 0 00000000000 00 (sign2, exponent2, mantissa2)
=>propagation_distance = 5, local_cost=71, cost= 5-1+0.71=4.71

Iteration 84:

neighbor test 1 : only increase exponentl to 00001101101 (109 as integer, increased by 36 from 73)
=>propagation_distance = 5, local_cost=72, cost= 5-1+0.72=4.72 =» worsened, wrong search direction x

neighbor test 2 : only decrease exponent1 to 00000100101 (37 as integer, decreased by 36 from 73)
=>»propagation_distance = 5, local_cost=35, cost= 5-1+0.35=4.35 =» improved from 4.71, use for next iteration v

(other neighbor tests also led to worsened cost)

Iteration 85:

neighbor test 1 : exponent1 =00000110111 (55) =»propagation_distance = 5, local_cost=53, cost= 5-1+0.53=4.53 =»worsened x
neighbor test 2 : exponent1 =00000010011 (19) =»propagation_distance = 5, local_cost=17, cost= 5-1+0.17=4.17 =»improved V
(other neighbor tests also led to worsened cost)

Iteration 86:

neighbor test 1 : exponent1 =00000011100 (28) =»propagation_distance = 5, local_cost=26, cost= 5-1+0.26=4.26 =»worsened x
neighbor test 2 : exponent1 =00000001010 (10) =»propagation_distance = 5, local_cost=8, cost= 5-1+0.08=4.08 =»improved Vv
(other neighbor tests also led to worsened cost)

Iteration 87:

neighbor test 1 : exponent1 =00000001111 (15) =»propagation_distance = 5, local_cost=13, cost= 5-1+0.13=4.13 =»worsened x
neighbor test 2 : exponent1 =00000000101 (5) =»propagation_distance =5, local_cost=3, cost= 5-1+0.03=4.03 =»improved V
(other neighbor tests also led to worsened cost)

Iteration 88:

neighbor test 1 : exponent1 =00000000111 (7) =»propagation_distance = 5, local_cost=5, cost= 5-1+0.13=4.05 =» worsened x
neighbor test 2 : exponent1 =00000000011 (3) =»propagation_distance = 5, local_cost=1, cost= 5-1+0.01=4.01 =» improved V
(other neighbor tests also led to worsened cost)

Iteration 89:

neighbor test 1 : exponent1 =00000000100 (4) =»propagation_distance = 5, local_cost=2, cost= 5-1+0.02=4.02 =» worsened x
neighbor test 2 : exponent1 =00000000011 (2) =»local_cost=0, propagation_distance as well as cost was automatically reduced
too —in fact also reduced to zero =» mutant killed m

Figure 7.10 A search instance with mutant 76. Local cost guided the propagation
through node 163 and, consequently, to a target test.

In the following iterations, from iteration 85 to 88, the search could consecutively find
cost-improving tests, which reduced the cost to 4.01. Thanks to that guidance from the
local cost, the search could continuously move nearer to the full satisfaction of the
propagation condition at statement node 163. Note that, without this guidance, the
probability of small_shift receiving a mutant deviation is extremely low, which is why it
could not be killed during the random simulation phase.

138

CHAPTER 7: Evaluation

And at iteration 89, we finally reached a test that reduced the local cost to zero, leading
to a successful propagation at node 163. Therefore, the propagation distance should
automatically be reduced, by one at least. In this instance, the mutant deviation created at
small_shift was luckily able to propagate all the way directly to the FPU output and further
microprocessor output, which made mutant-76 be killed by definition.

7.3. CoreConnect SoC Design Verification

We implemented several case studies to exercise our Eclipse-based IP-XACT tool and
the concepts behind: IP-XACT based SoC system simulation and mutation analysis. It was
our main objective to demonstrate the general feasibility of these concepts. A secondary
objective was to evaluate the effect of the IP-XACT mutation operators.

The case studies were constructed using a TLM design library from IBM, which is
provided for the TLM based modeling and evaluation of CoreConnect/PowerPC SoC. In
the following, we will briefly introduce this library and, in particular, the relevant IP cores
to be used in the case study designs, so that we can easily understand the design scenarios.
Then, two case studies are detailed, one based on reference designs from the library, and
the other one as a TLM based verification scenario for an existing FPGA design.

7.3.1. Introduction to PEK: A TLM IP Libaray for SoC Design

IBM provides this PEK [41]- PowerPC Evaluation Kit — as a library to facilitate the
TLM enabled system-level modeling, exploration, and evaluation of CoreConnect/
PowerPC based SoCs. For this, it consists mainly of an extensive collection of IP
components in TLM for the CoreConnect architecture, as well as several reference designs.
Not only functional but also other aspects can be modelled with this library, such as the
timing and power consumption of a SoC. We focused only on the functional integration.

Figure 7.11 shows how PEK models the CoreConnect architecture as a TLM
framework. We list several IP models to be used later:

e PLB, OPB, PLBOPBBridge, and DCR: These are the TLM models for the SoC
on-chip communication defined by the CoreConnect architecture, which includes
the PLB, OPB, and DCR bus specifications. As mentioned, the communication
realized by these bus models is cycle-accurate, with regard to the original timing
specification. It means if we model and integrate the computation components, for
example a CPU, also in a cycle-accurate way, we should have the possibility to
obtain a fully cycle-accurate system model. The data and hand-shake protocols are
transmitted through particular data structures: PLB_REQUEST, OPB_REQUEST,
and DCR_REQUEST.

139

Quality Metrics Driven Functional Verification for IP based SoC Design

PEK: a TLM IP library for PowerPC/CoreConnect based SoC design

DCR
Arbiter @ DR B
der_arbiter_if | der_bus_if
intrpt_ctr_if
(:;\E/::l:ét;;) PLB Master &3 et
plb_bus_if

=~ PLB_OPB

bLB B Bridge

us

OPB_PLB

Bridge

plb_arbiter_if plb_slave_if |plb_bus_if
< A —d
PLB PLB DMA ‘
Arbiter Slave Controller opb_bus_jf Arbiter
opb_arbiter_if

Architecture overview

@ TLM interface @ TLM port E—@ TLM communication

Communication IP: Cycle Accurate; Computation IP: Programmer’s View with Timing

Figure 7.11 PEK (PowerPC Evaluation Kit) SoC library [41].

140

PPC _ISS: a PowerPC 405/440 Instruction Set Simulator (ISS) wrapped as a TLM
component. It models a PowerPC microprocessor in a CoreConnect system, with
three main TLM ports to be connected: a PLB master port for instruction, another
one for data, and a DCR master port. It implements further the interrupt interface
in TLM, accepting control from an interrupt controller. Parameters that can be
configured during instantiation of this component include, for example, size of
instruction/data cache, width of each PLB connection, master IDs on PLB as well
as DCR, path to the executable file, and other ISS related options. The ISS is
synchronized with PLB and DCR through SystemC clocks.

DDR_MC2PLB4_MODULE: a Double Data Rate (DDR) memory controller,
which contains also a cycle-approximate memory model that mimics the industry
standard DDR SDRAM interface. The controller is supposed to be connected to a
PLB bus through the PLB slave interface. It can be used together with the ISS
component and loaded with a binary cross-compiled for the ISS. Then all the bus
protocol, DDR controller, and the memory model will be exercised during 1SS
execution. Possible configurations of this controller are PLB data/address width,
high/low address on PLB, mode of cycle accuracy, other timing as well as
row/bank number for the memory model, and so on.

CHAPTER 7: Evaluation

e UIC: it models a Universal Interrupt Controller that handle interrupts for a CPU.
Up to 32 inputs can be connected and configured. Further, two types of interrupts
— critical and non-critical — are supported. All such communications are carried
out through an INTRP_REQUEST data structure, as with the buses.

e UART16750: a Universal Asynchronous Receiver/Transmitter (UART) device
that can be attached to OPB. It receives data from, or transmits data to its serial
port, during which it also initiates interrupt to a CPU. The serial port can be
connected to a component called file_reader_writer, that reads a file as the UART
input or record the UART output. The FIFO size can be configured for this
component.

e Console: this models an input/output terminal external to a SoC model. When
connected to a UART, it facilitates an interaction with the SoC, for example for
testing purpose.

e loDevice: an 10 model that mimics several file accessing interfaces. When it is
attached to PLB through its PLB slave interface, a program running on the ISS can
use these interfaces — close, fstat, isatty, Iseek, open, read, stat, and write —to access
this model and perform file operations, as real files are available . The buffer size
of an loDevice can be configured.

o EMAC, GMII, GmiiDevice, and MAL_CONTROLLER: together, these cores
provide modeling facility for SoC design with Ethernet interfacing. EMAC models
an Ethernet media access controller that complies with the IEEE standard 802.3 for
Ethernet Media Access Control protocol. In 1000-Mbps mode, it operates in
connection with a GMII (Gigabit Media Independent Interface), which in turn
connects to a GmiiDevice that models a standard Ethernet PHY. On the other side,
an EMAC connects to a MAL_CONTROLLER core, which transfers packet directly
between memory and EMAC, by behaving as a master on PLB. Then an Ethernet
software stack maintains merely the memory descriptor from this

e MAL_CONTROLLER: it provides mainly a data transfer facility between memory
and a packet-oriented core, such as the EMAC core just mentioned. It minimizes
the involvement of a CPU in such Ethernet traffic.

7.3.2. Two SoC Case Studies on IP-XACT Tool

In the first case study, we excised our Eclipse-based IP-XACT tool with two reference
designs from PEK. We show only the first exercise with Figure 7.12. Basically, the design
is a SoC scenario that exercises two Ethernet 1-GB high speed serial (HSS) link cores.

141

Quality Metrics Driven Functional Verification for IP based SoC Design

There are three main traffic flows being generated, which at the same time serves the
test of this SoC system integration: i) the Ethernet traffic on top of Ethernet controllers,
the MAL controller, the cycle-accurate DDR memory model, and SW stack, ii) the UART
traffic, and ii) the additional file operation traffic, through the mimic of files by loDevice.

All the related TLM IPs in PEK were first carefully documented as IP-XACT
components, with necessary bus/abstractionDefinitions for PLB, OPB, and DCR. Then, a
corresponding IP-XACT design for the Ethernet SoC is modeled.

The working process of our IP-XACT tool has been introduced before. Here we do not
go to the details again. Some statistics from the tool exercise will be presented later
together with the second case study.

In the second case study, we reused the hybrid-task SoC design that has been presented
in the background chapter for discussing the reference flow. As mentioned, we designed
and implemented this hybrid-task SoC and required IPs as a demonstration of the CPU-
FPGA task migration idea [13] [11].

To exercise the IP-XACT tool, we considered this experiment: TLM based simulation
and verification of this hybrid-task SoC design, as presented by Figure 7.13. A
corresponding TLM system was created to model, simulate and, based on such simulation,
verify the functional correctness of the hybrid-task SoC that is originally described as RTL.

On top the existing IP-XACT components and bus/abstractionDefinitions for PEK, IP-
XACT descriptions for the hybrid-task TripleDES and hybrid-task manger IPs were first
created. To integrate them into TLM simulation, TLM wrappers are also created for RTL,
on their OPB interfaces. Then the hybrid-task SoC described in format MHS —
Microprocessor Hardware Specification — was transformed into an IP-XACT design.

Tests for the original system were written as scripts running on a PC console that is
connected to the FPGA board through a serial interface. Such a script consists of operation
commands for the hybrid-task system: restart_task [sw]hw], suspend_task, migrate_task,
resume_task, step_task, etc. Data streams for the TripleDES task were also fed through
these commands.

We constructed tests for the TLM based hybrid-task SoC by imitating this mechanism.
It is possible, since all the required components, including a UART and console model,
are provided by PEK. In this way, all the TripleDES encryption/decryption and CPU-
FPGA task migration scenarios were be tested with TLM.

The first result that we can report is that, in both case studies — on two PEK reference
designs and a SoC design of our own, the IP-XACT tool was able to complete the
generation and simulation of mutants, SystemC and Makefiles for all three SoC designs in
IP-XACT.

142

CHAPTER 7: Evaluation

PEK : PowerPC SoC Evaluation Kit with TLM

PEK reference SoC design Ethernet (PEK format)
P

MAL_CONTROLLER }

NTRPT_
PowerPC CTR

ISS_TLM 7o [R A ‘

TLM
IP
Library

T

PLB_BUS

DDR_ o
MC2PLB4 .
= Device
N~ MODULE

T
)

,,,,,,,,,,,,,,,,,,,,

OPB_BUS

TLM connection

TLM port &—————————>T] \] interface 7

A 4

y
< IP-XACT IP repositor, A 2 - <
IP-XACT]
IP-XACT CoreConnect PEK SoC Mutants Generation
component XML on Java objects
XML 3 J IP-XACT mutation
IP-XACT PLB/OPB/DCR analysis domain
Definiti T

Java | IP-XACT functional
IP-XACT PLB/OPB/DCR i (]) simulation domain
abstractionDefinition XML SystemC/Makefile

Synthesis

SystemC Simulator (ModelSim)

Figure 7.12 IP-XACT tool exercise with PEK reference SoC design (two Ethernet 1-GB
high speed serial (HSS) link cores).

|
|
|
|
|
i
|
design ,
|
'
I
I
]

Eclipse IP-XACT tool IP-XACT editing domain

Figure 7.14 shows more statistics from the IP-XACT tool exercises, in particular, with
regard to IP-XACT mutation analysis: the number of generated and killed mutants. At the
end of the TLM system simulations, 79%, 81%, and 71% mutants were killed respectively,
out of the 151, 134, and 68 mutants that were generated in total under the seven basic
mutation operators on the IP-XACT schema. The tests were improved manually by, for
example, generating more Ethernet traffic and simply repeating more commands for
hybrid-task operations, to make a reference and compare the mutation analysis results from
the original tests. For the simulation of each mutant, we measured it as killed, if a different
system simulation trace was recorded.

A large part of the total mutants were generated by the parameter group of mutation
operators, such as reducing or increasing the FIFO size in the UART component, trying
different cache sizes in PowerPC configuration, setting another priority scheme for the

143

Quality Metrics Driven Functional Verification for IP based SoC Design

PEK: Xilinx ISE Tool: PowerPC/CoreConnect SoC design on FPGA
PowerPC/
CoreConnect Hybrid-task SoC system design
SoC with TLM TripieDES W,
!_ DREAMSOS !
N /)
M~ PowerPC ! Hybrid -Task [[Hybrid- Task:
‘ 405 ‘w Manager TripleDES LT Ut'l|l-
Mmoo 4 zation
System 6193 62.8%
TLM :tGa/: 9856 100%
IP oPB
Library AL S
UART
Controller
DDR SDRAN I \
Controller Leel e
[v] : ____________
: (- -
~_ ! DDR SDRAM : PC: Console:
N i, Testinput/output ____
- AN I
]
r v N
y ——————
< IP-XACT IP repositor A 2 :
IP-XACT ' ()
|
IP-XACT Hybrid-Task Hybrid-Task ' Mutants Generation
component XML SoC design ! on Java objects
XML ! . J IP-XACT mutation
IP-XACT PEK U ! analysis domain
Uy
I component XML / i IP-XACT functional
IP-XACT PLB/OPB/DCR ' - ~ simulation domain
initi 1 SystemC/Makefile
! Synthesis
IP-XACT PLB/OPB/DCR ' _ Y,
abstractionDefinition XML IP-XACT editing domain;
.
Eclipse IP-XACT tool
\. J

hybrid-task SoC.

SystemC Simulator (ModelSim)

Figure 7.13 IP-XACT tool case study 2: TLM based simulation and verification of a

PLB arbitration, configuring TX/RX FIFO sizes for the Ethernet controller, etc. The
InterConnDel operator was observed to be trivial (generating mutants that are too easy to
be killed), if not totally unnecessary.

Indeed, at this moment, the selection and completion of IP-XACT mutation operators
have not been optimized. Still, this represents our first effort, and the first published effort

towards i) definition of mutation operators for IP-XACT, which we assume as the standard

SoC system-level design format, and ii) a tool implementation for such mutation analysis.
We have argued its necessity as a systematic metric for SoC system design. Our

experimental tool and the case studies demonstrated this effort.

144

CHAPTER 7: Evaluation

By Original system tests By
IP-XACT -
IP-XACT Inter- improved
SoC 17| L Baddr-|Haddr-| Addr- test
.. lincluded ParRep| Parlins | ParDel Conn- | Total ests
CXCICIoL Incr | Decr | Exch
Del (Total)
PEK Generated| 69 18 20 16 19 4 5 151 151
Reference 17 Killed 54 15 14 15 14 3 4 119 137
Design 1 Percentage| 78% | 83% | 70% | 94% | 74% | 75% | 80% | 79% | 91%
PEK Generated| 71 12 11 17 15 4 4 134 134
Reference| 14 Killed 59 10 7 14 13 2 4 109 126
Design 2 Percentage| 83% | 83% | 64% | 82% | 87% | 50% | 100% | 81% | 90%
Hybrid- Generated| 28 11 8 7 7 3 4 68 68
Task 8 Killed 17 7 6 6 5 3 4 48 64
Design
Percentage| 61% 64% 75% 86% 71% | 100% | 100% | 71% 94%

Figure 7.14 More information on IP-XACT tool case studies: statistics of mutation

analysis.

145

Quality Metrics Driven Functional Verification for IP based SoC Design

146

CHAPTER 8: Conclusion

In this thesis, we have proposed a simulation-based functional verification
methodology for IP-based SoC design, which is driven by mutation analysis as a
consistent metric for verification quality.

The background for our methodology includes mainly i) the increasing prevalence of
SoCs, with IP-reuse and integration as the central design paradigm, ii) the emerging EDA
tools and application of HDL mutation analysis, and iii) the emerging new languages and
standards for SoC design, such as TLM and IP-XACT.

In this context, we have been able to identify the general problems as: i) at IP design
phase, we lack efficient, practical test generation methods for HDL mutation analysis and
ii) at SoC system design phase, we lack a systematic verification way as well as a quality
metric for such verification. Therefore, our proposed verification enhancement flow
consists of three components to address these problems.

First, considering the verification of an IP design, it is reasonable for us to employ
light-weight constrained random simulation (CRS) to obtain a primary level of killed
mutants. However, CRS can be inefficient, as it is defined neither for the original nor for
the changing metric. The problem can be particularly amplified, since mutation analysis
is a time-consuming metric. This has motivated us to integrate a continuous, heuristic
adaptation loop into CRS. We have proposed using a constraint-extended Markov chain
to model random test and provide the basis for such adaptation. We have also presented
dynamic mutation schemata to efficiently carry out HDL mutation analysis and provide
feedback. Then, the adaptation heuristic works by encouraging Markov-chain
edges/constraints that could activate more mutants. In the evaluation experiment with the
MB-Lite/FPU IP, we were able to observe the adaptation indeed leading to more activated
as well as killed mutants. We achieved our goal of enhancing the mutation analysis
efficiency in CRS.

Second, there are “hard” mutants expected to be left un-killed after this adaptive
random simulation. Avoidance of any symbolic simulation has motivated us to apply

147

Quality Metrics Driven Functional Verification for IP based SoC Design

metaheuristic search based test generation to handle each of the remaining mutants. Such
a metaheuristic, for example a simple local search, searches the design input space and
tries to move gradually to a mutant-killing target test, relying only on guidance from real
design simulation, though a solution is not guaranteed. As the key contribution here, we
have defined an objective cost function to effectively steer such search for HDL mutation
analysis. The basis of the cost function is a Control and Data Flow Graph (CDFG), which
is exactly capable of modeling the test generation problem: reach-activate-propagate.
The cost function is then comprised of a macro propagation distance and a local
propagation cost, which measures the degree of activation and propagation conditions
being fully satisfied. The MB-Lite/FPU IP evaluation showed that this cost function was
consistently able to steer a local search procedure successfully towards mutant-killing
tests.

Third, moving to SoC system design, the consideration of TLM and IP-XACT as well
as the need to provide a consistent quality metric by mutation analysis has motivated us
to propose a SystemC based framework for IP-XACT design simulation and IP-XACT
mutation analysis. An IP-XACT-to-SystemC synthesis flow is defined to enable IP-XACT
simulation. It provides a single platform for multi-language, mixed-level simulation,
including RTL, behavioral, or TLM, at SoC system level. For this synthesis, we have also
considered important TLM compatibility rules for IP-XACT-based compatibility check
and safe binding of TLM components. Generation has been defined not only for IP-XACT-
to-SystemC, but also for a Makefile composition, so as to provide a fully automated
simulation process. Upon this simulation facility, IP-XACT mutation analysis has been
added by the definition of a set of mutation operators on IP-XACT schema, which represent
possible errors within an IP-XACT system design. We have also implemented an Eclipse-
based prototype tool realizing all these functionalities. In the evaluation with several
CoreConnect/PowerPC SoC integrations, we were able to confirm the tool’s capability of
completing the generation as well as simulation of mutants, SystemC and Makefiles and,
therefore, also prove the general feasibility of the concepts behind the tool. We showed
also the capability of the defined IP-XACT mutation operations of qualifying system tests.

Together, our methods provide a systematic, novel enhancement to functional design
verification, based on HDL mutation analysis, TLM, and IP-XACT that are state-of-the-
art techniques. In particular, they accommodates IP-based SoC design paradigm, by
increasing the thoroughness of IP verification and focusing on IP integration at SoC
system level. We view the thesis as a meaningful step towards closing the verification
gap in the context of SoC design.

148

CHAPTER 8: Conclusion

8.1. Outlook

The following aspects have not been fully explored by this thesis, at the moment, but
are considered as reasonable future work.

Parameters of the methods have not been optimized or strictly evaluated, such
as the optimal transition point from random simulation to search based test
generation, the best manner of modeling a Markov chain, the best move
mechanism in local search, and so on. The thesis has focused on firstly
establishing the methods as valid and effective.

The CDFG serves the basis data structure in our cost function definition for
HDL mutation analysis. One limitation is that we still lack an automation tool
for extracting such CDFG. In the evaluation experiment, we built the CDFG
manually from the MB-Lite and FPU design. It limits us from evaluating the
metaheuristic test generation on further examples. This can be a practical step
for further work.

It is reasonable for us also to investigate and compare the performance of other
metaheuristics when applied for HDL mutation analysis and test generation,
under steering from the CDFG cost function. For example, advance Ant
Colony algorithm has been employed in related work for test generation [91].
If we have an automatic CDFG extraction, such investigation would be with
less burden.

As mentioned, more comprehensive evaluation of IP-XACT mutation
operators will be future work.

In this work, the functional verification at SoC system level has been limited to
hardware IP integration, without considering a software-integrated system
testing. This comes from the thesis’s focus on hardware design verification,
without touching the area of hardware-software co-design. Indeed, embedded
software is becoming an increasingly significant part of the whole SoC
development effort. Systematic, metrics-managed testing of SoC system
together with embedded software should be investigated. In fact, together with
our colleagues, we have made the first step towards a unified covering of all
hardware, embedded software, and system aspects with mutation analysis. In
[4] and [3], we have proposed using a dynamic translation based emulator —
called QEMU [116] — to enable mutation analysis of embedded software
binaries, for scenarios where they are provided in a hard-IP-like manner
without source code.

149

Quality Metrics Driven Functional Verification for IP based SoC Design

150

(1]

(2]

(3]

(4]

(5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

Bibliography:

T. Xie, W. Mueller and F. Letombe, "Mutation-analysis driven functional verification of a
soft microprocessor,” in Proc. of 25th IEEE System On Chip Conference (SOCC), Niagara
Falls, NY, USA, 2012.

T. Xie and W. Mueller, "An IP-XACT-to-SystemC Model Generator for Mutation
Analysis," in Proc. of International Workshop on Metamodelling and Code Generation for
Embedded Systems (at ESWeek), Tampere, Finland, 2012.

M. Becker, C. Kuznik, M. M. Joy, T. Xie and W. Mueller, "Binary mutation testing through
dynamic translation,” in Proc. of 42nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Boston, USA, 2012.

M. Becker, D. Baldin, C. Kuznik, M. M. Joy, T. Xie and W. Mueller, "XEMU: an efficient
QEMU based hinary mutation testing framework for embedded software,” in Proceedings
of the 10th ACM international conference on Embedded software, Tampere, Finland , 2012.

T. Xie, W. Mueller and F. Letombe, "IP-XACT based system level mutation testing," in
Proc. of 16th IEEE International High-Level Design Validation and Test Workshop
(HLDVT), Napa Valley, USA, 2011.

T. Xie, W. Mueller and F. Letombe, "HDL-Mutation Based Simulation Data Generation
by Propagation Guided Search," in Proc. of 14th Euromicro Conference on Digital System
Design (DSD), Oulu, Finland, 2011.

T. Xie, W. Mueller and F. Letombe, "Efficient mutation-analysis coverage for constrained
random verification,” in Distributed, Parallel and Biologically Inspired Systems, Springer,
2010, pp. 114-124.

M. Becker, G. Di Guglielmo, F. Fummi, W. Mueller, G. Pravadelli and T. Xie, "RTOS-
aware refinement for TLM2.0-based HW/SW designs,” in Proc. of the Conference on
Design, Automation and Test in Europe (DATE), Dresden, Germany, 2010.

T. Xie, G. B. Defo and W. Mueller, "An Eclipse-based Framework for the IP-XACT-
enabled Assembly of Mixed-Level IPs," in Proc. of Intl. Workshop on Hands-on Platforms
and Tools for Model-based Engineering of Embedded Systems (HOPES), Paris, France,
2010.

T. Schattkowsky, T. Xie and W. Mueller, "A uml frontend for ip-xact-based ip
management,” in Proc. of the Conference on Design, Automation and Test in Europe
(DATE), Nice, France, 2009.

M. Goetz, F. Dittmann and T. Xie, "Dynamic relocation of hybrid tasks: Strategies and
methodologies,” Microprocessors and Microsystems, vol. 33, no. 1, pp. 81-90, February
2009.

T. Schattkowsky and T. Xie, "UML and IP-XACT for Integrated SPRINT IP
Management,” in Proc. of 5th International UML-SoC Workshop (at DAC), Anaheim,
USA, 2008.

M. Goetz, T. Xie and F. Dittmann, "Dynamic Relocation of Hybrid Tasks: A Complete
Design Flow," in Proc. of Intl. Workshop on Reconfigurable Communication-centric
System-on-Chip (ReCoSoC), Montpellier, France, 2007.

P. Rashinkar, P. Paterson and L. Singh, System-on-a-chip verification: methodology and
techniques, Springer, 2001.

S. Fine and A. Ziv, "Coverage Directed Test Generation for Functional,” in Proc. of the
40th Design Automation Conference, Anaheim, CA, USA, 2003.

S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber and K. Keutzer, "A Functional Validation
Technique: Biased Random Simulation Guided By Observability-Based Coverage,” in

1 [1]-[13] are cited publications as author or co-author

151

[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]
[34]

[35]

152

Quality Metrics Driven Functional Verification for IP based SoC Design

Proc. of the IEEE Intl Conf. on Computer Design: VLSI in Computers & Processors
(ICCD), Austin, TX, 2001.

F. Faggin, M. E. Hoff Jr, S. Mazor and M. Shima, "The History of the 4004," IEEE Micro,
vol. 16, no. 6, pp. 10-20, 1996.

ITRS, "International Technology Roadmap for Semiconductors 2011 Edition - Design,"
Available at http://www.itrs.net/Links/2011ITRS/Home2011.htm, 2011.

J. Bergeron, Writing testbenches: functional verification of HDL models, vol. 2, Kluwer
Academic Publishers Dordrecht, 2003.

P. Wilcox, Professional Verification: A Guide to Advanced Functional Verification,
Springer, 2004.
Synopsys, "Certitude," 2013. [Online]. Available:

http://www.synopsys.com/Tools/Verification/Functional Verification/Pages/certitude-
ds.aspx.

M. Hampton and S. Petithomme, "Leveraging a commercial mutation analysis tool for
research,” in Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION, 2007. TAICPART-MUTATION 2007, 2007.

N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton and F. Letombe, "Functional
qualification of TLM verification," in Design, Automation & Test in Europe Conference &
Exhibition, 2009. DATE'09., 2009.

IBM, "CoreConnect Bus Acrchitecture," Available at https://www-
01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture, 1999.

D. Lattard, E. Beigne, C. Bernard, C. Bour, F. Clermidy, Y. Durand, J. Durupt, D. Varreau,
P. Vivet, P. Penard and others, "A telecom baseband circuit based on an asynchronous
network-on-chip," in IEEE International Solid-State Circuits Conference (ISSCC 2007),
Digest of Technical Papers, 2007.

P. Vivet, D. Lattard, F. Clermidy, E. Beigne, C. Bernard, Y. Durand, J. Durupt and D.
Varreau, "FAUST, an Asynchronous Network-on-Chip based Architecture for Telecom
Applications,” in Proc. of Design, Automation and Test in Europe (DATE'07), 2007.
C-LAB, "COCONUT project: A Correct-by-Construction Workbench for Design and
Verification of Embedded Systems,” Available at http://www.c-
lab.de/en/rd_projects/completed_research_projects/2010/coconut/, 2010.

S. Liao, G. Martin, S. Swan and T. Grotker, System design with SystemC, Kluwer
Academic Pub, 2002.

IEEE, 1685-2009 - IEEE Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows, 2009.

W. Kruijtzer, P. van der Wolf, E. de Kock, J. Stuyt, W. Ecker, A. Mayer, S. Hustin, C.
Amerijckx, S. de Paoli and E. Vaumorin, "Industrial IP Integration Flows based on IP-
XACT™ Standards," in Proc. of DATE'08, Munich, Germany, 2008.

L. Cai and D. Gajski, "Transaction level modeling: an overview," in Proc. of the 1st
IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis, 2003.

S. Pasricha, "Transaction level modeling of SoC with SystemC 2.0," in Synopsys User
Group Conference (SNUG), 2002.

P. J. Ashenden, The Designer's Guide to VHDL, Third Edition, Morgan Kaufmann, 2010.

D. E. Thomas and P. R. Moorby, The Verilog® Hardware Description Language, vol. 2,
Springer, 2002.

S. M. Rubin, Computer aids for VLSI design, Massachusetts, USA: Addison-Wesley
Reading, 1987.

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]
[46]
[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

Bibliography

A. Bruce, M. Kamal Hashmi, A. Nightingale, S. Beavis, N. Romdhane and C. Lennard,
"Maintaining consistency between SystemC and RTL system designs," in Proceedings of
the 43rd annual Design Automation Conference (DAC), 2006.

N. Bombieri and F. Fummi, "On the Automatic Transactor Generation for TLM-based
Design Flows," in Proc. of 11th IEEE International High-Level Design Validation and Test
Workshop (HLDVT), 2006.

T. Zhang, L. Benini and G. De Micheli, "Component selection and matching for IP-based
design," in Proc. of Conference and Exhibition on Design, Automation and Test in Europe
(DATE), 2001.

OpenCore, "Triple DES encryption core,” Available at http://opencores.org/.

IBM, "Processor Local Bus 128-bit Specification,” Available at https://www-
01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture, 2007.

IBM, "PowerPC 405 Evaluation Kit with CoreConnect SystemC TLMs," Available at
http://www.ibm.com/developerworks/power/pek/index.html.

N. Bombieri, F. Fummi and G. Pravadelli, "On the evaluation of transactor-based
verification for reusing TLM assertions and testbenches at RTL," in Proc. of the conference
on Design, automation and test in Europe (DATE), 2006.

M. Dales, "SWARM 0.44 Documentation," Department of Computing Science, University
of Glasgow, 2000.

L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli and M. Olivieri, "Mparm: Exploring the
multi-processor soc design space with systemc," Journal of VLSI signal processing systems
for signal, image and video technology, vol. 41, no. 2, pp. 169-182, 2005.

N. Romdhane, "ARM RealView ESL APIs," in 5th North American SystemC User's Group
(NASCUG) Meeting, 2006.

E. Van der Vlist;, XML Schema: The W3C's Object-Oriented Descriptions for XML,
O'Reilly Media, Inc., 2011.

E. M. Clarke, O. Grumberg and D. A. Peled, Model checking, MIT press, 1999.

M. Bombana and F. Bruschi, "SystemC-VHDL co-simulation and synthesis in the HW
domain," in Proc. of the conference on Design, Automation and Test in Europe: Designers'
Forum-Volume 2, 2003.

IEEE Computer Society, "IEEE Std 754-2008: IEEE Standard for Floating-Point
Avrithmetic," Available at http://dx.doi.org/10.1109%2FIEEESTD.2008.4610935, 2008.

D. GroRe, R. Ebendt and R. Drechsler, "Improvements for Constraint Solving in the
SystemC Verification Library," in Proceedings of the 17th ACM Great Lakes symposium
on VLSI, 2007.

IEEE, 1800-2009 Standard for SystemVerilog - Unified Hardware Design, Specification,
and Verification Language, 2009.

C. Kuznik and W. Muller, "Aspect enhanced functional coverage driven verification in the
SystemC HDVL," in Proc. of the 8th International SoC Design Conference, 2011.

M. F. S. Oliveira, C. Kuznik, H. M. Le, D. GroRe, F. Haedicke, W. Muller, R. Drechsler,
W. Ecker and V. Esen, "The System Verification Methodology for Advanced TLM
Verification,” in Proc. of Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES/1SSS'12) , 2012.

S. Devadas, A. Ghosh and K. Keutzer, "An Observability-Based Code Coverage Metric for
Functional Simulation," in Proc. of the IEEE/ACM International Conference on Computer-
Aided Design, San Jose, CA, USA, 1996.

J. P. Roth, "Diagnosis of automata failures: A calculus and a method," IBM journal of
Research and Development, vol. 10, no. 4, pp. 278-291, 1966.

153

[56]

[57]

[58]
[59]
[60]
[61]

[62]

[63]
[64]
[65]
[66]

[67]

[68]

[69]

[70]
[71]
[72]
[73]

[74]

[75]

[76]

154

Quality Metrics Driven Functional Verification for IP based SoC Design

F. Fallah, S. Devadas and K. Keutzer, "OCCOM: Efficient Computation of Observability-
Based Code Coverage Metrics for Functional Verification," in Proc. of the 35th annual
Design Automation Conference (DAC), San Francisco, CA, USA, 1998.

F. Fallah, S. Devadas and K. Keutzer, "OCCOM-efficient computation of observability-
based code coverage metrics for functional verification," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no. 8, pp. 1003-1015, 2001.

R. A. DeMillo, R. J. Lipton and F. G. Sayward, "Hints on Test Data Selection: Help for the
Practicing Programmer," IEEE Computer, vol. 11, no. 4, pp. 34-41, April 1978.

A. Offutt, "The coupling effect: fact or fiction,” ACM SIGSOFT Software Engineering
Notes, vol. 14, no. 8, pp. 131-140, 1989.

A. J. Offutt, "Investigations of the software testing coupling effect,"” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 1, no. 1, pp. 5-20, 1992.

Y. Jia and M. Harman, "An analysis and survey of the development of mutation testing,"
IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649-678, 2011.

A. P. Mathur, "Performance, effectiveness, and reliability issues in software testing,” in
Proc. of the Fifteenth Annual International Computer Software and Applications
Conference (COMPSAC'91), 1991.

R. H. Untch, A. J. Offutt and M. J. Harrold, "Mutation analysis using mutant schemata,"
ACM SIGSOFT Software Engineering Notes, vol. 18, no. 3, pp. 139-148, 1993.

W. E. Howden, "Weak mutation testing and completeness of test sets," IEEE Transactions
on Software Engineering, no. 4, pp. 371-379, 1982.

A. J. Offuttand S. D. Lee, "An empirical evaluation of weak mutation,” IEEE Transactions
onSoftware Engineering, vol. 20, no. 5, pp. 337-344, 1994,

A. J. Offutt, G. Rothermel and C. Zapf, "An experimental evaluation of selective mutation,”
in Proceedings of the 15th international conference on Software Engineering, 1993.

R. A. DeMillo, D. S. Guindi, W. McCracken, A. Offutt and K. King, "An extended
overview of the Mothra software testing environment,” in Proc. of the Second Workshop
on Software Testing, Verification, and Analysis, 1988.

G. Al Hayek and C. Robach, "From specification validation to hardware testing: A unified
method," in Proceedings of International Test Conference 1996, 1996.

C. Aktouf, G. Al-Hayek and C. Robach, "Concurrent testing of VLSI digital signal
processors using mutation based testing,” in Proceedings of 1997 IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, 1997.

G. Al-Hayek and C. Robach, "From design validation to hardware testing: A unified
approach," Journal of Electronic Testing, vol. 14, no. 1-2, pp. 133-140, 1999.

P. Goel, "An implicit enumeration algorithm to generate tests for combinational logic
circuits," IEEE Transactions on Computers, vol. 100, no. 3, pp. 215-222, 1981.

H. Fujiwara and T. Shimono, "On the acceleration of test generation algorithms,” IEEE
Transactions on Computers, vol. 100, no. 12, pp. 1137-1144, 1983.

T. Niermann and J. H. Patel, "HITEC: A test generation package for sequential circuits,"
in Proc. of the European Conference on Design Automation, 1991.

S. C. Brailsford, C. N. Potts and B. M. Smith, "Constraint satisfaction problems:
Algorithms and applications," European Journal of Operational Research, vol. 119, no. 3,
pp. 557-581, 1999.

I. Wagner, V. Bertacco and T. Austin, "Microprocessor Verification via Feedback-
Adjusted Markov Models," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 26, no. 6, pp. 1126-1138, June 2007.

S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber and K. Keutzer, "Coverage-Directed
Generation of Biased Random Inputs for Functional Validation of Sequential Circuits," in
Proc. of the 10th IEEE International Workshop on Logic and Synthesis, 2001.

[77]

[78]

[79]

[80]
[81]
[82]

[83]

[84]

[85]

[86]

[87]
[88]
[89]
[90]

[91]

[92]
[93]
[94]

[95]
[96]

[97]

Bibliography

S. Tasiran and K. Keutzer, "Coverage metrics for functional validation of hardware
designs," IEEE Design & Test of Computers, vol. 18, no. 4, pp. 36-45, 2001.

W. Chen, L.-C. Wang, J. Bhadra and M. Abadir, "Simulation knowledge extraction and
reuse in constrained random processor verification,” in Proceedings of the 50th Annual
Design Automation Conference (DAC), 2013.

M. F. S. Oliveira, H. Zabel and W. Miiller, "Assertion-Based Verification of RTOS
Properties,” in Proceedings of the Conference on Design, Automation and Test in Europe
(DATE'10), 2010.

P. McMinn, "Search-based software test data generation: a survey," Software Testing,
Verification and Reliability, vol. 14, no. 2, pp. 105-156, 2004.

G. G. De Jong, "Data flow graphs: system specification with the most unrestricted
semantics,” in Proceedings of the conference on European design automation, 1991.

R. Camposano, "Path-based scheduling for synthesis," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 10, no. 1, pp. 85-93, 1991.

R. Namballa, N. Ranganathan and A. Ejnioui, "Control and data flow graph extraction for
high-level synthesis," in Proceedings. IEEE Computer society Annual Symposium on VLSI,
2004.

R. A. Bergamaschi, "Behavioral network graph: unifying the domains of high-level and
logic synthesis,” in Proceedings of the 36th annual ACM/IEEE Design Automation
Conference (DAC'99), 1999.

Q. Zhang and I. G. Harris, "A data flow fault coverage metric for validation of behavioral
hdl descriptions,” in Proceedings of the 2000 IEEE/ACM international conference on
Computer-aided design (ICCAD), 2000.

F. Fallah, P. Ashar and S. Devadas, "Simulation vector generation from HDL descriptions
for observability-enhanced statement coverage," in Proc. of the 36th annual ACM/IEEE
Design Automation Conference (DAC'99), 1999.

R. DeMillo and A. J. Offutt, "Constraint-based automatic test data generation,” IEEE
Transactions onSoftware Engineering, vol. 17, no. 9, pp. 900-910, 1991.

C. S. Pasareanu and W. Visser, "A survey of new trends in symbolic execution for software
testing and analysis," International journal on software tools for technology transfer, vol.
11, no. 4, pp. 339-353, 2009.

E. Tsang, Foundations of constraint satisfaction, Academic press London, 1993.

B. Korel, "Automated software test data generation,” IEEE Transactions on Software
Engineering, vol. 16, no. 8, pp. 870-879, 1990.

K. Ayari, S. Bouktif and G. Antoniol, "Automatic mutation test input data generation via
ant colony,” in Proc. of the 9th annual conference on Genetic and evolutionary
computation, 2007.

S. Shyam and V. Bertacco, "Distance-guided hybrid verification with GUIDO," in Proc. of
the conference on Design, automation and test in Europe (DATE'06), 2006.

W. Wuand M. S. Hsiao, "Efficient design validation based on cultural algorithms," in Proc.
of Design, Automation and Test in Europe (DATE'08), 2008.

A. Parikh, W. Wu and M. S. Hsiao, "Mining-guided state justification with partitioned
navigation tracks," in Proc. of IEEE International Test Conference (ITC'07), 2007.

Mentor Graphics, "ModelSim," Available at http://model.com/.

D. Steinberg, F. Budinsky, M. Paternostro and E. Merks, EMF: Eclipse Modeling
Framework, 2nd Edition ed., Addison-Wesley, 2009.

A. El Mrabti, F. Pétrot and A. Bouchhima, "Extending IP-XACT to support an MDE based
approach for SoC design," in Proc. of DATE'09., 2009.

155

Quality Metrics Driven Functional Verification for IP based SoC Design

[98] D. Braga, F. Fummi, G. Pravadelli and S. Vinco, "The strange pair: IP-XACT and
univerCM to integrate heterogeneous embedded systems,” in IEEE International High
Level Design Validation and Test Workshop (HLDVT), 2012.

[99] L. D. Guglielmo, F. Fummi, G. Pravadelli, F. Stefanni and S. Vinco, "UNIVERCM: The
UNIversal VERsatile Computational Model for Heterogeneous System Integration,” IEEE
Transactions on Computers, vol. 62, no. 2, pp. 225-241, 2013.

[100] F. Herrera and E. Villar, "A framework for the generation from UML/MARTE models of
IPXACT HW platform descriptions for multi-level performance estimation,” in Proc. of
IEEE 2011 Forum on Specification and Design Languages (FDL), 2011.

[101] F. Herrera, H. Posadas, E. Villar and D. Calvo, "Enhanced ip-xact platform descriptions
for automatic generation from UML/MARTE of fast performance models for DSE," in
Proc. of 15th Euromicro Conference on Digital System Design (DSD), 2012.

[102] Object Management Group, "UML Profile for MARTE v1.0," 2009.

[103] G. Ochoa, E.-B. Bourennane, O. Labbani and K. Messaoudi, "IP-XACT and marte based
approach for partially reconfigurable systems-on-chip," in Proc. of IEEE 2011 Forum on
Specification and Design Languages (FDL), 2011.

[104] G. Ochoa-Ruiz, O. Labbani, E.-B. Bourennane, P. Soulard and S. Cherif, "A high-level
methodology for automatically generating dynamic partially reconfigurable systems using
IP-XACT and the UML MARTE profile," Design Automation for Embedded Systems, pp.
1-36, 2012.

[105] P. Lisherness and K.-T. (. Cheng, "SCEMIT: a SystemC error and mutation injection tool,"
in 47th ACM/IEEE Design Automation Conference (DAC'10), 2010.

[106] A. Sen, "Mutation operators for concurrent SystemC designs,” in 10th International
Workshop on Microprocessor Test and Verification (MTV'09), 2009.

[107] A. Senand M. S. Abadir, "Coverage metrics for verification of concurrent SystemC designs
using mutation testing," 2010.

[108] N. Bombieri, F. Fummi and G. Pravadelli, "A mutation model for the SystemC TLM 2.0
communication interfaces," in Proc. of Design, Automation and Test in Europe (DATE'08),
2008.

[109] T. Kranenburg and R. van Leuken, "MB-LITE: A robust, light-weight soft-core
implementation of the MicroBlaze architecture,” in Proc. of the Conference on Design,
Automation and Test in Europe (DATE'10), 2010.

[110] S. Xu and H. Pollitt-Smith, "A multi-microblaze based SOC system: from SystemC
modeling to FPGA prototyping," in Proc. of 19th IEEE/IFIP International Symposium on
Rapid System Prototyping (RSP'08), 2008.

[111] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose and E. Deprettere,
"Daedalus: toward composable multimedia MP-SoC design," in Proceedings of the 45th
annual Design Automation Conference, 2008.

[112] X. Guo, Z. Chen and P. Schaumont, "Energy and Performance Evaluation of an FPGA-
Based SoC Platform with AES and PRESENT Coprocessors,” in Embedded Computer
Systems: Architectures, Modeling, and Simulation, Springer Berlin Heidelberg, 2008, pp.
106-115.

[113] G. Kornaros, "A soft multi-core architecture for edge detection and data analysis of
microarray images," Journal of Systems Architecture, vol. 56, no. 1, pp. 48-62, 2010.

[114] Xilinx, "MicroBlaze Processor Reference Guide v10.1i,"
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref guide.pdf, 2010.

[115] T. Kranenburg, "MB-Lite," Available at http://opencores.org/project,mblite, 2012.

[116] F. Bellard, "QEMU, a Fast and Portable Dynamic Translator,” in USENIX Annual
Technical Conference, FREENIX Track, 2005.

156

157

