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Zusammenfassung

In dieser Arbeit werden Theorien und Simulationen entwickelt, mit denen die nichtlo-
kalen und nichtlinearen optischen Eigenschaften metallischer Nanostrukturen untersucht
werden konnen. Diese Nanostrukturen finden zur Zeit Anwendung im Bereich neuartiger
Metamaterialien und Nanoantennen fiir den infraroten und den sichtbaren Spektralbe-
reich. Eine detaillierte Analyse von Lingenskalen zeigt, dass die klassischen Theorien zur
Modellierung der Materie, speziell in den Oberflichen der Strukturen, nicht angewendet
werden konnen.

Insbesondere wird versucht, die Licht-Materie Interaktion im Ultrakurzzeitbereich zu
berechnen. Das Ergebnis solcher Berechnungen ergibt die zeitabhingige Polarisation der
Materie und der damit verbundenen elektromagnetischen Felder iiber wenige hundert
Femtosekunden. Damit lassen sich Anregungen durch ultrakurze Lichtpulse analysieren,
wie sie bei Anrege-Abfrage Experimenten verwendet werden. Diese Experimente sollen
letztlich durch Simulationen im Rechner durchgefiihrt werden kénnen. Um dieses Ziel zu
erreichen, wird eine Vielzahl moderner numerischer Methoden benétigt, um die relevanten
Gleichungen fiir Licht und Materie mit angemessenem Rechenaufwand losen zu kdnnen.

Der Themenschwerpunkt dieser Arbeit liegt zunéchst bei der Losung von quantenme-
chanischen Vielteilchenproblemen in der Plasmonik. Dazu wird zum einen die Zeitabhin-
gige Dichtefunktionaltheorie und zum anderen ein Ansatz, der die Dynamik der Dichte-
matrix iiber Wignerfunktionen beschreibt, auf Anwendbarkeit untersucht. Um optische
Eigenschaften von Nanostrukturen berechnen zu konnen, muss dazu die selbstkonsisten-
te Kopplung der Materiegleichungen an die Maxwellgleichungen beriicksichtigt werden.
Ein weiterer Themenschwerpunkt stellt die Erweiterung der Zeitabhéngigen Dichtefunk-
tionaltheorie um eine phanomenologische Dissipation zur Simulation von Streuprozessen
dar. Diese wird auch bendtigt, um Riickstreuungen von Ladungsdichtewellen in den be-
grenzt grofen Nanostrukturen zu verhindern. Aufserdem wird noch auf die Realisierung
eines Finite-Differenzen Verfahrens zur Berechnung der elektromagnetischen Potentia-
le in der Coulomb-Eichung eingegangen. Diese Eichung findet in der Beschreibung von
Optik in Festkorpern viele Anwendungen und es existieren bisher keine numerischen Lo-
sungsverfahren zu diesem Problem.

Zusammenfassend werden in dieser Arbeit verschiedene voll quantenmechanische Mo-
dellrechnungen fiir den Zeitbereich entwickelt und durchgefiihrt, welche zeigen, wo es
in Nanostrukturen zur Entstehung von héheren Harmonischen und nicht-lokalen Effek-
ten kommt. Alle Simulationen berechnen die optischen Eigenschaften der Strukturen
auf mikroskopischer Ebene im Rahmen des Jellium-Modells. Dabei werden nicht-lokale
Abschirmungseffekte unmittelbar berticksichtigt. Mit Ausnahme der Simulationen zur
dissipativen Dichtefunktionaltheorie werden keine phianomenologischen Parameter bend-
tigt.






Abstract

In this work theories and simulations are developed which can be used to study the non-
local and nonlinear optical properties of metallic nanostructures. These nanostructures
are currently used in the area of novel metamaterials and nanoantennas for the infra-red
and visible spectral range. A detailed analysis of length scales shows that the classical
theories for modelling the optical response of matter specifically at the surfaces of the
structures can not be applied.

In particular, an attempt is made to calculate the light-matter interaction in the ul-
trafast time regime. The result of these calculations is given by the time-dependent
polarization of matter and the associated electromagnetic fields over a few hundred fem-
toseconds. This allows the analysis of excitations caused by ultrashort light pulses which
are used in pump-probe experiments. These experiments shall be carried out by computer
simulations. To achieve this objective, a variety of modern numerical methods are requi-
red to solve the relevant equations of light and matter with reasonable computational
complexity.

A central topic of this thesis is the solution of quantum-mechanical many body pro-
blems in the field of plasmonics. The time-dependent density functional theory and an
approach, which describes the dynamics of the density matrix by Wignerfunctions, are
examined for applicability. In order to calculate the optical properties of nanostructu-
res, the self-consistent coupling of the equations for matter with Maxwell’s equations
must be considered. Another focal point is the extension of the time-dependent density
functional theory by a phenomenological dissipation for the simulation of scattering pro-
cesses. This is also required in order to prevent backscattering of charge density waves in
small nanostructures. Moreover, the implementation of a finite difference method for the
calculation of electromagnetic potentials in the Coulomb gauge is discussed. This gauge
is very common in the description of optics in solids and there are so far no numerical
solution methods for this problem.

In summary, several fully quantum mechanical model calculations in the time do-
main are developed and carried out, showing where it comes to the emergence of higher
harmonics and nonlocal effects in nanostructures. All simulations calculate the optical
properties of the structures at the microscopic level within the Jellium model. Nonlocal
screening effects are ultimately taken into account. With the exception of simulations
which involve dissipative density functional theory, no phenomenological parameters are
required.
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1. Einleitung

1.1. Motivation

Die technologische Entwicklung von Nanofabrikationsprozessen ermdglicht seit einiger
Zeit die Herstellung neuartiger metallischer Nanostrukturen welche in Metamaterialien [T]
und Nanoantennen |2, 8] zum Einsatz kommen. Die Strukturen dienen zur Manipulation
von Licht im sichtbaren und infraroten Spektralbereich und haben daher Abmessungen
in der Grofenordnung der Lichtwellenldnge.

Bei Metamaterialien (s. Abb. [CT) geht es speziell darum, ein Medium mit vorgege-
bener effektiver Permittivitdt e (w) und Permeabilitdt p,(w) zu schaffen, was diverse
technologische Anwendungen im Bereich der Optik erméglicht [4].

Die Nanoantennen (s. Abb. [3) sollen die fiir Licht geeignete und daher entsprechend
miniaturisierte Versionen der Radio- und Mikrowellenantennen sein: Deren Zweck besteht
also ebenfalls darin, das Strahlungsfeld mdglichst effizient mit einem Empfinger oder
einem Sender zu koppeln, d.h. die elektromagnetische Strahlung auf einen Punkt zu
konzentrieren oder von diesem Punkt in den freien Raum zu fithren. Fiir spektroskopische
Anwendungen dienen die Nanoantennen als Empfinger und Sender zugleich.

Die Skalierung der Radioantennen in den Nanometerbereich zeigt vor allem, welche
Besonderheiten auf diesen Lingenskalen auftreten, die bei den (Zenti-)Meter grofen Pen-
dants nicht vorhanden sind: Im sichtbaren Spektralbereich kénnen Plasmonresonanzen
und Interbandiibergéinge angeregt werden. Vor allem liegt die Skintiefe des Lichtes bei
Metallen in der Grofenordnung von den Strukturen selbst. Auch im Bulkbereich entste-
hen Polarisationsstrome wodurch ohmsche Verluste stark an Bedeutung gewinnen. Bei
makroskopischen Antennen wird dagegen nur die Oberfliche angeregt, da die Strahlung
an dieser fast vollstdndig reflektiert wird. Wegen der geringen Skintiefe kann diese fiir
Radiowellen als unendlich diinn betrachtet werden (s. Abb. BTla und BTb).

Besonders die Beschreibung der Nanostrukturen mittels klassischer Elektrodynamik -
in der Form wie sie bei Radioantennen verwendet wird - wirft die Fragestellung auf, in-
wieweit diese auch hier angewendet werden darf: Aufgrund der hohen Lichtintensititen,
welche bei Metamaterialien und Nanoantennen auftreten, ist zwar die Annahme, dass die
Quantisierung des Lichtfelds bedeutungslos ist, gesichert. Dagegen darf die Verwendung
einer rdumlich homogenen Permittivitit e(w) in den Maxwellgleichungen mittlerweile als
physikalisch unzureichend angesehen werden |5, 6], weil sich aufgrund der Langenska-
lenverhéltnisse (s. Kap. [3) ortsabhéngige, nichtlokale optische Effekte bemerkbar ma-
chen und die Homogenitdtsannahme der Polarisierbarkeit in den Oberflichenbereichen
der Strukturen versagt. Dazu liisst sich auch eine sehr elementare Uberlegung anstellen,
die zeigt, dass gerade der Bulkbereich der Strukturen (in dem die Homogenitidtsannahme
noch am ehesten zutrifft) bei Verkleinerung der Abmessungen immer unbedeutender wer-
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Abbildung 1.1.: (a) Split-Ring Resonatoren (SRR) fiir den Mikrowellenbereich [Quelle:
NASA Glenn Research|. (b) Elektronenmikroskopische Aufnahme eines
SRRs [0] fiir den optischen Bereich. (¢) Die nur wenige hundert Na-
nometer grofen SRR aus Abb. (b) sind herstellungsbedingt auf einer
ITO-Schicht mit Glas-Substrat angeordnet. Die Abbildung zeigt eine
Elementarzelle des Metamaterials, welche in der Ebene periodisch fort-
gesetzt wird.

Abbildung 1.2.: Elektronenmikroskopische Aufnahme einer Yagi-Uda Antenne fiir den
optischen Spektralbereich [2].

den muss™: Das Volumen skaliert mit 3 und die Oberfliichen mit 22 (s. Abb. [Z3). Dabei
sei * = [/ly ein dimensionsloser Parameter, der durch (etwas willkiirliche) Festlegung
einer Referenzlinge ly dariiber entscheided, wie extrem eine Struktur von Bulk- oder
Oberflicheneigenschaften bestimmt wird. Fiir die Nanostrukturen, deren Beschreibung
diese Arbeit als Ziel hat, wird angenommen, dass diese in den Bereich x < 1 gehoren.

Nichtlineare Effekte in Nanostrukturen, welche ebenfalls Gegenstand dieser Arbeit
sind, lassen am Beispiel der Photoemission || sofort erkennen, dass diese eine quan-
tenmechanische Berechnung der Elektronendichte erfordern. Die nichtlineare Antwort-
funktion der Elektronendichte lasst sich in der klassischen Elektrodynamik {iber Suszep-
tibilitétstensoren hoherer Ordnung [8¥] in die (makroskopischen) Maxwellgleichungen in-
tegrieren oder als selbstkonsistent zu berechnende Strome und Ladungen an die Vakuum-
Maxwellgleichungen koppeln.

'Damit ist speziell die Unterscheidung von Bulk- und Oberflichenbereich gemeint. Die Oberflichen
haben selbst eine Dicke in der Gréfenordnung der Skintiefe. Die extrem kleinen Elemente der Nano-
antenne in Abb. A bestehen demnach nur aus ,Oberflichen®.
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1.2. Experimente

Abbildung 1.3.: Die Oberflichenbeitrige, welche mit 22 skalieren (rote Kurve), gewinnen
mit zunehmender Verkleinerung gegeniiber den Bulkbeitrdgen, welche
mit 23 skalieren (blaue Kurve), immer mehr an Bedeutung. Diese Uberle-
gung dient nur als Denkanstof im Bereich der Nanostrukturen und kann
nicht als allgemeingiiltig angesehen werden: Die Grenze der Giiltigkeit
fiir £ > 1 zeigen z.B. Radioantennen, in denen die Strahlung aufgrund
der Skintiefe nur Ladungen an der Oberfliche anregt. Auf solchen ma-
kroskopischen Langenskalen gilt, dass die Suszeptibilitiat des Materials
als homogen und lokal angesehen werden darf. Die andere Grenze der
Giiltigkeit fiir x < 1 liegt bei Molekiilen und Clustern, in denen die
Begriffe ,Oberfliche” und ,,Bulk® gar nicht mehr definiert sind.

Das primére Ziel dieser Arbeit besteht deshalb darin, ein Materialmodell fiir die Na-
nostrukturen zu finden, welches die Homogenitdtsannahme vollstdndig umgeht und die
optische Polarisierbarkeit als Losung eines Vielteilchenproblems zu einer inhomogenen
Ladungsverteilung liefert. Da die Skalenanalyse in Kap. [C3 zeigen wird, dass auch im
linearen optischen Bereich die Quanteneffekte von Bedeutung sind, werden primér quan-
tenmechanische Modelle betrachtet. Die Giiltigkeit von klassischen Modellen muss sich
durch Betrachtung bestimmter Grenzfille erst noch zeigen. Die genaue Erkundung die-
ser Grenzfille tragt nicht nur zum Verstdndnis der Optik in Nanostrukturen bei, sondern
hilft auch dabei, kiinftige Modellrechnungen zu vereinfachen ohne deren Giiltigkeit zu
verletzen.

1.2. Experimente

1.2.1. Ultraschnelle Nanooptik

Das neue Forschungsgebiet ,,Ultraschnelle Nanooptik® [d] umfasst eine Reihe von aktuel-
len wissenschaftlichen Fragestellungen, welche diese theoretische Arbeit motiviert haben:
Es verbindet die Bereiche von Nanooptik (Photonik auf der Nanoskala, Plasmonik, Nano-

11
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Abbildung 1.4.: Geometrie zur Erzeugung eines 2w-Lichtstrahls durch Reflektion eines
lw-Lichtstrahls an einer Metalloberflache (nach [I1]).

antennen, Nichtlineare Optik, etc.) und die ultraschnelle Laserspektroskopie (zeitaufge-
l6ste Spektroskopie im Sub-Femtosekundenbereich, Dynamik ultraschneller Phinomene,
kohérente Kontrolle, etc.) miteinander. In erster Linie geht es darum, optische Anregun-
gen auf Zeitskalen im Femtosekundenbereich sowie auf Lingenskalen im Nanometerbe-
reich experimentell untersuchen und kontrollieren zu kénnen. Diese Forschung ermdglicht
die Entwicklung von neuartigen nanooptischen Geréten, wie z.B. Nanoantennen [2]. Auch
fiir die Entwicklung von Metamaterialien, die im optischen Spektralbereich arbeiten I, @],
kénnen die Ergebnisse dieser Forschung genutzt werden.

In [T0] wird beschrieben, wie mittels Anrege-Abfrage (pump-probe) Methoden unter
Verwendung neuester Femtosekundenlaser die Elektronenvorginge (wie z.B. Augerpro-
zesse) in Atomen und Molekiilen experimentell im Zeitbereich beobachtet werden kénnen.

Die Entwicklung solcher experimenteller Methoden motiviert dazu, auch eine theore-
tische Beschreibung der Vorgénge im Zeitbereich zu entwickeln und durch Computersi-
mulationen zuginglich zu machen.

1.2.2. Messung reflektierter Zweiter Harmonischer

Die Zweite Harmonische (SH2) kann an Metalloberfliichen durch Messung der reflektier-
ten Strahlung (s. Abb. [4) erfolgen. In [L1] werden zahlreiche experimentelle Ergebnisse
zu diesem Versuch zusammengefasst:

Es hat sich gezeigt, dass die SH-Strahlung extrem sensitiv auf die Beschaffenheit der
Oberfliiche reagiert und sogar eine Messung der Temperatur ermdglicht®. Noch erstaunli-
cher ist das Ergebnis, dass sogar einzelne Atomlagen an der Oberfliche die SH-Strahlung
verdndern konnen. Diese experimentelle Methode eignet sich daher fiir chemische Analy-
sen und bietet fiir solche den Vorteil, dass sie nichtinvasiv ist und Messungen an Proben
erlaubt, die sich in einem transparenten (z.B. fliissigen) Medium befinden.

Diese experimentellen Resultate machen ganz klar deutlich, dass die theoretische Mo-
dellierung der Experimente eine genaue Erfassung der Oberflichenmorphologie erfordert.
Dain dieser Arbeit nur idealisierte Modelle von Metallen benutzt werden, ist ein Vergleich

%engl.: second harmonic
3Die Temperaturabhingigkeit ist deshalb erstaunlich, weil die Fermitemperatur des Elektronengases im
Metall iiblicherweise weit oberhalb des Schmelzpunktes liegt.
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der hier angestellten Modellrechnungen mit experimentellen Ergebnissen nicht sinnvoll.
Indem die Modellrechnungen schrittweise in Richtung realer Oberflichen erweitert wer-
den, konnen viele Erkenntnisse gewonnen werden, die auch ein Verstdndnis derzeitiger
experimenteller Beobachtungen ermdéglichen. In diesem Sinn stellt diese Arbeit einen
wichtigen Grundstein fiir zukiinftige Modellrechnungen dar.

1.2.3. Erzeugung Zweiter Harmonischer in magnetischen Metamaterialien

In |D] wird berichtet, wie im Experiment die Erzeugung der Zweiten Harmonischen an
magnetischen Metamaterialien beobachtet werden konnte. Das Metamaterial ist aus den
Split-Ring Resonatoren, die in Abb. b und ¢ dargestellt sind, aufgebaut. Diese
Resonatoren kann man sich wie kleine LC-Schwingkreise vorstellen, bei denen der offene
Ring die Spule und der Spalt den Kondensator bildet. Durch Einstrahlung von Licht mit
horizontaler Polarisation kann ein zirkularer Stromfluss angeregt werden, der das lokale
Magnetfeld verstarkt.

Bei diesem Experiment ist unklar, welche Mechanismen an der Erzeugung der beobach-
teten Zweiten Harmonischen beteiligt sind [I2]. Der magnetische Anteil der Lorentzkraft
ge(v x B) liefert die einfachste Erklirung fiir dieses Phinomen, da die lw-Anteile der
Felder v und B zu 2w-Anteilen in der Kraft auf die Elektronen fiihren.

In dieser Arbeit wird versucht, die Entstehung der Zweiten Harmonischen durch rein
elektrische, nichtlineare Effekte an den Metall-Vakuum Grenzflichen zu erklaren. Wich-
tige theoretische Voriiberlegungen, welche mafigeblich die Untersuchung dieser Effekte
motiviert haben, wurden durch die Publikation von Rudnick und Stern [I3] geliefert:
Darin wurde insbesondere die Rolle der elektrischen Strome entlang der Normalenrich-
tung in Oberflichen von Metallen untersucht und gezeigt, dass diese quantenmechanisch
berechnet werden miissen.

1.2.4. Messung von Oberflichen- und Bulkbeitragen zur SHG

Die SH Oberflichenpolarisation kann iiber den Oberflichensuszeptibilitdtstensor 2. Ord-

nung Xé?) phidnomenologisch beschrieben werden:

Py (2w) = X7 : B(w)E(w) (1.1)

Fiir die SH Bulkpolarisation, die auf magnetischen Dipol- und elektrischen Quadrupol-
termen basiert |[4], wird folgende phénomenologische Parameterisierung verwendet:

Phuk(2w) = SE(W)[V - E(w)] + 7V[E(w) - E(w)] + ¢'[E(w) - V]E(w) (1.2)
In [T5] wird berichtet, dass es inzwischen méglich ist, die Komponenten des Xg)—Tensors
und die Bulkparameter experimentell mit einer Methode, die als ,two-phase beam second-
harmonic generation“ bezeichnet wird, zu bestimmen. Die Autoren kommen zu dem
Schluss, dass die Oberflichenpolarisation die primére Quelle fiir die gemessene SH-
Strahlung darstellt. Dieses Ergebnis stiitzt die angestrebte Vorgehensweise dieser Arbeit,
sich primér auf die Entstehung der SH-Strahlung in Oberflichenbereichen der metalli-
schen Strukturen zu konzentrieren.
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1. Einleitung

|Jz +

Homogene
Metall lonendichte Elektronengas

Abbildung 1.5.: Jellium-Modell: Die metallische Nanostruktur setzt sich aus einer stati-
schen, homogenen lonendichte und einem Elektronengas zusammen.

1.3. Jellium-Modell

Die metallische Bindung ist dadurch charakterisiert, dass es pro Atom ca. 1-2 ungebunde-
ne Elektronen gibt [[6], die zu einem Gleichstrom beitragen kénnen. Insgesamt steht eine
groke Anzahl an frei beweglichen Leitungselektronen zur Verfiigung. Fiir diese Elektronen
erscheinen die Ionen ndaherungsweise als eine homogene Verteilung von positiven Ladun-
gen, da das singulédre Potential der Atomkerne durch die (gebundenen) Valenzelektronen
abgeschirmt wird.

Diese Gegebenheiten fiihrten zur Etablierung des Jellium-Modells [I7], welches das
Einfachste aller Modelle fiir Metalle darstellt: In Abb. 3 ist angedeutet wie sich damit
metallische Nanostrukturen, wie z.B. die Split-Ring Resonatoren aus Abb. IIb modellie-
ren lassen. Dazu wird die Geometrie der Struktur iiber eine statische Ionendichte n™(r)
vorgegeben und die Leitungselektronen werden als Elektronengas mit der Dichte n™(r, t)
beschrieben. Dabei wird offengelassen, auf welchem theoretischen Niveau das Elektro-
nengas beschrieben wird. Die wichtigsten Modelle werden in Kap. =4 besprochen.

Die Ionendichte legt nicht nur die Geometrie, sondern auch die Art des Metalls iiber
ihren Maximalwert ng fest. Dieser Maximalwert liegt {iblicherweise iiberall im Inneren
der Struktur vor. Statt der Dichte ng wird beim Jellium-Modell der Wigner-Seitz Radius
rg benutzt:

(ng)~! = 578 (1.3)

Es ist iiblich diesen Parameter in atomaren Einheiten zu spezifizieren, wodurch iibliche
numerische Werte im Bereich von 2 bis 6 liegen. Bei rg = 3 ag entspricht die Dichte ng
ungeféhr der Leitungselektronendichte von Gold.

1.4. Modelle fiir das Elektronengas

Das Jellium-Modell aus Kap. 3 bildet in dieser Arbeit die Grundlage fiir die Modellie-
rung von Festkdpern. Fiir das Elektronengas werden folgende Modelle benutzt:

1. Drude Modell: Es handelt sich um ein (iiber hundert Jahre altes) klassisches
Modell, welches die elektrische Leitfahigkeit von Metallen mikroskopisch zu erklaren
versucht [IR]. Dieses Modell wird heutzutage immer noch benutzt und auch fiir die
Optik von Metallen verwendet. In seiner Anwendung besteht das Modell letztlich
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darin, dass folgende klassische Bewegungsgleichung mit einem phdnomenologischen
Streuzeitparameter 7 fiir die Bewegung der Elektronen in einem elektrischen Feld
E benutzt wird:

Mok = — 5 + g E (1.4)
T
Im Ubergang von Punktladungen zum Kontinuumsmodell

0j
— = -V)j
I m+( )j
mit Stromdichtefeld j = gov und Elektronendichte ng wird die nicht-lineare kon-
vektive Ableitung weggelassen:
0j J | a?no
- - _Jd 4 2V 1.5
ot T + Me (1.5)
Letztlich wird die eigentliche Arbeit von Drude auf einen experimentell ermittel-
ten Streuparameter und eine klassische Bewegungsgleichung reduziert. Diese new-
tonsche Bewegungsgleichung beriicksichtigt vor allem die Trégheit der Elektronen,
welche in schnell oszillierenden Feldern (wie in der Optik) beriicksichtigt werden
muss?. Im sichtbaren Spektralbereich kann das Drude Modell die optischen Eigen-
schaften von Metallen nur unzureichend beschreiben, da hier Interbandiiberginge
angeregt werden [20].

2. Hydrodynamisches Modell: In der Terminologie dieser Arbeit wird damit die
nicht-lineare und semiklassische Erweiterung des Drude Modells bezeichnet:
i a@no 1 Vp

V) = -2 E+ —jxB- X 1.6
m+0 )i T+me + ex e (1.6a)

Pivy =0 (1.6b)

Fiir den Druck p wird noch zusétzlich eine thermische Zustandsgleichung benétigt.
Zur Beschreibung des Elektronengases wird hier die Zustandsgleichung des idealen
Fermigases (p ~ n°/3) benutzt. (In Kapitel 5.9 von [[7] wird beschrieben, wie sich
die vollstédndige Navier-Stokes Gleichung auf ein Elektronengas anwenden lésst.)

3. Wechselwirkendes Elektronengas: Es ist ein rein quantenmechanisches Modell
und wird durch folgenden Hamiltonoperator beschrieben:

N N 2

1 2, 1 q
H= t - — o , oxc 1.
;27,% A(T),1)] +2j:1 2 B —I'k|+z qe® (), 1) +vext (£5)] (1.7)

Der Zustand dieses Systems ist durch eine antisymmetrische N-Teilchen Wellen-
funktion ¥(ry,o1,...,rn, 0N, ) gegeben.

* Bei Anwendung des Ohmschen Gesetzes J(t) = oE(t) in der Elektrizititslehre sind die Felder deutlich
niederfrequenter und die Tragheit wird deshalb vernachlassigt. Auf die Bedeutung der Tragheit wird
z.B. in [T9] eingegangen.
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1. Einleitung

1.5. Skalenanalyse und GroRBenverhaltnisse

Ein wesentlicher Gegenstand dieser Arbeit ist es, die richtigen Lingen- und Zeitskalen
sowie die Verhéltnisse zwischen diesen zu erkennen. Erst dadurch wird es mdglich, eine
theoretische Beschreibung zu finden, welche die relevanten Effekte korrekt wiedergeben
kann und trotzdem nicht zu aufwendig ist, um das System beschreiben zu kénnen.
Héufig besteht das Problem darin, dass die existierenden Modelle zu starke Vereinfa-
chungen vornehmen und es zu erkennen gilt, welche dieser Vereinfachungen falsch sind.
Ein solches Problem konnten Rudnick und Stern [I3] 16sen, indem sie das Verhéltnis

UFermi/Alem

. (1.8)

betrachtet haben: Dabei ist vpermi die Fermigeschwindigkeit der Metallelektronen, Algpy
bezeichnet die Strecke, auf der sich das elektromagnetische Feld signifikant d&ndert und w
die Frequenz des Lichtes. Der Quotient ist im Wesentlichen das Verhéltnis von Perioden-
dauer des Lichts T zu der Zeit T,-, die ein Elektron fiir die Strecke Al bendtigt. Die
Strecke Algy, ist nahe der Oberfliche sehr viel kleiner als im Inneren des Festkdrpers, weil
hier einerseits der Grofteil der Strahlung auf der Lange der Skintiefe reflektiert wird und
andererseits die Oberfliche eine steile Potentialbarriere darstellt®. In der Metalloberfliche
in Richtung der Normalen gilt deshalb nicht T' < T,- wie im Inneren des Festkorpers:
Stattdessen gilt, dass die Elektronen eine signifikante Strecke (d.h. Aley,) wihrend einer
Periode des Lichts zuriicklegen konnen. Dieses Kriterium zeigt, dass die Berechnung der
Oberflichenpolarisierbarkeit ein quantenmechanisches Problem darstellt?. Quantenme-
chanische Vielteilcheneffekte fithren insbesondere dazu, dass die Polarisierbarkeit (neben
der zeitlichen) auch eine rdumliche Nichtlokalitit besitzt.

In der Hoffnung, auf dhnlich bedeutende Groéfsenverhéltnisse zu stoflen, wurden fiir
diese Arbeit noch folgende weitere Grofen betrachtet?:

e Verhiltnis von Lichtwellenldnge zur Grofe der Nanostruktur: Wenn die Wellenlénge
wesentlich grofser als die Struktur ist, konnen Retardierungseffekte vernachlissigt
werden. Die Maxwellgleichungen kénnen dann in quasistatischer oder sogar elek-
trostatischer Naherung beriicksichtigt werden.

e Skintiefe: Diese kann benutzt werden, um die Dicke der Oberfliche abzuschétzen
und um damit zu entscheiden, wie grof das Verhiltnis zwischen Bulk- und Ober-
flichenanteilen einer Struktur ist (s. Abb. [33).

e Verhiltnis von Skintiefe zu Wellenlénge im Vakuum: s. Abb. B”Tb.

o Krifte-Verhéltnis zwischen treibender elektrischer Kraft durch ein externes Licht-
feld und der Kraft, welche von der Barriere des effektiven Potentials Veg am Rand

°In diesem Zusammenhang erscheint es sinnvoll, die Strecke Alen auf das effektive, zeitabhingige
Potential der Elektronen zu beziehen anstatt nur auf das elektromagnetische Feld.

%Die Quantenmechanik wird relevant, wenn sich das Potential auf der DeBroglie-Wellenlinge des Elek-
trons andert [20]. Das Kriterium von Rudnick und Stern, welches das Verhéltnis I8 benutzt, ist im
Prinzip identisch damit und hat die gleiche Konsequenz.

"Die Zusammenfassung der Grofen fiir die Charakterisierung des Elektronengases orientiert sich an

[22].
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des Festkorpers verursacht wird:

’Fem’ _ |Qe’EO
[Feir| |V Vert|
Dieses Verhéltnis kann benutzt werden, um abschitzen zu konnen, ab welcher Feld-

stdrke Fg der Lichtquelle nichtlineare Effekte an den Oberflachen des Festkorpers
relevant werden.

(1.9)

e Abschirmlidnge in einem entarteten Plasma:

2€0EF
Ao = 1.10
! \/ 3noq? (1.10)

Diese Lénge charakterisiert die Wellenléinge von Friedel-Oszillationen, die bei der
Abschirmung von Uberschussladungen in Plasmen auftreten. Diese Friedel-Oszilla-
tionen sind an den Metalloberflichen zu erwarten, wo das Elektronengas den ioni-
schen Hintergrund abschirmt.

e Entartungsparameter:
x =Tr/T (1.11)

Fiir Metalle kann aufgrund der hohen Fermitemperatur 7 immer von T" = 0 K aus-
gegangen werden. Das Elektronengas ist also (maximal) entartet. (Deshalb ist hier
nur die Fermi Abschirmldnge IO und nicht die Debye Abschirmlinge relevant.)

e Mittlere Coulomb-Wechselwirkungsenergie zwischen zwei Elektronen, deren Ab-
stand von der Teilchendichte ng abhéngt:

U = 2220 (112)

e Kopplungsparameter (Verhéltnis von Coulomb Energie Uiy, und kinetischer Energie
K = kpTy):

_ Uins _ 2meq? o L/3
K (372)2/3¢oh2 °

An diesem Verhéltnis kann man sehen, dass sich ein Elektronengas mit hoher Teil-
chendichte wie ein ideales Gas verhilt. In [I7] (Kap. 1.3.3) wird dieser Zusammen-
hang am Hamiltonoperator (eines unendlich ausgedehnten Jellium-Festkorpers mit
wechselwirkenden Elektronen) demonstriert: Der kinetische Anteil skaliert mit rg 2
und der potentielle Anteil mit rg L

(1.13)

Fiir den Kopplungsparameter in Gold® gilt 'y, ~ 20, so dass Kollisionen zwischen
den Elektronen offensichtlich nicht vernachléssigt werden kénnen. Allerdings ist
nach [23] auf Grund des Pauli-Prinzips die Kollisionsrate zwischen den Elektronen
sehr gering, da fiir T' < TF nur wenige Elektronen ihren Quantenzustand dndern
kénnen. Damit wére ein kollisionsfreies Modell fiir das Elektronengas zu rechtferti-
gen.

8Teilchendichte no =~ 1028 m™3
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e Nach [23] zeigen ausserdem folgende Zeitkonstanten fiir ein typisches Metall, dass
Kollisionen im Ultrakurzzeit-Bereich vermutlich unerheblich sind:

7 = 1070s=2mw;! (1.14a)
no= 1075 (1.14b)
Tee = 10705 (1.14c)

Die Zeitkonstante 7, entspricht der Periodendauer der Plasmaoszillationen (Plas-
mafrequenz wy,). Die Relaxationszeit 7 ist die Zeitkonstante mit der das System wie-
der in das thermische Gleichgewicht zuriickkehrt (z.B. nach Abschalten eines elek-
trischen Feldes, welches einen Strom erzeugt hat). Wie 7, abgeschétzt werden kann,
wird in [23| nicht erkldrt. In [24] (Kap. 1.2) wird 7, als Relaxationszeit des freien
Elektronengases bezeichnet, die durch nicht ndher spezifizierte Kollisionen bedingt
ist und als Streuzeit im Drude-Modell benutzt wird. Die Elektron-Elektron Streu-
zeit Tee kann nach [23] iiber die Dicke der Fermischale und der Energie-Zeitunschérfe
Relation abgeschétzt werden.

e In unmittelbarem Zusammenhang mit den Zeitkonstanten [TZa-IT4d steht die
Frage, wie lange es dauert, damit sich eine Nichtgleichgewichtsverteilung von elek-
trischen Ladungen im Leiter wieder in den Gleichgewichtszustand begibt: Die Ab-
schiatzung der Dauer iiber die Kontinuitéitsgleichung d;p + V - J = 0 und dem
Ohmschen Gesetz J = oE liefert ginzlich falsche Ergebnisse®, da sich dieser Vor-
gang nur durch Beriicksichtigung der gesamten Maxwell-Gleichungen beschreiben
lasst. Nach |25] besteht dieser Relaxationsvorgang namlich aus drei Teilen: Erst
werden die Ladungen aus dem Inneren des Leiters verdringt, dann die (damit ver-
bundenen) Strome und elektromagnetischen Felder und letztlich verlieren die Ober-
flichenladungen an kinetischer Energie durch elektromagnetische Abstrahlung und
Streuprozesse.

Die gesamte Relaxationszeit ist nach dieser Betrachtung auch von der Geometrie
des Leiters abhéngig. Fiir den Spezialfall eines Hohlzylinders mit Deckeln wird in
[25] auch eine Formel hergeleitet.

Aus dieser Analyse der Léngen- und Zeitskalen ergeben sich im Wesentlichen folgende
Konsequenzen: Es kann die elektrostatische Ndherung fiir die Maxwellgleichungen be-
nutzt werden, da in dieser Arbeit nur Strukturen, mit einer maximalen Groéfe von ca.
5 nm im optischen Lichtfeld betrachtet werden. Die Strukturen haben einen vernachlés-
sigbar kleinen Bulkanteil und eine Trennung von Bulk- und Oberflache ist nicht sinnvoll.
Stattdessen wird fiir die gesamte Struktur die gleiche theoretische Beschreibung benutzt.
Die Zeitkonstante 7ee (s. Gl. [CIZd) suggeriert, dass Streuprozesse zwischen den Elektro-
nen vernachléssigt werden kénnen.

Nur die Multiskalensimulation in Kap. B3 macht hier eine Ausnahme: Diese unterschei-
det zwischen Bulk- und Oberfléchenanteilen, und da hier ein ganzes Array von Split-Ring
Resonatoren (wie in Abb. IIb) simuliert wird, miissen die Maxwellgleichungen ohne N&-
herung beriicksichtigt werden.

9Zur Giiltigkeit des Ohmschen Gesetzes: s. FuRnote B.
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1.6. Vorgehensweise

Die Vorgehensweise in dieser Arbeit wird durch aktuelle Experimente im Bereich der
Plasmonik (Kap. [2), die verschiedenen Modelle fiir Metalle (Kap. [4) und die Liangen-
und Zeitskalenanalyse (Kap. [33) begriindet:

Die Experimente motivieren dazu, Simulationen der mikroskopischen Vorgidnge im
Zeitbereich zu beschreiben. Von den Metallmodellen kann nur das rein quantenmechani-
sche Modell (Gl. I=2) aufgrund der Ergebnisse der Skalenanalyse benutzt werden. Klassi-
sche und semi-klassische Modelle sind nur in Grenzfillen, bei denen die Oberflachen eine
untergeordnete Rolle spielen, anwendbar.

Es miissen Theorien zur Losung des quantenmechanischen Modells (Gl. [Z4) verwen-
det werden, die das Vielteilchenproblem so weit vereinfachen, dass die resultierenden
Gleichungen einerseits technisch l6sbar sind und andererseits noch die Quantennatur der
Teilchen moglichst genau wiedergeben. Fiir dieses spezielle Problem wird in dieser Arbeit
die (Zeitabhéngige) Dichtefunktionaltheorie (Kap. B und @) verwendet, da diese Theorie
genau den genannten Anforderungen gerecht wird. Insbesondere kénnen Verbesserungen
an den Losungen dadurch erreicht werden, dass man das sogenannte xc-Funktional durch
eines ersetzt, welches besser fiir das spezielle System geeignet ist. Mogliche Verbesserun-
gen bei der Genauigkeit des xc-Funktionals konnen in zukiinftigen Arbeiten untersucht
werden.

Neben der Dichtefunktionaltheorie wird auch ein Dichtematrix-basierter Formalismus,
der die Zeitentwicklung der Wigner-Verteilungsfunktion beschreibt, zur Losung des quan-
tenmechanischen Modells betrachtet (Kap. B). Mit diesem Formalismus kann die Zeit-
entwicklung von statistischen Ensembles beschrieben werden. Davon wird allerdings kein
Gebrauch gemacht, weil bei Metallen eine Beschreibung mit 7' = 0K véllig ausreichend
ist (s. Erlauterung zu Gl. [CIT) und somit nur ein reiner Quantenzustand (d.h. der elektro-
nische Grundzustand als Startzustand) betrachtet werden muss. Hier soll speziell unter-
sucht werden, ob die Gleichungen numerisch geldst werden konnen und eine interessante
Alternative zur Dichtefunktionaltheorie darstellen.

Die Gleichungen werden explizit im Zeitbereich (und nicht im Frequenzbereich™) for-
muliert. Die Verwendung von optischen Suszeptibilitatstensoren (und auch von Antwort-
funktionen des Elektronengases) wird vollstindig umgangen. Alle Simulationen beriick-
sichtigen auch einen Teil des Vakuums ausserhalb der Struktur. Damit wird weiter um-
gangen, dass an Materialgrenzen Randbedingungen gemacht werden miissen, welche im
Bereich der nicht-lokalen Optik immer wieder fiir Diskussionen gesorgt haben [26], da de-
ren Korrektheit unklar ist. Stattdessen wird ein Anfangswertproblem gelost, bei dem die
Randbedingungen im Vakuum liegen und sich die Elektronen an den Oberflichen ohne
den Einfluss kiinstlicher Randbedingungen bewegen kénnen. Die so erzielten Ergebnisse
sollten gerade in dem Oberflichenbereich wesentlich plausibler sein als solche, die mit
Randbedingungen an den Oberflachen hergeleitet wurden.

Eine weitere Stirke der Formulierung im Zeitbereich ist, dass die Gleichungen ohne St6-
rungstheorie hergeleitet werden und somit speziell fiir die Simulation der nicht-linearen
Eigenschaften von Metallen geeignet sind. Es konnen zeitlich beliebig geformte Pulse
mit beliebig hoher Feldstirke zur Anregung der Strukturen (genau wie im Experiment)

%Tn der nicht-linearen Optik [8] ist die Formulierung im Frequenzraum iiblich.
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benutzt werden, ohne die Giiltigkeit der Gleichungen in Frage zu stellen™.

Der Nachteil der Methodik besteht darin, dass nur sehr kleine Strukturen (wie z.B.
Teile von Nanoantennen < 10 nm) beschrieben werden kénnen und die Verwendung der
technisch nicht-trivialen Multiskalensimulationen (Kap. B3) fiir die Simulation von gro-
feren Strukturen (wie z.B. Metamaterialien) sich als unumgénglich herausstellen wird.

"'Eine Ausnahme betrifft die gemachte Langwellenniherung in Kap. B, nach der die Wellenléinge des
Lichtes deutlich grofer als die Grofe der Struktur sein muss.
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2. Physikalische Grundlagen

2.1. Plasmonik

Hier werden elementare Grundlagen aus dem Bereich der Plasmonik |16, 24| zusam-
mengefasst und dabei auf Aspekte, die in dieser Arbeit besonders wichtig sind, genauer
eingegangen.

2.1.1. Maxwell Gleichungen und Propagation elektromagnetischer Wellen

Die Modelle fiir Metalle (s. Kapitel I3 und [4) sind rein mikroskopische Modelle, bei
denen die Ladungs- und Stromdichten durch riumlich stetige® Funktionen gegeben sind.
Fiir diese Modelle besteht keine Notwendigkeit, die Ladungen und Stréme in ,,gebunden“
und ,frei aufzuteilen, da keine gebundenen Ladungen vorhanden sind. Die Lichtausbrei-
tung wird vollstédndig durch die mikroskopischen Maxwellgleichungen [27] beschrieben:

1

V-E = ——p (2.1a)
€0
vV-B = 0 (2.1b)
0B
VXE = ——— 2.1
X 5 (2.1c)
OE
VxB = pgd+ poco— (21d)

ot

Die Kopplung zwischen den elektromagnetischen Feldern und der Materie wird hier da-
durch zum Ausdruck gebracht, dass man die Ladungs- und Stromdichte als Funktional
des elektrischen und magnetischen Feldes schreibt:

J = J[E,B] (2.2a)
o = o[E,B] (2.2b)

Da die Maxwellgleichungen die Kontinuitétsgleichung implizieren und die Ladungsdichte
durch Gl. & gegeben ist, wird nur ein Gesetz fiir die Stromdichte benétigt. Im linearen
Fall lasst sich die Gl. BZZa in Form eines rdumlich und zeitlich nichtlokalen ,Ohmschen
Gesetzes"* schreiben:

J(r,t) = /dgr'/dt' o(r,r —1',t —t"E(',t) (2.3)

Die Leitfahigkeit o ist ein Tensor 2. Stufe, dessen Komponenten von einer absoluten und
einer relativen rdumlichen Koordinate sowie einer relativen zeitlichen Koordinate abhén-
gen. In isotropen Medien reduziert sich die Leitfdhigkeit auf ein Skalar. In homogenen

'Die Ionendichte darf am Rand des Festkorpers unstetig, d.h. stufenartig auf Null abfallen. Entscheidend
ist hier, dass es keine atomistischen Dichtefunktionen sind: o(r) # >_; ¢63(r — 1)
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2. Physikalische Grundlagen

Medien entfillt die Abhéngigkeit von der absoluten Raumkoordinate. Wie in Kapitel 0
erldutert wurde, trifft die Homogenitdtsannahme in Nanostrukturen nicht zu und daher
kann auf die absolute Raumkoordinate fiir deren Beschreibung nicht verzichtet werden.

Aus den Rotationsmaxwellgleichungen EZTd und P-Td folgen die inhomogenen Wellen-
gleichungen fiir das elektrische und magnetische Feld, in denen die Stromdichte als Quell-
term auftritt:

1 O’E 0J
VXxVxE+ COTW = —,LLOE (2.4a)
1 9’B

Dabei ist cg = 1/,/f0o die Lichtgeschwindigkeit. Mit Ausnahme der Multiskalensimu-
lation in Kap. B33 kann in allen anderen Féllen angenommen werden, dass die Distanz
co/w (wobei w die Frequenz des externen Lichtfeldes ist) viel grofer ist als die Abmes-
sung der Struktur ist. Deshalb ist flir diese Systeme die elektrostatische Ndherung der
Maxwellgleichungen gerechtfertigt:

1
V-E ~ ——p (2.5a)
€0

VxE ~ 0 (2.5b)

Alle Felder sind dabei weiterhin zeitabhéngig. Das elektrische Feld kann hier {iber ein
elektrostatisches Potential ®(r,t), welches die Poissongleichung

V20(r,t) = —gg(r,t) (2.6)

erfiillt, in guter Naherung beschrieben werden. Die Multiskalensimulation verwendet die
vollstdndige als auch die elektrostatische Form der Maxwellgleichungen.
2.1.2. Dielektrische Funktion des freien Elektronengases

In Gl. 223 wurde die Leitfdhigkeit o als lineare Antwortfunktion der Stromdichte J auf
das Feld E definiert. Das freie Elektronengas ist isotrop und homogen. In diesem Fall
lautet die Relation ZZ3:

J(r,t) = /dt’ o(t —t)E(r,t) (2.7)
Nach dem Faltungstheorem ergibt die Fouriertransformation dieser Relation in der Zeit:
J(r,w) =o(w)E(r,w) (2.8)

In der Optik ist es iiblich, die dielektrische Funktion e,(w) (bzw. die Suszeptibilitit
X = & — 1) als Antwortfunktion zu verwenden®?. Diese hat folgenden Zusammenhang mit

*Bei den makroskopischen Maxwellgleichungen ist es iiblich durch die dielektrische Funktion nur die
gebundenen Ladungen und deren Polarisationsstrom zu beriicksichtigen. Die freien Ladungen werden
separat tiber die Leitfdhigkeit einbezogen [21]. Hier wird von dieser Konvention abgewichen und keine
Unterscheidung bei den Ladungen und Stromen gemacht, wie unmittelbar in Gl. Z9 zum Ausdruck
kommt.
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2.1. Plasmonik

der Leitfahigkeit:

L = a(w):%[er(w)—u (2.9)

Fiir das freie Elektronengas kann diese Funktion aus der klassischen Drude Bewegungs-
gleichung 4 hergeleitet werden, indem die Auslenkung r eines Elektrons mit der Pola-
risationsdichte P = genor in Verbindung gesetzt wird. Als treibenden Term setzt man in
die Bewegungsgleichung ein harmonisch oszillierendes Feld E(t) = Ege~ ! ein. Insgesamt
erhilt man folgenden Zusammenhang zwischen Polarisation und elektrischem Feld:

2
10de

p___ 0%
me(w? + iyw)

(2.10)

Uber den Zusammenhang P = ¢oxE = eo(e; — 1)E kann die dielektrische Funktion
abgelesen werden:

2
Wp

e(w) =1 (2.11)

W+ iw

2
wp = | e (2.12)
EoMe

Auch wenn dieses Modell eine zu starke Vereinfachung darstellt, um adidquat die Op-
tik von metallischen Nanostrukturen zu beschreiben, liefert diese Antwortfunktion qua-
litatives Verstdndnis und eine Menge an wichtigen Informationen um Abschidtzungen
durchzufithren. Die Einschrinkungen des Modells sind nach der gegebenen Herleitung
offensichtlich:

Dabei ist wp die Plasmafrequenz:

1. Dynamische Abschirmeffekte in den Oberflichenbereichen werden falsch beschrie-
ben, weil in Gl. Z10 angenommen wird, dass die Polarisation nur vom lokalen elek-
trischen Feld abhéngig ist. (Grund fiir die Nichtlokalitét: s. Kap. [3). Das fiihrt
zu Abweichungen beim field enhancement im Vergleich zu quantenmechanischen

Modellen [B, .

2. Es kann weder die Photoemission noch das Auftreten von Tunnelstromen beschrei-
ben.

3. Als lineares Modell kann es nicht die Entstehung von Hoheren Harmonischen er-
klaren.

In Anhang A sind die wichtigsten Formeln fiir dieses Modell zusammengefasst.

23



2. Physikalische Grundlagen

2.1.3. Dispersionsrelation des freien Elektronengases

Unter Beriicksichtigung der zeitlichen Nichtlokalitdt der Stromdichte, die durch die Leit-
fiahigkeit o in Gl. 274 (oder durch die Dielektrische Funktion ¢, ) beschrieben wird, lautet
die inhomogene Wellengleichung 2744 fiir das elektrische Feld:

1 0’°E
V x V x E(r,t) + —287(”) = —ua% /dt’ o(t—t)E(r,t)

Co 8t2
do(t —t')
_ _ N ) /

Mittels Fouriertransformation der Wellengleichung in der Zeit (0 — —iw) folgt:

2
V x V x E(r,w) — %E(r,w) = —pip(—iw)o(w)E(r, w)
0
6z'k~r

Als néchstes wird die ebene, monochromatische Welle E(r,w) = Ey(w) eingesetzt:

w2
(i [k < B} - &
w2
—{kk - E(r,w)] — k;2E(r,w)} Tl

E(r,w) = iuowo(w)E(r,w)
E(r,w) = iuowo(w)E(r,w)

Fiir transversale Wellen ist k - E = 0. Mit Gl. 29 folgt dann:
2 2
w 9 , w
[002 —k ] = —ipowo(w) = o [1—er(w)]

Somit lautet die gesuchte Dispersionsrelation fiir transversale Wellen:

—é&r(w) =0 (2.13)

Zur Vereinfachung wird nun von einem idealen Metall (v = 0) ausgegangen. Nach GL
ETT ergibt sich dann folgende Dispersionsrelation:

2 2 2,2
wp w w” wp
sglw=1-—" = kK- 4+22"_-90
2 2 22
w co co” w

k(w) = —\/w? — wp? (2.14)

Daran erkennt man, dass im Frequenzbereich w < wp die Wellenzahl k& imaginér ist
und keine Wellenausbreitung moglich ist. Diese Dispersionsrelation ist auch in Abb. 2
grafisch dargestellt: Hier sieht man an der Gruppengeschwindigkeit dw/dk, dass diese
grundsétzlich kleiner als die Lichtgeschwindigkeit ist und fiir £ — 0 verschwindet. Letz-
teres beschreibt eine longitudinale, kollektive Schwingung des Elektronengases, die mit
der Plasmafrequenz wp oszilliert?.

Die Plasmafrequenz kann anschaulich iiber die elektrostatische Kraft von Oberflichenladungen in einer
Metallschicht hergeleitet werden [I@, 24].
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Abbildung 2.1.: Plot der Dispersionsrelation fiir das freie Elektronengas 214 (rote Kur-
ve). Die blaue Linie zeigt die Relation fiir Licht: w = ck.

2.1.4. Reale Metalle

Die wichtigsten Metalle fiir plasmonische Anwendungen im nahen Infrarot- und sichtba-
ren Spektralbereich sind Gold und Silber [24]. Alle Modelle in dieser theoretischen Arbeit
befassen sich ausschlieflich mit dem Elektronengas, welches die Leitungselektronen in der
metallischen Bindung bilden (s. Kap. I4). Es soll daher kurz erldutert werden, welche
Unterschiede zwischen den idealisierten Jellium-Modellen der Metalle und den realen
Metallen bestehen:

1. Das Auftreten von Interbandiibergéingen ab einer bestimmten Mindestenergie der
Photonen stellt den priméren Unterschied dar. Bei Gold treten diese bereits im
nahen Infrarotbereich auf [20].

2. In realen Metallen streuen die Elektronen untereinander sowie an Phononen, Git-
terdefekten und Verunreinigungen. Die mittlere freie Weglénge ist daher tempe-
raturabhéngig und kann aufserdem in Nanostrukturen, deren Abmessungen klein
genug sind, auch von deren Geometrie abhédngen.

Die Interbandiibergénge konnen iiber das lorentzsche Oszillatormodell [27] in die Modell-
rechnungen integriert werden. Das tragt erheblich zu einer qualitativen und quantitativen
Verbesserung der Modellrechnungen bei und stellt eine Voraussetzung dar, um die Er-
gebnisse von Theorie und Experiment iiberhaupt sinnvoll vergleichen zu koénnen. Eine
weitere Verbesserung des Modells betrifft die mittlere freie Weglénge der Elektronen: In
[?8] wird eine Moglichkeit gezeigt, wie diese abhéngig von der Form der Nanostruktur
berechnet werden kann.
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2. Physikalische Grundlagen

2.2. Dichtefunktionaltheorie

Die Dichtefunktionaltheorie (DFT) wurde in den 1960er Jahren entwickelt, um die elek-
tronischen Vielteilchenprobleme bei Molekiilen, Polymeren und Festkorpern auf Grund-
lage der Quantenmechanik 16sen zu kénnen um letztlich deren damit verbundene Eigen-
schaften zu verstehen und erforschen zu kénnen. An der Entwicklung der Grundlagen die-
ser Theorie waren Hohenberg, Kohn und Sham beteiligt [29, BU]. Die wichtigste Aussage
dieser Theorie besteht darin, dass anstelle der hoch-dimensionalen Vielteilchenwellen-
funktion eines wechselwirkenden N-Elektronensystems die Kenntnis der Grundzustands-
dichte ausreicht um die physikalischen Eigenschaften des Systems im Grundzustand zu
beschreiben. Die Eigenschaften lassen sich als Funktionale der Teilchendichte formulieren,
was auch den Namen dieser Theorie erklart.

Die hier présentierte Abhandlung iiber die Grundlagen der Dichtefunktionaltheorie
orientiert sich an der Darstellung in [I7], Kapitel 7. Aus Griinden der Ubersichtlichkeit
wird die Spinkoordinate in den Wellenfunktionen ausgelassen.

2.2.1. Grundzustand
Die Hohenberg-Kohn Theoreme

Das System von N wechselwirkenden Elektronen wird durch den Hamiltonoperator

~

H = T+I7ee+%xt

N
S T 18 o L RO X ST
:

ij=1j<k

beschrieben. Die ersten beiden Operatoren T und Ve haben fiir alle Systeme die gleiche
Form, wohingegen der Operator Vext systemabhéngig ist. Hierbei handelt es sich fiir
gewohnlich um die potentielle Energie, welche ein Elektron im elektrostatischen Feld der
positiv geladenen Atomkerne mit Potential ® hat:

Vext (r) = ¢o®(r) (2.16)

Die Teilchendichte ng(r) des elektronischen Grundzustandes ist durch die Grundzu-
standswellenfunktion |¥) gegeben:

N
no(r) = (W] 3 6(r — i) o) (2.17)

=1

Die Berechnung der Wellenfunktion erfordert das Losen der stationdren Schrédingerglei-
chung:

H|W) = Eo|¥o) (2.18)

Dieses Eigenwertproblem ist fiir ein Vielteilchensystem praktisch unlésbar, da die Wel-
lenfunktion eine hoch-dimensionale Funktion von 3/N unabhéngigen Variablen ist:

\I/()(I‘l,...,I‘N) = <I‘1,...,I‘N’\I/0> (219)
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2.2. Dichtefunktionaltheorie
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Abbildung 2.2.: Illustration des ersten Hohenberg-Kohn Theorems: Zwei unterschiedliche
Systeme mit Vexy 1(r) — Vext,2(r) # const. kénnen niemals die gleiche
Grundzustandsdichte besitzen. Das System 1 soll hier einen zweifach
entarteten Grundzustand mit Energie E; und System 2 einen dreifach
entarteten Grundzustand mit Energie E5 haben.

Es wére hilfreich, wenn dieses Problem in ein dquivalentes Problem umformuliert werden
kénnte bei dem keine unzugéngliche hoch-dimensionale Funktion bestimmt werden muss.
Schon vor der Entwicklung der modernen Dichtefunktionaltheorie wurde daher versucht,
die Teilchendichte ng(r) als zentrale und alternative Grofe zur Wellenfunktion zu ver-
wenden [I6]. Durch das erste Hohenberg-Kohn Theorem [29] war es aber erst moglich
geworden, die besondere Bedeutung der elektronischen Grundzustandsdichte ng(r) zu
ergriinden:

Die Aussage des ersten Hohenberg-Kohn Theorems ist in Abbildung 272 illustriert: Je-
des elektronische System mit externem Potential Vet (r) besitzt eine Teilchendichte ng(r),
die es mit keinem anderen System im Grundzustand gemeinsam hat. Die Abbildung zeigt
auch, dass der Grundzustand aufgrund von moglichen Symmetrien eine Entartung und
somit mehrere Grundzustandswellenfunktionen und zugehorigen Teilchendichten aufwei-
sen kann. Keine der Dichten konnen identisch sein.

Das Theorem ldsst sich auch so zusammenfassen:

Vet (t) = H =T 4 Ve + Virr — (Eo, ¥g) — no(r) = n[¥)(r)
- und - (2.20)

Vext[no](r) + const. ist eindeutiges Funktional der Teilchendichte

In Worte gefasst bedeutet das: Zu dem externen Potential Vg gehort ein Hamiltonope-
rator, welcher Ey als niedrigsten Energieeigenwert mit Wellenfunktion ¥q besitzt (Ent-
artung wird hier nicht betrachtet). Aus der Wellenfunktion ergibt sich die Teilchendichte
no(r). Kein anderes System kann diese Teilchendichte im Grundzustand besitzen und
somit ist auch das externe Potential (bis auf eine additive Konstante) ein eindeutiges
Funktional der Grundzustandsdichte. Wahrend die erste Aussage offensichtlich ist, kann
die zweite Aussage mittels ,reductio ad absurdum® bewiesen werden [29].
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2. Physikalische Grundlagen

Die Teilchendichte im Grundzustand ng legt also iiber das externe Potential den Ha-
miltonoperator und somit auch den Vielteilchengrundzustand Wq fest. Es folgt die ent-
scheidende Aussage:

Alle physikalischen Eigenschaften des Systems im Grundzustand kénnen als Funktional
der zugehdrigen Teilchendichte betrachtet werden.

Die Gesamtenergie des Systems mit externem Potential Voxt kann als folgendes Funk-
tional einer Teilchendichte n(r) geschrieben werden:

By exi[n(r)] = (¥[n]|H|¥[n)) (2.21)

Die Wellenfunktion VU ist genau diejenige N-Teilchen Wellenfunktion, welche die Dichte
n(r) besitzt und das Energiefunktional minimiert:

U[n(r)] = min (U|H|D) (2.22)
¥—n(r)
Nach dem zweiten Hohenberg-Kohn Theorem ist das globale Minimum vom Energiefunk-
tional Ev ext[n] durch die Grundzustandsdichte ng(r) gegeben. Damit wurde das Ritzsche
Variationsprinzip von der Wellenfunktion auf die Teilchendichte {ibertragen.

Kohn-Sham Gleichungen

Die Hohenberg-Kohn Theoreme sind von fundamentaler Bedeutung. Sie bieten aber zu-
néchst keine Moglichkeit fiir ein konkretes System die Grundzustandsdichte zu berechnen.
Zur Losung dieses Problems hatten Kohn und Sham die Idee, das System der N wechsel-
wirkenden Elektronen durch ein fiktives System von N nicht wechselwirkenden Teilchen,
welche sich in einem effektiven Potential Veg(r) bewegen, zu ersetzen [30]. Die Korrelatio-
nen des wechselwirkenden Vielteilchensystems werden iiber dieses Potential vermittelt.

Diese Theorie sollte vor allem in der Lage sein, den Grenzfall eines freien Elektro-
nengases exakt sowie wechselwirkende Elektronengase durch Korrekturen im effektiven
Potential beliebig genau beschreiben zu kénnen.

Nach dieser Theorie ist es moglich, das hochdimensionale Eigenwertproblem ZI8 auf
das Losen von N gekoppelten Ein-Teilchen Pseudo-Schrodingergleichungen zuriickzufiih-
ren. Diese Gleichungen werden in diesem Kontext als Kohn-Sham Gleichungen bezeich-
net.

Bei deren Herleitung wird zundchst das Energiefunktional 2221 betrachtet. Es ldsst sich
in einen universellen Anteil F[n(r)] und einen systemspezifischen Anteil zerlegen:

By exln(v)] = (¥[n)| AW
= (Wln]| (7 + Vi) (W In]) + (P[] [Vext [ [n])

— Fla)]+ / 1 Vi (1)n(x) (2.23)

Kohn und Sham teilten dieses universelle Funktional F[n(r)] in folgende Anteile weiter
auf:

F[n(r)] = Tsn(r)] + Exg[n(r)] + Exc[n(r)] (2.24)
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2.2. Dichtefunktionaltheorie

Diese Aufteilung steht in direktem Zusammenhang mit der Idee, ein System nicht wech-
selwirkender Teilchen zu verwenden. Um den Grenzfall des freien Elektronengases direkt
beschreiben zu kénnen, bilden diese fiktiven Kohn-Sham Teilchen eine Slaterdeterminante
als Gesamtwellenfunktion:

. ¢1(r1) - ¢i(rw)
Uks(ry,...,ry) = W det d)NErl) (bN(:rN) (2.25)

Das Funktional Tg[n(r)] ergibt die kinetische Energie dieses fiktiven Systems:

Ts[n(r)] = (Uks[n]|T|ks[n ]>

= Z/@ ) (- ) i) (2.26)

Das Minimalprinzip aus Gl. 2722 ist auch hier wieder anzuwenden: Wkg[n] ist jene N-
Teilchen Slaterdeterminante g mit Dichte n(r), welche das Funktional

(Ws|T|s)

minimiert. Das Funktional Ey[n(r)] ist die Hartree-Energie:

1 g
E - e d3 d3r' 2.2
{n(r) 247r50// r—r/\ (2.27)

Der ,Rest” wird als Austausch-Korrelations-Energie Ey.[n(r)] definiert:

Exe[n(r)] := Fln(r)] = Ts[n(r)] — Euln(r)] (2.28)

Auf dieses Funktional wird in spéteren Kapiteln weiter eingegangen.
Um die Kohn-Sham Gleichungen herzuleiten, wird ausgenutzt, dass die Grundzustands-
dichte eine Extremstelle des Energiefunktionals unter der Nebenbedingung [ n(r)d®r =

N darstellt:
5,:5(,3) By ext[n(r)] — p </ n(r)dr — N)] 0

Dabei ist p ein Lagrangeparameter. Setzt man nun die Aufteilung aus den Gln. 2223,
fiir das Energiefunktional ein, erhilt als Ergebnis dieser Funktionalableitung:

dTs[n(r)]

on(r) + Vu(r) + Vae(r) + Vexe(r) —p = 0

Es ist iiblich, die Summe der Potentiale als effektives Potential zusammenzufassen:

0Ts[n(r)]

sy Ver®) = = 0 (2.29)
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2. Physikalische Grundlagen

Die Losung dieser Gleichung fiir die Dichte n(r) ist gegeben durch die Dichte des nicht
wechselwirkenden Systems von N unabhingigen Teilchen im effektiven Potential:

12 N
{9260 + Vaalal 0105 6) = 230,00 | (230
e j=1
N
n(r) = (Tks|a(r)|Txs) = > é;(r)]? (2.31)
j=1

Diese Kohn-Sham Gleichungen sind vollig dquivalent zu dem urspriinglichen N-Teilchen
Problem aus Gl. ZI8. Es wurde bis jetzt keine Néherung gemacht. Die Eigenwerte ¢;
sind Lagrangeparameter welche ebenso wie die zugehorigen Orbitale ¢; keine direkte
physikalische Bedeutung haben.

Man hat nun folgende Vorteile gegeniiber dem Anfangsproblem gewonnen: Es miissen
nur noch N Ein-Teilchen Wellenfunktionen statt einer N-Teilchen Wellenfunktion be-
stimmt werden. Das Problem mit der Elektronenkorrelation wurde auf das xc-Funktional
verlagert. Es ist derzeit nicht bekannt, wie dieses fiir beliebige Dichten exakt bestimmt
werden kann und es muss aus diesem rein praktischen Grund eine N#herung fiir Vi.(r)
gemacht werden (s. néchster Abschnitt). Da aber die xc-Energie kleiner als die Hartree-
Energie ist, bietet dieser Ansatz - zumindest hoffentlich - den weiteren Vorteil, dass der
Fehler in der gewdhlten Ndherung keinen zu dramatischen Einfluss auf das Ergebnis hat.

Lokale Dichtendherung
Das Energiefunktional fiir die Austausch-Korrelationsenergie kann ganz allgemein wie
folgt entwickelt werden:

Ey[n(r)] = / Bregen(r)]n(r) + e n(@)] [Va)? + ... (2.32)

Die Grofe exc[n(r)] gibt die xc-Energie pro Teilchen am Ort r an und ist selbst ein
Funktional, welches i. A. von der Dichte n(r) im ganzen Raum abhéngt. Das xc-Potential
ist gegeben als Funktionalableitung von Ey.[n]:

Vielnl(r) = 2526

(2.33)

In der Lokalen Dichtendherung geht man vom homogenen Elektronengas aus und setzt
in die Funktion €'9™(n), welche die Austausch-Korrelationsenergie pro Teilchen des ho-
mogenen Elektronengases in Abhéngigkeit dessen Dichte n beschreibt, jeweils die Dichte
am Ort r ein:

EEPMn()] = [ dor e (n(s)) (o)
Das xc-Potential hat dann nach Gl. 2233 folgende Form:

5 d[e2o™ (n)n]

VEPA) = o [ et = S

(2.34)

n=n(r)
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2.2. Dichtefunktionaltheorie

Die Grofe 19 (n) setzt sich additiv aus dem Austausch- und Korrelationsanteil zusam-
men:

0.458 0.44
rs(n) rs(n)+7.8

hom () =

€XC

(2.35)
Die Austauschenergie, welche der erste Term beschreibt, ist exakt aus der Hartree-Fock
Rechnung bekannt. Der Korrelationsanteil (zweiter Term) ist durch die Wigner Inter-
polationsformel gegeben [31]. Die Grofke rg(n) ist der Wigner-Seitz Radius (mittlerer
Elektronenradius, s. Jellium-Modell in Kap. [=3) bei Dichte n:

re(n) = § % (2.36)

Das zugehorige xc-Potential ist gegeben durch [32]:

0.611 0.587

LDA/, \ _ B
Ve " (n) = rs(n)  (rs(n) + 7.8)2

(rs(n) + 5.85) (2.37)

2.2.2. Zeitentwicklung

Die Zeitentwicklung eines Vielteilchensystems unter Einwirkung elektromagnetischer Fel-
der beginnt ausschlieflich vom elektronischen Grundzustand des Systems |¥y), welcher
iiblicherweise zu einer Zeit t = 0 vorliegt. Die zeitabhingige Schrédingergleichung be-
schreibt dann die weitere Zeitentwicklung des Zustandsvektors |U(t)):

() = B0, U =0)) = %) (2.38)

Genau wie bei dem stationdren Problem ist es praktisch nicht méglich mit einer Vielteil-
chenwellenfunktion zu rechnen. Interessant ist, dass sich dieses Problem auf sehr dhnliche
Weise zu dem stationdren Problem behandeln ldsst: Das fiktive System von nicht wech-
selwirkenden Teilchen kann ebenso zeitabhingig formuliert werden.

Das Runge-Gross Theorem [33] ist das zeitabhidngige Analogon zum Hohenberg-Kohn
Theorem und besagt, dass das externe zeitabhingige Potential Vi (r,t) ein (bis auf
eine additive, evtl. zeitabhangige Konstante) eindeutiges Funktional der zeitabhéngigen
Teilchendichte n(r,t) ist. Aus der Kenntnis der zeitabhingigen Dichte lassen sich alle
dynamischen Eigenschaften des Systems berechnen.

Zur Bestimmung der zeitabhingigen Dichte n(r,t) 16st man die zeitabhingigen Kohn-
Sham Gleichungen:

h2
B 2mee

ih%(bj(r,t) = [ \VAE Veﬁr(r,t)] ¢;(r,1) (2.39)

N
=1

Das effektive Potential ist gegeben durch:
Vet (r,t) = Vexs (r) + Vi [n](r, t) + Vic[n](x,t) + Vp(r,t) (2.41)
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2. Physikalische Grundlagen

Das externe Potential ist weiterhin zeitunabhéngig, wohingegen das Hartree- und xc-Po-
tential nun zeitabhingig sind: Das Hartree-Potential wird genau wie im statischen Fall be-
rechnet, wobei dann die zeitabhingige Dichte zur Zeit ¢ einzusetzen ist. Das xc-Potential
ist vom physikalischen Gehalt her die komplizierteste Grofse, da es alle Vielteilcheneffekte
wie auch die Streuung der Elektronen untereinander beriicksichtigt. Dieses Potential ist
im Allgemeinen rgumlich und zeitlich nichtlokal von der Teilchendichte n(r,t) abhin-
gig. Genau wie im stationdren Fall gibt es keinen analytisch exakten Term um es zu
berechnen. N&herungen werden im n&chsten Abschnitt beschrieben.

Das Potential Vp ist das Storpotential, iiber welches das System aus dem Grundzustand
angeregt wird.

Adiabatische lokale Dichtendherung (ALDA)

Die einfachste Moglichkeit an eine sinnvolle Naherung fiir das zeitabhingige xc-Potential
zu gelangen, besteht darin, in den Term der statischen LDA die zeitabhingige Dichte
einzusetzen:

d[neye™ (n)]

< (2.42)

n=n(r,t)

Diese Naherung wird als adiabatische lokale Dichtendherung bezeichnet und mit J,ALDA“
oder auch mit (adiabatische) ,TDLDA™ in der Literatur abgekiirzt. Hier werden sowohl
die rdumliche als auch die zeitliche Nichtlokalitét der Austausch-Korrelationswechselwir-
kung vernachlissigt. Im Rahmen dieser Arbeit ist vor allem die rdumliche Nichtlokalitét
von zentraler Bedeutung, weil diese auch die Nichtlokalitit der optischen Polarisierbar-
keit bestimmter Bereiche (d.h. Oberflichen, Kanten und Ecken) von Nanostrukturen
beeinflussen kann.

Die adiabatische Néherung ist allgemein gerechtfertigt, wenn die Teilchendichte nur
langsam zeitlich variiert. Hier wurde noch keine Referenzzeit ermittelt, die als Vergleich
herangezogen werden kann, um zu entscheiden was ,langsam“ genau bedeutet. Eben-
falls wurde noch keine Referenzlénge fiir die rdumliche Variation der Dichte ermittelt,
welche die LDA rechtfertigt. Fiir die LDA ist aber klar, dass diese im Prinzip nur fiir
homogene Teilchendichten giiltig ist. Aufterdem fehlt in der LDA eine Korrektur der
Selbstwechselwirkung und daher ist diese fiir geringe Teilchendichten nicht geeignet. An
der Metall-Vakuum Grenzfliche wird aber die Dichte exponentiell in Richtung Vakuum
auf Null abfallen (s. Abb. B): Die Giiltigkeit der Ndherung ist daher schon fiir die
stationdren Berechnungen der Teilchendichten in Frage gestellt.

Um den Einfluss der Zeitabhéngigkeit des xc-Potentials auf die Ergebnisse speziell
fiir die SH-Oberflachenpolarisierbarkeit zu untersuchen, haben Liebsch und Schaich ihre
Berechnungen in der Random Phase Approximation (RPA) wiederholt®: Fiir den charak-
teristischen a(w)-Parameter, den Rudnick und Stern eingefiihrt haben [I3], ergaben sich
quantitative Abweichungen von 25% |1, B2]. Weil aber die Frequenzabhingigkeit dieses
Parameters in beiden Fillen qualitativ gleich ist, wird angenommen, dass die wichtigen
physikalischen Effekte von der Ndherung unbeeinflusst sind.

4engl.: time-dependent local density approximation
°Bei dieser Rechnung wird das xc-Potential vom Grundzustand als zeitlich konstant angesehen. Die
exakte Bezeichnung fiir diese Ndherung ist ,LDA-basierte RPA“.
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2.2. Dichtefunktionaltheorie

In den folgenden Kapiteln B und @ iiber die Anwendung der Dichtefunktionaltheo-
rie wird die Giiltigkeit der xc-Funktionale als separates Problem gehandhabt, welches
nachtriglich ausgebessert werden kann, sofern auch bessere Funktionale zur Verfiigung
stehen.
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3. Anwendungen der DFT auf
Nanostrukturen

3.1. Metallfilme

Die theoretischen Untersuchungen optischer Eigenschaften von Metallfilmen wird durch
die Arbeit von Rudnick und Stern [I3]| zur SH-Strahlung an Metalloberflichen und physi-
kalisch-technische Aspekte motiviert:

Der Metallfilm stellt im Prinzip ein System aus zwei gegeniiberliegenden Fléchen dar,
deren optische Anregungen nicht unabhingig von einander sind. Fiir die Untersuchung
von Metalloberflichen ist das System daher nur eingeschrinkt nutzbar. Ein realistisches
Modell der Metalloberfliche wére ein mit Metall gefiillter Halbraum. In einer Simulati-
on kann von dem Halbraum natiirlich nur ein endlicher Ausschnitt der Vakuum-Metall
Grenzflache betrachtet und simuliert werden. Der Metallbereich miisste in der Simulation
abgeschnitten werden und der betrachtete Ausschnitt ist dann ein offenes Quantensys-
tem welches Energie und Teilchen mit dem unendlich grofsen Rest vom metallischen
Halbraum austauscht. Dadurch wird der theoretische Anspruch gegeniiber einem Metall-
film drastisch erhoht [34], weshalb in dieser Arbeit der Versuch unternommen wurde, den
Metallfilm auch fiir die Berechnung von Oberflicheneigenschaften zu verwenden. Darauf
wird im Kapitel @ iiber dissipative DFT néher eingegangen. Es sei noch angemerkt, dass
die statische lokale Dichteantwortfunktion eines Metallfilms in [85] bereits untersucht
wurde.

3.1.1. Elektronischer Grundzustand

Im Jellium-Modell wird der Metallfilm symmetriebedingt durch ein eindimensionales lo-
nendichteprofil n*(2) (mit Dimension L~3) vollstéindig beschrieben. Aufgrund von nume-
rischen Aspekten ist es von Vorteil, dieses System in einem unendlich tiefen Potentialtopf
unterzubringen. Fiir das elektrostatische Potential ®(z) werden die Dirichletrandbedin-
gungen ® = 0 auf den Réndern des Potentialtopfes gefordert. Die Rédnder miissen zum
Metallfilm eine grofs geniigende Vakuumschicht lassen, damit die Randbedingungen kei-
nen Einfluss auf die Eigenschaften des Systems haben. Die Translationsinvarianz des
Systems fiihrt auf folgende Form der Wellenfunktion fiir die Metallelektronen:

\Ilnk” (I‘) = ¢n(2) exp(ik” . I‘”) (3.1)

Die diskrete Quantenzahl n und die kontinuierlichen Quantenzahlen k| = (kz, ky) sind
eine unmittelbare Folge der gewdhlten Randbedingungen. Die Berechnung des elektroni-
schen Grundzustandes erfordert nun die Losung der Kohn-Sham Gleichungen:

2 2
( e +veﬂ[n—]<z>) bn(2) = Entn(2) (3:2)

2mdz?
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3. Anwendungen der DF'T auf Nanostrukturen

Veii[n”](2) = Vion(2) + Va[n™](2) + Vie[n](2) (3.3)

occ

() = > walén(2)P (3.4)

Diese Gleichungen miissen selbstkonsistent gelost werden (s. Kap. B13). Das effekti-
ve Potential besteht aus dem Potential des ionischen Hintergrundes Vio,, dem Hartree-
Potential Vi[n~], welches die Coulombwechselwirkung der Elektronen beschreibt, und
dem Austausch-Korrelationspotential Vi.[n™]. Die beiden letzteren Potentiale sind Funk-
tionale der Elektronendichte n™(z). Das Hartree-Potential ist durch die Losung der Pois-
songleichung gegeben:

2 - 2

D) = S (35)
Die Orbitalbesetzungen w,, werden durch das Auffiillen der Bandstruktur beginnend bei
niedrigster Energie, bis Ladungsneutralitit vorliegt, berechnet. Mit Hilfe der Zustands-
dichte fiir zweidimensionale Systeme (s. Kap. B), welche eine Stufenfunktion darstellt,
wird ersichtlich, dass die Bedingung fiir Ladungsneutralitdt durch diese Gleichung be-
schrieben wird:

occ

> m(EhFQ; En) _ /n+(z) dz =0 (3.6)

n

Diese Bedingung gilt nur fiir T = 0 K, was fiir Metallelektronen aber eine sehr gute
Néherung darstellt, da 7' < Ty auch bei Raumtemperatur gilt (s. Kap. [3).

3.1.2. Friedel Oszillationen

Die LDA-Grundzustandsdichte eines ca. 5 nm dicken Metallfilms und einer Ionendichte
von ng = 0.0019 ag~2 (entspricht rg = 5 ag) ist in den Abbildungen B und B2 dar-
gestellt. Die Friedel-Oszillationen, welche durch die quantenmechanische Abschirmung
der positiven Jellium-Hintergrundladungen auftreten, sind deutlich zu erkennen. In Ab-
bildung B wird die Lange in Vielfachen der Fermilinge Ar gemessen, um sichtbar zu
machen, dass diese Lange ungefdhr der doppelten Wellenldnge dieser Oszillationen ent-
spricht. Deren asymptotischer Verlauf ist nach [32] gegeben durch:

acos(2kpz + «
( 2F )+
z

n(z) =np |1 (3.7)
Dabei sind die Konstanten a und « von der Form des Oberflachenpotentials abhingig.

Die in den beiden Abbildungen gezeigte Ladungsdichte ist ca. fiinf mal geringer als die
in Silber und Gold (rs = 3). Weil bei den hohen Teilchendichten dieser Edelmetalle die
Friedel-Oszillationen viel schwicher ausgeprigt sind, wurde fiir die Betrachtungen hier
die geringere Dichte mit rg = 5 gewidhlt. Um einen ungefihren Eindruck zu bekommen,
welchen Einfluss die Teilchendichte auf die Oszillationen hat, kann die metallische Hete-
rostruktur in Abbildung B=3 betrachtet werden. Ein direkter Vergleich der Teilchendichten
ist in der Arbeit von Lang und Kohn (|B6], Abb. 2) zu finden.
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3.1. Metallfilme
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Abbildung 3.1.: Grundzustandsdichte im Metallfilm mit einer Dicke von 5 nm. Die ro-
te Linie zeigt die ionische Hintergrundladung und die blaue Linie die
Elektronendichte. Die schwarzen Kreuzchen zeigen die Werte fiir einen
Halbraum, welche von Lang und Kohn [B86] berechnet wurden.

Die berechnete Teilchendichte stimmt trotz der geringen Dicke des Metallfilms be-
reits hervorragend mit der Dichte des Halbraums iiberein. Diese Beobachtung ist wichtig
fiir das Vorhaben, ein endliches System zur Beschreibung von Oberflichen anstelle des
Metall-Halbraums nutzen zu koénnen.

Ein interessantes Ergebnis hat der Vergleich der quantenmechanischen (LDA) Dichte
und der im semiklassischen Modell (Gl. [a) berechneten Dichte (s. Abb. B) hervorge-
bracht?: Innerhalb des Festkorpers zeigt die semiklassische Rechnung selbstversténdlich
keine Oszillationen, sondern einen glatten Verlauf der sich im Inneren des Festkérpers im-
mer mehr der Ionendichte ng annéhert. Allerdings ist der Verlauf an der Metall-Vakuum
Grenzfliche in Richtung Vakuum praktisch identisch zwischen den beiden Kurven. Ver-
mutlich kann diese Ubereinstimmung durch den quantenmechanischen Entartungsdruck
des idealen Fermigases, welcher in das semiklassische Modell eingesetzt wurde, erklart
werden.

Um diese Beobachtung besser verstehen zu konnen, sollte die Quanten Euler Glei-
chung B88 fiir weitere Betrachtungen mit herangezogen werden und die Untersuchung
fiir verschiedene lonendichten ng durchgefiihrt werden.

3.1.3. Bewegung der Metallelektronen im Lichtfeld

Die Bewegung der Metallelektronen des Metallfilms soll im Zeitbereich untersucht wer-
den. Diese werden durch ein elektrisches Feld E(z,t) = E.(t)e, getrieben, das unter Be-
achtung der Translationsinvarianz in der zy-Ebene des Systems physikalisch nur durch
einen unendlich grofen Plattenkondensator, in dem sich der Metallfilm befindet, verur-
sacht werden kann. Der Bezug zur Optik kann dadurch hergestellt werden, dass man

!Die semiklassische Gleichung wurde mittels FV-Methode geldst (s. Kap. 64 und speziell Kap. 624).
Bei diesen Rechnungen muss der numerische Diffusionsfehler besonders beachtet werden, da dieser
den Dichteverlauf an der Vakuum-Grenzfliche verfilschen kann.
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Abbildung 3.2.: Vergleich der elektronischen Ladungsdichten nach voll quantenmechani-
scher Rechnung (blaue Kurve) und semiklassischer Rechnung (magenta
Kurve). Die Ionendichte ist durch das rote Profil dargestellt.

bei schrigem Lichteinfall eine Normalkomponente im elektrischen Feld hat, die diese
Berechnung berticksichtigen soll. In der zy-Ebene &dndert sich bei einem realen Licht-
feld die Phase von Ort zu Ort und ausserdem gibt es auch ein elektromagnetisches Feld
parallel zur Ebene. Diese beiden Aspekte eines realen Lichtfeldes werden hier nicht be-
riicksichtigt. Fiir die Bewegung der Elektronen innerhalb der Ebene ist auferdem kein
quantenmechanisches Modell notwendig, weil in dieser das Potential konstant ist. Es muss
noch untersucht werden, ob der magnetische Anteil der Lorentzkraft zu nennenswerten
SH-Stromen parallel zur Oberfliche fithren kann. Solange fiir die Geschwindigkeit der Me-
tallelektronen |v)| < ¢co gilt, ist anzunehmen, dass die hier untersuchte anharmonische
Bewegung in Normalenrichtung die primére SH-Quelle darstellt.

Trotz der Einschréinkung auf den Feldanteil E,(t)e, wird dieses als Lichifeld bezeich-
net: Da das induzierte Feld innerhalb des Films nur elektrostatisch beschrieben wird, ist
durch diese Begriffsverwendung einerseits klar, dass damit ein externes Feld gemeint sein
muss und andererseits hat es im Kontext der Optik dort auch seinen Ursprung.

Die Berechnung erfordert nun das Losen der zeitabhéngigen Kohn-Sham Gleichungen
(s. Kap. EZ22):

2 92
g n(t) = (=g 2+ Vil (D)) (201 (35)

occ

n=(z,8) = walda(z, 1) (3.9)

Das effektive Potential ist nun zeitabhingig und bekommt zur Beriicksichtigung des Licht-
feldes einen weiteren Beitrag:

Veff[n_](zv t) - Vion(z) + VH[n_sz t) + Vxc [n_](z’ t) + Vext (zv t) (3'10)
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Abbildung 3.3.: Beispiel fiir eine Heterostruktur aus Eisen und Gold. Die rote Linie zeigt
die Ionendichte und die blaue Linie die Elektronendichte. Hier kann
man den Einfluss der Ionendichte auf die Friedel-Oszillationen erkennen.
(Diese spezielle Struktur ist durch ein in [37] beschriebenes Experiment
inspiriert. )

Das Lichtfeld geht iiber das externe Potential ein:
Vext(2,1) = —eE,(t)z (3.11)

Wie zuvor erlautert kann E,(t) die Normalkomponente eines Lichtfeldes darstellen und
kann im Prinzip zu einem beliebigen Lichtpuls gehoren. Es muss dabei nur gewéhrleistet
sein, dass die Langwellenn&herung erfiillt ist.

Die Anfangsbedingungen fiir die zeitabhidngigen Kohn-Sham Gleichungen lauten nun:
®n(2,0) = ¢n(z) und E,(0) = 0. Die Orbitalbesetzungen w,, sind genauso zu wéhlen wie
im Grundzustand und bleiben zeitlich konstant. Das Lichtfeld E,(t) sollte langsam und
nicht unstetig eingeschaltet werden.

In Bezug auf die Maxwellgleichungen stellt die Stromdichte im Metallfilm eine beson-
ders wichtige Observable dar, da dieser als Quellterm in den inhomogenen Wellenglei-
chungen 2230740 auftritt. Die elektrische Stromdichte J;(2,t) in Normalenrichtung des

Films kann {iber den Erwartungswert des Wahrscheinlichkeitsstromdichteoperators J(z)
berechnet werden:

To(2t) = qe(Uks(t)]J(2)|Tks(1))

_ qe% S w, I [qs;;(z, t)if;(z, ) (3.12)

Die Zeitpropagation der Kohn-Sham Orbitale kann mit einer numerischen Methode aus
dem Kapitel B2 durchgefiihrt werden.
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Abbildung 3.4.: Frequenz- und ortsaufgeloste Darstellung der Stromdichte bei cw-An-
regung mit f = 100 THz. Die gestrichelte Linie zeigt die Position der
Metalloberfliche. Die Plasmafrequenz liegt bei f,;; = 1020 THz.

3.1.4. Erzeugung Zweiter Harmonischer

Eine Quelle der SH-Strahlung, welche beispielsweise bei den Reflektionsmessungen an
Metalloberflachen (s. Kap. ™Z3) beobachtet wird, liegt in der Normalenkomponente der
elektrischen Stromdichte J,(z,t), die nach Gl. BI2 berechnet werden kann. Ein Blick auf
die inhomogene Wellengleichung 224 zeigt, dass es neben der Stromdichte im Prinzip
noch einen weiteren Quellterm gibt:

1 O’E oJ
=V(V-E)-VE+ ——> = —po—=-
L,_Z + 602 8t2 Ko ot

1 O°E
VXVXE+ ——
x % + 602 6t2

1
%Q

Das elektrische Feld kann in ein externes und internes Feld zerlegt werden, wobei nur das
interne Feld einen longitudinalen Anteil besitzt: Hier kann der Term V(V-E) geschrieben
werden als V(V - Eiptern) = %Vg, wobei ¢ die elektrische Ladungsdichte ist. Da die
Ladungsdichte und die Stromdichte iiber die Kontinuitdtsgleichung eng verkniipft sind,
beschrianken sich folgende Betrachtungen auf die Stromdichte.

Fiir die Berechnung der SH-Stromdichte wurde nun eine Simulation an der in Abbil-
dung B gezeigten Struktur durchgefiithrt. Zur Anregung wird ein cw-Lichtfeld benutzt:

E.(t) = Ey cos(2m fot) (3.13)

FEy =10°V/m, fo= 100 THz

Das Feld wird iiber einige Perioden 1/f langsam eingeschaltet und die Stromdichte
J.(z,t) aufgezeichnet, sobald sich das System eingeschwungen hat. Aus der Aufzeich-
nung wird dann mittels einer Fouriertransformation das Feld J,(z, f) berechnet. Die
Dimensionierung der Feldstdrke kann iiber das Kréifteverhéltnis I begriindet werden.
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Abbildung 3.5.: Induzierte Stréme in Normalenrichtung bei der ersten und zweiten Har-
monischen. Die Stromdichten wurde fiir bessere Vergleichbarkeit indivi-

duell skaliert.

Das Feld J,(z,w) ist in den Abbildungen B2 und B3 dargestellt: Die fundamentale
Stromdichte J,(z, fo) zeigt ein proportionales Verhalten zur Elektronendichte n~(z) des
Grundzustandes, wohingegen bei der Stromdichte der Zweiten Harmonischen J,(z,2fo)
eine starke Lokalisierung innerhalb eines ca. 5 A grofen Bereiches an der Metall-Vakuum
Grenzflache vorliegt. Diese Lokalisierung ist durch die Potentialbarriere, welche die Gre-
nzflache zum Vakuum bildet, bedingt und fithrt zu einer stark anharmonischen Bewegung
der Elektronen. Die Abbildung B4 zeigt, dass die Zweite Harmonische um ca. vier Gro-
Benordnungen kleiner ist als die fundamentale Stromdichte. Man kann sogar noch eine
sehr schwache Dritte Harmonische erkennen. Ausserdem sind zwischen den ganzzahligen
Vielfachen der Frequenz f sehr schwache Strome erkennbar, welche vermutlich durch
Frequenzmischung mit anderen Resonanzen des Metallfilms entstanden sein kénnten.
Eventuell handelt es sich dabei um die longitudinalen Plasmaresonanzen, welche bereits
experimentell in Kaliumfilmen [38] beobachtet wurden.

Abschliessend wurde noch das Skalierungsverhalten der Stromdichten J,(z,n fy) unter-
sucht, welches nach stérungstheoretischer Beschreibung proportional zu Fy" sein muss.
Es wurde speziell die Stromstirke an der Oberfliche bei z = 0 betrachtet. Das Ergebnis
ist in Abbildung B8 zu sehen: Wie man an den angefitteten Geraden sehen kann, liegt
genau das erwartete Skalierungsverhalten vor.
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3.1.5. Mikroskopische Struktur der Fresnelfelder

Mit der Prozedur zur Berechnung der Stromdichte J,(z, f), wie sie im vorherigen Kapitel
erldutert wurde, kann ebenfalls das induzierte, elektrische Feld Eiyq(z, f) in dem Metall-
film berechnet werden?. Das Ergebnis fiir die Felder bei der Ersten und Zweiten Harmo-
nischen sind in Abbildung B dargestellt. Die beiden Felder haben eine Zeitabhingigkeit
der Form cos(nfot) und das Vorzeichen der Felder hat in der Abbildung daher keine
besondere Bedeutung. Man kann erkennen, dass es ein elektrisches Feld der Frequenz
fo in Normalenrichtung innerhalb des Metallfilms gibt, welches aufserhalb verschwindet.
Das Feld der Zweiten Harmonischen existiert dagegen nur auferhalb. Eine physikalische
Interpretation dazu fehlt noch.

Die Berechnung dieses mikroskopischen Feldes ist interessant, um zu sehen welche
starke Vereinfachung die makroskopische Elektrodynamik zur Beschreibung der Metal-
loberflichen liefert: In der makroskopischen Theorie wird das elektrische Feld an der
Oberflache als unstetige Funktion beschrieben, die einen Sprung aufweist, dessen Gro-
fse proportional zur induzierten Oberflichenladung ist [27]|. Letztere wird mathematisch
idealisiert als unendlich diinne Schicht beschrieben. Die gestrichelten Linien zeigen in der
Abbildung genau diesen Sprung, den die makroskopischen Fresnelfelder® aufweisen.

?Es gilt Eina = — 2 Vina und V*Ving = —%[Q(Z, t)—oo(z)] wobei go die Ladungsdichte im Grundzustand
ist.
Diese Bezeichnung ist aus [32], Kapitel 3.3.5 iibernommen worden.
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Abbildung 3.6.: Die Oberflichenstromstérke skaliert in der Simulation genau so, wie es

nach storungstheoretischer Analyse (s. Kap. B21) zu erwarten ist.
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Abbildung 3.7.: Fresnelfelder bei der ersten und zweiten Harmonischen. Die gestrichel-
ten Linien zeigen die Stufenfunktionen welche in der makroskopischen

Elektrodynamik zu deren Beschreibung verwendet wird.
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3.2. Nichtlokale Suszeptibilitat der Elektronendichte

In diesem Kapitel wird eine Prozedur zur Berechnung der linearen, nicht-lokalen Sus-
zeptibilitdt der Elektronendichte im Zeitbereich beschrieben. Damit ldsst sich z.B. das
Kriterium in Gl. I8 von Rudnick und Stern quantitativ prézisieren. Die Prozedur kann
auch auf den Polarisationsstrom angewendet werden, um die optische Suszeptibilitdt bzw.
die Leitfahigkeit (s. Gl. E23) zu berechnen. Als Anwendungsbeispiel dient die Elektronen-
dichte des Metallfilms aus Kapitel B

3.2.1. Definition der Antwortfunktion

Die Zeitbereichssimulationen erfordern, dass man die lineare Antwort aus den Simula-
tionsergebnissen zunéchst extrahiert, indem das Skalierungsverhalten der Ausgabe bzgl.
einer Stérung (Eingabe) des Systems untersucht wird. Als Ausgabe wird hier die An-
derung der Elektronendichte vom Grundzustand definiert. Diese kann in einer Volterra-
Reihe entwickelt werden:

on(z,t) = onW(zt)+mP(z,t)+..., 60D ~ ||V (3.14a)
n(z,t) = no(z)+ > on(z,1) (3.14D)
J

Die Storung liegt in Form eines Stérpotentials Vy(2,t) vor. Der Beitrag én) zur Dich-
tednderung skaliert dabei wie die j-te Potenz von [|V}|| und ist durch folgendes Integral
gegeben:

/dzldtl .. / dedth(j)(Z; 21, =11, , 25t — tj)Vp(zl,tl) S Vp(zj,tj)(3.15)

Die Faltungskern RU) ist die gesuchte Antwortfunktion j-ter Ordnung: Diese hingt in
physikalischen Systemen grundsétzlich nur von einer relativen Zeit ab, wohingegen die
Ortskoordinate in inhomogenen Systemen als absolute Koordinate auftritt. Die Kausa-
litit wird durch die Eigenschaft RU) = 0 falls eine Relativzeit ¢t — ¢’ < 0 in einem der
Argumente auftritt, modelliert. Die Kenntnis dieser Antwortfunktionen erlaubt eine voll-
stdndige Charakterisierung vom Verhalten des Systems, d.h. zu einer beliebigen Stérung
Vp(z,t) kann die Auswirkung auf die Elektronendichte berechnet werden. Die Transfor-
mation in eine Fourierbasis liefert zudem physikalisches Verstdndnis vom System.

Um an die lineare Antwortfunktion R(Y) des Systems zu gelangen, muss der Grenzfall
VoIl = 0 untersucht werden. Fiir diesen Grenzfall gilt:

n(,1) = no(2) + / d2dt RO (5 2 ¢ — Yo (2 ) + OV, 1?) (3.16)

Zur Vereinfachung der Notation wird nun folgende Definition gemacht:
Def.: R = RW (3.17)

Die Berechnung dieser Funktion aus Simulationsergebnissen im Zeitbereich wird im né-
chsten Kapitel erldutert.
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3.2. Nichtlokale Suszeptibilitit der Elektronendichte

3.2.2. Numerische Berechnung der Antwortfunktion

Aus der Signaltheorie ist bekannt, dass die Ausgabe eines linearen, zeitinvarianten Sys-
tems durch Anregung mit einem J-Puls die Antwortfunktion R liefert? [39], wie die fol-
gende Gleichung (BI8) offensichtlich macht. Allerdings ist das hier betrachtete System
zwar zeitinvariant aber nicht ortsinvariant, wodurch die Berechnung der Antwortfunktion
komplizierter wird.

Es wird der Ansatz Vj(z,t) = 6(z — 20)d(t — to) fiir die Stérung gewéhlt:

onM(z,t) = /dz'dt'R(z; 2t —1)5(2 — 20)d(t — to)
= R(z; z0,t — tp) (3.18)

In (rdumlich) inhomogenen Systemen ist die Antwortfunktion erst dann vollstédndig be-
kannt, wenn an samtlichen Orten zy das System jeweils einmal mit einem §-Puls angeregt
wurde. Fiir den Metallfilm in Abb. B miissten zu den N, Gitterpunkten des Simulati-
onsraumes entsprechend N, Funktionen R(z; z;,t — tg) (Gitterpunktindex j) berechnet
werden®.

Ein Problem bei der numerischen Berechnung von Antwortfunktionen stellt die Mo-
dellierung eines Deltapulses in der Simulation dar: Damit man numerisch sinnvolle Si-
mulationsergebnisse erhilt, muss sich der Eingabepuls des Systems grundsétzlich iiber
mehrere Schrittweiten Az und At in der diskretisierten Raum-Zeit erstrecken, so dass
bei Az — 0 und At — 0 Konvergenz eintritt. Da der §-Puls selbst unendlich schmal
ist, muss mit endlichen Pulsen gearbeitet werden, die ein breit geniigendes Spektrum im
Frequenzraum besitzen.

Fiir das Storpotential benutzt man daher folgende Form:

Vo(ert) = (52 = (5) (3.19)

TO,0¢

Im Grenzfall 0, — 0 und o, — 0 wiirde sich die §-Pulsform ergeben. Man wahlt die Puls-
breiten o, und o; nun so, dass diese eine mit dem numerischen Verfahren zur Berechnung
von dn(z,t) vertrigliche Mindestanzahl an Gitterpunkten und Zeitschritten enthélt. Fiir
das Ergebnis on der Simulation gilt ndherungsweise:

on(z,t) ~ onM(z,t) ~ R(z; 2,t — to) (3.20)

Die erste Naherung bezieht sich auf die numerisch durchzufiihrende Bildung des Limes
aus Gl. B18 und die zweite Ndherung auf die endliche Pulsbreite von V},.

Die Ergebnisse {R(z; zj,t — to)}; konnen anschlieflend noch in die Fourierbasis trans-
formiert werden: Dazu nimmt man an, dass sich der Simulationsraum im Ort periodisch

“4In einer Fourierbasis betrachtet wird durch den §-Puls im Zeitbereich das Verhalten des Systems be-
ziiglich sdmtlicher Frequenzen, aus denen sich eine mogliche Eingabe zusammensetzen kann, simultan
ermittelt.

In der Praxis wire es denkbar, die Funktion R an nur wenigen Punkten z; zu berechnen und die
Zwischenpunkte durch Interpolation zu approximieren. Es ist zu erwarten, dass die Abhingigkeit von
der absoluten Ortskoordinate im Bulkbereich verschwindet und durch eine Relativkoordinate z — zg
ersetzt werden kann. Entsprechend muss dafiir nur eine Antwortfunktion gespeichert werden (d.h.
wie im Zeitbereich).
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3. Anwendungen der DF'T auf Nanostrukturen

fortsetzt (Periodenléinge L) und sich im Zeitbereich alle Vorgange mit Periodendauer T
wiederholen. Die Fouriertransformierte von R lautet dann:

L/2 T
1 G r
X(2; kn, wm) = T / dz’/dt'R(z;z’,t — t/)e~thn# —iwml (3.21)
—L/2 0
mit
2 2
ky = n%, Wy = m%, n,meZzZ (3.22)

Weil die Funktion R reellwertig ist, besitzt x folgende Symmetrieeigenschaften:

Re{x(z; kn,wm)} = Re{x(z;k_n,w_m)} (3.23a)
Re{x(z;k—n,wm)} = Re{x(z;kn,w_m)} (3.23b)
Im{x(z; kn,wm)} = —Im{x(z;k_n,w_m)} (3.23¢)
Im{x(z;k_pn,wm)} = —Im{x(z;kn,w_m)} (3.23d)

Wenn das System rdumlich homogen ist, kann die absolute Raumkoordinate z bei den
Argumenten von x gestrichen werden und es existiert folgender Zusammenhang zwischen
den Fouriertransformierten der Gréfen én), x und Vp:

6n(1)(kn7wm) = LTX(kn,Wm)Vp(km Wm) (3.24.)

Dieser Spezialfall hat den grofien Vorteil, dass sich die numerisch bedingte, endliche
Pulsbreite von V, ,per Division“ eliminieren ldsst:

o (ky, wim)
X (Fny win) = m (3.25)
Es kann also iiber diesen Zusammenhang die exakte lineare, nicht-lokale Antwortfunktion
in der Fourierbasis berechnet werden. Man beachte dabei, dass sich die Groke x(kn,wm)
mit einer einzigen Zeitbereichssimulation unter Verwendung eines Pulses mit der Form
aus Gl. BT9 berechnen lasst.

Leider entfallt diese Moglichkeit bei inhomogenen Systemen (wie z.B. dem Metall-
film), bei denen die absolute Koordinate mitgefiihrt werden muss. Zur Verdeutlichung
des Problems kann folgende Gleichung betrachtet werden, die man durch Einsetzen der
Fourierreihen von R und V}, in die Faltung BT8 erhélt:

o (z,0m) = TLY " x(2; kny wm) Vo (kn, wm) (3.26)

Die gesuchte Grofe x(z; kn, wr,) ist wegen der Summation unzugénglich. Eine Ausnahme
bildet der Fall, bei dem die Stérung V}, nur die beiden spektralen Komponenten (kq, wm,)
und (k_q,w_pm) besitzt®. Die Summen fiir ") (2, wy,) und 6n™M (2, w_,,) reduzieren sich

®Es wird angenommen, dass das System durch eine reellwertige Storung der Form Vp, ~ cos(kqz + wint)
angeregt wird. Dazu muss fiir die Fourierkomponenten die Bedingung V' (kq,wm) = Vp(k—q,w—m)
gelten.
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in diesem Fall auf folgende Terme:

5n(1)(z,wm) = TL x(z;k_q,wm)Vp (kg wm) (3.27a)
on(z,w_pm) TL x(z; kg, w—m)Vp(k—q,w_m) (3.27b)

Mit einer der beiden Gleichungen kann x(z;k+q,w+m) berechnet werden. Die jeweils
andere Gleichung ist aufgrund der Symmetrien B23a-823d von x redundant.

3.2.3. Zusammenfassung der Berechnungsmethoden

Im letzten Abschnitt wurden folgende Moglichkeiten aufgezeigt, um die lineare, nicht-
lokale Suszeptibilitit x(z;k,w) zu berechnen:

1. Eine einfache Methode besteht darin, das System an allen Orten in getrennten
Simulationen jeweils mit einem endlichen Gausspuls (Gl. BT9) anzuregen. Das Er-
gebnis ist eine Menge von Funktionen R, welche jeweils den beiden Ndherungen
in Gl unterliegen. Uber das Fourierintegral B21 kann die Suszeptibilitiit y
anschlieftend berechnet werden.

2. Wenn das System rdumlich homogen ist, hingt R auch im Ort nur von relativen
Koordinaten ab. Die Suszeptibilitdt hat dann die Form x = x(k,w) und kann
unter Verwendung eines endlichen Pulses (Gl. BT9) aus einer einzelnen Simulation
nach Gleichung B23 berechnet werden. Diese Berechnungsmethode enthilt nur die
Niherung on ~ dn()), welche iiber die Amplitude des Pulses im Prinzip beliebig
genau gemacht werden kann.

3. Fiir inhomogene Systeme kann {iber eine der Gleichungen B27a-B27H ebenfalls die
Ungenauigkeit, welche durch eine endliche Pulsbreite bedingt ist, rausgerechnet
werden: Allerdings muss zu jeder Wellenzahl k eine Dichte on(M(z,t) in jeweils
einer Simulation berechnet werden. Als Storpotential wird dazu folgende Form
verwendet:

o _(ﬁQ

ﬁate 7t )2 cos(kqz) (3.28)

Uber den Parameter a wird das Potential so skaliert, dass dn ~ én(Y) gilt. Aus den
Simulationsdaten berechnet man zu jedem k, das Feld dn")(z,wy,) mittels diskre-
ter Fouriertransformation in der Zeit. Dann kann z.B. Gleichung B=Z27d verwendet
werden, um x(z; kq, wm) zu berechnen.

Vo(z,t) =

Fir inhomogene Systeme ist die dritte Methode der ersten vorzuziehen, da diese nur
eine Ndherung enthélt. Der Rechenaufwand ist im Prinzip vergleichbar grof: Anstatt fiir
alle Orte z eine Simulation durchzufiihren, muss fiir alle Wellenzahlen & eine Simulation
durchgefiihrt werden. Wenn man sich aber nur fiir bestimmte Orte z interessiert und man
vorerst nur einen qualitativen Uberblick zum Verhalten des Systems gewinnen méchte,
ist die erste Methode wesentlich schneller durchzufiihren. Fiir die Ergebnisse des nichsten
Abschnitts wurde deshalb die erste Methode benutzt.
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Abbildung 3.8.: Real- und Imaginérteil der Suszeptibilitidt x(k,w) aus dem Bulkbereich
des Metallfilms bei festem k& = 0.5kp.

3.2.4. Eigenschaften der Suszeptibilitit im Metallfilm

Es soll nun die Suszeptibilitit x(z;k,w) der Elektronendichte in einem Metallfilm be-
rechnet und physikalisch untersucht werden. Der verwendete Metallfilm hat eine Dicke
von 2402y (ca. 12.7nm) und ist ungefahr doppelt so dick wie der aus Abbildung B. Die
Dichte ist durch den Wert rg = 5ag gekennzeichnet. Als Berechnungsprozedur wird die
Methode ,,1“ (s. vorheriges Kapitel) verwendet?, bei der im Wesentlichen die Reaktion
des Systems durch Anregung mit einem endlich breiten Puls aufgezeichnet werden muss.
Die Ergebnisse sind in den Abbildungen B8 und B dargestellt. Fiir deren Generierung
sind folgende Schritte notwendig:

1. Festlegung des Anregungspulses (Gl. BI9). Es wurden folgende Pulsbreiten ge-
wahlt:

ox = bag, op = 30as (3.29)

Die Gitterauflosung lag bei Az = 2%%80 und die Zeitschrittweite bei At = 2 as.

2. Bestimmung des linearen Bereichs: Die Pulshohe o wird so gewihlt, dass das lineare
Verhalten 0n(z,t) ~ a dominiert (s. Gl. BI8). Fiir dieses System hat sich gezeigt,
dass der lineare Bereich bei o < 1 liegt. Die Antwortfunktion erhilt man, indem
die Ausgabe der Simulation én durch die Pulshéhe « dividiert wird:

on(z,t)

RW(z,t) ~ — (3.30)

Fiir die Simulationsergebnisse wurde o = 0.1 verwendet.

3. Um eine physikalisch sinnvolle Antwortfunktion zu erhalten, muss die Elektronen-
dichte dn aus den Simulationen in der Zeit kiinstlich geddmpft werden:

on(z,t) = on(z,t) e ™ (3.31)

"In einer zukiinftigen Arbeit sollte die empfohlene Methode ,,3“ zum Vergleich mit den hier gezeigten
Ergebnissen herangezogen werden.
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Es wurde 7 = 1071° s gew#hlt. Auf dem Zeitintervall der Simulation, welches in der
Grofsenordnung T' = 100 fs liegt, ist dadurch sichergestellt, dass die Teilchendichte
on zum Ende praktisch auf Null abgefallen ist.

Fiir die Beschreibung dieses Effekts soll letztlich die dissipative Dichtefunktio-
naltheorie (s. Kap. @) benutzt werden. Mit der Umsetzung der Theorie kann im
derzeitigen Stadium noch keine Ddmpfung mit geniigender Effektivitit erzielt wer-
den, um Antwortfunktionen endlich grofser Systeme zu berechnen.

4. Als néchstes wird ein Satz von Funktionen R; = Rg-l) zu verschiedenen Positionen
zj innerhalb des Metallfilms, bei denen der Puls positioniert ist, berechnet. Die
Funktionen werden entlang der z-Achse so verschoben, dass der Puls am Ursprung

liegt. Die Funktionen werden nach Gl. BZZI in die Fourierbasis transformiert.
Die Ergebnisse dieser Rechnung lauten:

e Der Metallfilm verfiigt iiber einen Bulkbereich in dem die Suszeptibilitat x(z; k,w)
sich nur schwach bzgl. z verdndert. Qualitativ kann fiir den Metallfilm, der sich {iber
das Intervall z = —120ag . .. 120 ag erstreckt, gesagt werden, dass dieser Bereich bei
2Bulk = —50ag ... 50 ag liegt™.

e Aus diesem Bulkbereich ist die Suszeptibilitét fiir festes k als Funktion von w in
Abb. BR dargestellt: Der Imaginirteil hat die typische Form einer Resonanzkurve,
bei deren Maximum (leicht verschoben) der Realteil einen Nulldurchgang hat. Das
Maximum des Realteils liegt bei der Plasmafrequenz hwy,) = 4.2eV. Dieser Verlauf
ist bei k£ = 0.5 kg besonders deutlich erkennbar.

e Die Abbildung B zeigt die Suszeptibilitit an drei verschiedenen Positionen na-
he der Oberfliche und vergleicht diese mit dem Bulkbereich: An allen Positionen
liegt eine deutliche k-Abhingigkeit der Suszeptibilitidt vor, welche in Richtung der
Oberfliche immer stirker zunimmt.

e Das Maximum der Funktion Re{x(z;k,w)} liegt offensichtlich bei k£ ~ kp und
w ~ wpl. Das erscheint plausibel, da der Wellenvektor kr als Quantenzahl im Elek-
tronengas am haufigsten vertreten ist und die Plasmafrequenz die kollektive Aus-
lenkung der Elektronen aus der Ruhelage in dem Metallfilm charakterisiert.

Die Ergebnisse erscheinen alle qualitativ plausibel. Um die Ergebnisse in einer zukiinfti-
gen Arbeit quantitativ zu validieren, muss die aufwendigere Berechnungsmethode ,,3“ des
vorherigen Kapitels verwendet werden. Es wére vor allem interessant zu iiberpriifen, in-
wieweit die Suszeptibilitidt eines homogenen, wechselwirkenden Elektronengases mit der
des hier betrachteten Bulkbereichs iibereinstimmt.

8Zur Festlegung dieses Bereichs wurde die visuelle Unterscheidbarkeit der Plots von Re{x} in Abhin-
gigkeit von z benutzt. Diese Formulierung muss letztlich mathematisch prézisiert werden, indem z.B.
eine Angabe zur relativen Abweichung der Norm || x (zBuik; k, w)|| und ||x(zsurface; K, w)|| gegeben wird.
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Abbildung 3.9.: Die Suszeptibilitit der Elektronendichte wurde in einem 12.7 nm dicken

50

Metallfilm an vier verschiedenen Positionen berechnet. Die oberflichen-
nahen Positionen z; sind mit den Zahlen 1-3 im obigen Plot der Elek-
tronendichte gekennzeichnet. In den vier Diagrammen unter der Elek-
tronendichte ist jeweils Re{x(z;j; k,w)} in normierter Form dargestellt.
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3.3. Metallische Nanodrahte

Bei den Metallfilmen aus dem vorigen Kapitel wurde nur die Elektronenbewegung in
Richtung der Oberflichennormale beriicksichtigt. In den Nanodradhten wird nun die Be-
wegung der Elektronen innerhalb der Querschnittsebene beriicksichtigt und die Bewegung
entlang des Drahtes vernachléssigt. Die Erzeugung Hoherer Harmonischer und die Quan-
tennatur der Nichtlokalitdt bei Abschirmungsprozessen in Nanodrahten soll mit den hier
entwickelten Simulationen untersucht werden kénnen.

Eine wichtige Publikation auf diesem Gebiet lieferten McMahon, Gray und Schatz im
Jahr 2009 |6]: In dieser wurde folgende nichtlokale dielektrische Funktion zur Beschrei-
bung von Nanodréhten verwendet:

e(k,w) = €00+ Einter(W) + Eintra(k, w) (3.32)

wp?
w(w+iy) — B2
Der Intrabandanteil der dielektrischen Funktion, welcher die freien Metallelektronen be-
schreibt, ist aus dem hydrodynamischen Drude-Modell [20] hergeleitet worden. Deren
Arbeit hat folgende grofe Stérken im Vergleich zu den Modellrechnungen in dieser Ar-
beit:

Eintra (K, w) (3.33)

1. Die dielektrische Funktion beriicksichtigt {iber £ + €inter(w) auch den rein dielek-
trischen Anteil in der Polarisierbarkeit von Metallen.

2. Die geometrieabhéngige mittlere freie Weglédnge der Elektronen (s. Kap. ZT4) wird
bertiicksichtigt.

3. Das Modell wird im Zeitbereich zusammen mit den Maxwell-Gleichungen durch In-
tegration in eine Implementation der FDTD Methode [A1] gelost. Mittels Fourier-
transformation in Raum und Zeit wird die Antwortfunktion BZ33 in den Ortsraum
und Zeitbereich iibertragen.

4. Mit der Methode kénnen auch Rechnungen an grofsen Strukturen durchgefiihrt
werden, welche fiir DFT-basierte Methoden wegen zu hohen Rechenaufwands un-
zugéanglich sind. Die elektrostatische Néherung in den DFT-Rechnungen wiirde
dabei ebenfalls ungiiltig werden.

Folgende Aspekte der Publikation kénnen allerdings als fragwiirdig angesehen werden:

1. Die hydrodynamischen Gleichungen werden nur innerhalb der Struktur gelost. Das
entspricht einer (Pekar) Randbedingung, welche nach den bisherigen Betrachtungen
in dieser Arbeit nicht gerechtfertigt ist: Wie in Abb. B2 zu sehen ist, fillt auch bei
dem hydrodynamischen Modell die Ladungsdichte der Elektronen an der Oberfliche
nicht plotzlich auf Null ab. Das gleiche gilt fiir die Stromdichte (s. Abb. B3). Ein Teil
des Bereichs ausserhalb des eigentlichen Festkorpers muss also in die Berechnung
mit eingeschlossen werden.

Die quantenmechanischen Modellrechnungen der Oberflichenpolarisierbarkeit von
Rudnick und Stern [I3] wurden mit einer unendlich hohen Potentialbarriere durch-
gefithrt, was zu einer drastischen Abweichung zu den viel genaueren TDLDA-
Ergebnissen fiihrte [I1], welche eine endlich hohe Barriere benutzen.
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Das lasst vermuten, dass die Rechnung mit der Randbedingung &hnlich falsche
Ergebnisse liefert.

2. Die hydrodynamischen Gleichungen kénnen als Naherung der Losung von den Glei-
chungen der Zeitabhingigen Dichtefunktionaltheorie gesehen werden [[7]. Somit
sind die Ergebnisse in dieser Arbeit als genauer anzusehen.

3. Mit dem hydrodynamischen Modell wird auch das field enhancement an den Ecken
von Nanodrdhten mit dreiecksformigen Querschnitt untersucht. In diesen ist die
Homogenitadtsannahme in der dielektrischen Funktion BZ33 bestimmt nicht gewdhr-
leistet: Diese miisste hier die Form € = ¢(r, k,w) haben. Durch die hohen Feldstér-
ken in diesen Bereichen ist ausserdem mit nicht-linearem Verhalten der Elektronen
zu rechnen, welches mit den rein quantenmechanischen Rechnungen in dieser Ar-
beit sicherlich genauer als durch das hydrodynamische Modell beschrieben werden
kann.

Die Giiltigkeit beider Ansétze (nur fiir die Leitungselektronen) ist so einzuschétzen: In
grofen Nanostrukturen, in denen die Retardierung wichtig ist und die Oberflichen auf-
grund der Gesamtgrofe eine untergeordnete Rolle spielen ist das hydrodynamische Mo-
dell, welches in die Maxwellgleichungen integriert ist, genauer. Bei sehr kleinen Struk-
turen (ungefihr < 5 nm) und Berechnungen zum Field-enhancement werden die DFT-
basierten Rechnungen genauer.

3.3.1. Elektronischer Grundzustand
Die Wellenfunktion der Kohn-Sham Orbitale hat fiir Nanodréhte folgende Form:

¢ﬂ7k(rJ-v Z) = exp(ikz)¢ﬂ(rL) (3.34)

Die Koordinaten r; = wxe, + ye, und das Quantenzahltupel n beziehen sich auf die
Querschnittsebene. Der Draht erstreckt sich entsprechend entlang der z-Achse. Die Kohn-
Sham Gleichungen lauten fiir dieses System:

h2
<_2mv3L + Véff[n_](:v,y)> Pn(2,y) = Endn(z,y) (3.35)
Vesr[n™ (2, y) = Vion(2,y) + Valn~](z,y) + Vxcln™](z,y) (3.36)
n(z,y) = Y wn|én(z,y)? (3.37)

Die Ladungsneutralitdtsbedingung zur Berechnung der Fermienergie Ey lautet entspre-
chend der Zustandsdichte fiir Drihte (s. Kap. B):

2 7i;nez:\/EFEn/d:c/alyn“L(:v,y) =0 (3.38)

Aus dieser Gleichung wird die Fermienergie und letztlich die Gewichtungen w,, der Or-
bitale bestimmt.
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Abbildung 3.10.: Ladungsdichte an einer Metallkante (schwarze Linie). Die Werte an der
Farbskala sind auf ng = 0.0019a,° (rs = 5) normiert. Das Ergebnis
ist vom Rand eines ca. 6nm x 6 nm grofsen Nanodrahtes mit U-Profil
entnommen. Die Berechnung umfasste 83 Orbitale mit einer Auflésung
von 96 x 96 Gitterpunkten.

3.3.2. Mikroskopische Ladungsdichte an Metallkanten und -ecken

Eine sehr interessante Fragestellung, welche mit diesen Modellrechnungen beantwortet
werden kann, ist die der elektronischen Ladungsdichte an idealisierten Kanten und Ecken
von Metallen auf mikroskopischer Ebene. Genau wie bei den Rechnungen zu den Metal-
loberflichen wird hier wieder versucht, ein endliches System zu verwenden, so dass der
Simulationsraum nicht innerhalb des Metalls abgeschnitten werden muss. Dieser Aspekt
ist wieder besonders fiir die Simulationen im Zeitbereich wichtig, da hier die Beschreibung
offener Quantensysteme zu kompliziert werden wiirde.

Dementsprechend wurden die Ergebnisse fiir Metallecken und -kanten (s. Abb. B-I0 und
BID) aus einem quadratischen Nanodraht gewonnen, wobei fiir die Metallecken in diesen
ein quadratischer Hohlraum eingesetzt wurde. Die beiden Abbildungen zeigen somit nur
Ausschnitte aus dem Simulationsraum.

3.3.3. Erzeugung Zweiter Harmonischer

Die gleiche Prozedur, welche fiir die Berechnung der Stromdichte J,(z,n fo) im Metallfilm
angewendet wurde, kann hier benutzt werden, um die Héheren Harmonischen der Strom-
dichte im Querschnitt des Nanodrahtes zu berechnen. Diese ist zunéchst im Zeitbereich
gegeben durch:

J(:Cayat) = Qe<\IjKS(t)|j(xay>|\IjKS(t)>
= qe%zwﬂlm [d);(xayat)vqsﬂ(x?y)t)] (339)
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Abbildung 3.11.: Ladungsdichte an einer Metallecke (schwarze Linie). Die Werte an der
Farbskala sind auf ng = 0.0019 a5 (rg = 5) normiert. Das Ergebnis ist
aus dem Inneren eines ca. 6 nm x 6 nm grofen Nanodrahtes mit [J-Profil
entnommen. Die Berechnung umfasste 83 Orbitale mit einer Auflosung
von 96 x 96 Gitterpunkten.

Das Ergebnis der Fouriertransformation J(x, y, 2 fo) ist in Abbildung BT2 fiir verschiedene
Querschnittsprofile von Nanodrihten dargestellt.

Die Abmessung des zweidimensionalen Simulationsraumes betragt jeweils 105ay x
10520 (ca. 6nm je Kantenlinge). Zur Anregung wurde wieder ein elektrisches Wech-
selfeld der Frequenz fo = 10'® Hz mit einer Feldstiirke von Eg = 400 V/m benutzt, wel-
ches in x-Richtung zeigt. Auffillig ist, dass die Zweite Harmonische J,(x,y, 2fy) fast die
gleiche Grofenordnung wie die fundamentale Stromdichte J;(x,y, 1fo) hat. Es erscheint
dagegen deutlich plausibler, dass das Stromdichtefeld Jy(x,y,2fy) fast drei Grofenord-
nungen kleiner als das genannte Referenzfeld ist. Hier sollte in weiteren Simulationen das
Skalierungsverhalten der Felder beziiglich der Feldstédrke Ey untersucht werden, um die
Plausibilitdt der Ergebnisse weiter zu steigern.

Ein wichtiges Ziel dieser Rechnungen ist es, herauszufinden, welche geometrischen For-
men die Entstehung der Hoheren Harmonischen besonders begiinstigen. Daher wurde
auch ein Split-Ring férmiger Nanodraht untersucht: Wie in der Abbildung zu sehen ist,
scheinen die Metallecken die Entstehung einer Jy(2 fy)-Stromdichte zu begiinstigen. Hier
stellt sich allerdings die Frage, ob man dieses Ergebnis auch auf die grofsen Split-Ring
Resonatoren aus Abb. b iibertragen kann, um letztlich das Experiment aus Kap. 22
besser deuten zu konnen.

3.4. Metallische Nanopartikel

Dreidimensionale Strukturen bieten die Mdglichkeit, die mikroskopische Ladungsdichte
und die Entstehung héherer Harmonischer an Ecken und Spitzen zu untersuchen. Es ist
davon auszugehen, dass die Polarisierbarkeit dieser geometrischen Strukturen signifikante
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-1
< |Ix(2w)[?
9
)
=
(o)) - 05
2
® 74
N / < |3y(2o)|?
-0 0.02 0.03 0.02

Abbildung 3.12.: Relative Betragsquadrate der SH-Stromdichte in verschiedenen Nan-
odridhten. Es wurde mit cw in x-Richtung bei lw angeregt. Die Re-
lativwerte unter den Diagrammen beziehen sich auf den Maximalwert
von |J,(1w)|?. Die Abmessungen der Strukturen betragen etwas unter
6nm. Die Auflésung in der Simulation umfasste 96 x 96 Gitterpunkte.
Die Ionendichte ist durch den Wert rg = 5 ag charakterisiert.

Abweichungen zwischen rein quantenmechanischen und klassischen Modellen liefert, da
hier die Bewegung der Elektronen in allen Raumrichtungen eingeschrinkt wird.

3.4.1. Elektronischer Grundzustand

Fiir Nanopartikel in drei Raumdimensionen hat man eine vorgegebene Anzahl an Elek-
tronen N, die mit der Anzahl an Ionen Nj,, identisch ist. Die zugehoérige Anzahl an
Orbitalen betrégt aufgrund der Spinentartung Ne/2 mit Orbitalbesetzung wy, = 2. Im
Fall von einer ungeraden Anzahl an Elektronen wird ein halbbesetztes Orbital hinzuge-
nommen (w, = 1). Die Kohn-Sham Gleichungen lauten fiir diese Systeme:

< e _
5+ Vel Je)) () = Buoule) 340
Vet [n7](x) = Vion(r) + Via[n](r) + Vxc[n](r) (3.41)

n(r) =) wplou(r)? (3.42)

Die zum ein- und zweidimensionalen Fall analoge Ladungsneutralitatsbedingung (Gln.
B8 und B238) lautet in drei Dimensionen ganz einfach Ng — [ d3rn™(r) = 0.
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Abbildung 3.13.: Verlauf der elektronischen und ionischen Ladungsdichte vom Zentrum
der Kugel ausgehend.

3.4.2. Ladungsdichte in einer Metallkugel

Die bisherigen DFT-Berechnungen der Ladungsdichte an Oberflichen (1D), Ecken und
Kanten (2D) kénnen im Prinzip auch fiir dreidimensionale Ecken durchgefithrt werden.
Dabei macht sich allerdings der extrem hohe Rechenaufwand negativ bemerkbar, weshalb
auf diese Rechnungen in dieser Arbeit verzichtet wurde. Die dreidimensionalen Berech-
nungen beschrianken sich auf eine Metallkugel, welche in der Publikation von Neuhauser
[42] als Modellsystem fiir die dissipative Dichtefunktionaltheorie (s. Kap. @) verwendet
wurde. Deren Ionendichte ist gegeben als:

no
1+ exp (7“"'5”’)

no = 0.008842a,%, ro =8.1ag, B=0.5

nt(r) = (3.43)

Die maximale Ionendichte ng entspricht dem Wigner-Seitz Radius rg = 3 ag, was fiir die
Metalle Gold und Silber zutrifft (s. Tabelle B=3). Die Parameter ergeben ziemlich exakt
folgende Anzahl an Ionen:

Nion = / drat(r) =20 (3.44)

Die DFT-Rechnungen erfordern daher 10 Kohn-Sham Orbitale. Das Ergebnis fiir die
Grundzustandsdichte ist in den Abbildungen BT3 und B4 dargestellt.

3.5. Multiskalensimulationen

Ziel soll es sein, die optischen Figenschaften der Split-Ring Resonatoren in Abb. b
durch numerische Simulationen im Zeitbereich zu berechnen. Deren Abmessungen liegen
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Abbildung 3.14.: Querschnitt durch die Elektronendichte in der Mitte der Jelliumkugel.
Die Auflésung betrigt 48 x 48 x 48 Gitterpunkte. Die Farben zeigen
den Wert der Dichte n™ (z,y,0).
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zwischen 200nm und 600 nm und bilden ein planares Array auf einer I'TO-Schicht mit
Glassubstrat (s. Abb. Ilc). Solange man sich auf lineare, (rdumlich) lokale Materialm-
odelle beschrinkt kann diese Simulation mit Standardverfahren zum Lésen von Maxwell-
gleichungen |41, B3| durchgefiihrt werden®. Die Strukturen werden im Simulationsraum
durch ein &;(r,w)-Feld definiert. Um im Zeitbereich zu bleiben kann die Frequenzab-
héngigkeit der dielektrischen Funktion durch eine Lorentz-Drude Bewegungsgleichung
modelliert werden.

Das lineare und lokale Materialmodell in einer solchen Simulation soll nun durch eines
ersetzt werden, welches nichtlokale und nichtlineare Effekte in den Oberflichen, Kanten
und Ecken der Strukturen beschreiben kann. Fiir den Bulkbereich der Struktur sei das
lineare Drude-Modell in einem ersten Schritt ausreichend.

Um dieses Ziel zu erreichen, wird versucht das FDTD-Verfahren [41] mit den DFT-
Berechnungen aus diesem Kapitel zu kombinieren: Die DFT-Berechnungen miissen dabei
fiir Oberflichen, Kanten und Ecken der Strukturen die Quellterme J, ¢ zu den Maxwell-
gleichungen liefern, wihrend die FDTD-Berechnung die Ausbreitung der elektromagne-
tischen Wellen und den (linearen) Bulkbereich simuliert. Zum Losen der Maxwellglei-
chungen gentigt dabei eine Gitterauflosung von 1nm bis 5nm (Erfahrungswerte). Die
DFT-Berechnungen erfordern dagegen eine Auflésung von 0.2 rg [32], was iiblicherweise
im sub-Angstrom Bereich liegt (bei Gold: 0.3 A). Das Kombinieren verschiedener Gitter,
auf denen unterschiedliche Gleichungen gelost werden, wird als Multiskalensimulation
bezeichnet™.

Das folgende Kapitel zeigt wichtige Uberlegungen fiir die Realisierung einer solchen

°Im Begleitmaterial der Publikation [0] ist eine FEM-basierte Simulation der Split-Ring Resonatoren
dokumentiert.

°Tn diesem Zusammenhang sei auf die Publikation [24] hingewiesen, in der gezeigt wird, wie sich eine
solche Multiskalensimulation realisieren lésst, in der Maxwellgleichungen und quantenmechanische
Gleichungen simultan im Zeitbereich gelost werden konnen: Das elektromagnetische Feld wird hier
iber die elektrodynamischen Potentiale beschrieben, da diese in die quantenmechanischen Bewe-
gungsgleichungen direkt eingehen.
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Abbildung 3.15.: Metall-Vakuum Grenzfliche im Yee-Gitter. Die gestrichelten Linien und
die farbigen Punkte zeigen zwei Yee-Cubes in denen eine TDDFT-
Simulation auf einem Untergitter die Stromdichte an der Grenzflache
berechnet.

Multiskalensimulation und beschriankt sich auf die Simulation von Metalloberflachen.
Elementare Kenntnisse der FDTD-Methode [41, 45] werden vorausgesetzt.

4, el

3.5.1. Multiskalenansatz fiir Oberflichen

Die Abbildung BT3 zeigt einen Querschnitt durch das Yee-Gitter, in dem sich eine Metall-
Vakuum Grenzfliche befindet: Die Grenzfliche ist genau so im Gitter platziert, dass die
J:-Komponente eines Yee-Cubes auf der Oberfliche liegt. Die Feldkomponente E, liegt
am selben Ort. An jedem dieser Oberflichen-Gitterpunkte befindet sich ein eindimen-
sionales Untergitter auf dem eine (mittels DFT berechnete) Elektronendichte, wie Abb.
B gezeigt, aufgelost wird. Dieses Untergitter kann man sich entlang der Oberflichen-
normalen ausgerichtet vorstellen. Fiir die Multiskalensimulation wird folgende Annahme
gemacht:

Die Oberflachenschicht, in der die Stréme quantenmechanisch berechnet
werden miissen, sei gemessen an der Gitterkonstante der Yee-Cubes unendlich
diinn.

Durch diese Annahme entledigt man sich des Problems, das Unter- und Obergitter voll-
stindig konsistent miteinander zu verkniipfen: Wenn man das Obergitter genauso fein
wie das Untergitter auflosen konnte, miissen aus Konsistenzgriinden auf beiden Gittern
die gleichen physikalischen Gesetze gelten. Auf dem Untergitter wird aber grundsétzlich
angenommen, dass die Maxwellgleichungen elektrostatisch gendhert werden kénnen und
auf dem Obergitter wird immer angenommen, dass die vollen Maxwellgleichungen geldst
werden miissen.

Da die Lange des Simulationsraums vom Untergitter vergleichbar mit der Gitterkon-
stante des Yee-Gitters ist, muss die Giiltigkeit der hier gemachten Annahme stark be-
zweifelt werden (vgl. Abb. B und BI3).

Man kann sich aber mit Hilfe dieser Annahme die Simulation des Untergitters verein-
facht als ein abstraktes, nicht-lineares zeitinvariantes System vorstellen, welches zu einer
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Eingabe E,(t) die Stromdichte .J,(¢) als Ausgabe liefert. Im Prinzip muss nun aus der
FDTD-Simulation die F.-Feldkomponente an die Untergitter-Simulation {ibergeben wer-
den und aus dieser die J,-Komponente extrahiert werden, die dann an den FDTD-Solver
iibergeben wird. Dabei treten folgende problematische Details zum Vorschein, fiir die nur
vorldufige Losungen gegeben werden:

1. Extraktion der Stromdichte J aus dem Untergitter:

e Die Verbindung zwischen makroskopischer und mikroskopischer Elektrody-
namik [27] 16st genau dieses Problem durch systematische Entwicklung nach
Multipoldichten:

opP 0
J=Jo+ — M+ —(V- e 4
0+8t+v>< —l—at(v Q)+ (3.45)
Alle Grofsen werden durch eine Mittelungsprozedur ermittelt. Derzeit ist un-
klar, wie diese genau auf dem Untergitter durchgefithrt werden muss.

e Die Untergitter-Simulation liefert nur die Stromdichte J; in Richtung der
Oberflichennormalen, aber nicht die Stromdichte J| parallel zur Oberflache.
Die Berechnung der Multipoldichten aus Gl. B43 bendétigt aber die mikrosko-
pischen Ladungen und Stréme entlang aller drei Raumrichtungen der Ober-
flacheschicht.

e Es besteht die Moglichkeit, dass die Stromdichte J | an der Jellium-Kante (z =
0 in Abb. B) eine gute Ndherung fiir die Stromdichte in G1. BZ3 darstellt:

Ji~nj(z=0) (3.46)
Diese Vermutung muss erst noch bewiesen werden.

2. Modellierung der Oberfliche im Obergitter:

e Die Abbildung B3 zeigt einen E,/.J,-Gitterpunkt, der ganz im Metall liegt
und durch das Bulk-Modell beschrieben wird. Der Punkt an der Grenzflache
wird dagegen vollstdndig durch die Untergitter-Simulation beschrieben. Im
Yee-Gitter muss an diesem Punkt die Dielektrizitdt des Vakuums eingesetzt
werden.

3. Die E- und J-Felder liegen bei dem FDTD-Verfahren einen halben Zeitschritt
auseinander. Eine zeitliche Mittelwertbildung ist fiir die Ein- oder Ausgabe der
Untergitter-Simulation eventuell erforderlich.

4. Die Zeitschrittweite auf dem Untergitter ist nicht die selbe wie die auf dem Ober-
gitter. Auf dem Obergitter ist diese erfahrungsgeméf 10 bis 100 mal grofer. Die
Zeitschrittweite des Obergitters muss daher als ganzzahliges Vielfaches der Schritt-
weite des Untergitters (unter Beriicksichtigung der Courant-Bedingung) gewahlt
werden.

5. Die Untergitter-Simulation verwendet einen Metallfilm von dem eine Oberfliche
fiir die Simulation auf dem Obergitter genutzt wird. An den beiden Oberflichen
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3. Anwendungen der DF'T auf Nanostrukturen

des Metallfilms kommt es zu Reflektionen von Ladungsdichtewellen, die es an einer
echten Oberfliche nicht gibt. In Kapitel 44 wird ein Losungsansatz fiir dieses
Problem untersucht.

Die ersten beiden Aspekte involvieren insbesondere die Kontinuitétsgleichung, die von
den Maxwellgleichungen impliziert wird: Eine Stromdichte im Yee-Gitter fiihrt zu elek-
trischen Ladungen in den Yee-Cubes, bei denen das Stromdichtefeld anfingt oder endet.
Setzt man nun in das Yee-Gitter eine Stromdichte von der Simulation des Untergitters
ein, entstehen auf dem Obergitter elektrische Ladungen, welche bereits in der Simulati-
on auf dem Untergitter beriicksichtigt werden. Die Eingabe E.(t) an die Simulation des
Untergitters muss also um das Feld dieser Ladungen korrigiert werden.
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4. Dissipative Zeitabhangige
Dichtefunktionaltheorie

In diesem Kapitel wird gezeigt, wie sich die zeitabhingige Dichtefunktionaltheorie um ei-
ne phianomenologische Dissipation erweitern lagssen kann. Eine Motivation fiir die Beriick-
sichtigung der Dissipation in metallischen Nanostrukturen wird im ersten Unterkapitel
gegeben. Bei dem hier gewédhlten Ansatz geht zwar die begehrte ab initio“-Eigenschaft
der Theorie verloren - allerdings lassen sich noch nachtréglich die ph&nomenologischen
Parameter durch eine mikroskopische Theorie ersetzen. Die Verwendung phénomeno-
logischer Parameter dient zun&chst dazu, die Komplexitdt von Theorie und Numerik
iiberschaubar klein zu halten.

4.1. Motivation

Es gibt zwei wesentliche Mechanismen, die zu einem Verlust an kinetischer Energie der
Metallelektronen in den Nanostrukturen fithren: Einerseits durch Streuprozesse und an-
dererseits durch elektromagnetische Abstrahlung. Physikalisch sind diese Mechanismen
vollig verschieden®. Deren Vergleich ist aber von grofer Bedeutung um einen MaRstab
zu definieren mit dem gesagt werden kann, welcher Effekt klein oder grof ist.

4.1.1. Energieverlust durch Streuprozesse

In Metallen verlieren Elektronen durch Streuung untereinander sowie durch Streuung an
Gitterphononen an kinetischer Energie |I6]. Diese Mechanismen werden hier unter dem
Begriff | Dissipation® zusammengefasst und nicht weiter unterschieden. In dieser Arbeit
wird durchgehend das (starre) Jellium-Modell fiir den Festkorper verwendet und daher
kénnen die Phononen sowieso nicht direkt beriicksichtigt werden.

Da die Dissipation in allen metallischen Nanostrukturen vorhanden ist, liegt es nahe,
diese auch in die Modellrechnungen einzubeziehen. Die Vorhersagekraft des Modells soll-
te sich dadurch steigern lassen und bessere Vergleiche mit experimentellen Ergebnissen
ermoglichen.

In diesem Zusammenhang muss man zunfchst weiter iiberlegen, ob der Einfluss der
Dissipation iiberhaupt fiir die angestellten Beobachtungen relevant ist:

Dazu kann man die phénomenologische Streuzeit der Elektronen in Metallen heran-
ziehen und mit der typischen Dauer von Abldufen im Ultrakurzzeitbereich vergleichen.
Fiir Metamaterialien werden in erster Linie nur Edelmetalle wie Gold wegen der hohen

!Bei Antennen kann ein Strahlungswiderstand definiert werden, der die gleiche Dimension wie der Ohm-
sche Widerstand hat. Die Verlustmechanismen kénnen somit auf gleiche Weise beschrieben werden
und es kann gleichzeitig von deren Ursache abstrahiert werden.
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Leitfahigkeit verwendet. Gold hat einen Drude-Streuzeitparameter in der Grofenordnung
von 50fs (s. Kap. B3). Die Anregung einer Struktur mit einem optischen Puls und die
Beobachtung vom Verhalten des Systems (z.B. Pump-probe Experimente) lauft ebenfalls
auf einer solchen Zeitskala ab [I0]. Daher ist davon auszugehen, dass der Effekt der Dis-
sipation eine untergeordnete Rolle spielt und erst auf Zeitskalen im Picosekundenbereich
relevant wird.

Unabhéngig davon stellt die Einbeziehung von diesem Verlustmechanismus aber ein
sehr wichtiges Werkzeug fiir bestimmte numerische Simulationen dar, wie im néchsten
Abschnitt erldutert wird.

4.1.2. Bedeutung fiir Modellrechnungen

Ein Ziel dieser Arbeit besteht darin, die Polarisierbarkeit von Metalloberflichen, -ecken
und -kanten (s. Kapitel B) zu untersuchen. In einer mathematischen Idealisierung dieser
Objekte wiirde man z.B. bei den Oberflichen von einem mit Metall gefiillten Halbraum
ausgehen. Das System hat in diesem Fall wirklich nur eine Oberfliche und es sind keine
Fremdeinfliisse anderer Oberflichen wie bei endlich grofen Objekten auf die Ergebnisse
zu erwarten. Im Experiment wiirde man einfach eine Probe verwenden, die groft ge-
nug ist um die Fremdeinfliisse auszuschlieffen. Dabei macht man sich zunutze, dass die
elektronischen Anregungen durch die Verlustmechanismen nur eine endliche Reichweite
haben und man daher keinen ,Metallhalbraum® benétigt (die endliche Ausbreitungsge-
schwindigkeit von Anregungen spielt in diesem Zusammenhang natiirlich ebenfalls eine
Rolle). Aus genau diesem Grund ist die Dissipation auch fiir die Numerik von zentraler
Bedeutung, denn sie kann dafiir genutzt werden, die Rickstreuung von elektronischen
Anregungen in kleinen Objekten stark zu verringern und somit die anfangs genannten
Oberflachen, Ecken und Kanten von metallischen Strukturen in Modellrechnungen zu
untersuchen. Denn gerade bei dem Lésen der Kohn-Sham Gleichungen ist man aufgrund
der technischen Mdglichkeiten darauf beschréankt, nur sehr kleine nicht-makroskopische
Objekte zu beschreiben:

Die 3D DFT-Simulationen kénnen nur extrem wenige Elektronen, im Vergleich zur
Anzahl an Elektronen in makroskopischen Systemen, beinhalten (z.B. 100 Elektronen
wire auf heutiger Hardware noch problemlos machbar, wohingegen in makroskopischen
Objekten die Anzahl in der Gréfenordnung von 1023 liegt). In eindimensionalen Modell-
rechnungen sind die Anzahl an Gitterpunkten und Rechenzeit die Faktoren, welche die
Simulation makroskopischer Systeme unméglich machen. In 2D und 3D kommt noch die
gewaltige Anzahl an Kohn-Sham Orbitalen als weiterer wichtiger Faktor hinzu.

Es besteht zwar auch die Moglichkeit offene Quantensysteme zu simulieren um damit
beispielsweise Metalloberflichen von einem unendlich grofsen Metallhalbraum zu unter-
suchen [32]. Allerdings ist diese Vorgehensweise im Vergleich zur Simulation endlicher
Systeme gerade im Zeitbereich mit erheblich hoherem theoretischen und technischen
Aufwand verbunden (34, 46].

4.1.3. Vergleich von Verlusten durch Streuung und e/m-Abstrahlung

Dieser Vergleich erfordert die Losung der Maxwellgleichungen mit einem Medium mit
ohmschen Verlusten. Als Material wird Gold verwendet und mit dem klassischen Drude-
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Abbildung 4.1.: Ein Etalon und ein Split-Ring Resonator werden jeweils von einem kur-
zen optischen Puls angeregt und der Verlauf der kinetischen Energie der
Metallelektronen aufgezeichnet.

Modell beschrieben. Da der Verlust durch Abstrahlung stark von der Geometrie der
Objekte abhéngt, werden hier zwei unterschiedliche Systeme betrachtet (s. Abb. E). Die
Maxwellgleichungen werden bei dem Split-Ring Resonator numerisch mittels der FDTD
Methode [2T] und bei dem Etalon mittels einer eindimensionalen Partikel-Methode [47]
gelost.

Die klassische Drude-Bewegungsgleichung fiir die elektrische Stromdichte im Lichtfeld
lautet (s. Kapitel [4):

g; = —%j + %E (4.1)

Die magnetische Kraftkomponente der Lorentzkraft wird hier vernachléssigt. Das elektri-
sche Feld in der Bewegungsgleichung wird fiir die hier angestellten Betrachtungen weiter
aufgeteilt:

E = Ec + Eind (42)

Es wird unterschieden zwischen dem ezternen Feld der Lichtquelle und dem induzierten
Feld, welches von der Bewegung der Elektronen in der Metallstruktur verursacht wird.
Das induzierte Feld wirkt abbremsend auf die Elektronen, die es selbst hervorbringen. In-
dem man in einer Simulation diesen Feldanteil aus der Bewegungsgleichung streicht, kann
also der Einfluss der Strahlungsdampfung auf die Bewegung der Elektronen untersucht
werden.

In der Simulation ist das externe Feld durch einen kurzen Gausspuls gegeben, der die
Elektronen in den beiden Strukturen jeweils anregt. Dabei wird der Verlauf der gesamten
kinetischen Energie fiir einige Femtosekunden aufgezeichnet:

T(t) ~ /d3r|j(r,t)|2 (4.3)

Bei dem Metallfilm sollte die Auswirkung des induzierten Feldes am grofsten sein, weil
aufgrund der unendlichen Ausdehnung des Systems das elektromagnetische Feld nicht mit
dem Abstand zur Quelle abnimmt: Man kann sich diesen Metallfilm aus lauter infinitesi-
mal diinnen Schichten vorstellen auf deren Oberfliche ein homogener Polarisationsstrom
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Abbildung 4.2.: Verlauf der kinetischen Energie im Metallfilm fiir zwei verschiedene Fille
(s. Text).

in Form einer Flichenstromdichte K flieftt. Die Losung der Maxwellgleichungen fiir ein
solches System [48| zeigt, dass das induzierte elektrische Feld proportional zur retardier-
ten Flachenstromdichte ist:

Eina ~ K(t:) (4.4)

Die Distanzabhéngigkeit des elektrischen Feldes tritt also nur in der retardierten Zeit,
aber nicht in der Magnitude auf (wie es bei endlich grofen Quellen der Fall ist).

Mit dem Metallfilm liegt also nun ein ideales System vor, um den Einfluss von Ab-
strahlung und Streuprozessen miteinander zu vergleichen. Das System wurde mit einer
eindimensionalen Partikel-Methode [47] simuliert. Dabei konnten folgende Fille leicht
untersucht werden:

1. Nur Drude-Démpfung, keine Strahlungsddmpfung:

Jj 1 e
== i+ L E
ot T']+me ext

2. Keine Drude-Démpfung, nur Strahlungsddmpfung:

g; = % [Eext + Eind]

Das Ergebnis ist in Abb. B2 dargestellt: Im Zeitintervall ¢ = 0...0.5 fs steigt die ki-
netische Energie durch den anregenden Puls auf ein Maximum. Die blaue Kurve nimmt
danach mit einer sehr geringen Steigung (entsprechend der Drude-Streuzeit 7) ab, wohin-
gegen die rote Kurve stufenartig auf einen Minimalwert abféllt. Die kleinen buckeligen
Stufen in der roten Kurve hingen mit der Modulationsfrequenz des Gausspulses zusam-
men, mit der die Polarisationsstrome oszillieren. Der Endwert bei ca. 10747 ist durch die
endliche Fliefkommagenauigkeit in der numerischen Rechnung bedingt.
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Abbildung 4.3.: Verlauf der kinetischen Energie im Split-Ring Resonator bei ein- und
ausgeschalteter Drudeddmpfung.
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In dieser logarithmischen Darstellung der kinetischen Energie wird deutlich sichtbar,
dass die Drude-Dédmpfung nur einen winzigen Bruchteil so grof ist, wie die Strahlungs-
ddmpfung.

Zuletzt wird noch der Verlauf der kinetischen Energie in einem Split-Ring Resonator
betrachtet (s. Abb. E3). Fiir die Simulation wurde der FDTD-Solver ,maexle“? verwen-
det. Es wurden folgende Fille untersucht:

1. Bewegungsgleichung mit Streuung und Strahlungsdampfung (rote Kurve):

0j 1. g
R T | O,
ot TJ + Me [Eext + Eina]

2. Bewegungsgleichung ohne Streuung, aber mit Strahlungsddmpfung (blaue Kurve):

dj q
5; - Ee [Eext + Eind]
e

Das Maximum der kinetischen Energie liegt jeweils bei ca. ¢ = 8 fs. Die blaue Kurve
féllt dann bis ¢t = 25 fs um ca. 2 Grofenordnungen ab, was auf die Strahlungsddmpfung
zuriickzufiihren ist. Die rote Kurve zeigt zusétzlich eine sehr schwache negative Steigung,
welche durch die Drude-Streuzeit 7 bedingt ist. Die Oszillationen in beiden Kurven kon-
nen (anders als bei dem Metallfilm) neben der Modulationsfrequenz des Gaufpulses auch
mit der Plasmafrequenz zusammenhéngen, da bei dem endlich grofsen Split-Ring Resona-
tor auch Oberflichenladungen auftreten, die fiir eine entsprechende Riickstellkraft sorgen.
Das Fazit dieser Betrachtungen lautet also:

1. Die Strahlungsdédmpfung ist i. A. wesentlich héher als die Drude-Démpfung.

’Die Software wurde in der Arbeitsgruppe ,Computational Nanophotonics® von Jens Forstner entwi-
ckelt.
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4. Dissipative Zeitabhingige Dichtefunktionaltheorie

2. Die Strahlungsddmpfung macht sich in einer eindimensionalen Schicht von allen
moglichen Geometrien am deutlichsten bemerkbar.

In Materialien mit schlechter elektrischer Leitfahigkeit kann es sein, dass die erste Aussage
nicht mehr zutrifft.

4.2. Ubersicht zu existierenden Ansitzen

Einige der ersten, wichtigen Arbeiten auf diesem Gebiet sind von Kostin und Davidson
|29, b0|. Sie befassen sich damit, die Ein-Teilchen Schrédingergleichung um einen Term
zu erweitern, der dem System Energie entzieht ohne die Normierung der Wellenfunktion
zu beeinflussen. Die Arbeit von Davidson geht besonders auf das Problem ein, dass die
Dissipation in einer streng quantenmechanischen Beschreibung grundsétzlich Systeme
mit einer sehr grofsen Anzahl an Freiheitsgraden beinhaltet und somit einer numerischen
Simulation unzugénglich ist.

Fiir praktische Anwendungen muss bedacht werden, dass eine theoretisch moglichst gu-
te und entsprechend numerisch aufwendige (ab-initio) Simulation der Dissipation gegen-
iiber einer phinomenologischen Beschreibung eventuell keinen Erkenntnisgewinn liefert,
da die Ergebnisse fiir die Anwendung letztlich in beiden Fallen identisch sind. Das ist so zu
verstehen, dass es beispielsweise moglich ist, die Drude-Streuung mikroskopisch zu simu-
lieren, aber die makroskopischen Ergebnisse der Simulation identisch mit den Ergebnissen
sind, die eine rein makroskopische Beschreibung mittels des Drude-Streuzeitparameters
liefert.

Die oben genannten Arbeiten sind limitiert auf Ein-Teilchen Systeme. Insbesondere
konnen nur einzelne Wellenpakete beschrieben werden. Die erste Limitierung ist fiir die
Kohn-Sham Formulierung der Dichtefunktionaltheorie wenig gravierend, da diese das
Vielteilchensystem durch nicht-wechselwirkende fiktive Teilchen beschreibt, deren Zeit-
entwicklung durch eine Schrodinger-artige Ein-Teilchen Gleichung beschrieben wird (s.
Kap. 2232). Die zweite Limitierung ist dagegen sehr gravierend, weil die Kohn-Sham Wel-
lenfunktionen in Festkorpern {iber zahlreiche Knotenpunkte verfiigen. Der von Davidson
vorgeschlagene Operator

. .
S ~ En In(y*4) (4.5)

fiir die modifizierte, dissipative Schrodingergleichung wiirde an diesen Knotenpunkten
divergieren. Der Term von Kostin® hat ebenfalls dieses Problem.

Eine praktische Methode, die sowohl fiir Ein-Teilchen Systeme als auch fiir Kohn-Sham
Systeme geeignet ist, bei denen die Wellenfunktionen auch eventuell Knotenpunkte be-
sitzen, wurde erst im Jahr 2008 von Neuhauser 42| geliefert (d.h. 36 Jahre bzw. 18 Jahre
spater als die Arbeiten von Kostin und Davidson). Das verwundert deshalb, weil die
zugrundeliegende Idee extrem einfach ist: Sie basiert auf der Tatsache, dass elektroma-
gnetische Felder genutzt werden kénnen um (Quanten-)Systeme gezielt anzuregen und
daher auch gezielt abregen konnen. Letztlich wird das System einfach nur an ein externes

28 ~ In(v/9)
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4.3. Methode von Neuhauser

Feld gekoppelt, welches die Bewegung der Teilchen abbremst. Die Details der Methode
werden im Kapitel B=3 beschrieben.

Die derzeitigen theoretischen Arbeiten auf dem Gebiet der dissipativen Dichtefunktio-
naltheorie befassen sich unter anderem mit der Fragestellung, ob es iiberhaupt méglich
ist, mit einem Kohn-Sham System offene Quantensysteme zu beschreiben [61-63] und wie
das Funktional zur Austausch-Korrelation fiir offene Systeme zu konstruieren ist [54].

Die Arbeit von Neuhauser liefert dagegen eine praktische Methode um Dissipation in
existierende TDDFT-Simulationen zu integrieren und verzichtet génzlich auf derartige
theoretische Fragestellungen.

4.3. Methode von Neuhauser

Die Methode besteht darin, den Hamiltonoperator um einen zusétzlichen Term zu erwei-
tern, der eine oder mehrere Observablen an ein Feld koppelt, das dafiir sorgt, dass die
Energie im System monoton abnimmt.

4.3.1. Herleitung fiir Ein-Teilchen Systeme

Der Hamiltonoperator Hy beschreibe ein einzelnes Elektron in einem abgeschlossenen
System. Entsprechend ist der Operator zeitunabhéngig. Ein zusétzlicher Reibungsterm
H; (,,friction Hamiltonian“) sorgt dafiir, dass das System monoton Energie verliert, bis
es wieder im Grundzustand angelangt ist:

H(t) = Ho + H(t) (4.6)

Der Operator ﬁf(t) beinhaltet ein zeitabhéngiges Feld, welches sich stindig anpasst, um
das System abzuregen?.

Fiir den Reibungsterm werden nun eine Ein-Teilchen Observable Z(q) und ein daran
koppelndes Feld D(q, t) benotigt:

Fi(t) = [ Z(a) - Dia.t) s (4.7)

Um diesen Ansatz etwas weniger abstrakt zu présentieren, wird im Folgenden angenom-
men, dass es sich konkret um folgenden Operator und folgendes Feld handelt:

~

Z(q) =J(q) : Stromdichteoperator
D(q,t) = A(q,t) : Vektorpotential des e/m-Feldes

Der Stromdichteoperator ist gegeben durch:

Jq) = po(x — Q);Trf(ﬁ - q)p (48)

“Damit sich das System in einen angeregten Zustand befinden kann, muss entweder ein solcher Zustand
als Anfangswellenfunktion ¥ (¢ = 0) vorgegeben werden, oder es muss noch ein weiterer Operator in
Form eines zeitabhéingigen Storpotentials Vp(¢) hinzugefiigt werden.
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4. Dissipative Zeitabhingige Dichtefunktionaltheorie

Fiir die Zeitableitung vom Energie-Erwartungswert gilt:

d(Hy) _d(H) d{H;)

. dt dt (4.9)
An dieser Stelle wird das Hellman-Feynman Theorem bendtigt:
dE OH,
= = <w<x> o w<x>> (4.10)

Mit diesem Theorem folgt:

d(H) [oH\  [oHt)
dt_<t>_< i > (4.11)

In der letzten Zeile wurde das Feld j(q,t) als Erwartungswert des Operators J(q) defi-
niert. Es folgt:

d(Ho) d(H) d<fff>
dt dt

()
<8H>

OA( q,) d

it SR £ t)- A(q,t)d®
¢— j(a,t) - A(q,t) d’q

/ (m )~A(q,t)d3q (4.12)

= [i(q1)-

Damit nun die Energie vom System abnimmt, muss das Feld A einfach proportional zur
Stromdichte sein: )
L. t)

ot

Bei dem Parameter a kann es sich auch um ein zeit- und ortsabhéngiges Feld a(q,t) > 0
oder einfach nur um eine Konstante ag > 0 handeln. Damit lésst sich beeinflussen, wie
schnell die Energie im System abnimmt.

A(q,t) = mit a > 0
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4.3. Methode von Neuhauser

Aus der Herleitung wird ersichtlich, dass es keinen zwingenden Grund gibt, sich auf
Operatoren Z mit kontinuierlichem Index q (wie in Gl. 1) zu beschrénken. Es kon-
nen genauso gut globale Operatoren (z.B. der Operator des Dlpolmoments Q1) oder ein
Operator Z mit diskretem Index j verwendet werden. Der Operator Hf( ) kann somit
folgende Formen annehmen:

- - 0z(q,t
) = [ 2@ atan ™= do, a0 (4.132)
d
sz a;(t ZJ a;(t) >0 (4.13b)
A - dz
He(t) = Z-a(t)a, a(t) >0 (4.13c)
Der Energieerwartungswert erfiillt dann die Ungleichung
d(Ho)
< 4.14
dt =0 (414)

Uber die Gleichung 12 kann auch genau berechnet werden, wie grof die Energieabnahme
ist. Das lasst sich ausnutzen, um das Dampfungsfeld a(q,t) so zu skalieren, dass sich ein
bestimmter Energieverlust einstellt.

4.3.2. Dimensionsanalyse

In diesem Abschnitt wird versucht per Dimensionsanalyse das Dampfungsfeld a fiir den
speziellen Fall Z = J(q) und D = A(q,t) mit einer physikalisch vertrauten Grofe zu
assoziieren. Der Fall ist deshalb von besonderem Interesse, weil er der Drude-Theorie
ahnelt, bei der die Dampfung proportional zur Stromdichte j(q,t) ist.

Da die Dimensionen aller Grofen bis auf die von a bekannt sind, 1asst sich die Dimen-
sion von a ganz einfach in SI-Basisgrofen ableiten:

dim (/a(q)(w -J(q) d3Q> = dim(H)

dim(a) - L™*T73L3 = MLT 2L
& dim(a) = MTL?
Intuitiv motiviert erfolgt ein Vergleich mit dem spezifischem Widerstand p aus der Elek-
trizitatslehre:
dim(p) = MT3L3T 2

Bei j handelt es sich um eine Wahrscheinlichkeitsstromdichte und keine elektrische Strom-
dichte. Daher tritt in @ auch nicht die Dimension der Ladung auf. Entsprechend wird nun
die Dimension der Stromstérke ,Ladung pro Zeit*“ durch , Teilchenanzahl pro Zeit“ ersetzt
(dadurch wird 172 zu T?). Die zu p analoge Gréfe wird nun symbolisch mit p bezeichnet:

dim(p) = MT3L3T? = MTL3

Damit wurde gezeigt, dass man a als einen spezifischen Widerstand p fiir den Wahr-
scheinlichkeitsstrom interpretieren kann:

| dim(a) = dim(p) |
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4. Dissipative Zeitabhingige Dichtefunktionaltheorie

4.3.3. Anwendung auf Kohn-Sham Systeme

Im Kapitel B231 wurde ein quantenmechanisches Ein-Teilchen System betrachtet. Die
Methode ldsst sich aber auch auf Vielteilchensysteme wie Atome, Molekiile und Fest-
korper anwenden, wenn diese durch die Kohn-Sham Formulierung der Dichtefunktio-
naltheorie beschrieben werden. In diesem Fall wird der Zustand des Systems durch eine
Slaterdeterminante, die sich aus den Kohn-Sham Orbitalen ¢; zusammensetzt, beschrie-
ben:

N
1
\I’Ks(rl,Sl,...,I'N,SN,t) = ﬁ Z Sgn(o-)Hng(rUjaSUj’t) (415)
7=1

‘oeSn

Die Zeitentwicklung des Systems wird durch den Kohn-Sham Hamiltonoperator lfIKs(t)
beschrieben, bei dem es sich um einen Ein-Teilchen Operator handelt. Es miissen N Glei-
chungen vom Typ einer zeitabhingigen Ein-Teilchen Schridingergleichung geldst werden:

N

{ingyestrs.t) = Aes(oyeto s,t>}j_1 (4.16)

Um die Dissipation in das Kohn-Sham System zu integrieren kann analog zu dem Ein-
Teilchen System aus Kapitel B=31 der Hamiltonoperator erweitert werden:

H(t) = Hys(t) + Hy(t) (4.17)

Im folgenden Kapitel E=34 wird gezeigt, dass dann eine analoge Bedingung zu Gl. 14
fiir das Energiefunktional der Dichte gilt.

Bei dem Operator H; (t) ist zu beachten, dass dieser aus N identischen Ein-Teilchenope-
ratoren (genau wie Hgg(t)) besteht, die jeweils auf das j-te Teilchen wirken:

N
Ai(t) =" a7 () (4.18)

J=1

Es ist genau dieser Umstand, der es so einfach macht, die Neuhauser-Methode auf Kohn-
Sham Systeme anzuwenden.

4.3.4. Energieerhaltung in zeitabhingigen Kohn-Sham Systemen

Der Kohn-Sham Hamiltonoperator ist folgendermafsen aufgebaut:
Hys(t) = T + Via[n] + Vie[n] + Vee(2) (4.19)

Es wird angenommen, dass das xc-Potential zeitlich lokal von der Dichte abhéngt (Bsp.:
ALDA). Das externe Potential ist im (starren) Jellium-Modell grundsétzlich zeitunabhéan-
gig. Hier wird eine mogliche Zeitabhingigkeit zugelassen, da ein externes Storpotential
Vp(t) auf identische Weise einfliefen wiirde und somit nicht durch noch einen weiteren
Term beriicksichtigt werden muss. Es soll nun untersucht werden, wie sich das Funktional
der Gesamtenergie

Egesin(r,t)] = Ts[n(r,t)] + Euln(r,t)] + Exc[n(r,t)] + Eext[n(r, t)] (4.20)
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4.3. Methode von Neuhauser

zeitlich verhélt, wenn die Dichte des Systems zeitabhéngig ist: Dieser Fall liegt dann vor,
wenn das System zuvor angeregt wurde oder eine Teilchendichte vorliegt, die nicht der
Grundzustandsdichte entspricht?.

Intuitiv erwartet man, dass die Energie konstant bleibt, solange keine Stérung auf
das System einwirkt. Das soll nun nachgerechnet werden. Danach wird dann in Kapitel
B-33 untersucht, wie sich das Energiefunktional verhélt, wenn der Reibungsterm zu dem
Hamiltonoperator hinzugefiigt wird.

Die Herleitung in diesem Abschnitt kann auch in extrem kompakter Form in der Arbeit
von Neuhauser (|42]|, Anhang A) gefunden werden. Hier wird eine etwas detailliertere Her-
leitung [65] gegeben. Fiir die Zeitentwicklung ist die zeitabhéngige Kohn-Sham Gleichung
im Folgenden von zentraler Bedeutung:

iaatgoj(r, t) = Hgs(t)p;(r,t) (Atomare Einheiten) (4.21)

Um die Rechnung moglichst {ibersichtlich zu gestalten, werden hier nur Atomare Ein-
heiten verwendet. Die Terme in GI. werden nun nacheinander zerlegt und deren
Zeitableitung gebildet:

Feln()] = / 2i(r ) (-VQ) (0, )0 + Bualn(r, £)] + Bxeln(r, )]

+ /Vext(r,t)n(r,t)d?’r (4.22)

Zeitableitung der kinetischen Energie:

% [ () o
B (o) (T () ()
:Z/% [ Hs(0)] s )
Zeitableitung der Energie vorn externen Potential:
itp [Vestrime. @’ = i [ (Sveate)) a0
+ 3 [ (1wt veatr e

+ Z/% Vext ( )<i§t@j(r,t)> Br

®Statt das System durch ein Stérpotential anzuregen, lisst sich beispielsweise die Startdichte der Elek-
tronen gegeniiber der Ruhelage verschieben. Ein solcher Anfangszustand wird in [22] fiir die Jellium-
Kugel (s. Kap. B272) verwendet.
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4. Dissipative Zeitabhingige Dichtefunktionaltheorie
—if (2 t)d® o (T, t)d?
=1 ot ext (T, ) T+ Z 9% Vext(r, 1), Hks(t)| @;(r, t)d"r

Zeitableitung der Hartree-Energie:

d dEun(r,t)] (.0
1£EH[ n(r,t)] = /(;:l(,)(z&n(r,t)) d>r

- Z/% r,t), Hxs(t )} @;(r, t)dr

Die Zeitableitung der xc-Energie kann im Fall von xc-Funktionalen, bei denen E\y.(t) nur
von der Dichte zum Zeitpunkt ¢ abhéngt, ganz analog gebildet werden:

i%Exc[n(r,t)] = Z/cp;(r,t) [ch(r, t),fst(t)] st(I‘,t)d3r

Fiir die Zeitableitung der Gesamtenergie folgt:

d A~
= CElt) = _ZZ / @30, 1) [ s (1), Bs ()] o(r, )t

+ /(gtnxt( t)) n(r,t)d>r

_ / (gtvext(r,t)> n(r, )dr

Wenn kein Storpotential vorhanden ist (Vext(r,t) = Vext(r)) bleibt die Gesamtenergie
erhalten:

CZEges(t) = / <§tVeXt(r)> n(r,t)d>r =0 (4.23)

4.3.5. Energieverlustgleichung
Nun soll die Zeitabhingigkeit von Eges bei Beriicksichtigung des Reibungsterms Hp(t)

untersucht werden. In der Kohn-Sham Gleichung B=2T ist daher folgende Ergédnzung not-
wendig:

8¢n 2 . 6¢n 2
H =
“or
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4.3. Methode von Neuhauser

Fiir den Fall %Vext = 0 gilt dann (analog zur Rechnung im letzten Kapitel):

)

< 2 [
ek
.

/e

> [

2
v—, f[(t)] @;(r, t)d3r

£) [Vext (1), H(1)| i (x. ) dr

A~

0 [Vaa(r, 0, (1) 5(x, )

A~

t) [Vie(r, 1), H

()] s(r, Odr (4.24)

Die Kommutatoren kénnen zusammengefasst werden:

HKS (1), ﬁ(t)} goj(r,t)dgr

. d
ZaEges

Z/SDJ

Dieser Kommutator kann umgeschrieben werden:

[EIK57IA{] =

[Hys, Hy] =

[H

— Hy, Hy] =

~

[ﬁ> Hf]

Die Gleichung kann damit umgeschrieben werden:

d

(e, )

J

d
Cdt

Z Z SOJ Hf7
ZZ(@j\HfIHWﬁ — iy (Hep;j|Hilp))

<‘I’KS ‘Hf‘ ‘I’Ks> + <‘I’KS

|90J>

J

z’Z(cpj\fIf i|pj) — iZ(—i)@j\ﬁfWﬂ
_Z 90J|Hf|90j

J

Z<¢J|Hf|%>

OH;

e (4.25)

‘I’Ks>

Das ist genau das selbe Ergebnis wie fiir ein Ein-Teilchen System (Gl. E12):

d
—F
g s

(et =~ [

dj(q,t)

ot

- A(q,t)d’q (4.26)

Der Erwartungswert j(q, t) wird beziiglich der Slaterdeterminante Ukg vom Ein-Teilchen-
operator J (q) gebildet. Dadurch ist gewéhrleistet, dass der Zeitentwicklungsoperator
unitér ist und die Norm der Kohn-Sham Wellenfunktion erhalten bleibt. Wenn man
stattdessen die Stromdichte von jedem Orbital individuell benutzt, fallen wahrend der
Propagation alle Kohn-Sham Orbitale in den untersten Eigenzustand des effektiven Po-
tentials. Die Norm der Slaterdeterminante ||¥kg|| wiirde dann verschwinden.

Die Energieverlustgleichung fiir das Kohn-Sham System konnte numerisch mehr-
fach bestatigt werden (s. Kap. B4) und ist zur Verifikation von Herleitung und Imple-
mentation der Gleichungen von groffer Bedeutung.
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4. Dissipative Zeitabhingige Dichtefunktionaltheorie

4.3.6. Alternative Formulierungen

Die allgemeine Form der Reibungsterme BET3a-8T3d deutet bereits an, dass es eine Fiille
an Moglichkeiten fiir einen Reibungsterm Hi(t) gibt. Nachfolgend werden einige Mog-
lichkeiten, die in der Arbeit von Neuhauser nur angedacht wurden, detailliert hergeleitet
und analysiert.

Die Herleitungen verlaufen alle nach dem gleichen Schema:

e Ein Term fiir den Erwartungswert 0(z)/0t wird hergeleitet.
e Die Wirkung des Operators Hy(t) auf eine Wellenfunktion wird hergeleitet.

Beides wird fiir die Implementation in einer numerischen Simulation benotigt.

Teilchendichte

Der wohl einfachste Reibungsterm der Form, wie in Gl. BT3a, ist durch Verwendung des
Teilchendichteoperators gegeben:

A~

Z(q) = n(q)

Betrachte Erwartungswert der Teilchendichte:

2(q,t) = (W) Z(@)|e(t)) = /W(LW(@ — q)V(z,t) dz = |¢(q, )]

0z(q,1)
ot

= 2 e =yt (4.27)

Wirkung des Reibungsterms auf eine Wellenfunktion im Ortsraum:

(ol [t 2O 20 dg 100 = [ ata) 670 + 67112 @10 da

(@ Z(@)l(t)) = /dﬂc’ 0(x —a')o(q — ") (a',t) = d(q — x)(w,t) = (g — 2)(q)

<x!/a(q)aW(t)!Z(q)lib(t»Z

- (@) dg [6(0) = [ al@) 56+ 0 016q ~ 2)0(a,t) do

= a(z) [1/1*1/1 —l—ib*lm Y(x,t)

(z,t)

= a(e) [P rple| )

Die Gleichungen 27 und gelten ebenfalls in zwei und drei Dimensionen.
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4.3. Methode von Neuhauser

Impulsraumstromdichte (kontinuierlich)

Fiir nicht-periodische Systeme ist die Impulsbasis kontinuierlich. Es wird nun versucht,
einen Reibungsterm fiir die Stromdichte im Impulsraum zu formulieren. Es wird folgender
Ein-Teilchen Operator gewdhlt:

Z(p) = J(p)
Der Reibungsterm ist wieder von der Form BET3a wobei allerdings der Operatorindex von

Z bzw. J durch die Impulsraumkoordinate p statt der Ortsraumkoordinate ¢ gegeben
ist:

i) = [ a5 ) dp (4.29)

Die Herleitung beschrénkt sich auf eine Raumdimension. Als erstes muss die Wirkungs-
weise dieses Operators auf eine Wellenfunktion im Impulsraum ermittelt werden. Die
Rechnung ist relativ umfangreich und ist im Anhang (Kap. B23) zu finden. Das Ergeb-
nis lautet:

(plHe (W) = - ! F{V(x,t)(x)} (p/h) /dsa [ (p _3)_1]

iv2mh? 2
2%2 dr(r)V(p —r,t)/dsa(s)%t]sgn(r—s) (4.30)

Die Zeitableitung 0.J(p,t)/0t wird analytisch nicht weiter ausgefithrt, weil sich diese
nach vorldufigen Betrachtungen in einer Simulation durch Finite Differenzen leichter und
effizienter berechnen l&sst.

Impulsraumstromdichte (diskret)

Bei periodischen Systemen ist der Impulsraum diskret und die Impulsraumkoordinate

hat einen diskreten Index j:
27h |
pi=j— JEL

Es wird folgender Ein-Teilchen Operator gewihlt:
Zj = J(p))
Der Reibungsterm im diskreten Impulsraum ist von der Form ET3H. Die Herleitung be-
schréankt sich auf eine Raumdimension und ist im Anhang (Kap. BZ4) zu finden. Die

Wellenfunktion |¢) = H(t)|1)) wird im Impulsraum durch einen Vektor € mit Kom-
ponenten ¢; dargestellt. Dessen Komponenten konnen iiber folgenden Term berechnet

werden:

e;% > o 2 ’{@(l—n>ﬂv<x>w<x>]<z>—Zvl_ch} (4.31)

Wie im kontinuierlichen Fall wird fiir den Term 0.J(py,, t)/0t vorgeschlagen, diesen iiber
Finite Differenzen numerisch zu berechnen.
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4. Dissipative Zeitabhingige Dichtefunktionaltheorie

Dipolmoment

Als Operator fiir die Ddmpfung wird hier der Operator des Dipolmoments verwendet:

Z:=P

Es handelt sich um einen globalen Operator und der Reibungsterm ist entsprechend von
der Form BT3d. Der Operator P wird iiber den Teilchendichteoperator 7(q) ausgedriickt:

= /dgr ge[n(r) — nT(r)r = /dST genn(r)r +p*

Wirkung auf Ket |x) im Ortsraum:

xlPl) = (o / 37 gen()r'[x) + p*x(r)

(r
= / ' (r|a(r)x) + pTx(r)

alath) = [ dala -t
- /ﬁ%&q—ﬂ&ﬁ—ﬂx@)
= /dgqé(q —1)d(q —r')x(q)

[ arepwig = [ &
-~ af
- af

= geX(r)r

r / d3q6(q —r)d(q—r')x(q)

Q) [ drv'sla =)

' ge
d*q6(q —r)x(
d*q6(q —r)x(q)q

Matrixelement (¢|P]x):
PN = [ @l 6Pl + b
= g [ @ v+ W

Fiir die Implementation werden folgende Gleichungen letztlich bené6tigt:

) = a0 T g+ pt] (e (4.32)

S = a [@retito+ ) (4.3
2

Z(HM = —ao’d<61;>¢ (4.34)

Die GI. B34 kann genutzt werden, um die Energieverlustgleichung zu verifizieren.
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4.4. Analyse der Methoden

Kinetische Energie
Ansatz:
Z:=T

Es handelt sich dabei um einen globalen Operator. Wirkung auf Ket |x) im Ortsraum:

. h2 9
(r|Tx) = _szX(r)

Die Gleichung fiir die Wirkung von Hy(t) auf einen Ket |¢) und die Gleichung fiir den
Energieverlust lauten:

B d(T)y

(r|Helyp) = —tog =g V(D) (4.35)
d d(T) |?
£<H0> = —ao <dt>w (4.36)

Im Fall eines Kohn-Sham Systems muss in den Term % die Slaterdeterminante WUkg

eingesetzt werden. Der resultierende Term ist aus Kapitel B=34 bereits bekannt:

A

2
4 rine, 1) = iy / (e, 1) [— v ,VKS(t)} o5(r, t)dr

dt 2me

Bei einem Ein-Teilchen System ist der Term @ durch einen der Summanden auf der

rechten Seite gegeben.

4.4. Analyse der Methoden

Diese Arbeit beschrénkt sich darauf, die Reibungsterme als ,Mittel zum Zweck* fiir eine
effiziente phanomenologische Ddmpfung zu betrachten. Bei der Analyse der Methoden
fallt dadurch die Frage weg, welcher der Reibungsterme physikalisch fiir bestimmte Sys-
teme motiviert werden kann. In diesem Zusammenhang soll aber erwéhnt werden, dass
die lokalen Operatoren (wie z.B. 72(q),J(q)) fiir Jelliumsysteme vermutlich [42] besser
geeignet sind, als globale Operatoren (wie z.B. P oder T ). Die globalen Operatoren sollen
besser fiir kleine, voll kohdrente Systeme geeignet sein als fiir ausgedehnte metallische
Strukturen.

In der Originalarbeit von Neuhauser wurde bereits der Fall Z = J(q) untersucht. In
Anlehnung an die Drude Dampfung, bei der die Reibungskraft proportional zur Strom-
dichte ist, wurde untersucht in wie fern sich eine Drude Streuzeit 7 zu einem konstanten
Démpfungsfeld a(q) = ag ermitteln ldsst. Ein direkter Zusammenhang zwischen diesen
Grofsen ist duferst wiinschenswert, um in Simulationen von Metallen deren phinomeno-
logisch bekannte Streuzeit der Metallelektronen einsetzen zu konnen.
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4. Dissipative Zeitabhingige Dichtefunktionaltheorie

4.4.1. Berechnung der Drude Streuzeit

Um die Drude Streuzeit zu bestimmen wurde angenommen, dass die Stromdichte im
System exponentiell abfillt, wenn das System von einem angeregten Zustand in den
Grundzustand relaxiert:

% x —](:) = j(t) = joe /T + const.

Die Energie zerfillt ebensfalls exponentiell:
E (t) = Eoe_rt

Nimmt man an, dass es sich dabei um rein kinetische Energie (oc |7]?) handelt, gilt:

E x |_7|2 x 672t/‘r
Damit folgt fiir die Drude Streuzeit:
2

Aus dem Energieverlauf kann zu gegebenem Parameter ag iiber diese Zusammenh#nge
eine klassische Drude Streuzeit ermittelt werden. Es hat sich herausgestellt, dass diese
effektive Streuzeit sich auf kurzen und langen Zeitskalen um eine ganze Grofenordnung
unterscheiden kann (in Abb. B0 ist dieses Phénomen erkennbar). Ausserdem werden
hohe Frequenzen (beispielsweise im Dipolmoment P(w)) effizienter geddmpft, als niedrige
Frequenzen. Die Ergebnisse fiir die Parameterisierung von ag in Abhéngigkeit von 7 sind
ausserdem aus der Neuhauser-Arbeit nicht auf andere Systeme iibertragbar und miissen
fiir jedes System neu ermittelt werden.

Im Kapitel BZ2=3 wird deshalb eine einfache Erweiterung zu dieser Dampfungsmethode
présentiert, welche diese Probleme im Prinzip beseitigt.

4.4.2. Dampfungseigenschaften

Die Methoden werden zunéchst qualitativ an einem Modellsystem verglichen: Als solches
dient ein eindimensionaler Metallfilm, welcher an einer Oberfliche durch ein Stérpotential
raumlich und zeitlich lokalisiert angeregt wird (s. Abb. E4).

Lokale Ortsraum-Operatoren und globale Operatoren

In Abbildung B3 ist der Energieverlust, welchen die verschiedenen Reibungsterme bewir-
ken, jeweils auf Eins normiert dargestellt®. Damit ist ein qualitativer Vergleich mdglich:

Wie man sieht, gibt es keine grofen Unterschiede zwischen den beiden lokalen Ope-
ratoren J(q) und 7(q). Da Strom- und Teilchendichte iiber die Kontinuititsgleichung
eng miteinander verkniipft sind, kann man zumindest intuitiv eine gewisse Ahnlichkeit
auch erwarten. Vollig anders verhélt sich der Reibungsterm, der auf dem Dipolmoment

5Da sich durch Skalierung des Reibungsterms auch der Energieverlust beliebig skalieren lisst, macht
eine nicht-normierte Darstellung wenig Sinn.
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t A

Metallfilm

Vo0 -

> X

Abbildung 4.4.: Anregung eines Metallfilms durch einen Gausspuls an der Oberfliche
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Abbildung 4.5.: Normierter Energieverlust fiir unterschiedliche Reibungsterme Hy(t).

basiert: Die Energieverlustkurve erinnert an einen sin?-Verlauf. Das ist ebenfalls zu er-
warten, weil die Energieverlustgleichung =34 das Betragsquadrat von d(P)/dt enthilt,
welches eine oszillierende Grofe im System aus Abbildung B4 ist.

Auf die praktische Bedeutung dieses unterschiedlichen Verhaltens der Reibungsterme
wird in Kapitel B4-3 nochmals eingegangen.

Lokale Impulsraum-Operatoren

Die Dampfung im Impulsraum ist bereits in einer Dimension rechnerisch sehr aufwendig,
wie man an der Gleichung B=31 sehen kann. Die Analyse dieser Methode beschriankt sich
daher ebenfalls auf das System mit dem Metallfilm aus Abb. B4. Insbesondere wurde
hier nur das energetisch niedrigste Orbital beriicksichtigt.

Als erstes soll die Ddmpfungseffizienz dieser Methode JL=J (p)“ mit der wesentlich
cinfacheren Ortsraum-Methode ,Z = J(¢)* verglichen werden. Mit Effizienz ist auch

79
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Abbildung 4.6.: Theoretisch moglicher Energieverlust fiir die beiden Reibungsterme in
Orts- und Impulsraum. Zu Beginn steigen die Kurven steil an, weil da
das System angeregt wird.

hier wieder gemeint, wie stark die moégliche Energieabnahme wéhrend der Zeitentwick-
lung einbricht. Zum Vergleich wurde in diesem Fall aus der Dynamik dieses Systems
ohne aktiven Reibungsterm der Energieverlust iiber die entsprechenden Energieverlust-
gleichungen berechnet.

Das Ergebnis ist in Abbildung B8 dargestellt: Die entscheidende Beobachtung an den
beiden Kurven ist die, dass der Energieverlust bei der J(p)-Methode stark schwankt und
dabei mehrere GréRenordnungen zwischendurch abfillt wihrend bei der .J(g)-Methode
die Kurve vergleichsweise konstant bleibt.

Diese Methode wurde deshalb in dieser Arbeit nicht weiter verfolgt.

4.4.3. Vorgegebene Energieabnahme

Ziel in diesem Kapitel ist es, eine erweiterte Formulierung der Neuhauser-Methode zu
geben, welche systemunabhéingig eine vorgegebene exponentielle Abnahme der Anre-
gungsenergie erlaubt. Diese Abnahme ist durch die phinomenologische Drude Streuzeit
festgelegt. Dafiir sind bereits gezeigte Eigenschaften der original Methode entscheidend:

1. Der Energieverlust kann iiber die Gleichung zu jedem Zeitpunkt ermittelt
werden.

2. Das Dampfungsfeld a(q,t) kann beispielsweise als a(q,t) = ao(t) definiert werden
um dariiber den Reibungsterm zeitlich dynamisch zu skalieren.

3. Die lokalen Operatoren fithren zu einem Energieverlust, der nie auf Null absinkt
(im Vergleich zu dem Fall mit Dipoloperator) - s. Abb. E4.

Der physikalische Ablauf sei nun folgender:
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log( [E(t)-Eol / Eo )

4.4. Analyse der Methoden
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Abbildung 4.7.: Hier wird die Anregungsenergie aus dem Intervall fexe < t < tmax In
normierter, logarithmischer Form gezeigt. Die Steigung der roten Ge-
raden (linearer Fit) entspricht 7 ~ 13fs. In der Simulation wurde der
Wert 7 = 12.11fs vorgegeben. Die Abweichung nimmt bei Verkleinerung
der Zeitschrittweite ab. Nach der gezeigten Zeit tpax musste die Simu-
lation abgebrochen werden, weil die Losung der impliziten Kohn-Sham

Gleichungen zu ungenau wurde.

1. Zur Zeit 0 < t < texc wird das System durch einen Puls angeregt - oder: bereits
zur Zeit t = texe = 0 sei das System in einem angeregten Zustand (dazu kann
beispielsweise die Elektronendichte verschoben werden). Wiahrend der Anregung
findet keine Dampfung statt.

2. In der Zeit t > texc relaxiert das System in den Grundzustand. Die Dampfung
bewirkt eine exponentielle Abnahme der Anregungsenergie

E(t) — Bgs ~e 't

Die systemunabhéngige und vorgegebene Energieabnahme erzielt man natiirlich ganz
einfach dadurch, dass man zu jedem Zeitpunkt das Integral in Gl. fir ag = 1 ermittelt
und mit dem Sollwert von dFE/dt vergleicht. Aus dem Verhéltnis ergibt sich der zeitlich
dynamische Dampfungsparameter ag(t).

Diese Methode wurde an dem System aus Abb. B getestet: Wie sich gezeigt hat,
ergeben sich in der Praxis erhebliche numerische Probleme mit der Rechengenauigkeit
zur dynamischen Anpassung des Feldes ag(t), wie in Abb. BZ7 gezeigt wird.

4.4.4. Riickstreuung

In diesem Kapitel wird der Versuch beschrieben, die beiden Oberflichen eines endlichen
Metallfilms durch die Reibung von einander zu isolieren. Ein qualitatives Ergebnis dazu
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100 ag

ohne Reibung mit Reibung

Abbildung 4.8.: Ein qualitativer Vergleich des Feldes [dn(z,t)| = |n(z,t) — no(x)| fiir
das System aus Abb. B4 im Fall von ein- bzw. ausgeschaltetem Rei-
bungsterm. Die gestrichelten Linien geben die Position des Metallfilms
im Raum an. Links oben in der Ecke erkennt man die Wirkung vom
rdumlich und zeitlich lokalisierten Gausspuls, der das System anregt, am
deutlichsten.

zeigt die Abb. ER: Der Reibungsterm (Z = J(z)) wurde konstant gehalten (ag = 3000)
und die Auslenkung der Teilchendichte vom Grundzustand zeitlich aufgezeichnet. Am
rechten Rand erkennt man noch schwache Reflexionen. Um die Effizienz der Ddmpfung
beziiglich der Verhinderung von Riickstreuung quantitativ zu untersuchen, wird wie in
Abb. B gezeigt wird, iiber ein endliches Intervall (0..7") der rechtsgerichtete Teilchen-
strom (j7) an der Mitte des Metallfilms (x = 0) aufintegriert:

T
N:/O dtj~(z =0,t) (4.38)

Die genaue Wahl einer solchen Gréfle unterliegt einer gewissen Willkiir, jedoch erfiillen
diese alle die FEigenschaft, dass IV gegen Null gehen muss, wenn man die Ddmpfungsstérke
gegen unendlich gehen lasst.

Das Ergebnis der Abhingigkeit von N und der Dampfungsstirke ag ist in Abb. BT
gezeigt. Wie man gut erkennen kann, flacht die Kurve mit zunehmender Dampfungsstar-
ke immer mehr ab. Um die Grofe N um mehrere Grofenordnungen zu reduzieren (wie
es fiir eine Entkopplung der beiden Oberflichen notig wire), miisste ein so hoher Wert
fiir ag gewdhlt werden, dass es in der numerischen Simulation zu erheblichen Genauig-
keitsproblemen kommt.
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t A Metallfilm

Vp(Xk, t)

Abbildung 4.9.: Ein Metallfilm wird durch einen Gausspuls angeregt. In dem rdumlich
und zeitlich begrenzten Intervall wird die reinfliefsende Teilchenstrom-
dichte integriert (gestrichelte Linie).

4.4.5. Anmerkungen

Die Neuhauser-Methode fiihrt eine gravierende Verdnderung in die zeitabhingigen Kohn-
Sham Gleichungen ein und ebenso fiir Ein-Teilchensysteme in die zeitabhéngige Schro-
dingergleichung: Weil im Reibungsterm Hy(t) die GroRe d(z)/dt benstigt wird, und diese
vom Zustand des Systems abhingt, werden die Gleichungen implizit. Diese strukturelle
Anderung an den Gleichungen ist aber nur dadurch bedingt, dass diese kein abgeschlos-
senes System mehr beschreiben. Das eigentliche System mit Hamiltonoperator Hy wird
einem externen Feld ausgesetzt, welches basierend auf dem Zustand des Systems so ge-
wihlt wird, dass es dem System Energie entzieht.

Eine ungewdhnlich erscheinende Eigenschaft dieser Dampfungsmethode ist die, dass
sich die Dynamik auch nach langer Ddmpfungszeit vollstdndig umkehren 1dsst: Normaler-
weise wiirde man von einem Vielteilchensystem erwarten, dass es durch die Streuprozesse,
welche die Dampfung bewirken, an Gedéchtnis verliert und der urspriingliche Zustand
nicht mehr durch Zeitumkehr erreicht werden kann. Ein Vergleich mit einem klassischen
Gas macht das ebenfalls deutlich: Wenn sich dieses in einem Kolben ausdehnt, wird es
sich nicht wieder dadurch zusammenziehen, indem man alle mikroskopischen Impulse der
Gasatome umkehrt.
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Abbildung 4.10.: Der Plot zeigt die Stromdichte in der Mitte des Metallfilms in Abhén-
gigkeit der Zeit fiir eingeschaltete Dampfung (blaue Kurve) und ausge-
schaltete Dampfung (rote Kurve). Das gezeigte Intervall umfasst 20 fs.
Nach ca. 10 fs ist keine signifikante Abnahme in der Stromdichte bei
der blauen Kurve mehr zu erkennen. Dieses Phinomen wurde bereits
von Neuhauser beobachtet aufgrund dessen er zwei verschiedene Dru-
de Streuzeiten zur Charakterisierung der Dampfung verwendet hat (s.
Kap. £271).
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Abbildung 4.11.: Die Teilchenanzahl (pro Fliche) aus Gl. B238 (1" = 20 fs) fiir verschiede-
ne Dampfungsparameter ag: Die roten Kreuzchen stellen Simulations-
ergebnisse dar, wohingegen die blaue Linie nur ein angefitteter Spline
ist.
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5. Wigner-Maxwell Gleichungen

In diesem Teil der Arbeit soll ein quantenmechanisches Modell des Elektronengases ent-
wickelt werden, welches Austausch- und Korrelationswechselwirkungen beriicksichtigt.
Dazu wird das Elektronengas als statistisches Ensemble iiber die Dichtematrix beschrie-
ben. Die resultierenden Gleichungen kénnen in ihrer allgemeinsten Form die Dynamik
eines Zweikomponentenplasmas (bestehend aus Elektronen und Ionen) in einem elek-
tromagnetischen Feld beschreiben. Die Herleitung dieser Wigner-Mazwell Gleichungen
in der hier verwendeten Form wurde bereits in einer unverdffentlichten Arbeit von W.
Hoyer durchgefiihrt [56].

In den folgenden Kapiteln wird versucht die Gleichungen auf ein System mit reduzier-
ter Dimensionalitdt (d.h. speziell einen Nanodraht) anzuwenden, da schnell klar wird,
dass die Gleichungen fiir drei Raumdimensionen numerisch nur schwer lésbar sind [67]
und daher fiir die Anwendungen in dieser Arbeit keine praktische Alternative zur Dich-
tefunktionaltheorie darstellen. Des weiteren werden die Gleichungen fiir elektrostatische
Felder formuliert, was zu der Wigner-Poisson Gleichung fiihrt, welche in der Literatur
bereits unter physikalischen [22, 23, b8]| als auch numerischen [6Y] Aspekten untersucht
wurde.

Abschliefend wird speziell auf die Arbeit [22] eingegangen, in der gezeigt wird, wie
sich Quantenkorrekturen in einem klassischen Fluidmodell des Elektronengases herleiten
lassen. Die resultierende Gleichung wird als ,,Quanten Euler-Gleichung“ bezeichnet und
stellt eine Alternative zur (Kohn-Sham) Dichtefunktionaltheorie dar.

5.1. Allgemeine Formulierung in drei Dimensionen

Die Herleitung der Bewegungsgleichung fiir das Zweikomponentenplasma erfolgt in meh-
reren Schritten: Zunéchst wird der Hamiltonoperator des Systems in zweiter Quanti-
sierung hergeleitet. Die Quantenfeldoperatoren werden in die Impulsbasis transformiert.
Dann wird die Heisenbergsche Bewegungsgleichung fiir die Koh&renzenmatrix aufgestellt
und das dabei auftretende Hierarchieproblem in Hartree-Fock Néherung geldst. Zuletzt
wird die Dichtematrix in das Wignerbild transformiert und das zentrale Ergebnis dieser
Herleitung wird die Bewegungsgleichung fiir die Ein-Teilchen Wignerverteilungsfunktion
[60] darstellen. Mit diesen Gleichungen wird die Austauschwechselwirkung exakt beschrie-
ben. Die Bertiicksichtigung der Korrelation ist in den Gleichungen allerdings derzeit noch
offen gelassen.

Es sei darauf hingewiesen, dass die Herleitungen in den folgenden Kapiteln keine Zwi-
schenschritte enthalten und aus der Arbeit 66| iibernommen wurden. Allerdings ist das
selbst entwickelte Modell im Kapitel b3, welches auf der Arbeit von Hoyer basiert, mit
detaillierter Herleitung gegeben.
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5. Wigner-Maxwell Gleichungen

5.1.1. Hamiltonoperator

Der Hamilton-Operator beschreibt ein System aus zwei Sorten von fermionischen Teil-
chen, welche iiber den Index A an den Operatoren beriicksichtigt werden (A = e fiir
Elektronen und A = i fiir Ionen). Die Spinkoordinate s hat zwei Einstellmoglichkeiten
s = £1/2. Die Teilchen befinden sich in einem elektromagnetischen Feld, welches in
Coulomb-Eichung iiber die Potentialfelder A(r,t¢) und ¢(r,t) beschrieben wird. Fiir die
Potentiale wird die Coulomb-Eichung verwendet:

V-A(r,t) =0 (5.1)

Der Hamiltonoperator fiir die kinetische Energie in minimaler Kopplung lautet zunéchst
allgemein:

I / #Bril (r, 5)273”(;3 AT, )2 (r, 5) (5.2)
A,8

Durch die Eichbedingung kann der Operator in Klammern vereinfacht werden:

. - 1 A 2
Hpin = Z / d3T\IIJ,r\(r7 8)%(1)2 - Q)\A(ra t) P+ qg\AZ(rv t))\I/)\(I', S) (53)
A, 8

Die Coulombwechselwirkung innerhalb einer Teilchensorte A wird durch folgenden Ha-
miltonoperator beschrieben:

A 1 A A A A
=33 [ [l W@ sV (e - DI a ey (6

s,s’

Fiir die Coulombwechselwirkung zwischen Elektronen und Ionen lautet der Hamilton-
operator:

8 = — Z/d%/d?’r’\izg(r, $)UT (' YWV (e — /)i, ') Uo(r, 5) (5.5)

Der Hamiltonoperator des Zweikomponentenplasmas lautet insgesamt:
H = Hygy + Hap + Hye + HE 4+ HE 4 HY (5.6)

Dieser Operator hidngt vom elektromagnetischen Feld ab, welches von den Maxwellglei-
chungen beschrieben wird, deren Quellterme sich aus den Ladungen und Stromen des
Plasmas ergeben. In der Originalarbeit von W. Hoyer wurde auch das Lichtfeld quanti-
siert, was aber fiir die Optik metallischer Nanostrukturen in dieser Arbeit keinen Sinn
macht: Im Hinblick auf die nichtlinearen optischen Eigenschaften dieser Strukturen ist
klar, dass Felder mit hoher Feldstirke auftreten und die Quantisierung des Lichtfeldes
daher nicht beachtet werden muss.
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5.1.2. Impulsbasis
Die Feldoperatoren haben die folgende Entwicklung in der Impulsbasis:

A

1 _
\I/)\(I‘, S) = ﬁ Z elk'ra)\757k (5.7)
k

A 1 e
Ul(r,s) = ﬁZe Eral ok (5.8)
k

Hier wird implizit angenommen, dass das Plasma ein endliches Volumen V fiillt, welches
wiederum periodisch den ganzen Raum fiillt.
Die Operatoren &, a! erfiillen die fermionischen Antikommutator-Relationen:

[é)‘vsvk’ é;’,s’,k’]+ = 6k,k/5875/5)\,)\' (593)
[Axsk v sl = 0 (5.9b)
[é&,s,k7 éi/,s/,klh =0 (5.9¢)

Der Wellenvektor k wird ab jetzt als Verbundindex definiert, in dem auch die Spinquan-
tenzahl enthalten ist:

k,s — k= (kg ky kz,9)

Der Operator aus Gl. b23 besteht aus drei Teilen, welche in dieser Basis folgendermafen
lauten:

Hin = Zaﬁai,kéu,k (5.10)
Hap = _ZJk quk+q/Qa/\k a/2 (5.11)
Ak,q
A q %
Hy = Z A Z Ay Aqdh erqPA kA (5.12)
A ad
Dabei wird mit 62 = gnlf das Matrixelement des kinetische Energieoperators T =

p?/2my, mit J das Stromdichtematrixelement

3= Pk (5.13)
mx
und mit Aq(t) die Fouriertransformierte des Vektorpotentials A(r,t) bezeichnet.
Die Operatoren fiir die Coulombwechselwirkung (Gln. B4 und b3) lauten in dieser
Basis:

N 1
A AT A A A
He = 5 Z anT,\,kaT\,k'aA,k%qa)vk—q (5.14)
k7k/7q
¢ = - Z Vqéi,kéiik/éi,k%qée,qu (5.15)
k' .q
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Das Coulombmatrixelement V; ist gegeben durch:

Iqel
coV ¢

q= (5.16)

Es gilt fiir die Ladung der Teilchen |ge| = gi.
Damit steht nun der gesamte Hamiltonoperator (Gl. B8) auch in der Impulsbasis zur
Verfiigung, auf der die restliche Herleitung in den folgenden Kapiteln basieren wird.

5.1.3. Bewegungsgleichung der Kohdrenzenmatrix

Die Kenntnis der Kohérenzen (é& k) (t) erlaubt es, zentrale Gréfken wie Teilchen- und
Stromdichte des Zweikomponentenplasmas zu berechnen. Mit Hilfe der Heisenbergglei-
chung kann die Bewegungsgleichung fiir diese zentralen Grofen hergeleitet werden:

h—0 =1[0,H 5.17
=0 = (0,11 (517)
Mit O = é;r\ @k und dem Hamiltonoperator

H = Hygy + Hap + Hye + HE + HY 4 HE
folgt fiir die Zeitableitung der Erwartungswerte der Kohérenzen

. . A AN At A
’Lha <a§\7ka)\7k/> = (gk/ — €k.)<al1>-\ ka)\7k/>

+ZA (Jk aA k+pa>\ k’> Jﬁ’<é§7ké)\,k’—p>>

A
Qm)\ Z Ap ( 8\ letp—p AAK) = <a>\7ka>"k/7p7p/>>

fZV ( a/\ k+qa)\ la,\ 1+qa)\ k’> (a; kaf\ lé)\ 1+qa)\ k/— >)

| —l—

+Z‘/Iz (<é‘>\,k+q ; 8511 qfate) — (8] 8 8y 185 14 @Ak - >>
(5.18)

Als néchstes wird eine Hartree-Fock Faktorisierung auf die 4-Punkt Erwartungswerte
angewendet, wobei allerdings die dadurch fehlenden 2-Teilchen Korrelationen als nicht
néher spezifizierter Term A(...) mit definiert werden:

<é;klé§,k23x,k;éx,kg> = (a4, ;kﬁx,kgéx,kﬁs+A(é§kf;k a5 1, 4 g X(5.19a)
(8] 8l g iag)s = (8 4 Ana ) (8] 1 anag) — (8] 1 A ) (8] 4,801, 15-19b)
(8] 1AL | Axagfaag)s = (8L A ) (8L ax) (5.19¢)

Mit Hilfe der fouriertransformierten Teilchendichte

1 At
ng =3 (8 htea) (5.20)
1
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5.1. Allgemeine Formulierung in drei Dimensionen
ldsst sich die Bewegungsgleichung der Kohérenzenmatrix formulieren:

L0 4 . A4
zha<a§7ka,\7k/> = (e — 52)(&1( KA K!)

+ ZA (Jk (@) jerpiaie) — Jiv (éi\,ké)vk’—p))

a QmA Z Ap ( 8 kerpprdrie) = (84 i py p'>)
; vzv n3) (18] iinie—a) — (8] i)
AN =AX
- ki T2k — Sk (5.21)

Die letzten drei Terme beschreiben Austausch (2) und Korrelation (Z):
Sk = ZV (% KA (8 1 qhai—q) — <é*§,k+qé‘>\71+Q><é”J>[\,lé‘>\1k’>> (5.22)

=\ A At A A
Sk T ZV< a)\ka)\laA1+qa)\k’ al — A<a;,k+qa§71a5\,l+qa)\7k'>> (5.23)

5.1.4. Formulierung im Wignerbild

Die Dichtematrix g, welche das statistische Ensemble von Zweikomponentenplasmen be-
schreibt, kann iiber den gesamten Satz von N reduzierten Wignerfunktionen dargestellt
werden. Diese sind als Analogon zu den reduzierten Verteilungsfunktionen der klassischen
statistischen Mechanik zu betrachten. Allerdings konnen die Wignerfunktionen auch ne-
gative Werte annehmen [b8| und werden daher auch als Quasiverteilungen bezeichnet.

Die Ein-Teilchen Wignerfunktion héngt folgendermafen mit der Dichtematrix zusam-
men:

fa(r) =) ey aTAk /2 k+a/2) (5.24)
q
N R ,
<a§’kaA,k/>:§ / ek k) f% (r) d*r (5.25)

Die Teilchen- und Geschwindigkeitsdichtefelder konnen sehr einfach aus der Wignerver-
teilung bestimmt werden:

) = 3 SR (5.26)
k
1 < 7k
Vien(r) = ng/\fﬁ‘(r) (5.27)
Vin(r) = izhk_nqliA(r)fﬁ(r) (5.28)
k
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5. Wigner-Maxwell Gleichungen

Das kinetische Geschwindigkeitsdichtefeld tritt in der Kontinuitétsgleichung der Teilchen-
dichte auf:

—nMr) + V- v, (r) =0 (5.29)

Mit einer umfangreichen Rechnung (s. Anhang C von [66]), bei der eine Gradientenent-
wicklung der Wignerfunktion vorgenommen wird, ldsst sich zeigen, dass die Bewegungs-
gleichung der Kohédrenzenmatrix b21 im Wignerbild folgende Form hat:

gtfﬁ(r) = —Vr-(:i é(r)) (5.30a)
i p| = 2 [Vr-(A(r) ﬁ(r))—(Vr(A(r)-k))-(kaQ(r))] (5.30b)
Ap mx
0 @
G| = i (VIAmE) - (V) (5.300)
9 I
5i /(@) o T 2(Vee(0) - (Vi (1)) (5.30d)
Tpw| = 2 vad@] VR - VAL [R50
C,HF
0 1 g / 3 N~ /
| T hig ] TV E T VA @AN D (5.30f)

Die Gradientenentwicklung hat keinen Einfluss auf den Term in Gleichung b=30a. Alle

anderen Terme sind Ndherungen. In der Coulomb-Eichung gilt fiir das skalare Potential
®(r) in Gl. B30d:

O(r) = /U(r —1')(ni(x') — n°(r"))d®r (5.31)
Die Energierenormierung in GI. ist durch eine Faltung im k-Raum gegeben:

Aep(r) = Ui fir(r) (5.32)
"

Fiir das Coulombmatrixelement im Orts- und Fourierraum gilt:

1 g 1 g
&gy =—1 (5.33)

U [ 4
(r) deg Y eV g2

Im Korrelationsterm (Gl. B30) ist der Operator f durch den Operator in den Erwar-
tungswertklammern aus GL. (inklusive Summation und dem Vorfaktor e/dT) defi-
niert. Der Operator p ist der Ladungsdichteoperator und setzt sich aus den Teilchendich-
teoperatoren zusammen:

p(r) = qi(7i(r) — fie(r)) (5.34)
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5.1. Allgemeine Formulierung in drei Dimensionen

5.1.5. Gleichungssystem fiir ein Zweikomponentenplasma

Im letzten Abschnitt wurden die Herleitung der Wigner-Gleichungen fiir ein Zweikom-
ponentenplasma nach [66] skizziert. Hinzugenommen werden miissen noch die Maxwell-
Gleichungen, welche in Gl. bZ31 nur unvollstdndig berticksichtigt wurden, da durch diese
Gleichung nur das longitudinale elektrische Feld in die Dynamik der Wignerverteilung
eingeht.

Das vollstandige Wigner-Maxwell Gleichungssystem umfasst die Bewegungsgleichung
fiir fﬁ‘(r), die Eichbedingung und die Wellengleichung fiir das Vektorpotential sowie die
Poissongleichung fiir das skalare Potential:

0 d
gl = G| (5.352)
9 .\
+ = 5.35b
51k (@) o (5.35b)
0 A 0 A
+ &fk (r) . + a1 k(r) 2 (5.35¢)
9 .\
+ = 5.35d
8tfk (r) - ( )
9 .\
L9 5.35
8tfk (r) C Kont ( e)
V-Alr) = 0 (5.35f)
1 02
V?A(r) = cﬁ@A(r) — 1o ZJE\T)(T) (5.35g)
A
Vo(r) — —gig(r) (5.35h)
0

Dabei bezeichnet j(T) den transversalen Anteil der Stromdichte.

Die Auflistung der Terme b=353-6-354 hat folgenden Hintergrund: Bei der Anwendung
dieser Gleichungen auf ein bestimmtes System kann es sinnvoll sein, nicht alle Terme
zu beriicksichtigen. In Systemen, wo beispielsweise die Retardierung keine Rolle spielt,
kann die Termgruppe aus der Bewegungsgleichung fiir f{(r) und die Gleichun-
gen B358p-35g aus dem Gleichungssystem gestrichen werden. Ebenso kann durch ,Ein-
/Ausschalten der Terme ermittelt werden, welche Bedeutung diese fiir die Dynamik des
Plasmas in einem bestimmten System haben.
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5. Wigner-Maxwell Gleichungen

5.1.6. Anwendung auf metallische Nanostrukturen

Die Wigner-Maxwell Gleichungen sollen nun verwendet werden, um die gesamten Metal-
lelektronen einer metallischen Nanostruktur im Lichtfeld zu beschreiben. Die Herleitung
dieser Gleichungen im Fourierraum impliziert, dass die zu beschreibenden Strukturen im
realen Raum periodisch angeordnet sind. Diese Periodizitdt kommt iiber den Basiswechsel
bei den Feldoperatoren b1,68 und der (dazu passenden) Entwicklung des Vektorpoten-
tials in ebenen Wellen A(r) — Aq ins Spiel.

Um eine Isolation der Strukturen von ihren Nachbarn zu erzielen, muss das Zellvo-
lumen V), in dem je eine Struktur enthalten ist, entsprechend grofs gewéhlt werden, bis
beispielsweise die longitudinalen elektrischen Felder iiber die Distanz im Vakuum ge-
niigend abgeklungen sind und keinen Einfluss auf die Bewegung der Elektronen in der
Nachbarzelle mehr haben. Den Effekt der transversalen Felder auf diese Weise zu verhin-
dern ist zwar auf gleiche Weise moglich, aber da diese nur mit 1/7 im Raum abfallen,
nur durch sehr grofie Zellvolumen erreichbar. Dies kann in der numerischen Losung die-
ser Gleichungen zu einem zentralen technischen Problem werden. Dabei wird dann auch
klar definiert, was unter einem ,groflen Zellvolumen zu verstehen ist, da verfiigharer
Speicherplatz und Rechenzeit die Grenzen festlegen.

Fiir die metallischen Nanostrukturen soll hier wieder das Jellium-Modell zum Einsatz
kommen, d.h. die Tonendichte ni(r) ist zeitlich konstant und legt die Form der Struktur
fest. In den Wignergleichungen kann deshalb der Index A weggelassen werden, da ab jetzt
nur noch das Elektronengas von diesen Gleichungen beschrieben wird. Entsprechend gilt
nun:

A

A

If
o

—

Wie oben bereits angedeutet, konnen die Wigner-Maxwell Gleichungen in unterschiedli-
cher Komplexitdt zum Einsatz kommen. Ein Ziel dieser Arbeit besteht darin zu ermit-
teln, welche Terme unter welchen Umstdnden weggelassen werden konnen. Im Hinblick
auf die numerische Umsetzung dieser Gleichungen werden verschiedene , Ausbaustufen”
betrachtet, die in Tabelle bT8 aufgefiihrt sind. Als ,Relaxation“ wird hier ein Prozess,
der die Elektronen abbremst und asymptotisch im elektronischen Grundzustand endet,
bezeichnet. In Festkorpern spielt sich dieser Prozess in Form von Streuung der Elektronen
untereinander und mit Gitterphononen ab. Der Korrelationsterm ,,C, Korr* hat die Auf-
gabe, die Streuung der Elektronen untereinander zu beschreiben. Da im Jellium-Modell
allerdings kein Kristallgitter und somit auch keine Gitterphononen existieren, kann dieser
Relaxationsprozess nur unvollstdndig von diesen Gleichungen beschrieben werden.

Fiir die Berechnung der Grundzustandsdichte ist ein solcher Relaxationsmechanismus
aber unverzichtbar: Diese Dichte ldsst sich ndmlich extrem einfach durch Losung der
Gleichungen im Zeitbereich ermitteln, indem zunédchst eine ungefdhre Startdichte der
Elektronenverteilung vorgegeben wird (z.B. n(r,t = 0) = n!(r) ist eine mogliche Start-
dichte). Anschliefend wartet man, bis sich ein Endzustand der Dichte eingestellt hat. Fiir
eine Simulation dieses Vorgangs wére ein phinomenologisch beschriebener Relaxations-
mechanismus (wie die Drude-Streuung in Metallen) ideal, da die Dampfungskonstante
kiinstlich hoch gewidhlt und somit die notige Simulationsdauer stark reduziert werden
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5.1. Allgemeine Formulierung in drei Dimensionen

’ Stufe \ Terme \ Anwendung
1 kin + C,L Einfluss statischer Felder untersuchen
2 kin + C,L + Relaxation Berechnung der Grundzustandsdichte

3 kin + C,LL + C,HF + Relax. | Einfluss der Austauschwechselwirkung
auf die Grundzustandsdichte

4 kin + C,L. + C,HF + Elektronendynamik im Lichtfeld
A-p+ A2 (A%-Term vernachlissigbar?)

5 kin + C,L + CHF + Beriicksichtigung von Streuprozessen
C,Korr zwischen den Elektronen

6 (alle Terme) Validierung von und Vergleich mit

anderen Modellen

Tabelle 5.1.: Unterschiedlich komplexe Ausbaustufen der Wigner-Maxwell Gleichungen

kann. Der Endzustand muss natiirlich unabhingig von diesem Vorgang und dessen Pa-
rametrisierung sein. Ansétze dazu werden im néchsten Abschnitt (B1°4) gegeben.

Diese Methodik wurde ebenfalls bei der Berechnung der Grundzustandsdichte im Hy-
drodynamikmodell (s. Abb. B2) verwendet.

5.1.7. Phdanomenologische Relaxationsterme

Der erste sinnvolle Ansatz besteht darin kleine Abweichungen der Verteilungsfunktion
vom Grundzustand zu betrachten:

filr,t) = O (x) + 8 fic(r, 1) (5.36)

Im ungestorten System muss diese Abweichung zeitlich asymptotisch gegen Null gehen.
Daher kann in die Bewegungsgleichung fiir § f einfach ein Term der Form

—7 0 fi(r, 1), (5.37)

wobei 7 eine Dampfungskonstante ist, hinzugefiigt werden. Leider kann diese Methode
offensichtlich nicht dafiir verwendet werden, die Verteilungsfunktion des Grundzustands
f© {iberhaupt erst zu ermitteln. Wenn diese Verteilung aber erst mal vorliegt, bietet
der Term B331 die einfachst denkbare Moglichkeit an eine geddmpfte Dynamik fiir die
Verteilungsfunktion zu gelangen.

Ein weiterer Ansatz zur Ddmpfung basiert auf der Annahme, dass im ungestorten
und geddmpften System das Geschwindigkeitsdichtefeld asymptotisch zeitlich gegen Null
gehen muss. Einen nicht verschwindenden Beitrag zum Geschwindigkeitsfeld an einem
Ort r erhélt man immer dann, wenn die Verteilungsfunktion im k-Raum an diesem Ort
unsymmetrisch ist. Die Idee besteht daher darin, eine symmetrische Verteilung asympto-
tisch zu erzwingen, indem die Bewegungsgleichung fiir f um folgenden Term erweitert
wird:

= [fi(r,t) — fox(r,1)] (5.38)

Wenn eine Asymmetrie in der Verteilung vorliegt, wird diese exponentiell zeitlich mit
Zeitkonstante v~ ! abgebaut.
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5. Wigner-Maxwell Gleichungen

X

I |¢o(’ﬁ)|2

/ / )

Y

Abbildung 5.1.: Nanodraht mit Radius a. Der Querschnitt zeigt das Betragsquadrat der
Wellenfunktion ¢o(r ), die zum niedrigsten Subband gehort. Die Elek-

tronen konnen sich durch die Beschrénkung auf das unterste Subband in
der yz-Ebene nicht bewegen.

5.2. Nanodrahte

In diesem Abschnitt sollen die Wigner-Maxwell Gleichungen fiir metallische Nanodréhte
entwickelt werden. Der Draht erstrecke sich entlang der z-Achse und besteht aus peri-
odisch zusammengesetzten Elementen der Linge L, die durch eine Ionendichte n;(r) cha-
rakterisiert sind. Die Bewegung in der Querschnittebene zum Draht ist quantisiert. Zur
Vereinfachung des Modells wird nur das energetisch niedrigste Subband betrachtet, was
letztlich dazu fiihrt, dass keine Bewegung in der Ebene mdoglich ist. Die Gleichungen, die
in den néchsten Unterkapiteln hergeleitet werden, sollen vor allem in numerischen Simu-
lationen benutzt werden konnen. Um die Komplexitét moglichst gering zu halten, werden
hier nur statische Coulombfelder beriicksichtigt und das Vektorpotential des Lichtfeldes
wird ausser Acht gelassen. Um elektronische Anregungen im Draht zu erzeugen, dient ein
eindimensionales Storpotential vp im Draht. Dessen Wirkung entspricht dem eines elek-
trostatischen Feldes entlang des Drahtes mit einer so schwachen Zeitabhéngigkeit, dass
Retardierungseffekte nicht beachtet werden miissen. In diesem Zusammenhang sollten
Gleichungen, die in den néchsten Kapiteln hergeleitet werden, besser als Wigner-Poisson
Gleichungen bezeichnet werden.

Es besteht ein wesentlicher Unterschied zwischen den hier betrachteten Nanodrih-
ten und jenen, welche in Kapitel B23 {iber die DFT beschrieben werden: Hier wird nur
die Bewegung der Elektronen entlang des Drahtes beschrieben, wohingegen die DFT-
Rechnungen nur die Bewegung in der Querschnittsebene beriicksichtigt haben. Lisst
man den Radius a des Drahtes gegen Unendlich gehen, sollten sich die Berechnungen mit
den DFT-Rechnungen von Metallfilmen (s. Kap. B) vergleichen lassen.
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5.2. Nanodrédhte

5.2.1. Hamiltonoperator

Der Hamiltonoperator fiir den Nanodraht ist dhnlich wie der in Gl. B8 aufgebaut. Die
Bestandteile sind selbsterklarend:

I:Ikin = —Z/d3T¢’T(r,S)

1 ;5 = /A TN () N
He = 3 Z/ d?’r/ & W (r, )W (x', 8 )U (Jr — /) B (', ') (r,s) (5.39b)

2

W2,
Qmev U(r, s) (5.39a)

18 = _Z/d3r/d3r/xi;*(r,s)ni(r')U(\r—r’|)xif(r,s) (5.39¢)

Hp = > / Brit(e, s)op(r, t)U(r, s) (5.39d)

H = Hin + A + HE + Hp (5.40)

Der Draht ist zunéchst wie alle physikalischen Systeme dreidimensional. Im n#chsten
Kapitel wird gezeigt, wie die Symmetrie des Systems zur Vereinfachung der Gleichungen
genutzt werden kann.

5.2.2. Eindimensionale Impulsbasis

Es wird zunéchst ein vollstindiger Satz von orthonormalen Funktionen bend&tigt, mit
denen der Nanodraht besonders einfach beschrieben werden kann. Die Zylindersymmetrie
und die unendliche (L-periodische) Ausdehnung entlang der x-Achse legen folgende Form
der Wellenfunktionen nahe:

1 —ikx *
lbﬂ,k,a(%',ll,s) = ﬁ¢g(rl)e k 58,0’7 /dQTl(ﬁnlﬁan - 521@2 (5.4.1)

Das Zahlentupel n enthélt bei Zylindersymmetrie die Quantenzahlen (I, m) und die Quan-
tenzahl k charakterisiert die ebene Welle entlang des Drahtes. Fiir diese Funktionen kon-
nen z.B. die Eigenfunktionen des effektiven Potentials des Drahtes gewdhlt werden. Die
Quantenfeldoperatoren konnen in dieser Basis entwickelt werden:

A 1 .
U(r,s) = ——= Z gb;(rL)e’kxéﬂ,k,s (5.42a)
VL =
. 1 .
Ul(r,s) = —= Z ¢Q(I'J_)€_’kaél ks (5.42b)
\/E ﬂ,k =

Die Entwicklung kann nun in die Operatoren b=39a-5-39d eingesetzt werden. Dabei wird
von der bereits erwidhnten Beschrinkung auf das unterste Subband Gebrauch gemacht.
Die folgende Rechnung zeigt exemplarisch, wie diese im Fall des kinetischen Anteils Hyiy
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5. Wigner-Maxwell Gleichungen

aussieht:
Hkin = —Z/dBT\IJT
:@ﬁzzz

s ny, k1 ﬂgka

3 —ik . 2 ik ik 2
[ (k)20 + 0 6,) 8,

Beschriankung auf unterstes Subband (n;,ny, — 0):

I:Ikin = 2 LZ Z /d3T¢ € ik ((Zk) zk2x¢ +€Zkzmasl¢0> é};l,sakz,s
Me & ke
_ ik k 2
BTy [facnron
S k‘l ko

+ / due k1o gikae / dPr ¢38§L¢0] R T

h?

L S P+ BT e
5 ky,ko

h? 2

= o 2 2R T s
s k
R - T
- SN il i oo P
s k 2me

Der orthogonale Anteil ¢y der Basisfunktionen fithrt zu einer Konstante 7';, die in die
Grofse e integriert wurde. Wenn man statt des Drahtes einen Metallfilm beschreiben
will, gilt ¢9 = 1 und die Konstante T, verschwindet.

Fiir die restlichen Operatoren b=39B8-639d zeigt sich ebenfalls, dass die Beriicksichti-
gung des orthogonalen Anteils ¢g iiber Korrekturen an den Matrixelementen, welche aus
Herleitungen fiir ein eindimensionales System stammen, mdglich ist. Letztlich bedeutet
das, dass fiir den Nanodraht anstelle der Entwicklung 64236471 fiir die Feldoperatoren
direkt die eindimensionale Impulsbasis gewahlt werden kann:

- 1
U(r,s) = — Z e*TaL ¢ (5.43a)
ﬁ k
. 1 .
Ul(z,s) = —= Z e*’kxéz (5.43b)
ﬁ k ’S

Die Spinquantenzahl s wird ab hier gelegentlich im Verbundindex k untergebracht, wenn
es der Ubersichtlichkeit dient:

(k,s) — k
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5.2. Nanodrédhte

Da sich das System L-periodisch entlang der x-Achse fortsetzt, sind folgende diskrete
Werte fiir die Quantenzahl &k erlaubt:

k e {Q;n, n e Z} (5.44)

Durch Einsetzen der Feldoperatoren b23a-b43H lassen sich nun die eindimensionalen
Versionen der Operatoren b=39a-6-39d formulieren:

Rk —Ty)

Hin = ngaltak mit  eg ::T (5.45a)
k (&}
A 1 T
He = §ZUqaLaL,ak/+qak_q (5.45D)
kK q
18 = = ni@)Usdfan (5.45¢)
kK \q
Hp(t) = Y vp(q.t)afdrg (5.45d)
k.q

Die Form des Drahtes (d.h. der ¢o-Anteil) steckt in den Matrixelementen U, (s. Kap.
b623). Bei dem Matrixelement vp fillt dagegen der ¢o-Anteil raus (s. Kap. b23).

5.2.3. Coulombmatrixelemente

Es wird von der dreidimensionalen Yukawa-Form der Coulombwechselwirkung ausgegan-

gen®:

2 —KT
q@ e
v(r, k) = 47:;0 " (5.46)

Die folgende Herleitung zeigt nur die wesentlichen Schritte (siehe z.B. Anhang 1 in [I77]).
Mit |n,k,o) wird ein Zustand bezeichnet, dessen Wellenfunktion die Form aus Glei-
chung BT hat. Wegen der Beschrinkung auf das unterste Subband wird zur Abkiirzung
|k,o) :=|0,k, o) definiert.

Unter Beriicksichtigung der Impulserhaltung lasst sich das Matrixelement U, iiber
folgenden Ausdruck berechnen:

2 —KT12

e ~ ~ N
Uq(/i):43:60(1;k+q,a|<2;k—q,alﬁ]2; k,o)|L; ko), 7o = |t1 — o] (5.47)

An dieser Stelle kann von der Fouriertransformation von e~""2 /ri5 Gebrauch gemacht
werden:

e M2 d?’q3 4

ra ) 27 %+ K2

i (r1—r2) (5.48)

'Die Verwendung einer abgeschirmten Coulombwechselwirkung hat sich bei den DFT-Rechnungen als
niitzliches Werkzeug erwiesen (s. Kap. B1-1) und soll daher hier ebenfalls beriicksichtigt werden
koénnen.
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5. Wigner-Maxwell Gleichungen

Das Matrixelement ist dann gegeben durch:

2

q; dq | 47 9

U _ F 4
() 4meg / (2m)2 g% + ¢ + Hz‘ (@)l (5.49)

Hm)Z/fUWMUW4M“

Die Gréfe |F(qy)|?, welche die Dichte |¢o(ry)|? im Querschnitt beschreibt, wird als
Formfaktor bezeichnet. Fiir einen Draht mit Radius a und gaussférmiger Wellenfunktion
im Querschnitt (s. Abb. B1) erhélt man:

2
do(ry) = \/Weﬂqi/(ﬁ (5.50a)

2
= Uy(k) = —;—egoe(qQJr”Q)ain(—[qQ+/<52]a2) (5.50D)

Bei ,,Ei(z)“ handelt es sich um die Exponential-Integral Funktion?.

5.2.4. Matrixelemente des St6rpotentials

Das Storpotential sei im Ortsraum nur von « und ¢ abhéngig und durch eine L-periodische
Funktion f,(z,t) gegeben:

Up(r7t) = fp(ea: : rat) (5.51)

Um zu zeigen, dass dadurch der ¢g-Anteil der Wellenfunktion keinen Einfluss auf das
Matrixelement vp hat, wird nochmals bei dem Operator in GI. angesetzt:

Hp = Z/d37’\iﬁ(r,s)vp(r,t)\il(r,s)
= XN [ dronre for (e A s

S k1 ko
© LEES [
s k1 ko
= YD vk~ ko )a], s
s k1 ko

= va(q,t)ézékﬂ (Verbundindexschreibweise)

Das Matrixelement vy (g, t) ist dabei als folgender Fourierreihen-Koeffizient gegeben:

1 L/2 )
wlet) = [ lee wds (5.52)
~L/2
In einer numerischen Simulation des Nanodrahtes wiirde man vermutlich f;, im Ortsraum
vorgeben wollen, so dass man die Matrixelemente v, (g, t) mittels (diskreter) Fouriertrans-
formation berechnen muss.

*Def.: Ei(z) = — [ dt6 s. [B1]

98



5.2. Nanodrédhte

5.2.5. Bewegungsgleichung der Kohdrenzenmatrix

Die Herleitung der Bewegungsgleichung ist in Anhang B3 gegeben. Die Gleichung
lautet in Hartree-Fock Naherung:

L0t A A
ZFLa(aLam ~ (ew — er)(afan)

- Y
+ D {UuLlne(a) = mi(@)] + vela, 0} (8w ) — (8l ax) ) (5.53)

Der Austauschterm X,y wird in Gl. B=32 definiert.

5.2.6. Observablen

Fiir ein eindimensionales System wie dem Nanodraht besteht die Mdglichkeit, die Koha-
renzenmatrix anstelle der Wignerverteilung in einer numerischen Simulation zu betrach-
ten. Damit konnen z.B. die Ndherungen, welche bei der Transformation in das Wignerbild
(Kap. b2Z8) gemacht werden, untersucht werden. Daher werden in diesem Abschnitt ei-
nige der wichtigsten Observablen aufgefiihrt, welche ansonsten aus den Momenten der
Wignerverteilung berechnet werden wiirden:

e Teilchendichte:

(i(r)) = (1) ¥(r)) = ) e (i(q)

= %Z etz <Z<ézré,l+q>> (5.54)

l

e Stromdichte:
2 q\ . N
Gr(a) = =3 (k+3) (GLaw) (5.55)
k
Da kein Vektorpotential A vorhanden ist, ergibt sich nur ein paramagnetischer

Strom und der diamagnetische Anteil entféllt.

o Gesamtenergie:
Bges = <1ff> )
= (I)+(V)
2.2 R R
= 3 (ko) + (o) + (Ve (5.56)

. 2me

Die potentielle Energie innerhalb des Elektronengases ist gegeben durch eine Sum-
me von 4-Punkt Erwartungswerten. Diese werden in Hartree-Fock N&herung ap-
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5. Wigner-Maxwell Gleichungen

Abbildung 5.2.: Ausschnitt aus der Kohdrenzenmatrix (é;féj) Die Indizes 7, j stehen fiir

Zeilen- und Spaltenindex. Mit der Hilfsgrofe pq(k) (s. Gl. bB0) bewegt
man sich auf der g-ten Nebendiagonalen. Mit ¢ > 0 bewegt man sich
innerhalb der unteren- und mit ¢ < 0 auf der oberen Dreiecksmatrix.

proximiert:
N 1 o N .
(Vee) = 2 Z Uq<az,sa};',s’ak’+q75’ak—q,8>
kfl%s’,q
1 A At 4 N
~og Z Uq<a;rc,sa;rc’,s/ak’+‘1=5/ak—q75>s
kg
1 4 R A R
= 5 2 Ug (8] 8k-qs) ] o) = (6w (@ y ko))
kg
L . . 1 T A
= S UM (@) 5 3 ST Uala] ) B i) (557
q q s,s!
k!

Die potentielle Energie zwischen beiden Teilchensorten ist gegeben durch:

(Vi) = — Z UqgL (2(—q)) niq) (5.58)

5.2.7. Eigenschaften der Kohdrenzenmatrix

Die Eigenschaften der Kohdrenzenmatrix sind fiir numerische Simulationen, welche direkt
bei der Bewegungsgleichung b33 dieser Matrix ansetzen, besonders relevant.

Als erstes soll untersucht werden, wie man eine Teilchendichte n™ (x) = (i(z)) mit ver-
schwindender Stromdichte vorgeben kann, da eine solche Konfiguration als Anfangsbe-
dingung dienen kann. Das Verschwinden der Stromdichte wird durch folgende Gleichung
ausgedriickt:

0=Gra) = = 3" (k+3) tal_y) ¥ 4 (559)
k

Dazu wird eine Hilfsgréfse definiert:

pq(k) = (8] _ k) (5.60)
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Der Index ¢ gibt die Nebendiagonale an entlang der man sich mit dem Argument k& be-
wegt. Die Bedingung fiir Erwartungswert der Stromdichte lautet unter Verwendung
dieser Hilfsgrofe:

0 = LS (k+ D) outh) (ks kta/2)
= S k- a2)
k
— % [Z kpg(k —q/2) = > kpg(—k — q/2) (5.61)
k>0 k>0

Die Hilfsgrofe p, (k) muss fiir die Forderung (jp(g)) = 0 daher folgende Bedingung erfiil-
len:

Pg(—a/2+ &) = pe(—q/2 = §) (5.62)

In Abbildung B2 befinden sich die Matrixelemente mit & = 0 auf der rot gestrichelten
Diagonalen. Anschaulich liegt die Bedingung (jp(¢)) = 0 dann vor, wenn die ¢-te Neben-
diagonale symmetrisch beziiglich des Matrixelementes ist, dass sich auf dieser Diagonalen
befindet.

Fiir die Fouriertransformierte der Ladungsdichte (s. Gl. B54) gilt:

() = 7 3G = 13 ) (5.6
! l
Die Summe iiber die g-te Nebendiagonale ergibt die Ladungsdichte. Damit ist nun klar,
wie im Prinzip ein Zustand mit verschwindender Stromdichte und vorgegebener Ladungs-
dichte in der Kohérenzenmatrix vorgegeben werden kann.

In einer zeitabhingigen Simulation des Nanodrahtes wiirde man zur Zeit ¢ = 0 mit
einem elektronischen Grundzustand starten, der die Eigenschaften (jp(g)) = 0 als solcher
besitzen muss. Das Problem, diesen Zustand zu bestimmen, 14sst sich mathematisch iiber
ein Variationsproblem formulieren:

dEges[ne(x)] = 0, Nebenbed.: /ne(:v) dx = Nep = Nion (5.64)

Die Energie Eges ist nach Gl. zu berechnen. Die Variation enthilt dabei zwei Variati-
onsschritte: Zunéchst wird eine Ladungsdichte, die mit der Nebenbedingung kompatibel
ist, ausgewdhlt. Dann werden die g-ten Nebendiagonalen (inkl. Hauptdiagonale) unter
Beriicksichtigung der Bedingung b3 so variiert, dass die Energie minimal ist.

Fiir die Numerik ist die Symmetrie der Kohdrenzenmatrix des weiteren noch wichtig,
damit keine redundanten Informationen gespeichert werden miissen. Fiir den Erwartungs-
wert eines Operators b gilt (b)* = (b') und daher gilt fiir die Matrixelemente:

((afa)h) = (aJar) = (afay)” (5.65)

Die Matrix ist also hermitesch und es muss nur eine Dreieckshélfte gespeichert werden.

Die Besetzungen (éLéQ (d.h. die Diagonalelemente) miissen reellwertig sein und auf-

grund des Pauli-Prinzips die Bedingung 0 < (éLélJ = (éL Jak,s) < 1 erfiillen.
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5. Wigner-Maxwell Gleichungen

5.2.8. Transformation in das Wignerbild

Die Herleitung ist in Kapitel A5 gegeben. Dazu werden die Hin- und Riicktransforma-
tionen fiir die Wignerfunktion benétigt:

flak) = D (AL nakrg) (5.662)
q

iy A ke /

(agap) = 7 /e f(z, [k +E'/2)dz (5.66b)

Die Bewegungsgleichung der Wignerverteilung lautet insgesamt:

SR = SIEh| 4 Sfeh)| + Sk )
~ _:Zai (2, k)
v 2 Dgw) 2 ra k)
g acy @) 00 )] — 0.80(w) - 1S (0, )
+ %%vp(x)-%f(x,k) (5.67)

Aufgrund der Gradientenentwicklung (Gl. B38) im Hartree-, Fock- und Storterm handelt
es sich um eine Niherung® der Bewegungsgleichung.

®Das Fehlen des Korrelationsterms stellt natiirlich eine weitere Niherung dar.
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5.3. Wigner-Poisson System

5.3. Wigner-Poisson System

In Kapitel bB231 wird die Herleitung der eindimensionalen Wigner-Poisson Gleichungen
skizziert. Dieses fundamentale System von Gleichungen stellt eine starke Vereinfachung
der Wigner-Maxwell Gleichungen dar, bei der Austausch und Korrelation der Teilchen
sowie die Retardierung vernachléssigt werden. In Kapitel B33 wird das Quantenmecha-
nische Hydrodynamik-Modell (QHD) aus [22, 23] vorgestellt und dessen Stérken und
Schwéchen im Vergleich zu den Wigner-Poisson Gleichungen und DFT-Rechnungen er-
lautert.

5.3.1. Herleitung

Ein Ensemble von M Systemen mit N fermionischen Teilchen wird durch eine Dichte-
matrix p beschrieben:

M
p(t) = palta(t)) (Wa(t)] (5.68)

a=1
I/Ja(rl,...,I‘N,t) = <I‘1,...,I‘N’1/Ja(t)> (569)

Die N-Teilchen-Wignerverteilung hat 2N + 1 Argumente:

N1, 2N, 0N, ) = N(me)Ni /steX m
1,V1y .y LN, UN, onh a:1pa P Y

X¢Z($1 + 81/2, vy TN T SN/Q,t)
X¢a($1—81/2,...,1’N—8N/2,t) (570)

Diese hat folgende Normierungseigenschaft:

/de/de fN(azl,Ul,..,xN,vN,t) =N (5.71)

Um Systeme von identischen Fermionen zu beschreiben, miissen die N-Teilchen Wellen-
funktionen die entsprechende Antisymmetrie aufweisen. Uber die Schrodingergleichung
kann nun die Dynamik der Verteilung hergeleitet werden:

GO RN LN
"o = o, = 0x} Vi@, -2 (5.72)

Die potentielle Energie soll speziell folgende Form haben, wie sie fiir Systeme mit Cou-
lombwechselwirkung vorliegt:

V(zy,.an) =Y W(lz — ) (5.73)

i<j
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5. Wigner-Maxwell Gleichungen

In diesem Fall kommt man auf folgende Bewegungsgleichung fiir die Ein-Teilchen Wig-
nerverteilung:

aof of Mme , ,
5 = V1 9r.  2ni2 /dsldvld:cgdUQ
X exp <_ime[v’1 - U1]51>
h
X (W(|3§1 — X9 + 81/2|) — W(’.%l — T2 — 81/2|))
xf(Q)(xl,vi,mg,vé,t) (5.74)

Wie man sieht, hingt die Dynamik der Ein-Teilchen Verteilungsfunktion f von der
Zwei-Teilchen Verteilungsfunktion f(?) ab. Hier liegt die quantenmechanische Form der
BBGKY-Hierarchie vor, bei der jeweils die Verteilung £ von f("+1) abhingt [62].

Dieses Hierarchieproblem kann durch Vernachlissigung der Korrelationen gelost wer-
den:

FO (@1, 01, 29, v2,8) = f(21,01,t) f(x2,v2,t) (Hartree mean field - Niherung) (5.75)
Die Verteilung f héngt mit einem (selbst-konsistenten) Potential W, zusammen:
Wz t) = /dw’/dvf(a:',v,t)Wﬂx—x’|)
= /dx/n(az/,t)Wﬂx —a'])

Mit Hilfe des Funktionales K

. . ;o
K[WSC|U/1 —_ ’(]17:[,‘17t] —= _;::;/92 /d81 exp (_M)
S1 S1
x [Wsc (:m + E’t) — Wi (xl . E,t)] (5.76)

und der Hartree-Faktorisierung von f(®) (Gl. B223) kann die Bewegungsgleichung 674
formuliert werden:

0 0

87{ +v18xf1 = /dvi K[Wsclv] — v1, 21, t] f(21, 0], 1) (5.77)
Am Ende steht das Wigner-Poisson System da (welches auch unter dem Namen ,Quan-
ten Vlasov System“ bekannt ist):

0 0

a—J; + va—i = /dle[WSCW —wv,z,t] f(z,0 1) (5.78a)
0? .
a—ﬁ = —g—o (/ dv f(z,v,t) — no) (Wee = qed) (5.78b)

In der Poissongleichung wurde eine homogene, feste Hintergrundladungsdichte —gqeng
hinzugefiigt.
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5.3. Wigner-Poisson System

5.3.2. Fluidmodell fiir ein Quantenplasma

Die Wigner-Poisson Gleichung ist fiir viele Anwendungen zu unhandlich, da es sich um
eine Integro-Differentialgleichung handelt, der 2 - d-dimensionale Phasenraum diskreti-
siert werden muss und die Verteilungsfunktion mehr Informationen enthéilt, als man
eigentlich bendtigt. Daher liegt es nahe, ein makroskopisches Modell basierend auf der
Wigner-Poisson Gleichung zu entwickeln, das die wesentlichen Quanteneffekte beibehilt
und gleichzeitig numerisch leichter zugénglich ist.

Die Informationen, welche man aus der Verteilungsfunktion fiir makroskopische Syste-
me benotigt, ergeben sich aus den Momenten der Verteilung:

n(xz,t) = /f(ac,v,t) dv : Teilchendichte (5.79a)
1
u(z,t) = /fv dv : mittlere Geschwindigkeit (5.79b)
n(z, t)
P(z,t) = me </ fo*dv — nu2> : Druck (5.79¢)

Durch Einsetzen der Gleichung b78d in b=7/9d,6790 erhilt man eine Kontinuitétsglei-
chung fiir die Teilchendichte und eine Euler-Gleichung, wie sie aus der Fluiddynamik
bekannt ist:

on  O(nu)
o + i 0 (5.80a)
ou ou go 0 1 OP

Der Druckterm in Gleichung enthélt die quantenmechanisch bedingten Abweichun-
gen von einem klassischen Modell. Die Aufschliisselung dieses Druckterms erfolgt in [22]
anhand der Aquivalenz des Wigner-Poisson Systems und des Schrodinger-Poisson Sys-
tems [63]. Letzteres ist gegeben durch:

L0 h? 0%, B

ih at - _2me 85[32 "‘(Je@/’m a = 17'”7M (581&)
> Qe - )
02 = e (Nazlpa!wa(w,t)! — g (5.81b)

Der Zusammenhang zwischen der Verteilungsfunktion des statistischen Ensembles aus
M Systemen und den einzelnen Wellenfunktionen mit Gewichtung p,, ist bereits in GI.
b 70 gegeben worden.

Mit der Aquivalenz beider Systeme liisst sich zeigen, dass der Druckterm folgenderma-
Ren tiber die Wellenfunktionen ausgedriickt werden kann:

N2 & o> . 0% %y,
Po= 4me lpa (2 O ~Ya 0z? ~ Yo Ox?
2
NR? [ & N
+ mon [Zpa (% 5y Ve 895) (5.82)
a=1
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5. Wigner-Maxwell Gleichungen

Als néchstes wird die Wellenfunktion in Polardarstellung eingesetzt:
Yal@,t) = Aa(a, )e S0/ (5.83)

Damit kann man zeigen, dass sich der Druck aus folgenden Anteilen zusammensetzt:

Po= "5 5 Pabp(Ua — ug)? . kinetischer Druck
P={ + Pym= mge” ZQa,B Dabp(ud — u%)2 : osmotischer Druck (5.84)
+ Po= —f—nz% Inn : quantenmech. Druck

Dabei ist u, die kinetische- und u? die osmotische® Geschwindigkeit:

o LOSu B 04 o

me Ox = % me A,

o _

(5.85)

Die neuen Gewichtungen p, héngen folgendermafien mit den bisher verwendeten Gewich-
tungen p, zusammen:

_ NpaAi

n (5.86)

Da
Im klassischen Limes i — 0 verschwinden die Anteile Py, und Fqy.

*

Da der Druck P nur iiber Kenntnis der mikroskopischen Wellenfunktionen ¥, berechnet
werden kann, liegt bis jetzt noch keine makroskopische Beschreibung des Elektronengases
vor.

Der entscheidende Schritt besteht nun darin, die Anteile Px und P,g, durch einen
neuen, ,klassischen Term P, zu ersetzen, welcher nur von der Dichte n abhingt®:

P = Pk+Posm+PQ
h’n 02

Pe(n) = G 022

Inn (5.87)

Wie in [22] gezeigt wird, ldsst sich damit die Quanten Euler Gleichung formulieren,
welche fiir 2 — 0 in die klassische Euler-Gleichung der Fluiddynamik iibergeht:

(5.88)

ou du 1 O0F(n) ge 09 i d i@Q\/ﬁ
Vn 0z?

ot u%__men oz Mme O 2m§%

Zur Untersuchung ultraschnell ablaufender Phédnomene wire fiir P.(n) eine adiabatische
Zustandsgleichung sinnvoll, da sich kein thermisches Gleichgewicht auf den betrachteten
Zeitskalen einstellen kann.

P

s. [B4]

*Der Ansatz wird iiber die Dichtefunktionaltheorie motiviert (s. S.361-362 in [22]) und hat vermutlich
eine dhnliche Giiltigkeit wie die ALDA-Naherung (s. Kap. E222).
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5.3. Wigner-Poisson System

Der ganz rechts stehende Term in Gleichung bS8 wird als ,Bohm Potential* bezeichnet:

2o (1 0%/n
VBohrn = 27177]267% <\/ﬁ (91’2 > (589)

In [65] wird gezeigt, dass dieser Term speziell fiir Nanostrukturen die gleiche Bedeutung
wie der Fermi-Druck des semiklassischen Modells (Gl. [6H) hat. In aktuellen Publika-
tionen (z.B. [I2]) fehlt dieser Term in den gezeigten Modellrechnungen. Zur Verifikation
der bisherigen Ergebnisse, die nur den Fermi-Druck beriicksichtigen, sollte in zukiinftigen
Arbeiten die Bedeutung des Bohm Potentials genauer untersucht werden.

Die Limitierungen dieses Modells |63] sind Folgende:

e Das Modell ist nur auf Lingenskalen [ > Ap (Thomas-Fermi Abschirmlinge, s. Gl.
[10) giiltig. Daher zeigen die Ergebnisse fiir die elektronische Grundzustandsdichte
eines Metallfilms (s. Abbildungen 1 und 2 in [63]) auch keine Friedel-Oszillationen
(s. Kap. B12).

e Das Phénomen der Landau-Dampfung, welches in den Wigner-Poisson Gleichungen
noch enthalten ist [09], fehlt in der makroskopischen Beschreibung.

Als zentrale Verbesserung des Modells wird in [63] noch das Hinzufiigen eines D&mp-
fungsterms, wie er bereits in Gl. [6H enthalten ist, vorgeschlagen.
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6. Numerik

6.1. Losungsverfahren fiir stationdre Kohn-Sham
Gleichungen

6.1.1. Problemibersicht

Die zeitunabhéngigen Kohn-Sham Gleichungen haben aus numerischer Sicht folgende
Struktur:

N

{fsln™Io; () = 2j0,(r)} (6.12)

j=1

N
n” () =) wjle; ()] (6.1b)
j=1

Bei ﬁKs[n_] handelt es sich um einen linearen Operator, welcher allerdings in nicht-
linearer Form von der Teilchendichte n™ (r) abhéngig ist. Die Losung dieser Gleichungen
hat die Eigenschaft, dass die ,Eingabedichte“ n~ in Gl. EIa mit der aus den Orbitalen
resultierenden Dichte in Gl. BIH {ibereinstimmt.

Dieses Problem wird numerisch folgendermafen gelost: Fiir eine vorgegebene Einga-
bedichte n™ stellt die Gleichung BTa ein gewdhnliches Eigenwertproblem dar. Eine Dis-
kretisierung mittels Finiter Differenzen macht aus dem Operator Hys[n~] eine endlich
grofe Matrix und aus der Orbitalfunktion ¢; einen Vektor:

{His[nly; = v} (6.2)

Es werden die N niedrigsten Eigenwerte und Eigenfunktionen der Matrix Hgg[n ™| be-
notigt. Dieses numerische Eigenwertproblem kann im Prinzip mit einer breiten Palette
von Algorithmen [66] gelost werden. Die Matrix Hgg[n ] verfiigt aber iiber bestimmte
Eigenschaften, welche nur den Einsatz ganz spezieller Methoden erlaubt. Eine der derzeit
geeignetsten Methoden wird in Kapitel B1-2 beschrieben.

Wenn das Eigenwertproblem BI3d fiir feste Eingabedichte geldst werden kann, besteht
die néchste Aufgabe darin, genau die Dichte zu finden, welche beide Gleichungen ETa
und BTH gleichzeitig erfiillt. Ein geeignetes Verfahren wird in Kapitel BE13 présentiert.

Beide Teilprobleme sind Gegenstand aktueller Forschung, wie an den Referenzen in
den nachfolgenden Kapiteln zu sehen sein wird. Hier gilt es einen Kompromiss zwischen
hoher Effizienz? und angemessener Einarbeitungszeit zu finden.

'Hohe Effizienz ist meistens gleichbedeutend mit der Verwendung neuester Algorithmen, die dann aber
nur fiir ganz spezielle Probleme geeignet sind.
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6.1.2. Propagation in Imaginarzeit

Die Matrix Hxg[n™] ist reellwertig, diinn-besetzt und symmetrisch. Die Anzahl von Zei-
len und Spalten ist gleich der Anzahl von Gitterpunkte des diskretisierten Simulations-
raums. In der Praxis liegt diese Anzahl meistens in der Gréfenordnung 102 ...105. Fiir
10%...10% konnen zur Diagonalisierung noch Verfahren benutzt werden, welche auch fiir
dicht-besetzte Matrizen entwickelt wurden. Fiir grofere Matrizen muss ausgenutzt wer-
den, dass diese diinn-besetzt sind und nur eine kleine Anzahl der niedrigsten Eigenwerte
und Eigenvektoren bendtigt werden.

In dieser Arbeit wird das Eigenwertproblem mittels ,Propagation in Imaginirzeit®
(ITP?) geldst [67]: Dazu wird die zeitabhingige Schrédingergleichung in Imaginirzeit

T=—1it
formuliert:
oY .
_her = H .
0~ iy (63)

Der Operator H ist der zeitunabhingige Hamiltonoperator, zu dem das Eigenwertpro-
blem H¢; = €;¢; gelost werden soll (d.h. hier: H = Hykg[n™]). Der Propagationsoperator
in Imaginérzeit lautet entsprechend:

U(Ar) = e~ ATH/ (6.4)

Die Funktionsweise dieser Methode lasst sich iiber die Spektralzerlegung des Operators
H erlautern:

H=> el ol (5 <ejr) (6.5)

Jj=0

(Zur Vereinfachung wird hier ein rein diskretes Spektrum ohne Entartung betrachtet.)
Wendet man nun den Propagator 64 auf einen Zustand |x) mit diversen spektralen
Anteilen an, erhdlt man fiir A7 — oo den Grundzustand |¢g):

Ix) = colpo) + ci|é1) + ... (6.6)
AN = coe 2T Mgg) 4 e e 2T H M) 4
= ¢ e_ATEO/h|¢0> + 1 e_ATal/h|¢1> + ... (67)

Da ¢¢ der kleinste Eigenwert ist, verschwindet dieser spektrale Anteil von |y) am lang-
samsten. Zerlegt man das Propagationsintervall in N kleine Intervalle A7 = N7 und
normiert nach jedem Zeitschritt §7 den resultierenden Vektor, erhdlt man ein Extrakti-
onsverfahren, welches den Spektralanteil mit kleinstem Eigenwert aus |x) in normierter
Form fiir N — oo hervorbringt.

2engl.: imaginary time propagation
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Damit bleiben noch zur vollstdndigen Losung des Eigenwertproblems 62 die Fragen
offen, wie der Propagationsoperator B numerisch realisiert werden kann und wie man
nicht nur den Grundzustand von H sondern die ersten N Eigenzusténde berechnen kann:

In [67] wird die Splitoperator-Methode ,SO4“ (s. Gl. E43) vorgeschlagen, um den Ope-
rator U (A7) zu approximieren. Die Taylorreihenentwicklung 4. Ordnung (s. Gl. 638) hat
sich allerdings in dieser Arbeit fiir alle Eigenwertprobleme als vollig ausreichend erwiesen.
Wenn es auf aller hochste Performance ankommt, sollten die Analysen aus [67] bertick-
sichtigt werden® um die entscheidenden Optimierungen am verwendeten Algorithmus
einzubauen.

Die Berechnung der ersten N Eigenzustédnde erfordert ein spezielles Orthogonalisie-
rungsverfahren, welches im nichsten Kapitel beschrieben wird.

6.1.3. Orthogonalisierungsverfahren

Um die ersten N Eigenwerte und Eigenvektoren einer Matrix H mit der ITP-Methode zu
berechnen, macht man folgenden Ansatz: Man wahlt N Startvektoren ]X(()O)>, . X§3)>,
welche jeweils iiber alle spektralen Anteile der Matrix H verfiigen. Das erzielt man da-
durch, dass man die zugehorigen Vektordarstellungen dieser Vektoren mit Zufallszahlen
vorbesetzt. Im Prinzip geht man dann einfach so vor, dass diese Vektoren jeweils alle um
einen kleinen Zeitschritt 7 propagiert und anschlieffend untereinander orthogonalisiert
und normiert werden:

%) =0y = g (6.8)

Man erzeugt nach diesem Schema aus jedem Satz von Vektoren | ng)> einen neuen Satz

kH)} von orthonormalen Vektoren. Naheliegender Weise wiirde man hier das Ortho-

X
gonalisierungsverfahren von Gram-Schmidt? benutzen. Es ergeben sich nach geniigend
Iterationen die gesuchten Eigenvektoren (aus denen auch die Eigenwerte als Erwartungs-

wert des Operalor H berechnet werden kénnen):
lel |XJ > - |¢j> ( )

Die Erfahrung mit der Gram-Schmidt Methode fiir die Systeme in Kapitel @ hat aber
gezeigt, dass es zu erheblichen numerischen Genauigkeitsproblemen bei der Orthogo-
nalisierung kommt, und diese umso mehr zunehmen, je mehr Vektoren man berechnen
mochte. Dieses Problem wird auch in [67] beschrieben und ein spezielles Orthogonalisie-
rungsverfahren von Aichinger und Krotscheck [70] benutzt, das auf der Diagonalisierung
der Uberlappmatrix M basiert.

Die Matrixelemente M;; der Uberlappmatrix M sind gegeben durch:

x@+”> (6.10)

My = (V067 |07 X§7) = (VS

J

3Die dort vorgestellte ITP-Implementation mit adaptiven Zeitschritten erweist sich sogar als noch
effizienter als der legenddre ARPACK-Algorithmus: ,Implicitly Restarted Lanczos Method“ [68].
“s. z.B. Kapitel 1.7 in [6Y].
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(Der Unterschied zwischen x und x ist an Gl. B8 ersichtlich.) Fiir diese Matrix wird ein
Eigenwertproblem aufgestellt:

S Miel” = mpel™ (6.11)

(n)

Die Koeffizienten c¢;’ bilden den n-ten Eigenvektor c™ zum Eigenwert m,,. Die Di-
mension der Uberlappmatrix ist wesentlich kleiner als die Anzahl der Gitterpunkte des
diskretisierten Simulationsraums. Diese Matrix kann daher mit generischen Algorithmen
(beispielsweise aus der 1apack-Bibliothek) fiir dicht-besetzte Matrizen diagonalisiert wer-
den. Mit dem Ergebnis {m,,c(™} dieser Diagonalisierung wird nun ein neuer Satz von

Vektoren | X§k+1)> (als Ergebnis des Schemas in Gl. BR) generiert:

1 (@) (k+1)
Dy = 5 DY) (6.12)
J W ZZ:

Mit einer Rechnung lasst sich schnell zeigen, dass diese Vektoren orthonormal sind:

1 N 1 .
_ (3) (J)M - - () ()
= c\We 'l = c c
,/mimj; n ,/mimjzn: " zl: L

—_—
(4)

=mjcy;

— mzmjznjc 1/m15j 8ij (6.13)

Im nichsten Kapitel wird der fertige Algorithmus zur Diagonalisierung der Matrix Hkg
unter Verwendung dieses speziellen Orthogonalisierungsverfahrens zusammengefasst.

6.1.4. ITP-basierter Diagonalisierungs-Algorithmus

Zur Losung des Eigenwertproblems in Gl. B2 wurde fiir alle Ergebnisse aus Kapitel B
dieser Algorithmus verwendet:

1. Startwellenfunktionen ’X§O)> bestimmen (Vektoren mit Zufallswerten initialisieren)

2. In Imaginirzeit propagieren:
~(k A k
%) =060

3. Orthogonalisieren:
a) Uberlappmatrix (Gl. EI0) berechnen
b) Uberlappmatrix diagonalisieren (GI. BI1)

c) Eigenvektoren aufsteigend nach den zugehorigen Eigenwerten sortieren
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Dichte-
» Kkorrektur
Verfahren ==
”(o)(’” )
\
o . Verll
n (’):Z,th’f(")r U[e)f(f'jate
A
Kohn-
Sham -
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Abbildung 6.1.: Schleife zur Berechnung einer selbstkonsistenten Elektronendichte fiir
die Kohn-Sham Gleichungen ETa-BTH. Die Konvergenzgeschwindigkeit
wird von der Wahl der Startdichte und dem Dichtekorrekturverfahren
entscheidend bestimmt.

d) Neuen Satz von Vektoren nach Gl. BI2 berechnen

4. Weiter bei Schritt 2 bis Konvergenz der Vektoren eintritt:

I =X < e (6.14)

Eine sehr wichtige praktische Erfahrung mit diesem Algorithmus besteht darin, dass des-
sen Konvergenz erheblich verbessert wird, wenn man ein paar mehr Vektoren® berechnen
lasst, als fiir das Problem erforderlich ist.

Die Eigenvektoren mit niedrigsten Eigenwerten konvergieren am schnellsten (wie man
Gl. 620 erkennen kann). Dieses Konvergenzverhalten bringt noch einen praktischen Vorteil
mit sich: Die Eigenvektoren mit den niedrigsten Eigenwerten kénnen, sobald Konvergenz
bei diesen eingetreten ist, ,eingefroren werden: Diese brauchen vom Algorithmus wéh-
rend der Iteration nicht mehr weiter aktualisiert werden.

6.1.5. SCF lterationsverfahren

Die stationdren Kohn-Sham Gleichungen 6Ta-ETH werden iterativ gelost (s. Abb. B):
Um die gesuchte selbstkonsistente Dichte n™(r) zu finden, wird eine Startdichte ) (r)
vorgegeben, welche eine physikalisch naheliegende Ndherung der tatsédchlichen Dichte dar-
stelltS. Aus dieser Dichte wird das effektive Potential Vig[n~] berechnet. Dann wird die
Kohn-Sham Eigenwertgleichung 6Td mit diesem Potential gelost. Die resultierenden Or-
bitale werden benutzt, um die zugehdrige Elektronendichte dieser Orbitale nach Gl. B-IH
zu berechnen. Der zentrale Schritt, welcher die Konvergenzgeschwindigkeit dieses Ver-
fahrens (neben der Wahl der Startdichte) entscheidend bestimmt ist folgender: Aus der
Dichte n@)(r) muss mit einem geeigneten Korrekturverfahren eine neue Dichte n Jr1)(1')

*Fiir die 2D/3D-Systeme aus Kapitel @ wurden 5-20 Vektoren zusitzlich verwendet. Bei den 1D-
Systemen konnen statt ITP auch Verfahren aus der lapack-Bibliothek verwendet werden.

5In Kapitel B wurde fiir die gezeigten Systeme jeweils die Tonendichte n*(r) als Startdichte Ny (T)
verwendet.
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ermittelt werden, welche der tatsichlichen Dichte n{=)(r) immer niher kommt. Alle diese
Verfahren miissen die Eigenschaft haben, nach unendlich vielen Iterationen die korrekte
Dichte zu liefern:

klg{)lo ) (r) = n(r) (6.15)
Weil die Diagonalisierung der Kohn-Sham Matrix Hgg[n ™| extrem viel Rechenzeit bean-
sprucht und die Berechnung des effektiven Potentials eine ebenfalls Rechenzeit intensive
Losung der Poissongleichung (s. Kapitel 66) beinhaltet, wurden viele Verfahren entwi-
ckelt [70-73]%, die eine méglichst geschickte Dichtekorrektur erlauben um die Iterations-
anzahl so gering wie mdéglich zu halten.

Diese Verfahren unterscheiden sich nicht nur in ihrer Konvergenzgeschwindigkeit, son-
dern insbesondere auch in ihrer Stabilitdt. Das stabilste und gleichzeitig auch langsamste
Verfahren ist das simple mizing-Verfahren [[73]. Die neue Dichte i +1)(r) wird iiber einen
Mischparameter « € (0,1) der vorherigen Dichte beigemischt:

NGy (®) = [1— alng, (1) + o F [n@)} (r) (6.16)

Die Abbildung F ordnet der Eingabedichte n~ diejenige Dichte F[n~] zu, welche sich
aus den Orbitalen ergibt, wenn die Kohn-Sham Gleichungen mit dem effektiven Potential
Vet [n™] gelost werden. Die gesuchte Dichte erfiillt also die Gleichung n~ = F[n~]. Das
Residuum R(r) ist somit gegeben durch:

R(r) = n~(r) — Fln|(r) (6.17)

Damit kann Gleichung BT8 umgeschrieben werden:

My (®) = () = angy () + a F [ | ()
= n(_k)(r)—ozR r) (6.18)

Geometrisch bedeutet das, dass man sich bei diesem Iterationsverfahren immer um ein
kleines Stiick des Residuenvektors weiterbewegt, bis dieser klein genug geworden ist und
die Iteration abgebrochen werden kann:

[R(r)[| < e (6.19)

Ein alternatives Abbruchkriterium, welches nicht das gesamte Dichtefeld benutzt, besteht
darin, die Konvergenz der Kohn-Sham Eigenwerte €; zu analysieren (dieses Kriterium
kann z.B. in dem octopus-Softwarepaket |74] benutzt werden).

Die Ergebnisse in Kapitel B wurden alle mit einem Abbruchkriterium vom Typ 6I9
erzielt, d.h. speziell:

max { |n(’k+1)(r) _ n(’k)(r)\ } <e€ (6.20)
0

reQ) n

"Einige dieser Referenzen stellen Verfahren vor, in denen es allgemein um nichtlineare Gleichungen
geht.
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Dabei ist €2 der Simulationsraum, ng die maximale Tonendichte und € die relative Dichte-
dnderung bei deren Unterschreitung abgebrochen wird. Fiir € wurden Werte von 10~!2 bis
1079 verwendet. Hier muss hiiufig ein Kompromiss zwischen Genauigkeit und Rechenzeit
gefunden werden, da das simple mizing-Verfahren eine konstante Anzahl an Schritten
bendétigt um das Residuum um jeweils eine Grofenordnung zu verkleinern.

6.1.6. Adaptives Mixing Verfahren

Es ist nicht Ziel dieser Arbeit gewesen, eine Verbesserung der Selbstkonsistenzschleife
zu entwickeln, da auf diesem Gebiet schon geniigend Methoden existieren. Jedoch wurde
folgende naheliegende Verbesserung des simple mizing Verfahrens implementiert, die sich
an dem Konzept der adaptiven Zeitschritle zur Integration von Bewegungsgleichungen
anlehnt. Folgende Modifikationen sind dafiir notwendig:

e Vor jedem Schritt wird die Elektronendichte n (r) zwischengespeichert.

e Jeder Schritt besteht aus 2Ngupstep Unterschritten:

— Es werden Ngupbstep »Simple mixing“-Schritte mit dem momentanen Mischpa-
rameter a durchgefiihrt.

— Zusétzlich werden Ngupstep unabhéngige ,simple mixing*- Schritte mit 2«
durchgefiihrt, die ebenfalls auf der Eingabedichte 7, (r) basieren.

e Die beiden resultierenden Dichten werden iiber das Kriterium verglichen und
die Dichte mit besserem Konvergenzwert wird als Ausgabedichte (i1 (r) benutzt.

e Wenn die 2a-Dichte bessere Konvergenz zeigte, wird der Mischparameter verdop-
pelt und ansonsten halbiert.

e Wird eine signifikante Vergroferung des Residuums festgestellt, muss die zwischen-
gespeicherte Elektronendichte wiederhergestellt werden. Dieser Fall impliziert, dass
der Mischparameter bereits einmal halbiert wurde. Der Mischparameter muss in
diesem Fall nochmals halbiert werden, weil sonst zweimal die selbe erfolglose Rech-
nung mit identischem Mischparameter durchgefiihrt wird.

Eine Implementation dieses Verfahrens sollte die Skalierung des Mischparameters frei
einstellbar lassen, da der Faktor ,2¢ fiir manche Systeme zu grof ist. Ausserdem hilft
es, wahrend der Iteration das Konvergenzverhalten iiber die letzten 5-10 Schritte zu
betrachten, um oszillierendes oder stagnierendes Verhalten zu erkennen. Wenn dieses
Verhalten beobachtet wird, muss die Schleife abgebrochen werden, da das vorgegebene
Konvergenzziel nicht mehr erreicht wird®. Das simple mizing-Verfahren ist dann nicht in
der Lage, die Kohn-Sham Gleichungen zu 16sen®.

Die Ergebnisse fiir eine Verbesserung des Konvergenzverhaltens sind in Abbildung 62
illustriert. Die Erfahrung mit dem Verfahren hat gezeigt, dass es sich gut eignet, um einen

8Es handelt sich dabei um praktische Erfahrungswerte mit dem Konvergenzverlauf.
Einige 3D-Systeme, wie die Kugel aus [22], zeigten dieses Verhalten. Hier hat es geholfen, die Geometrie
oder die Diskretisierung leicht zu verédndern.
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Abbildung 6.2.: Das Diagramm zeigt das Residuum (620) nach jedem Iterationsschritt
bei konstantem und adaptivem Mischparameter a. Das adaptive Verfah-
ren hat ca. 150 Schritte weniger benétigt. Die CPU-Zeit hat bei diesen
Rechnungen fiir « = 0.03 14.2s und bei adaptiven « 11.5s betragen. Der
kleine Peak in der roten Kurve zeigt, dass bei dem adaptiven Verfahren
der Mischparameter zwischendurch zu grofs gewéhlt wurde und reduziert
werden musste, um divergierendes Verhalten zu verhindern.

optimalen Wert fiir den Mischparameter zu erhalten, den man dann in das a = const.-
Verfahren einsetzen kann. Um die bendtigte CPU-Zeit gegeniiber dem nicht-adaptiven
Verfahren zu verringern, muss leider viel mit den Parametern experimentiert werden.

6.1.7. Bedeutung der Abschirmkonstante fiir die SCF-Schleife

Die Berechnung des Hartree-Anteils Vi[n~| des effektiven Potentials beinhaltet die Lo-
sung der Poissongleichung:

V2 4 k2] B(r) = —Eig(r) (6.21)
0

Die elektrostatische Abschirmkonstante x hat erheblichen Einfluss auf die Stabilitat der
SCF-Schleife™: Speziell bei eindimensionalen Systemen, wie dem Metallfilm aus Kapitel
B, konnte die SCF-Schleife nicht zur Konvergenz gebracht werden, wenn keine kiinstli-
che elektrostatische Abschirmung vorhanden war. Es ist leicht nachvollziehbar, weshalb
der eindimensionale Fall besonders anfillig fiir die Instabilitét ist: Das Coulombpotential
einer Ladung am Ort 2z’ ist proportional zu |z — 2’| (entsprechend dem Feld einer un-
endlich ausgedehnten Flichenladung). Jede kleinste Anderung der Ladungsdichte n~(z),
welche die SCF-Schleife vornimmt, hat im Simulationsraum {iberall gleich grofse Auswir-
kungen auf das elektrostatische Feld. In Anlehnung an das Konzept der Konditionszahl

9. Anhang von [75].
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fiir lineare Gleichungssysteme (s. Kapitel 6238) kann man hier bei diesen nichtlinearen
Gleichungen von einem schlecht konditionierten Problem sprechen, da kleine Anderungen
an der Eingabedichte groke Wirkung auf die Ausgabedichte haben.

In dieser Arbeit konnte dieses Problem durch folgende Vorgehensweise geldst werden
[76]: Fir die Jelliumsysteme aus Kapitel B wurde x zunéchst in der Grofenordnung des
Fermivektors kr gewéhlt. Dann wurden die Kohn-Sham Gleichungen geldst. Die resultie-
rende Ladungsdichte n~ wird dann als Startdichte n(?))(r) benutzt, um die Kohn-Sham
Gleichungen mit einer verkleinerten Abschirmkonstante erneut zu lésen. Diese Schritte
wurden so oft wiederholt, bis die Elektronendichte unabhéngig von der Abschirmkon-
stante war.

Eine alternative Methode wird im Anhang von [I73] und in Kapitel 2 von |32 beschrie-
ben.

6.2. Propagatoren fiir die Kohn-Sham Gleichungen

Eine umfassende Beschreibung von Propagatoren fiir die zeitabhéngigen Kohn-Sham
Gleichungen ist in [77] zu finden. In diesem Kapitel wird ein Uberblick iiber das Thema
gegeben und es werden die Methoden, welche speziell in dieser Arbeit benutzt werden,
beschrieben.

6.2.1. Problembeschreibung

Die zeitabhéngigen Kohn-Sham Gleichungen fiir ein N-Elektronen System lauten:

2 N
{in st = (=507 Vsl (0.0 @(m)}jzl (6.22)
N
no (e t) =Y wjle;(r, ) (6.23)
j=1

Diese haben folgende strukturelle Eigenschaften, die fiir die Problemanalyse von zentraler
Bedeutung sind:

1. Es handelt sich mathematisch gesehen um N Ein-Teilchen Schrédingergleichungen.

2. Der Hamiltonoperator ﬁKg(t) ist zeitabhéngig, weil auch die Teilchendichte n™(r, t)
und eventuell vorhandene externe Storpotentiale zeitabhéngig sind.

3. Die Gleichungen sind iiber das effektive Potential miteinander gekoppelt.
Die Kopplung der Gleichungen ist dabei als nebenséchliches Problem anzusehen, da die

grofste Schwierigkeit darin besteht, die zeitabhéngige Ein-Teilchen Schrédingergleichung
effizient zu propagieren (s. Kapitel 6222).
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6.2.2. Numerische Lésung der zeitabhangigen Ein-Teilchen
Schrédingergleichung

Die Ein-Teilchen Schrédingergleichung lautet:
L0 ~

Das Losen dieser Gleichung erfordert die Vorgabe von Randbedingungen im Raum und
einer Anfangsbedingung in der Zeit:

p(0Qt) = 0 (6.25)
¢(r,0) po(r) (6.26)

Mit 2 wird der Simulationsraum bezeichnet. Die Wellenfunktion ¢ wird auf einem regu-
laren, kartesischen Gitter in diesem Gebiet dargestellt:

0ikl(t) =¢(jAze, + kAye, +1Aze,,t) (6.27)

Da bei der numerischen Verarbeitung nur endlich viele Gitterpunkte gespeichert werden
koénnen, ist auch das Gebiet {2 nur endlich grofs. Die Randbedingung 623, welche einem
unendlich tiefen Potentialtopf entspricht, wurde gewéhlt, weil sich diese besonders einfach
implementieren ldsst und fiir alle Anwendungen in dieser Arbeit geeignet ist.

Der Operator H(t) beinhaltet den Operator der kinetischen Energie, der im Ortsraum
ein skalierter Laplaceoperator ist. Dieser Operator wird auf dem Gitter mittels Finiter
Differenzen dargestellt |66, 78]. Ublicher Weise verwendet man einen 3- oder 5-Punkt
Stempel. Der Hamiltonoperator kann letztlich auf dem Gitter in Form einer endlichen
Matrix H(t) dargestellt werden. Der ,rdaumliche Anteil der Schrodingergleichung sei damit
nun ein gelostes Teilproblem.

Das verbleibende Teilproblem besteht in der Propagation der Wellenfunktion in der
Zeit: In einer Simulation muss aus der Wellenfunktion zur Zeit ¢ diese zu einem Zeitpunkt
t+ At berechnet werden. Dieses Problem kann formal iiber den Zeitentwicklungsoperator
U beschrieben werden:

ot + At) = U(t + At, t)p(t) (6.28)

O (t1, t0) = T exp <—; 0 dt> (6.29)

to

Bei dem Operator Tp handelt es sich um den dysonschen Zeitordnungsoperator [79] und
der Operator T exp wird als zeitgeordneter Exponent bezeichnet [77].

Fiir die Numerik muss der Operator auf eine endliche Anzahl an elementaren
Rechenoperationen, die auf die diskretisierte Wellenfunktion ¢; 1 ;(t) anzuwenden sind,
runter gebrochen werden. Das setzt eine Approximation dieses Operators voraus, deren
Fehler die Eigenschaft haben soll, fiir At — 0 moglichst ,schnell“ gegen Null zu gehen.
An dieser Stelle muss ein Kompromiss gemacht werden: Je besser die Approximation ist,
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umso grofere Zeitschritte konnen zwar gemacht werden, jedoch steigt der Rechenaufwand
pro Zeitschritt ebenfalls an™.

Die systematische Approximation des Operators wird als Magnus-Entwicklung
[0, BT] bezeichnet. Das Entscheidende an dieser Entwicklung ist, dass sich der Zeitent-
wicklungsoperator als einfacher Exponent eines Operators ) schreiben lasst, der in einer
Reihe entwickelt werden kann:

U(t1, o) = exp {Q(tl,to)} (6.30)
Q(t1, o) Z (t1,to) (6.31)
k=1

Die Operatoren dieser Reihenentwicklung konnen nach folgendem (rekursivem) Schema
unter Verwendung eines weiteren Operators S und der Bernoulli-Zahlen B; berechnet
werden:

) Flp o
Qp(ti,t0) = Z]—f Si(r)dr (6.32)
j=0 7" Jto
Br) = ) (6.33)
V() = 0(k>1) (6.34)
hj
Si(r) = > [Qm(tl,to), sg:}nm] 1<j<k-1) (6.35)
m=1

Die Integration in Gl. BZ32 muss mit einer numerischen Quadraturformel durchgefiihrt
werden.

Um eine Approximation des Magnusoperators Q zur Ordnung 2n zu erhalten, muss
die Reihe in Gl. EZ30 nach dem n-ten Term abgebrochen werden und die auftretenden
Integrale mit einer Quadraturformel n-ter Ordnung ausgewertet werden [77]. In dieser
Arbeit wurden die Operatoren in der zweiten und vierten Ordnung benutzt. Das Ergebnis
fiir diese beiden (praktisch wichtigen) Fille ist ebenfalls in [77] dokumentiert. Fiir einen
Zeitschritt At mit tg =t und ¢; =t + At lauten die Operatoren:

Qi) (t+ At t) = %ﬁ(t + At/2)At (6.36)
. At . A2 [ .
Qv (E+ AL t) = —227; H(&)+ H(&)| - \/f(zhgt) H(&2), H(fl)] (6.37)

E10 =t +[(1/2) F V3/6]At

Von diesen Operatoren muss jetzt nur noch der einfache Exponent aus Gl. 630 gebildet
werden und auf eine Wellenfunktion ¢ angewendet werden.

Bei der Methode der Finiten Differenzen liegt ein solcher Operator in Form einer Matrix
vor. Um den Exponenten einer Matrix zu berechnen, existieren zahlreiche Algorithmen

"1n [77] sind Erfahrungswerte fiir dieses Problem ausfiihrlich dokumentiert.
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[82, B3]. Allerdings ist diese Vorgehensweise, namlich diesen Exponenten der Matrix ex-
plizit zu berechnen, technisch kaum oder gar nicht méglich: Die resultierende N x N
Matrix ist dicht besetzt und NV ist dabei die Anzahl an verwendeten Gitterpunkten,
welche durchaus in der Gréfenordnung 103 ...10° liegen kann.

Stattdessen werden Operatoren der Form exp(fl) grundsétzlich nur prozedural auf
Wellenfunktionen ¢ angewendet, d.h. der Exponentialoperator wird durch ein Polynom
approximiert, dessen Auswertung im Wesentlichen nur die Rechenoperation flgp wieder-
holt benétigt.

Dazu gibt es folgende Moglichkeiten [i77]:

e Der Exponentialoperator wird in einer Taylorreihe entwickelt:

o0

o 1 -
exp(A)p = ;A”Lp (6.38)
v=0 "

Die prozedurale Auswertung erfolgt nach dem Horner-Schema [%4].

e An Stelle der Monombasis kann die Reihe iiber Chebyshev-Polynome dargestellt
werden:

exp(A)p =) e, T,(A)p (6.39)
v=0

Die prozedurale Auswertung erfolgt nach dem Clenshaw-Algorithmus [85]. Die For-
mel zur Berechnung der Entwicklungskoeffizienten ¢, ist in |77, 86| zu finden. Bei
dem Operatorpolynom 7, V(A) muss beachtet werden, dass der Operator in seiner
Spektralzerlegung keine Eigenwerte ausserhalb des Intervalls [—1, 1] haben darf,

weil die Chebyshev-Polynome nur auf diesem Intervall definiert sind.

e In [R7] wird eine Krylov-Unterraum Methode beschrieben, mit der sich exp(A)p
ebenfalls berechnen l4sst. Nach der Analyse der Methoden in [[77] ist diese Methode
die effizienteste von den hier Genannten. Unter anderem ldsst sich mit der Methode
auch der Fehler der Approximation leicht abschéatzen.

Die Methoden unterscheiden sich letztlich darin, wie viele Matrix-Vektor Multiplikationen
(speziell /lgp) zur Propagation pro Zeitintervall durchzufiihren sind, um eine vorgegebene
Mindestgenauigkeit einzuhalten. Fiir die gezeigten Beispiele in [[/7] bendtigte die Krylov-
Methode bis zu Faktor 2 weniger Operationen.

Fiir alle Anwendungen in dieser Arbeit ist die Taylorreihenentwicklung 4. Ordnung voll-
kommen ausreichend gewesen, weil der theoretisch moégliche Performancegewinn durch
die beiden anderen Methoden deren Implementationsaufwand nicht gerechtfertigt hat.
Die Verwendung der 4. Ordnung wird ausserdem in [77] empfohlen.

6.2.3. Alternative Propagationsmethoden

Im letzten Kapitel wurde der Zeitentwicklungsoperator mit einer Magnusentwicklung
approximiert. Diese liefert nicht nur eine Mdglichkeit, den zeitgeordneten Exponenten
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zu vereinfachen, sondern bietet auch den grofien Vorteil, dass sie in jeder Ordnung den
unitdren Charakter des Zeitentwicklungsoperators beibehélt.

Von den populéren Standardverfahren wie der Crank-Nicholson (CN) Methode [66] und
den ,Allzweck“Integratoren wie dem expliziten Runge-Kutta (RK) Verfahren wird in [77]
(ohne néhere Begriindung) abgeraten. Mogliche Griinde sind aber recht offensichtlich: Die
CN-Methode verwendet zwar eine unitére Approximation des Zeitentwicklungsoperators,
allerdings muss bei der Methode in jedem Zeitschritt ein lineares Gleichungssystem gelost
werden. Die Form des Gleichungssystems wird im Wesentlichen vom Hamiltonoperator
des Systems bestimmt. Beschrankt man sich auf eindimensionale Systeme, dann stellt
das Gleichungssystem kein numerisches Problem dar, weil die Finite Differenzen Form
des Hamiltonoperators eine tridiagonale Matrix ergibt und daher in O(N) (mit N als
Anzahl der Gitterpunkte) gelost werden kann [66]. Fiir mehrdimensionale Systeme ist
diese Methode ungeeignet, da das Gleichungssystem diese Figenschaft verliert.

Die populidren RK-Verfahren 2. und 4. Ordnung wurden in dieser Arbeit an verschiede-
nen Stellen getestet. Dabei zeigte sich immer wieder, dass in 2. Ordnung die Normierung
der Wellenfunktion nicht erhalten blieb und die Simulation schnell instabil wurde. Das
Verfahren 4. Ordnung zeigte keine signifikanten Abweichungen in der Norm der Wellen-
funktion (bedingt durch die hohe Ordnung des Verfahrens) und blieb stabil.

Die RK-Verfahren haben den Nachteil, dass die Losung nicht zeitumkehrbar ist. Pro-
pagiert man den Zustand ¢(t) um At und anschliefend um —A¢ ergibt sich ein anderer
Zustand @(t) als der Ausgangszustand:

o(t) 25 ot + At) =2 3(1) # o(t)

Die korrekte Losung der zugrunde liegenden Gleichungen hat aber diese Eigenschaft der
Zeitumkehrbarkeit. Deshalb sollten nur Methoden benutzt werden, welche diese beriick-
sichtigen. Das RK-Verfahren 4. Ordnung kann allerdings aufgrund seiner hohen Genau-
igkeit diese Unzulanglichkeit kompensieren.

Eine wichtige Klasse von Propagatoren bilden die Split-Operator Methoden [88]:

Man nehme zunéchst an, dass der Zeitschritt At klein genug ist, damit die Zeitabhén-
gigkeit des Hamiltonoperators vernachléssigbar ist. Der Zeitentwicklungsoperator verein-
facht sich dadurch erheblich [79]:

U(At) = exp <_;ﬁm)

h

Die Idee besteht darin, den Exponenten zu faktorisieren. Nach der Baker-Campbell-
Hausdorff Relation miissen die Operatoren im Exponenten dafiir miteinander kommutie-
ren, was fiir 7 und V i. A. nicht der Fall ist. In der Praxis hat sich aber gezeigt, dass der
Kommutator vernachlissigbar ist, wenn At klein genug gewéhlt wird. Es wird auferdem
immer eine symmetrische Faktorisierung gewéhlt, bei der ein Operator zweimal auftritt:

exp (Z 747 At) (6.40)

. AL i, e AL

Uso2(At) = exp <_Z271T> exp (—hAt V) exp (—zth> (6.41)
~ AL - T At
Ugoy (At) = exp <—12hV) exp (—hAt T> exp (—Z%V> (6.42)
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Die Approximationen BZ1-642 haben die Ordnung O(At?). In 4. Ordnung muss der
Kommutator beriicksichtigt werden™:

~ AL - AN
Usoa(At) = exp (_Zﬁhv> exp (—zth)

% (1 (o o 1] <o) At
AL AL -
exp (—2%T> exp <—16hV) (6.43)

Der Split-Operator Ansatz zielt vor allem darauf ab, den Operator der kinetischen Ener-
gie T = (—ihV)?/2me ezakt (d.h. ohne Finite Differenzen) anwenden zu kénnen: Dafiir
muss die Wellenfunktion vor jeder Anwendung des Exponentialoperators mit T-Term
fouriertransformiert werden. In der Fourierbasis besteht die Wirkung des Operators T
bzw. exp(const. - T) nur noch in einer gitterpunktweisen Multiplikation. Anschliefend
muss eine inverse Transformation durchgefiihrt werden um den Operator V im Ortsraum
auf exakt die gleiche effiziente Weise (d.h. punktweise Multiplikation mit exp(const.-V))
anwenden zu konnen. Diese Methode impliziert aufgrund der Fouriertransformation das
Vorhandensein von periodischen Randbedingungen. Meistens liegen aber Wellenfunktio-
nen vor, welche mit einer Dirichletrandbedingung ¢(9€2) = 0 bestimmt wurden. Praktisch
storen diese Unterschiede bei den Randbedingungen nicht, wenn die Wellenfunktionen
weit genug im Inneren des Simulationsraums lokalisiert sind.

In der Arbeit von Sugino und Miyamoto [89] wird gezeigt, wie sich die Split-Operator
Methode™ auf noch hohere Ordnung erweitern lisst: Dabei wird vor allem die Zeitab-
héngigkeit des Hamiltonoperators beriicksichtigt, die in den Gln. BEZ4T-E43 vernachlissigt
wird. Dazu ist es erforderlich, vom Hamiltonoperator H (t) das zeitabhingige Potenti-
al V(t) im Intervall [¢,t + At] zu interpolieren™. Als Interpolationsmethode wird das
,Railway-Curve* Schema® verwendet™:

2
V(s) = (#) x [SV(t) AV + #[w(@ + Aﬂ'/(t)]} (6.44)
s—t 2 . s—t .
( < ) {31/(75 A = AtV (¢t + A1) = ZERV(E+ AL - AV (E+ At)]]

Die Interpolationsformel erfordert leider auch die Kenntnis der Zeitableitung von der
zu interpolierenden Grofe™. Der Rechenaufwand kann dadurch gegeniiber anderen In-
terpolationsverfahren zwar deutlich hoher sein, aber dafiir ist durch Verwendung dieser

2Der Term in dieser Form ist aus [67] (Gl. 4) zum Thema Imaginirzeitpropagation entnommen. Die
Ersetzung AT — —iAt ergibt Gl. BZ3.

13Speziell wird die Suzuki-Trotter Zerlegung [90] verwendet, welche ein Produkt aus fiinf Usog-
Operatoren mit unterschiedlicher Schrittweite At verwendet.

14Dje Extrapolation des Hamiltonoperators von der Zeit ¢ zu der Zeit t + At wird im nichsten Kapitel
beschrieben.

Bs. [o1]

%Die angegebene Interpolationsformel in [89] (Gl. 14) enthélt einen Vorzeichenfehler: Die korrekte Form
ist in Gl. 624 gegeben.

"Fiir Anwendungen in der zeitabhingigen DFT ist es an dieser Stelle erforderlich, vom Hartree- und
xc-Potential die Zeitableitung zu bilden. Dazu wird in [89] eine Formel (Gl. 16) hergeleitet.
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Formel die Zeitumkehrbarkeit gewdhrleistet, was entscheidend zur numerischen Stabilitét
der Propagationsmethode beitrigt. Dadurch konnen letztlich auch grofere Zeitschritte
gewdhlt werden, so dass der zusétzliche Rechenaufwand kompensiert wird.

Dieses Schema kommt in dieser Arbeit bei den Propagatoren fiir die impliziten Kohn-
Sham Gleichungen zum Einsatz.

6.2.4. Extrapolation des Hamiltonoperators

In Kapitel 6222 wurde bei der Magnusentwicklung des Zeitentwicklungsoperators bereits
angedeutet, dass der Hamiltonoperator fiir den Zeitschritt t — ¢+ At auch zu Zeitpunkten
innerhalb dieses Intervalls bekannt sein muss (s. Gln. B2368-6237). Das ist unproblematisch,
wenn der zeitabhéngige Anteil des Hamiltonoperators nur aus einem Storpotential Vp(t)
besteht, das zu jeder Zeit ¢ per Formel berechnet werden kann. Bei den Kohn-Sham
Gleichungen ist das definitiv nicht so einfach moglich, weil ja das effektive Potential von
der Losung der Kohn-Sham Gleichungen selbst abhingt.

Fiir den allgemeinen Fall kann immer folgendes Selbstkonsistenz-Schema verwendet
werden:

1. Naherungsweise Berechnung des Potentials V(t + At) mittels einer Extrapolati-
onsmethode, welche evtl. auch Werte von vorangegangenen Zeitschritten benutzen
kann.

2. Interpolation von V(¢ < t' <t + At) mit Hilfe der Gl. EZ4.
3. Zeitschritt mit Hilfe der im letzten Schritt gewonnenen Zwischenwerte durchfiihren.
4. V(t + At) erneut berechnen.

Die Schritte 2-4 miissen solange wiederholt werden, bis das Potential V' (t+At) konvergiert
ist.

6.3. Propagatoren fiir implizite Kohn-Sham Gleichungen

Die impliziten Kohn-Sham Gleichungen treten in der dissipativen zeitabhéngigen Dichte-
funktionaltheorie (s. Kapitel @) auf. Die Nomenklatur ,Implizite Kohn-Sham Gleichung®
ist derzeit (noch) nicht in der Literatur zu finden und wird nur in dieser Arbeit benutzt.

6.3.1. Problembeschreibung

Die zeitabhéngigen, impliziten Kohn-Sham Gleichungen fiir ein N-Elektronen System
lauten:

L0 K2
{Zh(%¢j(r’t) = <—

2me

N

V2 4+ Veg[n ™) (r, t) + Hi[¥ks, xisz](w) ¢;(r, t)} (6.45)
j=1

1
Uks(ry,...,ry,t) = ﬁ]qbl -+~ ¢n| (Slaterdeterminante, s. Gl. EI3) (6.46)
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N
n (1) = wsle(r, b)) (6.47)
j=1

Diese haben folgende strukturelle Eigenschaften, die fiir die Problemanalyse von zentraler
Bedeutung sind:

1. Es handelt sich mathematisch gesehen um N implizite Ein-Teilchen Schrédinger-
gleichungen, bei denen jeweils die Zeitableitung der Wellenfunktion auf beiden Sei-
ten der Gleichung auftritt.

2. Der Hamiltonoperator H(t) = Hys(t) + He(t) ist zeitabhéingig, weil die Teilchen-
dichte n~(r,t), das Dampfungsfeld im Reibungsterm H;(¢) und eventuell vorhan-
dene externe Storpotentiale zeitabhéngig sind.

3. Die Gleichungen sind iiber das effektive Potential miteinander gekoppelt.

Die Kopplung der Gleichungen ist dabei als nebenséchliches Problem anzusehen, da die
grofite Schwierigkeit darin besteht, die impliziten, zeitabhéngigen Ein-Teilchen Schro-
dingergleichungen effizient zu propagieren. Fiir dieses Problem existiert in der Literatur
derzeit nur der von Neuhauser verwendete Losungsansatz [42| der im néchsten Kapitel
beschrieben wird.

6.3.2. Losungsverfahren von Neuhauser

Zur Beschreibung des Losungsverfahrens geniigt es, sich auf eine Ein-Teilchen Schrodin-
gergleichung mit Reibungsterm zu beschrénken:

2
miw, t)= (—Qf;e V2V (r,t) + firfmu)) o(r, 1) (6.48)

Der zugehorige Zeitentwicklungsoperator lautet:
A ~ ) tl A A
U(t1, to) = Tp exp <—; / [Ho(t) n Hf(t)} dt> (6.49)
to

Es wird nun angenommen, dass jflo(t) fiir einen Zeitschritt At nur eine geringe Zeitab-
héngigkeit besitzt und die folgende Faktorisierung des Operators U erlaubt:

U(At) = e~ w0 A27) (At)e~n o A/2 (6.50)
Dieser Operator ist (trotz dieser Notation) von der absoluten Zeit ¢t abhéngig und wird
folgendermaken auf eine Wellenfunktion ¢(¢) angewendet: Die beiden duferen Expo-
nentialoperatoren werden nach dem Split-Operator ,SO2“Schema (s. Gl. B242) zerlegt.
Nachdem der erste Exponentialoperator angewendet wurde, wird der Propagator U; fiir
den Reibungsterm angewendet:

a0 = e (- pHilelar)

Q

1- %Fff[gy] At (6.51)
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Im Operator Hy ist eine Groke der Form d(z)/dt enthalten (s. Gln. EI38-813d), welche
von ¢ abhéingt und verantwortlich dafiir ist, dass die Schrédingergleichung hier eine
implizite Form hat. Dieses Problem wird im Neuhauser-Ansatz einfach dadurch gelost,
indem eine Finite Differenz mit dem Wert von (z) des letzten Zeitschritts gebildet wird:

dz) _ (=(0) — (=(t — Ab))
dt At

(6.52)

Nachdem der Operator Ur auf ¢ angewendet worden ist, muss noch der letzte Exponen-
tialoperator in GI. angewendet werden, wobei das Zeitargument des Hamiltonope-
rators nun ¢ + At/2 lautet.

Diese Methode wird von den Autoren in [42] nur als ,funktionierend“ aber weder als
,besonders effizient” noch ,besonders genau“ beschrieben. Gerade die Naherungen in den
Gln. E53 und 652 werfen die Frage auf, wie schnell die Ergebnisse fiir At — 0 konver-
gieren. Da die Methode explizit ist, kann es gut sein, dass sie selbst bei Zeitschritten mit
0.1 x At noch schneller ist, als ein implizites Verfahren mit Schrittweite At - und dabei
die gleichen, auskonvergierten Ergebnisse liefert.

6.3.3. Diskretisierung der impliziten Kohn-Sham Gleichungen

Die zeitabhéngigen Kohn-Sham Orbitale kénnen in einem Vektor y(t) = [¢1(t), ..., pn (t)]
zusammengefasst werden. Jedes einzelne Orbital ¢; kann man sich ebenfalls als einen
zeitabhangigen Vektor vorstellen, der durch die Darstellung der Wellenfunktion auf einem
kartesischen Gitter (s. Gl. B27) gegeben ist. Der Vektor y(¢) besteht also aus ,Anzahl N
der Orbitale” x ,Anzahl der Gitterpunkte‘. Der Hamiltonoperator auf der rechten Seite
der Kohn-Sham Gleichungen wird durch eine Matrix H dargestellt. In dieser diskretisierten
Form lautet das System von Gleichungen BE-23:

ily(t) = {Hks(t) + Hely, y](t)} y (6.53)

Zunéchst wird der Fall betrachtet, dass der Reibungsterm H¢ nicht vorhanden sei:

Der Kohn-Sham Hamiltonoperator ist eine Summe von Ein-Teilchen Operatoren, die
jeweils auf das j-te Teilchen wirken. Die Matrixdarstellung entspricht daher einer direkten
Summe identischer Matrizen:

N N
Frs(t) = SO0~ Hs(t) = DH() (6:54)
j=1 j=1
Das ergibt eine blockdiagonale Struktur:
O
O
His(t) = ) (6.55)

O

Jetzt wird der Reibungsterm .E[f(t) in diese Betrachtung mit eingebracht: Dieser bein-
haltet einen Operator Z (s. Gln. BEI3a-8T3d), der sich als Summe von Ein-Teilchen
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Operatoren 219) schreiben lisst:

N N

2=Y:9 & z=(Pz (6.56)

j=1 j=1

Als néchstes wird die Zeitableitung vom Erwartungswert (Z) bendotigt:

d d
38 = .z
d N
= =D (,20))
j=1
= Z[%,z% (65, 29;) (6.57)
7j=1

Durch diese Summe geht die Blockdiagonalform E53 verloren: Jede Zeile der Matrix Hg
ist vollsténdig gefiillt, weil (Z) von allen Orbitalen gleichermafen abhéngig ist.
An dieser Stelle wird nochmals auf die Abhangigkeit des Operators

He[Uks, Uks](t) bzw. Hely,y](t)

eingegangen: Der Reibungsterm darf in beliebiger (nicht-)linearer Form von den Orbita-
len™ abhingen. Die Zeitableitung der Orbitale geht dagegen nur linear in den Reibungs-
term ein, wie man an Gl. BS54 sehen kann. Bei der Gleichung 6253 handelt es sich also
um ein lineares Gleichungssystem fiir die unbekannte Zeitableitung y.

6.3.4. Implizite Runge-Kutta Verfahren

In diesem Abschnitt wird gezeigt, wie sich das System von impliziten Kohn-Sham Glei-
chungen BZ3-627 mit Hilfe von impliziten Runge-Kutta Verfahren 16sen lédsst, ohne die
Néherungen in den Gln. E21 und 652 dafiir benutzen zu miissen.

Als Vorarbeit dafiir wurde im letzten Abschnitt die Struktur des Gleichungssystems
653 analysiert. Dieses System losen zu konnen, reicht nicht aus, um an die Losung y (¢) fiir
ein endliches Zeitintervall zu gelangen. Dazu muss ein numerisches Integrationsverfahren
benutzt werden. Ziel ist es, den Zeitschritt y(¢t) — y(t + At) bzw. mit Zeitschrittindex
Yn — Yn+1 durchzufiihren.

Ein s-stufiges Runge-Kutta Verfahren verwendet dafiir folgenden Ansatz:

Yo+l = Yn Tt Z biki (6.58)

ki = Atf(tn+cAtyn+ Y agk;), i=1,...s (6.59)
j=1

'¥Tn [22] wird beispielsweise angedacht, dass man das Feld a(q) im Drude-Reibungsterm mit der lokalen
Teilchendichte in unmittelbarer Umgebung von q in Verbindung bringt.
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Die charakteristischen Koeffizienten a;;, b; und ¢; werden unter dem Begriff ,Butcher®-
Tableau in der géngigen Literatur [I/8, 92| aufgefithrt. Die Wahl der Koeffizienten ent-
scheidet iiber die Ordnung des Verfahrens und dariiber, ob es sich um ein explizites oder
implizites Runge-Kutta Verfahren handelt. Bei den expliziten Verfahren ist nur die un-
tere Dreieckshélfte der Koeffizientenmatrix a;; von Null verschieden. Bei den impliziten
Verfahren bilden die s Gleichungen in ein i. A. nicht-lineares Gleichungssystem fiir
die unbekannten Inkremente k;.

Um das Verfahren auf die impliziten Kohn-Sham Gleichungen anzuwenden, wird zu-
néchst folgende Identifikation der involvierten Vektoren vorgenommen: Der Vektor y, =
[61(tn), ..., dn(tn)] enthilt die diskretisierten Orbitale zur Zeit ¢,, die s Vektoren k; =

[Aqbgl), . .,Agb%)] enthalten die Inkremente, aus denen der Zeitschritt linearkombiniert
wird (s. Gl. B58). Die vektorielle Funktion f ist dann folgendermafen definiert:
f = fty,y)
1 .
= o (Hkslyl(®) + Bely, y](0)}y (6.60)

Hier wurde zusétzlich das Argument fiir die Zeitableitung von y aufgefiihrt, von der die
rechte Seite der impliziten Kohn-Sham Gleichungen abhingt. Als Argument wird hier
jeweils das i-te Inkrement eingesetzt. Das Gleichungssystem lautet dann:

s

ki = AtE(t, + ciAtyn + Y aijkj ki/At) (6.61)

j=1 i=1

Die Anzahl der Unbekannten im Gleichungssystem betrégt:
Anzahl der Stufen s x Anzahl der Gitterpunkte x Anzahl der Orbitale

Das fithrt bei praktischen Anwendungen auf eine so grofe Anzahl von Unbekannten, dass
man nur mit iterativen Verfahren arbeiten kann. Dieses Gleichungssystem ist nicht-linear
beziiglich der Unbekannten k;: Im Zusammenhang mit Gl. E54 wurde zwar gesagt, dass
die Zeitableitung der Orbitale nur linear auftritt, allerdings treten hier die Inkremente
auch im zweiten Argument von f (in der Summation) auf. Dieses Argument geht nicht-
linear in f ein, da aus diesem die Teilchendichte und aus dieser wiederum die Funktionale
des Vielteilchensystems berechnet werden.

Zum Losen der nichtlinearen Gleichungssysteme bei impliziten Runge-Kutta Verfahren
sind i. A. Newtonverfahren {iblich. Das setzt allerdings die Berechnung des Gradienten
der Funktion f voraus. Fiir die Funktion f kann man dafiir zundchst versuchen, von
der nicht-diskretisierten Form B3 auszugehen und einen analytischen Ausdruck der
Funktionalableitung der rechten Seite zu bestimmen.

An diesem Ansatz schreckt vor allem der hohe Aufwand bei der Berechnung des Gra-
dienten (sowohl analytisch als auch numerisch) ab. Jede Anderung an der rechten Seite
der impliziten Kohn-Sham Gleichungen erfordert eine Anpassung in der Herleitung des
Gradienten. Das stort besonders, wenn man verschiedene Reibungsterme I:If(t) testen
mochte.

Damit bleiben nur Losungsverfahren {ibrig, welche ohne Gradienten auskommen: GI-
iicklicherweise hat sich bei allen Anwendungen in dieser Arbeit gezeigt, dass das selbe
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einfache Iterationsschema, wie es zur Losung der stationdren Kohn-Sham Gleichungen
zum Einsatz kommt, auch hier verwendet werden kann. Dabei nutzt man aus, dass als
Startvektor der Iteration immer das Ergebnis des letzten Zeitschritts gewdhlt werden
kann, wodurch die Anzahl an Iterationen drastisch reduziert werden kann.

6.3.5. Magnusentwicklung

Eine ebenfalls erfolgreich getestete Moglichkeit zur Losung der impliziten Kohn-Sham
Gleichungen BZ48-647 besteht darin, ein explizites Losungsverfahren mit einer Selbst-
konsistenzschleife zu kombinieren:

Die expliziten Verfahren, welche die Magnusentwicklung verwenden, sind in Kapitel
6272 bereits beschrieben worden. Wenn man diese Verfahren hier anwenden mochte, wird
man gleich zu Beginn mit folgendem Problem konfrontiert: Der Zeitentwicklungsoperator
ist aufgrund des Reibungsterms von der Kohn-Sham Wellenfunktion selbst abhéngig, so
dass man fiir einen Zeitschritt die Gleichung in der ungew6hnlichen Form

Uks(t + At) = U[Uks, Uks)(t + At t) Uk (6.62)

schreiben miisste. Hier ergeben sich bereits Schwierigkeiten, wie man diesen Operator
mathematisch sauber definieren kann.

Um dieses Problem zu umgehen wird einfach angenommen, dass der Hamiltonoperator
eine bekannte Zeitabhingigkeit auf dem Intervall [t,t + At] besitzt, die nicht von der
Zeitableitung des Zustands abhingt. Dann lésst sich der Zeitentwicklungsoperator in
bekannter Form auch fiir das dissipative System formulieren:

0.0+ 80 = Toesp (1 | T [ty + ()] ) (6.63)

Hier wurde der Operator H¢(t) ohne das Argument Wxg angegeben. Bis auf das noch zu

klarende Problem mit der Zeitabhangigkeit der Operatoren im Exponenten, kann hier

die Magnusentwicklung aus Kapitel 22 auf den Operator G563 angewendet werden.
Das Problem mit der Zeitabhéngigkeit wird durch folgenden Algorithmus gel6st:

1. Auf das Kohn-Sham System den Operator exp|—iH (t)At] anwenden, um aus den
Orbitalen ¢y, (t) den Orbitalsatz ¢} (t + At) zu generieren. Der Orbitalsatz ¢ (¢ +
At) stellt eine erste Naherung des Zeitschrittes dar, der fiir Interpolation genutzt
werden kann.

2. Das Kohn-Sham Potential Vejﬁzo (t + At) berechnen.

3. Wiederhole bis Konvergenz von Vejff bzgl. des Iterationsschrittes j eintritt:

a) Interpoliere die grofen Vog und 0z/90t im Intervall [t, t+At] an den Stiitzstellen
tj, welche fiir den Magnusoperator bendotigt werden. Die Groke 0z/0t kann
auch mit Hilfe der Tangenten an den Stiitzstellen ¢; der Interpolationsfunktion
aus z berechnet werden.

b) Hamiltonoperatoren Hys und H; initialisieren™.

19F]ektrostatisches Potential, effektives Potential, etc. berechnen.
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¢) Wende exp(Qy) auf den Orbitalsatz ¢, (t) an, um ¢} (t + At) zu generieren.
4. Der konvergierte Orbitalsatz ¢, (¢ + At) stellt das Ergebnis des Zeitschritts dar.

Das Feld Vg (r,t) und die Grofe z(t) der vorherigen Zeitschritte konnen zur Verbesserung
der Interpolation im Intervall [¢,t 4+ At] hinzugezogen werden.

Wie sich gezeigt hat, ist von Interpolationsverfahren, welche nicht die Zeitumkehrbar-
keit berticksichtigen (wie z.B. die Lagrangeinterpolation), abzuraten: Die numerische Sta-
bilitét steigt hier erheblich, wenn die Railway-Curve Interpolation (s. Gl. 62244 in Kapitel
BE233) verwendet wird. Diese Interpolationsformel erfordert die Kenntnis der Zeitablei-
tung von den zu interpolierenden Grofen bei ¢ und ¢ + At: Zur Losung dieses Problems
sollten die GIn. 15 und 16 aus [89] herangezogen werden.

6.3.6. Analyse der Konditionszahl

In diesem Kapitel werden Eigenschaften der impliziten Kohn-Sham Gleichungen 6-43-627
analysiert. Die Betrachtungen beschrinken sich hier allerdings auf ein Ein-Teilchensystem
mit der von Neuhauser vorgeschlagenen Drude-Dissipation.

Wie in folgenden Unterkapiteln gezeigt wird, kann ein kompaktes lineares Gleichungs-
system zur Bestimmung der Zeitableitung der Wellenfunktion aufgestellt werden. An
diesem wird die Konditionszahl untersucht.

Deren Bedeutung in der Numerik [93| wird hier nochmals kurz zusammengefasst:

Fiir ein Gleichungssystem Ax = b, das durch die Koeffizientenmatrix A definiert ist,
kann die Lésung x als Ausgabe einer ,Funktion® und die rechte Seite b als deren Eingabe
betrachtet werden. Die Konditionszahl gibt nun an, wie stark sich eine kleine Anderung
der Eingabe b auf die Ausgabe x(d0b) auswirkt. Bei linearen Gleichungssystemen ist
eine grofie Konditionszahl schlecht, weil kleine Fehler in b zu groften Fehlern in x fiihren.

Zur Definition der Konditionszahl geht man von einem Fehler e in b aus, der zur
Losung als A~'e beitriigt. Nun betrachtet man das Verhltnis zwischen ,relativen Fehler
in der Losung (Ausgabe)“ zu ,Fehler in der Eingabe®:

1A el /[1A~"b]

el /18]

Dariiber kommt man auf die Definition der Konditionszahl k einer Matrix A:
k(A) = [|A71]] - (|4 (6.64)

Fiir hermitesche Matrizen kann das Verhéltnis vom grofiten zum kleinsten Eigenwert
genommen werden:

) = [t)

)\min (A)
Motivation

Eine wichtige Frage bei der impliziten Ein-Teilchen Schrédingergleichung ist, welcher Zu-
sammenhang zwischen der Magnitude des Ddmpfungsparameters ap und der Konditions-
zahl des Gleichungssystems besteht. Es liegt die Vermutung nahe, dass die Konditionszahl
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sich umso mehr verschlechtert, je héher man die DAmpfung w#hlt. Dieser Aspekt ist im
Zusammenhang mit der adaptiven Dampfung (Kap. B2-3) wichtig, weil hier der Para-
meter ag sehr groft werden kann, um die vorgegebene Energieabnahme zu ermdoglichen.
In Simulationen zeigte sich, dass dieser drei bis vier Grofsenordnungen durchlduft.

Die Kenntnis der Konditionszahlabhéngigkeit sollte insbesondere auch erlauben zu
verstehen, weshalb die Simulationen mit vorgegebener Energieabnahme (s. Abb. B72)
plotzlich extrem ungenau werden.

Alle diese Aspekte konnen auch an einem Ein-Teilchensystem untersucht werden: Als
Modellsystem kann das eindimensionale, effektive Potential des Metallfilms (s. Kap. B)
verwendet werden. Als Startwellenfunktion kann eine der Eigenfunktionen dieses Poten-
tials verwendet werden. Genau wie bei dem Vielteilchensystem wird auch dieses System
durch ein zeitabhéngiges Storpotential Vp(z,t) angeregt.

Formulierung in diskreter Basis

Die geddmpfte Ein-Teilchen Schrodingergleichung lautet:

(et = [+ el 9)(0) + Vo(r,)] w(r. 1) (6.65)
Help, ) (t) = ao/m((,;’ﬂ.j(r)d?’r (6.66)

Die Diskretisierung dieser Gleichung im Ortsraum ergibt ein sehr grofes, lineares Glei-
chungssystem fiir die unbekannte Zeitableitung 1/1 In einer Raumdimension kann die
Matrix des Gleichungssystems bereits 100...1000 Zeilen und Spalten haben®.

Zur vereinfachten Analyse der Konditionszahl wird hier deshalb die Gleichung B3 von
der kontinuierlichen Ortsraumbasis in eine diskrete Basis transformiert. Als Basis sollen
die Eigenzustinde {|¢;)} des Hamiltonoperators Hy dienen. Dadurch ergibt sich auch
der Vorteil, dass man besseren Einblick die Dynamik des Systems bzgl. der involvierten
Quantenzustinde erhélt: Wie sich in den folgenden Gleichungen zeigt, wird diese durch
die Symmetrieeigenschaften der Eigenzustdnde bestimmt.

Die Wellenfunktion wird zunéchst durch einen Koeffizientenvektor c(¢) dargestellt:

() =Y alt)lén) (6.67)

l

Die Zusténde |¢y,) sind normiert und orthogonal. Durch Einsetzen in zeitabhingige Schro-
dingergleichung erh&lt man:

iy a®len = [Ho+ Hele®)] + Ve(t)] Y- al®lo) (6.69)
l

l

Um die Bewegungsgleichung fiir einen bestimmten Koeffizienten zu erhalten, wird mit

*Hier kann man ggf. den Vorteil ausnutzen, dass die Matrix diinn besetzt ist. Diese Moglichkeit wurde
in dieser Arbeit durch die Formulierung in einer endlichen, diskreten Basis nicht bendtigt.
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einem Bra-Vektor multipliziert:

ihén(t) = qbnlroZc; (B)lér) + Y cu(t)(dnl He[e(t)]| 1)

l

+ZCZ (dnlVo(D)] 1)
= Encalt +ch (O] + > alt) VE() (6.69)

l

Matrixelemente des Reibungsterms:
let)] = [ daAle(o). )@ (el I(a)lon)
= [ @Al 0@ (6.70)
Matrixelemente des Stromdichteoperators:
sile) = [ & G@)i @)
_ /d3 Lot () PIA m ) O —a)p

2Me

— oo [ GapE — @) + 5

- /dSq’ Do) (d)d(d" — a)ou(d) + 21

2me

= L ot @a) +

2Me

— oo @V @) - 6 (@) Var(a)

/ &q &%(q)o(d — Q)pdu(d)
/ B¢ 64 ()o(d — a)pin(a)

(§]

(S]

1
o b (@)Doi(q)

Dampfungsfeld (hier wird a(q) = ag gesetzt):
Ale(t).é(0)(@) = aoile(t)](a)
0
= gl 3 @l()
= aoazzcﬂﬂ 1) (a
no1
2SS et @) Vo (@) - 6 (@) Ve (@67
no |
In GL einsetzen:
o 3 0
ihcy(t) = Euc(t —l— al(t ao/d ZZC m(Q) - Jui(a)
!
+ > alt)vE(e) (6.72)

l
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Die nachfolgenden Betrachtungen konzentrieren sich auf den Reibungsterm. Zur Uber-
sicht wird deshalb ab hier der Storpotentialterm vorerst weggelassen:

(0 = Ee(0)+a0 Y alt) Y S 0en(0)] [ 3@ Tuta)
l n,m

n,m

= BEyo(t +aOZcz D e ®em®) + ey (®)éem®)] [ g Ium(a) - Jui(a)

= Bt —i—aoZch m(t) 4 ¢ (8)ém (t)] E (6.73)

In der letzten Zeile wurde der Tensor = durch das Integral in der Zeile dariiber definiert.
Die Elemente von Z werden nun fiir eine Basis aus den rein reellen Eigenfunktionen ¢,
ermittelt:

. 2
== ( n > / d°q [pm(a)V;,(a) — 6 (a)Vom(Q)] - [u(a) Ve (a) — ¢ (a)Veu(a)]

2me
i2h2
— i [ @46 @¥E@) - @ V6 (a) - (@) V(@) al@T6; ()
(@ V() - SV A(Q) + F(Q) V() - () Vr(a)
,L'Q 2
= T B4 DAV n(@) - V(@) — dn(@)i(Q)Vém(@) - Vou(a)

4m?
—0m () (@) Von(a) - Véi(a) + ¢n(a)dw (@) Vom(a) - Véi(q)]

Zur Abkiirzung fiir die Integrale wird die Grofe I eingefiihrt, deren Indizes aus der letzten
Gleichung sofort ersichtlich werden:
h2
—nm

—vl - _m [Imlm/ — Intmy — Imwnt + Inuml]

Die Paritdt der Eigenfunktionen erlaubt es, anhand der Indizes von I zu entscheiden,
ob das Integral verschwindet oder nicht. Innerhalb der ersten beiden und letzten beiden
Indexpaare von I liegt eine Symmetrie bei Vertauschung vor.

Die Gleichung BZ73 représentiert ein gekoppeltes Gleichungssystem fiir die Komponen-
ten des Koeflizientenvektors c. Die Dreifachsumme kann noch weiter vereinfacht werden,
was fiir die effiziente numerische Simulation der Gleichungen wichtig ist. Dazu werden
folgende Eigenschaften vom =-Tensor ausgenutzt:

Emn —  _gnm (6.74a)
Zrm = _Enm (6.74b)
Zmm o= ) (6.74c)
Znme = ) (6.74d)
gmn — v (6.74e)

Die Summation in GIl. BZ73 kann iiber die Beziehungen 6Z72d-674d sofort eingeschrankt
werden:

ihé, () = By, (t) + aoz Z ot em(t) + () ém (D) E
l;éy n;ém
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6.3. Propagatoren fiir implizite Kohn-Sham Gleichungen

Weil sich das Vorzeichen vom =-Tensor bei Vertauschung zweier Indizes (jeweils oben oder
unten) nach den Beziehungen E2748-6740 andert, kann die Doppelsumme iiber (n,m)
folgendermafsen umgeschrieben werden:

ihéy (t)
= Eye(t) +a0 Y Y alt) [Eh(E)em(t) + ¢ (8)ém(t) — E(E)enlt) — i (t)én ()] Z0
by nSm
= Eye(t) +a0 Y Y alt) [ch()ém(t) — cnlt)é(t) + E(E)em(t) — énl(t)ch, (B)] Z
by nm
= Eyc(t)+2iag »_ [Im{c}(t)ém(t)} + Im{é (Hem(t)}] D alt) Zf" (6.75)
n>7?n l;léy

Nimmt man nun noch das seit Gl. 73 vernachléssigte Storpotential wieder mit hinzu,
erhdlt man als Ergebnis fiir die Ein-Teilchen Schrédingergleichung in Eigenbasis von Hy
folgende Bewegungsgleichung der Koeffizienten c:

ihéy(t) = Eyc(t)+ Y alt)VE(t)
l

+ 2iag Y [Im{e, (£)ém(t)} +Im{e (Den(D)}] Y alt) E5" (6.76)

; l
n>m Iy
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Ergebnisse

Um den Zusammenhang zwischen der Ddmpfungskonstante ag und der Konditionszahl
zu ermitteln wurde die zeitabhingige Ein-Teilchen Schrédingergleichung B83, in
diskreter Basis fiir das in Abbildung B4 gezeigte System gelost. Das System wurde (wie
in Abb. B4 dargestellt) durch einen Puls {iber das Potential Vp angeregt. Wahrend der
Propagation wurde die Dampfungskonstante schrittweise erhoht, wie im Text zu Abb.
B33 erldutert wird. Diese schrittweise Vergroferung der Gréfsenordnung von ag findet,
basierend auf Beobachtung, auch bei der adaptiven Regulierung (s. Kap. B23) dieses
Parameters statt. Die Ergebnisse in Abb. B=3 bestéitigen den vermuteten Zusammenhang
zwischen ag und k(A).

22

” lL
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|
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0 I
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Abbildung 6.3.: Im oberen Diagramm ist die Anzahl an Iterationen dargestellt, die be-
notigt wurde um das Gleichungssystem des impliziten Runge-Kutta Ver-
fahrens (s. Kap. 6234) iterativ zu 16sen. Im unteren Diagramm ist die
reziproke Konditionszahl k=1 des Gleichungssystems E78 jeweils gegen
die Simulationszeit ¢ aufgetragen. Nach jeweils 5 fs wurde die Damp-
fungskonstante um Faktor 10 erhéht. Die schwarzen, senkrechten Linien
markieren die Intervalle: ag = 0, 1,10, 100, 1000, 10000
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6.4. Methode der Finiten Volumen

Die Methode der Finiten Volumen (FVMZ) wird zur Lésung hyperbolischer, partieller
Differentialgleichungen genutzt [94, 95]. Diese Gleichungen beschreiben hiufig bestimmte
Erhaltungsgrofen wie z.B. Masse, Energie oder Impuls (d.h. es handelt sich um Konti-
nuitatsgleichungen). Diese treten vor allem im Bereich der Fluiddynamik auf, in dem sich
die FVM als ein Standardverfahren etabliert hat. Um solche Gleichungen numerisch l6sen
zu konnen, bietet diese Methode die Moglichkeit, die partielle Differentialgleichung durch
Umformung mittels des Divergenztheorems in ein dquivalentes und exaktes System von
gewohnlichen Differentialgleichungen zu iibersetzen. Diese beschreiben dann die zeitliche
Entwicklung der Mittelwerte von einzelnen Zellen (finite Volumen) des Simulationsraums.
Die Erhaltungsgrofsen konnen dabei nicht verletzt werden.

Durch den FVM-Ansatz wird das urspriingliche Problem durch zwei neue Probleme
ersetzt: An den Zelloberflichen muss ein Integral iiber den Fluss numerisch berechnet
werden und die Gleichungen miissen mit einem numerischen Integrator in der Zeit pro-
pagiert werden. Die Berechnung des Flusses stellt die grofite technische Herausforderung
dar und beeinflusst makgeblich die Eigenschaften der Losung: Ein typischer Fehler in nu-
merischen FVM-Lésungen ist das Auftreten von unphysikalischer Diffusion, welche durch
das Schema zur Berechnung des Flusses verursacht wird. Es sei nochmals betont, dass die
Erhaltungsgréfen auch bei schlechten Approximationen der Fliisse nicht verletzt werden
kénnen, wie im Kapitel 6472 gezeigt wird.

Die FVM findet in dieser Arbeit Anwendung bei der Beschreibung des Elektronenga-
ses iiber ein semiklassisches Hydrodynamikmodell (s. Kap. B24) und bei der Losung der
Wigner Gleichungen (s. Kap. 6253 und 623). Zur Berechnung der Fliisse an den Zello-
berflichen kommt ein relativ neuartiges Verfahren zum Einsatz (s. Kap. B423), welches
iiber einen geringen Diffusionsfehler verfiigt [96]. Wissenschaftliches Neuland wird bei
der Anwendung dieses Verfahrens auf die Wigner-Gleichungen betreten.

6.4.1. Problemiibersicht
Euler-Gleichungen

Bei der Verwendung eines hydrodynamischen Modells des Elektronengases in metalli-
schen Strukturen miissen folgende Probleme gelést werden:

1. Der elektronische Grundzustand n (r) muss ermittelt werden.

2. Die hydrodynamischen Gleichungen miissen die Metall-Vakuum Grenzflichen kor-
rekt wiedergeben und miissen daher auch im Vakuumbereich gelost werden. Hier
besteht das Problem, dass einige Gréflen undefiniert sein konnen, wie z.B. das
Geschwindigkeitsfeld, welches sich als Quotient von Impuls- und Teilchendichte be-
rechnen l&sst.

*lengl.: Finite Volume Method
22Dje Elektronendichte tritt an Oberflichen aus dem Festkorper aus. Es ist daher falsch, die Bewegungs-
gleichungen fiir das Elektronengas nur innerhalb des Festkorpers zu 16sen.
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3. An der Metall-Vakuum Grenzfliche hat die Elektronendichte einen grofen Gradi-
enten (s. Abb. B2), welcher spezielle Anforderungen an das Schema zur Berechnung
der Zelloberflachenfliisse und die Diskretisierung stellt.

Fiir die Berechnung der Teilchendichte im Grundzustand kann man eine Zeitpropaga-
tion durchfithren: Man erweitert die Bewegungsgleichung um einen viskosen Term, der
das Elektronengas abbremst und simuliert, wie sich eine geratene Startteilchendichte
(z.B. die Tonendichte n~(r,t = 0) = n*(r)) in einen stationéiren Zustand mit Krifte-
gleichgewicht entwickelt. Dieses herrscht im Grundzustand zwischen dem Druck und der
elektrostatischen Anziehung.

Wigner-Gleichungen

Die Verwendung der Wigner-Gleichungen zur Beschreibung des Elektronengases im Be-
reich der Plasmonik ist bisher wissenschaftlich gemieden worden: Die Notwendigkeit einen
sechs-dimensionalen Phasenraum zu diskretisieren, ist ein wesentlicher Grund, weshalb
alternative physikalische Beschreibungen gesucht werden |23, B3]. Nichtsdestotrotz soll
hier versucht werden, diese Gleichungen direkt zu ldsen, um spéater eine Moglichkeit zu
haben, vereinfachte Modelle besser auf ihre Giiltigkeit iiberpriifen zu konnen. Es miissen
dabei folgende Probleme beachtet werden:

1. Die Wignerverteilung des elektronischen Grundzustandes ist unbekannt und muss
auf gleiche Weise wie bei dem Hydrodynamik-Modell im Zeitbereich ermittelt wer-
den. Allerdings ist unklar, wie man in diese Gleichungen einen viskosen Term ein-
baut. In Kapitel B0 wurde ein Vorschlag gemacht, wie sich eine im k-Raum sym-
metrische Verteilungsfunktion durch Ddmpfung von Asymmetrien erzielen l&sst.
Diese Methode wurde allerdings in der Praxis noch nie getestet.

2. Die Anfangsverteilung, wie sie in Kapitel B262 vorgeschlagen wird, bedingt sowohl
bei der Ladungsdichte im Ortsraum eine Stufe an der Metall-Vakuum Grenze als
auch eine Stufe in der Verteilungsfunktion am Fermivektor im Impulsraum (an
festem Ort).

Das Vorhandensein von Unstetigkeiten in der Verteilungsfunktion haben die Verwen-
dung des Kurganov-Tadmor Schemas (s. Kap. B223) zur Berechnung des Flusstensors
motiviert.

6.4.2. Grundlagen

Die Gleichungen, fiir welche die Methode der Finiten Volumen gedacht ist, haben folgende
Form:

0
P +V - -f(u)=q + Randbedingungen (6.77)

Die Komponenten des Vektors u sind orts- und zeitabhingige Felder, welche dem durch
diese Gleichung ausgedriickten Erhaltungsgesetz unterliegen. Die Felder beschreiben den
Zustand des Systems, weshalb man u auch als Zustandsvektor bezeichnen kann. Bei f
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handelt es sich um den sogenannten Flufstensor, der eine Funktion des Zustands u dar-
stellt. Bei einem Zustandsvektor mit K Komponenten und einem d-dimensionalen Raum
hat der Fluftensor die Form einer K x d Matrix. Auf der rechten Seite der Gleichung
steht ein optionaler Quellterm q. Die Gleichung ist hyperbolisch, wenn die Gradienten
Vuafis---, Vufq (bei denen es sich um d verschiedene k x k-Matrizen handelt) diagona-
lisierbar sind und iiber rein reelle Eigenwerte verfiigen [94].

Um die Gleichung 677 in ein System von gewohnlichen Differentialgleichungen umzu-
wandeln, wird zunéchst der Simulationsraum € in N Zellen ; zerlegt:

N
= U ;  (Q; untereinander disjunkt) (6.78)
=1

Man bildet dann iiber jede dieser Zellen das Volumenintegral der Gleichung EZZ0 und
teilt durch deren Volumen:

o L s o), ad
— dr+— V- dr=— qd’r 6.79
0] Jo, 0" [y ) (6.79)

Im ersten Integral kann die Zeitableitung vor das Integral gezogen werden, und bei dem
zweiten Integral kann das Divergenztheorem angewendet werden:

d 1 1 1
- ud3r 4+ f(u) - hdo = / ad’r (6.80)
dt |94 Jo €% Jaq, 1€ Ja,

Das erste und letzte Integral kann durch die Zellmittelwerte ersetzt werden:

d _ L b 1

™ 1€%5] Jag,
Das Oberflachenintegral kann bei einfacher Geometrie der Zellen auf sinnvolle Weise als
Summe der Fliisse F durch Teilflichen®™ geschrieben werden:

1 ; 1 (3)
— f(u)-fdo= — Y F/ (6.82)
€451 Jog, 1€ ; g

f(u) - hdo = q; (6.81)

Der K-dimensionale Vektor F,(Cj ) beschreibt den Fluss durch die k-te Oberfliche des j-ten
Volumenelementes. Die zentrale Gleichung der Finite Volumen Methode lautet:

d_ 1 )
W+ o SFY =g (6.83)
k

Diese Gleichung ist eine gewthnliche Differentialgleichung in der Zeit und enthilt keine
Néherungen. Erst bei der numerischen Berechnung der Fliisse Fg ) werden Néherungen
erforderlich. Weil aber zwei benachbarte Zellen identische Fliisse an der gemeinsamen
Oberflache haben, kann selbst eine schlechte Naherung bei der Berechnung der Grofen
F,gj ) 7 keiner Verletzung von Erhaltungsgrofsen fithren: Der Verlust einer Zelle ist immer

gleich dem Zuwachs einer benachbarten Zelle.

2Bsp.: Oberflachen eines Quaders.
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6.4.3. Kurganov-Tadmor Methode

Die Kurganov-Tadmor Methode [96] wird benétigt um die Fliisse in der Gleichung 683 zu
berechnen. Diese Methode hat gegeniiber den wesentlich einfacheren Methoden, wie z.B.
UDS# und CDSZ (s. [95]), den Vorteil nur einen geringen numerischen Diffusionsfehler
aufzuweisen und keine unphysikalischen Oszillationen in den Losungen zu erzeugen. Vor
allem kann die Methode benutzt werden, wenn die Losung grofse Gradienten aufweist.
Um die Methode zu beschreiben wird nun von Gleichung 6283 ausgegangen und ange-
nommen, dass der Fluss in ¢- und z-Richtung verschwindet und die Oberflichen im j-ten
Volumen in z-Richtung den Abstand Az; haben. Die Gleichung kann dann in folgender
Form geschrieben werden:
% + Alxj [£(u)11/2) — f(uj_q/2)] =0 (6.84)

Man benétigt zuniichst eine Flussbegrenzungsfunktion® ¢(r;) : RE — RE | deren
Argument r; eine Art Rauigkeit von u bei der Zelle j beschreibt:
u; —u,_
r; = e e

Wi+l — Uy

Numerisch darf diese Grofse komponentenweise die Werte +inf annehmen. Die Imple-
mentation der Funktion ¢(r;) muss darauf vorbereitet sein. Die Berechnung der Fliisse
erfordert weitere Hilfsgrofen:

uly )y = ;4 0.5¢(r;) (w41 — uy) ul’ )y = w1 — 0.56(rj41) (Wypo — wjp1)

ll]l/_l/2 =uj—1 + 0.5(}5(1'3;1) (Uj — uj,l) 11;.%_1/2 =u; — 0.5¢(rj) (ujH — Uj)
Geometrisch betrachtet handelt es sich bei diesen Grofen um lineare Extrapolationen
des Zustandsvektors u auf der linken (L) bzw. rechten (R) Seite der Zelloberfliche bei

j+1/2. Die maximale Steigung in der Extrapolation wird durch die Funktion ¢ begrenzt.
Die Fliisse in Gleichung B84 werden nun wie folgt berechnet:

Bjp) = % { [f(uf—l/z) * f(uJL—l/Q)} — 4j-1/2 [uf_m - “5—1/2} }
% { [f(uﬁi-lﬂ) + f(u§+1/2)} — ajq1/2 {uf+1/2 — u§1+1/2} }

Die Groken a;iy/o bezeichnen jeweils die betragsméafbig groften Eigenwerte der Jacobi-
Matrix der Flusstensoren zwischen den Zellen 7 und j £ 1:

Q172 = max [0 (VE(u;)) , 0 (VE(uj21))] (6.85)

Dabei steht o(A) fiir den Spektralradius der Matrix A. Die Eigenwerte geben die lokale
Ausbreitungsgeschwindigkeit im Raum an. Um die Gleichungen in der Zeit zu propa-
gieren, kann aus dem maximalen aj-Wert auf eine Obergrenze fiir die Zeitschrittgrofe
entsprechend der Courant-Bedingung a At/Axz < Cpax geschlossen werden.

f(ujy12)

2 upwind difference scheme

% central difference scheme

20Tn der englischen Fachliteratur entsprechend als fluz limiter function bekannt. Diese Funktionen miis-
sen problemabhéngig gewéhlt werden und sind der Literatur zu entnehmen.
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6.4.4. Euler-Gleichungen

Die Euler-Gleichungen der Fluiddynamik lauten ganz allgemein (s. z.B. [93)]):

gﬁ: +V-(pv) = 0 (6.86a)
8(aptv) YV (ve (V) +Vp = 0 (6.86b)
%—f +V-(v(E+p) = 0 (6.86¢)

Diese Gleichungen stehen fiir Massen-, Impuls- und Energieerhaltung. Die Felder Mas-
sendichte p, Impulsdichte pv (Geschwindigkeitsfeld v) und Energiedichte E bilden den
Zustandsvektor u:

u=| puy (6.87)
pU-

Die Energiedichte E kann noch weiter aufgeteilt werden:
_ 1 2, .2, 2
E=u+ 2pm(vx + vy + V) + Vext (1, 1) (6.88)

Diese Beitréige sind: Innere- + kinetische- + potentielle Energiedichte. Um die Gleichun-
gen zu vervollstindigen werden noch eine kalorische und eine thermische Zustandsglei-
chung bendtigt. Hier dient als Modellfluid fiir das Elektronengas ein ,Ideales Fermigas®
bei T" = 0K [21, 62]. Der Druck p ist dabei physikalisch durch das Pauli-Prinzip be-
dingt. Fiir den Druck p und die innere Energiedichte u = dU/dV gilt in Abhéngigkeit
der Teilchendichte n = p/me:

2U  (372)2/3n? 503

=-—== 6.89
P=3y 5mie|gel (6.89)
dU  2h3(37%)%/3
dv 3 107m2m,
Der Flusstensor hat im Fall der Eulergleichungen folgende Form:
PV PUy PUz
p+ pv2 PUZVy PULV
f(u) = PULVy p+ pv; PUYU = (f;,f,,f.) (6.91)
PUVz PUyVz p+ Pvg

vz (E+p) vy(E+p) v.(E+p)

Die Abbildung B2 zeigt ein Ergebnis fiir den Grundzustand, welches mittels eindimen-
sionaler Finite Volumen Methode fiir das ideale Fermigas im Metallfilm berechnet wurde.
Das Ergebnis wurde auf folgende Weise generiert:
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1. Das Kurganov-Tadmor Schema war zum Zeitpunkt dieser Rechnung noch nicht
implementiert worden. Daher wurden die Fliisse mittels eines einfachen Zentraldif-
ferenzenschemas (CDS, s. [93]) berechnet. Weil dieses Schema (im Gegensatz zu
dem KT-Schema) mit einer unstetigen Startteilchendichte der Form n™(r,t = 0) =
nt(r) (welche bei dem Metallfilm stufenférmig an der Oberfliche abfillt) nicht klar
kommt, wurde eine geglittete Startdichte benutzt.

2. Es wurden periodische Randbedingungen gewahlt, weil diese am einfachsten die
Reflexionen am Rand des Simulationsraumes verhindern und fiir das Ergebnis un-
erheblich sind.

3. Die Zeitintegration der Gl. EE3 erfolgte mit einem Runge-Kutta Verfahren 4. Ord-
nung.

Damit das Fluid von einem elektromagnetischen Feld in Bewegung versetzt werden kann,
muss in die Kontinuitdtsgleichung fiir die Impulserhaltung E86H noch ein Quellterm
eingefiigt werden. Auf gleiche Weise kann auch eine Senke fiir den Impuls ergénzt werden,
welche die Reibung beschreibt. Die Gleichung lautet dann:

d(pv)
ot

Auf der rechten Seite steht die Lorentzkraftdichte und ein Ddmpfungsterm mit Damp-
fungskonstante . Letzterer wird insbesondere fiir die Berechnung der Grundzustands-
dichte benotigt.

+ V- (ve(pv)) +Vp=qep[E+ v x B] —(pv) (6.92)

6.4.5. Wigner-Gleichungen

Hier wird Vorarbeit fiir das Kapitel B3 geleistet: Die Wigner-Gleichungen b=30a-b=30d
werden durch elementare Umformungen, welche auf Anwendung der Produktregel des
Nablaoperators basieren, in die Form einer Kontinuititsgleichung E-72 gebracht®. Das
Ergebnis dieser Umformungen lautet:

%f,\(r,k) = —ivr-[kj}\(r,k)] (unverandert) (6.93a)
kin mx
Ine0| = DT (e VAR k)
Ap mx
oo (Ve {AE) A 9} (6.93b)
2
G| = g Vi [T RIAD) (6.930)
gtf,\(r,k)H - —%‘Vk-[E(r)f,\(r,k)] (6.93d)
GhEw| = e (g viasr)

—Vk - [fa(r,k)V, Ae(k,1)]) (6.93¢)

*"Der Korrelationsterm 530 wird ausser Acht gelassen, weil dessen genaue Realisierung noch gar nicht
klar ist.
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In dieser Form lésst sich der Zustandsvektor u und der Flusstensor f(u) ablesen. Der
Zustandsvektor ist einfach nur durch die Wignerfunktionen f gegeben:

u(r, k) = ( J;((:B > (6.94)

Der Flusstensor hat entsprechend der zwei Komponenten von u und wegen des sechs-
dimensionalen Phasenraums die Form einer 2 x 6-Matrix:

J—:"e fi
f = Lo 6.95

Dabei sind fr)‘ und fﬁ‘ jeweils dreidimensionale Zeilenvektoren, welche sich auf den Orts-
bzw. Impulsraumanteil des Phasenraums beziehen:

AR = k) - L AR AL
_|q};\ A(r, k) Vi Ae(k,r) (6.96a)
Rk = jng<r7k>vr[A<r>-k]—gﬁuvr{fmr,k)m(r)m
+%E(r) f,\(r,k)—i—'(]g' \(r, k) V, Ac(k, r) (6.96D)

6.5. Wigner-Maxwell Gleichungen

Die numerische Losung der Wigner-Maxwell Gleichungen b=35a-5-35H stellt ein anspruchs-
volles Problem dar, fiir das es kein universelles Lésungsverfahren gibt. Fin Versuch, diese
mit Finiten Differenzen Verfahren zu l6sen, ist in [67] dokumentiert.

Die Gleichungen fiir Licht (Maxwell) und Materie (Wigner) werden hier getrennt be-
handelt, da die selbstkonsistente Kopplung der Gleichungen vorerst als ein unbedeutendes
Detail erscheint®.

In diesem Kapitel wird es ausschlieflich um das Losen der Wignergleichungen b=3ha-
fiir ein vorgegebenes elektromagnetisches Feld gehen. Fiir das Losen der Maxwell-
gleichungen in Potentialform BZ35#635H wird ein FDTD-Verfahren in Kapitel B2 vor-
geschlagen, welches auch auf andere Licht-Materie Systeme angewendet werden kann, in
denen die Materiegleichungen eine Coulomb-Eichung der elektromagnetischen Potentiale
erfordern.

6.5.1. Problemiibersicht

Mit Hilfe der Abbildung B3 l&sst sich leicht beschreiben, welches Resultat die numeri-
sche Simulation der Wignergleichungen bringen soll: Hier wird die Zeitentwicklung einer
klassischen Verteilungsfunktion im Phasenraum illustriert, welche als Analogon zur quan-
tenmechanischen Wignerverteilung betrachtet werden kann. Zur Zeit ¢y befinde sich das

28Bei der Kopplung der Gleichungen ist erfahrungsgems# mit numerischen Stabilitéitsproblemen zu rech-
nen.
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Abbildung 6.4.: Zeitentwicklung der Verteilungsfunktion im Phasenraum. Bei klassischen
Verteilungsfunktionen bleibt das blau markierte Volumen, welches sich
aus den Mikrozusténden (p, ¢), die mit der Préparation kompatibel sind,
zusammensetzt, wihrend der Zeitentwicklung konstant [62|. Bei der Wig-
nerverteilung gilt das nur fiir das Integral iiber den ganzen Raum.

System im Grundzustand und wird anschlieffen durch externe Felder angeregt. Dabei
durchléuft es verschiedene Zusténde bis es nach einer Zeit t9 durch Relaxation wieder
in den Grundzustand, den es bei der Zeit ¢y gehabt hat, zuriickkehrt. Aus der Trajek-
torie im Phasenraum lassen sich Erwartungswert (b(t)), Streuung (Ab(t)) und hohere
Momente aus der Verteilungsfunktion zu Observablen b berechnen. Dabei handelt es sich
z.B. um die Teilchen- und Stromdichte. Die Berechnung solcher Grofen ist das Ziel der
Simulation.

Fiir die Initialisierung der Simulation muss zunachst durch makroskopische Priapara-
tion die Verteilungsfunktion zur Zeit o ermittelt werden. Dazu miissen alle mikrosko-
pischen Zustédnde, die mit der Priaparation kompatibel sind, mit einer entsprechenden
Gewichtung versehen werden. In Abbildung 64 sind diese Zusténde als klassische Mikro-
zustinde (p,q) in zusammenhingenden Gebieten dargestellt. Bei der Wignerverteilung
sind die Mikrozusténde durch Vielteilchenwellenfunktionen |¢)) gegeben.

Als néchstes muss die Zeitentwicklung der Verteilungsfunktion berechnet werden. Spe-
ziell fiir dieses Problem wurde zuvor in Kapitel B43 gezeigt, dass sich die Wigner-
Gleichungen 535a-6354 iiber einen Flusstensor f(u) in die Form der Kontinuitétsglei-
chung E77 bringen lassen:

8 fe(rv k) ff ./_::Il. o
i?t(fi(r,k))Jrv'(fﬁ fli{)—o (6.97)

Wenn man von den Schwierigkeiten absieht, welche die Berechnung des Flusstensors
beinhaltet®, fillt die Gleichung E92 in die Klasse von hyperbolischen partiellen Dif-
ferentialgleichungen fiir die es unzdhlige FVM-basierte Losungsansitze in der Numerik
gibt. Die Vielfalt der Losungsansétze hat den Grund, weil so einfache Gleichungen wie
die Advektionsgleichung als auch die hochkomplizierten Navier-Stokes Gleichungen in die

2Man denke dabei insbesondere an die Energierenormierung Ae(r, k).
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6.5. Wigner-Maxwell Gleichungen

Abbildung 6.5.: Der Impulsraumanteil der Wignerverteilung gleicht im Anfangszustand
einer Fermikugel. Die (normierte) Funktion féllt an der Oberfliche der
Kugel von Eins auf Null ab. Die blau markierte Schale soll den Bereich
kmin < k < kmax darstellen. Ausserhalb von diesem Bereich bleibt die
Verteilungsfunktion konstant (Annahme, s. Text).

Form 697 (evtl. mit Quellterm) gebracht werden kénnen und es unzéhlige Anwendungen
fiir die Gleichungen gibt. Jede Anwendung bringt besondere Anspriiche an bestimmte
Teilaspekte mit sich, wie z.B. die Realisierung von Randbedingungen oder die Diskreti-
sierung des Simulationsraumes. Fiir die Wignergleichungen werden diese in den folgenden
Kapiteln beschrieben.

6.5.2. Prdparation des Grundzustands

Im Jellium-Modell wird von einer statischen Ionendichte n™(r) ausgegangen. Daher re-
duziert sich die Gleichung 6297 auf den elektronischen Anteil:

— fo(r, k) + V- ( Jfﬁ ) =0 (6.98)

Zukiinftig kann der Index e an der Verteilungsfunktion daher weggelassen werden:

fe=f

Als Anfangszustand wurde die Teilchendichte n~ (r,0) = n*(r) gesetzt und angenommen,
dass das Geschwindigkeitsfeld v(r, 0) {iberall verschwindet. Dazu muss der k-Raumanteil
der Ein-Teilchen Wignerverteilung f(r,k) an jedem Ort r mit einer Fermikugel (s. Abb.
B3) initialisiert werden, deren Radius die Bedingung

%Z £, k) = nt(r) (6.99)
k

erfiillt.
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f (k)

Kartesisch Sphérisch

Abbildung 6.6.: Der Impulsraum kann in kartesischen oder sphérischen Koordinaten dis-
kretisiert werden. Das Innere der Fermikugel braucht nicht mit gespei-
chert werden, da die Funktion dort konstant Eins ist. Ebenso muss fernab
der Fermikugel die Verteilung nicht gespeichert werden, da sie dort kon-
stant Null ist. Die Farbwerte geben die Mittelwerte der Wignerverteilung
in den einzelnen Zellen (finite Volumen) wieder. In der Mitte der Schale
(d.h. bei k = kp) fallt die Verteilungsfunktion auf Null ab.

6.5.3. Diskretisierung des Phasenraums

Der Phasenraum, auf dem die Ein-Teilchen Wignerverteilung f(r,k) definiert ist, hat
sechs Raumdimensionen. Dieser kann fiir realistische Berechnungen nicht einfach durch
N Gitterpunkte je Dimension aufgelost werden, da der Speicherbedarf mit N© steigt.

Stattdessen wird hier von einer unbewiesenen Vermutung Gebrauch gemacht, durch die
zwar die Diskretisierung des Phasenraums erheblich komplizierter wird, aber gleichzeitig
auch das Speicherplatzproblem gelost werden kann:

In jeder Fermikugel des k-Raumes gibt es einen Radius ki, unterhalb dem
die Wignerverteilung f konstant den Wert f(r) behilt. Genauso existiert ein
Radius kpax oberhalb dem die Verteilung konstant (Null) bleibt.

Diese Annahme kann nicht auf alle Systeme zutreffen und ausserdem kann sie wahrend
der Zeitentwicklung verletzt werden.

Fiir metallische Systeme wird angenommen, dass diese Aussage stimmt und sich die
Wignerverteilung nur innerhalb der Kugelschale kpin < k < kmax dndert. Im k-Raum
muss dadurch nur noch die Kugelschale diskretisiert werden, wie in Abbildung E@ ge-
zeigt wird. Naheliegender Weise kann man hier neben einem kartesischen Gitter auch ein
sphérisches Gitter in Betracht ziehen. Welches besser geeignet ist, miissen numerische
Simulationen erst noch zeigen.

Diese Losung zur Einsparung von Speicherplatz macht aber auch spezielle Randbe-
dingungen an den Réndern der Kugelschale im k-Raum notwendig. Ein erster Versuch
besteht darin, hier folgende Dirichletrandbedingungen zu verwenden:

f(I‘, ‘k’ = kmin) = fO(r) (6100)
fr, k| = knax) = 0 (6.101)
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6.5. Wigner-Maxwell Gleichungen

Diese Randbedingungen sind zwar sehr einfach zu implementieren, fiihren aber zu un-
physikalischen Reflexionen am Rand der Kugelschale.

6.5.4. Zeitentwicklung

Die Berechnung der Fliisse durch die Oberflachen von Volumenelementen (s. Abb. BE0)
sollte bei den Wignergleichungen iiber die in Kapitel 623 beschriebene Kurganov-Tad-
mor Methode durchfithrbar sein. Die Zeitentwicklung kann dann durch ein explizites
Runge-Kutta Verfahren berechnet werden. In dieser Arbeit konnte die hier vorgeschlagene
Methode allerdings nicht mehr getestet werden.

In der Literatur wurde fiir das Wigner-Poisson System eine numerische Methode [69]
gefunden, welche die Gleichung fiir eine Raumdimension (d.h. in einem zweidimensiona-
len Phasenraum) durch eine doppelte Fouriertransformation 16st. Die Anwendung einer
Finiten Volumen Methode auf die Wignergleichungen ist vermutlich neu. Unklar ist, ob
es liberhaupt korrekt ist, eine Finite Volumen Methode auf eine Quasiverteilungsfunktion
wie der Wignerverteilung anzuwenden.

6.5.5. Drude Bewegungsgleichung im k-Raum
Die klassische Drude Bewegungsgleichung fiir ein Elektron im elektrischen Feld
mev = gE(t) — ymev (6.102)

kann durch einen Spezialfall der Wignergleichung BZ35H reproduziert werden. Um die
klassische Drude Bewegungsgleichung zu reproduzieren, wird ein fester Ort r der Ver-
teilungsfunktion betrachtet und alle anderen Terme aus der Bewegungsgleichung fiir f
gestrichen:

0 ge
af(k) = %(VrCD(r) (Vi f(k))

_ _‘L;E(r) (Vi f(k))

= Vi [B()/(K)] (6.103)

Um eine phdnomenologische Relaxation mit der gleichen Wirkung wie der des klassischen
Terms —ymeVv zu erhalten, werden nur Abweichungen §f aus der Anfangsverteilung fo
betrachtet:

0f(k,t) = f(k,t) = fo(k) (6.104)

Indem man diesen Term in die Gleichung ET3 einsetzt, kann dann fiir ein Finites Volu-
men die Bewegungsgleichung (in der Form der Gleichung 683) formuliert werden:

doz G 1 (s) -
S F 1~ JaiSa. ) )
0= TN Eg jo oS (6.105)

Fiir den Fluss (¢o/h)E(r)f(k) (s. Gl. BI03) durch die s-te Oberfliche des j-ten Volu-
menelementes wird eine Naherung benotigt:

Fcy o @
o TG+ 7063)

F® ~ E(r) 5

(6.106)
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Abbildung 6.7.: Ergebnis der FVM Simulation zur Drude Bewegungsgleichung 6BI03. Die
blaue Kurve im Vordergrund zeigt den zeitlichen Verlauf des elektrischen
Feldes, welches fiir eine Beschleunigung sorgt. Die rote Kurve zeigt den
Geschwindigkeitsverlauf, der aus der Verschiebung der Fermikugel re-
sultiert. Die schwarzen Kreuzchen zeigen die Ubereinstimmung mit der
numerischen Losung der Drude Bewegungsgleichung ET02, die mit einem
Standardverfahren zur Zeitintegration erhalten wurde.

,S
Mittelwerte der Verteilungsfunktion f in den beiden Volumina, welchejsich die Oberflache
teilen. Der Ddmpfungsterm —v ¢ f] in Gl. BI0A ist kiinstlich hinzugefiigt worden.

Das Ergebnis der Simulation nach dieser speziellen Finite Volumen Methode, bei der
die Mittelwertbildung EI08 zur Berechnung des Flusses benutzt wurde, ist in Abbildung
670 dargestellt. Als Finite Volumen kamen sowohl die kartesischen als auch die sphéarischen
Volumen aus Abbildung 66 zum Einsatz. Fiir kleine Anregung durch das Feld E konnte
kein Unterschied in den Ergebnissen festgestellt werden®.

Mit ﬁg-s) wird die Oberflichennormale bezeichnet und f(ké»’ls), f (k(z)) bezeichnen die

6.6. Losungsverfahren fiir die Poisson-Gleichung

6.6.1. Problemiibersicht
Die Poissongleichung [27] tritt in den Kohn-Sham Gleichungen bei der Berechnung des

Hartree-Potentials Vi1[n~] und bei den Wigner-Maxwellgleichungen im Zusammenhang
mit dem longitudinalen Anteil des elektromagnetischen Feldes (Gl. b=3T) auf:

(V2 + k%] @(r) = (r) + RB (6.107)

——0
€0

Die Randbedingungen koénnen je nach System vollig verschieden sein:

3'Die maximale Auslenkung der Fermikugel aus der Ruhelage im Verhiltnis zur Dicke der Schale (s.
Abb. BH) legt fest, ob es sich um eine ,kleine“ oder ,grofe Anregung des Systems handelt.
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6.6. Losungsverfahren fiir die Poisson-Gleichung

e Bei elektronischen Strukturrechnungen an einzelnen Atomen und Molekiilen wiirde
man offene Randbedingungen wéhlen:

lim ®(|r|) =0 (6.108)

[r|—o0

e Fiir die Simulation von periodisch auf einem Substrat angeordneten Split-Ring
Resonatoren || wéren periodische Randbedingungen in zwei Dimensionen und eine
offene Randbedingung in der dritten Dimension sinnvoll:

S(rtw,y,z) = P(z,y,2) (6.109a)

O(x,yth,z) = P(z,y,2) (6.109b)
‘1|im O(z,y,2) = 0 (6.109c)
Z|—00

o Fiir Festkorper werden rein periodische Randbedingungen bendotigt:

O(r+R,) = @(r) (Ry : Position der Elementarzelle mit Index o) (6.110)

Um die Gleichung BTUA numerisch zu 16sen, werden {iblicherweise Finite Differenzen
oder Finite Elemente Verfahren verwendet [78], bei denen die Poissongleichung in ein
lineares Gleichungssystem umgewandelt wird. Fiir die Losung der dabei entstehenden
Gleichungssysteme existiert eine gewaltige Fiille von Methoden [6Y] deren Anwendbarkeit
u. a. von der Groke des Gleichungssystems abhingt. Die Anzahl der Unbekannten in
gingigen Anwendungen deckt mindestens den Bereich von 102 bis 107 ab.

Die Gleichung kann fiir den rein periodischen Fall ETT0 iiber eine Fourierreihenentwick-
lung besonders einfach und numerisch extrem effizient gelost werden (s. Kapitel 6632).
Die Realisierung von offenen Randbedingungen ist numerisch gesehen am schwierigs-
ten, da der Simulationsraum (2 nur endlich grof ist, aber die gesuchten Lésungen sich
auf einen unendlich grofen nicht-periodischen Raum beziehen. Eine einfache, aber nicht
sehr elegante Methode zur Realisierung von offenen Randbedingungen besteht darin, rein
periodische oder Dirichletrandbedingungen (®(0€2) = 0) zu wéhlen und die Ladungen
so weit vom Rand zu entfernen, dass die Losung nicht mehr vom Abstand zum Rand
abhéngt.

In [97] wird gezeigt, wie sich auch offene Randbedingungen mit einer schnellen Fourier
Methode realisieren lassen.

6.6.2. FFT-Methode

Die Moglichkeit, die Poissongleichung mittels schneller Fouriertransformation (FFTSY)
l6sen zu konnen, bietet folgende entscheidende technische Vorteile gegeniiber Verfahren,
welche ein lineares Gleichungssystem lésen miissen:

1. Die Berechnung der Losung erfordert eine feste Anzahl an Rechenoperationen, d.h.
es wird kein iteratives Verfahren wie beim Losen von linearen Gleichungssystemen
benotigt.

3lengl: Fast Fourier Transform
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2. Fiir die schnelle diskrete Fouriertransformation eines N-dimensionalen Vektors wer-
den nur O(N log N) Rechenoperationen benétigt. Die Methode eignet sich also auch
fiir grofe zwei- und dreidimensionale Probleme, bei denen die Anzahl der Gitter-
punkte N in der Gréfenordnung 10%...10° liegen kann.

3. Zur Durchfiihrung der schnellen Fouriertransformation kann auf die fftw-Biblio-
thek zuriickgegriffen werden, in der die effizientesten Verfahren implementiert sind.
Die Bibliothek bietet auch Méglichkeiten zur Parallelisierung mit OpenMP und
MPI.

Fiir die Herleitung der Gleichungen der FFT-Methode geniigt es, die eindimensionale
Poissongleichung zu betrachten:

2
[;ZQ - "vz] ¢(z) = —4np(z) (e0 = (4m)"" in au) (6.111)

Das Potential ¢ und die Ladungsdichte p werden in einer Fourierreihe auf dem Intervall
[0, L] entwickelt:

0 2]+ ik - 2 21 ik
PR D I D DR A
n=-—oo n=—oo
o .
= —Ar Z rpetfn?
n=—oo
2mn
kn = A
Durch Koeffizientenvergleich ergibt sich folgende Bedingung fiir die Koeffizienten c,:
Arr,
Cn = 22 (6.112)

Fiir ladungsneutrale Systeme ist der Koeffizient rg = 0. In diesem Fall muss auch der
Koeffizient ¢y verschwinden, da gilt:

cor? = 4mrg (6.113)

Der Koeffizient cg, der nur eine physikalisch unbedeutende additive Konstante zum Po-
tential ¢ darstellt, ist offensichtlich bei nicht-neutralen Systemen nur dann definiert,
wenn es eine elektrostatische Abschirmung gibt. In dieser Arbeit werden nur elektrisch
neutrale Systeme betrachtet und daher gilt ¢g = r¢g = 0.

Die numerische Umsetzung dieser Methode verwendet eine Diskretisierung des Simu-
lationsraumes mit einem reguléren, kartesischen Gitter. Die Fourierintegrale zur Berech-
nung der Koeffizienten 7, werden in der Diskreten Fouriertransformation |66, 98] durch
Riemann-Summen auf dem Gitter ersetzt. Insgesamt sind folgende drei Schritte notig,
um die Poissongleichung auf diese Weise zu losen:

1. Diskrete Fouriertransformation der Ladungsdichte durchfiithren
2. Koeffizienten ¢, nach Gl. ECIT2 berechnen

3. Inverse Diskrete Fouriertransformation auf die Koeffizienten ¢, anwenden, um die
Potentialfunktion ¢ zu erhalten
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6.7. Losungsverfahren fiir elektromagnetische Potentiale in
Coulomb-Eichung

Die Formulierung von quantenmechanischen Bewegungsgleichungen beriicksichtigen das
elektromagnetische Feld iiber den sogenannten ,Minimale Kopplungsterm® im Hamilton-
operator:

- 1

= 5 (b= aA) + 0. (6.114)

Die Eichung der Potentiale kann frei gewdhlt werden. Die Motivation fiir die Wahl der
Coulomb-Eichung besteht darin, dass die Wignergleichungen b=35a-b-354d speziell in die-
ser Kichung hergeleitet wurden. Diese Eichung wird sehr haufig bei der Beschreibung von
Optik in Festkdrpern verwendet und es scheint derzeit noch kein numerisches Losungsver-
fahren zu existieren, um elektromagnetische Potentiale in dieser Eichung zu simulieren.

In diesem Kapitel wird daher versucht ein Verfahren zu entwickeln, welches die Poten-
tialform der Maxwellgleichungen speziell in der Coulomb-Eichung 16sen kann:

1 9’A
V2A. — ?W = */‘LOJt (6115&)
1
Vo = ——o (6.115b)
0
V-A =0 (6.115¢)

Grob gesagt muss dazu einmal eine vektorielle Wellengleichung BIT5a fiir das Vektorpo-
tential A und eine Poissongleichung BTT5H fiir das longitudinale elektrische Feld gelost
werden. Das Vektorpotential darf die Eichbedingung nicht verletzen.

Die Verwendung der Lorentzeichung [27] erscheint einfacher, weil bei dieser auch fiir
das skalare Potential eine Wellengleichung gelést werden muss und somit nur eine Art
von Problem zu 16sen ist. Ein numerisches Verfahren fiir die Lorentzeichung existiert
bereits und ist in [24]| beschrieben.

6.7.1. Problemiibersicht

Die Entwicklung einer neuen numerischen Methode zur Losung der Maxwellgleichun-
gen ist eine sehr komplexe Aufgabe. Bei den Maxwellgleichungen tritt zusétzlich das
Problem auf, dass ein kompliziertes Modell fiir die Materie (welches iiber nichtlineares
und/oder nichtlokales Antwortverhalten verfiigen kann) simultan mit den Gleichungen
gelost werden muss. Bei der Entwicklung einer Methode miissen folgende Eigenschaften
der numerischen Methode beriicksichtigt werden:

e Konsistenz: Fiir At — 0 und/oder Az — 0 gehen die diskretisierten Gleichungen
iiber in die exakten Gleichungen.

e Stabilitdt: Die numerische Methode ist stabil, wenn sich kleine Fehler in der nume-
rischen Losung (von Zeitschritt zu Zeitschritt) nicht verstirken.

e Konvergenz: Die numerische Losung der Differenzengleichung konvergiert gegen die
Losung der exakten Differentialgleichung fiir immer feinere Gitterauflésungen.
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e Erhaltungsgesetze: In Abwesenheit von Quellen und Senken diirfen Erhaltungsgro-
fen von der numerischen Methode nicht verletzt werden.

e Einhaltung von Schranken: Schranken fiir physikalische Gréfien diirfen nicht ver-
letzt werden. Z.B. darf eine Teilchendichte nicht negativ werden.

o Realisierbarkeit: Man sollte garantieren konnen, dass das Modell und die zugehd-
rigen Gleichungen iiberhaupt eine physikalisch sinnvolle Losung besitzen. Dieses
Problem ist nicht numerischer Natur.

o Genauigkeit: Es gibt drei Arten von Fehlern, welche die Genauigkeit der numeri-
schen Loésung charakterisieren:

1. Modellierungsfehler: Beschreibt das mathematische Modell das reale System
hinreichend genau? Falls nicht, kénnen auch auskonvergierte Losungen quali-
tativ vom experimentell beobachteten Verhalten abweichen.

2. Diskretisierungsfehler: Das ist der Unterschied zwischen der exakten Losung
der Differentialgleichung und der algebraischen Differenzengleichung.

3. Konvergenzfehler: Das ist der Unterschied zwischen der exakten Losung ei-
nes algebraischen Gleichungssystems und der numerisch-iterativ ermittelten
Losung.

Diese Auflistung von Eigenschaften orientiert sich an der Darstellung in [95], wo es speziell
um Simulationen in der Fluiddynamik geht. Da die Maxwellgleichungen auch eine Konti-
nuititsgleichung fiir elektrische Ladungen implizieren, sind die oben genannten Aspekte
(Erhaltungsgesetze, Einhaltung von Schranken) auch fiir das Maxwellproblem relevant.

Weil die Komplexitit dieser Aufgabe das Hauptproblem darstellt, wird ein pragmati-
scher Losungsansatz gewéhlt: Die Wellengleichung fiir das Vektorpotential wird iiber das
bekannte FDTD-Verfahren |41, A5] gelost, welches bereits ausgiebig numerisch untersucht
wurde.

Folgende Probleme konnten in dieser Arbeit nicht mehr betrachtet werden: Die Pois-
songleichung sollte mit unterschiedlichen Randbedingungen geldst werden kénnen®? und
es sollte iiberpriift werden, dass die Retardierung in der Coulomb-Eichung [27, 99] in
der Simulation korrekt wiedergegeben wird. Letzteres Problem ist vermutlich sehr kom-
pliziert, weil die winkelabhéngige Gitterdispersion des FDTD-Verfahrens berticksichtigt
werden muss um das longitudinale Feld (welches iiber die Poissongleichung beschrieben
wird) mit dem transversalen Feld (welches {iber die Wellengleichung beschrieben wird)
korrekt zu vereinen. In diesem Zusammenhang sei noch erwiahnt, dass der Quellterm Jy in
der Vektorpotentialwellengleichung BIT5d nur den transversalen Anteil der Stromdichte
darstellt. Die Stromdichte J, wie sie vom Materiemodell ausgegeben wird, setzt sich aber
aus longitudinalen und transversalen Anteilen zusammen:

J = 3+, (6.116a)
V-J = 0 (6.116b)
VxJ = 0 (6.116¢)

32Es werden vor allem offene Randbedingungen in mindestens einer Raumrichtung benétigt, um bei-
spielsweise Transmissionsspektren von Nanostrukturen (s. Kap. 23) berechnen zu kénnen.
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Der longitudinale Anteil muss also raus gerechnet werden. Dieser steht in folgendem
Zusammenhang mit dem elektrostatischen Potential ®:

1 0(V®o
pod1 = — (875 )

(6.117)

[

Um die Felder in longitudinale und transversale Anteile zu zerlegen, konnten sich die
distributionsartigen Projektionsoperatoren (Gln. 15 und 19) in [99] als hilfreich erweisen.

6.7.2. Lésung der Wellengleichung

Die vektorielle Wellengleichung BIThd wird hier zunéchst als System von drei unabhén-
gigen, skalaren Wellengleichungen aufgefasst. Die folgende Betrachtung reduziert sich
deshalb auf ein skalares Feld A(r,t), welches einer inhomogenen Wellengleichung geniigt:

VA - Sz = (6.118)

(Der Quellterm wurde zur Vereinfachung der Gleichung umdefiniert: In dieses J muss
eine Komponente von —puoJy eingesetzt werden.)

Diese Gleichung soll nun mit einem Finite Differenzen Verfahren numerisch gelost
werden. Dazu wird als erstes diese Gleichung, welche zweiter Ordnung sowohl in Raum
als auch in Zeit ist, in ein System von Gleichungen erster Ordnung umgeschrieben:

t
A
%—t = CV-V—C2/J(t')dt' (6.119a)
to
ov
A A A _
o v (6.119b)

Fiir diese Umformung muss ein vektorielles Hilfsfeld v eingefiihrt werden. Der Quellterm
steht nun in einem Zeitintegral®. Die Felder A und v werden in Analogie zum Yee-Schema,
|23 im Simulationsraum auf zwei zueinander versetzten Gittern angeordnet, wie in Abb.
B3R gezeigt wird: Die beiden Gitter werden jeweils durch die rot und blau markierten
Diskretisierungspunkte gebildet. Die Gitterabstinde seien Az, Ay und Az.

Der Yee-Cube mit den Indizes (j, k, 1) befindet sich am Ort

plkD — jAzre; +kAyey,+1Aze,

mit den Komponenten

,U(]vkvl)
x
,U:'(J.]7k7l) , A(]:krl)

ikl
vgj’ 1)

*3Der Quellterm muss die Bedingung J(t < to) = 0 erfiillen.
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Abbildung 6.8.: Der Simulationsraum wird mit sogenannten ,Yee-Cubes* diskretisiert:
Dazu werden die Felder A,v,,v,, v, auf reguléren, kartesischen Gittern
dargestellt, welche den gezeigten Versatz zueinander besitzen. Die ausge-
fiillten Punkte stellen eine Elementarzelle von Diskretisierungspunkten
dar, welche im Raum periodisch fortgesetzt wird. Eine solche Zelle bein-
haltet die drei Komponenten des Hilfsfeldes v (rote Punkte) und ein
Gitterpunkt, der zum A-Feld gehort (blauer Punkt).

Die Differentialoperatoren in den Gln. BEIT9d-6E1TIH kénnen auf diesem speziellen Gitter
durch Zentraldifferenzen, welche 2. Ordnung genau sind, dargestellt werden:

T v’(“"jﬂ’k’ix Uﬂ(gj,k,l) . U;j,k+1,l)Ay véj,lc,l) . vgj,k,Hl)AZ Ugj,k,l) (6.1205)
j kel - j

iavg : LAY M’Z; ATRD (6.120b)

% 81)%:“’” AU - j(j,k—l,l) (6.1200)

i80%;’:&,1) N AUk _Af(j,k,l—l) (6.120d)

Die Komponenten des Gradienten vom A-Feld existieren nur an den Orten der v-Feldkom-
ponenten, weshalb die Gln. 6I208-6T20d mit der zugehorigen v-Feldkomponente formu-
liert wurden.

Die Komponenten des Yee-Cubes sind nicht nur rdumlich sondern auch zeitlich versetzt
angeordnet: Auf der diskretisierten Zeitachse t, = n At existiert das A-Feld nur zu den
Zeitpunkten ¢, und das v-Feld nur zu den Zwischenpunkten ¢, /o. Dadurch konnen fiir
die Zeitableitung ebenfalls Zentraldifferenzen 2. Ordnung verwendet werden:

0A Altni1) — Aty

N (tn1/2) = ( H)At (tn) +0(At?) (6.121a)
ov o V(tnyage) = v(ta1y2) 2
S tn) = A7 + O(At?) (6.121D)
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6.7. Losungsverfahren fiir elektromagnetische Potentiale in Coulomb-Eichung

Auf der linken Seite ersetzt man nun die Zeitableitungen %—‘;‘ und %‘t’ durch die rdumlichen
Differenzenterme BIT208-6T20d geméf den Gleichungen BITIa-ETTIH. Die resultieren-
den Gleichungen kénnen nach A(t,11) und v(t,11/2) aufgelost werden, wodurch eine
explizite Integration der Gleichungen in der Zeit méglich ist (Leapfrog-Verfahren: s. [41]).
Es werden als Anfangsbedingungen die Felder A(t9) und v(#;/2) benétigt.

Als letztes muss noch der Quellterm in Gl. BITYa diskretisiert werden. Das Integral

t
Qt) = c2/ J(tat' (6.122)
to
muss zu den Zeiten ¢,/ definiert sein, da es an der gleichen Stelle wie das v-Feld in
der Zeitableitung vom A-Feld auftritt (s. Gl. BEI19a). Indem das Feld J(t) zu den Zeiten

ty, definiert wird, kann das Integral als einfache Riemann-Summe geschrieben werden:

Qltps1j2) = —¢* At Z J(ty) + O(A#?) (6.123)
k=0

Die Ortsabhéngigkeit vom Feld J wurde bisher nicht explizit erwdhnt: Das Feld muss an
den gleichen Gitterpunkten im Raum wie das A-Feld definiert werden (da es als Quellterm
in der Wellengleichung steht).

*

Die bisherige Darstellung hat sich auf eine Komponente der vektoriellen Wellengleichung
BEIT5a bezogen. Im Prinzip kann man nun fiir jede Komponente A,, A,, A, entsprechende
Hilfsfelder v, vy, v, einfilhren und mit dem beschriebenen Verfahren das A-Feld in der
Zeit propagieren. Hier stellt sich die Frage, ob tatséichlich zwdlf Felder benétigt werden,
um drei skalare Wellengleichungen zu l6sen: Wie man vom Yee-Algorithmus zur Lésung
der Maxwellgleichungen, welche ja die Wellengleichungen implizieren, weifs, werden dafiir
nur die sechs Felder E und B benétigt.

Um herauszufinden, welche Modifikationen an bereits existierenden FDTD-Implemen-
tationen fiir Maxwellgleichungen notig sind, um damit die Vektorpotentialwellengleichung
BIT53 16sen zu konnen, werden nochmals die Wellengleichungen fiir die E- und B-Felder
(mit Quellterm J) betrachtet:

O’E 0J
°E — poco s = poo .
\Y% HOEOD 912 o ot (6 124&)
9’B
VQB — MO&‘OW = NOV X Jt (6124b)

Das E-Feld wiirde man als A-Feld benutzen und das B-Feld iibernimmt die Rolle der
Hilfsfelder v, vy, v.. Das E-Feld hat allerdings die Zeitableitung von poJ als Quelle. Die
Zeitintegration der Quelle (Gl. EIZ3) wird also weiterhin benétigt. Sonstige Anderungen
sind am Yee-Algorithmus nicht erforderlich.

Es muss allerdings noch beachtet werden, dass die Komponenten der E- und J-Felder
nicht am selben Ort sondern auf dem Yee-Cube verteilt liegen. Das kann fiir Anwen-
dungen, in denen die Rotation des Vektorpotentials bendtigt wird von Vorteil sein, weil
der Yee-Cube extra fiir diese Berechnung gedacht ist. Andernfalls miissen Mittelwerte
gebildet werden, welche alle Komponenten der Felder auf einen gemeinsamen Punkt im
Yee-Cube konzentrieren.
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7. Schlussfolgerung und Ausblick

Fiir die Berechnung der optischen Eigenschaften von Nanostrukturen wurde im Rahmen
der Dichtefunktionaltheorie zunéchst der elektronische Grundzustand der Nanostruk-
turen durch Loésen der stationiren Kohn-Sham Gleichungen berechnet: Diese Aufgabe
konnte erfolgreich fiir Strukturen durchgefiihrt werden, deren Symmetrien ein-, zwei-
und dreidimensionale numerische Berechnungen erfordern. Die eindimensionalen Berech-
nungen am Metallfilm haben gezeigt, dass bereits bei einer Filmdicke von nur 5nm die
elektronische Teilchendichte an den Oberflichen mit der Teilchendichte eines Metall-
halbraumes sehr gut iibereinstimmt (s. Abb. B). Die Teilchendichte ist durch Friedel-
Oszillationen charakterisiert, welche im Inneren des Metallfilms (bzw. Halbraums) ver-
schwinden. Diese Beobachtung kann genutzt werden, um die Dicke einer Metalloberflache
auf mikroskopischer Ebene abzuschétzen, auf der sich deutliche Abweichungen von idea-
lisierten Grenzflichen der makroskopischen Theorien zeigen. Ebenfalls konnte mit Hilfe
von zweidimensionalen Rechnungen an Nanodréhten die mikroskopische Teilchendichte
an Metallkanten und -ecken mit 90°-Profil berechnet werden (s. Abb. B0 u. BT). Die
dreidimensionalen Berechnungen erlauben es in analoger Weise auch die Teilchendichte
an Metallspitzen zu ermitteln. Bei diesen Modellrechnungen macht sich allerdings der
hohe Rechenaufwand stark bemerkbar, wenn man versucht die Abmessungen der Struk-
tur solange zu erhdhen bis die Dichte an den Spitzen unabhéngig von den Abmessungen
wird. Solche Berechnungen konnen in einer zukiinftigen Arbeit durchgefiihrt werden. Da-
zu muss allerdings eine Rechenumgebung genutzt werden, in der 103...10* Kohn-Sham
Orbitale effizient parallel verarbeitet werden kénnen.

Mit den Simulationen im Zeitbereich konnten Ergebnisse zu den nicht-linearen und
nicht-lokalen Effekten in den Nanostrukturen erzielt werden: An den Oberflichen des
Metallfilms konnten die Stromdichten der zweiten und dritten Harmonischen® beobach-
tet werden. Deren rédumliche Lokalisierung und deren Skalierungsverhalten (s. Abb. B4
u. B8) hat sich als physikalisch plausibel erwiesen, so dass davon auszugehen ist, dass
die Berechnungsmethode und deren sehr umfangreiche Implementation korrekte Ergeb-
nisse liefert. Die Berechnung von SH-Strémen wurde ebenfalls an diversen metallischen
Nanodréhten durchgefiihrt (s. Abb. BI2) um zu untersuchen, welche geometrischen For-
men eine besonders hohe SH-Stromdichte erzeugen. Um aussagekriftige Ergebnisse zu
erhalten, muss in zukiinftiger Arbeit die Strukturgrofe solange erhoht werden, bis die
Stromdichte unabhéngig von dieser wird. In diesem Zusammenhang miissen auch offe-
ne Randbedingungen (statt den derzeit verwendeten periodischen Randbedingungen) in
Betracht gezogen werden, welche technisch im Allgemeinen schwierig zu realisieren sind.

Die Berechnung der nicht-lokalen Suszeptibilitdt der Elektronendichte des Metallfilms
im linearen Regime ist ebenfalls gelungen: Diese ist durch eine starke Ortsabhingigkeit

'Die Beobachtung von noch héheren Harmonischen ist durch Auftreten von numerischem Rauschen
begrenzt.
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7. Schlussfolgerung und Ausblick

charakterisiert, welche im Inneren des Metallfilms abnimmt. Dadurch konnte eine Art
Bulkbereich um das Zentrum des Metallfilms ausgemacht werden. Alle Berechnungen da-
zu unterliegen allerdings einer an die Teilchendichte nachtrdglich angefiigten, sehr starken
Dampfung, ohne die diese Berechnung nicht durchfiihrbar ist: Wenn man die Dadmpfung
wegldsst, ergeben sich unendlich lange andauernde Dichtewellen, die sich durch die Nano-
strukturen bewegen und an den Grenzflichen reflektiert werden. Eine Antwortfunktion
kann fiir ein solches System (mit unendlich zuriickreichendem ,Gedéchtnis®) nicht be-
rechnet werden.

Dieser Aspekt hat auch die Entwicklung von Methoden zur dissipativen Dichtefunk-
tionaltheorie innerhalb dieser Arbeit motiviert: Als Grundlage wurde die Methode von
Neuhauser verwendet und unter verschiedenen Aspekten weiterentwickelt und untersucht.
Zu den Weiterentwicklungen zdhlen zum einen die Lésungsverfahren fiir implizite Kohn-
Sham Gleichungen (s. Kap. 623) und zum anderen die alternativen Formulierungen des
Reibungsterms (dessen Herleitung im Impulsraum sich als duferst aufwendig erwiesen
hat). Wie bereits in der Originalarbeit von Neuhauser konnte das Phanomen beobachtet
werden, dass die Dampfungseffizienz nach wenigen Femtosekunden stark abnimmt. Um
diesem Phé@nomen nachzugehen, wurden die impliziten Kohn-Sham Gleichungen fiir eine
Basis mit geringer Dimensionalitat (bestehend aus den Eigenfunktionen des effektiven
Potentials im Grundzustand) formuliert. Die Gleichungen erlauben in dieser Form einen
viel besseren Einblick in die Dynamik des Systems, da Eigenschaften, wie z.B. die Sym-
metrien von Matrixelementen bestimmter Operatoren, direkt sichtbar werden. Es konnte
damit erfolgreich gezeigt werden, dass ein wesentliches Problem beim Losen der impliziten
Kohn-Sham Gleichungen darin besteht, dass sich die Konditionszahl mit Fortschreiten
der Simulation immer weiter verschlechtert. Die Ursache fiir die Abnahme der Damp-
fungseffizienz lisst sich in einer zukiinftigen Arbeit iiber diesen Basisansatz vermutlich
ebenfalls ergriinden. Ein sehr niitzliches und praktisches Ergebnis fiir die Verwendung der
Methode von Neuhauser besteht in der Erkenntnis, dass sich statt des Stromdichteope-
rators genauso gut der Teilchendichteoperator benutzen lasst: Der Rechenaufwand wird
dadurch (besonders in zwei- und dreidimensionalen Simulationen) geringer ohne dass es
einen qualitativen Unterschied in den Ergebnissen gibt.

Als Alternative zur Dichtefunktionaltheorie wurden die Wignergleichungen aus einer
unverdffentlichten Arbeit von W. Hoyer untersucht: Es konnte in dieser Arbeit gezeigt
werden, dass sich diese Gleichungen in die Form einer Kontinuitdtsgleichung im sechs-
dimensionalen Phasenraum bringen lassen. Die Wignerfunktion kann man sich fiir den
Grundzustand des Systems (d.h. die Elektronen einer Nanostruktur) so vorstellen, dass
man an jedem Punkt im Ortsraum eine sphérische Fermiverteilungsfunktion im Impuls-
raum hat. Die Annahme, dass sich die Funktion in ihrem Impulsraumanteil nur an der
Oberfliche dieser ,Fermikugel“ zeitlich verédndert, ldsst hoffen, dass die numerische Ver-
arbeitung dieser Wignerfunktion durch effiziente Speicherung méglich ist. Weil die Funk-
tion iiber groke Gradienten im Ortsraum (an Grenzflichen von Nanostrukturen) und im
Impulsraum (an der Oberflache der Fermikugel) verfiigt, wurde nach einem numerischen
Lésungsverfahren fiir Kontinuitétsgleichungen gesucht, deren Losung diese Eigenschaften
haben darf. Die Finite-Volumen Methode von Kurganov und Tadmor (s. Kap. 6423) hat
sich als moglicher Kandidat erwiesen. Um die Komplexitdt von physikalischer und nu-
merischer Seite mdoglichst gering zu halten, wurden in dieser Arbeit die Gleichungen fiir
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einen Nanodraht hergeleitet und diverse Vereinfachungen vorgenommen (z.B. Beschrin-
kung auf das niedrigste Subband und auf elektrostatische Potentiale). Dadurch ist man
zu den eindimensionalen Wigner-Poisson Gleichungen (fiir einen zweidimensionalen Pha-
senraum) gelangt, welche in der Literatur bereits ausgiebig beschrieben wurden. Bereits
diese Gleichungen zeigen interessante Phénomene, wie z.B. die Landau-Dampfung, welche
mit einem neu zu entwickelnden numerischen Losungsverfahren erst einmal nachvollzogen
werden miissen. In einer zukiinftigen Arbeit kénnte man den Einsatz von Finite-Volumen
Methoden (z.B. der von Kurganov und Tadmor) fiir diese Aufgabe untersuchen, da es
derzeit in der Literatur noch keine Losungsverfahren zu geben scheint, die diese fiir Wig-
nergleichungen verwenden. In der Literatur ist allerdings bereits beschrieben worden, wie
sich aus den Wigner-Poisson Gleichungen die Quanten Euler Gleichung herleiten lésst (s.
Kap. 6332). Die Losungen dieser Gleichung sind zwar nur auf Léngenskalen oberhalb
der Fermiwellenlénge giiltig (und zeigen z.B. daher auch keine Friedel-Oszillationen), be-
riicksichtigen aber trotzdem Quanteneffekte bei einem Rechenaufwand, der mit dem vom
Lésen der klassischen Euler Gleichung vergleichbar ist. In einer zukiinftigen Arbeit sollte
speziell auf die Bedeutung des Bohm-Potentials (s. Gl. b8Y) eingegangen werden, da im
Vorhandensein dieses Terms der wesentliche Unterschied zu derzeitigen hydrodynami-
schen Modellrechnungen im Bereich der Plasmonik liegt.

Ein weiterer Aspekt dieser Arbeit bestand darin das bekannte FDTD-Verfahren zur
Simulation elektromagnetischer Felder auf die elektromagnetischen Potentiale, speziell in
der Coulomb-Eichung, zu iibertragen: Es konnte gezeigt werden, dass bereits existieren-
der FDTD-Code nur in der Berechnung der Quellterme verédndert werden muss, um die
Wellengleichung fiir das Vektorpotential zu l6sen. Ein noch ungeléstes Problem stellt die
Behandlung des skalaren Potentials dar, welche als Losung der Poissongleichung vorliegt:
Das Vektorpotential unterliegt einer winkelabhéngigen Gitterdispersion, die nicht zu der
Losung des skalaren Potentials passt. Es ist sehr schwierig abzuschitzen, wie sich ein
solcher Fehler auf die numerische Stabilitdt auswirkt.

Insgesamt stellt diese Arbeit einen viel versprechenden Ausgangspunkt fiir die theore-
tische Untersuchung der optischen Eigenschaften von metallischen Nanostrukturen dar:
Die Ergebnisse der Berechnungen auf Basis der Dichtefunktionaltheorie kdnnen bereits
als qualitativ korrekt angenommen werden. Um auch mit experimentellen Resultaten
vergleichen zu konnen, miissen allerdings noch Details, z.B. bei den verwendeten Rand-
bedingungen und der Dissipation, angepasst und verbessert werden.
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A. Anhang

A.l. Zustandsdichten

System Confinement Zustandsdichte

O Partikel 3D D(E)=23;0(E-Ej)

Draht 2D D(E)/L = ¥YZre . s
Film 1D D(E)/A = s

Tabelle A.1.: Zustandsdichte von Systemen mit unterschiedlichem Confinement. D(E)/L
ist die Zustandsdichte pro Lénge des Drahtes und D(FE)/A die Zustands-
dichte des Films pro Fliche. Beim Draht und Film bezieht sich die Zu-
standsdichte auf ein Subband.

A.2. GroBen in der linearen Optik von Metallen

Die Tabelle B ist so konzipiert, dass die fundamentalen Parameter eines Metalls, welche
in Tabellenwerken nachgeschlagen werden konnen, ganz oben stehen und in die Gleichun-
gen darunter eingesetzt werden konnen um abgeleitete Gréfen zu berechnen.
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DC-Leitwert | opc
Elektronendichte | ng
Plasmafrequenz | wp = \/ %
Streuzeit | 7=~ = L;;qugC
Suszeptibilitat | x(w) = %
Dispersionsrelation | k(w) = /mogo[l + x(w)]w?
2
AC-Leitwert | o(w) = ngl;
Phasendifferenz (E- und B-Feld) | A(w) = arg[k(w)]
Skintiefe | §(w) = Im{k(w)}~*

Tabelle A.2.: Formelsammlung zur linearen Optik in Metallen.

A.3. Drude-Parameter fiir Edelmetalle

Gold Silber Platin
no [ag”] 0.00876 | 0.008736 | 0.002845
no [m™3 5.9-10% | 5.9.10%® | 1.9-10%8
rs  [ao] 3.0 3.0 4.4
wp [rads™!] | 1.4-10% | 1.4-10'6 | 7.8-10'°
opc [Sm~Y | 41-107 | 6.1-107 | 5.1-10°
v s 4.1-101 | 2.7-101% | 1.1- 101

rs  |ag] 2.0 3.0 4.0 5.0 6.0
no lag”] 0.0298 0.0088 0.00373 0.0019 0.0011
wp [10%rads™!] | 25.3 13.8 8.95 6.40  4.87
Ar o [ag) 6.55  9.82  13.10 16.37 19.64

Tabelle A .4.: Teilchendichte, Plasmafrequenz und Fermi-Wellenléinge in Abhingigkeit
vom Wigner-Seitz Radius.

A.4. Mathematische Grundlagen fiir Reibungsterme im
Impulsraum

A.4.1. Stromdichteoperator im kontinuierlichen Impulsraum

Der Stromdichteoperator, der die Wahrscheinlichkeitsstromdichte im Impulsraum be-
schreibt, soll hier hergeleitet werden, da dieser in Lehrbiichern der Quantenmechanik
normalerweise nicht zu finden ist?.

'In [a2] wird die allgemeine Form eines Stromdichteoperators als J(q) = i[H,O(x — q)] (in a.u.)
angegeben. Dieses Konstrukt ist auch im Impulsraum giiltig und kann als alternative Form der hier
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107! 10"

Skintiefe [m]

Relative Skintiefe (6: A)

8 -10 i | i
10 . 10

10" 10" 10% 10° 10° 10" 10" 10%
Frequenz [Hz] Frequenz [Hz]

(a) (b)

Abbildung A.1.: Frequenzabhéngigkeit der Skintiefe in Gold: (a) Absolute Werte, (b) Ver-
héltnis der Skintiefe zur Wellenlénge im Vakuum. Diese wurde mit den
Formeln aus Tabelle B2 und den Parametern in Tabelle B3 berechnet.

Ausgangspunkt ist die Schrédingergleichung im Impulsraum:

9 - ? - dp' ~
th (p,t) = ;nw(p,t)—I—/27]:hV(p—p/,t)w(p',t) (A.1)

Die fouriertransformierten Grofen werden zur Kenntlichmachung der gewéhlten Konven-
tion der Normierung explizit angegeben:

/s — 1 i —ipz/h
Y(p,t) = \/ﬁ/ dxap(z,t)e (A.2a)
Vip,t) = /dxe_ipx/hV(:U,t) (A.2b)

Die Verwendung zwei verschiedener Konventionen hat keinen besonderen Grund. Die
Wahl einer unitiren Transformation fiir die Wellenfunktion ist wegen der statistischen
Interpretation jedoch naheliegend. Fiir die Riicktransformationen gilt:

1 7 ~ .

vat) = <= [ doiip.tyer (A3a)
1 Ji v, ipx/h

V(z,t) = py dpV(p,t)e (A.3b)

gezeigten Herleitung genutzt werden.
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Analog zur Herleitung im Ortsraum erfolgt diese hier durch Betrachtung der Zeitablei-
tung der Aufenthaltswahrscheinlichkeit des Teilchens im Intervall [a, b] des Impulsraums:

b
P(a,b;t) / (p,t)|* dp

d d . -
Grann = 5 [WBeopa= [ Jiie.opd

2

b
~ 2 ~ ~ A~ ~ ~ ~
— / ?[w*p D PVh LD d (A4

2mee 2mee

= %P(a,b;t) = /Zh [d*vw—wvw} dp

_ /b a {&* / 95— 1) -

a

(p— )" (v, t)

2mh

In Gleichung B4 wurde der Operator der potentiellen Energie V eingefiihrt. Auf einen
ket-Vektor |1)) angewendet, ergibt sich folgende Funktion ¢ im Impulsraum:

ep) = @IV =/dp”5(p—p”)/;fhv(p"—p’)ﬁ(p/,t) (A.5)

Fortsetzung der vorherigen Rechnung;:

S Pabr) = / o P00 (0,1) = V(0 — 900 0 650, 0)|

- / [ (7 - )50 05 .0)
= S(a,t) — J(b,t)
Die Stromdichte hat folgende Eigenschaft:
lim J(p,t) =0

p—Foo
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Unter Ausnutzung dieser Eigenschaft ldsst sich die Stromdichte berechnen:

%P>(p,t) = /j%/dp”Im{V(p’—p”)iﬁ(p”,t)lﬁ*(p/,t)}
= J(p,t) (A.6)

Der Term kann noch weiter umgeformt werden:

d [y . L } ]
Gpat) = [ 52 [ a6 -0 000 - 500 0)
p

2imh 2imh?

—0o0

= [ WO = 06 — [ I )
Uber das Faltungstheorem folgt:
[V gl(p)) = / dp" V(p' = p") (", 1)
— \orh / dz eIV (3, £y (x, )
= V2rh FIV ()¢ (2)](p) (A.T)

Die letzten beiden Zeilen dienen der Kenntlichmachung der verwendeten Konvention in
der Fouriertransformation mit Symbol F. Fiir die Stromdichte gilt nun:

d
—P =
= SP(pt) = J(0.1)

o [ DV @)

~ (' ) FV @)y ()] ()}

_ \/;W / dp' Tm (" (0, ) F[V (2)(2)] ()} (A.8)

Dieser Term sollte fiir numerische Berechnungen besonders gut nutzbar sein: Die Strom-
dichte im ganzen Raum kann durch Verschieben der Integrationsgrenze inkrementell be-
rechnet werden.

*

Als néchstes wird der Stromdichteoperator mit Parameter p ermittelt, von dem J(p,t)
der Erwartungswert ist:

J(p,t) = (J(p) = WOl ()Y (1) (A.9)
Wie man leicht nachrechnen kann, ist dieser Operator durch folgenden Term gegeben:
. 1 . N
Vi) = = |®@ -V -VO[-p) (A.10)
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Darin kommt einmal der Operator p und die c-Zahl p vor. Eine Besonderheit stellt die
Abhiingigkeit von der potentiellen Energie V(x) mit der Fouriertransformierten V(q) (s.
Gl. BZB) dar, welche die Notation J[V] motiviert. Das Matrixelement des Stromdichte-
operators kann folgendermafsen in Impulsbasis berechnet werden:

o0

(xIT[VI(p)lg) = 2/dp’/dp” @ — "))

—00

V(' = ")) o) (A.11)

Zum Vergleich werden die Stromdichteoperatoren fiir den Orts- und Impulsraum noch-
mals aufgefiihrt:

Ortsraum: J(¢) =

Impulsraum: J(p) =

A.4.2. Reibungsterm im kontinuierlichen Impulsraum

Es wird die Wirkungsweise des Reibungsterms auf eine Wellenfunktion im Impuls-
raum bendtigt:

w0 = [ asat) 222Dl
Nebenrechnung;:
(plJ(s)|)
- / a / 4 [V = 30 = P00~ 70~ "5~ (s
_ 2”‘%2 /dp, / dp” ‘7 p —p”)5(p'—p)¢(p”) _f/*(p/_p//)é(p//_p)w(p/)}
- o {@@s) [ a7 w-sew) - [ dp'v*@/p)w(p’)]
Daraus folgt:
(p| Hy (t)|)
— o [ dsal ™ {@@s) [ - - [ dp’v*@/p)w(p’)]
_ ﬁ /dsa(s)%t]/dp'x?(p—p')w(p’)— /dsa(s)?/de @ - p)o()
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0 p
1 AV, / / 9J
Qini2 {/ dp'V(p —p')(p') / ds G(S)E

- / dsa(s)%{/dp/‘?*(p/p)ip(p/)]

—00 S

ﬁ {/dp'v(pp%(p’)/dsa(s)%;

- /dSG(S)%Z/dP’V(pP’W(p’)] (A.12)

Die erste Faltung (erstes Integral in AT2) kann man umschreiben:

o0 o o0 o0 ,
[T w-ryew) = [a [doe vy [ i)
= 7dwe_ipx/hV(x,t) [ W(x')2rhd(x — )
\V2mh

= V2rh F{V(z,t)¢(2)} (p/h)

Das letzte Integral in A T2 kann durch eine Thetafunktion als Faltung geschrieben werden:
o

/ dp'V(p—p')v(p)

S

— [ @V s 0w - i) (A.13)
oo —ilp-pJz/h dz’  ien oo
= dp'O(p' —s) [ dxe PRIV (2, 1) e P/ (x")
E K . 27h

1 - 7 7 . ’ P
B /dx/da://dp'@(p'—8)€_z[p_p]z/h_m/EV(x’tW(iU')

27rh7 E E
= = [ e [a o) [ e - e

wh J_ . .
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Mit g =p' — s, p = q+ s, dg = dp’ substituieren:

/ dp'O(p —s)e Pl — / dq ©(q)e (Tt =wl/h
eis[x’x]/h/dq@(q)eiq[w’x]/h

i(x — ')

o—isle'—al/h (W(;([g;’ — x]/h) — h>

Es folgt:

dp'V(p — p ) ()

M\S

oo [e.o]

1 , o
_ /dw/dx/e—zpm/ﬁv(x,t)¢(x/)e—zs[ac —x]/h( h

e " )

i —2) + whd (2" — m))

\V2mh

Zum z’-Integral:

= L /dm/dx’e_i[p_s}x/hV(a;,t)w(x')e_isxl/ﬁ(

o0 [e.9]

- h
/ _ / N ,—isx’ /h o
/ de’ ... = / dx (z')e (i(w’—x) + mhé(x :1:))
® N p—isz’ /h )
= E / dx’ 711}(:3 )/e +7Th¢(:c)e*’s’”/h
i ' —x
Letztlich muss noch iiber x integriert werden:
% ) s N —isz’ /h )
/d$ e*l[p*s}x/hV(x,t) E / dx’ 71/1(33 )/e +7Th¢(:1:)e”"”/h:|
i -
® ) ° N —isz’ /h
— E / dr B_l[p_s]m/hV(ﬂj7t) / dl’/ 7/)(x )Ie
' —x
+ Wh/ dz e P10/ (4 £y () e iom/ M
h Ji —ilp—slz/h r lib(x/)eiisx//h i —ipx/h
=7 dxe V(z,t) [ do’ —————+nh [ dee "V (z,t)(z)
o /
=~ / dx e PN (2, ) F { f(f i } (s/h) +7h F{V (2)(x) }(p/h)
—00
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A.4. Mathematische Grundlagen fiir Reibungsterme im Impulsraum

mit der Singularitdt ist die Fouriertransformation des Produktes zweier

Funktionen, das in die Faltung derer Fouriertransformierten iibergeht:

F{EO @ = puany e F { L w

f0) = F (0t} () = [ doe @) = Varh d(k)
(k) = ]-'{ 1 }(k):e—mf{l}(k):—m—ikxsgn(k:)

Tz —x !

<f*g><>=—mf/dkw [k — K)e% sgn(k')

Einsetzen in das Integral iiber z:

7 da = =51/ (5 ) F { ;p/(i)v} (%)

= —inV2rh / dw e~ P12/ (1) / dk (s — ik )e @ sgn(k')  (r = s — k')

—00

= mﬁ 7 dr(r)sgn(r — s)V(p —r,t)

AN
— ﬁ /dp’f/(p_p’)@b( )/dsa 8;] / /de(p p)¢(p')]
= g [VERFV 0@ o/ [ dsao) %~ [ dsato

—0o0 —0o0

1

W 2mh3

\/21771 (?mﬁ /dr 1;(7") sgn(r — s)f/(p —r,t) +7h f{V(x)dJ(a:)}(p/h))]

F{V (@, )¢ ()} (p/h) / ds “(S)%i

—0o0
o0 (e o]

oJ

— %%/drﬂ(r)V(p—r,t)/dsa( )Esgn(r—s)

—0o0 —00

1 1
3PV @u@) o/t [ dsa) 5

o0

oJ

—0o0
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oo

1 0J 1
= o PV v /) [ dsal) G o9 )
— 21,1h2/dm;(r)f/(p—r,t)/dsa(s)%isgn(r—s)

Das ist der Term in Gleichung 2=30.

A.4.3. Stromdichteoperator im diskreten Impulsraum

Als erstes wird die Schrédingergleichung im periodischen Ortsraum bendtigt. Dazu wer-
den die Fourierreihen der Wellenfunktion und des Potentials in die Schrédingergleichung
im Ortsraum eingesetzt:

Pla,t) = Y ca(t)en”
Viz,t) = > vp(t)e”

n

1200 = e+ Vi
RPTAA T T omanzt\W “ ©
(A.14)
Die Orthogonalidtsrelation lautet:
/ dx e*i=knle — 105, (A.15)
Q

Die Schrodingergleichung fiir die Koeffizienten der Fourierreihe von (x, t) lautet:

0 h?

il cj(t) = %kf.cj () + ) vnlt)ejn(t) (A.16)

Normierungsbedingung:

/MWMW=1: da Y elFnthulecs (t)e, (1) = 1
Q [¢) :

1
> Xl = (A17)

Die Wahrscheinlichkeit, dass das Teilchen einen Impuls im Interval [pg, pp] hat, ist durch
folgende Summation gegeben:

b
Pla.bit) = 3 len(t)?
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b

d L
%P(avb;t) = Z[cncn +cnc”]

n=a
b
1| r? h?
2 2
= Z% —k c*cn—I-c;;Zvn/cn,n/ - %kncnc — ¢y E vrCh

=a

= Z Z C nUn/Cn—n/ Uy Cp— n Z Z fIm{c V! Cpy— n’}

n= an’:—oo n= an’:—oo

- Zilm{c;; o+ cl(n)}
Fiir die Faltung im diskreten Raum gilt:
[vxcl(n) = Zvn_n/cn/ = ml‘QZ/da:/dx' e - V7 (1Yo (2"
= |Q1|2%:/d:c ei[k”kn’]QCV(a:)/da:’ e*ikn’xlw(m")
= @/dweik"xv(x)/da: Y(x |Q‘ Zelk w o =]

An dieser Stelle tritt der Dirac-Kamm auf:

1 1knx
Zn:&(:c—nL) = ZZek (A.18)

n

Damit folgt:

xcl(n) = 1 z e e T x—2 —n
prdmn) = o [dee V@) [arie ) L)

- L e FnTV (2)(z
= e V@)
=: FT[V(z)¢Y(z)](n) (n-ter Fourierkoeffizient) (A.19)

Zur Wahrscheinlichkeitsstromdichte:

d
—Pabit) = J(a,t) = J(b,1)

Dieser Zusammenhang gilt allgemein und folgt bereits aus der Anschauung. Genau wie
im nicht-periodischen Fall ldsst sich nun eine Grenze gegen unendlich schieben und an-
nehmen, dass die Stromdichte fiir unendlich grofie Impulse verschwindet:

i TP ) =0
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Fiir die Stromdichte im diskreten Impulsraum gilt nun:

d d
J(Pp-1/2,1) = gP(pn,OO;t) =: @Pz(pn;t) (wegen ,+£1/2¢ s. unten)

= Y (e )

= 2> (e TV ) ()] )} (A.20a)
n—1
J(Png1y2:t) = —; Im{c; FTV (z)4(2)](k;)} (A.20b)

Im Argument von J steht p,,41/9: Dadurch wird sicher gestellt, dass die Summations-
grenzen auf der rechten Seite eindeutig sind (andernfalls wére nicht klar, ob die Summen
bei n oder bei n £ 1 anfangen bzw. enden). Uber folgenden Term kann die Kontinuitéits-
gleichung im diskreten Raum hergeleitet werden:

n—1 00
d 2 d 2 d 2
O+ G 3 0F G 3 It

- % [len () + {1 = Po(pa, 1)} + Pz (prs1,t)]

d

= £|Cn(t)‘2 = J(Pn-1/2:t) + J (Pry1/2:t)

Auf der linken Seite steht insgesamt % Fal [ (t)|*> = 0. Damit folgt die Kontinui-
tatsgleichung:
d
%|Cn(t)|2 = J(Pn-1/2:1) = J (Pry1/2: 1) (A.21)

Fiir den Erwartungswert des Stromdichteoperators gilt im kontinuierlichen Raum:
Jp,t) = (J(p) = WO @)(D))
— [ a3 .0 TG00

Q
Fiir den diskreten Impulsraum wird nun ein analoger Term gesucht:

o0

J(pn-1y2:t) = DY en(®[J[VIp)e],, (1)

n=—oo

Die Schreibweise J [V] bedeutet, dass dieser Operator von der potentiellen Energie Vix,t)
bzw. vy (t) abhingt. In diesem Impulsraum wirkt der Operator J[V] auf einen unend-

lich dimensionalen Vektor von Koeffizienten ¢ = {¢,}°% In Analogie zum nicht-

periodischen Fall hat der Operator voraussichtlich folgendeiForm:
. 1 ) A
TV Pny2) = [@(p —p)V -VO[p - pn)] (A.22)
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(Der Index n — 1/2 wird am Erwartungswert dieses Operators in Verbindung mit Glei-
chung deutlich.)

Die Form wird nun iiberpriift. Dazu wird die Wirkung der Theta-Funktion und des
potentielle Energieoperators V' auf den Koeffizientenvektor ¢ bendtigt:

f=0p—p)g = Y O(—pagie;
j——oo

= Z @ — Pn g]e]
j=—00

= ) gie; (A.23)
j=n

Dabei wurde angenommen, dass gilt: ©(z > 0) = 1. Wirkungsweise vom Operator v
f=Vg = Z[v * g]( ZZU” jgien (A.24)

Damit konnen nun die Matrixelemente des Stromdichteoperators in der Impulsbasis be-
stimmt werden und letztlich {iberpriift werden, ob fiir das Diagonalelement die Gleichung
resultiert:

@IV Y) = > (o) Dl JV](pn) [pm) (Prml)

Im

In der diskreten Impulsbasis seien nun f und g die Darstellungen der abstrakten Vektoren

|#) und [¢)):

|¢> = f, fm:<pm’¢>
|1/}> = 8 gm:<pm‘¢>

wobei ,,:=" hier die Bedeutung ,wird dargestellt durch” hat. Damit kann nun die Glei-
chung fiir das Matrixelement geschrieben werden als:

<¢|j[V](pn)|’(/J> = (f,j[V](pn)g>

mit dem komplexen Skalarprodukt (x,y) = >, &} yn.
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Betrachte nun die Wirkung von J[V] auf g:

1 . IR R 1

- [@(p—pn)V—V@(p—pn)} g = h@(p Pn)VE —
1 PR

:‘E@@ Pn) J%zﬂﬁm—myg_%%

= i szm 795€m — hzvm —j em®e] Zglel

1.
hV®(p —Pn)8

m=n j
= ﬁ Z va,jgjem — E vafj Zgl(sjlem
m=n j m,j l=n
e 1
= ﬁ Z va—jgjem - 271 va—jgj@(j - n)em
m=n j m,j
1 [e’e] [e’e] 1 oo o0
Y Do D vmoigiem - i > D vmsdiem
m=n j=—o0 m=—00 j=n

Fiir die Fourierkoeffizienten der potentiellen Energiefunktion gilt v_,, = v}:

1 [e%e) [e’e] 1 oo o0
= B X mewen g 3 S wen

m=n j=—00 m=—00 j=n
T ) 1 & ) . .
= 5 2 2 Om—mungen =z 3, ), O —mingien
m=—00 j=—00 M=—00 j=—00
1 0o 0o . .
= = Z Z [©(m — n)vm—jg; — O — n)vj_.9;] em (A.25)

Also gilt fiir das Matrixelement (im 2. Term m und j vertauschen):

oo o0

€ IVImg) = = S [80m — n) v sg; — Om — 1) v jom] (A.26)

Diagonalmatrixelement (Erwartungswert) betrachten:
@IIV](pa)lW) = <f j[V]( )f>
- Zﬁ Z Z _nf Um— jf] (m_n)fj m— me]

Mm=—00 j=—00

_ % SN mi{e(m —n)fh fivm—s}

m=—00 j=—00

Wegen Imla + b] = Im[a] + Im[b] gilt:
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Nach Gl. BT gilt fiir die Faltung und somit letztlich fiir den Erwartungswert der Strom-
dichte:

WAVl = = S Tm {5 FTV ()6 )] (kn))

= ‘](pn—l/27 t)

Das ist exakt das Ergebnis aus Gl. B20a. Damit wurde die Form des Stromdichteopera-
tors in Gl. B2 fiir periodische Systeme verifiziert.

A.4.4. Reibungsterm im diskreten Impulsraum

Im diskreten Impulsraum hat der Reibungsterm folgende Form:

i(t) = Y atpn) 700 1)) (A27)

n

Als erstes muss die Wirkungsweise dieses Operators auf eine Wellenfunktion im diskreten
Impulsraum hergeleitet werden. Dazu kann das Matrixelement aus GI. benutzt
werden:

(e 9] o0

(ETVIpa)e) == > 3 [O0m—n)frvm—je; — O(m —n)f;vh_jcu]

Mm=—00 j=—00

Dabei wird [¢) durch den Vektor ¢ dargestellt. Um nun die I-te Komponente von J[V]c
zu erhalten wird folgender Ansatz gemacht:

<Z(5qleq’ j[v](p")c> - = > > [80m = n)dmvm-jc; — O(m — n)djv5, _jcm)

m=—00 j=—00

1 & RS -
= E m]:Z_OS)(m — n)(sml’umijj — %m ]:Z_O(:)(m — n)5jlvm_jcm
-~ 1 .
= E Z @(l — n)vl_jcj — 7h Z @(m — n)Um_lCm
1 & . .
== [O(1 — n)u_jc; — O — n)v}_c] (A.28)
j=—o00
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Insgesamt erhélt man:

51 = <Zéqleq,flf(t)c>
St 2 pn, <Zéqzeq, e >

n

aJ pna .
= Za(pn & m Z O — n)u_jc; — O — n)u—jc]

j=—00

R Z &] pn’ 0Jn:1) {00 =n)FT[V (2)y(2)](1) = [v* (©nc)] (D)}

zhz aJ pn, ){@(l n)FT[V (x Z O(q —n)v— ch}

q=—0o0

Der Term in den geschweiften Klammern kann noch mit der Signumfunktion umgeschrie-
ben werden:

(.} = %[Sgn 811 — ) FT[V](D) + éFT[@ZJV](Z)
— 3D Tsmn 4l - muigeq — SFTIOVIQ)
= Jlsen+ 00— mFTRVI®) — 3 Y [sem+0l(a — murgey
g=—00

Damit folgt der Term aus Gleichung B=31:

&= m Z M {@(Zn)FT[V(x)w(x)](l) Zvl_ch} (A.29)

q=n

A.5. Nanodraht

A.5.1. Bewegungsgleichung der Kohdrenzenmatrix (Herleitung)
Ziel dieser Rechnung ist es, die Bewegungsgleichung b3 herzuleiten. Ausgangspunkt ist
die Heisenberg-Bewegungsgleichung:

ih=0 = [0,H] (A.30)

Die zu untersuchende Observable ist gegeben durch 0= éLék/ und der Hamiltonoperator
ist in GIl. B0 angegeben: o R o
H = Hy, + HE + HE + Hp

In den Kommutator werden die Anteile des Hamiltonoperators nacheinander einge-
setzt:
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Kinetischer Anteil:

[ ar, Min] = [afap, > epral,ap]
k//

= (Ek/ — 8;6)5125%/

. Coulomb—Wechselwirkungsanteil (e —e):
ala, [el = = 3l
A, He] = akak/ aKaK’aK '+q8K —g]
2 g K'.q
[é{é@, A;éjlég,éd_ = 523&1&}1&536 — 524813;’35@6 + 515@2&@136@2 - 5lﬁégélé5é2
A frel Sfata
= |4, Hel = —ZU ( (1 al+qak’> (apay al+qak’—q>>

Coulomb-Wechselwirkungsanteil (e —i): Die (starren) Ionen, die iiber die Dichte
ni(q) gegeben sind, haben das Potential —Uyni(q) und kénnen wie das Storpotential
vp(q,t) (s. unten) behandelt werden.

e Storpotential-Anteil:
AT A - _ At A "T R
[a]t;ak’a HP] = Z 'UP(C], t) [a,tak/, ak,,aku_,_q]
k//7q
[é]‘iék/’ é,‘ll;‘// é,k//_"_q] == é’Lé‘k/l+q5k/7k/, —_— é]i/,é,k/ék7k”+q
= [alay,Hp] = va q,t (akakurq —al_ qak/>

Die Bewegungsgleichung hat damit zunéchst folgende Form:

L0 1. ot
zha(alakﬁ = (5k/—5k)<a,t:ak,,>

— Z U ( ak+qal al+qak/> <é};é;él+qék/_q>)

+ Z [op(a.t) = Uymi(@)) ((8fawsa) — (8]_,8))

q

Die Hartree-Fock Faktorisierung (,,Singlet Beitrag“) wird in der zweiten Zeile angewendet:
(afafasda)s = (afas) (a}as) — (alas) (Al (A31)

Bewegungsgleichung in Hartree-Fock Naherung:

L0 o
th— <a};ak) ~ (5k/—5k)<a,tak,>

ot
- ZU ( g B) <a2rél+q> - (éhq%q)(é;ék')
— (Al A o) (Al Agsg) + (Al A ) (BlAp )
kY —q/ \ Ay +q kM+q/ \Y k' —q

+ Y oelat) — Ugmi(@)] ((fawrsg) — (3 yan))

q

175



A. Anhang
In der zweiten und dritten Zeile kann man die Ladungsdichte n(q) einsetzen:

L0t A A
iho (8law) ~ (ew — ex) (Bfar)

_ ZU ( (8] 8 q) (Al a_y) — (a] +qal+q><ajak/>)
+ LZ U ne ( akak/ > <é;2+qé«k’>>
+ Z [ve(a,t) = Ugni(a)] ((afanrsq) — (8], o))

q

Der Fock-/Austauschterm steht in der zweiten Zeile:
Ek,k’ = Z U < akqu al ak/ > <aL+qél+q> <é}-ék/>)

- ZU <akal A A_g) <a,1+qal+q><a}ak/>> (A.32)

Durch Anderung der Indizes von [+ ¢ und ! in [ und I — ¢ wurde am gesamten Ausdruck
nichts gedndert, da der Indexabstand erhalten bleibt. Der Rechenschritt dient nur dazu,
um auf den gleichen Term wie in Gl. B2 zu kommen, der in [566] hergeleitet wurde.
Die Zeilen mit den Teilchendichten ne(g), ni(¢) und dem Stérpotential kénnen noch
zusammengefasst werden. Dann erhélt man die gesuchte Bewegungsgleichung 5A3:

L0 4. A o
Zha@%ak') ~ (ew — er)(afan)

+ > {U,Lne(q) — ni(q)] + ve(q, 1)} (<éLék/_q> - <aL+qak/>)(A.33)

q

A.5.2. Transformation in das Wignerbild (Herleitung)

Ausgangspunkt ist die Bewegungsgleichung der Kohdrenzenmatrix (553) in Hartree-Fock
Nédherung und die Definition der Wignerverteilung (5664). Die Beitrdge zur Dynamik
sind folgende:

0

0

0
7f($7k1) in Ot

flx, k) = 5 (A.34)

0
o + af(xak)

P

Der Coulomb-Beitrag kann in einen Hartree- und einen Fock-Beitrag zerlegt werden:

0
5/ @) (A.35)

0
a ([IZ,]{?)

0
c Ot H

F

Der Hartree-Beitrag enthalt hier auch die Elektron-Ion-Wechselwirkung.
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Kinetik-Beitrag:

0
at

0

(z, k) e
kin ot

Zelqw< J}Q /gak+q/2>

kin q

iqT 1 & A a
= Z e'? %< |:Hkin7 a’z_q/Qak+Q/2]>

7 1 a a
= Zeq h(€k+q/2 Equ/2)<aL_q/gak+q/2>

= Yl <h2[k+q/2]2_h[ —q/2)
ih

> <a]T€ q/gak+q/2>

- 2Me 2me
- mZQZei‘” 260 (B Bka/2) = ::e € (g ikrgs2)
q
_ Zk ;x F(@ k) (exakt) (A.36)

Hartree-Beitrag (e —e,e—iundi—i):

2
ot

iqx

fa, k)

g 2)
- at q/2 q/

1
Z 62(13571 < |: ak q/gak+q/2:| >Hartree
1y
p

—ni(p)] ((éz_q/zak—kq/?—ﬁ - <a;rc—q/2+pék+q/2>>

=2 ") UL

q

An dieser Stelle wird die Riicktransformation nach f benutzt:

. ) L[ it
(al_mam/z,p) = 7 / e P f (o) | — p/2)da
1 A ,
a1 3 — —1(g—p)x
@ ypiira) = 1 [P Sk /2
Damit folgt:
0 .
(k)| = | DAL ki)
ot - ot HZ k—q/2%+q/
qr 1
= > Ulne(p) — mi(p)
q,p

- / D [f(o! &~ p/2) — f(' K +p/2)] da’ (A3T)
An dieser Stelle wird eine Gradientenentwicklung fiir f beziiglich k& eingesetzt:

Fla,k 4 p/2) — flosk —p/2) ~ p o [, b) (4.39)
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Damit geht nun eine Ndherung in die Bewegungsgleichung ein:

L/2
9 U . e D

Sl = ) - mlew [ I d
" &P ~L/2
L2

] iq(x—x') ipz’ 0
= Y Uk )Y [ ey ) do

P T L2

An dieser Stelle kann nun folgende Rechenregel angewendet werden, die fiir eine beliebige
Funktion f(z) gilt:

L/2 L/2
Z / e"q(x*m/)f(w’)da;’ Z / e*iqm/f(x') dx'| e
9 _L)2 4 -2
= Z Lcge"™ (e, : Fourierkoeffizient)
q

= Lf(x)

D.h. iiber das Integral werden einfach nur die Fourierkoeffizienten der Fourier-Reihe von
f(x, k) bzgl. x berechnet. Die Summe dariiber ergibt dann f(z, k). Daher folgt:

0

s g;UpL[ne@) ) f (. k) (A.39)

Ziel ist es nun das elektrische Feld —0,®(x) einzubauen. Dazu wird zunichst pe?* =
—10,€eP* verwendet:

10 b2 5
= how / V(ja —a'lne(e’) = mi(a")] da’ | 5 f (. k)
—L/2
ge O 0
= haet@ gl @k (A.40)

In der ersten Zeile erkennt man die Fouriertransformierte der Faltung aus der zweiten
Zeile, welche die Losung der Poissongleichung fiir das Potential ®(z) darstellt.

Der Storterm, der durch das Potential vy (z) (bzw. vp(p) im Fourierraum) bedingt ist,
kann analog zu dieser Rechnung, beginnend bei Gl. BZ37 mit der Ersetzung Up[ne(p) —
ni(p)] — vp(p) erfolgen. Um das Ergebnis fiir den Stérterm zu erhalten, muss in Gl. B~20
deshalb nur die Ersetzung ¢.®(z) — vp(x) gemacht werden:

0 10 0

a1 (x7k)

ot b ~ ﬁ%vp ’ %f('xa k) (A41)
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A.5. Nanodraht

Fock-Beitrag:

0

5 (x, k)

P 815 Z e &y rBbrar2)

S (. ]}

= - Ze 4 %Ek—q/Q,k—&—q/Q (Ek,k’ o s, GL M)

= Zh Z 6“1z Z U < ak q/2+pal+p> <a;ak+q/2>

p,l

—<éz /Qél><é“;—pé’k+q/2—p>)

= qu Z U < q/2+pal+p> <a;ak+q/2>

AT A Ata
~(a]_ g pbrp) (kg2 ))
Hier muss die Riicktransformation eingesetzt werden:

1

(alag) = 7 / e~ MK =R £ (2 [k + K']/2)dx (A.42)

Die Energierenormierung wird analog zur dreidimensionalen Form (Gl. B232) definiert:
A&k | ZUk k:’ x /{3 (A.43)

Nach einer Gradientenentwicklung von f und Aec erhélt man:

Otm| ~ 1l (@ac) 0.5 0) - D8] DS, B]) (A40)
F

Dieses Ergebnis konnte bis jetzt noch nicht detailliert nachgerechnet werden und erfordert
eine Verifikation.
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A. Anhang

A.6. Hartree-Energiefunktional

In (zeitabhiangigen) DFT-Simulationen ist eine genaue Aufschliisselung der Beitrage zur
Gesamtenergie wiinschenswert. Die Beitrége sollten durch mdéglichst wenig redundante
Rechenschritte erhalten werden konnen. Die Berechnung der Hartree-Energie ist ein gu-
tes Beispiel dafiir. Die folgende Rechnung zeigt in diesem Zusammenhang, wie sich die
elektrostatische Energie Wy zusammensetzt2:

= Y [ gpeee)
T P
= % / d3ro(r)de (r) (A.45a)

= % @ rn () n ()

e /d3r[n_(r)—n+(r)] [/d3rlm /d3 /w}
oo o
/f(/f'nu—ﬂlq

= Euln ( [ /d3 /d3 n(z)n” () /d3 /d3 'z ’r_r,‘r)}

= Enn (r)] 4+ Eex[n (r)] + Wepizi (A.45b)

o [R, wo|

In der Simulation stehen die Felder o und ¢ unmittelbar zur Verfiigung, so dass W liber
die Integration in Gl. A45a direkt berechnet werden kann. Der Beitrag Fext[n™ (r)] ist
auf gleiche elementare Weise berechenbar. Der Beitrag W ;—; kann einmalig vorberechnet
werden. Es miissen also nur zwei einfache Raumintegrale (einmal fiir W) und einmal fiir
FEext[n~]) durchgefiihrt werden um an alle relevanten Grofen zu gelangen. Die Hartree-
Energie ergibt sich entsprechend Gl. B5H als Differenz:

Eyn™(r)] = We — Weri—i — Eext[n™ (v)] (A.46)

Fiir die Berechnung der Hartree-Energie muss daher kein Doppelintegral durchgefiihrt
werden.

’Die Rechnung ist in atomaren Einheiten angegeben: 1/(4mwso) = 1, go = —1
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