
Anwendungen der
Zeitabhängigen Dichtefunktionaltheorie und der

Wigner-Maxwell Gleichungen in der Plasmonik für
Simulationen im Ultrakurzzeitbereich

vorgelegt von

M. Sc. Mathias Wand

Fakultät III - Naturwissenschaften
der Universität Paderborn

Department Physik
Computational Nanophotonics

Dissertation zur Erlangung des akademischen Doktorgrades Dr. rer. nat.

genehmigte Dissertation

Datum der mündlichen Prüfung: 13.01.2014

Promotionsausschuss:

Vorsitzender: Prof. Dr. rer. nat. Thomas Zentgraf
1. Gutachter: Prof. Dr. rer. nat. Jens Förstner
2. Gutachter: Prof. Dr. rer. nat. Torsten Meier





Zusammenfassung

In dieser Arbeit werden Theorien und Simulationen entwickelt, mit denen die nichtlo-
kalen und nichtlinearen optischen Eigenschaften metallischer Nanostrukturen untersucht
werden können. Diese Nanostrukturen �nden zur Zeit Anwendung im Bereich neuartiger
Metamaterialien und Nanoantennen für den infraroten und den sichtbaren Spektralbe-
reich. Eine detaillierte Analyse von Längenskalen zeigt, dass die klassischen Theorien zur
Modellierung der Materie, speziell in den Ober�ächen der Strukturen, nicht angewendet
werden können.
Insbesondere wird versucht, die Licht-Materie Interaktion im Ultrakurzzeitbereich zu

berechnen. Das Ergebnis solcher Berechnungen ergibt die zeitabhängige Polarisation der
Materie und der damit verbundenen elektromagnetischen Felder über wenige hundert
Femtosekunden. Damit lassen sich Anregungen durch ultrakurze Lichtpulse analysieren,
wie sie bei Anrege-Abfrage Experimenten verwendet werden. Diese Experimente sollen
letztlich durch Simulationen im Rechner durchgeführt werden können. Um dieses Ziel zu
erreichen, wird eine Vielzahl moderner numerischer Methoden benötigt, um die relevanten
Gleichungen für Licht und Materie mit angemessenem Rechenaufwand lösen zu können.
Der Themenschwerpunkt dieser Arbeit liegt zunächst bei der Lösung von quantenme-

chanischen Vielteilchenproblemen in der Plasmonik. Dazu wird zum einen die Zeitabhän-
gige Dichtefunktionaltheorie und zum anderen ein Ansatz, der die Dynamik der Dichte-
matrix über Wignerfunktionen beschreibt, auf Anwendbarkeit untersucht. Um optische
Eigenschaften von Nanostrukturen berechnen zu können, muss dazu die selbstkonsisten-
te Kopplung der Materiegleichungen an die Maxwellgleichungen berücksichtigt werden.
Ein weiterer Themenschwerpunkt stellt die Erweiterung der Zeitabhängigen Dichtefunk-
tionaltheorie um eine phänomenologische Dissipation zur Simulation von Streuprozessen
dar. Diese wird auch benötigt, um Rückstreuungen von Ladungsdichtewellen in den be-
grenzt groÿen Nanostrukturen zu verhindern. Auÿerdem wird noch auf die Realisierung
eines Finite-Di�erenzen Verfahrens zur Berechnung der elektromagnetischen Potentia-
le in der Coulomb-Eichung eingegangen. Diese Eichung �ndet in der Beschreibung von
Optik in Festkörpern viele Anwendungen und es existieren bisher keine numerischen Lö-
sungsverfahren zu diesem Problem.
Zusammenfassend werden in dieser Arbeit verschiedene voll quantenmechanische Mo-

dellrechnungen für den Zeitbereich entwickelt und durchgeführt, welche zeigen, wo es
in Nanostrukturen zur Entstehung von höheren Harmonischen und nicht-lokalen E�ek-
ten kommt. Alle Simulationen berechnen die optischen Eigenschaften der Strukturen
auf mikroskopischer Ebene im Rahmen des Jellium-Modells. Dabei werden nicht-lokale
Abschirmungse�ekte unmittelbar berücksichtigt. Mit Ausnahme der Simulationen zur
dissipativen Dichtefunktionaltheorie werden keine phänomenologischen Parameter benö-
tigt.
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Abstract

In this work theories and simulations are developed which can be used to study the non-
local and nonlinear optical properties of metallic nanostructures. These nanostructures
are currently used in the area of novel metamaterials and nanoantennas for the infra-red
and visible spectral range. A detailed analysis of length scales shows that the classical
theories for modelling the optical response of matter speci�cally at the surfaces of the
structures can not be applied.
In particular, an attempt is made to calculate the light-matter interaction in the ul-

trafast time regime. The result of these calculations is given by the time-dependent
polarization of matter and the associated electromagnetic �elds over a few hundred fem-
toseconds. This allows the analysis of excitations caused by ultrashort light pulses which
are used in pump-probe experiments. These experiments shall be carried out by computer
simulations. To achieve this objective, a variety of modern numerical methods are requi-
red to solve the relevant equations of light and matter with reasonable computational
complexity.
A central topic of this thesis is the solution of quantum-mechanical many body pro-

blems in the �eld of plasmonics. The time-dependent density functional theory and an
approach, which describes the dynamics of the density matrix by Wignerfunctions, are
examined for applicability. In order to calculate the optical properties of nanostructu-
res, the self-consistent coupling of the equations for matter with Maxwell's equations
must be considered. Another focal point is the extension of the time-dependent density
functional theory by a phenomenological dissipation for the simulation of scattering pro-
cesses. This is also required in order to prevent backscattering of charge density waves in
small nanostructures. Moreover, the implementation of a �nite di�erence method for the
calculation of electromagnetic potentials in the Coulomb gauge is discussed. This gauge
is very common in the description of optics in solids and there are so far no numerical
solution methods for this problem.
In summary, several fully quantum mechanical model calculations in the time do-

main are developed and carried out, showing where it comes to the emergence of higher
harmonics and nonlocal e�ects in nanostructures. All simulations calculate the optical
properties of the structures at the microscopic level within the Jellium model. Nonlocal
screening e�ects are ultimately taken into account. With the exception of simulations
which involve dissipative density functional theory, no phenomenological parameters are
required.
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1. Einleitung

1.1. Motivation

Die technologische Entwicklung von Nanofabrikationsprozessen ermöglicht seit einiger
Zeit die Herstellung neuartiger metallischer Nanostrukturen welche in Metamaterialien [1]
und Nanoantennen [2, 3] zum Einsatz kommen. Die Strukturen dienen zur Manipulation
von Licht im sichtbaren und infraroten Spektralbereich und haben daher Abmessungen
in der Gröÿenordnung der Lichtwellenlänge.

Bei Metamaterialien (s. Abb. 1.1) geht es speziell darum, ein Medium mit vorgege-
bener e�ektiver Permittivität εr(ω) und Permeabilität µr(ω) zu scha�en, was diverse
technologische Anwendungen im Bereich der Optik ermöglicht [4].

Die Nanoantennen (s. Abb. 1.2) sollen die für Licht geeignete und daher entsprechend
miniaturisierte Versionen der Radio- und Mikrowellenantennen sein: Deren Zweck besteht
also ebenfalls darin, das Strahlungsfeld möglichst e�zient mit einem Empfänger oder
einem Sender zu koppeln, d.h. die elektromagnetische Strahlung auf einen Punkt zu
konzentrieren oder von diesem Punkt in den freien Raum zu führen. Für spektroskopische
Anwendungen dienen die Nanoantennen als Empfänger und Sender zugleich.

Die Skalierung der Radioantennen in den Nanometerbereich zeigt vor allem, welche
Besonderheiten auf diesen Längenskalen auftreten, die bei den (Zenti-)Meter groÿen Pen-
dants nicht vorhanden sind: Im sichtbaren Spektralbereich können Plasmonresonanzen
und Interbandübergänge angeregt werden. Vor allem liegt die Skintiefe des Lichtes bei
Metallen in der Gröÿenordnung von den Strukturen selbst. Auch im Bulkbereich entste-
hen Polarisationsströme wodurch ohmsche Verluste stark an Bedeutung gewinnen. Bei
makroskopischen Antennen wird dagegen nur die Ober�äche angeregt, da die Strahlung
an dieser fast vollständig re�ektiert wird. Wegen der geringen Skintiefe kann diese für
Radiowellen als unendlich dünn betrachtet werden (s. Abb. A.1a und A.1b).

Besonders die Beschreibung der Nanostrukturen mittels klassischer Elektrodynamik -
in der Form wie sie bei Radioantennen verwendet wird - wirft die Fragestellung auf, in-
wieweit diese auch hier angewendet werden darf: Aufgrund der hohen Lichtintensitäten,
welche bei Metamaterialien und Nanoantennen auftreten, ist zwar die Annahme, dass die
Quantisierung des Lichtfelds bedeutungslos ist, gesichert. Dagegen darf die Verwendung
einer räumlich homogenen Permittivität ε(ω) in den Maxwellgleichungen mittlerweile als
physikalisch unzureichend angesehen werden [5, 6], weil sich aufgrund der Längenska-
lenverhältnisse (s. Kap. 1.5) ortsabhängige, nichtlokale optische E�ekte bemerkbar ma-
chen und die Homogenitätsannahme der Polarisierbarkeit in den Ober�ächenbereichen
der Strukturen versagt. Dazu lässt sich auch eine sehr elementare Überlegung anstellen,
die zeigt, dass gerade der Bulkbereich der Strukturen (in dem die Homogenitätsannahme
noch am ehesten zutri�t) bei Verkleinerung der Abmessungen immer unbedeutender wer-
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1. Einleitung

(a) (b) (c)

Abbildung 1.1.: (a) Split-Ring Resonatoren (SRR) für den Mikrowellenbereich [Quelle:
NASA Glenn Research]. (b) Elektronenmikroskopische Aufnahme eines
SRRs [1] für den optischen Bereich. (c) Die nur wenige hundert Na-
nometer groÿen SRR aus Abb. (b) sind herstellungsbedingt auf einer
ITO-Schicht mit Glas-Substrat angeordnet. Die Abbildung zeigt eine
Elementarzelle des Metamaterials, welche in der Ebene periodisch fort-
gesetzt wird.

Abbildung 1.2.: Elektronenmikroskopische Aufnahme einer Yagi-Uda Antenne für den
optischen Spektralbereich [2].

den muss1: Das Volumen skaliert mit x3 und die Ober�ächen mit x2 (s. Abb. 1.3). Dabei
sei x = l/l0 ein dimensionsloser Parameter, der durch (etwas willkürliche) Festlegung
einer Referenzlänge l0 darüber entscheided, wie extrem eine Struktur von Bulk- oder
Ober�ächeneigenschaften bestimmt wird. Für die Nanostrukturen, deren Beschreibung
diese Arbeit als Ziel hat, wird angenommen, dass diese in den Bereich x . 1 gehören.
Nichtlineare E�ekte in Nanostrukturen, welche ebenfalls Gegenstand dieser Arbeit

sind, lassen am Beispiel der Photoemission [7] sofort erkennen, dass diese eine quan-
tenmechanische Berechnung der Elektronendichte erfordern. Die nichtlineare Antwort-
funktion der Elektronendichte lässt sich in der klassischen Elektrodynamik über Suszep-
tibilitätstensoren höherer Ordnung [8] in die (makroskopischen) Maxwellgleichungen in-
tegrieren oder als selbstkonsistent zu berechnende Ströme und Ladungen an die Vakuum-
Maxwellgleichungen koppeln.

1Damit ist speziell die Unterscheidung von Bulk- und Ober�ächenbereich gemeint. Die Ober�ächen
haben selbst eine Dicke in der Gröÿenordnung der Skintiefe. Die extrem kleinen Elemente der Nano-
antenne in Abb. 1.2 bestehen demnach nur aus �Ober�ächen�.
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Abbildung 1.3.: Die Ober�ächenbeiträge, welche mit x2 skalieren (rote Kurve), gewinnen
mit zunehmender Verkleinerung gegenüber den Bulkbeiträgen, welche
mit x3 skalieren (blaue Kurve), immer mehr an Bedeutung. Diese Überle-
gung dient nur als Denkanstoÿ im Bereich der Nanostrukturen und kann
nicht als allgemeingültig angesehen werden: Die Grenze der Gültigkeit
für x ≫ 1 zeigen z.B. Radioantennen, in denen die Strahlung aufgrund
der Skintiefe nur Ladungen an der Ober�äche anregt. Auf solchen ma-
kroskopischen Längenskalen gilt, dass die Suszeptibilität des Materials
als homogen und lokal angesehen werden darf. Die andere Grenze der
Gültigkeit für x ≪ 1 liegt bei Molekülen und Clustern, in denen die
Begri�e �Ober�äche� und �Bulk� gar nicht mehr de�niert sind.

Das primäre Ziel dieser Arbeit besteht deshalb darin, ein Materialmodell für die Na-
nostrukturen zu �nden, welches die Homogenitätsannahme vollständig umgeht und die
optische Polarisierbarkeit als Lösung eines Vielteilchenproblems zu einer inhomogenen
Ladungsverteilung liefert. Da die Skalenanalyse in Kap. 1.5 zeigen wird, dass auch im
linearen optischen Bereich die Quantene�ekte von Bedeutung sind, werden primär quan-
tenmechanische Modelle betrachtet. Die Gültigkeit von klassischen Modellen muss sich
durch Betrachtung bestimmter Grenzfälle erst noch zeigen. Die genaue Erkundung die-
ser Grenzfälle trägt nicht nur zum Verständnis der Optik in Nanostrukturen bei, sondern
hilft auch dabei, künftige Modellrechnungen zu vereinfachen ohne deren Gültigkeit zu
verletzen.

1.2. Experimente

1.2.1. Ultraschnelle Nanooptik

Das neue Forschungsgebiet �Ultraschnelle Nanooptik� [9] umfasst eine Reihe von aktuel-
len wissenschaftlichen Fragestellungen, welche diese theoretische Arbeit motiviert haben:
Es verbindet die Bereiche von Nanooptik (Photonik auf der Nanoskala, Plasmonik, Nano-
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1. Einleitung

Abbildung 1.4.: Geometrie zur Erzeugung eines 2ω-Lichtstrahls durch Re�ektion eines
1ω-Lichtstrahls an einer Metallober�äche (nach [11]).

antennen, Nichtlineare Optik, etc.) und die ultraschnelle Laserspektroskopie (zeitaufge-
löste Spektroskopie im Sub-Femtosekundenbereich, Dynamik ultraschneller Phänomene,
kohärente Kontrolle, etc.) miteinander. In erster Linie geht es darum, optische Anregun-
gen auf Zeitskalen im Femtosekundenbereich sowie auf Längenskalen im Nanometerbe-
reich experimentell untersuchen und kontrollieren zu können. Diese Forschung ermöglicht
die Entwicklung von neuartigen nanooptischen Geräten, wie z.B. Nanoantennen [2]. Auch
für die Entwicklung von Metamaterialien, die im optischen Spektralbereich arbeiten [1, 4],
können die Ergebnisse dieser Forschung genutzt werden.
In [10] wird beschrieben, wie mittels Anrege-Abfrage (pump-probe) Methoden unter

Verwendung neuester Femtosekundenlaser die Elektronenvorgänge (wie z.B. Augerpro-
zesse) in Atomen und Molekülen experimentell im Zeitbereich beobachtet werden können.
Die Entwicklung solcher experimenteller Methoden motiviert dazu, auch eine theore-

tische Beschreibung der Vorgänge im Zeitbereich zu entwickeln und durch Computersi-
mulationen zugänglich zu machen.

1.2.2. Messung re�ektierter Zweiter Harmonischer

Die Zweite Harmonische (SH2) kann an Metallober�ächen durch Messung der re�ektier-
ten Strahlung (s. Abb. 1.4) erfolgen. In [11] werden zahlreiche experimentelle Ergebnisse
zu diesem Versuch zusammengefasst:
Es hat sich gezeigt, dass die SH-Strahlung extrem sensitiv auf die Bescha�enheit der

Ober�äche reagiert und sogar eine Messung der Temperatur ermöglicht3. Noch erstaunli-
cher ist das Ergebnis, dass sogar einzelne Atomlagen an der Ober�äche die SH-Strahlung
verändern können. Diese experimentelle Methode eignet sich daher für chemische Analy-
sen und bietet für solche den Vorteil, dass sie nichtinvasiv ist und Messungen an Proben
erlaubt, die sich in einem transparenten (z.B. �üssigen) Medium be�nden.
Diese experimentellen Resultate machen ganz klar deutlich, dass die theoretische Mo-

dellierung der Experimente eine genaue Erfassung der Ober�ächenmorphologie erfordert.
Da in dieser Arbeit nur idealisierte Modelle von Metallen benutzt werden, ist ein Vergleich

2engl.: second harmonic
3Die Temperaturabhängigkeit ist deshalb erstaunlich, weil die Fermitemperatur des Elektronengases im
Metall üblicherweise weit oberhalb des Schmelzpunktes liegt.
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der hier angestellten Modellrechnungen mit experimentellen Ergebnissen nicht sinnvoll.
Indem die Modellrechnungen schrittweise in Richtung realer Ober�ächen erweitert wer-
den, können viele Erkenntnisse gewonnen werden, die auch ein Verständnis derzeitiger
experimenteller Beobachtungen ermöglichen. In diesem Sinn stellt diese Arbeit einen
wichtigen Grundstein für zukünftige Modellrechnungen dar.

1.2.3. Erzeugung Zweiter Harmonischer in magnetischen Metamaterialien

In [1] wird berichtet, wie im Experiment die Erzeugung der Zweiten Harmonischen an
magnetischen Metamaterialien beobachtet werden konnte. Das Metamaterial ist aus den
Split-Ring Resonatoren, die in Abb. 1.1b und 1.1c dargestellt sind, aufgebaut. Diese
Resonatoren kann man sich wie kleine LC-Schwingkreise vorstellen, bei denen der o�ene
Ring die Spule und der Spalt den Kondensator bildet. Durch Einstrahlung von Licht mit
horizontaler Polarisation kann ein zirkularer Strom�uss angeregt werden, der das lokale
Magnetfeld verstärkt.
Bei diesem Experiment ist unklar, welche Mechanismen an der Erzeugung der beobach-

teten Zweiten Harmonischen beteiligt sind [12]. Der magnetische Anteil der Lorentzkraft
qe(v × B) liefert die einfachste Erklärung für dieses Phänomen, da die 1ω-Anteile der
Felder v und B zu 2ω-Anteilen in der Kraft auf die Elektronen führen.
In dieser Arbeit wird versucht, die Entstehung der Zweiten Harmonischen durch rein

elektrische, nichtlineare E�ekte an den Metall-Vakuum Grenz�ächen zu erklären. Wich-
tige theoretische Vorüberlegungen, welche maÿgeblich die Untersuchung dieser E�ekte
motiviert haben, wurden durch die Publikation von Rudnick und Stern [13] geliefert:
Darin wurde insbesondere die Rolle der elektrischen Ströme entlang der Normalenrich-
tung in Ober�ächen von Metallen untersucht und gezeigt, dass diese quantenmechanisch
berechnet werden müssen.

1.2.4. Messung von Ober�ächen- und Bulkbeiträgen zur SHG

Die SH Ober�ächenpolarisation kann über den Ober�ächensuszeptibilitätstensor 2. Ord-
nung χ(2)

sf phänomenologisch beschrieben werden:

Psf(2ω) = χ
(2)
sf : E(ω)E(ω) (1.1)

Für die SH Bulkpolarisation, die auf magnetischen Dipol- und elektrischen Quadrupol-
termen basiert [14], wird folgende phänomenologische Parameterisierung verwendet:

Pbulk(2ω) = βE(ω)[∇ ·E(ω)] + γ∇[E(ω) ·E(ω)] + δ′[E(ω) · ∇]E(ω) (1.2)

In [15] wird berichtet, dass es inzwischen möglich ist, die Komponenten des χ(2)
sf -Tensors

und die Bulkparameter experimentell mit einer Methode, die als �two-phase beam second-
harmonic generation� bezeichnet wird, zu bestimmen. Die Autoren kommen zu dem
Schluss, dass die Ober�ächenpolarisation die primäre Quelle für die gemessene SH-
Strahlung darstellt. Dieses Ergebnis stützt die angestrebte Vorgehensweise dieser Arbeit,
sich primär auf die Entstehung der SH-Strahlung in Ober�ächenbereichen der metalli-
schen Strukturen zu konzentrieren.

13



1. Einleitung

Abbildung 1.5.: Jellium-Modell: Die metallische Nanostruktur setzt sich aus einer stati-
schen, homogenen Ionendichte und einem Elektronengas zusammen.

1.3. Jellium-Modell

Die metallische Bindung ist dadurch charakterisiert, dass es pro Atom ca. 1-2 ungebunde-
ne Elektronen gibt [16], die zu einem Gleichstrom beitragen können. Insgesamt steht eine
groÿe Anzahl an frei beweglichen Leitungselektronen zur Verfügung. Für diese Elektronen
erscheinen die Ionen näherungsweise als eine homogene Verteilung von positiven Ladun-
gen, da das singuläre Potential der Atomkerne durch die (gebundenen) Valenzelektronen
abgeschirmt wird.
Diese Gegebenheiten führten zur Etablierung des Jellium-Modells [17], welches das

Einfachste aller Modelle für Metalle darstellt: In Abb. 1.5 ist angedeutet wie sich damit
metallische Nanostrukturen, wie z.B. die Split-Ring Resonatoren aus Abb. 1.1b modellie-
ren lassen. Dazu wird die Geometrie der Struktur über eine statische Ionendichte n+(r)
vorgegeben und die Leitungselektronen werden als Elektronengas mit der Dichte n−(r, t)
beschrieben. Dabei wird o�engelassen, auf welchem theoretischen Niveau das Elektro-
nengas beschrieben wird. Die wichtigsten Modelle werden in Kap. 1.4 besprochen.
Die Ionendichte legt nicht nur die Geometrie, sondern auch die Art des Metalls über

ihren Maximalwert n0 fest. Dieser Maximalwert liegt üblicherweise überall im Inneren
der Struktur vor. Statt der Dichte n0 wird beim Jellium-Modell der Wigner-Seitz Radius
rS benutzt:

(n0)
−1 =

4π

3
r3S (1.3)

Es ist üblich diesen Parameter in atomaren Einheiten zu spezi�zieren, wodurch übliche
numerische Werte im Bereich von 2 bis 6 liegen. Bei rS = 3a0 entspricht die Dichte n0
ungefähr der Leitungselektronendichte von Gold.

1.4. Modelle für das Elektronengas

Das Jellium-Modell aus Kap. 1.3 bildet in dieser Arbeit die Grundlage für die Modellie-
rung von Festköpern. Für das Elektronengas werden folgende Modelle benutzt:

1. Drude Modell: Es handelt sich um ein (über hundert Jahre altes) klassisches
Modell, welches die elektrische Leitfähigkeit von Metallen mikroskopisch zu erklären
versucht [18]. Dieses Modell wird heutzutage immer noch benutzt und auch für die
Optik von Metallen verwendet. In seiner Anwendung besteht das Modell letztlich
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1.4. Modelle für das Elektronengas

darin, dass folgende klassische Bewegungsgleichung mit einem phänomenologischen
Streuzeitparameter τ für die Bewegung der Elektronen in einem elektrischen Feld
E benutzt wird:

mer̈ = −me

τ
ṙ+ qeE (1.4)

Im Übergang von Punktladungen zum Kontinuumsmodell

r̈ → ∂j

∂t
+ (j · ∇)j

mit Stromdichtefeld j = qev und Elektronendichte n0 wird die nicht-lineare kon-
vektive Ableitung weggelassen:

∂j

∂t
= − j

τ
+
q2en0
me

E (1.5)

Letztlich wird die eigentliche Arbeit von Drude auf einen experimentell ermittel-
ten Streuparameter und eine klassische Bewegungsgleichung reduziert. Diese new-
tonsche Bewegungsgleichung berücksichtigt vor allem die Trägheit der Elektronen,
welche in schnell oszillierenden Feldern (wie in der Optik) berücksichtigt werden
muss4. Im sichtbaren Spektralbereich kann das Drude Modell die optischen Eigen-
schaften von Metallen nur unzureichend beschreiben, da hier Interbandübergänge
angeregt werden [20].

2. Hydrodynamisches Modell: In der Terminologie dieser Arbeit wird damit die
nicht-lineare und semiklassische Erweiterung des Drude Modells bezeichnet:

∂j

∂t
+ (j · ∇)j = − j

τ
+
q2en0
me

E+
1

me
j×B− ∇p

me
(1.6a)

∂ρ

∂t
+∇ · j = 0 (1.6b)

Für den Druck p wird noch zusätzlich eine thermische Zustandsgleichung benötigt.
Zur Beschreibung des Elektronengases wird hier die Zustandsgleichung des idealen
Fermigases (p ∼ n5/3) benutzt. (In Kapitel 5.9 von [17] wird beschrieben, wie sich
die vollständige Navier-Stokes Gleichung auf ein Elektronengas anwenden lässt.)

3. Wechselwirkendes Elektronengas: Es ist ein rein quantenmechanisches Modell
und wird durch folgenden Hamiltonoperator beschrieben:

Ĥ =
N∑
j=1

1

2me
[p̂j−qeA(r̂j , t)]

2+
1

2

N∑
j=1

N∑
k=1

q2e
|r̂j − r̂k|

+
N∑
j=1

[qeΦ(r̂j , t)+vext(r̂j)] (1.7)

Der Zustand dieses Systems ist durch eine antisymmetrische N -Teilchen Wellen-
funktion Ψ(r1, σ1, . . . , rN , σN , t) gegeben.

4 Bei Anwendung des Ohmschen Gesetzes J(t) = σE(t) in der Elektrizitätslehre sind die Felder deutlich
niederfrequenter und die Trägheit wird deshalb vernachlässigt. Auf die Bedeutung der Trägheit wird
z.B. in [19] eingegangen.
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1.5. Skalenanalyse und Gröÿenverhältnisse

Ein wesentlicher Gegenstand dieser Arbeit ist es, die richtigen Längen- und Zeitskalen
sowie die Verhältnisse zwischen diesen zu erkennen. Erst dadurch wird es möglich, eine
theoretische Beschreibung zu �nden, welche die relevanten E�ekte korrekt wiedergeben
kann und trotzdem nicht zu aufwendig ist, um das System beschreiben zu können.
Häu�g besteht das Problem darin, dass die existierenden Modelle zu starke Vereinfa-

chungen vornehmen und es zu erkennen gilt, welche dieser Vereinfachungen falsch sind.
Ein solches Problem konnten Rudnick und Stern [13] lösen, indem sie das Verhältnis

vFermi/∆lem
ω

(1.8)

betrachtet haben: Dabei ist vFermi die Fermigeschwindigkeit der Metallelektronen, ∆lem
bezeichnet die Strecke, auf der sich das elektromagnetische Feld signi�kant ändert und ω
die Frequenz des Lichtes. Der Quotient ist im Wesentlichen das Verhältnis von Perioden-
dauer des Lichts T zu der Zeit Te− , die ein Elektron für die Strecke ∆lem benötigt. Die
Strecke ∆lem ist nahe der Ober�äche sehr viel kleiner als im Inneren des Festkörpers, weil
hier einerseits der Groÿteil der Strahlung auf der Länge der Skintiefe re�ektiert wird und
andererseits die Ober�äche eine steile Potentialbarriere darstellt5. In der Metallober�äche
in Richtung der Normalen gilt deshalb nicht T ≪ Te− wie im Inneren des Festkörpers:
Stattdessen gilt, dass die Elektronen eine signi�kante Strecke (d.h. ∆lem) während einer
Periode des Lichts zurücklegen können. Dieses Kriterium zeigt, dass die Berechnung der
Ober�ächenpolarisierbarkeit ein quantenmechanisches Problem darstellt6. Quantenme-
chanische Vielteilchene�ekte führen insbesondere dazu, dass die Polarisierbarkeit (neben
der zeitlichen) auch eine räumliche Nichtlokalität besitzt.
In der Ho�nung, auf ähnlich bedeutende Gröÿenverhältnisse zu stoÿen, wurden für

diese Arbeit noch folgende weitere Gröÿen betrachtet7:

• Verhältnis von Lichtwellenlänge zur Gröÿe der Nanostruktur: Wenn die Wellenlänge
wesentlich gröÿer als die Struktur ist, können Retardierungse�ekte vernachlässigt
werden. Die Maxwellgleichungen können dann in quasistatischer oder sogar elek-
trostatischer Näherung berücksichtigt werden.

• Skintiefe: Diese kann benutzt werden, um die Dicke der Ober�äche abzuschätzen
und um damit zu entscheiden, wie groÿ das Verhältnis zwischen Bulk- und Ober-
�ächenanteilen einer Struktur ist (s. Abb. 1.3).

• Verhältnis von Skintiefe zu Wellenlänge im Vakuum: s. Abb. A.1b.

• Kräfte-Verhältnis zwischen treibender elektrischer Kraft durch ein externes Licht-
feld und der Kraft, welche von der Barriere des e�ektiven Potentials Veff am Rand

5In diesem Zusammenhang erscheint es sinnvoll, die Strecke ∆lem auf das e�ektive, zeitabhängige
Potential der Elektronen zu beziehen anstatt nur auf das elektromagnetische Feld.

6Die Quantenmechanik wird relevant, wenn sich das Potential auf der DeBroglie-Wellenlänge des Elek-
trons ändert [21]. Das Kriterium von Rudnick und Stern, welches das Verhältnis 1.8 benutzt, ist im
Prinzip identisch damit und hat die gleiche Konsequenz.

7Die Zusammenfassung der Gröÿen für die Charakterisierung des Elektronengases orientiert sich an
[22].
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des Festkörpers verursacht wird:

|Fem|
|Feff |

=
|qe|E0

|∇Veff |
(1.9)

Dieses Verhältnis kann benutzt werden, um abschätzen zu können, ab welcher Feld-
stärke E0 der Lichtquelle nichtlineare E�ekte an den Ober�ächen des Festkörpers
relevant werden.

• Abschirmlänge in einem entarteten Plasma:

λF =

√
2ε0EF

3n0q2e
(1.10)

Diese Länge charakterisiert die Wellenlänge von Friedel-Oszillationen, die bei der
Abschirmung von Überschussladungen in Plasmen auftreten. Diese Friedel-Oszilla-
tionen sind an den Metallober�ächen zu erwarten, wo das Elektronengas den ioni-
schen Hintergrund abschirmt.

• Entartungsparameter:

χ = TF/T (1.11)

Für Metalle kann aufgrund der hohen Fermitemperatur TF immer von T = 0K aus-
gegangen werden. Das Elektronengas ist also (maximal) entartet. (Deshalb ist hier
nur die Fermi Abschirmlänge 1.10 und nicht die Debye Abschirmlänge relevant.)

• Mittlere Coulomb-Wechselwirkungsenergie zwischen zwei Elektronen, deren Ab-
stand von der Teilchendichte n0 abhängt:

Uint =
q2en

1/3
0

ε0
(1.12)

• Kopplungsparameter (Verhältnis von Coulomb Energie Uint und kinetischer Energie
K = kBTF):

Γ =
Uint

K
=

2meq
2
e

(3π2)2/3ε0~2
n
−1/3
0 (1.13)

An diesem Verhältnis kann man sehen, dass sich ein Elektronengas mit hoher Teil-
chendichte wie ein ideales Gas verhält. In [17] (Kap. 1.3.3) wird dieser Zusammen-
hang am Hamiltonoperator (eines unendlich ausgedehnten Jellium-Festkörpers mit
wechselwirkenden Elektronen) demonstriert: Der kinetische Anteil skaliert mit r−2

S

und der potentielle Anteil mit r−1
S .

Für den Kopplungsparameter in Gold8 gilt ΓAu ≈ 20, so dass Kollisionen zwischen
den Elektronen o�ensichtlich nicht vernachlässigt werden können. Allerdings ist
nach [23] auf Grund des Pauli-Prinzips die Kollisionsrate zwischen den Elektronen
sehr gering, da für T ≪ TF nur wenige Elektronen ihren Quantenzustand ändern
können. Damit wäre ein kollisionsfreies Modell für das Elektronengas zu rechtferti-
gen.

8Teilchendichte n0 ≈ 1028 m−3

17



1. Einleitung

• Nach [23] zeigen ausserdem folgende Zeitkonstanten für ein typisches Metall, dass
Kollisionen im Ultrakurzzeit-Bereich vermutlich unerheblich sind:

τp = 10−16 s = 2πω−1
p (1.14a)

τr = 10−14 s (1.14b)

τee = 10−10 s (1.14c)

Die Zeitkonstante τp entspricht der Periodendauer der Plasmaoszillationen (Plas-
mafrequenz ωp). Die Relaxationszeit τr ist die Zeitkonstante mit der das System wie-
der in das thermische Gleichgewicht zurückkehrt (z.B. nach Abschalten eines elek-
trischen Feldes, welches einen Strom erzeugt hat). Wie τr abgeschätzt werden kann,
wird in [23] nicht erklärt. In [24] (Kap. 1.2) wird τr als Relaxationszeit des freien
Elektronengases bezeichnet, die durch nicht näher spezi�zierte Kollisionen bedingt
ist und als Streuzeit im Drude-Modell benutzt wird. Die Elektron-Elektron Streu-
zeit τee kann nach [23] über die Dicke der Fermischale und der Energie-Zeitunschärfe
Relation abgeschätzt werden.

• In unmittelbarem Zusammenhang mit den Zeitkonstanten 1.14a-1.14c steht die
Frage, wie lange es dauert, damit sich eine Nichtgleichgewichtsverteilung von elek-
trischen Ladungen im Leiter wieder in den Gleichgewichtszustand begibt: Die Ab-
schätzung der Dauer über die Kontinuitätsgleichung ∂tρ + ∇ · J = 0 und dem
Ohmschen Gesetz J = σE liefert gänzlich falsche Ergebnisse9, da sich dieser Vor-
gang nur durch Berücksichtigung der gesamten Maxwell-Gleichungen beschreiben
lässt. Nach [25] besteht dieser Relaxationsvorgang nämlich aus drei Teilen: Erst
werden die Ladungen aus dem Inneren des Leiters verdrängt, dann die (damit ver-
bundenen) Ströme und elektromagnetischen Felder und letztlich verlieren die Ober-
�ächenladungen an kinetischer Energie durch elektromagnetische Abstrahlung und
Streuprozesse.

Die gesamte Relaxationszeit ist nach dieser Betrachtung auch von der Geometrie
des Leiters abhängig. Für den Spezialfall eines Hohlzylinders mit Deckeln wird in
[25] auch eine Formel hergeleitet.

Aus dieser Analyse der Längen- und Zeitskalen ergeben sich im Wesentlichen folgende
Konsequenzen: Es kann die elektrostatische Näherung für die Maxwellgleichungen be-
nutzt werden, da in dieser Arbeit nur Strukturen, mit einer maximalen Gröÿe von ca.
5 nm im optischen Lichtfeld betrachtet werden. Die Strukturen haben einen vernachläs-
sigbar kleinen Bulkanteil und eine Trennung von Bulk- und Ober�äche ist nicht sinnvoll.
Stattdessen wird für die gesamte Struktur die gleiche theoretische Beschreibung benutzt.
Die Zeitkonstante τee (s. Gl. 1.14c) suggeriert, dass Streuprozesse zwischen den Elektro-
nen vernachlässigt werden können.
Nur die Multiskalensimulation in Kap. 3.5 macht hier eine Ausnahme: Diese unterschei-

det zwischen Bulk- und Ober�ächenanteilen, und da hier ein ganzes Array von Split-Ring
Resonatoren (wie in Abb. 1.1b) simuliert wird, müssen die Maxwellgleichungen ohne Nä-
herung berücksichtigt werden.

9Zur Gültigkeit des Ohmschen Gesetzes: s. Fuÿnote 4.
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1.6. Vorgehensweise

Die Vorgehensweise in dieser Arbeit wird durch aktuelle Experimente im Bereich der
Plasmonik (Kap. 1.2), die verschiedenen Modelle für Metalle (Kap. 1.4) und die Längen-
und Zeitskalenanalyse (Kap. 1.5) begründet:
Die Experimente motivieren dazu, Simulationen der mikroskopischen Vorgänge im

Zeitbereich zu beschreiben. Von den Metallmodellen kann nur das rein quantenmechani-
sche Modell (Gl. 1.7) aufgrund der Ergebnisse der Skalenanalyse benutzt werden. Klassi-
sche und semi-klassische Modelle sind nur in Grenzfällen, bei denen die Ober�ächen eine
untergeordnete Rolle spielen, anwendbar.
Es müssen Theorien zur Lösung des quantenmechanischen Modells (Gl. 1.7) verwen-

det werden, die das Vielteilchenproblem so weit vereinfachen, dass die resultierenden
Gleichungen einerseits technisch lösbar sind und andererseits noch die Quantennatur der
Teilchen möglichst genau wiedergeben. Für dieses spezielle Problem wird in dieser Arbeit
die (Zeitabhängige) Dichtefunktionaltheorie (Kap. 3 und 4) verwendet, da diese Theorie
genau den genannten Anforderungen gerecht wird. Insbesondere können Verbesserungen
an den Lösungen dadurch erreicht werden, dass man das sogenannte xc-Funktional durch
eines ersetzt, welches besser für das spezielle System geeignet ist. Mögliche Verbesserun-
gen bei der Genauigkeit des xc-Funktionals können in zukünftigen Arbeiten untersucht
werden.
Neben der Dichtefunktionaltheorie wird auch ein Dichtematrix-basierter Formalismus,

der die Zeitentwicklung der Wigner-Verteilungsfunktion beschreibt, zur Lösung des quan-
tenmechanischen Modells betrachtet (Kap. 5). Mit diesem Formalismus kann die Zeit-
entwicklung von statistischen Ensembles beschrieben werden. Davon wird allerdings kein
Gebrauch gemacht, weil bei Metallen eine Beschreibung mit T = 0K völlig ausreichend
ist (s. Erläuterung zu Gl. 1.11) und somit nur ein reiner Quantenzustand (d.h. der elektro-
nische Grundzustand als Startzustand) betrachtet werden muss. Hier soll speziell unter-
sucht werden, ob die Gleichungen numerisch gelöst werden können und eine interessante
Alternative zur Dichtefunktionaltheorie darstellen.
Die Gleichungen werden explizit im Zeitbereich (und nicht im Frequenzbereich10) for-

muliert. Die Verwendung von optischen Suszeptibilitätstensoren (und auch von Antwort-
funktionen des Elektronengases) wird vollständig umgangen. Alle Simulationen berück-
sichtigen auch einen Teil des Vakuums ausserhalb der Struktur. Damit wird weiter um-
gangen, dass an Materialgrenzen Randbedingungen gemacht werden müssen, welche im
Bereich der nicht-lokalen Optik immer wieder für Diskussionen gesorgt haben [26], da de-
ren Korrektheit unklar ist. Stattdessen wird ein Anfangswertproblem gelöst, bei dem die
Randbedingungen im Vakuum liegen und sich die Elektronen an den Ober�ächen ohne
den Ein�uss künstlicher Randbedingungen bewegen können. Die so erzielten Ergebnisse
sollten gerade in dem Ober�ächenbereich wesentlich plausibler sein als solche, die mit
Randbedingungen an den Ober�ächen hergeleitet wurden.
Eine weitere Stärke der Formulierung im Zeitbereich ist, dass die Gleichungen ohne Stö-

rungstheorie hergeleitet werden und somit speziell für die Simulation der nicht-linearen
Eigenschaften von Metallen geeignet sind. Es können zeitlich beliebig geformte Pulse
mit beliebig hoher Feldstärke zur Anregung der Strukturen (genau wie im Experiment)

10In der nicht-linearen Optik [8] ist die Formulierung im Frequenzraum üblich.
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1. Einleitung

benutzt werden, ohne die Gültigkeit der Gleichungen in Frage zu stellen11.
Der Nachteil der Methodik besteht darin, dass nur sehr kleine Strukturen (wie z.B.

Teile von Nanoantennen < 10 nm) beschrieben werden können und die Verwendung der
technisch nicht-trivialen Multiskalensimulationen (Kap. 3.5) für die Simulation von grö-
ÿeren Strukturen (wie z.B. Metamaterialien) sich als unumgänglich herausstellen wird.

11Eine Ausnahme betri�t die gemachte Langwellennäherung in Kap. 3, nach der die Wellenlänge des
Lichtes deutlich gröÿer als die Gröÿe der Struktur sein muss.
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2. Physikalische Grundlagen

2.1. Plasmonik

Hier werden elementare Grundlagen aus dem Bereich der Plasmonik [16, 24] zusam-
mengefasst und dabei auf Aspekte, die in dieser Arbeit besonders wichtig sind, genauer
eingegangen.

2.1.1. Maxwell Gleichungen und Propagation elektromagnetischer Wellen

Die Modelle für Metalle (s. Kapitel 1.3 und 1.4) sind rein mikroskopische Modelle, bei
denen die Ladungs- und Stromdichten durch räumlich stetige1 Funktionen gegeben sind.
Für diese Modelle besteht keine Notwendigkeit, die Ladungen und Ströme in �gebunden�
und �frei� aufzuteilen, da keine gebundenen Ladungen vorhanden sind. Die Lichtausbrei-
tung wird vollständig durch die mikroskopischen Maxwellgleichungen [27] beschrieben:

∇ ·E = − 1

ε0
ϱ (2.1a)

∇ ·B = 0 (2.1b)

∇×E = −∂B
∂t

(2.1c)

∇×B = µ0J+ µ0ε0
∂E

∂t
(2.1d)

Die Kopplung zwischen den elektromagnetischen Feldern und der Materie wird hier da-
durch zum Ausdruck gebracht, dass man die Ladungs- und Stromdichte als Funktional
des elektrischen und magnetischen Feldes schreibt:

J = J[E,B] (2.2a)

ϱ = ϱ[E,B] (2.2b)

Da die Maxwellgleichungen die Kontinuitätsgleichung implizieren und die Ladungsdichte
durch Gl. 2.1a gegeben ist, wird nur ein Gesetz für die Stromdichte benötigt. Im linearen
Fall lässt sich die Gl. 2.2a in Form eines räumlich und zeitlich nichtlokalen �Ohmschen
Gesetzes� schreiben:

J(r, t) =

∫
d3r′

∫
dt′ σ(r, r− r′, t− t′)E(r′, t′) (2.3)

Die Leitfähigkeit σ ist ein Tensor 2. Stufe, dessen Komponenten von einer absoluten und
einer relativen räumlichen Koordinate sowie einer relativen zeitlichen Koordinate abhän-
gen. In isotropen Medien reduziert sich die Leitfähigkeit auf ein Skalar. In homogenen
1Die Ionendichte darf am Rand des Festkörpers unstetig, d.h. stufenartig auf Null abfallen. Entscheidend
ist hier, dass es keine atomistischen Dichtefunktionen sind: ϱ(r) ̸=

∑
j qeδ

3(r− rj)
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2. Physikalische Grundlagen

Medien entfällt die Abhängigkeit von der absoluten Raumkoordinate. Wie in Kapitel 1
erläutert wurde, tri�t die Homogenitätsannahme in Nanostrukturen nicht zu und daher
kann auf die absolute Raumkoordinate für deren Beschreibung nicht verzichtet werden.
Aus den Rotationsmaxwellgleichungen 2.1c und 2.1d folgen die inhomogenen Wellen-

gleichungen für das elektrische und magnetische Feld, in denen die Stromdichte als Quell-
term auftritt:

∇×∇×E+
1

c02
∂2E

∂t2
= −µ0

∂J

∂t
(2.4a)

∇×∇×B+
1

c02
∂2B

∂t2
= µ0∇× J (2.4b)

Dabei ist c0 = 1/
√
µ0ε0 die Lichtgeschwindigkeit. Mit Ausnahme der Multiskalensimu-

lation in Kap. 3.5 kann in allen anderen Fällen angenommen werden, dass die Distanz
c0/ω (wobei ω die Frequenz des externen Lichtfeldes ist) viel gröÿer ist als die Abmes-
sung der Struktur ist. Deshalb ist für diese Systeme die elektrostatische Näherung der
Maxwellgleichungen gerechtfertigt:

∇ ·E ≈ − 1

ε0
ϱ (2.5a)

∇×E ≈ 0 (2.5b)

Alle Felder sind dabei weiterhin zeitabhängig. Das elektrische Feld kann hier über ein
elektrostatisches Potential Φ(r, t), welches die Poissongleichung

∇2Φ(r, t) = − 1

ε0
ϱ(r, t) (2.6)

erfüllt, in guter Näherung beschrieben werden. Die Multiskalensimulation verwendet die
vollständige als auch die elektrostatische Form der Maxwellgleichungen.

2.1.2. Dielektrische Funktion des freien Elektronengases

In Gl. 2.3 wurde die Leitfähigkeit σ als lineare Antwortfunktion der Stromdichte J auf
das Feld E de�niert. Das freie Elektronengas ist isotrop und homogen. In diesem Fall
lautet die Relation 2.3:

J(r, t) =

∫
dt′ σ(t− t′)E(r, t′) (2.7)

Nach dem Faltungstheorem ergibt die Fouriertransformation dieser Relation in der Zeit:

J(r, ω) = σ(ω)E(r, ω) (2.8)

In der Optik ist es üblich, die dielektrische Funktion εr(ω) (bzw. die Suszeptibilität
χ = εr−1) als Antwortfunktion zu verwenden2. Diese hat folgenden Zusammenhang mit
2Bei den makroskopischen Maxwellgleichungen ist es üblich durch die dielektrische Funktion nur die
gebundenen Ladungen und deren Polarisationsstrom zu berücksichtigen. Die freien Ladungen werden
separat über die Leitfähigkeit einbezogen [21]. Hier wird von dieser Konvention abgewichen und keine
Unterscheidung bei den Ladungen und Strömen gemacht, wie unmittelbar in Gl. 2.9 zum Ausdruck
kommt.
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2.1. Plasmonik

der Leitfähigkeit:

εr(ω) = 1 +
iσ(ω)

ε0ω
⇐⇒ σ(ω) =

ε0ω

i
[εr(ω)− 1] (2.9)

Für das freie Elektronengas kann diese Funktion aus der klassischen Drude Bewegungs-
gleichung 1.4 hergeleitet werden, indem die Auslenkung r eines Elektrons mit der Pola-
risationsdichte P = qen0r in Verbindung gesetzt wird. Als treibenden Term setzt man in
die Bewegungsgleichung ein harmonisch oszillierendes Feld E(t) = E0e

−iωt ein. Insgesamt
erhält man folgenden Zusammenhang zwischen Polarisation und elektrischem Feld:

P = − n0q
2
e

me(ω2 + iγω)
E (2.10)

Über den Zusammenhang P = ε0χE = ε0(εr − 1)E kann die dielektrische Funktion
abgelesen werden:

εr(ω) = 1−
ω2
P

ω2 + iγω
(2.11)

Dabei ist ωP die Plasmafrequenz:

ωP =

√
n0q2e
ε0me

(2.12)

Auch wenn dieses Modell eine zu starke Vereinfachung darstellt, um adäquat die Op-
tik von metallischen Nanostrukturen zu beschreiben, liefert diese Antwortfunktion qua-
litatives Verständnis und eine Menge an wichtigen Informationen um Abschätzungen
durchzuführen. Die Einschränkungen des Modells sind nach der gegebenen Herleitung
o�ensichtlich:

1. Dynamische Abschirme�ekte in den Ober�ächenbereichen werden falsch beschrie-
ben, weil in Gl. 2.10 angenommen wird, dass die Polarisation nur vom lokalen elek-
trischen Feld abhängig ist. (Grund für die Nichtlokalität: s. Kap. 1.5). Das führt
zu Abweichungen beim �eld enhancement im Vergleich zu quantenmechanischen
Modellen [6, 7].

2. Es kann weder die Photoemission noch das Auftreten von Tunnelströmen beschrei-
ben.

3. Als lineares Modell kann es nicht die Entstehung von Höheren Harmonischen er-
klären.

In Anhang A.2 sind die wichtigsten Formeln für dieses Modell zusammengefasst.
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2. Physikalische Grundlagen

2.1.3. Dispersionsrelation des freien Elektronengases

Unter Berücksichtigung der zeitlichen Nichtlokalität der Stromdichte, die durch die Leit-
fähigkeit σ in Gl. 2.7 (oder durch die Dielektrische Funktion εr) beschrieben wird, lautet
die inhomogene Wellengleichung 2.4a für das elektrische Feld:

∇×∇×E(r, t) +
1

c02
∂2E(r, t)

∂t2
= −µ0

∂

∂t

∫
dt′ σ(t− t′)E(r, t′)

= −µ0
∫
dt′

∂σ(t− t′)

∂t
E(r, t′)

Mittels Fouriertransformation der Wellengleichung in der Zeit (∂t → −iω) folgt:

∇×∇×E(r, ω)− ω2

c02
E(r, ω) = −µ0(−iω)σ(ω)E(r, ω)

Als nächstes wird die ebene, monochromatische Welle E(r, ω) = E0(ω)e
ik·r eingesetzt:

{ik× [ik×E(r, ω)]} − ω2

c02
E(r, ω) = iµ0ωσ(ω)E(r, ω)

−
{
k[k ·E(r, ω)]− k2E(r, ω)

}
− ω2

c02
E(r, ω) = iµ0ωσ(ω)E(r, ω)

Für transversale Wellen ist k ·E = 0. Mit Gl. 2.9 folgt dann:[
ω2

c02
− k2

]
= −iµ0ωσ(ω) =

ω2

c02
[1− εr(ω)]

Somit lautet die gesuchte Dispersionsrelation für transversale Wellen:

k2 − ω2

c02
εr(ω) = 0 (2.13)

Zur Vereinfachung wird nun von einem idealen Metall (γ = 0) ausgegangen. Nach Gl.
2.11 ergibt sich dann folgende Dispersionsrelation:

εr(ω) = 1− ωP
2

ω2
⇒ k2 − ω2

c02
+
ω2

c02
ωP

2

ω2
= 0

k(ω) =
1

c0

√
ω2 − ωP

2 (2.14)

Daran erkennt man, dass im Frequenzbereich ω < ωP die Wellenzahl k imaginär ist
und keine Wellenausbreitung möglich ist. Diese Dispersionsrelation ist auch in Abb. 2.1
gra�sch dargestellt: Hier sieht man an der Gruppengeschwindigkeit dω/dk, dass diese
grundsätzlich kleiner als die Lichtgeschwindigkeit ist und für k → 0 verschwindet. Letz-
teres beschreibt eine longitudinale, kollektive Schwingung des Elektronengases, die mit
der Plasmafrequenz ωP oszilliert3.
3Die Plasmafrequenz kann anschaulich über die elektrostatische Kraft von Ober�ächenladungen in einer
Metallschicht hergeleitet werden [16, 24].
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2.1. Plasmonik
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Abbildung 2.1.: Plot der Dispersionsrelation für das freie Elektronengas 2.14 (rote Kur-
ve). Die blaue Linie zeigt die Relation für Licht: ω = ck.

2.1.4. Reale Metalle

Die wichtigsten Metalle für plasmonische Anwendungen im nahen Infrarot- und sichtba-
ren Spektralbereich sind Gold und Silber [24]. Alle Modelle in dieser theoretischen Arbeit
befassen sich ausschlieÿlich mit dem Elektronengas, welches die Leitungselektronen in der
metallischen Bindung bilden (s. Kap. 1.4). Es soll daher kurz erläutert werden, welche
Unterschiede zwischen den idealisierten Jellium-Modellen der Metalle und den realen
Metallen bestehen:

1. Das Auftreten von Interbandübergängen ab einer bestimmten Mindestenergie der
Photonen stellt den primären Unterschied dar. Bei Gold treten diese bereits im
nahen Infrarotbereich auf [20].

2. In realen Metallen streuen die Elektronen untereinander sowie an Phononen, Git-
terdefekten und Verunreinigungen. Die mittlere freie Weglänge ist daher tempe-
raturabhängig und kann auÿerdem in Nanostrukturen, deren Abmessungen klein
genug sind, auch von deren Geometrie abhängen.

Die Interbandübergänge können über das lorentzsche Oszillatormodell [27] in die Modell-
rechnungen integriert werden. Das trägt erheblich zu einer qualitativen und quantitativen
Verbesserung der Modellrechnungen bei und stellt eine Voraussetzung dar, um die Er-
gebnisse von Theorie und Experiment überhaupt sinnvoll vergleichen zu können. Eine
weitere Verbesserung des Modells betri�t die mittlere freie Weglänge der Elektronen: In
[28] wird eine Möglichkeit gezeigt, wie diese abhängig von der Form der Nanostruktur
berechnet werden kann.
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2. Physikalische Grundlagen

2.2. Dichtefunktionaltheorie

Die Dichtefunktionaltheorie (DFT) wurde in den 1960er Jahren entwickelt, um die elek-
tronischen Vielteilchenprobleme bei Molekülen, Polymeren und Festkörpern auf Grund-
lage der Quantenmechanik lösen zu können um letztlich deren damit verbundene Eigen-
schaften zu verstehen und erforschen zu können. An der Entwicklung der Grundlagen die-
ser Theorie waren Hohenberg, Kohn und Sham beteiligt [29, 30]. Die wichtigste Aussage
dieser Theorie besteht darin, dass anstelle der hoch-dimensionalen Vielteilchenwellen-
funktion eines wechselwirkenden N -Elektronensystems die Kenntnis der Grundzustands-
dichte ausreicht um die physikalischen Eigenschaften des Systems im Grundzustand zu
beschreiben. Die Eigenschaften lassen sich als Funktionale der Teilchendichte formulieren,
was auch den Namen dieser Theorie erklärt.
Die hier präsentierte Abhandlung über die Grundlagen der Dichtefunktionaltheorie

orientiert sich an der Darstellung in [17], Kapitel 7. Aus Gründen der Übersichtlichkeit
wird die Spinkoordinate in den Wellenfunktionen ausgelassen.

2.2.1. Grundzustand

Die Hohenberg-Kohn Theoreme

Das System von N wechselwirkenden Elektronen wird durch den Hamiltonoperator

Ĥ = T̂ + V̂ee + V̂ext

= −
N∑
j=1

~2

2me
∇2
j +

N∑
j=1

∑
j<k

e2

|r̂j − r̂k|
+

N∑
j=1

Vext(r̂j) (2.15)

beschrieben. Die ersten beiden Operatoren T̂ und V̂ee haben für alle Systeme die gleiche
Form, wohingegen der Operator V̂ext systemabhängig ist. Hierbei handelt es sich für
gewöhnlich um die potentielle Energie, welche ein Elektron im elektrostatischen Feld der
positiv geladenen Atomkerne mit Potential Φ hat:

Vext(r) = qeΦ(r) (2.16)

Die Teilchendichte n0(r) des elektronischen Grundzustandes ist durch die Grundzu-
standswellenfunktion |Ψ0⟩ gegeben:

n0(r) = ⟨Ψ0|
N∑
j=1

δ(r− r̂j)|Ψ0⟩ (2.17)

Die Berechnung der Wellenfunktion erfordert das Lösen der stationären Schrödingerglei-
chung:

Ĥ|Ψ0⟩ = E0|Ψ0⟩ (2.18)

Dieses Eigenwertproblem ist für ein Vielteilchensystem praktisch unlösbar, da die Wel-
lenfunktion eine hoch-dimensionale Funktion von 3N unabhängigen Variablen ist:

Ψ0(r1, . . . , rN ) = ⟨r1, . . . , rN |Ψ0⟩ (2.19)
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2.2. Dichtefunktionaltheorie

Abbildung 2.2.: Illustration des ersten Hohenberg-Kohn Theorems: Zwei unterschiedliche
Systeme mit Vext,1(r) − Vext,2(r) ̸= const. können niemals die gleiche
Grundzustandsdichte besitzen. Das System 1 soll hier einen zweifach
entarteten Grundzustand mit Energie E1 und System 2 einen dreifach
entarteten Grundzustand mit Energie E2 haben.

Es wäre hilfreich, wenn dieses Problem in ein äquivalentes Problem umformuliert werden
könnte bei dem keine unzugängliche hoch-dimensionale Funktion bestimmt werden muss.
Schon vor der Entwicklung der modernen Dichtefunktionaltheorie wurde daher versucht,
die Teilchendichte n0(r) als zentrale und alternative Gröÿe zur Wellenfunktion zu ver-
wenden [16]. Durch das erste Hohenberg-Kohn Theorem [29] war es aber erst möglich
geworden, die besondere Bedeutung der elektronischen Grundzustandsdichte n0(r) zu
ergründen:
Die Aussage des ersten Hohenberg-Kohn Theorems ist in Abbildung 2.2 illustriert: Je-

des elektronische System mit externem Potential Vext(r) besitzt eine Teilchendichte n0(r),
die es mit keinem anderen System im Grundzustand gemeinsam hat. Die Abbildung zeigt
auch, dass der Grundzustand aufgrund von möglichen Symmetrien eine Entartung und
somit mehrere Grundzustandswellenfunktionen und zugehörigen Teilchendichten aufwei-
sen kann. Keine der Dichten können identisch sein.
Das Theorem lässt sich auch so zusammenfassen:

Vext(r) → Ĥ = T̂ + V̂ee + V̂ext → (E0,Ψ0) → n0(r) = n[Ψ0](r)

- und -

Vext[n0](r) + const. ist eindeutiges Funktional der Teilchendichte

 (2.20)

In Worte gefasst bedeutet das: Zu dem externen Potential Vext gehört ein Hamiltonope-
rator, welcher E0 als niedrigsten Energieeigenwert mit Wellenfunktion Ψ0 besitzt (Ent-
artung wird hier nicht betrachtet). Aus der Wellenfunktion ergibt sich die Teilchendichte
n0(r). Kein anderes System kann diese Teilchendichte im Grundzustand besitzen und
somit ist auch das externe Potential (bis auf eine additive Konstante) ein eindeutiges
Funktional der Grundzustandsdichte. Während die erste Aussage o�ensichtlich ist, kann
die zweite Aussage mittels �reductio ad absurdum� bewiesen werden [29].
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2. Physikalische Grundlagen

Die Teilchendichte im Grundzustand n0 legt also über das externe Potential den Ha-
miltonoperator und somit auch den Vielteilchengrundzustand Ψ0 fest. Es folgt die ent-
scheidende Aussage:
Alle physikalischen Eigenschaften des Systems im Grundzustand können als Funktional

der zugehörigen Teilchendichte betrachtet werden.
Die Gesamtenergie des Systems mit externem Potential Vext kann als folgendes Funk-

tional einer Teilchendichte n(r) geschrieben werden:

EV,ext[n(r)] = ⟨Ψ[n]|Ĥ|Ψ[n]⟩ (2.21)

Die Wellenfunktion Ψ ist genau diejenige N -Teilchen Wellenfunktion, welche die Dichte
n(r) besitzt und das Energiefunktional minimiert:

Ψ[n(r)] = min
Ψ→n(r)

⟨Ψ|Ĥ|Ψ⟩ (2.22)

Nach dem zweiten Hohenberg-Kohn Theorem ist das globale Minimum vom Energiefunk-
tional EV,ext[n] durch die Grundzustandsdichte n0(r) gegeben. Damit wurde das Ritzsche
Variationsprinzip von der Wellenfunktion auf die Teilchendichte übertragen.

Kohn-Sham Gleichungen

Die Hohenberg-Kohn Theoreme sind von fundamentaler Bedeutung. Sie bieten aber zu-
nächst keine Möglichkeit für ein konkretes System die Grundzustandsdichte zu berechnen.
Zur Lösung dieses Problems hatten Kohn und Sham die Idee, das System der N wechsel-
wirkenden Elektronen durch ein �ktives System von N nicht wechselwirkenden Teilchen,
welche sich in einem e�ektiven Potential Veff(r) bewegen, zu ersetzen [30]. Die Korrelatio-
nen des wechselwirkenden Vielteilchensystems werden über dieses Potential vermittelt.
Diese Theorie sollte vor allem in der Lage sein, den Grenzfall eines freien Elektro-

nengases exakt sowie wechselwirkende Elektronengase durch Korrekturen im e�ektiven
Potential beliebig genau beschreiben zu können.
Nach dieser Theorie ist es möglich, das hochdimensionale Eigenwertproblem 2.18 auf

das Lösen von N gekoppelten Ein-Teilchen Pseudo-Schrödingergleichungen zurückzufüh-
ren. Diese Gleichungen werden in diesem Kontext als Kohn-Sham Gleichungen bezeich-
net.
Bei deren Herleitung wird zunächst das Energiefunktional 2.21 betrachtet. Es lässt sich

in einen universellen Anteil F [n(r)] und einen systemspezi�schen Anteil zerlegen:

EV,ext[n(r)] = ⟨Ψ[n]|Ĥ|Ψ[n]⟩

= ⟨Ψ[n]|
(
T̂ + V̂ee

)
|Ψ[n]⟩+ ⟨Ψ[n]|V̂ext|Ψ[n]⟩

= F [n(r)] +

∫
d3r Vext(r)n(r) (2.23)

Kohn und Sham teilten dieses universelle Funktional F [n(r)] in folgende Anteile weiter
auf:

F [n(r)] = TS[n(r)] + EH[n(r)] + Exc[n(r)] (2.24)
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2.2. Dichtefunktionaltheorie

Diese Aufteilung steht in direktem Zusammenhang mit der Idee, ein System nicht wech-
selwirkender Teilchen zu verwenden. Um den Grenzfall des freien Elektronengases direkt
beschreiben zu können, bilden diese �ktiven Kohn-Sham Teilchen eine Slaterdeterminante
als Gesamtwellenfunktion:

ΨKS(r1, . . . , rN ) =
1√
N !

det

 ϕ1(r1) · · · ϕ1(rN )
...

. . .
...

ϕN (r1) · · · ϕN (rN )

 (2.25)

Das Funktional TS[n(r)] ergibt die kinetische Energie dieses �ktiven Systems:

TS[n(r)] = ⟨ΨKS[n]|T̂ |ΨKS[n]⟩

=
N∑
j=1

∫
ϕ∗j (r)

(
− ~2

2me
∇2

)
ϕj(r) d

3r (2.26)

Das Minimalprinzip aus Gl. 2.22 ist auch hier wieder anzuwenden: ΨKS[n] ist jene N -
Teilchen Slaterdeterminante ψS mit Dichte n(r), welche das Funktional

⟨ψS|T̂ |ψS⟩

minimiert. Das Funktional EH[n(r)] ist die Hartree-Energie:

EH[n(r)] =
1

2

q2e
4πε0

∫ ∫
n(r)n(r′)

|r− r′|
d3r d3r′ (2.27)

Der �Rest� wird als Austausch-Korrelations-Energie Exc[n(r)] de�niert:

Exc[n(r)] := F [n(r)]− TS[n(r)]− EH[n(r)] (2.28)

Auf dieses Funktional wird in späteren Kapiteln weiter eingegangen.
Um die Kohn-Sham Gleichungen herzuleiten, wird ausgenutzt, dass die Grundzustands-

dichte eine Extremstelle des Energiefunktionals unter der Nebenbedingung
∫
n(r)d3r =

N darstellt:

δ

δn(r)

[
EV,ext[n(r)]− µ

(∫
n(r)d3r −N

)]
= 0

Dabei ist µ ein Lagrangeparameter. Setzt man nun die Aufteilung aus den Gln. 2.23, 2.24
für das Energiefunktional ein, erhält als Ergebnis dieser Funktionalableitung:

δTS[n(r)]

δn(r)
+ VH(r) + Vxc(r) + Vext(r)− µ = 0

Es ist üblich, die Summe der Potentiale als e�ektives Potential zusammenzufassen:

δTS[n(r)]

δn(r)
+ Veff(r)− µ = 0 (2.29)
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2. Physikalische Grundlagen

Die Lösung dieser Gleichung für die Dichte n(r) ist gegeben durch die Dichte des nicht
wechselwirkenden Systems von N unabhängigen Teilchen im e�ektiven Potential:{

− ~2

2me
∇2ϕj(r) + Veff [n](r)ϕj(r) = εjϕj(r)

}N
j=1

(2.30)

n(r) = ⟨ΨKS|n̂(r)|ΨKS⟩ =
N∑
j=1

|ϕj(r)|2 (2.31)

Diese Kohn-Sham Gleichungen sind völlig äquivalent zu dem ursprünglichen N -Teilchen
Problem aus Gl. 2.18. Es wurde bis jetzt keine Näherung gemacht. Die Eigenwerte εj
sind Lagrangeparameter welche ebenso wie die zugehörigen Orbitale ϕj keine direkte
physikalische Bedeutung haben.
Man hat nun folgende Vorteile gegenüber dem Anfangsproblem gewonnen: Es müssen

nur noch N Ein-Teilchen Wellenfunktionen statt einer N -Teilchen Wellenfunktion be-
stimmt werden. Das Problem mit der Elektronenkorrelation wurde auf das xc-Funktional
verlagert. Es ist derzeit nicht bekannt, wie dieses für beliebige Dichten exakt bestimmt
werden kann und es muss aus diesem rein praktischen Grund eine Näherung für Vxc(r)
gemacht werden (s. nächster Abschnitt). Da aber die xc-Energie kleiner als die Hartree-
Energie ist, bietet dieser Ansatz - zumindest ho�entlich - den weiteren Vorteil, dass der
Fehler in der gewählten Näherung keinen zu dramatischen Ein�uss auf das Ergebnis hat.

Lokale Dichtenäherung

Das Energiefunktional für die Austausch-Korrelationsenergie kann ganz allgemein wie
folgt entwickelt werden:

Exc[n(r)] =

∫
d3r εxc[n(r)]n(r) + ε(2)xc [n(r)] |∇n(r)|2 + . . . (2.32)

Die Gröÿe εxc[n(r)] gibt die xc-Energie pro Teilchen am Ort r an und ist selbst ein
Funktional, welches i. A. von der Dichte n(r) im ganzen Raum abhängt. Das xc-Potential
ist gegeben als Funktionalableitung von Exc[n]:

Vxc[n](r) =
δExc[n]

δn(r)
(2.33)

In der Lokalen Dichtenäherung geht man vom homogenen Elektronengas aus und setzt
in die Funktion εhomxc (n), welche die Austausch-Korrelationsenergie pro Teilchen des ho-
mogenen Elektronengases in Abhängigkeit dessen Dichte n beschreibt, jeweils die Dichte
am Ort r ein:

ELDA
xc [n(r)] =

∫
d3r εhomxc (n(r))n(r)

Das xc-Potential hat dann nach Gl. 2.33 folgende Form:

V LDA
xc [n](r) =

δ

δn(r)

∫
d3r εhomxc (n(r))n(r) =

d[εhomxc (n)n]

dn

∣∣∣∣
n=n(r)

(2.34)
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2.2. Dichtefunktionaltheorie

Die Gröÿe εhomxc (n) setzt sich additiv aus dem Austausch- und Korrelationsanteil zusam-
men:

εhomxc (n) = −0.458

rS(n)
− 0.44

rS(n) + 7.8
(2.35)

Die Austauschenergie, welche der erste Term beschreibt, ist exakt aus der Hartree-Fock
Rechnung bekannt. Der Korrelationsanteil (zweiter Term) ist durch die Wigner Inter-
polationsformel gegeben [31]. Die Gröÿe rS(n) ist der Wigner-Seitz Radius (mittlerer
Elektronenradius, s. Jellium-Modell in Kap. 1.3) bei Dichte n:

rS(n) =
3

√
3

4πn
(2.36)

Das zugehörige xc-Potential ist gegeben durch [32]:

V LDA
xc (n) = −0.611

rS(n)
− 0.587

(rS(n) + 7.8)2
(rS(n) + 5.85) (2.37)

2.2.2. Zeitentwicklung

Die Zeitentwicklung eines Vielteilchensystems unter Einwirkung elektromagnetischer Fel-
der beginnt ausschlieÿlich vom elektronischen Grundzustand des Systems |Ψ0⟩, welcher
üblicherweise zu einer Zeit t = 0 vorliegt. Die zeitabhängige Schrödingergleichung be-
schreibt dann die weitere Zeitentwicklung des Zustandsvektors |Ψ(t)⟩:

i~
∂

∂t
|Ψ(t)⟩ = Ĥ(t)|Ψ(t)⟩, |Ψ(t = 0)⟩ = |Ψ0⟩ (2.38)

Genau wie bei dem stationären Problem ist es praktisch nicht möglich mit einer Vielteil-
chenwellenfunktion zu rechnen. Interessant ist, dass sich dieses Problem auf sehr ähnliche
Weise zu dem stationären Problem behandeln lässt: Das �ktive System von nicht wech-
selwirkenden Teilchen kann ebenso zeitabhängig formuliert werden.
Das Runge-Gross Theorem [33] ist das zeitabhängige Analogon zum Hohenberg-Kohn

Theorem und besagt, dass das externe zeitabhängige Potential Vext(r, t) ein (bis auf
eine additive, evtl. zeitabhängige Konstante) eindeutiges Funktional der zeitabhängigen
Teilchendichte n(r, t) ist. Aus der Kenntnis der zeitabhängigen Dichte lassen sich alle
dynamischen Eigenschaften des Systems berechnen.
Zur Bestimmung der zeitabhängigen Dichte n(r, t) löst man die zeitabhängigen Kohn-

Sham Gleichungen:

i~
∂

∂t
ϕj(r, t) =

[
− ~2

2me
∇2 + Veff(r, t)

]
ϕj(r, t) (2.39)

n(r, t) =
N∑
j=1

|ϕj(r, t)|2 (2.40)

Das e�ektive Potential ist gegeben durch:

Veff(r, t) = Vext(r) + VH[n](r, t) + Vxc[n](r, t) + VP(r, t) (2.41)
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2. Physikalische Grundlagen

Das externe Potential ist weiterhin zeitunabhängig, wohingegen das Hartree- und xc-Po-
tential nun zeitabhängig sind: Das Hartree-Potential wird genau wie im statischen Fall be-
rechnet, wobei dann die zeitabhängige Dichte zur Zeit t einzusetzen ist. Das xc-Potential
ist vom physikalischen Gehalt her die komplizierteste Gröÿe, da es alle Vielteilchene�ekte
wie auch die Streuung der Elektronen untereinander berücksichtigt. Dieses Potential ist
im Allgemeinen räumlich und zeitlich nichtlokal von der Teilchendichte n(r, t) abhän-
gig. Genau wie im stationären Fall gibt es keinen analytisch exakten Term um es zu
berechnen. Näherungen werden im nächsten Abschnitt beschrieben.
Das Potential VP ist das Störpotential, über welches das System aus dem Grundzustand

angeregt wird.

Adiabatische lokale Dichtenäherung (ALDA)

Die einfachste Möglichkeit an eine sinnvolle Näherung für das zeitabhängige xc-Potential
zu gelangen, besteht darin, in den Term der statischen LDA die zeitabhängige Dichte
einzusetzen:

Vxc(r, t) =
d[nεhomxc (n)]

dn

∣∣∣∣
n=n(r,t)

(2.42)

Diese Näherung wird als adiabatische lokale Dichtenäherung bezeichnet und mit �ALDA�
oder auch mit (adiabatische) �TDLDA4� in der Literatur abgekürzt. Hier werden sowohl
die räumliche als auch die zeitliche Nichtlokalität der Austausch-Korrelationswechselwir-
kung vernachlässigt. Im Rahmen dieser Arbeit ist vor allem die räumliche Nichtlokalität
von zentraler Bedeutung, weil diese auch die Nichtlokalität der optischen Polarisierbar-
keit bestimmter Bereiche (d.h. Ober�ächen, Kanten und Ecken) von Nanostrukturen
beein�ussen kann.
Die adiabatische Näherung ist allgemein gerechtfertigt, wenn die Teilchendichte nur

langsam zeitlich variiert. Hier wurde noch keine Referenzzeit ermittelt, die als Vergleich
herangezogen werden kann, um zu entscheiden was �langsam� genau bedeutet. Eben-
falls wurde noch keine Referenzlänge für die räumliche Variation der Dichte ermittelt,
welche die LDA rechtfertigt. Für die LDA ist aber klar, dass diese im Prinzip nur für
homogene Teilchendichten gültig ist. Auÿerdem fehlt in der LDA eine Korrektur der
Selbstwechselwirkung und daher ist diese für geringe Teilchendichten nicht geeignet. An
der Metall-Vakuum Grenz�äche wird aber die Dichte exponentiell in Richtung Vakuum
auf Null abfallen (s. Abb. 3.1): Die Gültigkeit der Näherung ist daher schon für die
stationären Berechnungen der Teilchendichten in Frage gestellt.
Um den Ein�uss der Zeitabhängigkeit des xc-Potentials auf die Ergebnisse speziell

für die SH-Ober�ächenpolarisierbarkeit zu untersuchen, haben Liebsch und Schaich ihre
Berechnungen in der Random Phase Approximation (RPA) wiederholt5: Für den charak-
teristischen a(ω)-Parameter, den Rudnick und Stern eingeführt haben [13], ergaben sich
quantitative Abweichungen von 25% [11, 32]. Weil aber die Frequenzabhängigkeit dieses
Parameters in beiden Fällen qualitativ gleich ist, wird angenommen, dass die wichtigen
physikalischen E�ekte von der Näherung unbeein�usst sind.
4engl.: time-dependent local density approximation
5Bei dieser Rechnung wird das xc-Potential vom Grundzustand als zeitlich konstant angesehen. Die
exakte Bezeichnung für diese Näherung ist �LDA-basierte RPA�.
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2.2. Dichtefunktionaltheorie

In den folgenden Kapiteln 3 und 4 über die Anwendung der Dichtefunktionaltheo-
rie wird die Gültigkeit der xc-Funktionale als separates Problem gehandhabt, welches
nachträglich ausgebessert werden kann, sofern auch bessere Funktionale zur Verfügung
stehen.
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3. Anwendungen der DFT auf

Nanostrukturen

3.1. Metall�lme

Die theoretischen Untersuchungen optischer Eigenschaften von Metall�lmen wird durch
die Arbeit von Rudnick und Stern [13] zur SH-Strahlung an Metallober�ächen und physi-
kalisch-technische Aspekte motiviert:
Der Metall�lm stellt im Prinzip ein System aus zwei gegenüberliegenden Flächen dar,

deren optische Anregungen nicht unabhängig von einander sind. Für die Untersuchung
von Metallober�ächen ist das System daher nur eingeschränkt nutzbar. Ein realistisches
Modell der Metallober�äche wäre ein mit Metall gefüllter Halbraum. In einer Simulati-
on kann von dem Halbraum natürlich nur ein endlicher Ausschnitt der Vakuum-Metall
Grenz�äche betrachtet und simuliert werden. Der Metallbereich müsste in der Simulation
abgeschnitten werden und der betrachtete Ausschnitt ist dann ein o�enes Quantensys-
tem welches Energie und Teilchen mit dem unendlich groÿen Rest vom metallischen
Halbraum austauscht. Dadurch wird der theoretische Anspruch gegenüber einem Metall-
�lm drastisch erhöht [34], weshalb in dieser Arbeit der Versuch unternommen wurde, den
Metall�lm auch für die Berechnung von Ober�ächeneigenschaften zu verwenden. Darauf
wird im Kapitel 4 über dissipative DFT näher eingegangen. Es sei noch angemerkt, dass
die statische lokale Dichteantwortfunktion eines Metall�lms in [35] bereits untersucht
wurde.

3.1.1. Elektronischer Grundzustand

Im Jellium-Modell wird der Metall�lm symmetriebedingt durch ein eindimensionales Io-
nendichtepro�l n+(z) (mit Dimension L−3) vollständig beschrieben. Aufgrund von nume-
rischen Aspekten ist es von Vorteil, dieses System in einem unendlich tiefen Potentialtopf
unterzubringen. Für das elektrostatische Potential Φ(z) werden die Dirichletrandbedin-
gungen Φ = 0 auf den Rändern des Potentialtopfes gefordert. Die Ränder müssen zum
Metall�lm eine groÿ genügende Vakuumschicht lassen, damit die Randbedingungen kei-
nen Ein�uss auf die Eigenschaften des Systems haben. Die Translationsinvarianz des
Systems führt auf folgende Form der Wellenfunktion für die Metallelektronen:

Ψnk∥(r) = ϕn(z) exp(ik∥ · r∥) (3.1)

Die diskrete Quantenzahl n und die kontinuierlichen Quantenzahlen k∥ = (kx, ky) sind
eine unmittelbare Folge der gewählten Randbedingungen. Die Berechnung des elektroni-
schen Grundzustandes erfordert nun die Lösung der Kohn-Sham Gleichungen:(

− ~2

2m

d2

dz2
+ Veff [n

−](z)

)
ϕn(z) = Enϕn(z) (3.2)
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3. Anwendungen der DFT auf Nanostrukturen

Veff [n
−](z) = Vion(z) + VH[n

−](z) + Vxc[n
−](z) (3.3)

n−(z) =
occ∑
n

wn|ϕn(z)|2 (3.4)

Diese Gleichungen müssen selbstkonsistent gelöst werden (s. Kap. 6.1.5). Das e�ekti-
ve Potential besteht aus dem Potential des ionischen Hintergrundes Vion, dem Hartree-
Potential VH[n−], welches die Coulombwechselwirkung der Elektronen beschreibt, und
dem Austausch-Korrelationspotential Vxc[n−]. Die beiden letzteren Potentiale sind Funk-
tionale der Elektronendichte n−(z). Das Hartree-Potential ist durch die Lösung der Pois-
songleichung gegeben:

d2VH[n
−]

dz2
(z) =

qe
2

ε0
n−(z) (3.5)

Die Orbitalbesetzungen wn werden durch das Au�üllen der Bandstruktur beginnend bei
niedrigster Energie, bis Ladungsneutralität vorliegt, berechnet. Mit Hilfe der Zustands-
dichte für zweidimensionale Systeme (s. Kap. A.1), welche eine Stufenfunktion darstellt,
wird ersichtlich, dass die Bedingung für Ladungsneutralität durch diese Gleichung be-
schrieben wird:

occ∑
n

me(EF − En)

~2π
−
∫
n+(z) dz = 0 (3.6)

Diese Bedingung gilt nur für T = 0 K, was für Metallelektronen aber eine sehr gute
Näherung darstellt, da T ≪ TF auch bei Raumtemperatur gilt (s. Kap. 1.5).

3.1.2. Friedel Oszillationen

Die LDA-Grundzustandsdichte eines ca. 5 nm dicken Metall�lms und einer Ionendichte
von n0 = 0.0019 a0

−3 (entspricht rS = 5 a0) ist in den Abbildungen 3.1 und 3.2 dar-
gestellt. Die Friedel-Oszillationen, welche durch die quantenmechanische Abschirmung
der positiven Jellium-Hintergrundladungen auftreten, sind deutlich zu erkennen. In Ab-
bildung 3.1 wird die Länge in Vielfachen der Fermilänge λF gemessen, um sichtbar zu
machen, dass diese Länge ungefähr der doppelten Wellenlänge dieser Oszillationen ent-
spricht. Deren asymptotischer Verlauf ist nach [32] gegeben durch:

n−(z) = n0

[
1 +

a cos(2kFz + α)

z2
+ . . .

]
(3.7)

Dabei sind die Konstanten a und α von der Form des Ober�ächenpotentials abhängig.
Die in den beiden Abbildungen gezeigte Ladungsdichte ist ca. fünf mal geringer als die

in Silber und Gold (rS = 3). Weil bei den hohen Teilchendichten dieser Edelmetalle die
Friedel-Oszillationen viel schwächer ausgeprägt sind, wurde für die Betrachtungen hier
die geringere Dichte mit rS = 5 gewählt. Um einen ungefähren Eindruck zu bekommen,
welchen Ein�uss die Teilchendichte auf die Oszillationen hat, kann die metallische Hete-
rostruktur in Abbildung 3.3 betrachtet werden. Ein direkter Vergleich der Teilchendichten
ist in der Arbeit von Lang und Kohn ([36], Abb. 2) zu �nden.
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3.1. Metall�lme

Abbildung 3.1.: Grundzustandsdichte im Metall�lm mit einer Dicke von 5 nm. Die ro-
te Linie zeigt die ionische Hintergrundladung und die blaue Linie die
Elektronendichte. Die schwarzen Kreuzchen zeigen die Werte für einen
Halbraum, welche von Lang und Kohn [36] berechnet wurden.

Die berechnete Teilchendichte stimmt trotz der geringen Dicke des Metall�lms be-
reits hervorragend mit der Dichte des Halbraums überein. Diese Beobachtung ist wichtig
für das Vorhaben, ein endliches System zur Beschreibung von Ober�ächen anstelle des
Metall-Halbraums nutzen zu können.
Ein interessantes Ergebnis hat der Vergleich der quantenmechanischen (LDA) Dichte

und der im semiklassischen Modell (Gl. 1.6a) berechneten Dichte (s. Abb. 3.2) hervorge-
bracht1: Innerhalb des Festkörpers zeigt die semiklassische Rechnung selbstverständlich
keine Oszillationen, sondern einen glatten Verlauf der sich im Inneren des Festkörpers im-
mer mehr der Ionendichte n0 annähert. Allerdings ist der Verlauf an der Metall-Vakuum
Grenz�äche in Richtung Vakuum praktisch identisch zwischen den beiden Kurven. Ver-
mutlich kann diese Übereinstimmung durch den quantenmechanischen Entartungsdruck
des idealen Fermigases, welcher in das semiklassische Modell eingesetzt wurde, erklärt
werden.
Um diese Beobachtung besser verstehen zu können, sollte die Quanten Euler Glei-

chung 5.88 für weitere Betrachtungen mit herangezogen werden und die Untersuchung
für verschiedene Ionendichten n0 durchgeführt werden.

3.1.3. Bewegung der Metallelektronen im Lichtfeld

Die Bewegung der Metallelektronen des Metall�lms soll im Zeitbereich untersucht wer-
den. Diese werden durch ein elektrisches Feld E(z, t) = Ez(t)ez getrieben, das unter Be-
achtung der Translationsinvarianz in der xy-Ebene des Systems physikalisch nur durch
einen unendlich groÿen Plattenkondensator, in dem sich der Metall�lm be�ndet, verur-
sacht werden kann. Der Bezug zur Optik kann dadurch hergestellt werden, dass man

1Die semiklassische Gleichung wurde mittels FV-Methode gelöst (s. Kap. 6.4 und speziell Kap. 6.4.4).
Bei diesen Rechnungen muss der numerische Di�usionsfehler besonders beachtet werden, da dieser
den Dichteverlauf an der Vakuum-Grenz�äche verfälschen kann.
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Abbildung 3.2.: Vergleich der elektronischen Ladungsdichten nach voll quantenmechani-
scher Rechnung (blaue Kurve) und semiklassischer Rechnung (magenta
Kurve). Die Ionendichte ist durch das rote Pro�l dargestellt.

bei schrägem Lichteinfall eine Normalkomponente im elektrischen Feld hat, die diese
Berechnung berücksichtigen soll. In der xy-Ebene ändert sich bei einem realen Licht-
feld die Phase von Ort zu Ort und ausserdem gibt es auch ein elektromagnetisches Feld
parallel zur Ebene. Diese beiden Aspekte eines realen Lichtfeldes werden hier nicht be-
rücksichtigt. Für die Bewegung der Elektronen innerhalb der Ebene ist auÿerdem kein
quantenmechanisches Modell notwendig, weil in dieser das Potential konstant ist. Es muss
noch untersucht werden, ob der magnetische Anteil der Lorentzkraft zu nennenswerten
SH-Strömen parallel zur Ober�äche führen kann. Solange für die Geschwindigkeit der Me-
tallelektronen |v∥| ≪ c0 gilt, ist anzunehmen, dass die hier untersuchte anharmonische
Bewegung in Normalenrichtung die primäre SH-Quelle darstellt.
Trotz der Einschränkung auf den Feldanteil Ez(t)ez wird dieses als Lichtfeld bezeich-

net: Da das induzierte Feld innerhalb des Films nur elektrostatisch beschrieben wird, ist
durch diese Begri�sverwendung einerseits klar, dass damit ein externes Feld gemeint sein
muss und andererseits hat es im Kontext der Optik dort auch seinen Ursprung.
Die Berechnung erfordert nun das Lösen der zeitabhängigen Kohn-Sham Gleichungen

(s. Kap. 2.2.2):

i~
∂

∂t
ϕn(z, t) =

(
− ~2

2m

∂2

∂z2
+ Veff [n

−](z, t)

)
ϕn(z, t) (3.8)

n−(z, t) =
occ∑
n

wn|ϕn(z, t)|2 (3.9)

Das e�ektive Potential ist nun zeitabhängig und bekommt zur Berücksichtigung des Licht-
feldes einen weiteren Beitrag:

Veff [n
−](z, t) = Vion(z) + VH[n

−](z, t) + VXC[n
−](z, t) + Vext(z, t) (3.10)
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3.1. Metall�lme

Abbildung 3.3.: Beispiel für eine Heterostruktur aus Eisen und Gold. Die rote Linie zeigt
die Ionendichte und die blaue Linie die Elektronendichte. Hier kann
man den Ein�uss der Ionendichte auf die Friedel-Oszillationen erkennen.
(Diese spezielle Struktur ist durch ein in [37] beschriebenes Experiment
inspiriert.)

Das Lichtfeld geht über das externe Potential ein:

Vext(z, t) = −eEz(t)z (3.11)

Wie zuvor erläutert kann Ez(t) die Normalkomponente eines Lichtfeldes darstellen und
kann im Prinzip zu einem beliebigen Lichtpuls gehören. Es muss dabei nur gewährleistet
sein, dass die Langwellennäherung erfüllt ist.
Die Anfangsbedingungen für die zeitabhängigen Kohn-Sham Gleichungen lauten nun:

ϕn(z, 0) = ϕn(z) und Ez(0) = 0. Die Orbitalbesetzungen wn sind genauso zu wählen wie
im Grundzustand und bleiben zeitlich konstant. Das Lichtfeld Ez(t) sollte langsam und
nicht unstetig eingeschaltet werden.
In Bezug auf die Maxwellgleichungen stellt die Stromdichte im Metall�lm eine beson-

ders wichtige Observable dar, da dieser als Quellterm in den inhomogenen Wellenglei-
chungen 2.4a-2.4b auftritt. Die elektrische Stromdichte Jz(z, t) in Normalenrichtung des
Films kann über den Erwartungswert des Wahrscheinlichkeitsstromdichteoperators Ĵ(z)
berechnet werden:

Jz(z, t) = qe⟨ΨKS(t)|Ĵ(z)|ΨKS(t)⟩

= qe
~
m

∑
n

wn Im
[
ϕ∗n(z, t)

∂ϕn
∂z

(z, t)

]
(3.12)

Die Zeitpropagation der Kohn-Sham Orbitale kann mit einer numerischen Methode aus
dem Kapitel 6.2 durchgeführt werden.
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3. Anwendungen der DFT auf Nanostrukturen

Abbildung 3.4.: Frequenz- und ortsaufgelöste Darstellung der Stromdichte bei cw-An-
regung mit f = 100 THz. Die gestrichelte Linie zeigt die Position der
Metallober�äche. Die Plasmafrequenz liegt bei fpl = 1020 THz.

3.1.4. Erzeugung Zweiter Harmonischer

Eine Quelle der SH-Strahlung, welche beispielsweise bei den Re�ektionsmessungen an
Metallober�ächen (s. Kap. 1.2.2) beobachtet wird, liegt in der Normalenkomponente der
elektrischen Stromdichte Jz(z, t), die nach Gl. 3.12 berechnet werden kann. Ein Blick auf
die inhomogene Wellengleichung 2.4a zeigt, dass es neben der Stromdichte im Prinzip
noch einen weiteren Quellterm gibt:

∇×∇×E+
1

c02
∂2E

∂t2
= ∇ (∇ ·E)︸ ︷︷ ︸

1
ε0
ϱ

−∇2E+
1

c02
∂2E

∂t2
= −µ0

∂J

∂t

Das elektrische Feld kann in ein externes und internes Feld zerlegt werden, wobei nur das
interne Feld einen longitudinalen Anteil besitzt: Hier kann der Term ∇(∇·E) geschrieben
werden als ∇(∇ · Eintern) = 1

ε0
∇ϱ, wobei ϱ die elektrische Ladungsdichte ist. Da die

Ladungsdichte und die Stromdichte über die Kontinuitätsgleichung eng verknüpft sind,
beschränken sich folgende Betrachtungen auf die Stromdichte.
Für die Berechnung der SH-Stromdichte wurde nun eine Simulation an der in Abbil-

dung 3.1 gezeigten Struktur durchgeführt. Zur Anregung wird ein cw-Lichtfeld benutzt:

Ez(t) = E0 cos(2πf0t) (3.13)

E0 = 106V/m, f0 = 100 THz

Das Feld wird über einige Perioden 1/f langsam eingeschaltet und die Stromdichte
Jz(z, t) aufgezeichnet, sobald sich das System eingeschwungen hat. Aus der Aufzeich-
nung wird dann mittels einer Fouriertransformation das Feld Jz(z, f) berechnet. Die
Dimensionierung der Feldstärke kann über das Kräfteverhältnis 1.9 begründet werden.
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3.1. Metall�lme

Abbildung 3.5.: Induzierte Ströme in Normalenrichtung bei der ersten und zweiten Har-
monischen. Die Stromdichten wurde für bessere Vergleichbarkeit indivi-
duell skaliert.

Das Feld Jz(z, ω) ist in den Abbildungen 3.4 und 3.5 dargestellt: Die fundamentale
Stromdichte Jz(z, f0) zeigt ein proportionales Verhalten zur Elektronendichte n−(z) des
Grundzustandes, wohingegen bei der Stromdichte der Zweiten Harmonischen Jz(z, 2f0)
eine starke Lokalisierung innerhalb eines ca. 5 Å groÿen Bereiches an der Metall-Vakuum
Grenz�äche vorliegt. Diese Lokalisierung ist durch die Potentialbarriere, welche die Gre-
nz�äche zum Vakuum bildet, bedingt und führt zu einer stark anharmonischen Bewegung
der Elektronen. Die Abbildung 3.4 zeigt, dass die Zweite Harmonische um ca. vier Grö-
ÿenordnungen kleiner ist als die fundamentale Stromdichte. Man kann sogar noch eine
sehr schwache Dritte Harmonische erkennen. Ausserdem sind zwischen den ganzzahligen
Vielfachen der Frequenz f sehr schwache Ströme erkennbar, welche vermutlich durch
Frequenzmischung mit anderen Resonanzen des Metall�lms entstanden sein könnten.
Eventuell handelt es sich dabei um die longitudinalen Plasmaresonanzen, welche bereits
experimentell in Kalium�lmen [38] beobachtet wurden.
Abschliessend wurde noch das Skalierungsverhalten der Stromdichten Jz(z, n f0) unter-

sucht, welches nach störungstheoretischer Beschreibung proportional zu E0
n sein muss.

Es wurde speziell die Stromstärke an der Ober�äche bei z = 0 betrachtet. Das Ergebnis
ist in Abbildung 3.6 zu sehen: Wie man an den ange�tteten Geraden sehen kann, liegt
genau das erwartete Skalierungsverhalten vor.
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3. Anwendungen der DFT auf Nanostrukturen

3.1.5. Mikroskopische Struktur der Fresnelfelder

Mit der Prozedur zur Berechnung der Stromdichte Jz(z, f), wie sie im vorherigen Kapitel
erläutert wurde, kann ebenfalls das induzierte, elektrische Feld Eind(z, f) in dem Metall-
�lm berechnet werden2. Das Ergebnis für die Felder bei der Ersten und Zweiten Harmo-
nischen sind in Abbildung 3.7 dargestellt. Die beiden Felder haben eine Zeitabhängigkeit
der Form cos(nf0t) und das Vorzeichen der Felder hat in der Abbildung daher keine
besondere Bedeutung. Man kann erkennen, dass es ein elektrisches Feld der Frequenz
f0 in Normalenrichtung innerhalb des Metall�lms gibt, welches auÿerhalb verschwindet.
Das Feld der Zweiten Harmonischen existiert dagegen nur auÿerhalb. Eine physikalische
Interpretation dazu fehlt noch.
Die Berechnung dieses mikroskopischen Feldes ist interessant, um zu sehen welche

starke Vereinfachung die makroskopische Elektrodynamik zur Beschreibung der Metal-
lober�ächen liefert: In der makroskopischen Theorie wird das elektrische Feld an der
Ober�äche als unstetige Funktion beschrieben, die einen Sprung aufweist, dessen Grö-
ÿe proportional zur induzierten Ober�ächenladung ist [27]. Letztere wird mathematisch
idealisiert als unendlich dünne Schicht beschrieben. Die gestrichelten Linien zeigen in der
Abbildung genau diesen Sprung, den die makroskopischen Fresnelfelder3 aufweisen.

2Es gilt Eind = − ∂
∂z
Vind und∇2Vind = − 1

ε0
[ϱ(z, t)−ϱ0(z)] wobei ϱ0 die Ladungsdichte im Grundzustand

ist.
3Diese Bezeichnung ist aus [32], Kapitel 3.3.5 übernommen worden.
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3.1. Metall�lme

Abbildung 3.6.: Die Ober�ächenstromstärke skaliert in der Simulation genau so, wie es
nach störungstheoretischer Analyse (s. Kap. 3.2.1) zu erwarten ist.

Abbildung 3.7.: Fresnelfelder bei der ersten und zweiten Harmonischen. Die gestrichel-
ten Linien zeigen die Stufenfunktionen welche in der makroskopischen
Elektrodynamik zu deren Beschreibung verwendet wird.
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3. Anwendungen der DFT auf Nanostrukturen

3.2. Nichtlokale Suszeptibilität der Elektronendichte

In diesem Kapitel wird eine Prozedur zur Berechnung der linearen, nicht-lokalen Sus-
zeptibilität der Elektronendichte im Zeitbereich beschrieben. Damit lässt sich z.B. das
Kriterium in Gl. 1.8 von Rudnick und Stern quantitativ präzisieren. Die Prozedur kann
auch auf den Polarisationsstrom angewendet werden, um die optische Suszeptibilität bzw.
die Leitfähigkeit (s. Gl. 2.3) zu berechnen. Als Anwendungsbeispiel dient die Elektronen-
dichte des Metall�lms aus Kapitel 3.1.

3.2.1. De�nition der Antwortfunktion

Die Zeitbereichssimulationen erfordern, dass man die lineare Antwort aus den Simula-
tionsergebnissen zunächst extrahiert, indem das Skalierungsverhalten der Ausgabe bzgl.
einer Störung (Eingabe) des Systems untersucht wird. Als Ausgabe wird hier die Än-
derung der Elektronendichte vom Grundzustand de�niert. Diese kann in einer Volterra-
Reihe entwickelt werden:

δn(z, t) = δn(1)(z, t) + δn(2)(z, t) + . . . , ∥δn(j)∥ ∼ ∥Vp∥j (3.14a)

n(z, t) = n0(z) +
∑
j

δn(j)(z, t) (3.14b)

Die Störung liegt in Form eines Störpotentials Vp(z, t) vor. Der Beitrag δn(j) zur Dich-
teänderung skaliert dabei wie die j-te Potenz von ∥Vp∥ und ist durch folgendes Integral
gegeben:∫

dz1dt1 . . .

∫
dzjdtjR

(j)(z; z1, t− t1, . . . , zj , t− tj)Vp(z1, t1) · . . . · Vp(zj , tj)(3.15)

Die Faltungskern R(j) ist die gesuchte Antwortfunktion j-ter Ordnung: Diese hängt in
physikalischen Systemen grundsätzlich nur von einer relativen Zeit ab, wohingegen die
Ortskoordinate in inhomogenen Systemen als absolute Koordinate auftritt. Die Kausa-
lität wird durch die Eigenschaft R(j) = 0 falls eine Relativzeit t − t′ < 0 in einem der
Argumente auftritt, modelliert. Die Kenntnis dieser Antwortfunktionen erlaubt eine voll-
ständige Charakterisierung vom Verhalten des Systems, d.h. zu einer beliebigen Störung
Vp(z, t) kann die Auswirkung auf die Elektronendichte berechnet werden. Die Transfor-
mation in eine Fourierbasis liefert zudem physikalisches Verständnis vom System.
Um an die lineare Antwortfunktion R(1) des Systems zu gelangen, muss der Grenzfall

∥Vp∥ → 0 untersucht werden. Für diesen Grenzfall gilt:

n(z, t) = n0(z) +

∫
dz′dt′R(1)(z; z′, t− t′)Vp(z

′, t′) +O(∥Vp∥2) (3.16)

Zur Vereinfachung der Notation wird nun folgende De�nition gemacht:

Def.: R ≡ R(1) (3.17)

Die Berechnung dieser Funktion aus Simulationsergebnissen im Zeitbereich wird im nä-
chsten Kapitel erläutert.

44
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3.2.2. Numerische Berechnung der Antwortfunktion

Aus der Signaltheorie ist bekannt, dass die Ausgabe eines linearen, zeitinvarianten Sys-
tems durch Anregung mit einem δ-Puls die Antwortfunktion R liefert4 [39], wie die fol-
gende Gleichung (3.18) o�ensichtlich macht. Allerdings ist das hier betrachtete System
zwar zeitinvariant aber nicht ortsinvariant, wodurch die Berechnung der Antwortfunktion
komplizierter wird.
Es wird der Ansatz Vp(z, t) = δ(z − z0)δ(t− t0) für die Störung gewählt:

δn(1)(z, t) =

∫
dz′dt′R(z; z′, t− t′)δ(z′ − z0)δ(t

′ − t0)

= R(z; z0, t− t0) (3.18)

In (räumlich) inhomogenen Systemen ist die Antwortfunktion erst dann vollständig be-
kannt, wenn an sämtlichen Orten z0 das System jeweils einmal mit einem δ-Puls angeregt
wurde. Für den Metall�lm in Abb. 3.1 müssten zu den Nz Gitterpunkten des Simulati-
onsraumes entsprechend Nz Funktionen R(z; zj , t − t0) (Gitterpunktindex j) berechnet
werden5.
Ein Problem bei der numerischen Berechnung von Antwortfunktionen stellt die Mo-

dellierung eines Deltapulses in der Simulation dar: Damit man numerisch sinnvolle Si-
mulationsergebnisse erhält, muss sich der Eingabepuls des Systems grundsätzlich über
mehrere Schrittweiten ∆z und ∆t in der diskretisierten Raum-Zeit erstrecken, so dass
bei ∆z → 0 und ∆t → 0 Konvergenz eintritt. Da der δ-Puls selbst unendlich schmal
ist, muss mit endlichen Pulsen gearbeitet werden, die ein breit genügendes Spektrum im
Frequenzraum besitzen.
Für das Störpotential benutzt man daher folgende Form:

Vp(z, t) =
α

πσzσt
e
−
(
z−z0
σz

)2
−
(
t−t0
σt

)2

(3.19)

Im Grenzfall σz → 0 und σt → 0 würde sich die δ-Pulsform ergeben. Man wählt die Puls-
breiten σz und σt nun so, dass diese eine mit dem numerischen Verfahren zur Berechnung
von δn(z, t) verträgliche Mindestanzahl an Gitterpunkten und Zeitschritten enthält. Für
das Ergebnis δn der Simulation gilt näherungsweise:

δn(z, t) ≈ δn(1)(z, t) ≈ R(z; z0, t− t0) (3.20)

Die erste Näherung bezieht sich auf die numerisch durchzuführende Bildung des Limes
aus Gl. 3.16 und die zweite Näherung auf die endliche Pulsbreite von Vp.
Die Ergebnisse {R(z; zj , t− t0)}j können anschlieÿend noch in die Fourierbasis trans-

formiert werden: Dazu nimmt man an, dass sich der Simulationsraum im Ort periodisch
4In einer Fourierbasis betrachtet wird durch den δ-Puls im Zeitbereich das Verhalten des Systems be-
züglich sämtlicher Frequenzen, aus denen sich eine mögliche Eingabe zusammensetzen kann, simultan
ermittelt.

5In der Praxis wäre es denkbar, die Funktion R an nur wenigen Punkten zj zu berechnen und die
Zwischenpunkte durch Interpolation zu approximieren. Es ist zu erwarten, dass die Abhängigkeit von
der absoluten Ortskoordinate im Bulkbereich verschwindet und durch eine Relativkoordinate z − z0
ersetzt werden kann. Entsprechend muss dafür nur eine Antwortfunktion gespeichert werden (d.h.
wie im Zeitbereich).
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3. Anwendungen der DFT auf Nanostrukturen

fortsetzt (Periodenlänge L) und sich im Zeitbereich alle Vorgänge mit Periodendauer T
wiederholen. Die Fouriertransformierte von R lautet dann:

χ(z; kn, ωm) =
1

LT

L/2∫
−L/2

dz′
T∫
0

dt′R(z; z′, t− t′)e−iknz
′−iωmt′ (3.21)

mit

kn = n
2π

L
, ωm = m

2π

T
, n,m ∈ Z (3.22)

Weil die Funktion R reellwertig ist, besitzt χ folgende Symmetrieeigenschaften:

Re{χ(z; kn, ωm)} = Re{χ(z; k−n, ω−m)} (3.23a)

Re{χ(z; k−n, ωm)} = Re{χ(z; kn, ω−m)} (3.23b)

Im{χ(z; kn, ωm)} = −Im{χ(z; k−n, ω−m)} (3.23c)

Im{χ(z; k−n, ωm)} = −Im{χ(z; kn, ω−m)} (3.23d)

Wenn das System räumlich homogen ist, kann die absolute Raumkoordinate z bei den
Argumenten von χ gestrichen werden und es existiert folgender Zusammenhang zwischen
den Fouriertransformierten der Gröÿen δn(1), χ und Vp:

δn(1)(kn, ωm) = LTχ(kn, ωm)Vp(kn, ωm) (3.24)

Dieser Spezialfall hat den groÿen Vorteil, dass sich die numerisch bedingte, endliche
Pulsbreite von Vp �per Division� eliminieren lässt:

χ(kn, ωm) =
δn(1)(kn, ωm)

LT Vp(kn, ωm)
(3.25)

Es kann also über diesen Zusammenhang die exakte lineare, nicht-lokale Antwortfunktion
in der Fourierbasis berechnet werden. Man beachte dabei, dass sich die Gröÿe χ(kn, ωm)
mit einer einzigen Zeitbereichssimulation unter Verwendung eines Pulses mit der Form
aus Gl. 3.19 berechnen lässt.
Leider entfällt diese Möglichkeit bei inhomogenen Systemen (wie z.B. dem Metall-

�lm), bei denen die absolute Koordinate mitgeführt werden muss. Zur Verdeutlichung
des Problems kann folgende Gleichung betrachtet werden, die man durch Einsetzen der
Fourierreihen von R und Vp in die Faltung 3.16 erhält:

δn(1)(z, ωm) = TL
∑
n

χ(z; kn, ωm)Vp(k−n, ωm) (3.26)

Die gesuchte Gröÿe χ(z; kn, ωm) ist wegen der Summation unzugänglich. Eine Ausnahme
bildet der Fall, bei dem die Störung Vp nur die beiden spektralen Komponenten (kq, ωm)
und (k−q, ω−m) besitzt6. Die Summen für δn(1)(z, ωm) und δn(1)(z, ω−m) reduzieren sich

6Es wird angenommen, dass das System durch eine reellwertige Störung der Form Vp ∼ cos(kqz+ωmt)
angeregt wird. Dazu muss für die Fourierkomponenten die Bedingung V ∗

p (kq, ωm) = Vp(k−q, ω−m)
gelten.
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3.2. Nichtlokale Suszeptibilität der Elektronendichte

in diesem Fall auf folgende Terme:

δn(1)(z, ωm) = TL χ(z; k−q, ωm)Vp(kq, ωm) (3.27a)

δn(1)(z, ω−m) = TL χ(z; kq, ω−m)Vp(k−q, ω−m) (3.27b)

Mit einer der beiden Gleichungen kann χ(z; k∓q, ω±m) berechnet werden. Die jeweils
andere Gleichung ist aufgrund der Symmetrien 3.23a-3.23d von χ redundant.

3.2.3. Zusammenfassung der Berechnungsmethoden

Im letzten Abschnitt wurden folgende Möglichkeiten aufgezeigt, um die lineare, nicht-
lokale Suszeptibilität χ(z; k, ω) zu berechnen:

1. Eine einfache Methode besteht darin, das System an allen Orten in getrennten
Simulationen jeweils mit einem endlichen Gausspuls (Gl. 3.19) anzuregen. Das Er-
gebnis ist eine Menge von Funktionen R, welche jeweils den beiden Näherungen
in Gl. 3.20 unterliegen. Über das Fourierintegral 3.21 kann die Suszeptibilität χ
anschlieÿend berechnet werden.

2. Wenn das System räumlich homogen ist, hängt R auch im Ort nur von relativen
Koordinaten ab. Die Suszeptibilität hat dann die Form χ = χ(k, ω) und kann
unter Verwendung eines endlichen Pulses (Gl. 3.19) aus einer einzelnen Simulation
nach Gleichung 3.25 berechnet werden. Diese Berechnungsmethode enthält nur die
Näherung δn ≈ δn(1), welche über die Amplitude des Pulses im Prinzip beliebig
genau gemacht werden kann.

3. Für inhomogene Systeme kann über eine der Gleichungen 3.27a-3.27b ebenfalls die
Ungenauigkeit, welche durch eine endliche Pulsbreite bedingt ist, rausgerechnet
werden: Allerdings muss zu jeder Wellenzahl k eine Dichte δn(1)(z, t) in jeweils
einer Simulation berechnet werden. Als Störpotential wird dazu folgende Form
verwendet:

Vp(z, t) =
α√
πσt

e
−
(
t−t0
σt

)2

cos(kqz) (3.28)

Über den Parameter α wird das Potential so skaliert, dass δn ≈ δn(1) gilt. Aus den
Simulationsdaten berechnet man zu jedem kq das Feld δn(1)(z, ωm) mittels diskre-
ter Fouriertransformation in der Zeit. Dann kann z.B. Gleichung 3.27a verwendet
werden, um χ(z; kq, ωm) zu berechnen.

Für inhomogene Systeme ist die dritte Methode der ersten vorzuziehen, da diese nur
eine Näherung enthält. Der Rechenaufwand ist im Prinzip vergleichbar groÿ: Anstatt für
alle Orte z eine Simulation durchzuführen, muss für alle Wellenzahlen k eine Simulation
durchgeführt werden. Wenn man sich aber nur für bestimmte Orte z interessiert und man
vorerst nur einen qualitativen Überblick zum Verhalten des Systems gewinnen möchte,
ist die erste Methode wesentlich schneller durchzuführen. Für die Ergebnisse des nächsten
Abschnitts wurde deshalb die erste Methode benutzt.
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3. Anwendungen der DFT auf Nanostrukturen

Abbildung 3.8.: Real- und Imaginärteil der Suszeptibilität χ(k, ω) aus dem Bulkbereich
des Metall�lms bei festem k = 0.5kF.

3.2.4. Eigenschaften der Suszeptibilität im Metall�lm

Es soll nun die Suszeptibilität χ(z; k, ω) der Elektronendichte in einem Metall�lm be-
rechnet und physikalisch untersucht werden. Der verwendete Metall�lm hat eine Dicke
von 240 a0 (ca. 12.7 nm) und ist ungefähr doppelt so dick wie der aus Abbildung 3.1. Die
Dichte ist durch den Wert rS = 5a0 gekennzeichnet. Als Berechnungsprozedur wird die
Methode �1� (s. vorheriges Kapitel) verwendet7, bei der im Wesentlichen die Reaktion
des Systems durch Anregung mit einem endlich breiten Puls aufgezeichnet werden muss.
Die Ergebnisse sind in den Abbildungen 3.8 und 3.9 dargestellt. Für deren Generierung
sind folgende Schritte notwendig:

1. Festlegung des Anregungspulses (Gl. 3.19). Es wurden folgende Pulsbreiten ge-
wählt:

σx = 5a0, σt = 30 as (3.29)

Die Gitterau�ösung lag bei ∆x = 240 a0
600 und die Zeitschrittweite bei ∆t = 2as.

2. Bestimmung des linearen Bereichs: Die Pulshöhe α wird so gewählt, dass das lineare
Verhalten δn(z, t) ∼ α dominiert (s. Gl. 3.16). Für dieses System hat sich gezeigt,
dass der lineare Bereich bei α < 1 liegt. Die Antwortfunktion erhält man, indem
die Ausgabe der Simulation δn durch die Pulshöhe α dividiert wird:

R(1)(z, t) ≈ δn(z, t)

α
(3.30)

Für die Simulationsergebnisse wurde α = 0.1 verwendet.

3. Um eine physikalisch sinnvolle Antwortfunktion zu erhalten, muss die Elektronen-
dichte δn aus den Simulationen in der Zeit künstlich gedämpft werden:

δn(z, t) → δn(z, t) e−t/τ (3.31)
7In einer zukünftigen Arbeit sollte die empfohlene Methode �3� zum Vergleich mit den hier gezeigten
Ergebnissen herangezogen werden.
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Es wurde τ = 10−15 s gewählt. Auf dem Zeitintervall der Simulation, welches in der
Gröÿenordnung T = 100 fs liegt, ist dadurch sichergestellt, dass die Teilchendichte
δn zum Ende praktisch auf Null abgefallen ist.

Für die Beschreibung dieses E�ekts soll letztlich die dissipative Dichtefunktio-
naltheorie (s. Kap. 4) benutzt werden. Mit der Umsetzung der Theorie kann im
derzeitigen Stadium noch keine Dämpfung mit genügender E�ektivität erzielt wer-
den, um Antwortfunktionen endlich groÿer Systeme zu berechnen.

4. Als nächstes wird ein Satz von Funktionen Rj ≡ R
(1)
j zu verschiedenen Positionen

zj innerhalb des Metall�lms, bei denen der Puls positioniert ist, berechnet. Die
Funktionen werden entlang der z-Achse so verschoben, dass der Puls am Ursprung
liegt. Die Funktionen werden nach Gl. 3.21 in die Fourierbasis transformiert.

Die Ergebnisse dieser Rechnung lauten:

• Der Metall�lm verfügt über einen Bulkbereich in dem die Suszeptibilität χ(z; k, ω)
sich nur schwach bzgl. z verändert. Qualitativ kann für den Metall�lm, der sich über
das Intervall z = −120 a0 . . . 120 a0 erstreckt, gesagt werden, dass dieser Bereich bei
zBulk = −50 a0 . . . 50 a0 liegt8.

• Aus diesem Bulkbereich ist die Suszeptibilität für festes k als Funktion von ω in
Abb. 3.8 dargestellt: Der Imaginärteil hat die typische Form einer Resonanzkurve,
bei deren Maximum (leicht verschoben) der Realteil einen Nulldurchgang hat. Das
Maximum des Realteils liegt bei der Plasmafrequenz ~ωpl = 4.2 eV. Dieser Verlauf
ist bei k = 0.5 kF besonders deutlich erkennbar.

• Die Abbildung 3.9 zeigt die Suszeptibilität an drei verschiedenen Positionen na-
he der Ober�äche und vergleicht diese mit dem Bulkbereich: An allen Positionen
liegt eine deutliche k-Abhängigkeit der Suszeptibilität vor, welche in Richtung der
Ober�äche immer stärker zunimmt.

• Das Maximum der Funktion Re{χ(z; k, ω)} liegt o�ensichtlich bei k ≈ kF und
ω ≈ ωpl. Das erscheint plausibel, da der Wellenvektor kF als Quantenzahl im Elek-
tronengas am häu�gsten vertreten ist und die Plasmafrequenz die kollektive Aus-
lenkung der Elektronen aus der Ruhelage in dem Metall�lm charakterisiert.

Die Ergebnisse erscheinen alle qualitativ plausibel. Um die Ergebnisse in einer zukünfti-
gen Arbeit quantitativ zu validieren, muss die aufwendigere Berechnungsmethode �3� des
vorherigen Kapitels verwendet werden. Es wäre vor allem interessant zu überprüfen, in-
wieweit die Suszeptibilität eines homogenen, wechselwirkenden Elektronengases mit der
des hier betrachteten Bulkbereichs übereinstimmt.

8Zur Festlegung dieses Bereichs wurde die visuelle Unterscheidbarkeit der Plots von Re{χ} in Abhän-
gigkeit von z benutzt. Diese Formulierung muss letztlich mathematisch präzisiert werden, indem z.B.
eine Angabe zur relativen Abweichung der Norm ∥χ(zBulk; k, ω)∥ und ∥χ(zSurface; k, ω)∥ gegeben wird.
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3. Anwendungen der DFT auf Nanostrukturen

Abbildung 3.9.: Die Suszeptibilität der Elektronendichte wurde in einem 12.7 nm dicken
Metall�lm an vier verschiedenen Positionen berechnet. Die ober�ächen-
nahen Positionen zj sind mit den Zahlen 1-3 im obigen Plot der Elek-
tronendichte gekennzeichnet. In den vier Diagrammen unter der Elek-
tronendichte ist jeweils Re{χ(zj ; k, ω)} in normierter Form dargestellt.
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3.3. Metallische Nanodrähte

Bei den Metall�lmen aus dem vorigen Kapitel wurde nur die Elektronenbewegung in
Richtung der Ober�ächennormale berücksichtigt. In den Nanodrähten wird nun die Be-
wegung der Elektronen innerhalb der Querschnittsebene berücksichtigt und die Bewegung
entlang des Drahtes vernachlässigt. Die Erzeugung Höherer Harmonischer und die Quan-
tennatur der Nichtlokalität bei Abschirmungsprozessen in Nanodrähten soll mit den hier
entwickelten Simulationen untersucht werden können.
Eine wichtige Publikation auf diesem Gebiet lieferten McMahon, Gray und Schatz im

Jahr 2009 [5]: In dieser wurde folgende nichtlokale dielektrische Funktion zur Beschrei-
bung von Nanodrähten verwendet:

ε(k, ω) = ε∞ + εinter(ω) + εintra(k, ω) (3.32)

εintra(k, ω) = − ωP
2

ω(ω + iγ)− β2k2
(3.33)

Der Intrabandanteil der dielektrischen Funktion, welcher die freien Metallelektronen be-
schreibt, ist aus dem hydrodynamischen Drude-Modell [40] hergeleitet worden. Deren
Arbeit hat folgende groÿe Stärken im Vergleich zu den Modellrechnungen in dieser Ar-
beit:

1. Die dielektrische Funktion berücksichtigt über ε∞ + εinter(ω) auch den rein dielek-
trischen Anteil in der Polarisierbarkeit von Metallen.

2. Die geometrieabhängige mittlere freie Weglänge der Elektronen (s. Kap. 2.1.4) wird
berücksichtigt.

3. Das Modell wird im Zeitbereich zusammen mit den Maxwell-Gleichungen durch In-
tegration in eine Implementation der FDTD Methode [41] gelöst. Mittels Fourier-
transformation in Raum und Zeit wird die Antwortfunktion 3.33 in den Ortsraum
und Zeitbereich übertragen.

4. Mit der Methode können auch Rechnungen an groÿen Strukturen durchgeführt
werden, welche für DFT-basierte Methoden wegen zu hohen Rechenaufwands un-
zugänglich sind. Die elektrostatische Näherung in den DFT-Rechnungen würde
dabei ebenfalls ungültig werden.

Folgende Aspekte der Publikation können allerdings als fragwürdig angesehen werden:

1. Die hydrodynamischen Gleichungen werden nur innerhalb der Struktur gelöst. Das
entspricht einer (Pekar) Randbedingung, welche nach den bisherigen Betrachtungen
in dieser Arbeit nicht gerechtfertigt ist: Wie in Abb. 3.2 zu sehen ist, fällt auch bei
dem hydrodynamischen Modell die Ladungsdichte der Elektronen an der Ober�äche
nicht plötzlich auf Null ab. Das gleiche gilt für die Stromdichte (s. Abb. 3.5). Ein Teil
des Bereichs ausserhalb des eigentlichen Festkörpers muss also in die Berechnung
mit eingeschlossen werden.

Die quantenmechanischen Modellrechnungen der Ober�ächenpolarisierbarkeit von
Rudnick und Stern [13] wurden mit einer unendlich hohen Potentialbarriere durch-
geführt, was zu einer drastischen Abweichung zu den viel genaueren TDLDA-
Ergebnissen führte [11], welche eine endlich hohe Barriere benutzen.
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3. Anwendungen der DFT auf Nanostrukturen

Das lässt vermuten, dass die Rechnung mit der Randbedingung ähnlich falsche
Ergebnisse liefert.

2. Die hydrodynamischen Gleichungen können als Näherung der Lösung von den Glei-
chungen der Zeitabhängigen Dichtefunktionaltheorie gesehen werden [17]. Somit
sind die Ergebnisse in dieser Arbeit als genauer anzusehen.

3. Mit dem hydrodynamischen Modell wird auch das �eld enhancement an den Ecken
von Nanodrähten mit dreiecksförmigen Querschnitt untersucht. In diesen ist die
Homogenitätsannahme in der dielektrischen Funktion 3.33 bestimmt nicht gewähr-
leistet: Diese müsste hier die Form ε = ε(r,k, ω) haben. Durch die hohen Feldstär-
ken in diesen Bereichen ist ausserdem mit nicht-linearem Verhalten der Elektronen
zu rechnen, welches mit den rein quantenmechanischen Rechnungen in dieser Ar-
beit sicherlich genauer als durch das hydrodynamische Modell beschrieben werden
kann.

Die Gültigkeit beider Ansätze (nur für die Leitungselektronen) ist so einzuschätzen: In
groÿen Nanostrukturen, in denen die Retardierung wichtig ist und die Ober�ächen auf-
grund der Gesamtgröÿe eine untergeordnete Rolle spielen ist das hydrodynamische Mo-
dell, welches in die Maxwellgleichungen integriert ist, genauer. Bei sehr kleinen Struk-
turen (ungefähr < 5 nm) und Berechnungen zum Field-enhancement werden die DFT-
basierten Rechnungen genauer.

3.3.1. Elektronischer Grundzustand

Die Wellenfunktion der Kohn-Sham Orbitale hat für Nanodrähte folgende Form:

ϕn,k(r⊥, z) = exp(ikz)ϕn(r⊥) (3.34)

Die Koordinaten r⊥ = xex + yey und das Quantenzahltupel n beziehen sich auf die
Querschnittsebene. Der Draht erstreckt sich entsprechend entlang der z-Achse. Die Kohn-
Sham Gleichungen lauten für dieses System:(

− ~2

2m
∇2

r⊥
+ Veff [n

−](x, y)

)
ϕn(x, y) = Enϕn(x, y) (3.35)

Veff [n
−](x, y) = Vion(x, y) + VH[n

−](x, y) + VXC[n
−](x, y) (3.36)

n−(x, y) =

occ∑
n

wn|ϕn(x, y)|2 (3.37)

Die Ladungsneutralitätsbedingung zur Berechnung der Fermienergie EF lautet entspre-
chend der Zustandsdichte für Drähte (s. Kap. A.1):

2

√
2me

π~
∑
n

√
EF − En −

∫
dx

∫
dy n+(x, y) = 0 (3.38)

Aus dieser Gleichung wird die Fermienergie und letztlich die Gewichtungen wn der Or-
bitale bestimmt.
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3.3. Metallische Nanodrähte

Abbildung 3.10.: Ladungsdichte an einer Metallkante (schwarze Linie). Die Werte an der
Farbskala sind auf n0 = 0.0019 a−3

0 (rS = 5) normiert. Das Ergebnis
ist vom Rand eines ca. 6 nm × 6 nm groÿen Nanodrahtes mit �-Pro�l
entnommen. Die Berechnung umfasste 83 Orbitale mit einer Au�ösung
von 96× 96 Gitterpunkten.

3.3.2. Mikroskopische Ladungsdichte an Metallkanten und -ecken

Eine sehr interessante Fragestellung, welche mit diesen Modellrechnungen beantwortet
werden kann, ist die der elektronischen Ladungsdichte an idealisierten Kanten und Ecken
von Metallen auf mikroskopischer Ebene. Genau wie bei den Rechnungen zu den Metal-
lober�ächen wird hier wieder versucht, ein endliches System zu verwenden, so dass der
Simulationsraum nicht innerhalb des Metalls abgeschnitten werden muss. Dieser Aspekt
ist wieder besonders für die Simulationen im Zeitbereich wichtig, da hier die Beschreibung
o�ener Quantensysteme zu kompliziert werden würde.
Dementsprechend wurden die Ergebnisse für Metallecken und -kanten (s. Abb. 3.10 und

3.11) aus einem quadratischen Nanodraht gewonnen, wobei für die Metallecken in diesen
ein quadratischer Hohlraum eingesetzt wurde. Die beiden Abbildungen zeigen somit nur
Ausschnitte aus dem Simulationsraum.

3.3.3. Erzeugung Zweiter Harmonischer

Die gleiche Prozedur, welche für die Berechnung der Stromdichte Jz(z, n f0) im Metall�lm
angewendet wurde, kann hier benutzt werden, um die Höheren Harmonischen der Strom-
dichte im Querschnitt des Nanodrahtes zu berechnen. Diese ist zunächst im Zeitbereich
gegeben durch:

J(x, y, t) = qe⟨ΨKS(t)|Ĵ(x, y)|ΨKS(t)⟩

= qe
~
m

∑
n

wn Im
[
ϕ∗n(x, y, t)∇ϕn(x, y, t)

]
(3.39)
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3. Anwendungen der DFT auf Nanostrukturen

Abbildung 3.11.: Ladungsdichte an einer Metallecke (schwarze Linie). Die Werte an der
Farbskala sind auf n0 = 0.0019 a−3

0 (rS = 5) normiert. Das Ergebnis ist
aus dem Inneren eines ca. 6 nm×6 nm groÿen Nanodrahtes mit �-Pro�l
entnommen. Die Berechnung umfasste 83 Orbitale mit einer Au�ösung
von 96× 96 Gitterpunkten.

Das Ergebnis der Fouriertransformation J(x, y, 2f0) ist in Abbildung 3.12 für verschiedene
Querschnittspro�le von Nanodrähten dargestellt.
Die Abmessung des zweidimensionalen Simulationsraumes beträgt jeweils 105 a0 ×

105 a0 (ca. 6 nm je Kantenlänge). Zur Anregung wurde wieder ein elektrisches Wech-
selfeld der Frequenz f0 = 1015 Hz mit einer Feldstärke von E0 = 400V/m benutzt, wel-
ches in x-Richtung zeigt. Au�ällig ist, dass die Zweite Harmonische Jx(x, y, 2f0) fast die
gleiche Gröÿenordnung wie die fundamentale Stromdichte Jx(x, y, 1f0) hat. Es erscheint
dagegen deutlich plausibler, dass das Stromdichtefeld Jy(x, y, 2f0) fast drei Gröÿenord-
nungen kleiner als das genannte Referenzfeld ist. Hier sollte in weiteren Simulationen das
Skalierungsverhalten der Felder bezüglich der Feldstärke E0 untersucht werden, um die
Plausibilität der Ergebnisse weiter zu steigern.
Ein wichtiges Ziel dieser Rechnungen ist es, herauszu�nden, welche geometrischen For-

men die Entstehung der Höheren Harmonischen besonders begünstigen. Daher wurde
auch ein Split-Ring förmiger Nanodraht untersucht: Wie in der Abbildung zu sehen ist,
scheinen die Metallecken die Entstehung einer Jy(2f0)-Stromdichte zu begünstigen. Hier
stellt sich allerdings die Frage, ob man dieses Ergebnis auch auf die groÿen Split-Ring
Resonatoren aus Abb. 1.1b übertragen kann, um letztlich das Experiment aus Kap. 1.2.2
besser deuten zu können.

3.4. Metallische Nanopartikel

Dreidimensionale Strukturen bieten die Möglichkeit, die mikroskopische Ladungsdichte
und die Entstehung höherer Harmonischer an Ecken und Spitzen zu untersuchen. Es ist
davon auszugehen, dass die Polarisierbarkeit dieser geometrischen Strukturen signi�kante
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3.4. Metallische Nanopartikel

Abbildung 3.12.: Relative Betragsquadrate der SH-Stromdichte in verschiedenen Nan-
odrähten. Es wurde mit cw in x-Richtung bei 1ω angeregt. Die Re-
lativwerte unter den Diagrammen beziehen sich auf den Maximalwert
von |Jx(1ω)|2. Die Abmessungen der Strukturen betragen etwas unter
6 nm. Die Au�ösung in der Simulation umfasste 96× 96 Gitterpunkte.
Die Ionendichte ist durch den Wert rS = 5a0 charakterisiert.

Abweichungen zwischen rein quantenmechanischen und klassischen Modellen liefert, da
hier die Bewegung der Elektronen in allen Raumrichtungen eingeschränkt wird.

3.4.1. Elektronischer Grundzustand

Für Nanopartikel in drei Raumdimensionen hat man eine vorgegebene Anzahl an Elek-
tronen Nel, die mit der Anzahl an Ionen Nion identisch ist. Die zugehörige Anzahl an
Orbitalen beträgt aufgrund der Spinentartung Nel/2 mit Orbitalbesetzung wn = 2. Im
Fall von einer ungeraden Anzahl an Elektronen wird ein halbbesetztes Orbital hinzuge-
nommen (wn = 1). Die Kohn-Sham Gleichungen lauten für diese Systeme:(

− ~2

2m
∇2 + Veff [n

−](r)

)
ϕn(r) = Enϕn(r) (3.40)

Veff [n
−](r) = Vion(r) + VH[n

−](r) + VXC[n
−](r) (3.41)

n−(r) =
occ∑
n

wn|ϕn(r)|2 (3.42)

Die zum ein- und zweidimensionalen Fall analoge Ladungsneutralitätsbedingung (Gln.
3.6 und 3.38) lautet in drei Dimensionen ganz einfach Nel −

∫
d3r n+(r) = 0.
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Abbildung 3.13.: Verlauf der elektronischen und ionischen Ladungsdichte vom Zentrum
der Kugel ausgehend.

3.4.2. Ladungsdichte in einer Metallkugel

Die bisherigen DFT-Berechnungen der Ladungsdichte an Ober�ächen (1D), Ecken und
Kanten (2D) können im Prinzip auch für dreidimensionale Ecken durchgeführt werden.
Dabei macht sich allerdings der extrem hohe Rechenaufwand negativ bemerkbar, weshalb
auf diese Rechnungen in dieser Arbeit verzichtet wurde. Die dreidimensionalen Berech-
nungen beschränken sich auf eine Metallkugel, welche in der Publikation von Neuhauser
[42] als Modellsystem für die dissipative Dichtefunktionaltheorie (s. Kap. 4) verwendet
wurde. Deren Ionendichte ist gegeben als:

n+(r) =
n0

1 + exp
(
|r|−r0
β

) (3.43)

n0 = 0.008842 a−3
0 , r0 = 8.1 a0, β = 0.5

Die maximale Ionendichte n0 entspricht dem Wigner-Seitz Radius rS = 3a0, was für die
Metalle Gold und Silber zutri�t (s. Tabelle A.3). Die Parameter ergeben ziemlich exakt
folgende Anzahl an Ionen:

Nion =

∫
d3r n+(r) = 20 (3.44)

Die DFT-Rechnungen erfordern daher 10 Kohn-Sham Orbitale. Das Ergebnis für die
Grundzustandsdichte ist in den Abbildungen 3.13 und 3.14 dargestellt.

3.5. Multiskalensimulationen

Ziel soll es sein, die optischen Eigenschaften der Split-Ring Resonatoren in Abb. 1.1b
durch numerische Simulationen im Zeitbereich zu berechnen. Deren Abmessungen liegen
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Abbildung 3.14.: Querschnitt durch die Elektronendichte in der Mitte der Jelliumkugel.
Die Au�ösung beträgt 48 × 48 × 48 Gitterpunkte. Die Farben zeigen
den Wert der Dichte n−(x, y, 0).

zwischen 200 nm und 600 nm und bilden ein planares Array auf einer ITO-Schicht mit
Glassubstrat (s. Abb. 1.1c). Solange man sich auf lineare, (räumlich) lokale Materialm-
odelle beschränkt kann diese Simulation mit Standardverfahren zum Lösen von Maxwell-
gleichungen [41, 43] durchgeführt werden9. Die Strukturen werden im Simulationsraum
durch ein εr(r, ω)-Feld de�niert. Um im Zeitbereich zu bleiben kann die Frequenzab-
hängigkeit der dielektrischen Funktion durch eine Lorentz-Drude Bewegungsgleichung
modelliert werden.
Das lineare und lokale Materialmodell in einer solchen Simulation soll nun durch eines

ersetzt werden, welches nichtlokale und nichtlineare E�ekte in den Ober�ächen, Kanten
und Ecken der Strukturen beschreiben kann. Für den Bulkbereich der Struktur sei das
lineare Drude-Modell in einem ersten Schritt ausreichend.
Um dieses Ziel zu erreichen, wird versucht das FDTD-Verfahren [41] mit den DFT-

Berechnungen aus diesem Kapitel zu kombinieren: Die DFT-Berechnungen müssen dabei
für Ober�ächen, Kanten und Ecken der Strukturen die Quellterme J, ϱ zu den Maxwell-
gleichungen liefern, während die FDTD-Berechnung die Ausbreitung der elektromagne-
tischen Wellen und den (linearen) Bulkbereich simuliert. Zum Lösen der Maxwellglei-
chungen genügt dabei eine Gitterau�ösung von 1 nm bis 5 nm (Erfahrungswerte). Die
DFT-Berechnungen erfordern dagegen eine Au�ösung von 0.2 rS [32], was üblicherweise
im sub-Ångström Bereich liegt (bei Gold: 0.3 Å). Das Kombinieren verschiedener Gitter,
auf denen unterschiedliche Gleichungen gelöst werden, wird als Multiskalensimulation
bezeichnet10.
Das folgende Kapitel zeigt wichtige Überlegungen für die Realisierung einer solchen

9Im Begleitmaterial der Publikation [1] ist eine FEM-basierte Simulation der Split-Ring Resonatoren
dokumentiert.

10In diesem Zusammenhang sei auf die Publikation [44] hingewiesen, in der gezeigt wird, wie sich eine
solche Multiskalensimulation realisieren lässt, in der Maxwellgleichungen und quantenmechanische
Gleichungen simultan im Zeitbereich gelöst werden können: Das elektromagnetische Feld wird hier
über die elektrodynamischen Potentiale beschrieben, da diese in die quantenmechanischen Bewe-
gungsgleichungen direkt eingehen.
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3. Anwendungen der DFT auf Nanostrukturen

Abbildung 3.15.: Metall-Vakuum Grenz�äche im Yee-Gitter. Die gestrichelten Linien und
die farbigen Punkte zeigen zwei Yee-Cubes in denen eine TDDFT-
Simulation auf einem Untergitter die Stromdichte an der Grenz�äche
berechnet.

Multiskalensimulation und beschränkt sich auf die Simulation von Metallober�ächen.
Elementare Kenntnisse der FDTD-Methode [41, 45] werden vorausgesetzt.

3.5.1. Multiskalenansatz für Ober�ächen

Die Abbildung 3.15 zeigt einen Querschnitt durch das Yee-Gitter, in dem sich eine Metall-
Vakuum Grenz�äche be�ndet: Die Grenz�äche ist genau so im Gitter platziert, dass die
Jz-Komponente eines Yee-Cubes auf der Ober�äche liegt. Die Feldkomponente Ez liegt
am selben Ort. An jedem dieser Ober�ächen-Gitterpunkte be�ndet sich ein eindimen-
sionales Untergitter auf dem eine (mittels DFT berechnete) Elektronendichte, wie Abb.
3.1 gezeigt, aufgelöst wird. Dieses Untergitter kann man sich entlang der Ober�ächen-
normalen ausgerichtet vorstellen. Für die Multiskalensimulation wird folgende Annahme
gemacht:

Die Ober�ächenschicht, in der die Ströme quantenmechanisch berechnet
werden müssen, sei gemessen an der Gitterkonstante der Yee-Cubes unendlich
dünn.

Durch diese Annahme entledigt man sich des Problems, das Unter- und Obergitter voll-
ständig konsistent miteinander zu verknüpfen: Wenn man das Obergitter genauso fein
wie das Untergitter au�ösen könnte, müssen aus Konsistenzgründen auf beiden Gittern
die gleichen physikalischen Gesetze gelten. Auf dem Untergitter wird aber grundsätzlich
angenommen, dass die Maxwellgleichungen elektrostatisch genähert werden können und
auf dem Obergitter wird immer angenommen, dass die vollen Maxwellgleichungen gelöst
werden müssen.
Da die Länge des Simulationsraums vom Untergitter vergleichbar mit der Gitterkon-

stante des Yee-Gitters ist, muss die Gültigkeit der hier gemachten Annahme stark be-
zweifelt werden (vgl. Abb. 3.1 und 3.15).
Man kann sich aber mit Hilfe dieser Annahme die Simulation des Untergitters verein-

facht als ein abstraktes, nicht-lineares zeitinvariantes System vorstellen, welches zu einer
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Eingabe Ez(t) die Stromdichte Jz(t) als Ausgabe liefert. Im Prinzip muss nun aus der
FDTD-Simulation die Ez-Feldkomponente an die Untergitter-Simulation übergeben wer-
den und aus dieser die Jz-Komponente extrahiert werden, die dann an den FDTD-Solver
übergeben wird. Dabei treten folgende problematische Details zum Vorschein, für die nur
vorläu�ge Lösungen gegeben werden:

1. Extraktion der Stromdichte J aus dem Untergitter:

• Die Verbindung zwischen makroskopischer und mikroskopischer Elektrody-
namik [27] löst genau dieses Problem durch systematische Entwicklung nach
Multipoldichten:

J = J0 +
∂P

∂t
+∇×M+

∂

∂t
(∇ ·Q) + . . . (3.45)

Alle Gröÿen werden durch eine Mittelungsprozedur ermittelt. Derzeit ist un-
klar, wie diese genau auf dem Untergitter durchgeführt werden muss.

• Die Untergitter-Simulation liefert nur die Stromdichte J⊥ in Richtung der
Ober�ächennormalen, aber nicht die Stromdichte J∥ parallel zur Ober�äche.
Die Berechnung der Multipoldichten aus Gl. 3.45 benötigt aber die mikrosko-
pischen Ladungen und Ströme entlang aller drei Raumrichtungen der Ober-
�ächeschicht.

• Es besteht die Möglichkeit, dass die Stromdichte J⊥ an der Jellium-Kante (z =
0 in Abb. 3.1) eine gute Näherung für die Stromdichte in Gl. 3.45 darstellt:

J⊥ ≈ n̂ j(z = 0) (3.46)

Diese Vermutung muss erst noch bewiesen werden.

2. Modellierung der Ober�äche im Obergitter:

• Die Abbildung 3.15 zeigt einen Ez/Jz-Gitterpunkt, der ganz im Metall liegt
und durch das Bulk-Modell beschrieben wird. Der Punkt an der Grenz�äche
wird dagegen vollständig durch die Untergitter-Simulation beschrieben. Im
Yee-Gitter muss an diesem Punkt die Dielektrizität des Vakuums eingesetzt
werden.

3. Die E- und J-Felder liegen bei dem FDTD-Verfahren einen halben Zeitschritt
auseinander. Eine zeitliche Mittelwertbildung ist für die Ein- oder Ausgabe der
Untergitter-Simulation eventuell erforderlich.

4. Die Zeitschrittweite auf dem Untergitter ist nicht die selbe wie die auf dem Ober-
gitter. Auf dem Obergitter ist diese erfahrungsgemäÿ 10 bis 100 mal gröÿer. Die
Zeitschrittweite des Obergitters muss daher als ganzzahliges Vielfaches der Schritt-
weite des Untergitters (unter Berücksichtigung der Courant-Bedingung) gewählt
werden.

5. Die Untergitter-Simulation verwendet einen Metall�lm von dem eine Ober�äche
für die Simulation auf dem Obergitter genutzt wird. An den beiden Ober�ächen
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3. Anwendungen der DFT auf Nanostrukturen

des Metall�lms kommt es zu Re�ektionen von Ladungsdichtewellen, die es an einer
echten Ober�äche nicht gibt. In Kapitel 4.4.4 wird ein Lösungsansatz für dieses
Problem untersucht.

Die ersten beiden Aspekte involvieren insbesondere die Kontinuitätsgleichung, die von
den Maxwellgleichungen impliziert wird: Eine Stromdichte im Yee-Gitter führt zu elek-
trischen Ladungen in den Yee-Cubes, bei denen das Stromdichtefeld anfängt oder endet.
Setzt man nun in das Yee-Gitter eine Stromdichte von der Simulation des Untergitters
ein, entstehen auf dem Obergitter elektrische Ladungen, welche bereits in der Simulati-
on auf dem Untergitter berücksichtigt werden. Die Eingabe Ez(t) an die Simulation des
Untergitters muss also um das Feld dieser Ladungen korrigiert werden.
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4. Dissipative Zeitabhängige

Dichtefunktionaltheorie

In diesem Kapitel wird gezeigt, wie sich die zeitabhängige Dichtefunktionaltheorie um ei-
ne phänomenologische Dissipation erweitern lassen kann. Eine Motivation für die Berück-
sichtigung der Dissipation in metallischen Nanostrukturen wird im ersten Unterkapitel
gegeben. Bei dem hier gewählten Ansatz geht zwar die begehrte �ab initio�-Eigenschaft
der Theorie verloren - allerdings lassen sich noch nachträglich die phänomenologischen
Parameter durch eine mikroskopische Theorie ersetzen. Die Verwendung phänomeno-
logischer Parameter dient zunächst dazu, die Komplexität von Theorie und Numerik
überschaubar klein zu halten.

4.1. Motivation

Es gibt zwei wesentliche Mechanismen, die zu einem Verlust an kinetischer Energie der
Metallelektronen in den Nanostrukturen führen: Einerseits durch Streuprozesse und an-
dererseits durch elektromagnetische Abstrahlung. Physikalisch sind diese Mechanismen
völlig verschieden1. Deren Vergleich ist aber von groÿer Bedeutung um einen Maÿstab
zu de�nieren mit dem gesagt werden kann, welcher E�ekt klein oder groÿ ist.

4.1.1. Energieverlust durch Streuprozesse

In Metallen verlieren Elektronen durch Streuung untereinander sowie durch Streuung an
Gitterphononen an kinetischer Energie [16]. Diese Mechanismen werden hier unter dem
Begri� �Dissipation� zusammengefasst und nicht weiter unterschieden. In dieser Arbeit
wird durchgehend das (starre) Jellium-Modell für den Festkörper verwendet und daher
können die Phononen sowieso nicht direkt berücksichtigt werden.
Da die Dissipation in allen metallischen Nanostrukturen vorhanden ist, liegt es nahe,

diese auch in die Modellrechnungen einzubeziehen. Die Vorhersagekraft des Modells soll-
te sich dadurch steigern lassen und bessere Vergleiche mit experimentellen Ergebnissen
ermöglichen.
In diesem Zusammenhang muss man zunächst weiter überlegen, ob der Ein�uss der

Dissipation überhaupt für die angestellten Beobachtungen relevant ist:
Dazu kann man die phänomenologische Streuzeit der Elektronen in Metallen heran-

ziehen und mit der typischen Dauer von Abläufen im Ultrakurzzeitbereich vergleichen.
Für Metamaterialien werden in erster Linie nur Edelmetalle wie Gold wegen der hohen

1Bei Antennen kann ein Strahlungswiderstand de�niert werden, der die gleiche Dimension wie der Ohm-
sche Widerstand hat. Die Verlustmechanismen können somit auf gleiche Weise beschrieben werden
und es kann gleichzeitig von deren Ursache abstrahiert werden.
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Leitfähigkeit verwendet. Gold hat einen Drude-Streuzeitparameter in der Gröÿenordnung
von 50 fs (s. Kap. A.3). Die Anregung einer Struktur mit einem optischen Puls und die
Beobachtung vom Verhalten des Systems (z.B. Pump-probe Experimente) läuft ebenfalls
auf einer solchen Zeitskala ab [10]. Daher ist davon auszugehen, dass der E�ekt der Dis-
sipation eine untergeordnete Rolle spielt und erst auf Zeitskalen im Picosekundenbereich
relevant wird.
Unabhängig davon stellt die Einbeziehung von diesem Verlustmechanismus aber ein

sehr wichtiges Werkzeug für bestimmte numerische Simulationen dar, wie im nächsten
Abschnitt erläutert wird.

4.1.2. Bedeutung für Modellrechnungen

Ein Ziel dieser Arbeit besteht darin, die Polarisierbarkeit von Metallober�ächen, -ecken
und -kanten (s. Kapitel 3) zu untersuchen. In einer mathematischen Idealisierung dieser
Objekte würde man z.B. bei den Ober�ächen von einem mit Metall gefüllten Halbraum
ausgehen. Das System hat in diesem Fall wirklich nur eine Ober�äche und es sind keine
Fremdein�üsse anderer Ober�ächen wie bei endlich groÿen Objekten auf die Ergebnisse
zu erwarten. Im Experiment würde man einfach eine Probe verwenden, die groÿ ge-
nug ist um die Fremdein�üsse auszuschlieÿen. Dabei macht man sich zunutze, dass die
elektronischen Anregungen durch die Verlustmechanismen nur eine endliche Reichweite
haben und man daher keinen �Metallhalbraum� benötigt (die endliche Ausbreitungsge-
schwindigkeit von Anregungen spielt in diesem Zusammenhang natürlich ebenfalls eine
Rolle). Aus genau diesem Grund ist die Dissipation auch für die Numerik von zentraler
Bedeutung, denn sie kann dafür genutzt werden, die Rückstreuung von elektronischen
Anregungen in kleinen Objekten stark zu verringern und somit die anfangs genannten
Ober�ächen, Ecken und Kanten von metallischen Strukturen in Modellrechnungen zu
untersuchen. Denn gerade bei dem Lösen der Kohn-Sham Gleichungen ist man aufgrund
der technischen Möglichkeiten darauf beschränkt, nur sehr kleine nicht-makroskopische
Objekte zu beschreiben:
Die 3D DFT-Simulationen können nur extrem wenige Elektronen, im Vergleich zur

Anzahl an Elektronen in makroskopischen Systemen, beinhalten (z.B. 100 Elektronen
wäre auf heutiger Hardware noch problemlos machbar, wohingegen in makroskopischen
Objekten die Anzahl in der Gröÿenordnung von 1023 liegt). In eindimensionalen Modell-
rechnungen sind die Anzahl an Gitterpunkten und Rechenzeit die Faktoren, welche die
Simulation makroskopischer Systeme unmöglich machen. In 2D und 3D kommt noch die
gewaltige Anzahl an Kohn-Sham Orbitalen als weiterer wichtiger Faktor hinzu.
Es besteht zwar auch die Möglichkeit o�ene Quantensysteme zu simulieren um damit

beispielsweise Metallober�ächen von einem unendlich groÿen Metallhalbraum zu unter-
suchen [32]. Allerdings ist diese Vorgehensweise im Vergleich zur Simulation endlicher
Systeme gerade im Zeitbereich mit erheblich höherem theoretischen und technischen
Aufwand verbunden [34, 46].

4.1.3. Vergleich von Verlusten durch Streuung und e/m-Abstrahlung

Dieser Vergleich erfordert die Lösung der Maxwellgleichungen mit einem Medium mit
ohmschen Verlusten. Als Material wird Gold verwendet und mit dem klassischen Drude-
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4.1. Motivation

Abbildung 4.1.: Ein Etalon und ein Split-Ring Resonator werden jeweils von einem kur-
zen optischen Puls angeregt und der Verlauf der kinetischen Energie der
Metallelektronen aufgezeichnet.

Modell beschrieben. Da der Verlust durch Abstrahlung stark von der Geometrie der
Objekte abhängt, werden hier zwei unterschiedliche Systeme betrachtet (s. Abb. 4.1). Die
Maxwellgleichungen werden bei dem Split-Ring Resonator numerisch mittels der FDTD
Methode [41] und bei dem Etalon mittels einer eindimensionalen Partikel-Methode [47]
gelöst.
Die klassische Drude-Bewegungsgleichung für die elektrische Stromdichte im Lichtfeld

lautet (s. Kapitel 1.4):

∂j

∂t
= −1

τ
j+

qe
me

E (4.1)

Die magnetische Kraftkomponente der Lorentzkraft wird hier vernachlässigt. Das elektri-
sche Feld in der Bewegungsgleichung wird für die hier angestellten Betrachtungen weiter
aufgeteilt:

E = Eext +Eind (4.2)

Es wird unterschieden zwischen dem externen Feld der Lichtquelle und dem induzierten
Feld, welches von der Bewegung der Elektronen in der Metallstruktur verursacht wird.
Das induzierte Feld wirkt abbremsend auf die Elektronen, die es selbst hervorbringen. In-
dem man in einer Simulation diesen Feldanteil aus der Bewegungsgleichung streicht, kann
also der Ein�uss der Strahlungsdämpfung auf die Bewegung der Elektronen untersucht
werden.
In der Simulation ist das externe Feld durch einen kurzen Gausspuls gegeben, der die

Elektronen in den beiden Strukturen jeweils anregt. Dabei wird der Verlauf der gesamten
kinetischen Energie für einige Femtosekunden aufgezeichnet:

T (t) ∼
∫
d3r|j(r, t)|2 (4.3)

Bei dem Metall�lm sollte die Auswirkung des induzierten Feldes am gröÿten sein, weil
aufgrund der unendlichen Ausdehnung des Systems das elektromagnetische Feld nicht mit
dem Abstand zur Quelle abnimmt: Man kann sich diesen Metall�lm aus lauter in�nitesi-
mal dünnen Schichten vorstellen auf deren Ober�äche ein homogener Polarisationsstrom
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Abbildung 4.2.: Verlauf der kinetischen Energie im Metall�lm für zwei verschiedene Fälle
(s. Text).

in Form einer Flächenstromdichte K �ieÿt. Die Lösung der Maxwellgleichungen für ein
solches System [48] zeigt, dass das induzierte elektrische Feld proportional zur retardier-
ten Flächenstromdichte ist:

Eind ∼ K(tr) (4.4)

Die Distanzabhängigkeit des elektrischen Feldes tritt also nur in der retardierten Zeit,
aber nicht in der Magnitude auf (wie es bei endlich groÿen Quellen der Fall ist).
Mit dem Metall�lm liegt also nun ein ideales System vor, um den Ein�uss von Ab-

strahlung und Streuprozessen miteinander zu vergleichen. Das System wurde mit einer
eindimensionalen Partikel-Methode [47] simuliert. Dabei konnten folgende Fälle leicht
untersucht werden:

1. Nur Drude-Dämpfung, keine Strahlungsdämpfung:

∂j

∂t
= −1

τ
j+

qe
me

Eext

2. Keine Drude-Dämpfung, nur Strahlungsdämpfung:

∂j

∂t
=

qe
me

[Eext +Eind]

Das Ergebnis ist in Abb. 4.2 dargestellt: Im Zeitintervall t = 0 . . . 0.5 fs steigt die ki-
netische Energie durch den anregenden Puls auf ein Maximum. Die blaue Kurve nimmt
danach mit einer sehr geringen Steigung (entsprechend der Drude-Streuzeit τ) ab, wohin-
gegen die rote Kurve stufenartig auf einen Minimalwert abfällt. Die kleinen buckeligen
Stufen in der roten Kurve hängen mit der Modulationsfrequenz des Gausspulses zusam-
men, mit der die Polarisationsströme oszillieren. Der Endwert bei ca. 10−47 ist durch die
endliche Flieÿkommagenauigkeit in der numerischen Rechnung bedingt.
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Abbildung 4.3.: Verlauf der kinetischen Energie im Split-Ring Resonator bei ein- und
ausgeschalteter Drudedämpfung.

In dieser logarithmischen Darstellung der kinetischen Energie wird deutlich sichtbar,
dass die Drude-Dämpfung nur einen winzigen Bruchteil so groÿ ist, wie die Strahlungs-
dämpfung.
Zuletzt wird noch der Verlauf der kinetischen Energie in einem Split-Ring Resonator

betrachtet (s. Abb. 4.3). Für die Simulation wurde der FDTD-Solver �maexle�2 verwen-
det. Es wurden folgende Fälle untersucht:

1. Bewegungsgleichung mit Streuung und Strahlungsdämpfung (rote Kurve):

∂j

∂t
= −1

τ
j+

qe
me

[Eext +Eind]

2. Bewegungsgleichung ohne Streuung, aber mit Strahlungsdämpfung (blaue Kurve):

∂j

∂t
=

qe
me

[Eext +Eind]

Das Maximum der kinetischen Energie liegt jeweils bei ca. t = 8 fs. Die blaue Kurve
fällt dann bis t = 25 fs um ca. 2 Gröÿenordnungen ab, was auf die Strahlungsdämpfung
zurückzuführen ist. Die rote Kurve zeigt zusätzlich eine sehr schwache negative Steigung,
welche durch die Drude-Streuzeit τ bedingt ist. Die Oszillationen in beiden Kurven kön-
nen (anders als bei dem Metall�lm) neben der Modulationsfrequenz des Gauÿpulses auch
mit der Plasmafrequenz zusammenhängen, da bei dem endlich groÿen Split-Ring Resona-
tor auch Ober�ächenladungen auftreten, die für eine entsprechende Rückstellkraft sorgen.
Das Fazit dieser Betrachtungen lautet also:

1. Die Strahlungsdämpfung ist i. A. wesentlich höher als die Drude-Dämpfung.

2Die Software wurde in der Arbeitsgruppe �Computational Nanophotonics� von Jens Förstner entwi-
ckelt.
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4. Dissipative Zeitabhängige Dichtefunktionaltheorie

2. Die Strahlungsdämpfung macht sich in einer eindimensionalen Schicht von allen
möglichen Geometrien am deutlichsten bemerkbar.

In Materialien mit schlechter elektrischer Leitfähigkeit kann es sein, dass die erste Aussage
nicht mehr zutri�t.

4.2. Übersicht zu existierenden Ansätzen

Einige der ersten, wichtigen Arbeiten auf diesem Gebiet sind von Kostin und Davidson
[49, 50]. Sie befassen sich damit, die Ein-Teilchen Schrödingergleichung um einen Term
zu erweitern, der dem System Energie entzieht ohne die Normierung der Wellenfunktion
zu beein�ussen. Die Arbeit von Davidson geht besonders auf das Problem ein, dass die
Dissipation in einer streng quantenmechanischen Beschreibung grundsätzlich Systeme
mit einer sehr groÿen Anzahl an Freiheitsgraden beinhaltet und somit einer numerischen
Simulation unzugänglich ist.
Für praktische Anwendungen muss bedacht werden, dass eine theoretisch möglichst gu-

te und entsprechend numerisch aufwendige (ab-initio) Simulation der Dissipation gegen-
über einer phänomenologischen Beschreibung eventuell keinen Erkenntnisgewinn liefert,
da die Ergebnisse für die Anwendung letztlich in beiden Fällen identisch sind. Das ist so zu
verstehen, dass es beispielsweise möglich ist, die Drude-Streuung mikroskopisch zu simu-
lieren, aber die makroskopischen Ergebnisse der Simulation identisch mit den Ergebnissen
sind, die eine rein makroskopische Beschreibung mittels des Drude-Streuzeitparameters
liefert.
Die oben genannten Arbeiten sind limitiert auf Ein-Teilchen Systeme. Insbesondere

können nur einzelne Wellenpakete beschrieben werden. Die erste Limitierung ist für die
Kohn-Sham Formulierung der Dichtefunktionaltheorie wenig gravierend, da diese das
Vielteilchensystem durch nicht-wechselwirkende �ktive Teilchen beschreibt, deren Zeit-
entwicklung durch eine Schrödinger-artige Ein-Teilchen Gleichung beschrieben wird (s.
Kap. 2.2.2). Die zweite Limitierung ist dagegen sehr gravierend, weil die Kohn-ShamWel-
lenfunktionen in Festkörpern über zahlreiche Knotenpunkte verfügen. Der von Davidson
vorgeschlagene Operator

Ŝ ∼ ∂

∂t
ln(ψ∗ψ) (4.5)

für die modi�zierte, dissipative Schrödingergleichung würde an diesen Knotenpunkten
divergieren. Der Term von Kostin3 hat ebenfalls dieses Problem.
Eine praktische Methode, die sowohl für Ein-Teilchen Systeme als auch für Kohn-Sham

Systeme geeignet ist, bei denen die Wellenfunktionen auch eventuell Knotenpunkte be-
sitzen, wurde erst im Jahr 2008 von Neuhauser [42] geliefert (d.h. 36 Jahre bzw. 18 Jahre
später als die Arbeiten von Kostin und Davidson). Das verwundert deshalb, weil die
zugrundeliegende Idee extrem einfach ist: Sie basiert auf der Tatsache, dass elektroma-
gnetische Felder genutzt werden können um (Quanten-)Systeme gezielt anzuregen und
daher auch gezielt abregen können. Letztlich wird das System einfach nur an ein externes

3Ŝ ∼ ln(ψ/ψ∗)
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4.3. Methode von Neuhauser

Feld gekoppelt, welches die Bewegung der Teilchen abbremst. Die Details der Methode
werden im Kapitel 4.3 beschrieben.
Die derzeitigen theoretischen Arbeiten auf dem Gebiet der dissipativen Dichtefunktio-

naltheorie befassen sich unter anderem mit der Fragestellung, ob es überhaupt möglich
ist, mit einem Kohn-Sham System o�ene Quantensysteme zu beschreiben [51�53] und wie
das Funktional zur Austausch-Korrelation für o�ene Systeme zu konstruieren ist [54].
Die Arbeit von Neuhauser liefert dagegen eine praktische Methode um Dissipation in

existierende TDDFT-Simulationen zu integrieren und verzichtet gänzlich auf derartige
theoretische Fragestellungen.

4.3. Methode von Neuhauser

Die Methode besteht darin, den Hamiltonoperator um einen zusätzlichen Term zu erwei-
tern, der eine oder mehrere Observablen an ein Feld koppelt, das dafür sorgt, dass die
Energie im System monoton abnimmt.

4.3.1. Herleitung für Ein-Teilchen Systeme

Der Hamiltonoperator Ĥ0 beschreibe ein einzelnes Elektron in einem abgeschlossenen
System. Entsprechend ist der Operator zeitunabhängig. Ein zusätzlicher Reibungsterm
Ĥf (�friction Hamiltonian�) sorgt dafür, dass das System monoton Energie verliert, bis
es wieder im Grundzustand angelangt ist:

Ĥ(t) = Ĥ0 + Ĥf(t) (4.6)

Der Operator Ĥf(t) beinhaltet ein zeitabhängiges Feld, welches sich ständig anpasst, um
das System abzuregen4.
Für den Reibungsterm werden nun eine Ein-Teilchen Observable Ẑ(q) und ein daran

koppelndes Feld D(q, t) benötigt:

Ĥf(t) =

∫
Ẑ(q) ·D(q, t) d3q (4.7)

Um diesen Ansatz etwas weniger abstrakt zu präsentieren, wird im Folgenden angenom-
men, dass es sich konkret um folgenden Operator und folgendes Feld handelt:

Ẑ(q) = Ĵ(q) : Stromdichteoperator

D(q, t) = A(q, t) : Vektorpotential des e/m-Feldes

Der Stromdichteoperator ist gegeben durch:

Ĵ(q) =
p̂δ(x̂− q) + δ(x̂− q)p̂

2m
(4.8)

4Damit sich das System in einen angeregten Zustand be�nden kann, muss entweder ein solcher Zustand
als Anfangswellenfunktion Ψ(t = 0) vorgegeben werden, oder es muss noch ein weiterer Operator in
Form eines zeitabhängigen Störpotentials V̂P(t) hinzugefügt werden.
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Für die Zeitableitung vom Energie-Erwartungswert gilt:

d⟨Ĥ0⟩
dt

=
d⟨Ĥ⟩
dt

− d⟨Ĥf⟩
dt

(4.9)

An dieser Stelle wird das Hellman-Feynman Theorem benötigt:

dE

dλ
=

⟨
ψ(λ)

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣ψ(λ)
⟩

(4.10)

Mit diesem Theorem folgt:

d⟨Ĥ⟩
dt

=

⟨
∂Ĥ

∂t

⟩
=

⟨
∂Ĥf(t)

∂t

⟩
(4.11)

⟨
∂Ĥf(t)

∂t

⟩
=

⟨∫
Ĵ(q) · ∂A(q, t)

∂t
d3q

⟩
=

∫
⟨Ĵ(q)⟩ · ∂A(q, t)

∂t
d3q

=

∫
j(q, t) · ∂A(q, t)

∂t
d3q

In der letzten Zeile wurde das Feld j(q, t) als Erwartungswert des Operators Ĵ(q) de�-
niert. Es folgt:

d⟨Ĥ0⟩
dt

=
d⟨Ĥ⟩
dt

− d⟨Ĥf⟩
dt

=

⟨
∂Ĥ

∂t

⟩
− d⟨Ĥf⟩

dt

=

⟨
∂Ĥf

∂t

⟩
− d⟨Ĥf⟩

dt

=

∫
j(q, t) · ∂A(q, t)

∂t
d3q − d

dt

∫
j(q, t) ·A(q, t) d3q

= −
∫
∂j(q, t)

∂t
·A(q, t) d3q (4.12)

Damit nun die Energie vom System abnimmt, muss das Feld A einfach proportional zur
Stromdichte sein:

A(q, t) = a
∂j(q, t)

∂t
mit a ≥ 0

Bei dem Parameter a kann es sich auch um ein zeit- und ortsabhängiges Feld a(q, t) ≥ 0
oder einfach nur um eine Konstante a0 ≥ 0 handeln. Damit lässt sich beein�ussen, wie
schnell die Energie im System abnimmt.

68



4.3. Methode von Neuhauser

Aus der Herleitung wird ersichtlich, dass es keinen zwingenden Grund gibt, sich auf
Operatoren Ẑ mit kontinuierlichem Index q (wie in Gl. 4.7) zu beschränken. Es kön-
nen genauso gut globale Operatoren (z.B. der Operator des Dipolmoments µ̂) oder ein
Operator Ẑj mit diskretem Index j verwendet werden. Der Operator Ĥf(t) kann somit
folgende Formen annehmen:

Ĥf(t) =

∫
Ẑ(q) · a(q, t)∂z(q, t)

∂t
d3q, a(q, t) ≥ 0 (4.13a)

Ĥf(t) =
∑
j

Ẑj · aj(t)
dzj
dt
, aj(t) ≥ 0 (4.13b)

Ĥf(t) = Ẑ · a(t)dz
dt
, a(t) ≥ 0 (4.13c)

Der Energieerwartungswert erfüllt dann die Ungleichung

d⟨Ĥ0⟩
dt

≤ 0 (4.14)

Über die Gleichung 4.12 kann auch genau berechnet werden, wie groÿ die Energieabnahme
ist. Das lässt sich ausnutzen, um das Dämpfungsfeld a(q, t) so zu skalieren, dass sich ein
bestimmter Energieverlust einstellt.

4.3.2. Dimensionsanalyse

In diesem Abschnitt wird versucht per Dimensionsanalyse das Dämpfungsfeld a für den
speziellen Fall Ẑ = Ĵ(q) und D = A(q, t) mit einer physikalisch vertrauten Gröÿe zu
assoziieren. Der Fall ist deshalb von besonderem Interesse, weil er der Drude-Theorie
ähnelt, bei der die Dämpfung proportional zur Stromdichte j(q, t) ist.
Da die Dimensionen aller Gröÿen bis auf die von a bekannt sind, lässt sich die Dimen-

sion von a ganz einfach in SI-Basisgröÿen ableiten:

dim

(∫
a(q)

∂j(q, t)

∂t
· Ĵ(q) d3q

)
= dim(Ĥ)

dim(a) · L−4T−3L3 = MLT−2L

⇔ dim(a) = MTL3

Intuitiv motiviert erfolgt ein Vergleich mit dem spezi�schem Widerstand ρ aus der Elek-
trizitätslehre:

dim(ρ) = MT−3L3I−2

Bei j handelt es sich um eine Wahrscheinlichkeitsstromdichte und keine elektrische Strom-
dichte. Daher tritt in a auch nicht die Dimension der Ladung auf. Entsprechend wird nun
die Dimension der Stromstärke �Ladung pro Zeit� durch �Teilchenanzahl pro Zeit� ersetzt
(dadurch wird I−2 zu T2). Die zu ρ analoge Gröÿe wird nun symbolisch mit ρ̃ bezeichnet:

dim(ρ̃) = MT−3L3T2 = MTL3

Damit wurde gezeigt, dass man a als einen spezi�schen Widerstand ρ̃ für den Wahr-
scheinlichkeitsstrom interpretieren kann:

dim(a) = dim(ρ̃)
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4. Dissipative Zeitabhängige Dichtefunktionaltheorie

4.3.3. Anwendung auf Kohn-Sham Systeme

Im Kapitel 4.3.1 wurde ein quantenmechanisches Ein-Teilchen System betrachtet. Die
Methode lässt sich aber auch auf Vielteilchensysteme wie Atome, Moleküle und Fest-
körper anwenden, wenn diese durch die Kohn-Sham Formulierung der Dichtefunktio-
naltheorie beschrieben werden. In diesem Fall wird der Zustand des Systems durch eine
Slaterdeterminante, die sich aus den Kohn-Sham Orbitalen φj zusammensetzt, beschrie-
ben:

ΨKS(r1, s1, . . . , rN , sN , t) =
1√
N !

∑
σ∈SN

 sgn(σ)
N∏
j=1

φj(rσj , sσj , t)

 (4.15)

Die Zeitentwicklung des Systems wird durch den Kohn-Sham Hamiltonoperator ĤKS(t)
beschrieben, bei dem es sich um einen Ein-Teilchen Operator handelt. Es müssen N Glei-
chungen vom Typ einer zeitabhängigen Ein-Teilchen Schrödingergleichung gelöst werden:{

i~
∂

∂t
φj(r, s, t) = ĤKS(t)φj(r, s, t)

}N
j=1

(4.16)

Um die Dissipation in das Kohn-Sham System zu integrieren kann analog zu dem Ein-
Teilchen System aus Kapitel 4.3.1 der Hamiltonoperator erweitert werden:

Ĥ(t) = ĤKS(t) + Ĥf(t) (4.17)

Im folgenden Kapitel 4.3.4 wird gezeigt, dass dann eine analoge Bedingung zu Gl. 4.14
für das Energiefunktional der Dichte gilt.
Bei dem Operator Ĥf(t) ist zu beachten, dass dieser ausN identischen Ein-Teilchenope-

ratoren (genau wie ĤKS(t)) besteht, die jeweils auf das j-te Teilchen wirken:

Ĥf(t) =

N∑
j=1

Ĥ
(j)
f (t) (4.18)

Es ist genau dieser Umstand, der es so einfach macht, die Neuhauser-Methode auf Kohn-
Sham Systeme anzuwenden.

4.3.4. Energieerhaltung in zeitabhängigen Kohn-Sham Systemen

Der Kohn-Sham Hamiltonoperator ist folgendermaÿen aufgebaut:

ĤKS(t) = T̂ + V̂H[n] + V̂xc[n] + V̂ext(t) (4.19)

Es wird angenommen, dass das xc-Potential zeitlich lokal von der Dichte abhängt (Bsp.:
ALDA). Das externe Potential ist im (starren) Jellium-Modell grundsätzlich zeitunabhän-
gig. Hier wird eine mögliche Zeitabhängigkeit zugelassen, da ein externes Störpotential
VP(t) auf identische Weise ein�ieÿen würde und somit nicht durch noch einen weiteren
Term berücksichtigt werden muss. Es soll nun untersucht werden, wie sich das Funktional
der Gesamtenergie

Eges[n(r, t)] = TS[n(r, t)] + EH[n(r, t)] + Exc[n(r, t)] + Eext[n(r, t)] (4.20)
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zeitlich verhält, wenn die Dichte des Systems zeitabhängig ist: Dieser Fall liegt dann vor,
wenn das System zuvor angeregt wurde oder eine Teilchendichte vorliegt, die nicht der
Grundzustandsdichte entspricht5.
Intuitiv erwartet man, dass die Energie konstant bleibt, solange keine Störung auf

das System einwirkt. Das soll nun nachgerechnet werden. Danach wird dann in Kapitel
4.3.5 untersucht, wie sich das Energiefunktional verhält, wenn der Reibungsterm zu dem
Hamiltonoperator hinzugefügt wird.
Die Herleitung in diesem Abschnitt kann auch in extrem kompakter Form in der Arbeit

von Neuhauser ([42], Anhang A) gefunden werden. Hier wird eine etwas detailliertere Her-
leitung [55] gegeben. Für die Zeitentwicklung ist die zeitabhängige Kohn-Sham Gleichung
im Folgenden von zentraler Bedeutung:

i
∂

∂t
φj(r, t) = ĤKS(t)φj(r, t) (Atomare Einheiten) (4.21)

Um die Rechnung möglichst übersichtlich zu gestalten, werden hier nur Atomare Ein-
heiten verwendet. Die Terme in Gl. 4.20 werden nun nacheinander zerlegt und deren
Zeitableitung gebildet:

Eges[n(r, t)] =
∑
j

∫
φ∗
j (r, t)

(
−∇2

2

)
φj(r, t)d

3r + EH[n(r, t)] + Exc[n(r, t)]

+

∫
Vext(r, t)n(r, t)d

3r (4.22)

Zeitableitung der kinetischen Energie:

i
d

dt

∑
j

∫
φ∗
j (r, t)

(
−∇2

2

)
φj(r, t)d

3r

=
∑
j

∫ (
i
∂

∂t
φ∗
j (r, t)

)(
−∇2

2

)
φj(r, t)d

3r+
∑
j

∫
φ∗
j (r, t)

(
−∇2

2

)(
i
∂

∂t
φj(r, t)

)
d3r

=
∑
j

∫
φ∗
j (r, t)

[
−∇2

2
, ĤKS(t)

]
φj(r, t)d

3r

Zeitableitung der Energie vom externen Potential:

i
d

dt

∫
Vext(r, t)n(r, t)d

3r = i

∫ (
∂

∂t
Vext(r, t)

)
n(r, t)d3r

+
∑
j

∫ (
i
∂

∂t
φ∗
j (r, t)

)
Vext(r, t)φj(r, t)d

3r

+
∑
j

∫
φ∗
j (r, t)Vext(r, t)

(
i
∂

∂t
φj(r, t)

)
d3r

5Statt das System durch ein Störpotential anzuregen, lässt sich beispielsweise die Startdichte der Elek-
tronen gegenüber der Ruhelage verschieben. Ein solcher Anfangszustand wird in [42] für die Jellium-
Kugel (s. Kap. 3.4.2) verwendet.
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= i

∫ (
∂

∂t
Vext(r, t)

)
n(r, t)d3r +

∑
j

∫
φ∗
j (r, t)

[
Vext(r, t), ĤKS(t)

]
φj(r, t)d

3r

Zeitableitung der Hartree-Energie:

i
d

dt
EH[n(r, t)] =

∫
δEH[n(r, t)]

δn(r′, t)

(
i
∂

∂t
n(r, t)

)
d3r

=
∑
j

∫
φ∗
j (r, t)

[
VH(r, t), ĤKS(t)

]
φj(r, t)d

3r

Die Zeitableitung der xc-Energie kann im Fall von xc-Funktionalen, bei denen Exc(t) nur
von der Dichte zum Zeitpunkt t abhängt, ganz analog gebildet werden:

i
d

dt
Exc[n(r, t)] =

∑
j

∫
φ∗
j (r, t)

[
Vxc(r, t), ĤKS(t)

]
φj(r, t)d

3r

Für die Zeitableitung der Gesamtenergie folgt:

⇒ d

dt
Eges(t) = −i

∑
j

∫
φ∗
j (r, t)

[
ĤKS(t), ĤKS(t)

]
φ(r, t)d3r

+

∫ (
∂

∂t
Vext(r, t)

)
n(r, t)d3r

=

∫ (
∂

∂t
Vext(r, t)

)
n(r, t)d3r

Wenn kein Störpotential vorhanden ist (Vext(r, t) = Vext(r)) bleibt die Gesamtenergie
erhalten:

d

dt
Eges(t) =

∫ (
∂

∂t
Vext(r)

)
n(r, t)d3r = 0 (4.23)

4.3.5. Energieverlustgleichung

Nun soll die Zeitabhängigkeit von Eges bei Berücksichtigung des Reibungsterms Ĥf(t)
untersucht werden. In der Kohn-Sham Gleichung 4.21 ist daher folgende Ergänzung not-
wendig:

i
∂ϕn
∂t

= ĤKS(t)ϕn → i
∂ϕn
∂t

= Ĥ(t)ϕn = ĤKS(t)ϕn + Ĥf(t)ϕn
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Für den Fall ∂
∂tVext = 0 gilt dann (analog zur Rechnung im letzten Kapitel):

i
d

dt
Eges[n(r, t)] =

∑
j

∫
φ∗
j (r, t)

[
−∇2

2
, Ĥ(t)

]
φj(r, t)d

3r

+
∑
j

∫
φ∗
j (r, t)

[
Vext(r, t), Ĥ(t)

]
φj(r, t)d

3r

+
∑
j

∫
φ∗
j (r, t)

[
VH(r, t), Ĥ(t)

]
φj(r, t)d

3r

+
∑
j

∫
φ∗
j (r, t)

[
Vxc(r, t), Ĥ(t)

]
φj(r, t)d

3r (4.24)

Die Kommutatoren können zusammengefasst werden:

i
d

dt
Eges[n(r, t)] =

∑
j

∫
φ∗
j (r, t)

[
ĤKS(t), Ĥ(t)

]
φj(r, t)d

3r

Dieser Kommutator kann umgeschrieben werden:

[ĤKS, Ĥ] = [ĤKS, Ĥf ] = [Ĥ − Ĥf , Ĥf ] = [Ĥ, Ĥf ]

Die Gleichung 4.24 kann damit umgeschrieben werden:

d

dt
Eges[n(r, t)] = i

∑
j

⟨φj |[Ĥf , Ĥ]|φj⟩

= i
∑
j

⟨φj |Ĥf |Ĥφj⟩ − i
∑
j

⟨Ĥφj |Ĥf |φj⟩

= i
∑
j

⟨φj |Ĥf i|φ̇j⟩ − i
∑
j

(−i)⟨φ̇j |Ĥf |φj⟩

= −
∑
j

⟨φj |Ĥf |φ̇j⟩ −
∑
j

⟨φ̇j |Ĥf |φj⟩

= − d

dt

⟨
ΨKS

∣∣∣Ĥf

∣∣∣ΨKS

⟩
+

⟨
ΨKS

∣∣∣∣∣∂Ĥf

∂t

∣∣∣∣∣ΨKS

⟩
(4.25)

Das ist genau das selbe Ergebnis wie für ein Ein-Teilchen System (Gl. 4.12):

d

dt
EKS[n(r, t)] = −

∫
∂j(q, t)

∂t
·A(q, t) d3q (4.26)

Der Erwartungswert j(q, t) wird bezüglich der SlaterdeterminanteΨKS vom Ein-Teilchen-
operator Ĵ(q) gebildet. Dadurch ist gewährleistet, dass der Zeitentwicklungsoperator
unitär ist und die Norm der Kohn-Sham Wellenfunktion erhalten bleibt. Wenn man
stattdessen die Stromdichte von jedem Orbital individuell benutzt, fallen während der
Propagation alle Kohn-Sham Orbitale in den untersten Eigenzustand des e�ektiven Po-
tentials. Die Norm der Slaterdeterminante ∥ΨKS∥ würde dann verschwinden.
Die Energieverlustgleichung 4.26 für das Kohn-Sham System konnte numerisch mehr-

fach bestätigt werden (s. Kap. 4.4) und ist zur Veri�kation von Herleitung und Imple-
mentation der Gleichungen von groÿer Bedeutung.
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4.3.6. Alternative Formulierungen

Die allgemeine Form der Reibungsterme 4.13a-4.13c deutet bereits an, dass es eine Fülle
an Möglichkeiten für einen Reibungsterm Ĥf(t) gibt. Nachfolgend werden einige Mög-
lichkeiten, die in der Arbeit von Neuhauser nur angedacht wurden, detailliert hergeleitet
und analysiert.
Die Herleitungen verlaufen alle nach dem gleichen Schema:

• Ein Term für den Erwartungswert ∂⟨z⟩/∂t wird hergeleitet.

• Die Wirkung des Operators Ĥf(t) auf eine Wellenfunktion wird hergeleitet.

Beides wird für die Implementation in einer numerischen Simulation benötigt.

Teilchendichte

Der wohl einfachste Reibungsterm der Form, wie in Gl. 4.13a, ist durch Verwendung des
Teilchendichteoperators gegeben:

Ẑ(q) = n̂(q)

Betrachte Erwartungswert der Teilchendichte:

z(q, t) = ⟨ψ(t)|Ẑ(q)|ψ(t)⟩ =
∫
ψ∗(x, t)δ(x̂− q)ψ(x, t) dx = |ψ(q, t)|2

∂z(q, t)

∂t
=

∂

∂t
[ψ∗ψ] = ψ̇∗ψ + ψ∗ψ̇ (4.27)

Wirkung des Reibungsterms auf eine Wellenfunktion im Ortsraum:

⟨x|
∫
a(q)

∂⟨ψ(t)|Ẑ(q)|ψ(t)⟩
∂t

Ẑ(q) dq |ψ(t)⟩ =
∫
a(q) [ψ̇∗ψ + ψ∗ψ̇]⟨x|Ẑ(q)|ψ(t)⟩ dq

⟨x|Ẑ(q)|ψ(t)⟩ =
∫
dx′ δ(x− x′)δ(q − x′)ψ(x′, t) = δ(q − x)ψ(x, t) = δ(q − x)ψ(q)

⟨x|
∫
a(q)

∂⟨ψ(t)|Ẑ(q)|ψ(t)⟩
∂t

Ẑ(q) dq |ψ(t)⟩ =

∫
a(q) [ψ̇∗ψ + ψ∗ψ̇]δ(q − x)ψ(x, t) dq

= a(x) [ψ̇∗ψ + ψ∗ψ̇]
∣∣∣
(x,t)

ψ(x, t)

= a(x)
[
ψ̇∗ψ2 + |ψ|2ψ̇

]∣∣∣
(x,t)

(4.28)

Die Gleichungen 4.27 und 4.28 gelten ebenfalls in zwei und drei Dimensionen.
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Impulsraumstromdichte (kontinuierlich)

Für nicht-periodische Systeme ist die Impulsbasis kontinuierlich. Es wird nun versucht,
einen Reibungsterm für die Stromdichte im Impulsraum zu formulieren. Es wird folgender
Ein-Teilchen Operator gewählt:

Ẑ(p) = Ĵ(p)

Der Reibungsterm ist wieder von der Form 4.13a wobei allerdings der Operatorindex von
Ẑ bzw. Ĵ durch die Impulsraumkoordinate p statt der Ortsraumkoordinate q gegeben
ist:

Ĥf(t) =

∫
a(p)

∂J(p, t)

∂t
Ĵ(p) dp (4.29)

Die Herleitung beschränkt sich auf eine Raumdimension. Als erstes muss die Wirkungs-
weise dieses Operators auf eine Wellenfunktion im Impulsraum ermittelt werden. Die
Rechnung ist relativ umfangreich und ist im Anhang (Kap. A.4.2) zu �nden. Das Ergeb-
nis lautet:

⟨p|Ĥf(t)|ψ⟩ =
1

i
√
2π~3

F{V (x, t)ψ(x)} (p/~)
∞∫

−∞

ds a(s)
∂J

∂t

[
Θ(p− s)− 1

2

]

− 1

2i~2

∞∫
−∞

dr ψ̃(r)Ṽ (p− r, t)

∞∫
−∞

ds a(s)
∂J

∂t
sgn(r − s) (4.30)

Die Zeitableitung ∂J(p, t)/∂t wird analytisch nicht weiter ausgeführt, weil sich diese
nach vorläu�gen Betrachtungen in einer Simulation durch Finite Di�erenzen leichter und
e�zienter berechnen lässt.

Impulsraumstromdichte (diskret)

Bei periodischen Systemen ist der Impulsraum diskret und die Impulsraumkoordinate
hat einen diskreten Index j:

pj = j
2π~
L
, j ∈ Z

Es wird folgender Ein-Teilchen Operator gewählt:

Ẑj = Ĵ(pj)

Der Reibungsterm im diskreten Impulsraum ist von der Form 4.13b. Die Herleitung be-
schränkt sich auf eine Raumdimension und ist im Anhang (Kap. A.4.4) zu �nden. Die
Wellenfunktion |ϕ⟩ = Ĥf(t)|ψ⟩ wird im Impulsraum durch einen Vektor c̃ mit Kom-
ponenten c̃j dargestellt. Dessen Komponenten können über folgenden Term berechnet
werden:

c̃l =
1

i~

∞∑
n=−∞

a(pn)
∂J(pn, t)

∂t

{
Θ(l − n)F [V (x)ψ(x)](l)−

∞∑
q=n

vl−qcq

}
(4.31)

Wie im kontinuierlichen Fall wird für den Term ∂J(pn, t)/∂t vorgeschlagen, diesen über
Finite Di�erenzen numerisch zu berechnen.
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Dipolmoment

Als Operator für die Dämpfung wird hier der Operator des Dipolmoments verwendet:

Ẑ := P̂

Es handelt sich um einen globalen Operator und der Reibungsterm ist entsprechend von
der Form 4.13c. Der Operator P̂ wird über den Teilchendichteoperator n̂(q) ausgedrückt:

P̂ =

∫
d3r qe[n̂(r)− n+(r)]r =

∫
d3r qen̂(r)r+ p+

Wirkung auf Ket |χ⟩ im Ortsraum:

⟨r|P̂|χ⟩ = ⟨r|
∫
d3r′ qen̂(r

′)r′|χ⟩+ p+χ(r)

=

∫
d3r′ qer

′⟨r|n̂(r′)|χ⟩+ p+χ(r)

⟨r|n̂(r′)|χ⟩ =

∫
d3qδ(q− r)n̂(r′)χ(q)

=

∫
d3qδ(q− r)δ(r̂− r′)χ(q)

=

∫
d3qδ(q− r)δ(q− r′)χ(q)

∫
d3r′ qer

′⟨r|n̂(r′)|χ⟩ =

∫
d3r′ qer

′
∫
d3q δ(q− r)δ(q− r′)χ(q)

= qe

∫
d3q δ(q− r)χ(q)

∫
d3r′r′δ(q− r′)

= qe

∫
d3q δ(q− r)χ(q)q

= qeχ(r)r

Matrixelement ⟨ψ|P̂|χ⟩:

⟨ψ|P̂|χ⟩ =

∫
d3r⟨ψ|r⟩⟨r|P̂|χ⟩+ p+⟨ψ|χ⟩

= qe

∫
d3r ψ∗(r)rχ(r) + p+⟨ψ|χ⟩

Für die Implementation werden folgende Gleichungen letztlich benötigt:

⟨r|Ĥf |ψ⟩ = a0
d⟨P⟩ψ
dt

·
[
qer+ p+

]
ψ(r, t) (4.32)

d

dt
⟨ψ|P̂|ψ⟩ = qe

∫
d3r r(ψ̇∗ψ + ψ∗ψ̇) (4.33)

d

dt
⟨H0⟩ = −a0

∣∣∣∣d⟨P⟩ψ
dt

∣∣∣∣2 (4.34)

Die Gl. 4.34 kann genutzt werden, um die Energieverlustgleichung zu veri�zieren.
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Kinetische Energie

Ansatz:

Ẑ := T̂

Es handelt sich dabei um einen globalen Operator. Wirkung auf Ket |χ⟩ im Ortsraum:

⟨r|T̂ |χ⟩ = − ~2

2me
∇2χ(r)

Die Gleichung für die Wirkung von Ĥf(t) auf einen Ket |ψ⟩ und die Gleichung für den
Energieverlust lauten:

⟨r|Ĥf |ψ⟩ = −a0
~2

2me

d⟨T ⟩ψ
dt

∇2ψ(r, t) (4.35)

d

dt
⟨H0⟩ = −a0

∣∣∣∣d⟨T ⟩ψdt

∣∣∣∣2 (4.36)

Im Fall eines Kohn-Sham Systems muss in den Term d⟨T ⟩ψ
dt die Slaterdeterminante ΨKS

eingesetzt werden. Der resultierende Term ist aus Kapitel 4.3.4 bereits bekannt:

d

dt
TS[n(r, t)] = −i~2

∑
j

∫
φ∗
j (r, t)

[
− ∇2

2me
, V̂KS(t)

]
φj(r, t)d

3r

Bei einem Ein-Teilchen System ist der Term d⟨T ⟩ψ
dt durch einen der Summanden auf der

rechten Seite gegeben.

4.4. Analyse der Methoden

Diese Arbeit beschränkt sich darauf, die Reibungsterme als �Mittel zum Zweck� für eine
e�ziente phänomenologische Dämpfung zu betrachten. Bei der Analyse der Methoden
fällt dadurch die Frage weg, welcher der Reibungsterme physikalisch für bestimmte Sys-
teme motiviert werden kann. In diesem Zusammenhang soll aber erwähnt werden, dass
die lokalen Operatoren (wie z.B. n̂(q), Ĵ(q)) für Jelliumsysteme vermutlich [42] besser
geeignet sind, als globale Operatoren (wie z.B. P̂ oder T̂ ). Die globalen Operatoren sollen
besser für kleine, voll kohärente Systeme geeignet sein als für ausgedehnte metallische
Strukturen.
In der Originalarbeit von Neuhauser wurde bereits der Fall Ẑ = Ĵ(q) untersucht. In

Anlehnung an die Drude Dämpfung, bei der die Reibungskraft proportional zur Strom-
dichte ist, wurde untersucht in wie fern sich eine Drude Streuzeit τ zu einem konstanten
Dämpfungsfeld a(q) = a0 ermitteln lässt. Ein direkter Zusammenhang zwischen diesen
Gröÿen ist äuÿerst wünschenswert, um in Simulationen von Metallen deren phänomeno-
logisch bekannte Streuzeit der Metallelektronen einsetzen zu können.
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4.4.1. Berechnung der Drude Streuzeit

Um die Drude Streuzeit zu bestimmen wurde angenommen, dass die Stromdichte im
System exponentiell abfällt, wenn das System von einem angeregten Zustand in den
Grundzustand relaxiert:

dj

dt
∝ −j(t)

τ
⇒ j(t) = j0e

−t/τ + const.

Die Energie zerfällt ebensfalls exponentiell:

E(t) = E0e
−Γt

Nimmt man an, dass es sich dabei um rein kinetische Energie (∝ |j|2) handelt, gilt:

E ∝ |j|2 ∝ e−2t/τ

Damit folgt für die Drude Streuzeit:

τ =
2

Γ
(4.37)

Aus dem Energieverlauf kann zu gegebenem Parameter a0 über diese Zusammenhänge
eine klassische Drude Streuzeit ermittelt werden. Es hat sich herausgestellt, dass diese
e�ektive Streuzeit sich auf kurzen und langen Zeitskalen um eine ganze Gröÿenordnung
unterscheiden kann (in Abb. 4.10 ist dieses Phänomen erkennbar). Ausserdem werden
hohe Frequenzen (beispielsweise im Dipolmoment P(ω)) e�zienter gedämpft, als niedrige
Frequenzen. Die Ergebnisse für die Parameterisierung von a0 in Abhängigkeit von τ sind
ausserdem aus der Neuhauser-Arbeit nicht auf andere Systeme übertragbar und müssen
für jedes System neu ermittelt werden.
Im Kapitel 4.4.3 wird deshalb eine einfache Erweiterung zu dieser Dämpfungsmethode

präsentiert, welche diese Probleme im Prinzip beseitigt.

4.4.2. Dämpfungseigenschaften

Die Methoden werden zunächst qualitativ an einem Modellsystem verglichen: Als solches
dient ein eindimensionaler Metall�lm, welcher an einer Ober�äche durch ein Störpotential
räumlich und zeitlich lokalisiert angeregt wird (s. Abb. 4.4).

Lokale Ortsraum-Operatoren und globale Operatoren

In Abbildung 4.5 ist der Energieverlust, welchen die verschiedenen Reibungsterme bewir-
ken, jeweils auf Eins normiert dargestellt6. Damit ist ein qualitativer Vergleich möglich:
Wie man sieht, gibt es keine groÿen Unterschiede zwischen den beiden lokalen Ope-

ratoren Ĵ(q) und n̂(q). Da Strom- und Teilchendichte über die Kontinuitätsgleichung
eng miteinander verknüpft sind, kann man zumindest intuitiv eine gewisse Ähnlichkeit
auch erwarten. Völlig anders verhält sich der Reibungsterm, der auf dem Dipolmoment
6Da sich durch Skalierung des Reibungsterms auch der Energieverlust beliebig skalieren lässt, macht
eine nicht-normierte Darstellung wenig Sinn.
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Abbildung 4.4.: Anregung eines Metall�lms durch einen Gausspuls an der Ober�äche

Abbildung 4.5.: Normierter Energieverlust für unterschiedliche Reibungsterme Ĥf(t).

basiert: Die Energieverlustkurve erinnert an einen sin2-Verlauf. Das ist ebenfalls zu er-
warten, weil die Energieverlustgleichung 4.34 das Betragsquadrat von d⟨P⟩/dt enthält,
welches eine oszillierende Gröÿe im System aus Abbildung 4.4 ist.
Auf die praktische Bedeutung dieses unterschiedlichen Verhaltens der Reibungsterme

wird in Kapitel 4.4.3 nochmals eingegangen.

Lokale Impulsraum-Operatoren

Die Dämpfung im Impulsraum ist bereits in einer Dimension rechnerisch sehr aufwendig,
wie man an der Gleichung 4.31 sehen kann. Die Analyse dieser Methode beschränkt sich
daher ebenfalls auf das System mit dem Metall�lm aus Abb. 4.4. Insbesondere wurde
hier nur das energetisch niedrigste Orbital berücksichtigt.
Als erstes soll die Dämpfungse�zienz dieser Methode �Ẑ = Ĵ(p)� mit der wesentlich

einfacheren Ortsraum-Methode �Ẑ = Ĵ(q)� verglichen werden. Mit E�zienz ist auch
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Abbildung 4.6.: Theoretisch möglicher Energieverlust für die beiden Reibungsterme in
Orts- und Impulsraum. Zu Beginn steigen die Kurven steil an, weil da
das System angeregt wird.

hier wieder gemeint, wie stark die mögliche Energieabnahme während der Zeitentwick-
lung einbricht. Zum Vergleich wurde in diesem Fall aus der Dynamik dieses Systems
ohne aktiven Reibungsterm der Energieverlust über die entsprechenden Energieverlust-
gleichungen berechnet.
Das Ergebnis ist in Abbildung 4.6 dargestellt: Die entscheidende Beobachtung an den

beiden Kurven ist die, dass der Energieverlust bei der Ĵ(p)-Methode stark schwankt und
dabei mehrere Gröÿenordnungen zwischendurch abfällt während bei der Ĵ(q)-Methode
die Kurve vergleichsweise konstant bleibt.
Diese Methode wurde deshalb in dieser Arbeit nicht weiter verfolgt.

4.4.3. Vorgegebene Energieabnahme

Ziel in diesem Kapitel ist es, eine erweiterte Formulierung der Neuhauser-Methode zu
geben, welche systemunabhängig eine vorgegebene exponentielle Abnahme der Anre-
gungsenergie erlaubt. Diese Abnahme ist durch die phänomenologische Drude Streuzeit
festgelegt. Dafür sind bereits gezeigte Eigenschaften der original Methode entscheidend:

1. Der Energieverlust kann über die Gleichung 4.26 zu jedem Zeitpunkt ermittelt
werden.

2. Das Dämpfungsfeld a(q, t) kann beispielsweise als a(q, t) = a0(t) de�niert werden
um darüber den Reibungsterm zeitlich dynamisch zu skalieren.

3. Die lokalen Operatoren führen zu einem Energieverlust, der nie auf Null absinkt
(im Vergleich zu dem Fall mit Dipoloperator) - s. Abb. 4.5.

Der physikalische Ablauf sei nun folgender:
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4.4. Analyse der Methoden

Abbildung 4.7.: Hier wird die Anregungsenergie aus dem Intervall texc < t < tmax in
normierter, logarithmischer Form gezeigt. Die Steigung der roten Ge-
raden (linearer Fit) entspricht τ ≈ 13 fs. In der Simulation wurde der
Wert τ = 12.1 fs vorgegeben. Die Abweichung nimmt bei Verkleinerung
der Zeitschrittweite ab. Nach der gezeigten Zeit tmax musste die Simu-
lation abgebrochen werden, weil die Lösung der impliziten Kohn-Sham
Gleichungen zu ungenau wurde.

1. Zur Zeit 0 ≤ t < texc wird das System durch einen Puls angeregt - oder: bereits
zur Zeit t = texc = 0 sei das System in einem angeregten Zustand (dazu kann
beispielsweise die Elektronendichte verschoben werden). Während der Anregung
�ndet keine Dämpfung statt.

2. In der Zeit t ≥ texc relaxiert das System in den Grundzustand. Die Dämpfung
bewirkt eine exponentielle Abnahme der Anregungsenergie

E(t)− Egs ∼ e−Γt.

Die systemunabhängige und vorgegebene Energieabnahme erzielt man natürlich ganz
einfach dadurch, dass man zu jedem Zeitpunkt das Integral in Gl. 4.26 für a0 = 1 ermittelt
und mit dem Sollwert von dE/dt vergleicht. Aus dem Verhältnis ergibt sich der zeitlich
dynamische Dämpfungsparameter a0(t).
Diese Methode wurde an dem System aus Abb. 4.4 getestet: Wie sich gezeigt hat,

ergeben sich in der Praxis erhebliche numerische Probleme mit der Rechengenauigkeit
zur dynamischen Anpassung des Feldes a0(t), wie in Abb. 4.7 gezeigt wird.

4.4.4. Rückstreuung

In diesem Kapitel wird der Versuch beschrieben, die beiden Ober�ächen eines endlichen
Metall�lms durch die Reibung von einander zu isolieren. Ein qualitatives Ergebnis dazu
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4. Dissipative Zeitabhängige Dichtefunktionaltheorie

Abbildung 4.8.: Ein qualitativer Vergleich des Feldes |δn(x, t)| = |n(x, t) − n0(x)| für
das System aus Abb. 4.4 im Fall von ein- bzw. ausgeschaltetem Rei-
bungsterm. Die gestrichelten Linien geben die Position des Metall�lms
im Raum an. Links oben in der Ecke erkennt man die Wirkung vom
räumlich und zeitlich lokalisierten Gausspuls, der das System anregt, am
deutlichsten.

zeigt die Abb. 4.8: Der Reibungsterm (Ẑ = Ĵ(x)) wurde konstant gehalten (a0 = 3000)
und die Auslenkung der Teilchendichte vom Grundzustand zeitlich aufgezeichnet. Am
rechten Rand erkennt man noch schwache Re�exionen. Um die E�zienz der Dämpfung
bezüglich der Verhinderung von Rückstreuung quantitativ zu untersuchen, wird wie in
Abb. 4.9 gezeigt wird, über ein endliches Intervall (0..T ) der rechtsgerichtete Teilchen-
strom (j>) an der Mitte des Metall�lms (x = 0) au�ntegriert:

N =

∫ T

0
dt j>(x = 0, t) (4.38)

Die genaue Wahl einer solchen Gröÿe unterliegt einer gewissen Willkür, jedoch erfüllen
diese alle die Eigenschaft, dass N gegen Null gehen muss, wenn man die Dämpfungsstärke
gegen unendlich gehen lässt.

Das Ergebnis der Abhängigkeit von N und der Dämpfungsstärke a0 ist in Abb. 4.11
gezeigt. Wie man gut erkennen kann, �acht die Kurve mit zunehmender Dämpfungsstär-
ke immer mehr ab. Um die Gröÿe N um mehrere Gröÿenordnungen zu reduzieren (wie
es für eine Entkopplung der beiden Ober�ächen nötig wäre), müsste ein so hoher Wert
für a0 gewählt werden, dass es in der numerischen Simulation zu erheblichen Genauig-
keitsproblemen kommt.
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4.4. Analyse der Methoden

Abbildung 4.9.: Ein Metall�lm wird durch einen Gausspuls angeregt. In dem räumlich
und zeitlich begrenzten Intervall wird die rein�ieÿende Teilchenstrom-
dichte integriert (gestrichelte Linie).

4.4.5. Anmerkungen

Die Neuhauser-Methode führt eine gravierende Veränderung in die zeitabhängigen Kohn-
Sham Gleichungen ein und ebenso für Ein-Teilchensysteme in die zeitabhängige Schrö-
dingergleichung: Weil im Reibungsterm Ĥf(t) die Gröÿe d⟨z⟩/dt benötigt wird, und diese
vom Zustand des Systems abhängt, werden die Gleichungen implizit. Diese strukturelle
Änderung an den Gleichungen ist aber nur dadurch bedingt, dass diese kein abgeschlos-
senes System mehr beschreiben. Das eigentliche System mit Hamiltonoperator Ĥ0 wird
einem externen Feld ausgesetzt, welches basierend auf dem Zustand des Systems so ge-
wählt wird, dass es dem System Energie entzieht.
Eine ungewöhnlich erscheinende Eigenschaft dieser Dämpfungsmethode ist die, dass

sich die Dynamik auch nach langer Dämpfungszeit vollständig umkehren lässt: Normaler-
weise würde man von einem Vielteilchensystem erwarten, dass es durch die Streuprozesse,
welche die Dämpfung bewirken, an Gedächtnis verliert und der ursprüngliche Zustand
nicht mehr durch Zeitumkehr erreicht werden kann. Ein Vergleich mit einem klassischen
Gas macht das ebenfalls deutlich: Wenn sich dieses in einem Kolben ausdehnt, wird es
sich nicht wieder dadurch zusammenziehen, indem man alle mikroskopischen Impulse der
Gasatome umkehrt.
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4. Dissipative Zeitabhängige Dichtefunktionaltheorie

Abbildung 4.10.: Der Plot zeigt die Stromdichte in der Mitte des Metall�lms in Abhän-
gigkeit der Zeit für eingeschaltete Dämpfung (blaue Kurve) und ausge-
schaltete Dämpfung (rote Kurve). Das gezeigte Intervall umfasst 20 fs.
Nach ca. 10 fs ist keine signi�kante Abnahme in der Stromdichte bei
der blauen Kurve mehr zu erkennen. Dieses Phänomen wurde bereits
von Neuhauser beobachtet aufgrund dessen er zwei verschiedene Dru-
de Streuzeiten zur Charakterisierung der Dämpfung verwendet hat (s.
Kap. 4.4.1).
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Abbildung 4.11.: Die Teilchenanzahl (pro Fläche) aus Gl. 4.38 (T = 20 fs) für verschiede-
ne Dämpfungsparameter a0: Die roten Kreuzchen stellen Simulations-
ergebnisse dar, wohingegen die blaue Linie nur ein ange�tteter Spline
ist.
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5. Wigner-Maxwell Gleichungen

In diesem Teil der Arbeit soll ein quantenmechanisches Modell des Elektronengases ent-
wickelt werden, welches Austausch- und Korrelationswechselwirkungen berücksichtigt.
Dazu wird das Elektronengas als statistisches Ensemble über die Dichtematrix beschrie-
ben. Die resultierenden Gleichungen können in ihrer allgemeinsten Form die Dynamik
eines Zweikomponentenplasmas (bestehend aus Elektronen und Ionen) in einem elek-
tromagnetischen Feld beschreiben. Die Herleitung dieser Wigner-Maxwell Gleichungen
in der hier verwendeten Form wurde bereits in einer unverö�entlichten Arbeit von W.
Hoyer durchgeführt [56].
In den folgenden Kapiteln wird versucht die Gleichungen auf ein System mit reduzier-

ter Dimensionalität (d.h. speziell einen Nanodraht) anzuwenden, da schnell klar wird,
dass die Gleichungen für drei Raumdimensionen numerisch nur schwer lösbar sind [57]
und daher für die Anwendungen in dieser Arbeit keine praktische Alternative zur Dich-
tefunktionaltheorie darstellen. Des weiteren werden die Gleichungen für elektrostatische
Felder formuliert, was zu der Wigner-Poisson Gleichung führt, welche in der Literatur
bereits unter physikalischen [22, 23, 58] als auch numerischen [59] Aspekten untersucht
wurde.
Abschlieÿend wird speziell auf die Arbeit [22] eingegangen, in der gezeigt wird, wie

sich Quantenkorrekturen in einem klassischen Fluidmodell des Elektronengases herleiten
lassen. Die resultierende Gleichung wird als �Quanten Euler-Gleichung� bezeichnet und
stellt eine Alternative zur (Kohn-Sham) Dichtefunktionaltheorie dar.

5.1. Allgemeine Formulierung in drei Dimensionen

Die Herleitung der Bewegungsgleichung für das Zweikomponentenplasma erfolgt in meh-
reren Schritten: Zunächst wird der Hamiltonoperator des Systems in zweiter Quanti-
sierung hergeleitet. Die Quantenfeldoperatoren werden in die Impulsbasis transformiert.
Dann wird die Heisenbergsche Bewegungsgleichung für die Kohärenzenmatrix aufgestellt
und das dabei auftretende Hierarchieproblem in Hartree-Fock Näherung gelöst. Zuletzt
wird die Dichtematrix in das Wignerbild transformiert und das zentrale Ergebnis dieser
Herleitung wird die Bewegungsgleichung für die Ein-Teilchen Wignerverteilungsfunktion
[60] darstellen. Mit diesen Gleichungen wird die Austauschwechselwirkung exakt beschrie-
ben. Die Berücksichtigung der Korrelation ist in den Gleichungen allerdings derzeit noch
o�en gelassen.
Es sei darauf hingewiesen, dass die Herleitungen in den folgenden Kapiteln keine Zwi-

schenschritte enthalten und aus der Arbeit [56] übernommen wurden. Allerdings ist das
selbst entwickelte Modell im Kapitel 5.2, welches auf der Arbeit von Hoyer basiert, mit
detaillierter Herleitung gegeben.
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5. Wigner-Maxwell Gleichungen

5.1.1. Hamiltonoperator

Der Hamilton-Operator beschreibt ein System aus zwei Sorten von fermionischen Teil-
chen, welche über den Index λ an den Operatoren berücksichtigt werden (λ = e für
Elektronen und λ = i für Ionen). Die Spinkoordinate s hat zwei Einstellmöglichkeiten
s = ±1/2. Die Teilchen be�nden sich in einem elektromagnetischen Feld, welches in
Coulomb-Eichung über die Potentialfelder A(r, t) und ϕ(r, t) beschrieben wird. Für die
Potentiale wird die Coulomb-Eichung verwendet:

∇ ·A(r, t) = 0 (5.1)

Der Hamiltonoperator für die kinetische Energie in minimaler Kopplung lautet zunächst
allgemein:

Ĥmin =
∑
λ,s

∫
d3rΨ̂†

λ(r, s)
1

2mλ
(p̂− qλA(r, t))2Ψ̂λ(r, s) (5.2)

Durch die Eichbedingung kann der Operator in Klammern vereinfacht werden:

Ĥmin =
∑
λ,s

∫
d3rΨ̂†

λ(r, s)
1

2mλ
(p̂2 − qλA(r, t) · p̂+ q2λA

2(r, t))Ψ̂λ(r, s) (5.3)

Die Coulombwechselwirkung innerhalb einer Teilchensorte λ wird durch folgenden Ha-
miltonoperator beschrieben:

ĤλC =
1

2

∑
s,s′

∫
d3r

∫
d3r′Ψ̂†

λ(r, s)Ψ̂
†
λ(r

′, s′)V (|r− r′|)Ψ̂λ(r
′, s′)Ψ̂λ(r, s) (5.4)

Für die Coulombwechselwirkung zwischen Elektronen und Ionen lautet der Hamilton-
operator:

Ĥei
C = −

∑
s,s′

∫
d3r

∫
d3r′Ψ̂†

e(r, s)Ψ̂
†
i (r

′, s′)V (|r− r′|)Ψ̂i(r
′, s′)Ψ̂e(r, s) (5.5)

Der Hamiltonoperator des Zweikomponentenplasmas lautet insgesamt:

Ĥ = Ĥkin + ĤA·p + ĤA2 + Ĥe
C + Ĥi

C + Ĥei
C (5.6)

Dieser Operator hängt vom elektromagnetischen Feld ab, welches von den Maxwellglei-
chungen beschrieben wird, deren Quellterme sich aus den Ladungen und Strömen des
Plasmas ergeben. In der Originalarbeit von W. Hoyer wurde auch das Lichtfeld quanti-
siert, was aber für die Optik metallischer Nanostrukturen in dieser Arbeit keinen Sinn
macht: Im Hinblick auf die nichtlinearen optischen Eigenschaften dieser Strukturen ist
klar, dass Felder mit hoher Feldstärke auftreten und die Quantisierung des Lichtfeldes
daher nicht beachtet werden muss.
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5.1. Allgemeine Formulierung in drei Dimensionen

5.1.2. Impulsbasis

Die Feldoperatoren haben die folgende Entwicklung in der Impulsbasis:

Ψ̂λ(r, s) =
1√
V

∑
k

eik·râλ,s,k (5.7)

Ψ̂†
λ(r, s) =

1√
V

∑
k

e−ik·râ†λ,s,k (5.8)

Hier wird implizit angenommen, dass das Plasma ein endliches Volumen V füllt, welches
wiederum periodisch den ganzen Raum füllt.
Die Operatoren â, â† erfüllen die fermionischen Antikommutator-Relationen:

[âλ,s,k, â
†
λ′,s′,k′ ]+ = δk,k′δs,s′δλ,λ′ (5.9a)

[âλ,s,k, âλ′,s′,k′ ]+ = 0 (5.9b)

[â†λ,s,k, â
†
λ′,s′,k′ ]+ = 0 (5.9c)

Der Wellenvektor k wird ab jetzt als Verbundindex de�niert, in dem auch die Spinquan-
tenzahl enthalten ist:

k, s → k = (kx, ky, kz, s)

Der Operator aus Gl. 5.3 besteht aus drei Teilen, welche in dieser Basis folgendermaÿen
lauten:

Ĥkin =
∑
λ,k

ελkâ
†
λ,kâλ,k (5.10)

ĤA·p = −
∑
λ,k,q

Jλk ·Aqâ
†
λ,k+q/2âλ,k−q/2 (5.11)

ĤA2 =
∑
λ

q2λ
2mλ

∑
k,q,q′

A∗
q′ ·Aqâ

†
λ,k+qâλ,k+q′ (5.12)

Dabei wird mit ελk = ~2k2
2mλ

das Matrixelement des kinetische Energieoperators T̂ =

p̂2/2mλ, mit J das Stromdichtematrixelement

Jλk =
qλ
mλ

~k (5.13)

und mit Aq(t) die Fouriertransformierte des Vektorpotentials A(r, t) bezeichnet.
Die Operatoren für die Coulombwechselwirkung (Gln. 5.4 und 5.5) lauten in dieser

Basis:

ĤλC =
1

2

∑
k,k′,q

Vqâ
†
λ,kâ

†
λ,k′ âλ,k′+qâλ,k−q (5.14)

Ĥei
C = −

∑
k,k′,q

Vqâ
†
e,kâ

†
i,k′ âi,k′+qâe,k−q (5.15)
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5. Wigner-Maxwell Gleichungen

Das Coulombmatrixelement Vq ist gegeben durch:

Vq =
1

ε0V
|qe|
q2

(5.16)

Es gilt für die Ladung der Teilchen |qe| = qi.
Damit steht nun der gesamte Hamiltonoperator (Gl. 5.6) auch in der Impulsbasis zur

Verfügung, auf der die restliche Herleitung in den folgenden Kapiteln basieren wird.

5.1.3. Bewegungsgleichung der Kohärenzenmatrix

Die Kenntnis der Kohärenzen ⟨â†λ,kâλ,k′⟩(t) erlaubt es, zentrale Gröÿen wie Teilchen- und
Stromdichte des Zweikomponentenplasmas zu berechnen. Mit Hilfe der Heisenbergglei-
chung kann die Bewegungsgleichung für diese zentralen Gröÿen hergeleitet werden:

i~
∂

∂t
Ô = [Ô, Ĥ] (5.17)

Mit Ô = â†λ,kâλ,k′ und dem Hamiltonoperator

Ĥ = Ĥkin + ĤA·p + ĤA2 + Ĥe
C + Ĥi

C + Ĥei
C

folgt für die Zeitableitung der Erwartungswerte der Kohärenzen

i~
∂

∂t
⟨â†λ,kâλ,k′⟩ = (ελk′ − ελk)⟨â

†
λ,kâλ,k′⟩

+
∑
p

Ap ·
(
Jλk⟨â

†
λ,k+pâλ,k′⟩ − Jλk′⟨â†λ,kâλ,k′−p⟩

)
−

q2λ
2mλ

∑
p,p′

A−p′ ·Ap

(
⟨â†λ,k+p−p′ âλ,k′⟩ − ⟨â†λ,kâλ,k′−p−p′⟩

)
−
∑
q,l

Vq

(
⟨â†λ,k+qâ

†
λ,lâλ,l+qâλ,k′⟩ − ⟨â†λ,kâ

†
λ,lâλ,l+qâλ,k′−q⟩

)
+
∑
q,l

Vq

(
⟨â†λ,k+qâ

†
λ̄,l
âλ̄,l+qâλ,k′⟩ − ⟨â†λ,kâ

†
λ̄,l
âλ̄,l+qâλ,k′−q⟩

)
(5.18)

Als nächstes wird eine Hartree-Fock Faktorisierung auf die 4-Punkt Erwartungswerte
angewendet, wobei allerdings die dadurch fehlenden 2-Teilchen Korrelationen als nicht
näher spezi�zierter Term ∆⟨. . .⟩ mit de�niert werden:

⟨â†λ,k1
â†
λ̄,k2

âλ̄,k′
2
âλ,k′

1
⟩ = ⟨â†λ,k1

â†
λ̄,k2

âλ̄,k′
2
âλ,k′

1
⟩S +∆⟨â†λ,k1

â†
λ̄,k2

âλ̄,k′
2
âλ,k′

1
⟩(5.19a)

⟨â†λ,k1
â†λ,k2

âλ,k′
2
âλ,k′

1
⟩S = ⟨â†λ,k1

âλ,k′
1
⟩⟨â†λ,k2

âλ,k′
2
⟩ − ⟨â†λ,k1

âλ,k′
2
⟩⟨â†λ,k2

âλ,k′
1
⟩(5.19b)

⟨â†λ,k1
â†
λ̄,k2

âλ̄,k′
2
âλ,k′

1
⟩S = ⟨â†λ,k1

âλ,k′
1
⟩⟨â†

λ̄,k2
âλ̄,k′

2
⟩ (5.19c)

Mit Hilfe der fouriertransformierten Teilchendichte

nλq =
1

V
∑
l

⟨â†λ,lâλ,l+q⟩ (5.20)
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5.1. Allgemeine Formulierung in drei Dimensionen

lässt sich die Bewegungsgleichung der Kohärenzenmatrix formulieren:

i~
∂

∂t
⟨â†λ,kâλ,k′⟩ = (ελk′ − ελk)⟨â

†
λ,kâλ,k′⟩

+
∑
p

Ap ·
(
Jλk⟨â

†
λ,k+pâλ,k′⟩ − Jλk′⟨â†λ,kâλ,k′−p⟩

)
−

q2λ
2mλ

∑
p,p′

A−p′ ·Ap

(
⟨â†λ,k+p−p′ âλ,k′⟩ − ⟨â†λ,kâλ,k′−p+p′⟩

)
+ V

∑
q

Vq(n
λ
q − nλ̄q)

(
⟨â†λ,kâλ,k′−q⟩ − ⟨â†λ,k+qâλ,k′⟩

)
− Σλk,k′ + Ξλ,λk,k′ − Ξλ,λ̄k,k′ (5.21)

Die letzten drei Terme beschreiben Austausch (Σ) und Korrelation (Ξ):

Σλk,k′ =
∑
q,l

Vq

(
⟨â†λ,kâλ,l⟩⟨â

†
λ,l−qâλ,k′−q⟩ − ⟨â†λ,k+qâλ,l+q⟩⟨â†λ,lâλ,k′⟩

)
(5.22)

Ξλ,λ̄k,k′ =
∑
q,l

Vq

(
∆⟨â†λ,kâ

†
λ̄,l
âλ̄,l+qâλ,k′−q⟩ −∆⟨â†λ,k+qâ

†
λ̄,l
âλ̄,l+qâλ,k′⟩

)
(5.23)

5.1.4. Formulierung im Wignerbild

Die Dichtematrix ϱ̂, welche das statistische Ensemble von Zweikomponentenplasmen be-
schreibt, kann über den gesamten Satz von N reduzierten Wignerfunktionen dargestellt
werden. Diese sind als Analogon zu den reduzierten Verteilungsfunktionen der klassischen
statistischen Mechanik zu betrachten. Allerdings können die Wignerfunktionen auch ne-
gative Werte annehmen [58] und werden daher auch als Quasiverteilungen bezeichnet.
Die Ein-Teilchen Wignerfunktion hängt folgendermaÿen mit der Dichtematrix zusam-

men:

fλk (r) =
∑
q

eiq·r⟨â†λ,k−q/2âλ,k+q/2⟩ (5.24)

⟨â†λ,kâλ,k′⟩ = 1

V

∫
e−i(k

′−k)·rfλk+k′
2

(r) d3r (5.25)

Die Teilchen- und Geschwindigkeitsdichtefelder können sehr einfach aus der Wignerver-
teilung bestimmt werden:

nλ(r) =
1

V
∑
k

fλk (r) (5.26)

vλkan(r) =
1

V
∑
k

~k
mλ

fλk (r) (5.27)

vλkin(r) =
1

V
∑
k

~k− qλA(r)

mλ
fλk (r) (5.28)
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5. Wigner-Maxwell Gleichungen

Das kinetische Geschwindigkeitsdichtefeld tritt in der Kontinuitätsgleichung der Teilchen-
dichte auf:

∂

∂t
nλ(r) +∇ · vλkin(r) = 0 (5.29)

Mit einer umfangreichen Rechnung (s. Anhang C von [56]), bei der eine Gradientenent-
wicklung der Wignerfunktion vorgenommen wird, lässt sich zeigen, dass die Bewegungs-
gleichung der Kohärenzenmatrix 5.21 im Wignerbild folgende Form hat:

∂

∂t
fλk (r)

∣∣∣∣
kin

= −∇r ·
(
~k
mλ

fλk (r)

)
(5.30a)

∂

∂t
fλk (r)

∣∣∣∣
A·p

=
qλ
mλ

[
∇r · (A(r)fλk (r))− (∇r(A(r) · k)) · (∇kf

λ
k (r))

]
(5.30b)

∂

∂t
fλk (r)

∣∣∣∣
A2

=
q2λ

2~mλ
(∇r|A(r)|2) · (∇kf

λ
k (r)) (5.30c)

∂

∂t
fλk (r)

∣∣∣∣
C,L

=
qλ
~
(∇rΦ(r)) · (∇kf

λ
k (r)) (5.30d)

∂

∂t
fλk (r)

∣∣∣∣
C,HF

=
|qλ|
~

([∇k∆ε
λ
k(r)] · [∇rf

λ
k (r)]− [∇r∆ε

λ
k(r)] · [∇kf

λ
k (r)])(5.30e)

∂

∂t
fλk (r)

∣∣∣∣
C,Korr

=
1

~
qλ
|qλ|

∫
[∇rU(r− r′)] · [∇k∆⟨f̂λk (r)ρ̂(r′)⟩]d3r′ (5.30f)

Die Gradientenentwicklung hat keinen Ein�uss auf den Term in Gleichung 5.30a. Alle
anderen Terme sind Näherungen. In der Coulomb-Eichung gilt für das skalare Potential
Φ(r) in Gl. 5.30d:

Φ(r) =

∫
U(r− r′)(ni(r′)− ne(r′))d3r′ (5.31)

Die Energierenormierung in Gl. 5.30e ist durch eine Faltung im k-Raum gegeben:

∆ελk(r) =
∑
k′

Uk−k′fλk′(r) (5.32)

Für das Coulombmatrixelement im Orts- und Fourierraum gilt:

U(r) =
1

4πε0

qi
r
, Uq =

1

ε0V
qi
q2

(5.33)

Im Korrelationsterm (Gl. 5.30f) ist der Operator f̂ durch den Operator in den Erwar-
tungswertklammern aus Gl. 5.24 (inklusive Summation und dem Vorfaktor eiq·r) de�-
niert. Der Operator ρ̂ ist der Ladungsdichteoperator und setzt sich aus den Teilchendich-
teoperatoren zusammen:

ρ̂(r) = qi(n̂i(r)− n̂e(r)) (5.34)
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5.1. Allgemeine Formulierung in drei Dimensionen

5.1.5. Gleichungssystem für ein Zweikomponentenplasma

Im letzten Abschnitt wurden die Herleitung der Wigner-Gleichungen für ein Zweikom-
ponentenplasma nach [56] skizziert. Hinzugenommen werden müssen noch die Maxwell-
Gleichungen, welche in Gl. 5.31 nur unvollständig berücksichtigt wurden, da durch diese
Gleichung nur das longitudinale elektrische Feld in die Dynamik der Wignerverteilung
eingeht.
Das vollständige Wigner-Maxwell Gleichungssystem umfasst die Bewegungsgleichung

für fλk (r), die Eichbedingung und die Wellengleichung für das Vektorpotential sowie die
Poissongleichung für das skalare Potential:

∂

∂t
fλk (r) =

∂

∂t
fλk (r)

∣∣∣∣
kin

(5.35a)

+
∂

∂t
fλk (r)

∣∣∣∣
C,L

(5.35b)

+
∂

∂t
fλk (r)

∣∣∣∣
A·p

+
∂

∂t
fλk (r)

∣∣∣∣
A2

(5.35c)

+
∂

∂t
fλk (r)

∣∣∣∣
C,HF

(5.35d)

+
∂

∂t
fλk (r)

∣∣∣∣
C,Korr

(5.35e)

∇ ·A(r) = 0 (5.35f)

∇2A(r) =
1

c2
∂2

∂t2
A(r)− µ0

∑
λ

j
(T)
λ (r) (5.35g)

∇2Φ(r) = − 1

ε0
ϱ(r) (5.35h)

Dabei bezeichnet j(T) den transversalen Anteil der Stromdichte.
Die Au�istung der Terme 5.35a-5.35e hat folgenden Hintergrund: Bei der Anwendung

dieser Gleichungen auf ein bestimmtes System kann es sinnvoll sein, nicht alle Terme
zu berücksichtigen. In Systemen, wo beispielsweise die Retardierung keine Rolle spielt,
kann die Termgruppe 5.35c aus der Bewegungsgleichung für fλk (r) und die Gleichun-
gen 5.35f-5.35g aus dem Gleichungssystem gestrichen werden. Ebenso kann durch �Ein-
/Ausschalten� der Terme ermittelt werden, welche Bedeutung diese für die Dynamik des
Plasmas in einem bestimmten System haben.
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5. Wigner-Maxwell Gleichungen

5.1.6. Anwendung auf metallische Nanostrukturen

Die Wigner-Maxwell Gleichungen sollen nun verwendet werden, um die gesamten Metal-
lelektronen einer metallischen Nanostruktur im Lichtfeld zu beschreiben. Die Herleitung
dieser Gleichungen im Fourierraum impliziert, dass die zu beschreibenden Strukturen im
realen Raum periodisch angeordnet sind. Diese Periodizität kommt über den Basiswechsel
bei den Feldoperatoren 5.7,5.8 und der (dazu passenden) Entwicklung des Vektorpoten-
tials in ebenen Wellen A(r) → Aq ins Spiel.
Um eine Isolation der Strukturen von ihren Nachbarn zu erzielen, muss das Zellvo-

lumen V, in dem je eine Struktur enthalten ist, entsprechend groÿ gewählt werden, bis
beispielsweise die longitudinalen elektrischen Felder über die Distanz im Vakuum ge-
nügend abgeklungen sind und keinen Ein�uss auf die Bewegung der Elektronen in der
Nachbarzelle mehr haben. Den E�ekt der transversalen Felder auf diese Weise zu verhin-
dern ist zwar auf gleiche Weise möglich, aber da diese nur mit 1/r im Raum abfallen,
nur durch sehr groÿe Zellvolumen erreichbar. Dies kann in der numerischen Lösung die-
ser Gleichungen zu einem zentralen technischen Problem werden. Dabei wird dann auch
klar de�niert, was unter einem �groÿen� Zellvolumen zu verstehen ist, da verfügbarer
Speicherplatz und Rechenzeit die Grenzen festlegen.
Für die metallischen Nanostrukturen soll hier wieder das Jellium-Modell zum Einsatz

kommen, d.h. die Ionendichte ni(r) ist zeitlich konstant und legt die Form der Struktur
fest. In den Wignergleichungen kann deshalb der Index λ weggelassen werden, da ab jetzt
nur noch das Elektronengas von diesen Gleichungen beschrieben wird. Entsprechend gilt
nun:

λ ≡ e

λ̄ ≡ i

Wie oben bereits angedeutet, können die Wigner-Maxwell Gleichungen in unterschiedli-
cher Komplexität zum Einsatz kommen. Ein Ziel dieser Arbeit besteht darin zu ermit-
teln, welche Terme unter welchen Umständen weggelassen werden können. Im Hinblick
auf die numerische Umsetzung dieser Gleichungen werden verschiedene �Ausbaustufen�
betrachtet, die in Tabelle 5.1.6 aufgeführt sind. Als �Relaxation� wird hier ein Prozess,
der die Elektronen abbremst und asymptotisch im elektronischen Grundzustand endet,
bezeichnet. In Festkörpern spielt sich dieser Prozess in Form von Streuung der Elektronen
untereinander und mit Gitterphononen ab. Der Korrelationsterm �C,Korr� hat die Auf-
gabe, die Streuung der Elektronen untereinander zu beschreiben. Da im Jellium-Modell
allerdings kein Kristallgitter und somit auch keine Gitterphononen existieren, kann dieser
Relaxationsprozess nur unvollständig von diesen Gleichungen beschrieben werden.
Für die Berechnung der Grundzustandsdichte ist ein solcher Relaxationsmechanismus

aber unverzichtbar: Diese Dichte lässt sich nämlich extrem einfach durch Lösung der
Gleichungen im Zeitbereich ermitteln, indem zunächst eine ungefähre Startdichte der
Elektronenverteilung vorgegeben wird (z.B. ne(r, t = 0) = ni(r) ist eine mögliche Start-
dichte). Anschlieÿend wartet man, bis sich ein Endzustand der Dichte eingestellt hat. Für
eine Simulation dieses Vorgangs wäre ein phänomenologisch beschriebener Relaxations-
mechanismus (wie die Drude-Streuung in Metallen) ideal, da die Dämpfungskonstante
künstlich hoch gewählt und somit die nötige Simulationsdauer stark reduziert werden
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5.1. Allgemeine Formulierung in drei Dimensionen

Stufe Terme Anwendung

1 kin + C,L Ein�uss statischer Felder untersuchen
2 kin + C,L + Relaxation Berechnung der Grundzustandsdichte
3 kin + C,L + C,HF + Relax. Ein�uss der Austauschwechselwirkung

auf die Grundzustandsdichte
4 kin + C,L + C,HF + Elektronendynamik im Lichtfeld

A · p + A2 (A2-Term vernachlässigbar?)
5 kin + C,L + C,HF + Berücksichtigung von Streuprozessen

C,Korr zwischen den Elektronen
6 (alle Terme) Validierung von und Vergleich mit

anderen Modellen

Tabelle 5.1.: Unterschiedlich komplexe Ausbaustufen der Wigner-Maxwell Gleichungen

kann. Der Endzustand muss natürlich unabhängig von diesem Vorgang und dessen Pa-
rametrisierung sein. Ansätze dazu werden im nächsten Abschnitt (5.1.7) gegeben.
Diese Methodik wurde ebenfalls bei der Berechnung der Grundzustandsdichte im Hy-

drodynamikmodell (s. Abb. 3.2) verwendet.

5.1.7. Phänomenologische Relaxationsterme

Der erste sinnvolle Ansatz besteht darin kleine Abweichungen der Verteilungsfunktion
vom Grundzustand zu betrachten:

fk(r, t) = f
(0)
k (r) + δfk(r, t) (5.36)

Im ungestörten System muss diese Abweichung zeitlich asymptotisch gegen Null gehen.
Daher kann in die Bewegungsgleichung für δf einfach ein Term der Form

−γ δfk(r, t), (5.37)

wobei γ eine Dämpfungskonstante ist, hinzugefügt werden. Leider kann diese Methode
o�ensichtlich nicht dafür verwendet werden, die Verteilungsfunktion des Grundzustands
f (0) überhaupt erst zu ermitteln. Wenn diese Verteilung aber erst mal vorliegt, bietet
der Term 5.37 die einfachst denkbare Möglichkeit an eine gedämpfte Dynamik für die
Verteilungsfunktion zu gelangen.
Ein weiterer Ansatz zur Dämpfung basiert auf der Annahme, dass im ungestörten

und gedämpften System das Geschwindigkeitsdichtefeld asymptotisch zeitlich gegen Null
gehen muss. Einen nicht verschwindenden Beitrag zum Geschwindigkeitsfeld an einem
Ort r erhält man immer dann, wenn die Verteilungsfunktion im k-Raum an diesem Ort
unsymmetrisch ist. Die Idee besteht daher darin, eine symmetrische Verteilung asympto-
tisch zu erzwingen, indem die Bewegungsgleichung für f um folgenden Term erweitert
wird:

−γ [fk(r, t)− f−k(r, t)] (5.38)

Wenn eine Asymmetrie in der Verteilung vorliegt, wird diese exponentiell zeitlich mit
Zeitkonstante γ−1 abgebaut.
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5. Wigner-Maxwell Gleichungen

Abbildung 5.1.: Nanodraht mit Radius a. Der Querschnitt zeigt das Betragsquadrat der
Wellenfunktion ϕ0(r⊥), die zum niedrigsten Subband gehört. Die Elek-
tronen können sich durch die Beschränkung auf das unterste Subband in
der yz-Ebene nicht bewegen.

5.2. Nanodrähte

In diesem Abschnitt sollen die Wigner-Maxwell Gleichungen für metallische Nanodrähte
entwickelt werden. Der Draht erstrecke sich entlang der x-Achse und besteht aus peri-
odisch zusammengesetzten Elementen der Länge L, die durch eine Ionendichte ni(r) cha-
rakterisiert sind. Die Bewegung in der Querschnittebene zum Draht ist quantisiert. Zur
Vereinfachung des Modells wird nur das energetisch niedrigste Subband betrachtet, was
letztlich dazu führt, dass keine Bewegung in der Ebene möglich ist. Die Gleichungen, die
in den nächsten Unterkapiteln hergeleitet werden, sollen vor allem in numerischen Simu-
lationen benutzt werden können. Um die Komplexität möglichst gering zu halten, werden
hier nur statische Coulombfelder berücksichtigt und das Vektorpotential des Lichtfeldes
wird ausser Acht gelassen. Um elektronische Anregungen im Draht zu erzeugen, dient ein
eindimensionales Störpotential vP im Draht. Dessen Wirkung entspricht dem eines elek-
trostatischen Feldes entlang des Drahtes mit einer so schwachen Zeitabhängigkeit, dass
Retardierungse�ekte nicht beachtet werden müssen. In diesem Zusammenhang sollten
Gleichungen, die in den nächsten Kapiteln hergeleitet werden, besser als Wigner-Poisson
Gleichungen bezeichnet werden.

Es besteht ein wesentlicher Unterschied zwischen den hier betrachteten Nanodräh-
ten und jenen, welche in Kapitel 3.3 über die DFT beschrieben werden: Hier wird nur
die Bewegung der Elektronen entlang des Drahtes beschrieben, wohingegen die DFT-
Rechnungen nur die Bewegung in der Querschnittsebene berücksichtigt haben. Lässt
man den Radius a des Drahtes gegen Unendlich gehen, sollten sich die Berechnungen mit
den DFT-Rechnungen von Metall�lmen (s. Kap. 3.1) vergleichen lassen.
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5.2. Nanodrähte

5.2.1. Hamiltonoperator

Der Hamiltonoperator für den Nanodraht ist ähnlich wie der in Gl. 5.6 aufgebaut. Die
Bestandteile sind selbsterklärend:

Ĥkin = −
∑
s

∫
d3r Ψ̂†(r, s)

~2

2me
∇2Ψ̂(r, s) (5.39a)

ĤC =
1

2

∑
s,s′

∫
d3r

∫
d3r′ Ψ̂†(r, s)Ψ̂†(r′, s′)U(|r− r′|)Ψ̂(r′, s′)Ψ̂(r, s) (5.39b)

Ĥei
C = −

∑
s,s′

∫
d3r

∫
d3r′Ψ̂†(r, s)ni(r

′)U(|r− r′|)Ψ̂(r, s) (5.39c)

ĤP =
∑
s

∫
d3rΨ̂†(r, s)vP(r, t)Ψ̂(r, s) (5.39d)

Ĥ = Ĥkin + Ĥe
C + Ĥei

C + ĤP (5.40)

Der Draht ist zunächst wie alle physikalischen Systeme dreidimensional. Im nächsten
Kapitel wird gezeigt, wie die Symmetrie des Systems zur Vereinfachung der Gleichungen
genutzt werden kann.

5.2.2. Eindimensionale Impulsbasis

Es wird zunächst ein vollständiger Satz von orthonormalen Funktionen benötigt, mit
denen der Nanodraht besonders einfach beschrieben werden kann. Die Zylindersymmetrie
und die unendliche (L-periodische) Ausdehnung entlang der x-Achse legen folgende Form
der Wellenfunktionen nahe:

ψn,k,σ(x, r⊥, s) =
1√
L
ϕn(r⊥)e

−ikxδs,σ,

∫
d2r⊥ϕ

∗
n1
ϕn2

= δn1,n2
(5.41)

Das Zahlentupel n enthält bei Zylindersymmetrie die Quantenzahlen (l,m) und die Quan-
tenzahl k charakterisiert die ebene Welle entlang des Drahtes. Für diese Funktionen kön-
nen z.B. die Eigenfunktionen des e�ektiven Potentials des Drahtes gewählt werden. Die
Quantenfeldoperatoren können in dieser Basis entwickelt werden:

Ψ̂(r, s) =
1√
L

∑
n,k

ϕ∗n(r⊥)e
ikxân,k,s (5.42a)

Ψ̂†(r, s) =
1√
L

∑
n,k

ϕn(r⊥)e
−ikxâ†n,k,s (5.42b)

Die Entwicklung kann nun in die Operatoren 5.39a-5.39d eingesetzt werden. Dabei wird
von der bereits erwähnten Beschränkung auf das unterste Subband Gebrauch gemacht.
Die folgende Rechnung zeigt exemplarisch, wie diese im Fall des kinetischen Anteils Ĥkin
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aussieht:

Ĥkin = −
∑
s

∫
d3r Ψ̂†(r, s)

~2

2me
∇2Ψ̂(r, s)

= − ~2

2me

1

L

∑
s

∑
n1,k1

∑
n2,k2∫

d3r ϕ∗n1
e−ik1x

(
(ik2)

2eik2xϕn2
+ eik2x∂2r⊥ϕn2

)
â†n1,k1,s

ân2,k2,s

Beschränkung auf unterstes Subband (n1, n2 → 0):

Ĥkin = − ~2

2me

1

L

∑
s

∑
k1,k2

∫
d3r ϕ∗0e

−ik1x
(
(ik2)

2eik2xϕ0 + eik2x∂2r⊥ϕ0

)
â†k1,sâk2,s

= − ~2

2me

1

L

∑
s

∑
k1,k2

[∫
dxe−ik1x(ik2)

2eik2x
∫
d2r⊥ ϕ

∗
0ϕ0

+

∫
dxe−ik1xeik2x

∫
d2r⊥ ϕ

∗
0∂

2
r⊥
ϕ0

]
â†k1,sâk2,s

= − ~2

2me

1

L

∑
s

∑
k1,k2

[
(ik2)

2Lδk1,k2 + Lδk1,k2T⊥
]
â†k1,sâk2,s

= − ~2

2me

∑
s

∑
k

(−k2 + T⊥)â
†
k,sâk,s

=
∑
s

∑
k

εkâ
†
k,sâk,s mit εk :=

~2[k2 − T⊥]

2me

Der orthogonale Anteil ϕ0 der Basisfunktionen führt zu einer Konstante T⊥, die in die
Gröÿe εk integriert wurde. Wenn man statt des Drahtes einen Metall�lm beschreiben
will, gilt ϕ0 = 1 und die Konstante T⊥ verschwindet.
Für die restlichen Operatoren 5.39b-5.39d zeigt sich ebenfalls, dass die Berücksichti-

gung des orthogonalen Anteils ϕ0 über Korrekturen an den Matrixelementen, welche aus
Herleitungen für ein eindimensionales System stammen, möglich ist. Letztlich bedeutet
das, dass für den Nanodraht anstelle der Entwicklung 5.42a-5.42b für die Feldoperatoren
direkt die eindimensionale Impulsbasis gewählt werden kann:

Ψ̂(x, s) =
1√
L

∑
k

eikxâk,s (5.43a)

Ψ̂†(x, s) =
1√
L

∑
k

e−ikxâ†k,s (5.43b)

Die Spinquantenzahl s wird ab hier gelegentlich im Verbundindex k untergebracht, wenn
es der Übersichtlichkeit dient:

(k, s) → k
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Da sich das System L-periodisch entlang der x-Achse fortsetzt, sind folgende diskrete
Werte für die Quantenzahl k erlaubt:

k ∈
{
2π

L
n, n ∈ Z

}
(5.44)

Durch Einsetzen der Feldoperatoren 5.43a-5.43b lassen sich nun die eindimensionalen
Versionen der Operatoren 5.39a-5.39d formulieren:

Ĥkin =
∑
k

εkâ
†
kâk mit εk :=

~2(k2 − T⊥)

2me
(5.45a)

ĤC =
1

2

∑
k,k′,q

Uqâ
†
kâ

†
k′ âk′+qâk−q (5.45b)

Ĥei
C = −

∑
k,k′,q

ni(q)Uqâ
†
kâk+q (5.45c)

ĤP(t) =
∑
k,q

vP(q, t)â
†
kâk+q (5.45d)

Die Form des Drahtes (d.h. der ϕ0-Anteil) steckt in den Matrixelementen Uq (s. Kap.
5.2.3). Bei dem Matrixelement vP fällt dagegen der ϕ0-Anteil raus (s. Kap. 5.2.4).

5.2.3. Coulombmatrixelemente

Es wird von der dreidimensionalen Yukawa-Form der Coulombwechselwirkung ausgegan-
gen1:

v(r, κ) =
q2e

4πε0

e−κr

r
(5.46)

Die folgende Herleitung zeigt nur die wesentlichen Schritte (siehe z.B. Anhang 1 in [17]).
Mit |n, k, σ⟩ wird ein Zustand bezeichnet, dessen Wellenfunktion die Form aus Glei-
chung 5.41 hat. Wegen der Beschränkung auf das unterste Subband wird zur Abkürzung
|k, σ⟩ := |0, k, σ⟩ de�niert.
Unter Berücksichtigung der Impulserhaltung lässt sich das Matrixelement Uq über

folgenden Ausdruck berechnen:

Uq(κ) =
q2e

4πε0
⟨1; k + q, σ|⟨2; k − q, σ|e

−κr̂12

r̂12
|2; k, σ⟩|1; k, σ⟩, r̂12 = |r̂1 − r̂2| (5.47)

An dieser Stelle kann von der Fouriertransformation von e−κr12/r12 Gebrauch gemacht
werden:

e−κr12

r12
=

∫
d3q

2π

3
4π

q2 + κ2
eiq·(r1−r2) (5.48)

1Die Verwendung einer abgeschirmten Coulombwechselwirkung hat sich bei den DFT-Rechnungen als
nützliches Werkzeug erwiesen (s. Kap. 6.1.7) und soll daher hier ebenfalls berücksichtigt werden
können.
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Das Matrixelement ist dann gegeben durch:

Uq(κ) =
q2e

4πε0

∫
dq⊥
(2π)2

4π

q2⊥ + q2 + κ2
|F (q⊥)|2 (5.49)

F (q⊥) =

∫
d2r⊥|ϕ0(r⊥)|2e−iq⊥·r⊥

Die Gröÿe |F (q⊥)|2, welche die Dichte |ϕ0(r⊥)|2 im Querschnitt beschreibt, wird als
Formfaktor bezeichnet. Für einen Draht mit Radius a und gaussförmiger Wellenfunktion
im Querschnitt (s. Abb. 5.1) erhält man:

ϕ0(r⊥) =

√
2

πa2
e−r

2
⊥/a

2
(5.50a)

⇒ Uq(κ) = − q2e
4πε0

e(q
2+κ2)a2Ei(−[q2 + κ2]a2) (5.50b)

Bei �Ei(x)� handelt es sich um die Exponential-Integral Funktion2.

5.2.4. Matrixelemente des Störpotentials

Das Störpotential sei im Ortsraum nur von x und t abhängig und durch eine L-periodische
Funktion fp(x, t) gegeben:

vp(r, t) = fp(ex · r, t) (5.51)

Um zu zeigen, dass dadurch der ϕ0-Anteil der Wellenfunktion keinen Ein�uss auf das
Matrixelement vP hat, wird nochmals bei dem Operator in Gl. 5.39d angesetzt:

ĤP =
∑
s

∫
d3rΨ̂†(r, s)vP(r, t)Ψ̂(r, s)

=
1

L

∑
s

∑
k1

∑
k2

∫
d3r ϕ0(r⊥)e

−ik1xfp(ex · r, t)ϕ∗0(r⊥)eik2xâ
†
k1,s

âk2,s

=
1

L

∑
s

∑
k1

∑
k2

∫
dx e−i[k1−k2]xfp(x, t)â

†
k1,s

âk2,s

=
∑
s

∑
k1

∑
k2

vp(k1 − k2, t)â
†
k1,s

âk2,s

=
∑
k,q

vP(q, t)â
†
kâk+q (Verbundindexschreibweise)

Das Matrixelement vp(q, t) ist dabei als folgender Fourierreihen-Koe�zient gegeben:

vp(q, t) =
1

L

∫ L/2

−L/2
fp(x, t)e

−iqxdx (5.52)

In einer numerischen Simulation des Nanodrahtes würde man vermutlich fp im Ortsraum
vorgeben wollen, so dass man die Matrixelemente vp(q, t)mittels (diskreter) Fouriertrans-
formation berechnen muss.
2Def.: Ei(x) = −

∫∞
−x dt

e−t

t
, s. [61]

98



5.2. Nanodrähte

5.2.5. Bewegungsgleichung der Kohärenzenmatrix

Die Herleitung der Bewegungsgleichung ist in Anhang A.5.1 gegeben. Die Gleichung
lautet in Hartree-Fock Näherung:

i~
∂

∂t
⟨â†kâk′⟩ ≈ (εk′ − εk)⟨â†kâk′⟩

− Σk,k′

+
∑
q

{UqL[ne(q)− ni(q)] + vP(q, t)}
(
⟨â†kâk′−q⟩ − ⟨â†k+qâk′⟩

)
(5.53)

Der Austauschterm Σk,k′ wird in Gl. A.32 de�niert.

5.2.6. Observablen

Für ein eindimensionales System wie dem Nanodraht besteht die Möglichkeit, die Kohä-
renzenmatrix anstelle der Wignerverteilung in einer numerischen Simulation zu betrach-
ten. Damit können z.B. die Näherungen, welche bei der Transformation in das Wignerbild
(Kap. 5.2.8) gemacht werden, untersucht werden. Daher werden in diesem Abschnitt ei-
nige der wichtigsten Observablen aufgeführt, welche ansonsten aus den Momenten der
Wignerverteilung berechnet werden würden:

• Teilchendichte:

⟨n̂(r)⟩ = ⟨Ψ̂†(r)Ψ̂(r)⟩ =
∑
q

eiqx⟨n̂(q)⟩

=
1

L

∑
q

eiqx

(∑
l

⟨â†l âl+q⟩

)
(5.54)

• Stromdichte:

⟨̂jP(q)⟩ =
~
m

∑
k

(
k +

q

2

)
⟨â†k−qâk⟩ (5.55)

Da kein Vektorpotential A vorhanden ist, ergibt sich nur ein paramagnetischer
Strom und der diamagnetische Anteil entfällt.

• Gesamtenergie:

Eges = ⟨Ĥ⟩
= ⟨T̂ ⟩+ ⟨V̂ ⟩

=
∑
k

(
~2k2

2me
⟨â†kâk⟩

)
+ ⟨V̂e,e⟩+ ⟨V̂e,i⟩ (5.56)

Die potentielle Energie innerhalb des Elektronengases ist gegeben durch eine Sum-
me von 4-Punkt Erwartungswerten. Diese werden in Hartree-Fock Näherung ap-
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5. Wigner-Maxwell Gleichungen

Abbildung 5.2.: Ausschnitt aus der Kohärenzenmatrix ⟨â†i âj⟩. Die Indizes i, j stehen für
Zeilen- und Spaltenindex. Mit der Hilfsgröÿe ρq(k) (s. Gl. 5.60) bewegt
man sich auf der q-ten Nebendiagonalen. Mit q > 0 bewegt man sich
innerhalb der unteren- und mit q < 0 auf der oberen Dreiecksmatrix.

proximiert:

⟨V̂e,e⟩ =
1

2

∑
s,s′
k,k′,q

Uq⟨â†k,sâ
†
k′,s′ âk′+q,s′ âk−q,s⟩

≈ 1

2

∑
s,s′
k,k′,q

Uq⟨â†k,sâ
†
k′,s′ âk′+q,s′ âk−q,s⟩S

=
1

2

∑
s,s′
k,k′,q

Uq

(
⟨â†k,sâk−q,s⟩⟨â

†
k′,s′ âk′+q,s′⟩ − ⟨â†k,sâk′+q,s′⟩⟨â

†
k′,s′ âk−q,s⟩

)

=
L

2

∑
q

Uq⟨n̂(−q)⟩⟨n̂(q)⟩ −
1

2

∑
q

∑
s,s′
k,k′

Uq⟨â†k,sâk′+q,s′⟩⟨â
†
k′,s′ âk−q,s⟩(5.57)

Die potentielle Energie zwischen beiden Teilchensorten ist gegeben durch:

⟨V̂e,i⟩ = −
∑
q

UqL ⟨n̂(−q)⟩ ni(q) (5.58)

5.2.7. Eigenschaften der Kohärenzenmatrix

Die Eigenschaften der Kohärenzenmatrix sind für numerische Simulationen, welche direkt
bei der Bewegungsgleichung 5.53 dieser Matrix ansetzen, besonders relevant.
Als erstes soll untersucht werden, wie man eine Teilchendichte n−(x) = ⟨n̂(x)⟩ mit ver-

schwindender Stromdichte vorgeben kann, da eine solche Kon�guration als Anfangsbe-
dingung dienen kann. Das Verschwinden der Stromdichte wird durch folgende Gleichung
ausgedrückt:

0 = ⟨ĵP(q)⟩ =
~
m

∑
k

(
k +

q

2

)
⟨a†k−qak⟩ ∀ q (5.59)

Dazu wird eine Hilfsgröÿe de�niert:

ρq(k) := ⟨â†k−qâk⟩ (5.60)
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5.2. Nanodrähte

Der Index q gibt die Nebendiagonale an entlang der man sich mit dem Argument k be-
wegt. Die Bedingung 5.59 für Erwartungswert der Stromdichte lautet unter Verwendung
dieser Hilfsgröÿe:

0 =
~
m

∑
k

(
k +

q

2

)
ρq(k) (k → k + q/2)

=
~
m

∑
k

kρq(k − q/2)

=
~
m

[∑
k>0

kρq(k − q/2)−
∑
k>0

kρq(−k − q/2)

]
(5.61)

Die Hilfsgröÿe ρq(k) muss für die Forderung ⟨ĵP(q)⟩ = 0 daher folgende Bedingung erfül-
len:

ρq(−q/2 + ξ) = ρq(−q/2− ξ) (5.62)

In Abbildung 5.2 be�nden sich die Matrixelemente mit ξ = 0 auf der rot gestrichelten
Diagonalen. Anschaulich liegt die Bedingung ⟨ĵP(q)⟩ = 0 dann vor, wenn die q-te Neben-
diagonale symmetrisch bezüglich des Matrixelementes ist, dass sich auf dieser Diagonalen
be�ndet.
Für die Fouriertransformierte der Ladungsdichte (s. Gl. 5.54) gilt:

⟨n̂(q)⟩ = 1

L

∑
l

⟨â†l−qâl⟩ =
1

L

∑
l

ρq(l) (5.63)

Die Summe über die q-te Nebendiagonale ergibt die Ladungsdichte. Damit ist nun klar,
wie im Prinzip ein Zustand mit verschwindender Stromdichte und vorgegebener Ladungs-
dichte in der Kohärenzenmatrix vorgegeben werden kann.
In einer zeitabhängigen Simulation des Nanodrahtes würde man zur Zeit t = 0 mit

einem elektronischen Grundzustand starten, der die Eigenschaften ⟨ĵP(q)⟩ = 0 als solcher
besitzen muss. Das Problem, diesen Zustand zu bestimmen, lässt sich mathematisch über
ein Variationsproblem formulieren:

δEges[ne(x)] = 0, Nebenbed.:
∫
ne(x) dx = Nel = Nion (5.64)

Die Energie Eges ist nach Gl. 5.56 zu berechnen. Die Variation enthält dabei zwei Variati-
onsschritte: Zunächst wird eine Ladungsdichte, die mit der Nebenbedingung kompatibel
ist, ausgewählt. Dann werden die q-ten Nebendiagonalen (inkl. Hauptdiagonale) unter
Berücksichtigung der Bedingung 5.63 so variiert, dass die Energie minimal ist.
Für die Numerik ist die Symmetrie der Kohärenzenmatrix des weiteren noch wichtig,

damit keine redundanten Informationen gespeichert werden müssen. Für den Erwartungs-
wert eines Operators b̂ gilt ⟨b̂⟩∗ = ⟨b̂†⟩ und daher gilt für die Matrixelemente:

⟨(â†kâl)
†⟩ = ⟨â†l âk⟩ = ⟨â†kâl⟩

∗ (5.65)

Die Matrix ist also hermitesch und es muss nur eine Dreieckshälfte gespeichert werden.
Die Besetzungen ⟨â†kâk⟩ (d.h. die Diagonalelemente) müssen reellwertig sein und auf-

grund des Pauli-Prinzips die Bedingung 0 ≤ ⟨â†kâk⟩ ≡ ⟨â†k,sâk,s⟩ ≤ 1 erfüllen.
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5. Wigner-Maxwell Gleichungen

5.2.8. Transformation in das Wignerbild

Die Herleitung ist in Kapitel A.5.2 gegeben. Dazu werden die Hin- und Rücktransforma-
tionen für die Wignerfunktion benötigt:

f(x, k) =
∑
q

eiqx⟨â†k−q/2âk+q/2⟩ (5.66a)

⟨â†kâk′⟩ =
1

L

∫
e−i(k

′−k)xf(x, [k + k′]/2)dx (5.66b)

Die Bewegungsgleichung der Wignerverteilung lautet insgesamt:

∂

∂t
f(x, k) =

∂

∂t
f(x, k)

∣∣∣∣
kin

+
∂

∂t
f(x, k)

∣∣∣∣
H

+
∂

∂t
f(x, k)

∣∣∣∣
F

+
∂

∂t
f(x, k)

∣∣∣∣
P

≈ − ~k
me

∂

∂x
f(x, k)

+
qe
~
∂

∂x
Φ(x) · ∂

∂k
f(x, k)

+
|qe|
~

([∂k∆εk(x)] · [∂xf(x, k)]− [∂x∆εk(x)] · [∂kf(x, k)])

+
1

~
∂

∂x
vP(x) ·

∂

∂k
f(x, k) (5.67)

Aufgrund der Gradientenentwicklung (Gl. A.38) im Hartree-, Fock- und Störterm handelt
es sich um eine Näherung3 der Bewegungsgleichung.

3Das Fehlen des Korrelationsterms stellt natürlich eine weitere Näherung dar.
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5.3. Wigner-Poisson System

5.3. Wigner-Poisson System

In Kapitel 5.3.1 wird die Herleitung der eindimensionalen Wigner-Poisson Gleichungen
skizziert. Dieses fundamentale System von Gleichungen stellt eine starke Vereinfachung
der Wigner-Maxwell Gleichungen dar, bei der Austausch und Korrelation der Teilchen
sowie die Retardierung vernachlässigt werden. In Kapitel 5.3.2 wird das Quantenmecha-
nische Hydrodynamik-Modell (QHD) aus [22, 23] vorgestellt und dessen Stärken und
Schwächen im Vergleich zu den Wigner-Poisson Gleichungen und DFT-Rechnungen er-
läutert.

5.3.1. Herleitung

Ein Ensemble von M Systemen mit N fermionischen Teilchen wird durch eine Dichte-
matrix ρ̂ beschrieben:

ρ̂(t) =
M∑
α=1

pα|ψα(t)⟩⟨ψα(t)| (5.68)

ψα(r1, . . . , rN , t) = ⟨r1, . . . , rN |ψα(t)⟩ (5.69)

Die N -Teilchen-Wignerverteilung hat 2N + 1 Argumente:

fN (x1, v1, .., xN , vN , t) = N
( me

2π~

)N M∑
α=1

pα

∫
dNs exp

(
ime

∑N
i=1 visi
~

)
×ψ∗

α(x1 + s1/2, ..., xN + sN/2, t)

×ψα(x1 − s1/2, ..., xN − sN/2, t) (5.70)

Diese hat folgende Normierungseigenschaft:∫
dNx

∫
dNv fN (x1, v1, .., xN , vN , t) = N (5.71)

Um Systeme von identischen Fermionen zu beschreiben, müssen die N -Teilchen Wellen-
funktionen die entsprechende Antisymmetrie aufweisen. Über die Schrödingergleichung
kann nun die Dynamik der Verteilung hergeleitet werden:

i~
∂ψα
∂t

= − ~2

2me

N∑
j=1

∂2ψα
∂x2j

+ V (x1, .., xN )ψα (5.72)

Die potentielle Energie soll speziell folgende Form haben, wie sie für Systeme mit Cou-
lombwechselwirkung vorliegt:

V (x1, .., xN ) =
∑
i<j

W (|xi − xj |) (5.73)
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5. Wigner-Maxwell Gleichungen

In diesem Fall kommt man auf folgende Bewegungsgleichung für die Ein-Teilchen Wig-
nerverteilung:

∂f

∂t
= −v1

∂f

∂x1
− ime

2π~2

∫
ds1dv

′
1dx2dv

′
2

× exp

(
− ime[v

′
1 − v1]s1
~

)
×
(
W (|x1 − x2 + s1/2|)−W (|x1 − x2 − s1/2|)

)
×f (2)(x1, v′1, x2, v′2, t) (5.74)

Wie man sieht, hängt die Dynamik der Ein-Teilchen Verteilungsfunktion f von der
Zwei-Teilchen Verteilungsfunktion f (2) ab. Hier liegt die quantenmechanische Form der
BBGKY-Hierarchie vor, bei der jeweils die Verteilung f (n) von f (n+1) abhängt [62].
Dieses Hierarchieproblem kann durch Vernachlässigung der Korrelationen gelöst wer-

den:

f (2)(x1, v1, x2, v2, t) = f(x1, v1, t)f(x2, v2, t) (Hartree mean �eld - Näherung) (5.75)

Die Verteilung f hängt mit einem (selbst-konsistenten) Potential Wsc zusammen:

Wsc(x, t) =

∫
dx′
∫
dvf(x′, v, t)W (|x− x′|)

=

∫
dx′n(x′, t)W (|x− x′|)

Mit Hilfe des Funktionales K

K[Wsc|v′1 − v1, x1, t] = − ime

2π~2

∫
ds1 exp

(
− ime[v

′
1 − v1]s1
~

)
×
[
Wsc

(
x1 +

s1
2
, t
)
−Wsc

(
x1 −

s1
2
, t
)]

(5.76)

und der Hartree-Faktorisierung von f (2) (Gl. 5.75) kann die Bewegungsgleichung 5.74
formuliert werden:

∂f

∂t
+ v1

∂f

∂x1
=

∫
dv′1K[Wsc|v′1 − v1, x1, t] f(x1, v

′
1, t) (5.77)

Am Ende steht dasWigner-Poisson System da (welches auch unter dem Namen �Quan-
ten Vlasov System� bekannt ist):

∂f

∂t
+ v

∂f

∂x
=

∫
dv′K[Wsc|v′ − v, x, t] f(x, v′, t) (5.78a)

∂2ϕ

∂x2
= − qe

ε0

(∫
dv f(x, v, t)− n0

)
(Wsc = qeϕ) (5.78b)

In der Poissongleichung wurde eine homogene, feste Hintergrundladungsdichte −qen0
hinzugefügt.
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5.3.2. Fluidmodell für ein Quantenplasma

Die Wigner-Poisson Gleichung ist für viele Anwendungen zu unhandlich, da es sich um
eine Integro-Di�erentialgleichung handelt, der 2 · d-dimensionale Phasenraum diskreti-
siert werden muss und die Verteilungsfunktion mehr Informationen enthält, als man
eigentlich benötigt. Daher liegt es nahe, ein makroskopisches Modell basierend auf der
Wigner-Poisson Gleichung zu entwickeln, das die wesentlichen Quantene�ekte beibehält
und gleichzeitig numerisch leichter zugänglich ist.
Die Informationen, welche man aus der Verteilungsfunktion für makroskopische Syste-

me benötigt, ergeben sich aus den Momenten der Verteilung:

n(x, t) =

∫
f(x, v, t) dv : Teilchendichte (5.79a)

u(x, t) =
1

n(x, t)

∫
fv dv : mittlere Geschwindigkeit (5.79b)

P (x, t) = me

(∫
fv2 dv − nu2

)
: Druck (5.79c)

Durch Einsetzen der Gleichung 5.78a in 5.79a,5.79b erhält man eine Kontinuitätsglei-
chung für die Teilchendichte und eine Euler-Gleichung, wie sie aus der Fluiddynamik
bekannt ist:

∂n

∂t
+
∂(nu)

∂x
= 0 (5.80a)

∂u

∂t
+ u

∂u

∂x
= − qe

me

∂ϕ

∂x
− 1

men

∂P

∂x
(5.80b)

Der Druckterm in Gleichung 5.80b enthält die quantenmechanisch bedingten Abweichun-
gen von einem klassischen Modell. Die Aufschlüsselung dieses Druckterms erfolgt in [22]
anhand der Äquivalenz des Wigner-Poisson Systems und des Schrödinger-Poisson Sys-
tems [63]. Letzteres ist gegeben durch:

i~
∂ψα
∂t

= − ~2

2me

∂2ψα
∂x2

+ qeϕψα, α = 1, . . . ,M (5.81a)

∂2ϕ

∂x2
= − qe

ε0

(
N

M∑
α=1

pα|ψα(x, t)|2 − n0

)
(5.81b)

Der Zusammenhang zwischen der Verteilungsfunktion des statistischen Ensembles aus
M Systemen und den einzelnen Wellenfunktionen mit Gewichtung pα ist bereits in Gl.
5.70 gegeben worden.
Mit der Äquivalenz beider Systeme lässt sich zeigen, dass der Druckterm folgenderma-

ÿen über die Wellenfunktionen ausgedrückt werden kann:

P =
N~2

4me

M∑
α=1

pα

(
2

∣∣∣∣∂ψα∂x
∣∣∣∣2 − ψ∗

α

∂2ψα
∂x2

− ψα
∂2ψ∗

α

∂x2

)

+
N2~2

4men

[
M∑
α=1

pα

(
ψ∗
α

∂ψα
∂x

− ψα
∂ψ∗

α

∂x

)]2
(5.82)
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Als nächstes wird die Wellenfunktion in Polardarstellung eingesetzt:

ψα(x, t) = Aα(x, t)e
iSα(x,t)/~ (5.83)

Damit kann man zeigen, dass sich der Druck aus folgenden Anteilen zusammensetzt:

P =


Pk = men

2

∑
α,β p̃αp̃β(uα − uβ)

2 : kinetischer Druck
+ Posm = men

2

∑
α,β p̃αp̃β(u

o
α − uoβ)

2 : osmotischer Druck
+ PQ = − ~2n

4me

∂2

∂x2
lnn : quantenmech. Druck

(5.84)

Dabei ist uα die kinetische- und uoα die osmotische4 Geschwindigkeit:

uα =
1

me

∂Sα
∂x

, uoα =
~
me

∂Aα/∂x

Aα
(5.85)

Die neuen Gewichtungen p̃α hängen folgendermaÿen mit den bisher verwendeten Gewich-
tungen pα zusammen:

p̃α =
NpαA

2
α

n
(5.86)

Im klassischen Limes ~ → 0 verschwinden die Anteile Posm und PQ.

∗

Da der Druck P nur über Kenntnis der mikroskopischen Wellenfunktionen ψα berechnet
werden kann, liegt bis jetzt noch keine makroskopische Beschreibung des Elektronengases
vor.
Der entscheidende Schritt besteht nun darin, die Anteile Pk und Posm durch einen

neuen, �klassischen� Term Pc zu ersetzen, welcher nur von der Dichte n abhängt5:

P = Pk + Posm + PQ

= Pc(n)−
~2n
4me

∂2

∂x2
lnn (5.87)

Wie in [22] gezeigt wird, lässt sich damit die Quanten Euler Gleichung formulieren,
welche für ~ → 0 in die klassische Euler-Gleichung der Fluiddynamik übergeht:

∂u

∂t
+ u

∂u

∂x
= − 1

men

∂Pc(n)

∂x
− qe
me

∂ϕ

∂x
+

~2

2m2
e

∂

∂x

(
1√
n

∂2
√
n

∂x2

)
(5.88)

Zur Untersuchung ultraschnell ablaufender Phänomene wäre für Pc(n) eine adiabatische
Zustandsgleichung sinnvoll, da sich kein thermisches Gleichgewicht auf den betrachteten
Zeitskalen einstellen kann.
4s. [64]
5Der Ansatz wird über die Dichtefunktionaltheorie motiviert (s. S.361-362 in [22]) und hat vermutlich
eine ähnliche Gültigkeit wie die ALDA-Näherung (s. Kap. 2.2.2).

106



5.3. Wigner-Poisson System

Der ganz rechts stehende Term in Gleichung 5.88 wird als �Bohm Potential� bezeichnet:

VBohm =
~2

2m2
e

∂

∂x

(
1√
n

∂2
√
n

∂x2

)
(5.89)

In [65] wird gezeigt, dass dieser Term speziell für Nanostrukturen die gleiche Bedeutung
wie der Fermi-Druck des semiklassischen Modells (Gl. 1.6b) hat. In aktuellen Publika-
tionen (z.B. [12]) fehlt dieser Term in den gezeigten Modellrechnungen. Zur Veri�kation
der bisherigen Ergebnisse, die nur den Fermi-Druck berücksichtigen, sollte in zukünftigen
Arbeiten die Bedeutung des Bohm Potentials genauer untersucht werden.
Die Limitierungen dieses Modells [65] sind Folgende:

• Das Modell ist nur auf Längenskalen l > λF (Thomas-Fermi Abschirmlänge, s. Gl.
1.10) gültig. Daher zeigen die Ergebnisse für die elektronische Grundzustandsdichte
eines Metall�lms (s. Abbildungen 1 und 2 in [65]) auch keine Friedel-Oszillationen
(s. Kap. 3.1.2).

• Das Phänomen der Landau-Dämpfung, welches in den Wigner-Poisson Gleichungen
noch enthalten ist [59], fehlt in der makroskopischen Beschreibung.

Als zentrale Verbesserung des Modells wird in [65] noch das Hinzufügen eines Dämp-
fungsterms, wie er bereits in Gl. 1.6b enthalten ist, vorgeschlagen.
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6. Numerik

6.1. Lösungsverfahren für stationäre Kohn-Sham
Gleichungen

6.1.1. Problemübersicht

Die zeitunabhängigen Kohn-Sham Gleichungen haben aus numerischer Sicht folgende
Struktur: {

ĤKS[n
−]ϕj(r) = εjϕj(r)

}N
j=1

(6.1a)

n−(r) =

N∑
j=1

wj |ϕj(r)|2 (6.1b)

Bei ĤKS[n
−] handelt es sich um einen linearen Operator, welcher allerdings in nicht-

linearer Form von der Teilchendichte n−(r) abhängig ist. Die Lösung dieser Gleichungen
hat die Eigenschaft, dass die �Eingabedichte� n− in Gl. 6.1a mit der aus den Orbitalen
resultierenden Dichte in Gl. 6.1b übereinstimmt.
Dieses Problem wird numerisch folgendermaÿen gelöst: Für eine vorgegebene Einga-

bedichte n− stellt die Gleichung 6.1a ein gewöhnliches Eigenwertproblem dar. Eine Dis-
kretisierung mittels Finiter Di�erenzen macht aus dem Operator ĤKS[n

−] eine endlich
groÿe Matrix und aus der Orbitalfunktion ϕj einen Vektor:{

HKS[n
−]yj = εjyj

}N
j=1

(6.2)

Es werden die N niedrigsten Eigenwerte und Eigenfunktionen der Matrix HKS[n
−] be-

nötigt. Dieses numerische Eigenwertproblem kann im Prinzip mit einer breiten Palette
von Algorithmen [66] gelöst werden. Die Matrix HKS[n

−] verfügt aber über bestimmte
Eigenschaften, welche nur den Einsatz ganz spezieller Methoden erlaubt. Eine der derzeit
geeignetsten Methoden wird in Kapitel 6.1.2 beschrieben.
Wenn das Eigenwertproblem 6.1a für feste Eingabedichte gelöst werden kann, besteht

die nächste Aufgabe darin, genau die Dichte zu �nden, welche beide Gleichungen 6.1a
und 6.1b gleichzeitig erfüllt. Ein geeignetes Verfahren wird in Kapitel 6.1.5 präsentiert.
Beide Teilprobleme sind Gegenstand aktueller Forschung, wie an den Referenzen in

den nachfolgenden Kapiteln zu sehen sein wird. Hier gilt es einen Kompromiss zwischen
hoher E�zienz1 und angemessener Einarbeitungszeit zu �nden.

1Hohe E�zienz ist meistens gleichbedeutend mit der Verwendung neuester Algorithmen, die dann aber
nur für ganz spezielle Probleme geeignet sind.
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6.1.2. Propagation in Imaginärzeit

Die Matrix HKS[n
−] ist reellwertig, dünn-besetzt und symmetrisch. Die Anzahl von Zei-

len und Spalten ist gleich der Anzahl von Gitterpunkte des diskretisierten Simulations-
raums. In der Praxis liegt diese Anzahl meistens in der Gröÿenordnung 102 . . . 106. Für
102 . . . 103 können zur Diagonalisierung noch Verfahren benutzt werden, welche auch für
dicht-besetzte Matrizen entwickelt wurden. Für gröÿere Matrizen muss ausgenutzt wer-
den, dass diese dünn-besetzt sind und nur eine kleine Anzahl der niedrigsten Eigenwerte
und Eigenvektoren benötigt werden.
In dieser Arbeit wird das Eigenwertproblem mittels �Propagation in Imaginärzeit�

(ITP2) gelöst [67]: Dazu wird die zeitabhängige Schrödingergleichung in Imaginärzeit

τ = −it

formuliert:

−~
∂ψ

∂τ
= Ĥψ (6.3)

Der Operator Ĥ ist der zeitunabhängige Hamiltonoperator, zu dem das Eigenwertpro-
blem Ĥϕj = εjϕj gelöst werden soll (d.h. hier: Ĥ = ĤKS[n

−]). Der Propagationsoperator
in Imaginärzeit lautet entsprechend:

Û(∆τ) = e−∆τ Ĥ/~ (6.4)

Die Funktionsweise dieser Methode lässt sich über die Spektralzerlegung des Operators
Ĥ erläutern:

Ĥ =

∞∑
j=0

εj |ϕj⟩⟨ϕj | (εj < εj+1) (6.5)

(Zur Vereinfachung wird hier ein rein diskretes Spektrum ohne Entartung betrachtet.)
Wendet man nun den Propagator 6.4 auf einen Zustand |χ⟩ mit diversen spektralen
Anteilen an, erhält man für ∆τ → ∞ den Grundzustand |ϕ0⟩:

|χ⟩ = c0|ϕ0⟩+ c1|ϕ1⟩+ . . . (6.6)

Û(∆τ)|χ⟩ = c0 e
−∆τ Ĥ/~|ϕ0⟩+ c1 e

−∆τ Ĥ/~|ϕ1⟩+ . . .

= c0 e
−∆τ ε0/~|ϕ0⟩+ c1 e

−∆τ ε1/~|ϕ1⟩+ . . . (6.7)

Da ε0 der kleinste Eigenwert ist, verschwindet dieser spektrale Anteil von |χ⟩ am lang-
samsten. Zerlegt man das Propagationsintervall in N kleine Intervalle ∆τ = Nδτ und
normiert nach jedem Zeitschritt δτ den resultierenden Vektor, erhält man ein Extrakti-
onsverfahren, welches den Spektralanteil mit kleinstem Eigenwert aus |χ⟩ in normierter
Form für N → ∞ hervorbringt.

2engl.: imaginary time propagation

110



6.1. Lösungsverfahren für stationäre Kohn-Sham Gleichungen

Damit bleiben noch zur vollständigen Lösung des Eigenwertproblems 6.2 die Fragen
o�en, wie der Propagationsoperator 6.4 numerisch realisiert werden kann und wie man
nicht nur den Grundzustand von Ĥ sondern die ersten N Eigenzustände berechnen kann:
In [67] wird die Splitoperator-Methode �SO4� (s. Gl. 6.43) vorgeschlagen, um den Ope-

rator Û(∆τ) zu approximieren. Die Taylorreihenentwicklung 4. Ordnung (s. Gl. 6.38) hat
sich allerdings in dieser Arbeit für alle Eigenwertprobleme als völlig ausreichend erwiesen.
Wenn es auf aller höchste Performance ankommt, sollten die Analysen aus [67] berück-
sichtigt werden3 um die entscheidenden Optimierungen am verwendeten Algorithmus
einzubauen.
Die Berechnung der ersten N Eigenzustände erfordert ein spezielles Orthogonalisie-

rungsverfahren, welches im nächsten Kapitel beschrieben wird.

6.1.3. Orthogonalisierungsverfahren

Um die ersten N Eigenwerte und Eigenvektoren einer Matrix H mit der ITP-Methode zu
berechnen, macht man folgenden Ansatz: Man wählt N Startvektoren |χ(0)

0 ⟩, . . . |χ(0)
N ⟩,

welche jeweils über alle spektralen Anteile der Matrix H verfügen. Das erzielt man da-
durch, dass man die zugehörigen Vektordarstellungen dieser Vektoren mit Zufallszahlen
vorbesetzt. Im Prinzip geht man dann einfach so vor, dass diese Vektoren jeweils alle um
einen kleinen Zeitschritt δτ propagiert und anschlieÿend untereinander orthogonalisiert
und normiert werden:

|χ̃(0)
j ⟩ = Û(δτ)|χ(0)

j ⟩ Ortho.+Norm.−→ |χ(1)
j ⟩ (6.8)

Man erzeugt nach diesem Schema aus jedem Satz von Vektoren |χ(k)
j ⟩ einen neuen Satz

|χ(k+1)
j ⟩ von orthonormalen Vektoren. Naheliegender Weise würde man hier das Ortho-

gonalisierungsverfahren von Gram-Schmidt4 benutzen. Es ergeben sich nach genügend
Iterationen die gesuchten Eigenvektoren (aus denen auch die Eigenwerte als Erwartungs-
wert des Operator Ĥ berechnet werden können):

lim
k→∞

|χ(k)
j ⟩ = |ϕj⟩ (6.9)

Die Erfahrung mit der Gram-Schmidt Methode für die Systeme in Kapitel 3 hat aber
gezeigt, dass es zu erheblichen numerischen Genauigkeitsproblemen bei der Orthogo-
nalisierung kommt, und diese umso mehr zunehmen, je mehr Vektoren man berechnen
möchte. Dieses Problem wird auch in [67] beschrieben und ein spezielles Orthogonalisie-
rungsverfahren von Aichinger und Krotscheck [70] benutzt, das auf der Diagonalisierung
der Überlappmatrix M basiert.
Die Matrixelemente Mij der Überlappmatrix M sind gegeben durch:

Mij =
⟨
χ
(k)
i Û(δτ)

∣∣∣Û(δτ) χ
(k)
j

⟩
=
⟨
χ̃
(k+1)
i

∣∣∣χ̃(k+1)
j

⟩
(6.10)

3Die dort vorgestellte ITP-Implementation mit adaptiven Zeitschritten erweist sich sogar als noch
e�zienter als der legendäre ARPACK-Algorithmus: �Implicitly Restarted Lanczos Method� [68].

4s. z.B. Kapitel 1.7 in [69].
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(Der Unterschied zwischen χ und χ̃ ist an Gl. 6.8 ersichtlich.) Für diese Matrix wird ein
Eigenwertproblem aufgestellt: ∑

j

Mijc
(n)
j = mnc

(n)
i (6.11)

Die Koe�zienten c
(n)
j bilden den n-ten Eigenvektor c(n) zum Eigenwert mn. Die Di-

mension der Überlappmatrix ist wesentlich kleiner als die Anzahl der Gitterpunkte des
diskretisierten Simulationsraums. Diese Matrix kann daher mit generischen Algorithmen
(beispielsweise aus der lapack-Bibliothek) für dicht-besetzte Matrizen diagonalisiert wer-
den. Mit dem Ergebnis {mn, c

(n)} dieser Diagonalisierung wird nun ein neuer Satz von
Vektoren |χ(k+1)

j ⟩ (als Ergebnis des Schemas in Gl. 6.8) generiert:

|χ(k+1)
j ⟩ = 1

√
mj

∑
i

c
(j)
i |χ̃(k+1)

i ⟩ (6.12)

Mit einer Rechnung lässt sich schnell zeigen, dass diese Vektoren orthonormal sind:

⟨χ(k+1)
i |χ(k+1)

j ⟩ =
1

√
mimj

∑
n,l

c(i)n c
(j)
l ⟨χ̃(k+1)

n |χ̃(k+1)
l ⟩

=
1

√
mimj

∑
n,l

c(i)n c
(j)
l Mnl =

1
√
mimj

∑
n

c(i)n
∑
l

c
(j)
l Mnl︸ ︷︷ ︸

=mjc
(j)
n

=
mj√
mimj

∑
n

c(i)n c
(j)
n =

√
mj

mi
δij = δij (6.13)

Im nächsten Kapitel wird der fertige Algorithmus zur Diagonalisierung der Matrix HKS

unter Verwendung dieses speziellen Orthogonalisierungsverfahrens zusammengefasst.

6.1.4. ITP-basierter Diagonalisierungs-Algorithmus

Zur Lösung des Eigenwertproblems in Gl. 6.2 wurde für alle Ergebnisse aus Kapitel 3
dieser Algorithmus verwendet:

1. Startwellenfunktionen |χ(0)
j ⟩ bestimmen (Vektoren mit Zufallswerten initialisieren)

2. In Imaginärzeit propagieren:

|χ̃(k)
j ⟩ = Û(δτ)|χ(k)

j ⟩

3. Orthogonalisieren:

a) Überlappmatrix (Gl. 6.10) berechnen

b) Überlappmatrix diagonalisieren (Gl. 6.11)

c) Eigenvektoren aufsteigend nach den zugehörigen Eigenwerten sortieren
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6.1. Lösungsverfahren für stationäre Kohn-Sham Gleichungen

Abbildung 6.1.: Schleife zur Berechnung einer selbstkonsistenten Elektronendichte für
die Kohn-Sham Gleichungen 6.1a-6.1b. Die Konvergenzgeschwindigkeit
wird von der Wahl der Startdichte und dem Dichtekorrekturverfahren
entscheidend bestimmt.

d) Neuen Satz von Vektoren nach Gl. 6.12 berechnen

4. Weiter bei Schritt 2 bis Konvergenz der Vektoren eintritt:

∥χ(k+1)
j − χ

(k)
j ∥ < ϵ (6.14)

Eine sehr wichtige praktische Erfahrung mit diesem Algorithmus besteht darin, dass des-
sen Konvergenz erheblich verbessert wird, wenn man ein paar mehr Vektoren5 berechnen
lässt, als für das Problem erforderlich ist.
Die Eigenvektoren mit niedrigsten Eigenwerten konvergieren am schnellsten (wie man

Gl. 6.7 erkennen kann). Dieses Konvergenzverhalten bringt noch einen praktischen Vorteil
mit sich: Die Eigenvektoren mit den niedrigsten Eigenwerten können, sobald Konvergenz
bei diesen eingetreten ist, �eingefroren� werden: Diese brauchen vom Algorithmus wäh-
rend der Iteration nicht mehr weiter aktualisiert werden.

6.1.5. SCF Iterationsverfahren

Die stationären Kohn-Sham Gleichungen 6.1a-6.1b werden iterativ gelöst (s. Abb. 6.1):
Um die gesuchte selbstkonsistente Dichte n−(r) zu �nden, wird eine Startdichte n−(0)(r)
vorgegeben, welche eine physikalisch naheliegende Näherung der tatsächlichen Dichte dar-
stellt6. Aus dieser Dichte wird das e�ektive Potential Veff [n−] berechnet. Dann wird die
Kohn-Sham Eigenwertgleichung 6.1a mit diesem Potential gelöst. Die resultierenden Or-
bitale werden benutzt, um die zugehörige Elektronendichte dieser Orbitale nach Gl. 6.1b
zu berechnen. Der zentrale Schritt, welcher die Konvergenzgeschwindigkeit dieses Ver-
fahrens (neben der Wahl der Startdichte) entscheidend bestimmt ist folgender: Aus der
Dichte n−(k)(r) muss mit einem geeigneten Korrekturverfahren eine neue Dichte n−(k+1)(r)

5Für die 2D/3D-Systeme aus Kapitel 3 wurden 5-20 Vektoren zusätzlich verwendet. Bei den 1D-
Systemen können statt ITP auch Verfahren aus der lapack-Bibliothek verwendet werden.

6In Kapitel 3 wurde für die gezeigten Systeme jeweils die Ionendichte n+(r) als Startdichte n−
(0)(r)

verwendet.
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ermittelt werden, welche der tatsächlichen Dichte n(−)(r) immer näher kommt. Alle diese
Verfahren müssen die Eigenschaft haben, nach unendlich vielen Iterationen die korrekte
Dichte zu liefern:

lim
k→∞

n−(k)(r) = n(−)(r) (6.15)

Weil die Diagonalisierung der Kohn-Sham Matrix HKS[n
−] extrem viel Rechenzeit bean-

sprucht und die Berechnung des e�ektiven Potentials eine ebenfalls Rechenzeit intensive
Lösung der Poissongleichung (s. Kapitel 6.6) beinhaltet, wurden viele Verfahren entwi-
ckelt [70�73]7, die eine möglichst geschickte Dichtekorrektur erlauben um die Iterations-
anzahl so gering wie möglich zu halten.
Diese Verfahren unterscheiden sich nicht nur in ihrer Konvergenzgeschwindigkeit, son-

dern insbesondere auch in ihrer Stabilität. Das stabilste und gleichzeitig auch langsamste
Verfahren ist das simple mixing-Verfahren [73]. Die neue Dichte n−(k+1)(r) wird über einen
Mischparameter α ∈ (0, 1) der vorherigen Dichte beigemischt:

n−(k+1)(r) = [1− α]n−(k)(r) + αF
[
n−(k)

]
(r) (6.16)

Die Abbildung F ordnet der Eingabedichte n− diejenige Dichte F [n−] zu, welche sich
aus den Orbitalen ergibt, wenn die Kohn-Sham Gleichungen mit dem e�ektiven Potential
Veff [n

−] gelöst werden. Die gesuchte Dichte erfüllt also die Gleichung n− = F [n−]. Das
Residuum R(r) ist somit gegeben durch:

R(r) = n−(r)−F [n−](r) (6.17)

Damit kann Gleichung 6.16 umgeschrieben werden:

n−(k+1)(r) = n−(k)(r)− αn−(k)(r) + αF
[
n−(k)

]
(r)

= n−(k)(r)− αR(r) (6.18)

Geometrisch bedeutet das, dass man sich bei diesem Iterationsverfahren immer um ein
kleines Stück des Residuenvektors weiterbewegt, bis dieser klein genug geworden ist und
die Iteration abgebrochen werden kann:

∥R(r)∥ < ϵ (6.19)

Ein alternatives Abbruchkriterium, welches nicht das gesamte Dichtefeld benutzt, besteht
darin, die Konvergenz der Kohn-Sham Eigenwerte εj zu analysieren (dieses Kriterium
kann z.B. in dem octopus-Softwarepaket [74] benutzt werden).
Die Ergebnisse in Kapitel 3 wurden alle mit einem Abbruchkriterium vom Typ 6.19

erzielt, d.h. speziell:

max
r∈Ω

{
|n−(k+1)(r)− n−(k)(r)|

n0

}
< ϵ (6.20)

7Einige dieser Referenzen stellen Verfahren vor, in denen es allgemein um nichtlineare Gleichungen
geht.
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Dabei ist Ω der Simulationsraum, n0 die maximale Ionendichte und ϵ die relative Dichte-
änderung bei deren Unterschreitung abgebrochen wird. Für ϵ wurden Werte von 10−12 bis
10−6 verwendet. Hier muss häu�g ein Kompromiss zwischen Genauigkeit und Rechenzeit
gefunden werden, da das simple mixing-Verfahren eine konstante Anzahl an Schritten
benötigt um das Residuum um jeweils eine Gröÿenordnung zu verkleinern.

6.1.6. Adaptives Mixing Verfahren

Es ist nicht Ziel dieser Arbeit gewesen, eine Verbesserung der Selbstkonsistenzschleife
zu entwickeln, da auf diesem Gebiet schon genügend Methoden existieren. Jedoch wurde
folgende naheliegende Verbesserung des simple mixing Verfahrens implementiert, die sich
an dem Konzept der adaptiven Zeitschritte zur Integration von Bewegungsgleichungen
anlehnt. Folgende Modi�kationen sind dafür notwendig:

• Vor jedem Schritt wird die Elektronendichte n−(k)(r) zwischengespeichert.

• Jeder Schritt besteht aus 2Nsubstep Unterschritten:

� Es werden Nsubstep �simple mixing�-Schritte mit dem momentanen Mischpa-
rameter α durchgeführt.

� Zusätzlich werden Nsubstep unabhängige �simple mixing� - Schritte mit 2α
durchgeführt, die ebenfalls auf der Eingabedichte n−(k)(r) basieren.

• Die beiden resultierenden Dichten werden über das Kriterium 6.20 verglichen und
die Dichte mit besserem Konvergenzwert wird als Ausgabedichte n−(k+1)(r) benutzt.

• Wenn die 2α-Dichte bessere Konvergenz zeigte, wird der Mischparameter verdop-
pelt und ansonsten halbiert.

• Wird eine signi�kante Vergröÿerung des Residuums festgestellt, muss die zwischen-
gespeicherte Elektronendichte wiederhergestellt werden. Dieser Fall impliziert, dass
der Mischparameter bereits einmal halbiert wurde. Der Mischparameter muss in
diesem Fall nochmals halbiert werden, weil sonst zweimal die selbe erfolglose Rech-
nung mit identischem Mischparameter durchgeführt wird.

Eine Implementation dieses Verfahrens sollte die Skalierung des Mischparameters frei
einstellbar lassen, da der Faktor �2� für manche Systeme zu groÿ ist. Ausserdem hilft
es, während der Iteration das Konvergenzverhalten über die letzten 5-10 Schritte zu
betrachten, um oszillierendes oder stagnierendes Verhalten zu erkennen. Wenn dieses
Verhalten beobachtet wird, muss die Schleife abgebrochen werden, da das vorgegebene
Konvergenzziel nicht mehr erreicht wird8. Das simple mixing-Verfahren ist dann nicht in
der Lage, die Kohn-Sham Gleichungen zu lösen9.
Die Ergebnisse für eine Verbesserung des Konvergenzverhaltens sind in Abbildung 6.2

illustriert. Die Erfahrung mit dem Verfahren hat gezeigt, dass es sich gut eignet, um einen

8Es handelt sich dabei um praktische Erfahrungswerte mit dem Konvergenzverlauf.
9Einige 3D-Systeme, wie die Kugel aus [42], zeigten dieses Verhalten. Hier hat es geholfen, die Geometrie
oder die Diskretisierung leicht zu verändern.
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Abbildung 6.2.: Das Diagramm zeigt das Residuum (6.20) nach jedem Iterationsschritt
bei konstantem und adaptivem Mischparameter α. Das adaptive Verfah-
ren hat ca. 150 Schritte weniger benötigt. Die CPU-Zeit hat bei diesen
Rechnungen für α = 0.03 14.2 s und bei adaptiven α 11.5 s betragen. Der
kleine Peak in der roten Kurve zeigt, dass bei dem adaptiven Verfahren
der Mischparameter zwischendurch zu groÿ gewählt wurde und reduziert
werden musste, um divergierendes Verhalten zu verhindern.

optimalen Wert für den Mischparameter zu erhalten, den man dann in das α = const.-
Verfahren einsetzen kann. Um die benötigte CPU-Zeit gegenüber dem nicht-adaptiven
Verfahren zu verringern, muss leider viel mit den Parametern experimentiert werden.

6.1.7. Bedeutung der Abschirmkonstante für die SCF-Schleife

Die Berechnung des Hartree-Anteils VH[n−] des e�ektiven Potentials beinhaltet die Lö-
sung der Poissongleichung: [

∇2 + κ2
]
Φ(r) = − 1

ε0
ϱ(r) (6.21)

Die elektrostatische Abschirmkonstante κ hat erheblichen Ein�uss auf die Stabilität der
SCF-Schleife10: Speziell bei eindimensionalen Systemen, wie dem Metall�lm aus Kapitel
3, konnte die SCF-Schleife nicht zur Konvergenz gebracht werden, wenn keine künstli-
che elektrostatische Abschirmung vorhanden war. Es ist leicht nachvollziehbar, weshalb
der eindimensionale Fall besonders anfällig für die Instabilität ist: Das Coulombpotential
einer Ladung am Ort x′ ist proportional zu |x − x′| (entsprechend dem Feld einer un-
endlich ausgedehnten Flächenladung). Jede kleinste Änderung der Ladungsdichte n−(x),
welche die SCF-Schleife vornimmt, hat im Simulationsraum überall gleich groÿe Auswir-
kungen auf das elektrostatische Feld. In Anlehnung an das Konzept der Konditionszahl
10s. Anhang von [75].
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für lineare Gleichungssysteme (s. Kapitel 6.3.6) kann man hier bei diesen nichtlinearen
Gleichungen von einem schlecht konditionierten Problem sprechen, da kleine Änderungen
an der Eingabedichte groÿe Wirkung auf die Ausgabedichte haben.
In dieser Arbeit konnte dieses Problem durch folgende Vorgehensweise gelöst werden

[76]: Für die Jelliumsysteme aus Kapitel 3 wurde κ zunächst in der Gröÿenordnung des
Fermivektors kF gewählt. Dann wurden die Kohn-Sham Gleichungen gelöst. Die resultie-
rende Ladungsdichte n− wird dann als Startdichte n−(0)(r) benutzt, um die Kohn-Sham
Gleichungen mit einer verkleinerten Abschirmkonstante erneut zu lösen. Diese Schritte
wurden so oft wiederholt, bis die Elektronendichte unabhängig von der Abschirmkon-
stante war.
Eine alternative Methode wird im Anhang von [75] und in Kapitel 2 von [32] beschrie-

ben.

6.2. Propagatoren für die Kohn-Sham Gleichungen

Eine umfassende Beschreibung von Propagatoren für die zeitabhängigen Kohn-Sham
Gleichungen ist in [77] zu �nden. In diesem Kapitel wird ein Überblick über das Thema
gegeben und es werden die Methoden, welche speziell in dieser Arbeit benutzt werden,
beschrieben.

6.2.1. Problembeschreibung

Die zeitabhängigen Kohn-Sham Gleichungen für ein N -Elektronen System lauten:{
i~
∂

∂t
ϕj(r, t) =

(
− ~2

2me
∇2 + Veff [n

−](r, t)

)
ϕj(r, t)

}N
j=1

(6.22)

n−(r, t) =

N∑
j=1

wj |ϕj(r, t)|2 (6.23)

Diese haben folgende strukturelle Eigenschaften, die für die Problemanalyse von zentraler
Bedeutung sind:

1. Es handelt sich mathematisch gesehen um N Ein-Teilchen Schrödingergleichungen.

2. Der Hamiltonoperator ĤKS(t) ist zeitabhängig, weil auch die Teilchendichte n−(r, t)
und eventuell vorhandene externe Störpotentiale zeitabhängig sind.

3. Die Gleichungen sind über das e�ektive Potential miteinander gekoppelt.

Die Kopplung der Gleichungen ist dabei als nebensächliches Problem anzusehen, da die
gröÿte Schwierigkeit darin besteht, die zeitabhängige Ein-Teilchen Schrödingergleichung
e�zient zu propagieren (s. Kapitel 6.2.2).

117



6. Numerik

6.2.2. Numerische Lösung der zeitabhängigen Ein-Teilchen
Schrödingergleichung

Die Ein-Teilchen Schrödingergleichung lautet:

i~
∂

∂t
φ(r, t) = Ĥ(t)φ(r, t) (6.24)

Das Lösen dieser Gleichung erfordert die Vorgabe von Randbedingungen im Raum und
einer Anfangsbedingung in der Zeit:

φ(∂Ω, t) = 0 (6.25)

φ(r, 0) = φ0(r) (6.26)

Mit Ω wird der Simulationsraum bezeichnet. Die Wellenfunktion φ wird auf einem regu-
lären, kartesischen Gitter in diesem Gebiet dargestellt:

φj,k,l(t) = φ(j∆x ex + k∆y ey + l∆z ez, t) (6.27)

Da bei der numerischen Verarbeitung nur endlich viele Gitterpunkte gespeichert werden
können, ist auch das Gebiet Ω nur endlich groÿ. Die Randbedingung 6.25, welche einem
unendlich tiefen Potentialtopf entspricht, wurde gewählt, weil sich diese besonders einfach
implementieren lässt und für alle Anwendungen in dieser Arbeit geeignet ist.
Der Operator Ĥ(t) beinhaltet den Operator der kinetischen Energie, der im Ortsraum

ein skalierter Laplaceoperator ist. Dieser Operator wird auf dem Gitter mittels Finiter
Di�erenzen dargestellt [66, 78]. Üblicher Weise verwendet man einen 3- oder 5-Punkt
Stempel. Der Hamiltonoperator kann letztlich auf dem Gitter in Form einer endlichen
Matrix H(t) dargestellt werden. Der �räumliche� Anteil der Schrödingergleichung sei damit
nun ein gelöstes Teilproblem.
Das verbleibende Teilproblem besteht in der Propagation der Wellenfunktion in der

Zeit: In einer Simulation muss aus der Wellenfunktion zur Zeit t diese zu einem Zeitpunkt
t+∆t berechnet werden. Dieses Problem kann formal über den Zeitentwicklungsoperator
Û beschrieben werden:

φ(t+∆t) = Û(t+∆t, t)φ(t) (6.28)

Û(t1, t0) = T̂D exp

(
− i

~

∫ t1

t0

Ĥ(t) dt

)
(6.29)

Bei dem Operator T̂D handelt es sich um den dysonschen Zeitordnungsoperator [79] und
der Operator T̂D exp wird als zeitgeordneter Exponent bezeichnet [77].
Für die Numerik muss der Operator 6.29 auf eine endliche Anzahl an elementaren

Rechenoperationen, die auf die diskretisierte Wellenfunktion φj,k,l(t) anzuwenden sind,
runter gebrochen werden. Das setzt eine Approximation dieses Operators voraus, deren
Fehler die Eigenschaft haben soll, für ∆t → 0 möglichst �schnell� gegen Null zu gehen.
An dieser Stelle muss ein Kompromiss gemacht werden: Je besser die Approximation ist,
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6.2. Propagatoren für die Kohn-Sham Gleichungen

umso gröÿere Zeitschritte können zwar gemacht werden, jedoch steigt der Rechenaufwand
pro Zeitschritt ebenfalls an11.
Die systematische Approximation des Operators 6.29 wird als Magnus-Entwicklung

[80, 81] bezeichnet. Das Entscheidende an dieser Entwicklung ist, dass sich der Zeitent-
wicklungsoperator als einfacher Exponent eines Operators Ω̂ schreiben lässt, der in einer
Reihe entwickelt werden kann:

Û(t1, t0) = exp
{
Ω̂(t1, t0)

}
(6.30)

Ω̂(t1, t0) =
∞∑
k=1

Ω̂k(t1, t0) (6.31)

Die Operatoren dieser Reihenentwicklung können nach folgendem (rekursivem) Schema
unter Verwendung eines weiteren Operators Ŝ und der Bernoulli-Zahlen Bj berechnet
werden:

Ω̂k(t1, t0) =
k−1∑
j=0

Bj
j!

∫ t1

t0

Ŝjk(τ) dτ (6.32)

Ŝ0
1(τ) =

1

i~
Ĥ(τ) (6.33)

Ŝ0
k(τ) = 0 (k > 1) (6.34)

Ŝjk(τ) =

k−j∑
m=1

[
Ω̂m(t1, t0), Ŝ

j−1
k−m(τ)

]
(1 ≤ j ≤ k − 1) (6.35)

Die Integration in Gl. 6.32 muss mit einer numerischen Quadraturformel durchgeführt
werden.
Um eine Approximation des Magnusoperators Ω̂ zur Ordnung 2n zu erhalten, muss

die Reihe in Gl. 6.31 nach dem n-ten Term abgebrochen werden und die auftretenden
Integrale mit einer Quadraturformel n-ter Ordnung ausgewertet werden [77]. In dieser
Arbeit wurden die Operatoren in der zweiten und vierten Ordnung benutzt. Das Ergebnis
für diese beiden (praktisch wichtigen) Fälle ist ebenfalls in [77] dokumentiert. Für einen
Zeitschritt ∆t mit t0 = t und t1 = t+∆t lauten die Operatoren:

Ω̂M(2)(t+∆t, t) =
1

i~
Ĥ(t+∆t/2)∆t (6.36)

Ω̂M(4)(t+∆t, t) = −i∆t
2~

[
Ĥ(ξ1) + Ĥ(ξ2)

]
−

√
3(∆t)2

12~2
[
Ĥ(ξ2), Ĥ(ξ1)

]
(6.37)

ξ1,2 = t+ [(1/2)∓
√
3/6]∆t

Von diesen Operatoren muss jetzt nur noch der einfache Exponent aus Gl. 6.30 gebildet
werden und auf eine Wellenfunktion φ angewendet werden.
Bei der Methode der Finiten Di�erenzen liegt ein solcher Operator in Form einer Matrix

vor. Um den Exponenten einer Matrix zu berechnen, existieren zahlreiche Algorithmen
11In [77] sind Erfahrungswerte für dieses Problem ausführlich dokumentiert.
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[82, 83]. Allerdings ist diese Vorgehensweise, nämlich diesen Exponenten der Matrix ex-
plizit zu berechnen, technisch kaum oder gar nicht möglich: Die resultierende N × N
Matrix ist dicht besetzt und N ist dabei die Anzahl an verwendeten Gitterpunkten,
welche durchaus in der Gröÿenordnung 103 . . . 106 liegen kann.
Stattdessen werden Operatoren der Form exp(Â) grundsätzlich nur prozedural auf

Wellenfunktionen φ angewendet, d.h. der Exponentialoperator wird durch ein Polynom
approximiert, dessen Auswertung im Wesentlichen nur die Rechenoperation Âφ wieder-
holt benötigt.
Dazu gibt es folgende Möglichkeiten [77]:

• Der Exponentialoperator wird in einer Taylorreihe entwickelt:

exp(Â)φ =

∞∑
ν=0

1

ν!
Âνφ (6.38)

Die prozedurale Auswertung erfolgt nach dem Horner-Schema [84].

• An Stelle der Monombasis kann die Reihe über Chebyshev-Polynome dargestellt
werden:

exp(Â)φ =

∞∑
ν=0

cνTν(Â)φ (6.39)

Die prozedurale Auswertung erfolgt nach dem Clenshaw-Algorithmus [85]. Die For-
mel zur Berechnung der Entwicklungskoe�zienten cν ist in [77, 86] zu �nden. Bei
dem Operatorpolynom Tν(Â) muss beachtet werden, dass der Operator in seiner
Spektralzerlegung keine Eigenwerte ausserhalb des Intervalls [−1, 1] haben darf,
weil die Chebyshev-Polynome nur auf diesem Intervall de�niert sind.

• In [87] wird eine Krylov-Unterraum Methode beschrieben, mit der sich exp(Â)φ
ebenfalls berechnen lässt. Nach der Analyse der Methoden in [77] ist diese Methode
die e�zienteste von den hier Genannten. Unter anderem lässt sich mit der Methode
auch der Fehler der Approximation leicht abschätzen.

Die Methoden unterscheiden sich letztlich darin, wie viele Matrix-Vektor Multiplikationen
(speziell Âφ) zur Propagation pro Zeitintervall durchzuführen sind, um eine vorgegebene
Mindestgenauigkeit einzuhalten. Für die gezeigten Beispiele in [77] benötigte die Krylov-
Methode bis zu Faktor 2 weniger Operationen.
Für alle Anwendungen in dieser Arbeit ist die Taylorreihenentwicklung 4.Ordnung voll-

kommen ausreichend gewesen, weil der theoretisch mögliche Performancegewinn durch
die beiden anderen Methoden deren Implementationsaufwand nicht gerechtfertigt hat.
Die Verwendung der 4. Ordnung wird ausserdem in [77] empfohlen.

6.2.3. Alternative Propagationsmethoden

Im letzten Kapitel wurde der Zeitentwicklungsoperator mit einer Magnusentwicklung
approximiert. Diese liefert nicht nur eine Möglichkeit, den zeitgeordneten Exponenten
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6.2. Propagatoren für die Kohn-Sham Gleichungen

zu vereinfachen, sondern bietet auch den groÿen Vorteil, dass sie in jeder Ordnung den
unitären Charakter des Zeitentwicklungsoperators beibehält.
Von den populären Standardverfahren wie der Crank-Nicholson (CN) Methode [66] und

den �Allzweck�-Integratoren wie dem expliziten Runge-Kutta (RK) Verfahren wird in [77]
(ohne nähere Begründung) abgeraten. Mögliche Gründe sind aber recht o�ensichtlich: Die
CN-Methode verwendet zwar eine unitäre Approximation des Zeitentwicklungsoperators,
allerdings muss bei der Methode in jedem Zeitschritt ein lineares Gleichungssystem gelöst
werden. Die Form des Gleichungssystems wird im Wesentlichen vom Hamiltonoperator
des Systems bestimmt. Beschränkt man sich auf eindimensionale Systeme, dann stellt
das Gleichungssystem kein numerisches Problem dar, weil die Finite Di�erenzen Form
des Hamiltonoperators eine tridiagonale Matrix ergibt und daher in O(N) (mit N als
Anzahl der Gitterpunkte) gelöst werden kann [66]. Für mehrdimensionale Systeme ist
diese Methode ungeeignet, da das Gleichungssystem diese Eigenschaft verliert.
Die populären RK-Verfahren 2. und 4. Ordnung wurden in dieser Arbeit an verschiede-

nen Stellen getestet. Dabei zeigte sich immer wieder, dass in 2. Ordnung die Normierung
der Wellenfunktion nicht erhalten blieb und die Simulation schnell instabil wurde. Das
Verfahren 4. Ordnung zeigte keine signi�kanten Abweichungen in der Norm der Wellen-
funktion (bedingt durch die hohe Ordnung des Verfahrens) und blieb stabil.
Die RK-Verfahren haben den Nachteil, dass die Lösung nicht zeitumkehrbar ist. Pro-

pagiert man den Zustand φ(t) um ∆t und anschlieÿend um −∆t ergibt sich ein anderer
Zustand φ̃(t) als der Ausgangszustand:

φ(t)
∆t−→ φ(t+∆t)

−∆t−→ φ̃(t) ̸= φ(t)

Die korrekte Lösung der zugrunde liegenden Gleichungen hat aber diese Eigenschaft der
Zeitumkehrbarkeit. Deshalb sollten nur Methoden benutzt werden, welche diese berück-
sichtigen. Das RK-Verfahren 4. Ordnung kann allerdings aufgrund seiner hohen Genau-
igkeit diese Unzulänglichkeit kompensieren.
Eine wichtige Klasse von Propagatoren bilden die Split-Operator Methoden [88]:
Man nehme zunächst an, dass der Zeitschritt ∆t klein genug ist, damit die Zeitabhän-

gigkeit des Hamiltonoperators vernachlässigbar ist. Der Zeitentwicklungsoperator verein-
facht sich dadurch erheblich [79]:

Û(∆t) = exp

(
− i

~
Ĥ∆t

)
= exp

(
− i

~

[
T̂ + V̂

]
∆t

)
(6.40)

Die Idee besteht darin, den Exponenten zu faktorisieren. Nach der Baker-Campbell-
Hausdor� Relation müssen die Operatoren im Exponenten dafür miteinander kommutie-
ren, was für T̂ und V̂ i. A. nicht der Fall ist. In der Praxis hat sich aber gezeigt, dass der
Kommutator vernachlässigbar ist, wenn ∆t klein genug gewählt wird. Es wird auÿerdem
immer eine symmetrische Faktorisierung gewählt, bei der ein Operator zweimal auftritt:

ÛSO2(∆t) = exp

(
−i∆t

2~
T̂

)
exp

(
− i

~
∆t V̂

)
exp

(
−i∆t

2~
T̂

)
(6.41)

ÛSO2′(∆t) = exp

(
−i∆t

2~
V̂

)
exp

(
− i

~
∆t T̂

)
exp

(
−i∆t

2~
V̂

)
(6.42)
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Die Approximationen 6.41-6.42 haben die Ordnung O(∆t2). In 4. Ordnung muss der
Kommutator berücksichtigt werden12:

ÛSO4(∆t) = exp

(
−i∆t

6~
V̂

)
exp

(
−i∆t

2~
T̂

)
exp

(
−2i

3

{
V̂ − 1

48

[
V̂ ,
[
V̂ , T̂

]]
∆t2

}
∆t

~

)
exp

(
−i∆t

2~
T̂

)
exp

(
−i∆t

6~
V̂

)
(6.43)

Der Split-Operator Ansatz zielt vor allem darauf ab, den Operator der kinetischen Ener-
gie T̂ = (−i~∇)2/2me exakt (d.h. ohne Finite Di�erenzen) anwenden zu können: Dafür
muss die Wellenfunktion vor jeder Anwendung des Exponentialoperators mit T̂ -Term
fouriertransformiert werden. In der Fourierbasis besteht die Wirkung des Operators T̂
bzw. exp(const. · T̂ ) nur noch in einer gitterpunktweisen Multiplikation. Anschlieÿend
muss eine inverse Transformation durchgeführt werden um den Operator V̂ im Ortsraum
auf exakt die gleiche e�ziente Weise (d.h. punktweise Multiplikation mit exp(const. · V̂ ))
anwenden zu können. Diese Methode impliziert aufgrund der Fouriertransformation das
Vorhandensein von periodischen Randbedingungen. Meistens liegen aber Wellenfunktio-
nen vor, welche mit einer Dirichletrandbedingung φ(∂Ω) = 0 bestimmt wurden. Praktisch
stören diese Unterschiede bei den Randbedingungen nicht, wenn die Wellenfunktionen
weit genug im Inneren des Simulationsraums lokalisiert sind.
In der Arbeit von Sugino und Miyamoto [89] wird gezeigt, wie sich die Split-Operator

Methode13 auf noch höhere Ordnung erweitern lässt: Dabei wird vor allem die Zeitab-
hängigkeit des Hamiltonoperators berücksichtigt, die in den Gln. 6.41-6.43 vernachlässigt
wird. Dazu ist es erforderlich, vom Hamiltonoperator Ĥ(t) das zeitabhängige Potenti-
al V (t) im Intervall [t, t + ∆t] zu interpolieren14. Als Interpolationsmethode wird das
�Railway-Curve� Schema15 verwendet16:

V (s) =

(
s− t−∆t

∆t

)2

×
[
3V (t) + ∆tV̇ (t) +

s− t−∆t

∆t
[2V (t) + ∆tV̇ (t)]

]
(6.44)

+

(
s− t

∆t

)2 [
3V (t+∆t)−∆tV̇ (t+∆t)− s− t

∆t
[2V (t+∆t)−∆tV̇ (t+∆t)]

]
Die Interpolationsformel erfordert leider auch die Kenntnis der Zeitableitung von der
zu interpolierenden Gröÿe17. Der Rechenaufwand kann dadurch gegenüber anderen In-
terpolationsverfahren zwar deutlich höher sein, aber dafür ist durch Verwendung dieser
12Der Term in dieser Form ist aus [67] (Gl. 4) zum Thema Imaginärzeitpropagation entnommen. Die

Ersetzung ∆τ → −i∆t ergibt Gl. 6.43.
13Speziell wird die Suzuki-Trotter Zerlegung [90] verwendet, welche ein Produkt aus fünf ÛSO2-

Operatoren mit unterschiedlicher Schrittweite ∆t verwendet.
14Die Extrapolation des Hamiltonoperators von der Zeit t zu der Zeit t+∆t wird im nächsten Kapitel

beschrieben.
15s. [91]
16Die angegebene Interpolationsformel in [89] (Gl. 14) enthält einen Vorzeichenfehler: Die korrekte Form

ist in Gl. 6.44 gegeben.
17Für Anwendungen in der zeitabhängigen DFT ist es an dieser Stelle erforderlich, vom Hartree- und

xc-Potential die Zeitableitung zu bilden. Dazu wird in [89] eine Formel (Gl. 16) hergeleitet.
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Formel die Zeitumkehrbarkeit gewährleistet, was entscheidend zur numerischen Stabilität
der Propagationsmethode beiträgt. Dadurch können letztlich auch gröÿere Zeitschritte
gewählt werden, so dass der zusätzliche Rechenaufwand kompensiert wird.
Dieses Schema kommt in dieser Arbeit bei den Propagatoren für die impliziten Kohn-

Sham Gleichungen zum Einsatz.

6.2.4. Extrapolation des Hamiltonoperators

In Kapitel 6.2.2 wurde bei der Magnusentwicklung des Zeitentwicklungsoperators bereits
angedeutet, dass der Hamiltonoperator für den Zeitschritt t→ t+∆t auch zu Zeitpunkten
innerhalb dieses Intervalls bekannt sein muss (s. Gln. 6.36-6.37). Das ist unproblematisch,
wenn der zeitabhängige Anteil des Hamiltonoperators nur aus einem Störpotential VP(t)
besteht, das zu jeder Zeit t per Formel berechnet werden kann. Bei den Kohn-Sham
Gleichungen ist das de�nitiv nicht so einfach möglich, weil ja das e�ektive Potential von
der Lösung der Kohn-Sham Gleichungen selbst abhängt.
Für den allgemeinen Fall kann immer folgendes Selbstkonsistenz-Schema verwendet

werden:

1. Näherungsweise Berechnung des Potentials V (t + ∆t) mittels einer Extrapolati-
onsmethode, welche evtl. auch Werte von vorangegangenen Zeitschritten benutzen
kann.

2. Interpolation von V (t ≤ t′ ≤ t+∆t) mit Hilfe der Gl. 6.44.

3. Zeitschritt mit Hilfe der im letzten Schritt gewonnenen Zwischenwerte durchführen.

4. V (t+∆t) erneut berechnen.

Die Schritte 2-4 müssen solange wiederholt werden, bis das Potential V (t+∆t) konvergiert
ist.

6.3. Propagatoren für implizite Kohn-Sham Gleichungen

Die impliziten Kohn-Sham Gleichungen treten in der dissipativen zeitabhängigen Dichte-
funktionaltheorie (s. Kapitel 4) auf. Die Nomenklatur �Implizite Kohn-Sham Gleichung�
ist derzeit (noch) nicht in der Literatur zu �nden und wird nur in dieser Arbeit benutzt.

6.3.1. Problembeschreibung

Die zeitabhängigen, impliziten Kohn-Sham Gleichungen für ein N -Elektronen System
lauten:{

i~
∂

∂t
ϕj(r, t) =

(
− ~2

2me
∇2 + Veff [n

−](r, t) + Ĥf [ΨKS, Ψ̇KS](t)

)
ϕj(r, t)

}N
j=1

(6.45)

ΨKS(r1, . . . , rN , t) =
1√
N !

|ϕ1 · · ·ϕN | (Slaterdeterminante, s. Gl. 4.15) (6.46)
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n−(r, t) =
N∑
j=1

wj |ϕj(r, t)|2 (6.47)

Diese haben folgende strukturelle Eigenschaften, die für die Problemanalyse von zentraler
Bedeutung sind:

1. Es handelt sich mathematisch gesehen um N implizite Ein-Teilchen Schrödinger-
gleichungen, bei denen jeweils die Zeitableitung der Wellenfunktion auf beiden Sei-
ten der Gleichung auftritt.

2. Der Hamiltonoperator Ĥ(t) = ĤKS(t) + Ĥf(t) ist zeitabhängig, weil die Teilchen-
dichte n−(r, t), das Dämpfungsfeld im Reibungsterm Ĥf(t) und eventuell vorhan-
dene externe Störpotentiale zeitabhängig sind.

3. Die Gleichungen sind über das e�ektive Potential miteinander gekoppelt.

Die Kopplung der Gleichungen ist dabei als nebensächliches Problem anzusehen, da die
gröÿte Schwierigkeit darin besteht, die impliziten, zeitabhängigen Ein-Teilchen Schrö-
dingergleichungen e�zient zu propagieren. Für dieses Problem existiert in der Literatur
derzeit nur der von Neuhauser verwendete Lösungsansatz [42] der im nächsten Kapitel
beschrieben wird.

6.3.2. Lösungsverfahren von Neuhauser

Zur Beschreibung des Lösungsverfahrens genügt es, sich auf eine Ein-Teilchen Schrödin-
gergleichung mit Reibungsterm zu beschränken:

i~
∂

∂t
φ(r, t) =

(
− ~2

2me
∇2 + V (r, t) + Ĥf [φ̇](t)

)
φ(r, t) (6.48)

Der zugehörige Zeitentwicklungsoperator lautet:

Û(t1, t0) = T̂D exp

(
− i

~

∫ t1

t0

[
Ĥ0(t) + Ĥf(t)

]
dt

)
(6.49)

Es wird nun angenommen, dass Ĥ0(t) für einen Zeitschritt ∆t nur eine geringe Zeitab-
hängigkeit besitzt und die folgende Faktorisierung des Operators Û erlaubt:

Û(∆t) = e−
i
~ Ĥ0 ∆t/2Ûf(∆t)e

− i
~ Ĥ0 ∆t/2 (6.50)

Dieser Operator ist (trotz dieser Notation) von der absoluten Zeit t abhängig und wird
folgendermaÿen auf eine Wellenfunktion φ(t) angewendet: Die beiden äuÿeren Expo-
nentialoperatoren werden nach dem Split-Operator �SO2�-Schema (s. Gl. 6.42) zerlegt.
Nachdem der erste Exponentialoperator angewendet wurde, wird der Propagator Ûf für
den Reibungsterm angewendet:

Ûf(∆t) = exp

(
− i

~
Ĥf [φ̇]∆t

)
≈ 1− i

~
Ĥf [φ̇]∆t (6.51)
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Im Operator Ĥf ist eine Gröÿe der Form d⟨z⟩/dt enthalten (s. Gln. 4.13a-4.13c), welche
von φ̇ abhängt und verantwortlich dafür ist, dass die Schrödingergleichung hier eine
implizite Form hat. Dieses Problem wird im Neuhauser-Ansatz einfach dadurch gelöst,
indem eine Finite Di�erenz mit dem Wert von ⟨z⟩ des letzten Zeitschritts gebildet wird:

d⟨z⟩
dt

≈ ⟨z(t)⟩ − ⟨z(t−∆t)⟩
∆t

(6.52)

Nachdem der Operator Ûf auf φ angewendet worden ist, muss noch der letzte Exponen-
tialoperator in Gl. 6.50 angewendet werden, wobei das Zeitargument des Hamiltonope-
rators nun t+∆t/2 lautet.
Diese Methode wird von den Autoren in [42] nur als �funktionierend� aber weder als

�besonders e�zient� noch �besonders genau� beschrieben. Gerade die Näherungen in den
Gln. 6.51 und 6.52 werfen die Frage auf, wie schnell die Ergebnisse für ∆t → 0 konver-
gieren. Da die Methode explizit ist, kann es gut sein, dass sie selbst bei Zeitschritten mit
0.1×∆t noch schneller ist, als ein implizites Verfahren mit Schrittweite ∆t - und dabei
die gleichen, auskonvergierten Ergebnisse liefert.

6.3.3. Diskretisierung der impliziten Kohn-Sham Gleichungen

Die zeitabhängigen Kohn-Sham Orbitale können in einem Vektor y(t) = [ϕ1(t), ..., ϕN (t)]
zusammengefasst werden. Jedes einzelne Orbital ϕj kann man sich ebenfalls als einen
zeitabhängigen Vektor vorstellen, der durch die Darstellung der Wellenfunktion auf einem
kartesischen Gitter (s. Gl. 6.27) gegeben ist. Der Vektor y(t) besteht also aus �Anzahl N
der Orbitale� × �Anzahl der Gitterpunkte�. Der Hamiltonoperator auf der rechten Seite
der Kohn-Sham Gleichungen wird durch eine Matrix H dargestellt. In dieser diskretisierten
Form lautet das System von Gleichungen 6.45:

i~ẏ(t) = {HKS(t) + Hf [y, ẏ](t)}y (6.53)

Zunächst wird der Fall betrachtet, dass der Reibungsterm Ĥf nicht vorhanden sei:
Der Kohn-Sham Hamiltonoperator ist eine Summe von Ein-Teilchen Operatoren, die

jeweils auf das j-te Teilchen wirken. Die Matrixdarstellung entspricht daher einer direkten
Summe identischer Matrizen:

ĤKS(t) =

N∑
j=1

Ĥ(j)(t) → HKS(t) =

N⊕
j=1

H(t) (6.54)

Das ergibt eine blockdiagonale Struktur:

HKS(t) =


�

�
. . .

�

 (6.55)

Jetzt wird der Reibungsterm Ĥf(t) in diese Betrachtung mit eingebracht: Dieser bein-
haltet einen Operator Ẑ (s. Gln. 4.13a-4.13c), der sich als Summe von Ein-Teilchen
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Operatoren ẑ(j) schreiben lässt:

Ẑ =

N∑
j=1

ẑ(j) → Z =

N⊕
j=1

z (6.56)

Als nächstes wird die Zeitableitung vom Erwartungswert ⟨Z⟩ benötigt:

d

dt
⟨Z⟩ =

d

dt
⟨y, Zy⟩

=
d

dt

N∑
j=1

⟨ϕj , zϕj⟩

=

N∑
j=1

[
⟨ϕ̇j , zϕj⟩+ ⟨ϕj , zϕ̇j⟩

]
(6.57)

Durch diese Summe geht die Blockdiagonalform 6.55 verloren: Jede Zeile der Matrix Hf
ist vollständig gefüllt, weil ⟨Z⟩ von allen Orbitalen gleichermaÿen abhängig ist.
An dieser Stelle wird nochmals auf die Abhängigkeit des Operators

Ĥf [ΨKS, Ψ̇KS](t) bzw. Hf [y, ẏ](t)

eingegangen: Der Reibungsterm darf in beliebiger (nicht-)linearer Form von den Orbita-
len18 abhängen. Die Zeitableitung der Orbitale geht dagegen nur linear in den Reibungs-
term ein, wie man an Gl. 6.57 sehen kann. Bei der Gleichung 6.53 handelt es sich also
um ein lineares Gleichungssystem für die unbekannte Zeitableitung ẏ.

6.3.4. Implizite Runge-Kutta Verfahren

In diesem Abschnitt wird gezeigt, wie sich das System von impliziten Kohn-Sham Glei-
chungen 6.45-6.47 mit Hilfe von impliziten Runge-Kutta Verfahren lösen lässt, ohne die
Näherungen in den Gln. 6.51 und 6.52 dafür benutzen zu müssen.
Als Vorarbeit dafür wurde im letzten Abschnitt die Struktur des Gleichungssystems

6.53 analysiert. Dieses System lösen zu können, reicht nicht aus, um an die Lösung y(t) für
ein endliches Zeitintervall zu gelangen. Dazu muss ein numerisches Integrationsverfahren
benutzt werden. Ziel ist es, den Zeitschritt y(t) → y(t + ∆t) bzw. mit Zeitschrittindex
yn → yn+1 durchzuführen.
Ein s-stu�ges Runge-Kutta Verfahren verwendet dafür folgenden Ansatz:

yn+1 = yn +
s∑
i=1

biki (6.58)

ki = ∆t f(tn + ci∆t,yn +

s∑
j=1

aijkj), i = 1, . . . , s (6.59)

18In [42] wird beispielsweise angedacht, dass man das Feld a(q) im Drude-Reibungsterm mit der lokalen
Teilchendichte in unmittelbarer Umgebung von q in Verbindung bringt.
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Die charakteristischen Koe�zienten aij , bi und ci werden unter dem Begri� �Butcher�-
Tableau in der gängigen Literatur [78, 92] aufgeführt. Die Wahl der Koe�zienten ent-
scheidet über die Ordnung des Verfahrens und darüber, ob es sich um ein explizites oder
implizites Runge-Kutta Verfahren handelt. Bei den expliziten Verfahren ist nur die un-
tere Dreieckshälfte der Koe�zientenmatrix aij von Null verschieden. Bei den impliziten
Verfahren bilden die s Gleichungen in 6.59 ein i. A. nicht-lineares Gleichungssystem für
die unbekannten Inkremente ki.
Um das Verfahren auf die impliziten Kohn-Sham Gleichungen anzuwenden, wird zu-

nächst folgende Identi�kation der involvierten Vektoren vorgenommen: Der Vektor yn =
[ϕ1(tn), . . . , ϕN (tn)] enthält die diskretisierten Orbitale zur Zeit tn, die s Vektoren ki =

[∆ϕ
(i)
1 , . . . ,∆ϕ

(i)
N ] enthalten die Inkremente, aus denen der Zeitschritt linearkombiniert

wird (s. Gl. 6.58). Die vektorielle Funktion f ist dann folgendermaÿen de�niert:

f = f(t,y, ẏ)

=
1

i~
{HKS[y](t) + Hf [y, ẏ](t)}y (6.60)

Hier wurde zusätzlich das Argument für die Zeitableitung von y aufgeführt, von der die
rechte Seite der impliziten Kohn-Sham Gleichungen abhängt. Als Argument wird hier
jeweils das i-te Inkrement eingesetzt. Das Gleichungssystem lautet dann:ki = ∆t f(tn + ci∆t,yn +

s∑
j=1

aijkj ,ki/∆t)


s

i=1

(6.61)

Die Anzahl der Unbekannten im Gleichungssystem beträgt:

Anzahl der Stufen s×Anzahl der Gitterpunkte×Anzahl der Orbitale

Das führt bei praktischen Anwendungen auf eine so groÿe Anzahl von Unbekannten, dass
man nur mit iterativen Verfahren arbeiten kann. Dieses Gleichungssystem ist nicht-linear
bezüglich der Unbekannten ki: Im Zusammenhang mit Gl. 6.57 wurde zwar gesagt, dass
die Zeitableitung der Orbitale nur linear auftritt, allerdings treten hier die Inkremente
auch im zweiten Argument von f (in der Summation) auf. Dieses Argument geht nicht-
linear in f ein, da aus diesem die Teilchendichte und aus dieser wiederum die Funktionale
des Vielteilchensystems berechnet werden.
Zum Lösen der nichtlinearen Gleichungssysteme bei impliziten Runge-Kutta Verfahren

sind i. A. Newtonverfahren üblich. Das setzt allerdings die Berechnung des Gradienten
der Funktion f voraus. Für die Funktion f kann man dafür zunächst versuchen, von
der nicht-diskretisierten Form 6.45 auszugehen und einen analytischen Ausdruck der
Funktionalableitung der rechten Seite zu bestimmen.
An diesem Ansatz schreckt vor allem der hohe Aufwand bei der Berechnung des Gra-

dienten (sowohl analytisch als auch numerisch) ab. Jede Änderung an der rechten Seite
der impliziten Kohn-Sham Gleichungen erfordert eine Anpassung in der Herleitung des
Gradienten. Das stört besonders, wenn man verschiedene Reibungsterme Ĥf(t) testen
möchte.
Damit bleiben nur Lösungsverfahren übrig, welche ohne Gradienten auskommen: Gl-

ücklicherweise hat sich bei allen Anwendungen in dieser Arbeit gezeigt, dass das selbe
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einfache Iterationsschema, wie es zur Lösung der stationären Kohn-Sham Gleichungen
zum Einsatz kommt, auch hier verwendet werden kann. Dabei nutzt man aus, dass als
Startvektor der Iteration immer das Ergebnis des letzten Zeitschritts gewählt werden
kann, wodurch die Anzahl an Iterationen drastisch reduziert werden kann.

6.3.5. Magnusentwicklung

Eine ebenfalls erfolgreich getestete Möglichkeit zur Lösung der impliziten Kohn-Sham
Gleichungen 6.45-6.47 besteht darin, ein explizites Lösungsverfahren mit einer Selbst-
konsistenzschleife zu kombinieren:
Die expliziten Verfahren, welche die Magnusentwicklung verwenden, sind in Kapitel

6.2.2 bereits beschrieben worden. Wenn man diese Verfahren hier anwenden möchte, wird
man gleich zu Beginn mit folgendem Problem konfrontiert: Der Zeitentwicklungsoperator
ist aufgrund des Reibungsterms von der Kohn-Sham Wellenfunktion selbst abhängig, so
dass man für einen Zeitschritt die Gleichung in der ungewöhnlichen Form

ΨKS(t+∆t) = Û [ΨKS, Ψ̇KS](t+∆t, t)ΨKS (6.62)

schreiben müsste. Hier ergeben sich bereits Schwierigkeiten, wie man diesen Operator
mathematisch sauber de�nieren kann.
Um dieses Problem zu umgehen wird einfach angenommen, dass der Hamiltonoperator

eine bekannte Zeitabhängigkeit auf dem Intervall [t, t + ∆t] besitzt, die nicht von der
Zeitableitung des Zustands abhängt. Dann lässt sich der Zeitentwicklungsoperator in
bekannter Form auch für das dissipative System formulieren:

Û(t, t+∆t) = T̂D exp

(
− i

~

∫ t+∆t

t
dt′
[
ĤKS(t

′) + Ĥf(t
′)
])

(6.63)

Hier wurde der Operator Ĥf(t) ohne das Argument Ψ̇KS angegeben. Bis auf das noch zu
klärende Problem mit der Zeitabhängigkeit der Operatoren im Exponenten, kann hier
die Magnusentwicklung aus Kapitel 6.2.2 auf den Operator 6.63 angewendet werden.
Das Problem mit der Zeitabhängigkeit wird durch folgenden Algorithmus gelöst:

1. Auf das Kohn-Sham System den Operator exp[−iĤ(t)∆t] anwenden, um aus den
Orbitalen ϕn(t) den Orbitalsatz ϕj=0

n (t+∆t) zu generieren. Der Orbitalsatz ϕ0n(t+
∆t) stellt eine erste Näherung des Zeitschrittes dar, der für Interpolation genutzt
werden kann.

2. Das Kohn-Sham Potential V j=0
eff (t+∆t) berechnen.

3. Wiederhole bis Konvergenz von V j
eff bzgl. des Iterationsschrittes j eintritt:

a) Interpoliere die gröÿen Veff und ∂z/∂t im Intervall [t, t+∆t] an den Stützstellen
tj , welche für den Magnusoperator benötigt werden. Die Gröÿe ∂z/∂t kann
auch mit Hilfe der Tangenten an den Stützstellen tj der Interpolationsfunktion
aus z berechnet werden.

b) Hamiltonoperatoren ĤKS und Ĥf initialisieren19.

19Elektrostatisches Potential, e�ektives Potential, etc. berechnen.
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6.3. Propagatoren für implizite Kohn-Sham Gleichungen

c) Wende exp(Ω̂M) auf den Orbitalsatz ϕn(t) an, um ϕj+1
n (t+∆t) zu generieren.

4. Der konvergierte Orbitalsatz ϕjn(t+∆t) stellt das Ergebnis des Zeitschritts dar.

Das Feld Veff(r, t) und die Gröÿe z(t) der vorherigen Zeitschritte können zur Verbesserung
der Interpolation im Intervall [t, t+∆t] hinzugezogen werden.
Wie sich gezeigt hat, ist von Interpolationsverfahren, welche nicht die Zeitumkehrbar-

keit berücksichtigen (wie z.B. die Lagrangeinterpolation), abzuraten: Die numerische Sta-
bilität steigt hier erheblich, wenn die Railway-Curve Interpolation (s. Gl. 6.44 in Kapitel
6.2.3) verwendet wird. Diese Interpolationsformel erfordert die Kenntnis der Zeitablei-
tung von den zu interpolierenden Gröÿen bei t und t+∆t: Zur Lösung dieses Problems
sollten die Gln. 15 und 16 aus [89] herangezogen werden.

6.3.6. Analyse der Konditionszahl

In diesem Kapitel werden Eigenschaften der impliziten Kohn-Sham Gleichungen 6.45-6.47
analysiert. Die Betrachtungen beschränken sich hier allerdings auf ein Ein-Teilchensystem
mit der von Neuhauser vorgeschlagenen Drude-Dissipation.
Wie in folgenden Unterkapiteln gezeigt wird, kann ein kompaktes lineares Gleichungs-

system zur Bestimmung der Zeitableitung der Wellenfunktion aufgestellt werden. An
diesem wird die Konditionszahl untersucht.
Deren Bedeutung in der Numerik [93] wird hier nochmals kurz zusammengefasst:
Für ein Gleichungssystem Ax = b, das durch die Koe�zientenmatrix A de�niert ist,

kann die Lösung x als Ausgabe einer �Funktion� und die rechte Seite b als deren Eingabe
betrachtet werden. Die Konditionszahl gibt nun an, wie stark sich eine kleine Änderung
der Eingabe δb auf die Ausgabe x(δb) auswirkt. Bei linearen Gleichungssystemen ist
eine groÿe Konditionszahl schlecht, weil kleine Fehler in b zu groÿen Fehlern in x führen.
Zur De�nition der Konditionszahl geht man von einem Fehler e in b aus, der zur

Lösung als A−1e beiträgt. Nun betrachtet man das Verhältnis zwischen �relativen Fehler
in der Lösung (Ausgabe)� zu �Fehler in der Eingabe�:

∥A−1e∥/∥A−1b∥
∥e∥/∥b∥

Darüber kommt man auf die De�nition der Konditionszahl κ einer Matrix A:

κ(A) = ∥A−1∥ · ∥A∥ (6.64)

Für hermitesche Matrizen kann das Verhältnis vom gröÿten zum kleinsten Eigenwert
genommen werden:

κ(A) =

∣∣∣∣λmax(A)

λmin(A)

∣∣∣∣
Motivation

Eine wichtige Frage bei der impliziten Ein-Teilchen Schrödingergleichung ist, welcher Zu-
sammenhang zwischen der Magnitude des Dämpfungsparameters a0 und der Konditions-
zahl des Gleichungssystems besteht. Es liegt die Vermutung nahe, dass die Konditionszahl
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sich umso mehr verschlechtert, je höher man die Dämpfung wählt. Dieser Aspekt ist im
Zusammenhang mit der adaptiven Dämpfung (Kap. 4.4.3) wichtig, weil hier der Para-
meter a0 sehr groÿ werden kann, um die vorgegebene Energieabnahme zu ermöglichen.
In Simulationen zeigte sich, dass dieser drei bis vier Gröÿenordnungen durchläuft.
Die Kenntnis der Konditionszahlabhängigkeit sollte insbesondere auch erlauben zu

verstehen, weshalb die Simulationen mit vorgegebener Energieabnahme (s. Abb. 4.7)
plötzlich extrem ungenau werden.
Alle diese Aspekte können auch an einem Ein-Teilchensystem untersucht werden: Als

Modellsystem kann das eindimensionale, e�ektive Potential des Metall�lms (s. Kap. 3.1)
verwendet werden. Als Startwellenfunktion kann eine der Eigenfunktionen dieses Poten-
tials verwendet werden. Genau wie bei dem Vielteilchensystem wird auch dieses System
durch ein zeitabhängiges Störpotential VP(x, t) angeregt.

Formulierung in diskreter Basis

Die gedämpfte Ein-Teilchen Schrödingergleichung lautet:

i~
∂

∂t
ψ(r, t) =

[
Ĥ0 + Ĥf [ψ, ψ̇](t) + VP(r, t)

]
ψ(r, t) (6.65)

Ĥf [ψ, ψ̇](t) = a0

∫
∂j(r, t)

∂t
· Ĵ(r) d3r (6.66)

Die Diskretisierung dieser Gleichung im Ortsraum ergibt ein sehr groÿes, lineares Glei-
chungssystem für die unbekannte Zeitableitung ψ̇. In einer Raumdimension kann die
Matrix des Gleichungssystems bereits 100 . . . 1000 Zeilen und Spalten haben20.
Zur vereinfachten Analyse der Konditionszahl wird hier deshalb die Gleichung 6.65 von

der kontinuierlichen Ortsraumbasis in eine diskrete Basis transformiert. Als Basis sollen
die Eigenzustände {|ϕj⟩} des Hamiltonoperators Ĥ0 dienen. Dadurch ergibt sich auch
der Vorteil, dass man besseren Einblick die Dynamik des Systems bzgl. der involvierten
Quantenzustände erhält: Wie sich in den folgenden Gleichungen zeigt, wird diese durch
die Symmetrieeigenschaften der Eigenzustände bestimmt.
Die Wellenfunktion wird zunächst durch einen Koe�zientenvektor c(t) dargestellt:

|ψ(t)⟩ =
∑
l

cl(t)|ϕl⟩ (6.67)

Die Zustände |ϕn⟩ sind normiert und orthogonal. Durch Einsetzen in zeitabhängige Schrö-
dingergleichung erhält man:

i~
∑
l

ċl(t)|ϕl⟩ =
[
Ĥ0 + Ĥf [ċ(t)] + V̂P(t)

]∑
l

cl(t)|ϕl⟩ (6.68)

Um die Bewegungsgleichung für einen bestimmten Koe�zienten zu erhalten, wird mit

20Hier kann man ggf. den Vorteil ausnutzen, dass die Matrix dünn besetzt ist. Diese Möglichkeit wurde
in dieser Arbeit durch die Formulierung in einer endlichen, diskreten Basis nicht benötigt.
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einem Bra-Vektor multipliziert:

i~ċn(t) = ⟨ϕn|Ĥ0

∑
l

cl(t)|ϕl⟩+
∑
l

cl(t)⟨ϕn|Ĥf [ċ(t)]|ϕl⟩

+
∑
l

cl(t)⟨ϕn|V̂P(t)|ϕl⟩

= Encn(t) +
∑
l

cl(t) H
nl
f [ċ(t)] +

∑
l

cl(t) V
nl
P (t) (6.69)

Matrixelemente des Reibungsterms:

Hnlf [c(t)] =

∫
d3qA[c(t), ċ(t)](q)⟨ϕn|Ĵ(q)|ϕl⟩

=

∫
d3qA[c(t), ċ(t)](q)Jnl(q) (6.70)

Matrixelemente des Stromdichteoperators:

Jnl(q) =

∫
d3q′ ϕ∗n(q

′)Ĵ(q)ϕl(q
′)

=

∫
d3q′ ϕ∗n(q

′)
p̂δ(q′ − q) + δ(q′ − q)p̂

2me
ϕl(q

′)

=
1

2me

∫
d3q′ ϕ∗n(q

′)p̂δ(q′ − q)ϕl(q
′) +

1

2me

∫
d3q′ ϕ∗n(q

′)δ(q′ − q)p̂ϕl(q
′)

=
1

2me

∫
d3q′ [p̂ϕn]

∗(q′)δ(q′ − q)ϕl(q
′) +

1

2me

∫
d3q′ ϕ∗n(q

′)δ(q′ − q)p̂ϕl(q
′)

=
1

2me
[p̂ϕn]

∗(q)ϕl(q) +
1

2me
ϕ∗n(q)p̂ϕl(q)

=
i~
2me

[ϕl(q)∇ϕ∗n(q)− ϕ∗n(q)∇ϕl(q)]

Dämpfungsfeld (hier wird a(q) = a0 gesetzt):

A[c(t), ċ(t)](q) = a0
∂

∂t
j[c(t)](q)

= a0
∂

∂t
⟨ψ(t)|Ĵ(q)|ψ(t)⟩

= a0
∂

∂t

∑
n

∑
l

c∗n(t)cl(t)Jnl(q)

=
i~
2m

a0
∂

∂t

∑
n

∑
l

c∗n(t)cl(t) [ϕl(q)∇ϕ∗n(q)− ϕ∗n(q)∇ϕl(q)](6.71)

In Gl. 6.69 einsetzen:

i~ċν(t) = Eνcν(t) +
∑
l

cl(t) a0

∫
d3q

∂

∂t

∑
n

∑
m

c∗n(t)cm(t)Jnm(q) · Jνl(q)

+
∑
l

cl(t) V
nl
P (t) (6.72)

131



6. Numerik

Die nachfolgenden Betrachtungen konzentrieren sich auf den Reibungsterm. Zur Über-
sicht wird deshalb ab hier der Störpotentialterm vorerst weggelassen:

i~ċν(t) = Eνcν(t) + a0
∑
l

cl(t)
∑
n,m

∂

∂t
[c∗n(t)cm(t)]

∫
d3q Jnm(q) · Jνl(q)

= Eνcν(t) + a0
∑
l

cl(t)
∑
n,m

[ċ∗n(t)cm(t) + c∗n(t)ċm(t)]

∫
d3q Jnm(q) · Jνl(q)

= Eνcν(t) + a0
∑
l

∑
n,m

cl(t) [ċ
∗
n(t)cm(t) + c∗n(t)ċm(t)] Ξ

nm
νl (6.73)

In der letzten Zeile wurde der Tensor Ξ durch das Integral in der Zeile darüber de�niert.
Die Elemente von Ξ werden nun für eine Basis aus den rein reellen Eigenfunktionen ϕn
ermittelt:

Ξnmνl =

(
i~
2me

)2∫
d3q [ϕm(q)∇ϕ∗n(q)− ϕ∗n(q)∇ϕm(q)] · [ϕl(q)∇ϕ∗ν(q)− ϕ∗ν(q)∇ϕl(q)]

=
i2~2

4m2
e

∫
d3q [ϕm(q)∇ϕ∗n(q) · ϕl(q)∇ϕ∗ν(q)− ϕ∗n(q)∇ϕm(q) · ϕl(q)∇ϕ∗ν(q)

−ϕm(q)∇ϕ∗n(q) · ϕ∗ν(q)∇ϕl(q) + ϕ∗n(q)∇ϕm(q) · ϕ∗ν(q)∇ϕl(q)]

=
i2~2

4m2
e

∫
d3q [ϕm(q)ϕl(q)∇ϕn(q) · ∇ϕν(q)− ϕn(q)ϕl(q)∇ϕm(q) · ∇ϕν(q)

−ϕm(q)ϕν(q)∇ϕn(q) · ∇ϕl(q) + ϕn(q)ϕν(q)∇ϕm(q) · ∇ϕl(q)]

Zur Abkürzung für die Integrale wird die Gröÿe I eingeführt, deren Indizes aus der letzten
Gleichung sofort ersichtlich werden:

Ξnmνl = − ~2

4m2
e

[Imlnν − Inlmν − Imνnl + Inνml]

Die Parität der Eigenfunktionen erlaubt es, anhand der Indizes von I zu entscheiden,
ob das Integral verschwindet oder nicht. Innerhalb der ersten beiden und letzten beiden
Indexpaare von I liegt eine Symmetrie bei Vertauschung vor.
Die Gleichung 6.73 repräsentiert ein gekoppeltes Gleichungssystem für die Komponen-

ten des Koe�zientenvektors c. Die Dreifachsumme kann noch weiter vereinfacht werden,
was für die e�ziente numerische Simulation der Gleichungen wichtig ist. Dazu werden
folgende Eigenschaften vom Ξ-Tensor ausgenutzt:

Ξmnνl = −Ξnmνl (6.74a)

Ξnmνl = −Ξnmlν (6.74b)

Ξnnνl = 0 (6.74c)

Ξnmνν = 0 (6.74d)

Ξmnνl = Ξνlmn (6.74e)

Die Summation in Gl. 6.73 kann über die Beziehungen 6.74c-6.74d sofort eingeschränkt
werden:

i~ċν(t) = Eνcν(t) + a0
∑
l

l ̸=ν

∑
n,m

n ̸=m

cl(t) [ċ
∗
n(t)cm(t) + c∗n(t)ċm(t)] Ξ

nm
νl
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Weil sich das Vorzeichen vom Ξ-Tensor bei Vertauschung zweier Indizes (jeweils oben oder
unten) nach den Beziehungen 6.74a-6.74b ändert, kann die Doppelsumme über (n,m)
folgendermaÿen umgeschrieben werden:

i~ċν(t)
= Eνcν(t) + a0

∑
l

l ̸=ν

∑
n,m
n>m

cl(t) [ċ
∗
n(t)cm(t) + c∗n(t)ċm(t)− ċ∗m(t)cn(t)− c∗m(t)ċn(t)] Ξ

nm
νl

= Eνcν(t) + a0
∑
l

l ̸=ν

∑
n,m
n>m

cl(t) [c
∗
n(t)ċm(t)− cn(t)ċ

∗
m(t) + ċ∗n(t)cm(t)− ċn(t)c

∗
m(t)] Ξ

nm
νl

= Eνcν(t) + 2i a0
∑
n,m
n>m

[Im{c∗n(t)ċm(t)}+ Im{ċ∗n(t)cm(t)}]
∑
l

l ̸=ν

cl(t) Ξ
nm
νl (6.75)

Nimmt man nun noch das seit Gl. 6.73 vernachlässigte Störpotential wieder mit hinzu,
erhält man als Ergebnis für die Ein-Teilchen Schrödingergleichung in Eigenbasis von Ĥ0

folgende Bewegungsgleichung der Koe�zienten c:

i~ċν(t) = Eνcν(t) +
∑
l

cl(t) V
νl
P (t)

+ 2i a0
∑
n,m
n>m

[Im{c∗n(t)ċm(t)}+ Im{ċ∗n(t)cm(t)}]
∑
l

l ̸=ν

cl(t) Ξ
nm
νl (6.76)
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Ergebnisse

Um den Zusammenhang zwischen der Dämpfungskonstante a0 und der Konditionszahl
zu ermitteln wurde die zeitabhängige Ein-Teilchen Schrödingergleichung 6.65, 6.66 in
diskreter Basis für das in Abbildung 4.4 gezeigte System gelöst. Das System wurde (wie
in Abb. 4.4 dargestellt) durch einen Puls über das Potential VP angeregt. Während der
Propagation wurde die Dämpfungskonstante schrittweise erhöht, wie im Text zu Abb.
6.3 erläutert wird. Diese schrittweise Vergröÿerung der Gröÿenordnung von a0 �ndet,
basierend auf Beobachtung, auch bei der adaptiven Regulierung (s. Kap. 4.4.3) dieses
Parameters statt. Die Ergebnisse in Abb. 6.3 bestätigen den vermuteten Zusammenhang
zwischen a0 und κ(A).

Abbildung 6.3.: Im oberen Diagramm ist die Anzahl an Iterationen dargestellt, die be-
nötigt wurde um das Gleichungssystem des impliziten Runge-Kutta Ver-
fahrens (s. Kap. 6.3.4) iterativ zu lösen. Im unteren Diagramm ist die
reziproke Konditionszahl κ−1 des Gleichungssystems 6.76 jeweils gegen
die Simulationszeit t aufgetragen. Nach jeweils 5 fs wurde die Dämp-
fungskonstante um Faktor 10 erhöht. Die schwarzen, senkrechten Linien
markieren die Intervalle: a0 = 0, 1, 10, 100, 1000, 10000
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6.4. Methode der Finiten Volumen

Die Methode der Finiten Volumen (FVM21) wird zur Lösung hyperbolischer, partieller
Di�erentialgleichungen genutzt [94, 95]. Diese Gleichungen beschreiben häu�g bestimmte
Erhaltungsgröÿen wie z.B. Masse, Energie oder Impuls (d.h. es handelt sich um Konti-
nuitätsgleichungen). Diese treten vor allem im Bereich der Fluiddynamik auf, in dem sich
die FVM als ein Standardverfahren etabliert hat. Um solche Gleichungen numerisch lösen
zu können, bietet diese Methode die Möglichkeit, die partielle Di�erentialgleichung durch
Umformung mittels des Divergenztheorems in ein äquivalentes und exaktes System von
gewöhnlichen Di�erentialgleichungen zu übersetzen. Diese beschreiben dann die zeitliche
Entwicklung der Mittelwerte von einzelnen Zellen (�nite Volumen) des Simulationsraums.
Die Erhaltungsgröÿen können dabei nicht verletzt werden.
Durch den FVM-Ansatz wird das ursprüngliche Problem durch zwei neue Probleme

ersetzt: An den Zellober�ächen muss ein Integral über den Fluss numerisch berechnet
werden und die Gleichungen müssen mit einem numerischen Integrator in der Zeit pro-
pagiert werden. Die Berechnung des Flusses stellt die gröÿte technische Herausforderung
dar und beein�usst maÿgeblich die Eigenschaften der Lösung: Ein typischer Fehler in nu-
merischen FVM-Lösungen ist das Auftreten von unphysikalischer Di�usion, welche durch
das Schema zur Berechnung des Flusses verursacht wird. Es sei nochmals betont, dass die
Erhaltungsgröÿen auch bei schlechten Approximationen der Flüsse nicht verletzt werden
können, wie im Kapitel 6.4.2 gezeigt wird.
Die FVM �ndet in dieser Arbeit Anwendung bei der Beschreibung des Elektronenga-

ses über ein semiklassisches Hydrodynamikmodell (s. Kap. 6.4.4) und bei der Lösung der
Wigner Gleichungen (s. Kap. 6.5.5 und 6.4.5). Zur Berechnung der Flüsse an den Zello-
ber�ächen kommt ein relativ neuartiges Verfahren zum Einsatz (s. Kap. 6.4.3), welches
über einen geringen Di�usionsfehler verfügt [96]. Wissenschaftliches Neuland wird bei
der Anwendung dieses Verfahrens auf die Wigner-Gleichungen betreten.

6.4.1. Problemübersicht

Euler-Gleichungen

Bei der Verwendung eines hydrodynamischen Modells des Elektronengases in metalli-
schen Strukturen müssen folgende Probleme gelöst werden:

1. Der elektronische Grundzustand n−0 (r) muss ermittelt werden.

2. Die hydrodynamischen Gleichungen müssen die Metall-Vakuum Grenz�ächen kor-
rekt wiedergeben22 und müssen daher auch im Vakuumbereich gelöst werden. Hier
besteht das Problem, dass einige Gröÿen unde�niert sein können, wie z.B. das
Geschwindigkeitsfeld, welches sich als Quotient von Impuls- und Teilchendichte be-
rechnen lässt.

21engl.: Finite Volume Method
22Die Elektronendichte tritt an Ober�ächen aus dem Festkörper aus. Es ist daher falsch, die Bewegungs-

gleichungen für das Elektronengas nur innerhalb des Festkörpers zu lösen.
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3. An der Metall-Vakuum Grenz�äche hat die Elektronendichte einen groÿen Gradi-
enten (s. Abb. 3.2), welcher spezielle Anforderungen an das Schema zur Berechnung
der Zellober�ächen�üsse und die Diskretisierung stellt.

Für die Berechnung der Teilchendichte im Grundzustand kann man eine Zeitpropaga-
tion durchführen: Man erweitert die Bewegungsgleichung um einen viskosen Term, der
das Elektronengas abbremst und simuliert, wie sich eine geratene Startteilchendichte
(z.B. die Ionendichte n−(r, t = 0) = n+(r)) in einen stationären Zustand mit Kräfte-
gleichgewicht entwickelt. Dieses herrscht im Grundzustand zwischen dem Druck und der
elektrostatischen Anziehung.

Wigner-Gleichungen

Die Verwendung der Wigner-Gleichungen zur Beschreibung des Elektronengases im Be-
reich der Plasmonik ist bisher wissenschaftlich gemieden worden: Die Notwendigkeit einen
sechs-dimensionalen Phasenraum zu diskretisieren, ist ein wesentlicher Grund, weshalb
alternative physikalische Beschreibungen gesucht werden [23, 65]. Nichtsdestotrotz soll
hier versucht werden, diese Gleichungen direkt zu lösen, um später eine Möglichkeit zu
haben, vereinfachte Modelle besser auf ihre Gültigkeit überprüfen zu können. Es müssen
dabei folgende Probleme beachtet werden:

1. Die Wignerverteilung des elektronischen Grundzustandes ist unbekannt und muss
auf gleiche Weise wie bei dem Hydrodynamik-Modell im Zeitbereich ermittelt wer-
den. Allerdings ist unklar, wie man in diese Gleichungen einen viskosen Term ein-
baut. In Kapitel 5.1.7 wurde ein Vorschlag gemacht, wie sich eine im k-Raum sym-
metrische Verteilungsfunktion durch Dämpfung von Asymmetrien erzielen lässt.
Diese Methode wurde allerdings in der Praxis noch nie getestet.

2. Die Anfangsverteilung, wie sie in Kapitel 6.5.2 vorgeschlagen wird, bedingt sowohl
bei der Ladungsdichte im Ortsraum eine Stufe an der Metall-Vakuum Grenze als
auch eine Stufe in der Verteilungsfunktion am Fermivektor im Impulsraum (an
festem Ort).

Das Vorhandensein von Unstetigkeiten in der Verteilungsfunktion haben die Verwen-
dung des Kurganov-Tadmor Schemas (s. Kap. 6.4.3) zur Berechnung des Flusstensors
motiviert.

6.4.2. Grundlagen

Die Gleichungen, für welche die Methode der Finiten Volumen gedacht ist, haben folgende
Form:

∂

∂t
u+∇ · f(u) = q + Randbedingungen (6.77)

Die Komponenten des Vektors u sind orts- und zeitabhängige Felder, welche dem durch
diese Gleichung ausgedrückten Erhaltungsgesetz unterliegen. Die Felder beschreiben den
Zustand des Systems, weshalb man u auch als Zustandsvektor bezeichnen kann. Bei f
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handelt es sich um den sogenannten Fluÿtensor, der eine Funktion des Zustands u dar-
stellt. Bei einem Zustandsvektor mit K Komponenten und einem d-dimensionalen Raum
hat der Fluÿtensor die Form einer K × d Matrix. Auf der rechten Seite der Gleichung
steht ein optionaler Quellterm q. Die Gleichung ist hyperbolisch, wenn die Gradienten
∇uf1, . . . ,∇ufd (bei denen es sich um d verschiedene k × k-Matrizen handelt) diagona-
lisierbar sind und über rein reelle Eigenwerte verfügen [94].
Um die Gleichung 6.77 in ein System von gewöhnlichen Di�erentialgleichungen umzu-

wandeln, wird zunächst der Simulationsraum Ω in N Zellen Ωj zerlegt:

Ω =

N∪
j=1

Ωj (Ωj untereinander disjunkt) (6.78)

Man bildet dann über jede dieser Zellen das Volumenintegral der Gleichung 6.77 und
teilt durch deren Volumen:

1

|Ωj |

∫
Ωj

∂

∂t
u d3r +

1

|Ωj |

∫
Ωj

∇ · f(u) d3r = 1

|Ωj |

∫
Ωj

q d3r (6.79)

Im ersten Integral kann die Zeitableitung vor das Integral gezogen werden, und bei dem
zweiten Integral kann das Divergenztheorem angewendet werden:

d

dt

1

|Ωj |

∫
Ωj

u d3r +
1

|Ωj |

∮
∂Ωj

f(u) · n̂dσ =
1

|Ωj |

∫
Ωj

q d3r (6.80)

Das erste und letzte Integral kann durch die Zellmittelwerte ersetzt werden:

d

dt
ūj +

1

|Ωj |

∮
∂Ωj

f(u) · n̂dσ = q̄j (6.81)

Das Ober�ächenintegral kann bei einfacher Geometrie der Zellen auf sinnvolle Weise als
Summe der Flüsse F durch Teil�ächen23 geschrieben werden:

1

|Ωj |

∮
∂Ωj

f(u) · n̂dσ =
1

|Ωj |
∑
k

F
(j)
k (6.82)

Der K-dimensionale Vektor F(j)
k beschreibt den Fluss durch die k-te Ober�äche des j-ten

Volumenelementes. Die zentrale Gleichung der Finite Volumen Methode lautet:

d

dt
ūj +

1

|Ωj |
∑
k

F
(j)
k = q̄j (6.83)

Diese Gleichung ist eine gewöhnliche Di�erentialgleichung in der Zeit und enthält keine
Näherungen. Erst bei der numerischen Berechnung der Flüsse F

(j)
k werden Näherungen

erforderlich. Weil aber zwei benachbarte Zellen identische Flüsse an der gemeinsamen
Ober�äche haben, kann selbst eine schlechte Näherung bei der Berechnung der Gröÿen
F
(j)
k zu keiner Verletzung von Erhaltungsgröÿen führen: Der Verlust einer Zelle ist immer

gleich dem Zuwachs einer benachbarten Zelle.
23Bsp.: Ober�ächen eines Quaders.
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6.4.3. Kurganov-Tadmor Methode

Die Kurganov-Tadmor Methode [96] wird benötigt um die Flüsse in der Gleichung 6.83 zu
berechnen. Diese Methode hat gegenüber den wesentlich einfacheren Methoden, wie z.B.
UDS24 und CDS25 (s. [95]), den Vorteil nur einen geringen numerischen Di�usionsfehler
aufzuweisen und keine unphysikalischen Oszillationen in den Lösungen zu erzeugen. Vor
allem kann die Methode benutzt werden, wenn die Lösung groÿe Gradienten aufweist.
Um die Methode zu beschreiben wird nun von Gleichung 6.83 ausgegangen und ange-

nommen, dass der Fluss in y- und z-Richtung verschwindet und die Ober�ächen im j-ten
Volumen in x-Richtung den Abstand ∆xj haben. Die Gleichung kann dann in folgender
Form geschrieben werden:

duj
dt

+
1

∆xj

[
f(uj+1/2)− f(uj−1/2)

]
= 0 (6.84)

Man benötigt zunächst eine Flussbegrenzungsfunktion26 ϕ(rj) : RK → RK , deren
Argument rj eine Art Rauigkeit von u bei der Zelle j beschreibt:

rj :=
uj − uj−1

uj+1 − uj

Numerisch darf diese Gröÿe komponentenweise die Werte ±inf annehmen. Die Imple-
mentation der Funktion ϕ(rj) muss darauf vorbereitet sein. Die Berechnung der Flüsse
erfordert weitere Hilfsgröÿen:

uLj+1/2 = uj + 0.5ϕ(ri) (uj+1 − uj) uRj+1/2 = uj+1 − 0.5ϕ(rj+1) (uj+2 − uj+1)

uLj−1/2 = uj−1 + 0.5ϕ(rj−1) (uj − uj−1) uRj−1/2 = uj − 0.5ϕ(rj) (uj+1 − uj)

Geometrisch betrachtet handelt es sich bei diesen Gröÿen um lineare Extrapolationen
des Zustandsvektors u auf der linken (L) bzw. rechten (R) Seite der Zellober�äche bei
j±1/2. Die maximale Steigung in der Extrapolation wird durch die Funktion ϕ begrenzt.
Die Flüsse in Gleichung 6.84 werden nun wie folgt berechnet:

f(uj−1/2) =
1

2

{[
f(uRj−1/2) + f(uLj−1/2)

]
− aj−1/2

[
uRj−1/2 − uLj−1/2

]}
f(uj+1/2) =

1

2

{[
f(uRj+1/2) + f(uLj+1/2)

]
− aj+1/2

[
uRj+1/2 − uLj+1/2

]}
Die Gröÿen aj±1/2 bezeichnen jeweils die betragsmäÿig gröÿten Eigenwerte der Jacobi-
Matrix der Flusstensoren zwischen den Zellen j und j ± 1:

aj±1/2 = max [ϱ (∇f(uj)) , ϱ (∇f(uj±1))] (6.85)

Dabei steht ϱ(A) für den Spektralradius der Matrix A. Die Eigenwerte geben die lokale
Ausbreitungsgeschwindigkeit im Raum an. Um die Gleichungen in der Zeit zu propa-
gieren, kann aus dem maximalen aj-Wert auf eine Obergrenze für die Zeitschrittgröÿe
entsprechend der Courant-Bedingung a∆t/∆x < Cmax geschlossen werden.
24upwind di�erence scheme
25central di�erence scheme
26In der englischen Fachliteratur entsprechend als �ux limiter function bekannt. Diese Funktionen müs-

sen problemabhängig gewählt werden und sind der Literatur zu entnehmen.
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6.4.4. Euler-Gleichungen

Die Euler-Gleichungen der Fluiddynamik lauten ganz allgemein (s. z.B. [95]):

∂ρ

∂t
+∇ · (ρv) = 0 (6.86a)

∂(ρv)

∂t
+∇ · (v ⊗ (ρv)) +∇p = 0 (6.86b)

∂E

∂t
+∇ · (v(E + p)) = 0 (6.86c)

Diese Gleichungen stehen für Massen-, Impuls- und Energieerhaltung. Die Felder Mas-
sendichte ρ, Impulsdichte ρv (Geschwindigkeitsfeld v) und Energiedichte E bilden den
Zustandsvektor u:

u =


ρ
ρvx
ρvy
ρvz
E

 (6.87)

Die Energiedichte E kann noch weiter aufgeteilt werden:

E = u+
1

2
ρm(v

2
x + v2y + v2z) + vext(r, t) (6.88)

Diese Beiträge sind: Innere- + kinetische- + potentielle Energiedichte. Um die Gleichun-
gen zu vervollständigen werden noch eine kalorische und eine thermische Zustandsglei-
chung benötigt. Hier dient als Modell�uid für das Elektronengas ein �Ideales Fermigas�
bei T = 0K [21, 62]. Der Druck p ist dabei physikalisch durch das Pauli-Prinzip be-
dingt. Für den Druck p und die innere Energiedichte u = dU/dV gilt in Abhängigkeit
der Teilchendichte n = ρ/me:

p =
2

3

U

V
=

(3π2)2/3~2

5me|qe|
n5/3 (6.89)

u =
dU

dV
= −2

3

~2(3π2)5/3

10π2me
n5/3 (6.90)

Der Flusstensor hat im Fall der Eulergleichungen folgende Form:

f(u) =


ρvx ρvy ρvz

p+ ρv2x ρvxvy ρvxvz
ρvxvy p+ ρv2y ρvyvz
ρvxvz ρvyvz p+ ρv2z

vx(E + p) vy(E + p) vz(E + p)

 = (fx, fy, fz) (6.91)

Die Abbildung 3.2 zeigt ein Ergebnis für den Grundzustand, welches mittels eindimen-
sionaler Finite Volumen Methode für das ideale Fermigas im Metall�lm berechnet wurde.
Das Ergebnis wurde auf folgende Weise generiert:
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1. Das Kurganov-Tadmor Schema war zum Zeitpunkt dieser Rechnung noch nicht
implementiert worden. Daher wurden die Flüsse mittels eines einfachen Zentraldif-
ferenzenschemas (CDS, s. [95]) berechnet. Weil dieses Schema (im Gegensatz zu
dem KT-Schema) mit einer unstetigen Startteilchendichte der Form n−(r, t = 0) =
n+(r) (welche bei dem Metall�lm stufenförmig an der Ober�äche abfällt) nicht klar
kommt, wurde eine geglättete Startdichte benutzt.

2. Es wurden periodische Randbedingungen gewählt, weil diese am einfachsten die
Re�exionen am Rand des Simulationsraumes verhindern und für das Ergebnis un-
erheblich sind.

3. Die Zeitintegration der Gl. 6.83 erfolgte mit einem Runge-Kutta Verfahren 4. Ord-
nung.

Damit das Fluid von einem elektromagnetischen Feld in Bewegung versetzt werden kann,
muss in die Kontinuitätsgleichung für die Impulserhaltung 6.86b noch ein Quellterm
eingefügt werden. Auf gleiche Weise kann auch eine Senke für den Impuls ergänzt werden,
welche die Reibung beschreibt. Die Gleichung lautet dann:

∂(ρv)

∂t
+∇ · (v ⊗ (ρv)) +∇p = qeρ [E+ v ×B]− γ(ρv) (6.92)

Auf der rechten Seite steht die Lorentzkraftdichte und ein Dämpfungsterm mit Dämp-
fungskonstante γ. Letzterer wird insbesondere für die Berechnung der Grundzustands-
dichte benötigt.

6.4.5. Wigner-Gleichungen

Hier wird Vorarbeit für das Kapitel 6.5 geleistet: Die Wigner-Gleichungen 5.30a-5.30e
werden durch elementare Umformungen, welche auf Anwendung der Produktregel des
Nablaoperators basieren, in die Form einer Kontinuitätsgleichung 6.77 gebracht27. Das
Ergebnis dieser Umformungen lautet:

∂

∂t
fλ(r,k)

∣∣∣∣
kin

= − ~
mλ

∇r · [kfλ(r,k)] (unverändert) (6.93a)

∂

∂t
fλ(r,k)

∣∣∣∣
A.p

= − qλ
mλ

[∇k · (fλ(r,k)∇r[A(r) · k])]

+
qλ
mλ

[∇r · {A(r)fλ(r,k)}] (6.93b)

∂

∂t
fλ(r,k)

∣∣∣∣
A2

=
q2λ

2~mλ
∇k ·

[
∇r{fλ(r,k)|A(r)|2}

]
(6.93c)

∂

∂t
fλ(r,k)

∣∣∣∣
H

= −qλ
~
∇k · [E(r)fλ(r,k)] (6.93d)

∂

∂t
fλ(r,k)

∣∣∣∣
F

=
|qλ|
~

(∇r · [fλ(r,k)∇k∆ε(k, r)]

−∇k · [fλ(r,k)∇r∆ε(k, r)]) (6.93e)
27Der Korrelationsterm 5.30f wird ausser Acht gelassen, weil dessen genaue Realisierung noch gar nicht

klar ist.
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In dieser Form lässt sich der Zustandsvektor u und der Flusstensor f(u) ablesen. Der
Zustandsvektor ist einfach nur durch die Wignerfunktionen fλ gegeben:

u(r,k) =

(
fe(r,k)
fi(r,k)

)
(6.94)

Der Flusstensor hat entsprechend der zwei Komponenten von u und wegen des sechs-
dimensionalen Phasenraums die Form einer 2× 6-Matrix:

f(u) =

(
F⃗e
r F⃗ i

r

F⃗e
k F⃗ i

k

)
(6.95)

Dabei sind F⃗λ
r und F⃗λ

k jeweils dreidimensionale Zeilenvektoren, welche sich auf den Orts-
bzw. Impulsraumanteil des Phasenraums beziehen:

F⃗λ
r (r,k) =

~
mλ

kfλ(r,k)−
qλ
mλ

A(r)fλ(r,k)

−|qλ|
~
fλ(r,k)∇k∆ε(k, r) (6.96a)

F⃗λ
k (r,k) =

qλ
mλ

fλ(r,k)∇r[A(r) · k]−
q2λ

2~mλ
∇r{fλ(r,k)|A(r)|2}

+
qλ
~
E(r)fλ(r,k) +

|qλ|
~
fλ(r,k)∇r∆ε(k, r) (6.96b)

6.5. Wigner-Maxwell Gleichungen

Die numerische Lösung der Wigner-Maxwell Gleichungen 5.35a-5.35h stellt ein anspruchs-
volles Problem dar, für das es kein universelles Lösungsverfahren gibt. Ein Versuch, diese
mit Finiten Di�erenzen Verfahren zu lösen, ist in [57] dokumentiert.
Die Gleichungen für Licht (Maxwell) und Materie (Wigner) werden hier getrennt be-

handelt, da die selbstkonsistente Kopplung der Gleichungen vorerst als ein unbedeutendes
Detail erscheint28.
In diesem Kapitel wird es ausschlieÿlich um das Lösen der Wignergleichungen 5.35a-

5.35e für ein vorgegebenes elektromagnetisches Feld gehen. Für das Lösen der Maxwell-
gleichungen in Potentialform 5.35f-5.35h wird ein FDTD-Verfahren in Kapitel 6.7 vor-
geschlagen, welches auch auf andere Licht-Materie Systeme angewendet werden kann, in
denen die Materiegleichungen eine Coulomb-Eichung der elektromagnetischen Potentiale
erfordern.

6.5.1. Problemübersicht

Mit Hilfe der Abbildung 6.4 lässt sich leicht beschreiben, welches Resultat die numeri-
sche Simulation der Wignergleichungen bringen soll: Hier wird die Zeitentwicklung einer
klassischen Verteilungsfunktion im Phasenraum illustriert, welche als Analogon zur quan-
tenmechanischen Wignerverteilung betrachtet werden kann. Zur Zeit t0 be�nde sich das
28Bei der Kopplung der Gleichungen ist erfahrungsgemäÿ mit numerischen Stabilitätsproblemen zu rech-

nen.

141



6. Numerik

Abbildung 6.4.: Zeitentwicklung der Verteilungsfunktion im Phasenraum. Bei klassischen
Verteilungsfunktionen bleibt das blau markierte Volumen, welches sich
aus den Mikrozuständen (p, q), die mit der Präparation kompatibel sind,
zusammensetzt, während der Zeitentwicklung konstant [62]. Bei der Wig-
nerverteilung gilt das nur für das Integral über den ganzen Raum.

System im Grundzustand und wird anschlieÿen durch externe Felder angeregt. Dabei
durchläuft es verschiedene Zustände bis es nach einer Zeit t2 durch Relaxation wieder
in den Grundzustand, den es bei der Zeit t0 gehabt hat, zurückkehrt. Aus der Trajek-
torie im Phasenraum lassen sich Erwartungswert ⟨b(t)⟩, Streuung ⟨∆b(t)⟩ und höhere
Momente aus der Verteilungsfunktion zu Observablen b berechnen. Dabei handelt es sich
z.B. um die Teilchen- und Stromdichte. Die Berechnung solcher Gröÿen ist das Ziel der
Simulation.
Für die Initialisierung der Simulation muss zunächst durch makroskopische Präpara-

tion die Verteilungsfunktion zur Zeit t0 ermittelt werden. Dazu müssen alle mikrosko-
pischen Zustände, die mit der Präparation kompatibel sind, mit einer entsprechenden
Gewichtung versehen werden. In Abbildung 6.4 sind diese Zustände als klassische Mikro-
zustände (p, q) in zusammenhängenden Gebieten dargestellt. Bei der Wignerverteilung
sind die Mikrozustände durch Vielteilchenwellenfunktionen |ψ⟩ gegeben.
Als nächstes muss die Zeitentwicklung der Verteilungsfunktion berechnet werden. Spe-

ziell für dieses Problem wurde zuvor in Kapitel 6.4.5 gezeigt, dass sich die Wigner-
Gleichungen 5.35a-5.35e über einen Flusstensor f(u) in die Form der Kontinuitätsglei-
chung 6.77 bringen lassen:

∂

∂t

(
fe(r,k)
fi(r,k)

)
+∇ ·

(
F⃗e
r F⃗ i

r

F⃗e
k F⃗ i

k

)
= 0 (6.97)

Wenn man von den Schwierigkeiten absieht, welche die Berechnung des Flusstensors
beinhaltet29, fällt die Gleichung 6.97 in die Klasse von hyperbolischen partiellen Dif-
ferentialgleichungen für die es unzählige FVM-basierte Lösungsansätze in der Numerik
gibt. Die Vielfalt der Lösungsansätze hat den Grund, weil so einfache Gleichungen wie
die Advektionsgleichung als auch die hochkomplizierten Navier-Stokes Gleichungen in die
29Man denke dabei insbesondere an die Energierenormierung ∆ε(r,k).
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Abbildung 6.5.: Der Impulsraumanteil der Wignerverteilung gleicht im Anfangszustand
einer Fermikugel. Die (normierte) Funktion fällt an der Ober�äche der
Kugel von Eins auf Null ab. Die blau markierte Schale soll den Bereich
kmin < k < kmax darstellen. Ausserhalb von diesem Bereich bleibt die
Verteilungsfunktion konstant (Annahme, s. Text).

Form 6.97 (evtl. mit Quellterm) gebracht werden können und es unzählige Anwendungen
für die Gleichungen gibt. Jede Anwendung bringt besondere Ansprüche an bestimmte
Teilaspekte mit sich, wie z.B. die Realisierung von Randbedingungen oder die Diskreti-
sierung des Simulationsraumes. Für die Wignergleichungen werden diese in den folgenden
Kapiteln beschrieben.

6.5.2. Präparation des Grundzustands

Im Jellium-Modell wird von einer statischen Ionendichte n+(r) ausgegangen. Daher re-
duziert sich die Gleichung 6.97 auf den elektronischen Anteil:

∂

∂t
fe(r,k) +∇ ·

(
F⃗e
r

F⃗e
k

)
= 0 (6.98)

Zukünftig kann der Index e an der Verteilungsfunktion daher weggelassen werden:

fe → f

Als Anfangszustand wurde die Teilchendichte n−(r, 0) = n+(r) gesetzt und angenommen,
dass das Geschwindigkeitsfeld v(r, 0) überall verschwindet. Dazu muss der k-Raumanteil
der Ein-Teilchen Wignerverteilung f(r,k) an jedem Ort r mit einer Fermikugel (s. Abb.
6.5) initialisiert werden, deren Radius die Bedingung

1

V
∑
k

f(r,k) = n+(r) (6.99)

erfüllt.
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Abbildung 6.6.: Der Impulsraum kann in kartesischen oder sphärischen Koordinaten dis-
kretisiert werden. Das Innere der Fermikugel braucht nicht mit gespei-
chert werden, da die Funktion dort konstant Eins ist. Ebenso muss fernab
der Fermikugel die Verteilung nicht gespeichert werden, da sie dort kon-
stant Null ist. Die Farbwerte geben die Mittelwerte der Wignerverteilung
in den einzelnen Zellen (�nite Volumen) wieder. In der Mitte der Schale
(d.h. bei k = kF) fällt die Verteilungsfunktion auf Null ab.

6.5.3. Diskretisierung des Phasenraums

Der Phasenraum, auf dem die Ein-Teilchen Wignerverteilung f(r,k) de�niert ist, hat
sechs Raumdimensionen. Dieser kann für realistische Berechnungen nicht einfach durch
N Gitterpunkte je Dimension aufgelöst werden, da der Speicherbedarf mit N6 steigt.
Stattdessen wird hier von einer unbewiesenen Vermutung Gebrauch gemacht, durch die

zwar die Diskretisierung des Phasenraums erheblich komplizierter wird, aber gleichzeitig
auch das Speicherplatzproblem gelöst werden kann:

In jeder Fermikugel des k-Raumes gibt es einen Radius kmin unterhalb dem
die Wignerverteilung f konstant den Wert f0(r) behält. Genauso existiert ein
Radius kmax oberhalb dem die Verteilung konstant (Null) bleibt.

Diese Annahme kann nicht auf alle Systeme zutre�en und ausserdem kann sie während
der Zeitentwicklung verletzt werden.
Für metallische Systeme wird angenommen, dass diese Aussage stimmt und sich die

Wignerverteilung nur innerhalb der Kugelschale kmin < k < kmax ändert. Im k-Raum
muss dadurch nur noch die Kugelschale diskretisiert werden, wie in Abbildung 6.6 ge-
zeigt wird. Naheliegender Weise kann man hier neben einem kartesischen Gitter auch ein
sphärisches Gitter in Betracht ziehen. Welches besser geeignet ist, müssen numerische
Simulationen erst noch zeigen.
Diese Lösung zur Einsparung von Speicherplatz macht aber auch spezielle Randbe-

dingungen an den Rändern der Kugelschale im k-Raum notwendig. Ein erster Versuch
besteht darin, hier folgende Dirichletrandbedingungen zu verwenden:

f(r, |k| = kmin) = f0(r) (6.100)

f(r, |k| = kmax) = 0 (6.101)

144



6.5. Wigner-Maxwell Gleichungen

Diese Randbedingungen sind zwar sehr einfach zu implementieren, führen aber zu un-
physikalischen Re�exionen am Rand der Kugelschale.

6.5.4. Zeitentwicklung

Die Berechnung der Flüsse durch die Ober�ächen von Volumenelementen (s. Abb. 6.6)
sollte bei den Wignergleichungen über die in Kapitel 6.4.3 beschriebene Kurganov-Tad-
mor Methode durchführbar sein. Die Zeitentwicklung kann dann durch ein explizites
Runge-Kutta Verfahren berechnet werden. In dieser Arbeit konnte die hier vorgeschlagene
Methode allerdings nicht mehr getestet werden.
In der Literatur wurde für das Wigner-Poisson System eine numerische Methode [59]

gefunden, welche die Gleichung für eine Raumdimension (d.h. in einem zweidimensiona-
len Phasenraum) durch eine doppelte Fouriertransformation löst. Die Anwendung einer
Finiten Volumen Methode auf die Wignergleichungen ist vermutlich neu. Unklar ist, ob
es überhaupt korrekt ist, eine Finite Volumen Methode auf eine Quasiverteilungsfunktion
wie der Wignerverteilung anzuwenden.

6.5.5. Drude Bewegungsgleichung im k-Raum

Die klassische Drude Bewegungsgleichung für ein Elektron im elektrischen Feld

mev̇ = qeE(t)− γmev (6.102)

kann durch einen Spezialfall der Wignergleichung 5.35b reproduziert werden. Um die
klassische Drude Bewegungsgleichung zu reproduzieren, wird ein fester Ort r der Ver-
teilungsfunktion betrachtet und alle anderen Terme aus der Bewegungsgleichung für f
gestrichen:

∂

∂t
f(k) =

qe
~
(∇rΦ(r) · (∇kf(k))

= −qe
~
E(r) · (∇kf(k))

=
qe
~
∇k · [E(r)f(k)] (6.103)

Um eine phänomenologische Relaxation mit der gleichen Wirkung wie der des klassischen
Terms −γmev zu erhalten, werden nur Abweichungen δf aus der Anfangsverteilung f0
betrachtet:

δf(k, t) = f(k, t)− f0(k) (6.104)

Indem man diesen Term in die Gleichung 6.103 einsetzt, kann dann für ein Finites Volu-
men die Bewegungsgleichung (in der Form der Gleichung 6.83) formuliert werden:

d

dt
δf̄j =

qe
~

1

|Ωj |
∑
s

F
(s)
j − γ δf̄j (6.105)

Für den Fluss (qe/~)E(r)f(k) (s. Gl. 6.103) durch die s-te Ober�äche des j-ten Volu-
menelementes wird eine Näherung benötigt:

F
(s)
j ≈ E(r) · n̂(s)

j

f̄(k
(1)
j,s ) + f̄(k

(2)
j,s )

2
(6.106)
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Abbildung 6.7.: Ergebnis der FVM Simulation zur Drude Bewegungsgleichung 6.103. Die
blaue Kurve im Vordergrund zeigt den zeitlichen Verlauf des elektrischen
Feldes, welches für eine Beschleunigung sorgt. Die rote Kurve zeigt den
Geschwindigkeitsverlauf, der aus der Verschiebung der Fermikugel re-
sultiert. Die schwarzen Kreuzchen zeigen die Übereinstimmung mit der
numerischen Lösung der Drude Bewegungsgleichung 6.102, die mit einem
Standardverfahren zur Zeitintegration erhalten wurde.

Mit n̂
(s)
j wird die Ober�ächennormale bezeichnet und f̄(k

(1)
j,s ), f̄(k

(2)
j,s ) bezeichnen die

Mittelwerte der Verteilungsfunktion f in den beiden Volumina, welche sich die Ober�äche
teilen. Der Dämpfungsterm −γ δf̄j in Gl. 6.105 ist künstlich hinzugefügt worden.
Das Ergebnis der Simulation nach dieser speziellen Finite Volumen Methode, bei der

die Mittelwertbildung 6.106 zur Berechnung des Flusses benutzt wurde, ist in Abbildung
6.7 dargestellt. Als Finite Volumen kamen sowohl die kartesischen als auch die sphärischen
Volumen aus Abbildung 6.6 zum Einsatz. Für kleine Anregung durch das Feld E konnte
kein Unterschied in den Ergebnissen festgestellt werden30.

6.6. Lösungsverfahren für die Poisson-Gleichung

6.6.1. Problemübersicht

Die Poissongleichung [27] tritt in den Kohn-Sham Gleichungen bei der Berechnung des
Hartree-Potentials VH[n−] und bei den Wigner-Maxwellgleichungen im Zusammenhang
mit dem longitudinalen Anteil des elektromagnetischen Feldes (Gl. 5.31) auf:[

∇2 + κ2
]
Φ(r) = − 1

ε0
ϱ(r) + RB (6.107)

Die Randbedingungen können je nach System völlig verschieden sein:
30Die maximale Auslenkung der Fermikugel aus der Ruhelage im Verhältnis zur Dicke der Schale (s.

Abb. 6.6) legt fest, ob es sich um eine �kleine� oder �groÿe� Anregung des Systems handelt.
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6.6. Lösungsverfahren für die Poisson-Gleichung

• Bei elektronischen Strukturrechnungen an einzelnen Atomen und Molekülen würde
man o�ene Randbedingungen wählen:

lim
|r|→∞

Φ(|r|) = 0 (6.108)

• Für die Simulation von periodisch auf einem Substrat angeordneten Split-Ring
Resonatoren [1] wären periodische Randbedingungen in zwei Dimensionen und eine
o�ene Randbedingung in der dritten Dimension sinnvoll:

Φ(x± w, y, z) = Φ(x, y, z) (6.109a)

Φ(x, y ± h, z) = Φ(x, y, z) (6.109b)

lim
|z|→∞

Φ(x, y, z) = 0 (6.109c)

• Für Festkörper werden rein periodische Randbedingungen benötigt:

Φ(r+Rα) = Φ(r) (Rα : Position der Elementarzelle mit Index α) (6.110)

Um die Gleichung 6.107 numerisch zu lösen, werden üblicherweise Finite Di�erenzen
oder Finite Elemente Verfahren verwendet [78], bei denen die Poissongleichung in ein
lineares Gleichungssystem umgewandelt wird. Für die Lösung der dabei entstehenden
Gleichungssysteme existiert eine gewaltige Fülle von Methoden [69] deren Anwendbarkeit
u. a. von der Gröÿe des Gleichungssystems abhängt. Die Anzahl der Unbekannten in
gängigen Anwendungen deckt mindestens den Bereich von 102 bis 107 ab.
Die Gleichung kann für den rein periodischen Fall 6.110 über eine Fourierreihenentwick-

lung besonders einfach und numerisch extrem e�zient gelöst werden (s. Kapitel 6.6.2).
Die Realisierung von o�enen Randbedingungen ist numerisch gesehen am schwierigs-
ten, da der Simulationsraum Ω nur endlich groÿ ist, aber die gesuchten Lösungen sich
auf einen unendlich groÿen nicht-periodischen Raum beziehen. Eine einfache, aber nicht
sehr elegante Methode zur Realisierung von o�enen Randbedingungen besteht darin, rein
periodische oder Dirichletrandbedingungen (Φ(∂Ω) = 0) zu wählen und die Ladungen
so weit vom Rand zu entfernen, dass die Lösung nicht mehr vom Abstand zum Rand
abhängt.
In [97] wird gezeigt, wie sich auch o�ene Randbedingungen mit einer schnellen Fourier

Methode realisieren lassen.

6.6.2. FFT-Methode

Die Möglichkeit, die Poissongleichung mittels schneller Fouriertransformation (FFT31)
lösen zu können, bietet folgende entscheidende technische Vorteile gegenüber Verfahren,
welche ein lineares Gleichungssystem lösen müssen:

1. Die Berechnung der Lösung erfordert eine feste Anzahl an Rechenoperationen, d.h.
es wird kein iteratives Verfahren wie beim Lösen von linearen Gleichungssystemen
benötigt.

31engl: Fast Fourier Transform
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2. Für die schnelle diskrete Fouriertransformation einesN -dimensionalen Vektors wer-
den nurO(N logN) Rechenoperationen benötigt. Die Methode eignet sich also auch
für groÿe zwei- und dreidimensionale Probleme, bei denen die Anzahl der Gitter-
punkte N in der Gröÿenordnung 104 . . . 106 liegen kann.

3. Zur Durchführung der schnellen Fouriertransformation kann auf die fftw-Biblio-
thek zurückgegri�en werden, in der die e�zientesten Verfahren implementiert sind.
Die Bibliothek bietet auch Möglichkeiten zur Parallelisierung mit OpenMP und
MPI.

Für die Herleitung der Gleichungen der FFT-Methode genügt es, die eindimensionale
Poissongleichung zu betrachten:[

∂2

∂z2
− κ2

]
ϕ(z) = −4πρ(z) (ε0 = (4π)−1 in a.u.) (6.111)

Das Potential ϕ und die Ladungsdichte ρ werden in einer Fourierreihe auf dem Intervall
[0, L] entwickelt:[

∂2

∂z2
− κ2

] ∞∑
n=−∞

cne
iknz =

∞∑
n=−∞

cn[(ikn)
2 − κ2]eiknz

= −4π

∞∑
n=−∞

rne
iknz

kn :=
2πn

L

Durch Koe�zientenvergleich ergibt sich folgende Bedingung für die Koe�zienten cn:

cn =
4πrn
k2n + κ2

(6.112)

Für ladungsneutrale Systeme ist der Koe�zient r0 = 0. In diesem Fall muss auch der
Koe�zient c0 verschwinden, da gilt:

c0κ
2 = 4πr0 (6.113)

Der Koe�zient c0, der nur eine physikalisch unbedeutende additive Konstante zum Po-
tential ϕ darstellt, ist o�ensichtlich bei nicht-neutralen Systemen nur dann de�niert,
wenn es eine elektrostatische Abschirmung gibt. In dieser Arbeit werden nur elektrisch
neutrale Systeme betrachtet und daher gilt c0 = r0 = 0.
Die numerische Umsetzung dieser Methode verwendet eine Diskretisierung des Simu-

lationsraumes mit einem regulären, kartesischen Gitter. Die Fourierintegrale zur Berech-
nung der Koe�zienten rn werden in der Diskreten Fouriertransformation [66, 98] durch
Riemann-Summen auf dem Gitter ersetzt. Insgesamt sind folgende drei Schritte nötig,
um die Poissongleichung auf diese Weise zu lösen:

1. Diskrete Fouriertransformation der Ladungsdichte durchführen

2. Koe�zienten cn nach Gl. 6.112 berechnen

3. Inverse Diskrete Fouriertransformation auf die Koe�zienten cn anwenden, um die
Potentialfunktion ϕ zu erhalten
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6.7. Lösungsverfahren für elektromagnetische Potentiale in
Coulomb-Eichung

Die Formulierung von quantenmechanischen Bewegungsgleichungen berücksichtigen das
elektromagnetische Feld über den sogenannten �Minimale Kopplungsterm� im Hamilton-
operator:

Ĥ =
1

2me
(p̂− qeA)2 + qeΦ (6.114)

Die Eichung der Potentiale kann frei gewählt werden. Die Motivation für die Wahl der
Coulomb-Eichung besteht darin, dass die Wignergleichungen 5.35a-5.35e speziell in die-
ser Eichung hergeleitet wurden. Diese Eichung wird sehr häu�g bei der Beschreibung von
Optik in Festkörpern verwendet und es scheint derzeit noch kein numerisches Lösungsver-
fahren zu existieren, um elektromagnetische Potentiale in dieser Eichung zu simulieren.
In diesem Kapitel wird daher versucht ein Verfahren zu entwickeln, welches die Poten-

tialform der Maxwellgleichungen speziell in der Coulomb-Eichung lösen kann:

∇2A− 1

c2
∂2A

∂t2
= −µ0Jt (6.115a)

∇2Φ = − 1

ε0
ϱ (6.115b)

∇ ·A = 0 (6.115c)

Grob gesagt muss dazu einmal eine vektorielle Wellengleichung 6.115a für das Vektorpo-
tential A und eine Poissongleichung 6.115b für das longitudinale elektrische Feld gelöst
werden. Das Vektorpotential darf die Eichbedingung 6.115c nicht verletzen.
Die Verwendung der Lorentzeichung [27] erscheint einfacher, weil bei dieser auch für

das skalare Potential eine Wellengleichung gelöst werden muss und somit nur eine Art
von Problem zu lösen ist. Ein numerisches Verfahren für die Lorentzeichung existiert
bereits und ist in [44] beschrieben.

6.7.1. Problemübersicht

Die Entwicklung einer neuen numerischen Methode zur Lösung der Maxwellgleichun-
gen ist eine sehr komplexe Aufgabe. Bei den Maxwellgleichungen tritt zusätzlich das
Problem auf, dass ein kompliziertes Modell für die Materie (welches über nichtlineares
und/oder nichtlokales Antwortverhalten verfügen kann) simultan mit den Gleichungen
gelöst werden muss. Bei der Entwicklung einer Methode müssen folgende Eigenschaften
der numerischen Methode berücksichtigt werden:

• Konsistenz: Für ∆t → 0 und/oder ∆x → 0 gehen die diskretisierten Gleichungen
über in die exakten Gleichungen.

• Stabilität: Die numerische Methode ist stabil, wenn sich kleine Fehler in der nume-
rischen Lösung (von Zeitschritt zu Zeitschritt) nicht verstärken.

• Konvergenz: Die numerische Lösung der Di�erenzengleichung konvergiert gegen die
Lösung der exakten Di�erentialgleichung für immer feinere Gitterau�ösungen.
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• Erhaltungsgesetze: In Abwesenheit von Quellen und Senken dürfen Erhaltungsgrö-
ÿen von der numerischen Methode nicht verletzt werden.

• Einhaltung von Schranken: Schranken für physikalische Gröÿen dürfen nicht ver-
letzt werden. Z.B. darf eine Teilchendichte nicht negativ werden.

• Realisierbarkeit: Man sollte garantieren können, dass das Modell und die zugehö-
rigen Gleichungen überhaupt eine physikalisch sinnvolle Lösung besitzen. Dieses
Problem ist nicht numerischer Natur.

• Genauigkeit: Es gibt drei Arten von Fehlern, welche die Genauigkeit der numeri-
schen Lösung charakterisieren:

1. Modellierungsfehler: Beschreibt das mathematische Modell das reale System
hinreichend genau? Falls nicht, können auch auskonvergierte Lösungen quali-
tativ vom experimentell beobachteten Verhalten abweichen.

2. Diskretisierungsfehler: Das ist der Unterschied zwischen der exakten Lösung
der Di�erentialgleichung und der algebraischen Di�erenzengleichung.

3. Konvergenzfehler: Das ist der Unterschied zwischen der exakten Lösung ei-
nes algebraischen Gleichungssystems und der numerisch-iterativ ermittelten
Lösung.

Diese Au�istung von Eigenschaften orientiert sich an der Darstellung in [95], wo es speziell
um Simulationen in der Fluiddynamik geht. Da die Maxwellgleichungen auch eine Konti-
nuitätsgleichung für elektrische Ladungen implizieren, sind die oben genannten Aspekte
(Erhaltungsgesetze, Einhaltung von Schranken) auch für das Maxwellproblem relevant.
Weil die Komplexität dieser Aufgabe das Hauptproblem darstellt, wird ein pragmati-

scher Lösungsansatz gewählt: Die Wellengleichung für das Vektorpotential wird über das
bekannte FDTD-Verfahren [41, 45] gelöst, welches bereits ausgiebig numerisch untersucht
wurde.
Folgende Probleme konnten in dieser Arbeit nicht mehr betrachtet werden: Die Pois-

songleichung sollte mit unterschiedlichen Randbedingungen gelöst werden können32 und
es sollte überprüft werden, dass die Retardierung in der Coulomb-Eichung [27, 99] in
der Simulation korrekt wiedergegeben wird. Letzteres Problem ist vermutlich sehr kom-
pliziert, weil die winkelabhängige Gitterdispersion des FDTD-Verfahrens berücksichtigt
werden muss um das longitudinale Feld (welches über die Poissongleichung beschrieben
wird) mit dem transversalen Feld (welches über die Wellengleichung beschrieben wird)
korrekt zu vereinen. In diesem Zusammenhang sei noch erwähnt, dass der Quellterm Jt in
der Vektorpotentialwellengleichung 6.115a nur den transversalen Anteil der Stromdichte
darstellt. Die Stromdichte J, wie sie vom Materiemodell ausgegeben wird, setzt sich aber
aus longitudinalen und transversalen Anteilen zusammen:

J = Jl + Jt (6.116a)

∇ · Jt = 0 (6.116b)

∇× Jl = 0 (6.116c)
32Es werden vor allem o�ene Randbedingungen in mindestens einer Raumrichtung benötigt, um bei-

spielsweise Transmissionsspektren von Nanostrukturen (s. Kap. 1.2.3) berechnen zu können.
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Der longitudinale Anteil muss also raus gerechnet werden. Dieser steht in folgendem
Zusammenhang mit dem elektrostatischen Potential Φ:

µ0Jl =
1

c2
∂(∇Φ)

∂t
(6.117)

Um die Felder in longitudinale und transversale Anteile zu zerlegen, könnten sich die
distributionsartigen Projektionsoperatoren (Gln. 15 und 19) in [99] als hilfreich erweisen.

6.7.2. Lösung der Wellengleichung

Die vektorielle Wellengleichung 6.115a wird hier zunächst als System von drei unabhän-
gigen, skalaren Wellengleichungen aufgefasst. Die folgende Betrachtung reduziert sich
deshalb auf ein skalares Feld A(r, t), welches einer inhomogenen Wellengleichung genügt:

∇2A− 1

c2
∂2A

∂t2
= J (6.118)

(Der Quellterm wurde zur Vereinfachung der Gleichung umde�niert: In dieses J muss
eine Komponente von −µ0Jt eingesetzt werden.)
Diese Gleichung soll nun mit einem Finite Di�erenzen Verfahren numerisch gelöst

werden. Dazu wird als erstes diese Gleichung, welche zweiter Ordnung sowohl in Raum
als auch in Zeit ist, in ein System von Gleichungen erster Ordnung umgeschrieben:

∂A

∂t
= c∇ · v − c2

t∫
t0

J(t′) dt′ (6.119a)

∂v

∂t
= c∇A (6.119b)

Für diese Umformung muss ein vektorielles Hilfsfeld v eingeführt werden. Der Quellterm
steht nun in einem Zeitintegral33. Die FelderA und v werden in Analogie zum Yee-Schema
[45] im Simulationsraum auf zwei zueinander versetzten Gittern angeordnet, wie in Abb.
6.8 gezeigt wird: Die beiden Gitter werden jeweils durch die rot und blau markierten
Diskretisierungspunkte gebildet. Die Gitterabstände seien ∆x, ∆y und ∆z.
Der Yee-Cube mit den Indizes (j, k, l) be�ndet sich am Ort

r(j,k,l) = j∆x ex + k∆y ey + l∆z ez

mit den Komponenten  v
(j,k,l)
x

v
(j,k,l)
y

v
(j,k,l)
z

 , A(j,k,l)

33Der Quellterm muss die Bedingung J(t < t0) = 0 erfüllen.
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Abbildung 6.8.: Der Simulationsraum wird mit sogenannten �Yee-Cubes� diskretisiert:
Dazu werden die Felder A, vx, vy, vz auf regulären, kartesischen Gittern
dargestellt, welche den gezeigten Versatz zueinander besitzen. Die ausge-
füllten Punkte stellen eine Elementarzelle von Diskretisierungspunkten
dar, welche im Raum periodisch fortgesetzt wird. Eine solche Zelle bein-
haltet die drei Komponenten des Hilfsfeldes v (rote Punkte) und ein
Gitterpunkt, der zum A-Feld gehört (blauer Punkt).

Die Di�erentialoperatoren in den Gln. 6.119a-6.119b können auf diesem speziellen Gitter
durch Zentraldi�erenzen, welche 2. Ordnung genau sind, dargestellt werden:

∇ · v(j,k,l) ≈ v
(j+1,k,l)
x − v

(j,k,l)
x

∆x
+
v
(j,k+1,l)
y − v

(j,k,l)
y

∆y
+
v
(j,k,l+1)
z − v

(j,k,l)
z

∆z
(6.120a)

1

c

∂v
(j,k,l)
x

∂t
≈ A(j−1,k,l) −A(j,k,l)

∆x
(6.120b)

1

c

∂v
(j,k,l)
y

∂t
≈ A(j,k,l) −A(j,k−1,l)

∆y
(6.120c)

1

c

∂v
(j,k,l)
z

∂t
≈ A(j,k,l) −A(j,k,l−1)

∆z
(6.120d)

Die Komponenten des Gradienten vomA-Feld existieren nur an den Orten der v-Feldkom-
ponenten, weshalb die Gln. 6.120b-6.120d mit der zugehörigen v-Feldkomponente formu-
liert wurden.
Die Komponenten des Yee-Cubes sind nicht nur räumlich sondern auch zeitlich versetzt

angeordnet: Auf der diskretisierten Zeitachse tn = n∆t existiert das A-Feld nur zu den
Zeitpunkten tn und das v-Feld nur zu den Zwischenpunkten tn+1/2. Dadurch können für
die Zeitableitung ebenfalls Zentraldi�erenzen 2. Ordnung verwendet werden:

∂A

∂t
(tn+1/2) =

A(tn+1)−A(tn)

∆t
+O(∆t2) (6.121a)

∂v

∂t
(tn) =

v(tn+1/2)− v(tn−1/2)

∆t
+O(∆t2) (6.121b)
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6.7. Lösungsverfahren für elektromagnetische Potentiale in Coulomb-Eichung

Auf der linken Seite ersetzt man nun die Zeitableitungen ∂A
∂t und

∂v
∂t durch die räumlichen

Di�erenzenterme 6.120a-6.120d gemäÿ den Gleichungen 6.119a-6.119b. Die resultieren-
den Gleichungen können nach A(tn+1) und v(tn+1/2) aufgelöst werden, wodurch eine
explizite Integration der Gleichungen in der Zeit möglich ist (Leapfrog-Verfahren: s. [41]).
Es werden als Anfangsbedingungen die Felder A(t0) und v(t1/2) benötigt.
Als letztes muss noch der Quellterm in Gl. 6.119a diskretisiert werden. Das Integral

Q(t) = −c2
∫ t

t0

J(t′)dt′ (6.122)

muss zu den Zeiten tn+1/2 de�niert sein, da es an der gleichen Stelle wie das v-Feld in
der Zeitableitung vom A-Feld auftritt (s. Gl. 6.119a). Indem das Feld J(t) zu den Zeiten
tn de�niert wird, kann das Integral als einfache Riemann-Summe geschrieben werden:

Q(tn+1/2) = −c2∆t
n∑
k=0

J(tk) +O(∆t2) (6.123)

Die Ortsabhängigkeit vom Feld J wurde bisher nicht explizit erwähnt: Das Feld muss an
den gleichen Gitterpunkten im Raum wie das A-Feld de�niert werden (da es als Quellterm
in der Wellengleichung steht).

∗
Die bisherige Darstellung hat sich auf eine Komponente der vektoriellen Wellengleichung
6.115a bezogen. Im Prinzip kann man nun für jede Komponente Ax, Ay, Az entsprechende
Hilfsfelder vx,vy,vz einführen und mit dem beschriebenen Verfahren das A-Feld in der
Zeit propagieren. Hier stellt sich die Frage, ob tatsächlich zwölf Felder benötigt werden,
um drei skalare Wellengleichungen zu lösen: Wie man vom Yee-Algorithmus zur Lösung
der Maxwellgleichungen, welche ja die Wellengleichungen implizieren, weiÿ, werden dafür
nur die sechs Felder E und B benötigt.
Um herauszu�nden, welche Modi�kationen an bereits existierenden FDTD-Implemen-

tationen für Maxwellgleichungen nötig sind, um damit die Vektorpotentialwellengleichung
6.115a lösen zu können, werden nochmals die Wellengleichungen für die E- und B-Felder
(mit Quellterm J) betrachtet:

∇2E− µ0ε0
∂2E

∂t2
= µ0

∂J

∂t
(6.124a)

∇2B− µ0ε0
∂2B

∂t2
= µ0∇× Jt (6.124b)

Das E-Feld würde man als A-Feld benutzen und das B-Feld übernimmt die Rolle der
Hilfsfelder vx,vy,vz. Das E-Feld hat allerdings die Zeitableitung von µ0J als Quelle. Die
Zeitintegration der Quelle (Gl. 6.123) wird also weiterhin benötigt. Sonstige Änderungen
sind am Yee-Algorithmus nicht erforderlich.
Es muss allerdings noch beachtet werden, dass die Komponenten der E- und J-Felder

nicht am selben Ort sondern auf dem Yee-Cube verteilt liegen. Das kann für Anwen-
dungen, in denen die Rotation des Vektorpotentials benötigt wird von Vorteil sein, weil
der Yee-Cube extra für diese Berechnung gedacht ist. Andernfalls müssen Mittelwerte
gebildet werden, welche alle Komponenten der Felder auf einen gemeinsamen Punkt im
Yee-Cube konzentrieren.
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7. Schlussfolgerung und Ausblick

Für die Berechnung der optischen Eigenschaften von Nanostrukturen wurde im Rahmen
der Dichtefunktionaltheorie zunächst der elektronische Grundzustand der Nanostruk-
turen durch Lösen der stationären Kohn-Sham Gleichungen berechnet: Diese Aufgabe
konnte erfolgreich für Strukturen durchgeführt werden, deren Symmetrien ein-, zwei-
und dreidimensionale numerische Berechnungen erfordern. Die eindimensionalen Berech-
nungen am Metall�lm haben gezeigt, dass bereits bei einer Filmdicke von nur 5 nm die
elektronische Teilchendichte an den Ober�ächen mit der Teilchendichte eines Metall-
halbraumes sehr gut übereinstimmt (s. Abb. 3.1). Die Teilchendichte ist durch Friedel-
Oszillationen charakterisiert, welche im Inneren des Metall�lms (bzw. Halbraums) ver-
schwinden. Diese Beobachtung kann genutzt werden, um die Dicke einer Metallober�äche
auf mikroskopischer Ebene abzuschätzen, auf der sich deutliche Abweichungen von idea-
lisierten Grenz�ächen der makroskopischen Theorien zeigen. Ebenfalls konnte mit Hilfe
von zweidimensionalen Rechnungen an Nanodrähten die mikroskopische Teilchendichte
an Metallkanten und -ecken mit 90◦-Pro�l berechnet werden (s. Abb. 3.10 u. 3.11). Die
dreidimensionalen Berechnungen erlauben es in analoger Weise auch die Teilchendichte
an Metallspitzen zu ermitteln. Bei diesen Modellrechnungen macht sich allerdings der
hohe Rechenaufwand stark bemerkbar, wenn man versucht die Abmessungen der Struk-
tur solange zu erhöhen bis die Dichte an den Spitzen unabhängig von den Abmessungen
wird. Solche Berechnungen können in einer zukünftigen Arbeit durchgeführt werden. Da-
zu muss allerdings eine Rechenumgebung genutzt werden, in der 103 . . . 104 Kohn-Sham
Orbitale e�zient parallel verarbeitet werden können.
Mit den Simulationen im Zeitbereich konnten Ergebnisse zu den nicht-linearen und

nicht-lokalen E�ekten in den Nanostrukturen erzielt werden: An den Ober�ächen des
Metall�lms konnten die Stromdichten der zweiten und dritten Harmonischen1 beobach-
tet werden. Deren räumliche Lokalisierung und deren Skalierungsverhalten (s. Abb. 3.4
u. 3.6) hat sich als physikalisch plausibel erwiesen, so dass davon auszugehen ist, dass
die Berechnungsmethode und deren sehr umfangreiche Implementation korrekte Ergeb-
nisse liefert. Die Berechnung von SH-Strömen wurde ebenfalls an diversen metallischen
Nanodrähten durchgeführt (s. Abb. 3.12) um zu untersuchen, welche geometrischen For-
men eine besonders hohe SH-Stromdichte erzeugen. Um aussagekräftige Ergebnisse zu
erhalten, muss in zukünftiger Arbeit die Strukturgröÿe solange erhöht werden, bis die
Stromdichte unabhängig von dieser wird. In diesem Zusammenhang müssen auch o�e-
ne Randbedingungen (statt den derzeit verwendeten periodischen Randbedingungen) in
Betracht gezogen werden, welche technisch im Allgemeinen schwierig zu realisieren sind.
Die Berechnung der nicht-lokalen Suszeptibilität der Elektronendichte des Metall�lms

im linearen Regime ist ebenfalls gelungen: Diese ist durch eine starke Ortsabhängigkeit

1Die Beobachtung von noch höheren Harmonischen ist durch Auftreten von numerischem Rauschen
begrenzt.
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7. Schlussfolgerung und Ausblick

charakterisiert, welche im Inneren des Metall�lms abnimmt. Dadurch konnte eine Art
Bulkbereich um das Zentrum des Metall�lms ausgemacht werden. Alle Berechnungen da-
zu unterliegen allerdings einer an die Teilchendichte nachträglich angefügten, sehr starken
Dämpfung, ohne die diese Berechnung nicht durchführbar ist: Wenn man die Dämpfung
weglässt, ergeben sich unendlich lange andauernde Dichtewellen, die sich durch die Nano-
strukturen bewegen und an den Grenz�ächen re�ektiert werden. Eine Antwortfunktion
kann für ein solches System (mit unendlich zurückreichendem �Gedächtnis�) nicht be-
rechnet werden.

Dieser Aspekt hat auch die Entwicklung von Methoden zur dissipativen Dichtefunk-
tionaltheorie innerhalb dieser Arbeit motiviert: Als Grundlage wurde die Methode von
Neuhauser verwendet und unter verschiedenen Aspekten weiterentwickelt und untersucht.
Zu den Weiterentwicklungen zählen zum einen die Lösungsverfahren für implizite Kohn-
Sham Gleichungen (s. Kap. 6.3) und zum anderen die alternativen Formulierungen des
Reibungsterms (dessen Herleitung im Impulsraum sich als äuÿerst aufwendig erwiesen
hat). Wie bereits in der Originalarbeit von Neuhauser konnte das Phänomen beobachtet
werden, dass die Dämpfungse�zienz nach wenigen Femtosekunden stark abnimmt. Um
diesem Phänomen nachzugehen, wurden die impliziten Kohn-Sham Gleichungen für eine
Basis mit geringer Dimensionalität (bestehend aus den Eigenfunktionen des e�ektiven
Potentials im Grundzustand) formuliert. Die Gleichungen erlauben in dieser Form einen
viel besseren Einblick in die Dynamik des Systems, da Eigenschaften, wie z.B. die Sym-
metrien von Matrixelementen bestimmter Operatoren, direkt sichtbar werden. Es konnte
damit erfolgreich gezeigt werden, dass ein wesentliches Problem beim Lösen der impliziten
Kohn-Sham Gleichungen darin besteht, dass sich die Konditionszahl mit Fortschreiten
der Simulation immer weiter verschlechtert. Die Ursache für die Abnahme der Dämp-
fungse�zienz lässt sich in einer zukünftigen Arbeit über diesen Basisansatz vermutlich
ebenfalls ergründen. Ein sehr nützliches und praktisches Ergebnis für die Verwendung der
Methode von Neuhauser besteht in der Erkenntnis, dass sich statt des Stromdichteope-
rators genauso gut der Teilchendichteoperator benutzen lässt: Der Rechenaufwand wird
dadurch (besonders in zwei- und dreidimensionalen Simulationen) geringer ohne dass es
einen qualitativen Unterschied in den Ergebnissen gibt.

Als Alternative zur Dichtefunktionaltheorie wurden die Wignergleichungen aus einer
unverö�entlichten Arbeit von W. Hoyer untersucht: Es konnte in dieser Arbeit gezeigt
werden, dass sich diese Gleichungen in die Form einer Kontinuitätsgleichung im sechs-
dimensionalen Phasenraum bringen lassen. Die Wignerfunktion kann man sich für den
Grundzustand des Systems (d.h. die Elektronen einer Nanostruktur) so vorstellen, dass
man an jedem Punkt im Ortsraum eine sphärische Fermiverteilungsfunktion im Impuls-
raum hat. Die Annahme, dass sich die Funktion in ihrem Impulsraumanteil nur an der
Ober�äche dieser �Fermikugel� zeitlich verändert, lässt ho�en, dass die numerische Ver-
arbeitung dieser Wignerfunktion durch e�ziente Speicherung möglich ist. Weil die Funk-
tion über groÿe Gradienten im Ortsraum (an Grenz�ächen von Nanostrukturen) und im
Impulsraum (an der Ober�äche der Fermikugel) verfügt, wurde nach einem numerischen
Lösungsverfahren für Kontinuitätsgleichungen gesucht, deren Lösung diese Eigenschaften
haben darf. Die Finite-Volumen Methode von Kurganov und Tadmor (s. Kap. 6.4.3) hat
sich als möglicher Kandidat erwiesen. Um die Komplexität von physikalischer und nu-
merischer Seite möglichst gering zu halten, wurden in dieser Arbeit die Gleichungen für
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einen Nanodraht hergeleitet und diverse Vereinfachungen vorgenommen (z.B. Beschrän-
kung auf das niedrigste Subband und auf elektrostatische Potentiale). Dadurch ist man
zu den eindimensionalen Wigner-Poisson Gleichungen (für einen zweidimensionalen Pha-
senraum) gelangt, welche in der Literatur bereits ausgiebig beschrieben wurden. Bereits
diese Gleichungen zeigen interessante Phänomene, wie z.B. die Landau-Dämpfung, welche
mit einem neu zu entwickelnden numerischen Lösungsverfahren erst einmal nachvollzogen
werden müssen. In einer zukünftigen Arbeit könnte man den Einsatz von Finite-Volumen
Methoden (z.B. der von Kurganov und Tadmor) für diese Aufgabe untersuchen, da es
derzeit in der Literatur noch keine Lösungsverfahren zu geben scheint, die diese für Wig-
nergleichungen verwenden. In der Literatur ist allerdings bereits beschrieben worden, wie
sich aus den Wigner-Poisson Gleichungen die Quanten Euler Gleichung herleiten lässt (s.
Kap. 5.3.2). Die Lösungen dieser Gleichung sind zwar nur auf Längenskalen oberhalb
der Fermiwellenlänge gültig (und zeigen z.B. daher auch keine Friedel-Oszillationen), be-
rücksichtigen aber trotzdem Quantene�ekte bei einem Rechenaufwand, der mit dem vom
Lösen der klassischen Euler Gleichung vergleichbar ist. In einer zukünftigen Arbeit sollte
speziell auf die Bedeutung des Bohm-Potentials (s. Gl. 5.89) eingegangen werden, da im
Vorhandensein dieses Terms der wesentliche Unterschied zu derzeitigen hydrodynami-
schen Modellrechnungen im Bereich der Plasmonik liegt.
Ein weiterer Aspekt dieser Arbeit bestand darin das bekannte FDTD-Verfahren zur

Simulation elektromagnetischer Felder auf die elektromagnetischen Potentiale, speziell in
der Coulomb-Eichung, zu übertragen: Es konnte gezeigt werden, dass bereits existieren-
der FDTD-Code nur in der Berechnung der Quellterme verändert werden muss, um die
Wellengleichung für das Vektorpotential zu lösen. Ein noch ungelöstes Problem stellt die
Behandlung des skalaren Potentials dar, welche als Lösung der Poissongleichung vorliegt:
Das Vektorpotential unterliegt einer winkelabhängigen Gitterdispersion, die nicht zu der
Lösung des skalaren Potentials passt. Es ist sehr schwierig abzuschätzen, wie sich ein
solcher Fehler auf die numerische Stabilität auswirkt.
Insgesamt stellt diese Arbeit einen viel versprechenden Ausgangspunkt für die theore-

tische Untersuchung der optischen Eigenschaften von metallischen Nanostrukturen dar:
Die Ergebnisse der Berechnungen auf Basis der Dichtefunktionaltheorie können bereits
als qualitativ korrekt angenommen werden. Um auch mit experimentellen Resultaten
vergleichen zu können, müssen allerdings noch Details, z.B. bei den verwendeten Rand-
bedingungen und der Dissipation, angepasst und verbessert werden.
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A. Anhang

A.1. Zustandsdichten

System Con�nement Zustandsdichte

Partikel 3D D(E) = 2
∑

j δ(E−Ej)

Draht 2D D(E)/L =
√
2me

π~ · E− 1
2

Film 1D D(E)/A = me
π~2

Tabelle A.1.: Zustandsdichte von Systemen mit unterschiedlichem Con�nement. D(E)/L
ist die Zustandsdichte pro Länge des Drahtes und D(E)/A die Zustands-
dichte des Films pro Fläche. Beim Draht und Film bezieht sich die Zu-
standsdichte auf ein Subband.

A.2. Gröÿen in der linearen Optik von Metallen

Die Tabelle A.2 ist so konzipiert, dass die fundamentalen Parameter eines Metalls, welche
in Tabellenwerken nachgeschlagen werden können, ganz oben stehen und in die Gleichun-
gen darunter eingesetzt werden können um abgeleitete Gröÿen zu berechnen.
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A. Anhang

DC-Leitwert σDC

Elektronendichte n0

Plasmafrequenz ωP =
√

n0q2e
ε0me

Streuzeit τ ≡ γ−1 = meσDC
n0q2e

Suszeptibilität χ(ω) = σ(ω)
iωε0

Dispersionsrelation k(ω) =
√
µ0ε0[1 + χ(ω)]ω2

AC-Leitwert σ(ω) =
ε0ω2

P
iω−γ

Phasendi�erenz (E- und B-Feld) ∆(ω) = arg[k(ω)]
Skintiefe δ(ω) = Im{k(ω)}−1

Tabelle A.2.: Formelsammlung zur linearen Optik in Metallen.

A.3. Drude-Parameter für Edelmetalle

Gold Silber Platin
n0 [a−3

0 ] 0.00876 0.008736 0.002845
n0 [m−3] 5.9 · 1028 5.9 · 1028 1.9 · 1028
rS [a0] 3.0 3.0 4.4
ωP [rad s−1] 1.4 · 1016 1.4 · 1016 7.8 · 1015
σDC [Sm−1] 4.1 · 107 6.1 · 107 5.1 · 106
γ [s−1] 4.1 · 1013 2.7 · 1013 1.1 · 1014

Tabelle A.3.: Plasmafrequenz und Streuzeit aus [100].

rS [a0] 2.0 3.0 4.0 5.0 6.0

n0 [a−3
0 ] 0.0298 0.0088 0.00373 0.0019 0.0011

ωP [1015 rad s−1] 25.3 13.8 8.95 6.40 4.87
λF [a0] 6.55 9.82 13.10 16.37 19.64

Tabelle A.4.: Teilchendichte, Plasmafrequenz und Fermi-Wellenlänge in Abhängigkeit
vom Wigner-Seitz Radius.

A.4. Mathematische Grundlagen für Reibungsterme im
Impulsraum

A.4.1. Stromdichteoperator im kontinuierlichen Impulsraum

Der Stromdichteoperator, der die Wahrscheinlichkeitsstromdichte im Impulsraum be-
schreibt, soll hier hergeleitet werden, da dieser in Lehrbüchern der Quantenmechanik
normalerweise nicht zu �nden ist1.
1In [42] wird die allgemeine Form eines Stromdichteoperators als Ĵ(q) = i[Ĥ,Θ(x̂ − q)] (in a.u.)
angegeben. Dieses Konstrukt ist auch im Impulsraum gültig und kann als alternative Form der hier
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Abbildung A.1.: Frequenzabhängigkeit der Skintiefe in Gold: (a) Absolute Werte, (b) Ver-
hältnis der Skintiefe zur Wellenlänge im Vakuum. Diese wurde mit den
Formeln aus Tabelle A.2 und den Parametern in Tabelle A.3 berechnet.

Ausgangspunkt ist die Schrödingergleichung im Impulsraum:

i~
∂

∂t
ψ̃(p, t) =

p2

2m
ψ̃(p, t) +

∫
dp′

2π~
Ṽ (p− p′, t)ψ̃(p′, t) (A.1)

Die fouriertransformierten Gröÿen werden zur Kenntlichmachung der gewählten Konven-
tion der Normierung explizit angegeben:

ψ̃(p, t) =
1√
2π~

∞∫
−∞

dxψ(x, t)e−ipx/~ (A.2a)

Ṽ (p, t) =

∞∫
−∞

dx e−ipx/~V (x, t) (A.2b)

Die Verwendung zwei verschiedener Konventionen hat keinen besonderen Grund. Die
Wahl einer unitären Transformation für die Wellenfunktion ist wegen der statistischen
Interpretation jedoch naheliegend. Für die Rücktransformationen gilt:

ψ(x, t) =
1√
2π~

∞∫
−∞

dp ψ̃(p, t)eipx/~ (A.3a)

V (x, t) =
1

2π~

∞∫
−∞

dp Ṽ (p, t)eipx/~ (A.3b)

gezeigten Herleitung genutzt werden.
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Analog zur Herleitung im Ortsraum erfolgt diese hier durch Betrachtung der Zeitablei-
tung der Aufenthaltswahrscheinlichkeit des Teilchens im Intervall [a, b] des Impulsraums:

P (a, b; t) =

b∫
a

|ψ̃(p, t)|2 dp

d

dt
P (a, b; t) =

d

dt

b∫
a

|ψ̃(p, t)|2 dp =
b∫
a

∂

∂t
|ψ̃(p, t)|2 dp

=

b∫
a

[
˙̃
ψ

˙̃
ψ∗ + ψ̃

˙̃
ψ∗] dp

=

b∫
a

1

i~

[
ψ̃∗ p2

2me
ψ̃ + ψ̃∗V̂ ψ̃ − ψ̃

p2

2me
ψ̃∗ − ψ̃(V̂ ψ̃)∗

]
dp (A.4)

⇒ d

dt
P (a, b; t) =

b∫
a

1

i~

[
ψ̃∗V̂ ψ̃ − ψ̃(V̂ ψ̃)∗

]
dp

=

b∫
a

dp

i~

[
ψ̃∗
∫

dp′

2π~
Ṽ (p− p′)ψ̃(p′, t)− ψ̃

∫
dp′

2π~
Ṽ ∗(p− p′)ψ̃∗(p′, t)

]

In Gleichung A.4 wurde der Operator der potentiellen Energie V̂ eingeführt. Auf einen
ket-Vektor |ψ⟩ angewendet, ergibt sich folgende Funktion φ im Impulsraum:

φ(p) = ⟨p|V̂ |ψ⟩ =
∫
dp′′ δ(p− p′′)

∫
dp′

2π~
Ṽ (p′′ − p′)ψ̃(p′, t) (A.5)

Fortsetzung der vorherigen Rechnung:

d

dt
P (a, b; t) =

b∫
a

dp

2iπ~2

∫
dp′

[
Ṽ (p− p′)ψ̃(p′, t)ψ̃∗(p, t)− Ṽ ∗(p− p′)ψ̃∗(p′, t)ψ̃(p, t)

]

=

b∫
a

dp

π~2

∫
dp′ Im{Ṽ (p− p′)ψ̃(p′, t)ψ̃∗(p, t)}

= J(a, t)− J(b, t)

Die Stromdichte hat folgende Eigenschaft:

lim
p→±∞

J(p, t) = 0
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Unter Ausnutzung dieser Eigenschaft lässt sich die Stromdichte berechnen:

d

dt
P>(p, t) =

∞∫
p

dp′

π~2

∫
dp′′ Im{Ṽ (p′ − p′′)ψ̃(p′′, t)ψ̃∗(p′, t)}

= J(p, t) (A.6)

Der Term kann noch weiter umgeformt werden:

d

dt
P>(p, t) =

∞∫
p

dp′

2iπ~2

∫
dp′′ [Ṽ (p′ − p′′)ψ̃(p′′, t)ψ̃∗(p′, t)− ψ̃∗(p′′, t)ψ̃(p′, t)]

=

∞∫
p

dp′

2iπ~2
ψ̃∗(p′, t)[Ṽ ∗ ψ̃](p′)−

p∫
−∞

dp′

2iπ~2
ψ̃(p′, t)[Ṽ ∗ ∗ ψ̃∗](p′)

Über das Faltungstheorem folgt:

[Ṽ ∗ ψ̃](p′) =

∫
dp′′ Ṽ (p′ − p′′)ψ̃(p′′, t)

=
√
2π~

∫
dx e−ip

′x/~V (x, t)ψ(x, t)

=
√
2π~ F [V (x)ψ(x)](p′) (A.7)

Die letzten beiden Zeilen dienen der Kenntlichmachung der verwendeten Konvention in
der Fouriertransformation mit Symbol F . Für die Stromdichte gilt nun:

⇒ d

dt
P>(p, t) = J(p, t) =

−i√
2π~3

∞∫
p

dp′
{
ψ̃∗(p′, t)F [V (x)ψ(x)](p′)

−ψ̃(p′, t)F [V (x)ψ(x)]∗(p′)
}

=
2√
2π~3

∞∫
p

dp′ Im
{
ψ̃∗(p′, t)F [V (x)ψ(x)](p′)

}
(A.8)

Dieser Term sollte für numerische Berechnungen besonders gut nutzbar sein: Die Strom-
dichte im ganzen Raum kann durch Verschieben der Integrationsgrenze inkrementell be-
rechnet werden.

∗

Als nächstes wird der Stromdichteoperator mit Parameter p ermittelt, von dem J(p, t)
der Erwartungswert ist:

J(p, t) ≡ ⟨Ĵ(p)⟩ = ⟨ψ(t)|Ĵ(p)|ψ(t)⟩ (A.9)

Wie man leicht nachrechnen kann, ist dieser Operator durch folgenden Term gegeben:

Ĵ [Ṽ ](p) =
1

i~

[
Θ(p̂− p)V̂ − V̂Θ(p̂− p)

]
(A.10)
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Darin kommt einmal der Operator p̂ und die c-Zahl p vor. Eine Besonderheit stellt die
Abhängigkeit von der potentiellen Energie V (x) mit der Fouriertransformierten Ṽ (q) (s.
Gl. A.2b) dar, welche die Notation Ĵ [Ṽ ] motiviert. Das Matrixelement des Stromdichte-
operators kann folgendermaÿen in Impulsbasis berechnet werden:

⟨χ|Ĵ [Ṽ ](p)|ϕ⟩ =
1

2iπ~2

∞∫
p

dp′
∞∫

−∞

dp′′
[
Ṽ (p′ − p′′)χ∗(p′)ϕ(p′′)

−Ṽ ∗(p′ − p′′)χ∗(p′′)ϕ(p′)
]

(A.11)

Zum Vergleich werden die Stromdichteoperatoren für den Orts- und Impulsraum noch-
mals aufgeführt:

Ortsraum: Ĵ(q) =
p̂δ(q − x̂) + δ(x̂− q)p̂

2me

Impulsraum: Ĵ(p) =
Θ(p− p̂)V̂ − V̂Θ(p̂− p)

i~

A.4.2. Reibungsterm im kontinuierlichen Impulsraum

Es wird die Wirkungsweise des Reibungsterms 4.29 auf eine Wellenfunktion im Impuls-
raum benötigt:

⟨p|Ĥf(t)|ψ⟩ =

∫
ds a(s)

∂J(s, t)

∂t
⟨p|Ĵ(s)|ψ⟩

Nebenrechnung:

⟨p|Ĵ(s)|ψ⟩

=
1

2iπ~2

∞∫
s

dp′
∞∫

−∞

dp′′
[
Ṽ (p′ − p′′)δ(p′ − p)ψ(p′′)− Ṽ ∗(p′ − p′′)δ(p′′ − p)ψ(p′)

]

=
1

2iπ~2

∞∫
s

dp′
∞∫

−∞

dp′′
[
Ṽ (p′ − p′′)δ(p′ − p)ψ(p′′)− Ṽ ∗(p′ − p′′)δ(p′′ − p)ψ(p′)

]

=
1

2iπ~2

Θ(p− s)

∞∫
−∞

dp′Ṽ (p− p′)ψ(p′)−
∞∫
s

dp′Ṽ ∗(p′ − p)ψ(p′)


Daraus folgt:

⟨p|Ĥf(t)|ψ⟩

=
1

2iπ~2

∞∫
−∞

ds a(s)
∂J(s, t)

∂t

Θ(p− s)

∞∫
−∞

dp′Ṽ (p− p′)ψ(p′)−
∞∫
s

dp′Ṽ ∗(p′ − p)ψ(p′)


=

1

2iπ~2

 p∫
−∞

ds a(s)
∂J

∂t

∞∫
−∞

dp′Ṽ (p− p′)ψ(p′)−
∞∫

−∞

ds a(s)
∂J

∂t

∞∫
s

dp′Ṽ ∗(p′ − p)ψ(p′)



164



A.4. Mathematische Grundlagen für Reibungsterme im Impulsraum

=
1

2iπ~2

 ∞∫
−∞

dp′Ṽ (p− p′)ψ(p′)

p∫
−∞

ds a(s)
∂J

∂t

−
∞∫

−∞

ds a(s)
∂J

∂t

∞∫
s

dp′Ṽ ∗(p′ − p)ψ(p′)


=

1

2iπ~2

 ∞∫
−∞

dp′Ṽ (p− p′)ψ(p′)

p∫
−∞

ds a(s)
∂J

∂t

−
∞∫

−∞

ds a(s)
∂J

∂t

∞∫
s

dp′Ṽ (p− p′)ψ(p′)

 (A.12)

Die erste Faltung (erstes Integral in A.12) kann man umschreiben:

∞∫
−∞

dp′Ṽ (p− p′)ψ(p′) =

∞∫
−∞

dp′
∞∫

−∞

dx e−i[p−p
′]x/~V (x, t)

∞∫
−∞

dx′√
2π~

e−ip
′x′/~ψ(x′)

=

∞∫
−∞

dx e−ipx/~V (x, t)

∞∫
−∞

dx′√
2π~

ψ(x′)2π~δ(x− x′)

=
√
2π~ F{V (x, t)ψ(x)} (p/~)

Das letzte Integral in A.12 kann durch eine Thetafunktion als Faltung geschrieben werden:

∞∫
s

dp′Ṽ (p− p′)ψ(p′)

=

∞∫
−∞

dp′Ṽ (p− p′) Θ(p′ − s)ψ(p′) (A.13)

=

∞∫
−∞

dp′Θ(p′ − s)

∞∫
−∞

dx e−i[p−p
′]x/~V (x, t)

∞∫
−∞

dx′√
2π~

e−ip
′x′/~ψ(x′)

=
1√
2π~

∞∫
−∞

dx

∞∫
−∞

dx′
∞∫

−∞

dp′Θ(p′ − s)e−i[p−p
′]x/~−ip′x′/~V (x, t)ψ(x′)

=
1√
2π~

∞∫
−∞

dx e−ipx/~V (x, t)

∞∫
−∞

dx′ ψ(x′)

∞∫
−∞

dp′Θ(p′ − s)e−ip
′[x′−x]/~

165



A. Anhang

Mit q = p′ − s, p′ = q + s, dq = dp′ substituieren:
∞∫

−∞

dp′Θ(p′ − s)e−ip
′[x′−x]/~ =

∞∫
−∞

dqΘ(q)e−i(q+s)[x
′−x]/~

= e−is[x
′−x]/~

∞∫
−∞

dqΘ(q)e−iq[x
′−x]/~

= e−is[x
′−x]/~

(
πδ
(
[x′ − x]/~

)
− ~
i(x− x′)

)
Es folgt:

∞∫
s

dp′Ṽ (p− p′)ψ(p′)

=
1√
2π~

∞∫
−∞

dx

∞∫
−∞

dx′ e−ipx/~V (x, t)ψ(x′)e−is[x
′−x]/~

(
~

i(x′ − x)
+ πδ

(
[x′ − x]/~

))

=
1√
2π~

∞∫
−∞

dx

∞∫
−∞

dx′ e−i[p−s]x/~V (x, t)ψ(x′)e−isx
′/~
(

~
i(x′ − x)

+ π~δ(x′ − x)

)
Zum x′-Integral:

∞∫
−∞

dx′ . . . =

∞∫
−∞

dx′ ψ(x′)e−isx
′/~
(

~
i(x′ − x)

+ π~δ(x′ − x)

)

=
~
i

∞∫
−∞

dx′
ψ(x′)e−isx

′/~

x′ − x
+ π~ψ(x)e−isx/~

Letztlich muss noch über x integriert werden:
∞∫

−∞

dx e−i[p−s]x/~V (x, t)

~
i

∞∫
−∞

dx′
ψ(x′)e−isx

′/~

x′ − x
+ π~ψ(x)e−isx/~


=

~
i

∞∫
−∞

dx e−i[p−s]x/~V (x, t)

∞∫
−∞

dx′
ψ(x′)e−isx

′/~

x′ − x

+ π~
∞∫

−∞

dx e−i[p−s]x/~V (x, t)ψ(x)e−isx/~

=
~
i

∞∫
−∞

dx e−i[p−s]x/~V (x, t)

∞∫
−∞

dx′
ψ(x′)e−isx

′/~

x′ − x
+ π~

∞∫
−∞

dx e−ipx/~V (x, t)ψ(x)

=
~
i

∞∫
−∞

dx e−i[p−s]x/~V (x, t)F
{
ψ(x′)

x′ − x

}
(s/~) + π~ F{V (x)ψ(x)}(p/~)
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Das Integral mit der Singularität ist die Fouriertransformation des Produktes zweier
Funktionen, das in die Faltung derer Fouriertransformierten übergeht:

F
{
ψ(x′)

x′ − x

}
(k) = F

{
ψ(x′)

}
∗ F

{
1

x′ − x

}
(k)

f(k) = F {ψ(x)} (k) =
∫
dx e−ikxψ(x) =

√
2π~ ψ̃(~k)

g(k) = F
{

1

x′ − x

}
(k) = e−ikxF

{
1

x′

}
(k) = −iπe−ikx sgn(k)

(f ∗ g)(k) = −iπ
√
2π~

∫
dk′ψ̃(~[k − k′])e−ik

′x sgn(k′)

Einsetzen in das Integral über x:
∞∫

−∞

dx e−i[p−s]x/~V (x, t)F
{
ψ(x′)

x′ − x

}( s
~

)

= −iπ
√
2π~

∞∫
−∞

dx e−i[p−s]x/~V (x, t)

∞∫
−∞

dk′ ψ̃(s− ~k′)e−ik
′x sgn(k′) (r = s− ~k′)

= iπ

√
2π

~

∞∫
−∞

dr ψ̃(r) sgn(r − s)Ṽ (p− r, t)

⟨p|Ĥf(t)|ψ⟩

=
1

2iπ~2

 ∞∫
−∞

dp′Ṽ (p− p′)ψ(p′)

p∫
−∞

ds a(s)
∂J

∂t
−

∞∫
−∞

ds a(s)
∂J

∂t

∞∫
s

dp′Ṽ (p− p′)ψ(p′)


=

1

2iπ~2

√2π~ F{V (x, t)ψ(x)} (p/~)
p∫

−∞

ds a(s)
∂J

∂t
−

∞∫
−∞

ds a(s)
∂J

∂t
·

1√
2π~

~
i
iπ

√
2π

~

∞∫
−∞

dr ψ̃(r) sgn(r − s)Ṽ (p− r, t) + π~ F{V (x)ψ(x)}(p/~)


=

1

i
√
2π~3

F{V (x, t)ψ(x)} (p/~)
p∫

−∞

ds a(s)
∂J

∂t

− 1

2i~2

∞∫
−∞

dr ψ̃(r)Ṽ (p− r, t)

∞∫
−∞

ds a(s)
∂J

∂t
sgn(r − s)

− 1

2i

1√
2π~3

F{V (x)ψ(x)}(p/~)
∞∫

−∞

ds a(s)
∂J

∂t
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=
1

i
√
2π~3

F{V (x, t)ψ(x)} (p/~)
∞∫

−∞

ds a(s)
∂J

∂t

[
Θ(p− s)− 1

2

]

− 1

2i~2

∞∫
−∞

dr ψ̃(r)Ṽ (p− r, t)

∞∫
−∞

ds a(s)
∂J

∂t
sgn(r − s)

Das ist der Term in Gleichung 4.30.

A.4.3. Stromdichteoperator im diskreten Impulsraum

Als erstes wird die Schrödingergleichung im periodischen Ortsraum benötigt. Dazu wer-
den die Fourierreihen der Wellenfunktion und des Potentials in die Schrödingergleichung
im Ortsraum eingesetzt:

ψ(x, t) =
∑
n

cn(t)e
iknx

V (x, t) =
∑
n

vn(t)e
iknx

i~
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂x2
ψ(x, t) + V (x, t)ψ(x, t)

(A.14)

Die Orthogonaliätsrelation lautet:∫
Ω
dx ei[kj−kn]x = |Ω|δjn (A.15)

Die Schrödingergleichung für die Koe�zienten der Fourierreihe von ψ(x, t) lautet:

i~
∂

∂t
cj(t) =

~2

2m
k2j cj(t) +

∑
n

vn(t)cj−n(t) (A.16)

Normierungsbedingung:∫
Ω
dx|ψ(x, t)|2 = 1 ⇒

∫
Ω
dx
∑
n,n′

ei[kn+kn′ ]xc∗n′(t)cn(t) = 1

⇒
∑
n

|cn(t)|2 =
1

|Ω|
(A.17)

Die Wahrscheinlichkeit, dass das Teilchen einen Impuls im Interval [pa, pb] hat, ist durch
folgende Summation gegeben:

P (a, b; t) =

b∑
n=a

|cn(t)|2
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d

dt
P (a, b; t) =

b∑
n=a

[c∗nċn + ċ∗ncn]

=
b∑

n=a

1

i~

[
~2

2m
k2nc

∗
ncn + c∗n

∑
n′

vn′cn−n′ − ~2

2m
k2ncnc

∗
n − cn

∑
n′

v∗n′c∗n−n′

]

=

b∑
n=a

∞∑
n′=−∞

1

i~
[
c∗nvn′cn−n′ − cnv

∗
n′c∗n−n′

]
=

b∑
n=a

∞∑
n′=−∞

2

~
Im {c∗nvn′cn−n′}

=
2

~

b∑
n=a

Im{c∗n [v ∗ c](n)}

Für die Faltung im diskreten Raum gilt:

[v ∗ c](n) =
∑
n′

vn−n′cn′ =
1

|Ω|2
∑
n′

∫
dx

∫
dx′ e−ikn−n′xe−ikn′x

′
V (x)ψ(x′)

=
1

|Ω|2
∑
n′

∫
dx e−i[kn−kn′ ]xV (x)

∫
dx′ e−ikn′x

′
ψ(x′)

=
1

|Ω|

∫
dx e−iknxV (x)

∫
dx′ ψ(x′)

1

|Ω|
∑
n′

eikn′ [x−x
′]

An dieser Stelle tritt der Dirac-Kamm auf:∑
n

δ(x− nL) =
1

L

∑
n

eiknx (A.18)

Damit folgt:

[v ∗ c](n) =
1

|Ω|

∫
dx e−iknxV (x)

∫
dx′ ψ(x′)

∑
n′

δ(x− x′ − n′L)

=
1

|Ω|

∫
Ω

dx e−iknxV (x)ψ(x)

=: FT[V (x)ψ(x)](n) (n-ter Fourierkoe�zient) (A.19)

Zur Wahrscheinlichkeitsstromdichte:

d

dt
P (a, b; t) = J(a, t)− J(b, t)

Dieser Zusammenhang gilt allgemein und folgt bereits aus der Anschauung. Genau wie
im nicht-periodischen Fall lässt sich nun eine Grenze gegen unendlich schieben und an-
nehmen, dass die Stromdichte für unendlich groÿe Impulse verschwindet:

lim
n→±∞

J(pn, t) = 0
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Für die Stromdichte im diskreten Impulsraum gilt nun:

J(pn−1/2, t) =
d

dt
P (pn,∞; t) =:

d

dt
P≥(pn; t) (wegen �±1/2�, s. unten)

=
2

~

∞∑
j=n

Im{c∗j [v ∗ c](j)}

=
2

~

∞∑
j=n

Im{c∗j FT[V (x)ψ(x)](kj)} (A.20a)

J(pn+1/2, t) = −2

~

n−1∑
j=−∞

Im{c∗j FT[V (x)ψ(x)](kj)} (A.20b)

Im Argument von J steht pn±1/2: Dadurch wird sicher gestellt, dass die Summations-
grenzen auf der rechten Seite eindeutig sind (andernfalls wäre nicht klar, ob die Summen
bei n oder bei n± 1 anfangen bzw. enden). Über folgenden Term kann die Kontinuitäts-
gleichung im diskreten Raum hergeleitet werden:

d

dt
|cn(t)|2 +

d

dt

n−1∑
j=−∞

|cj(t)|2 +
d

dt

∞∑
j=n+1

|cj(t)|2

=
d

dt

[
|cn(t)|2 + {1− P≥(pn, t)}+ P≥(pn+1, t)

]
=

d

dt
|cn(t)|2 − J(pn−1/2, t) + J(pn+1/2, t)

Auf der linken Seite steht insgesamt d
dt

∑∞
j=−∞ |cj(t)|2 = 0. Damit folgt die Kontinui-

tätsgleichung:

d

dt
|cn(t)|2 = J(pn−1/2, t)− J(pn+1/2, t) (A.21)

Für den Erwartungswert des Stromdichteoperators gilt im kontinuierlichen Raum:

J(p, t) ≡ ⟨Ĵ(p)⟩ = ⟨ψ(t)|Ĵ(p)|ψ(t)⟩

=

∫
Ω

dp ψ̃∗(p, t)Ĵ(p)ψ̃(p, t)

Für den diskreten Impulsraum wird nun ein analoger Term gesucht:

J(pn−1/2, t) =
∞∑

n=−∞
c∗n(t)

[
Ĵ [V ](p)c

]
n
(t)

Die Schreibweise Ĵ [V ] bedeutet, dass dieser Operator von der potentiellen Energie V (x, t)
bzw. vn(t) abhängt. In diesem Impulsraum wirkt der Operator Ĵ [V ] auf einen unend-
lich dimensionalen Vektor von Koe�zienten c = {cn}∞n=−∞. In Analogie zum nicht-
periodischen Fall hat der Operator voraussichtlich folgende Form:

Ĵ [V ](pn−1/2) =
1

i~

[
Θ(p̂− pn)V̂ − V̂Θ(p̂− pn)

]
(A.22)
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(Der Index n − 1/2 wird am Erwartungswert dieses Operators in Verbindung mit Glei-
chung A.20a deutlich.)

Die Form wird nun überprüft. Dazu wird die Wirkung der Theta-Funktion und des
potentielle Energieoperators V̂ auf den Koe�zientenvektor c benötigt:

f = Θ(p̂− pn)g =

∞∑
j=−∞

Θ(p̂− pn)gjej

=

∞∑
j=−∞

Θ(pj − pn)gjej

=

∞∑
j=n

gjej (A.23)

Dabei wurde angenommen, dass gilt: Θ(x ≥ 0) = 1. Wirkungsweise vom Operator V̂ :

f = V̂ g =
∑
n

[v ∗ g](n)en =
∑
n

∑
j

vn−jgjen (A.24)

Damit können nun die Matrixelemente des Stromdichteoperators in der Impulsbasis be-
stimmt werden und letztlich überprüft werden, ob für das Diagonalelement die Gleichung
A.20a resultiert:

⟨ϕ|Ĵ [V ](pn)|ψ⟩ =
∑
l,m

⟨ϕ|pl⟩⟨pl|Ĵ [V ](pn)|pm⟩⟨pm|ψ⟩

In der diskreten Impulsbasis seien nun f und g die Darstellungen der abstrakten Vektoren
|ϕ⟩ und |ψ⟩:

|ϕ⟩ := f , fm = ⟨pm|ϕ⟩
|ψ⟩ := g, gm = ⟨pm|ψ⟩

wobei � :=� hier die Bedeutung �wird dargestellt durch� hat. Damit kann nun die Glei-
chung für das Matrixelement geschrieben werden als:

⟨ϕ|Ĵ [V ](pn)|ψ⟩ = ⟨f , Ĵ [V ](pn)g⟩

mit dem komplexen Skalarprodukt ⟨x,y⟩ =
∑

n x
∗
nyn.
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Betrachte nun die Wirkung von Ĵ [V ] auf g:

1

i~

[
Θ(p̂− pn)V̂ −V̂Θ(p̂− pn)

]
g =

1

i~
Θ(p̂− pn)V̂ g − 1

i~
V̂Θ(p̂− pn)g

=
1

i~
Θ(p̂− pn)

∑
m,j

vm−jgjem − 1

i~
V̂

∞∑
j=n

gjej

=
1

i~

∞∑
m=n

∑
j

vm−jgjem− 1

i~
∑
m,j

vm−j(em⊗ej)
∞∑
l=n

glel

=
1

i~

∞∑
m=n

∑
j

vm−jgjem − 1

i~
∑
m,j

vm−j

∞∑
l=n

glδjlem

=
1

i~

∞∑
m=n

∑
j

vm−jgjem − 1

i~
∑
m,j

vm−jgjΘ(j − n)em

=
1

i~

∞∑
m=n

∞∑
j=−∞

vm−jgjem − 1

i~

∞∑
m=−∞

∞∑
j=n

vm−jgjem

Für die Fourierkoe�zienten der potentiellen Energiefunktion gilt v−n = v∗n:

. . . =
1

i~

∞∑
m=n

∞∑
j=−∞

vm−jgjem − 1

i~

∞∑
m=−∞

∞∑
j=n

v∗j−mgjem

=
1

i~

∞∑
m=−∞

∞∑
j=−∞

Θ(m− n)vm−jgjem − 1

i~

∞∑
m=−∞

∞∑
j=−∞

Θ(j − n)v∗j−mgjem

=
1

i~

∞∑
m=−∞

∞∑
j=−∞

[
Θ(m− n)vm−jgj −Θ(j − n)v∗j−mgj

]
em (A.25)

Also gilt für das Matrixelement (im 2. Term m und j vertauschen):

⟨f , Ĵ [V ](pn)g⟩ =
1

i~

∞∑
m=−∞

∞∑
j=−∞

[
Θ(m− n)f∗mvm−jgj −Θ(m− n)f∗j v

∗
m−jgm

]
(A.26)

Diagonalmatrixelement (Erwartungswert) betrachten:

⟨ψ|Ĵ [V ](pn)|ψ⟩ = ⟨f , Ĵ [V ](pn)f⟩

=
1

i~

∞∑
m=−∞

∞∑
j=−∞

[
Θ(m− n)f∗mvm−jfj −Θ(m− n)f∗j v

∗
m−jfm

]
=

2

~

∞∑
m=−∞

∞∑
j=−∞

Im {Θ(m− n)f∗mfjvm−j}

Wegen Im[a+ b] = Im[a] + Im[b] gilt:

. . . =
2

~

∞∑
m=−∞

Im

Θ(m− n)f∗m
∑
j

vm−jfj

 =
2

~

∞∑
m=n

Im {f∗m[v ∗ f ](m)}
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Nach Gl. A.19 gilt für die Faltung und somit letztlich für den Erwartungswert der Strom-
dichte:

⟨ψ|Ĵ [V ](pn)|ψ⟩ =
2

~

∞∑
m=n

Im {f∗m FT[V (x)ψ(x)](km)}

= J(pn−1/2, t)

Das ist exakt das Ergebnis aus Gl. A.20a. Damit wurde die Form des Stromdichteopera-
tors in Gl. A.22 für periodische Systeme veri�ziert.

A.4.4. Reibungsterm im diskreten Impulsraum

Im diskreten Impulsraum hat der Reibungsterm folgende Form:

Ĥf(t) =
∑
n

a(pn)
∂J(pn, t)

∂t
Ĵ [V ](pn) (A.27)

Als erstes muss die Wirkungsweise dieses Operators auf eine Wellenfunktion im diskreten
Impulsraum hergeleitet werden. Dazu kann das Matrixelement aus Gl. A.26 benutzt
werden:

⟨f , Ĵ [V ](pn)c⟩ =
1

i~

∞∑
m=−∞

∞∑
j=−∞

[
Θ(m− n)f∗mvm−jcj −Θ(m− n)f∗j v

∗
m−jcm

]

Dabei wird |ψ⟩ durch den Vektor c dargestellt. Um nun die l-te Komponente von Ĵ [V ]c
zu erhalten wird folgender Ansatz gemacht:

⟨∑
q

δqleq, Ĵ [V ](pn)c

⟩
=

1

i~

∞∑
m=−∞

∞∑
j=−∞

[
Θ(m− n)δmlvm−jcj −Θ(m− n)δjlv

∗
m−jcm

]
=

1

i~

∞∑
m,j=−∞

Θ(m− n)δmlvm−jcj −
1

i~

∞∑
m,j=−∞

Θ(m− n)δjlv
∗
m−jcm

=
1

i~

∞∑
j=−∞

Θ(l − n)vl−jcj −
1

i~

∞∑
m=−∞

Θ(m− n)v∗m−lcm

=
1

i~

∞∑
j=−∞

[
Θ(l − n)vl−jcj −Θ(j − n)v∗j−lcj

]
(A.28)
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Insgesamt erhält man:

c̃l =

⟨∑
q

δqleq, Ĥf(t)c

⟩

=
∑
n

a(pn)
∂J(pn, t)

∂t

⟨∑
q

δqleq, Ĵ [V ](pn)c

⟩

=
∑
n

a(pn)
∂J(pn, t)

∂t

1

i~

∞∑
j=−∞

[Θ(l − n)vl−jcj −Θ(j − n)vl−jcj ]

=
1

i~
∑
n

a(pn)
∂J(pn, t)

∂t
{Θ(l − n)FT[V (x)ψ(x)](l)− [v ∗ (Θnc)] (l)}

=
1

i~
∑
n

a(pn)
∂J(pn, t)

∂t

{
Θ(l − n)FT[V (x)ψ(x)](l)−

∞∑
q=−∞

Θ(q − n)vl−qcq

}

Der Term in den geschweiften Klammern kann noch mit der Signumfunktion umgeschrie-
ben werden:

{. . .} =
1

2
[ sgn + δ](l − n)FT[ψV ](l) +

1

2
FT[ψV ](l)

− 1

2

∞∑
q=−∞

[ sgn + δ](q − n)vl−qcq −
1

2
FT[ψV ](l)

=
1

2
[ sgn + δ](l − n)FT[ψV ](l)− 1

2

∞∑
q=−∞

[ sgn + δ](q − n)vl−qcq

Damit folgt der Term aus Gleichung 4.31:

c̃l =
1

i~

∞∑
n=−∞

a(pn)
∂J(pn, t)

∂t

{
Θ(l − n)FT[V (x)ψ(x)](l)−

∞∑
q=n

vl−qcq

}
(A.29)

A.5. Nanodraht

A.5.1. Bewegungsgleichung der Kohärenzenmatrix (Herleitung)

Ziel dieser Rechnung ist es, die Bewegungsgleichung 5.53 herzuleiten. Ausgangspunkt ist
die Heisenberg-Bewegungsgleichung:

i~
∂

∂t
Ô = [Ô, Ĥ] (A.30)

Die zu untersuchende Observable ist gegeben durch Ô = â†kâk′ und der Hamiltonoperator
ist in Gl. 5.40 angegeben:

Ĥ = Ĥkin + Ĥe
C + Ĥei

C + ĤP

In den Kommutator A.30 werden die Anteile des Hamiltonoperators nacheinander einge-
setzt:
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• Kinetischer Anteil:

[â†kâk′ , Ĥkin] = [â†kâk′ ,
∑
k′′

εk′′ â
†
k′′ âk′′ ]

= (εk′ − εk)â
†
kâk′

• Coulomb-Wechselwirkungsanteil (e− e):

[â†kâk′ , Ĥ
e
C] =

1

2

∑
K,K′,q

Uq[â
†
kâk′ , â

†
K â†K′ âK′+qâK−q]

[â†1â2, â
†
3â

†
4â5â6]− = δ23â

†
1â

†
4â5â6 − δ24â

†
1â

†
3â5â6 + δ15â

†
3â

†
4â6â2 − δ16â

†
3â

†
4â5â2

⇒ [â†kâk′ , Ĥ
e
C] = −

∑
q,l

Uq

(
⟨â†k+qâ

†
l âl+qâk′⟩ − ⟨â†kâ

†
l âl+qâk′−q⟩

)
• Coulomb-Wechselwirkungsanteil (e − i): Die (starren) Ionen, die über die Dichte
ni(q) gegeben sind, haben das Potential −Uqni(q) und können wie das Störpotential
vP(q, t) (s. unten) behandelt werden.

• Störpotential-Anteil:

[â†kâk′ , ĤP] =
∑
k′′,q

vP(q, t)[â
†
kâk′ , â

†
k′′ âk′′+q]

[â†kâk′ , â
†
k′′ âk′′+q] = â†kâk′′+qδk′,k′′ − â†k′′ âk′δk,k′′+q

⇒ [â†kâk′ , ĤP] =
∑
q

vP(q, t)
(
â†kâk′+q − â†k−qâk′

)
Die Bewegungsgleichung hat damit zunächst folgende Form:

i~
∂

∂t
⟨â†kâk′⟩ = (εk′ − εk)⟨â†kâk′⟩

−
∑
q,l

Uq

(
⟨â†k+qâ

†
l âl+qâk′⟩ − ⟨â†kâ

†
l âl+qâk′−q⟩

)
+

∑
q

[vP(q, t)− Uqni(q)]
(
⟨â†kâk′+q⟩ − ⟨â†k−qâk′⟩

)
Die Hartree-Fock Faktorisierung (�Singlet Beitrag�) wird in der zweiten Zeile angewendet:

⟨â†1â
†
2â3â4⟩S = ⟨â†1â4⟩⟨â

†
2â3⟩ − ⟨â†1â3⟩⟨â

†
2â4⟩ (A.31)

Bewegungsgleichung in Hartree-Fock Näherung:

i~
∂

∂t
⟨â†kâk′⟩ ≈ (εk′ − εk)⟨â†kâk′⟩

−
∑
q,l

Uq

(
⟨â†k+qâk′⟩⟨â

†
l âl+q⟩ − ⟨â†k+qâl+q⟩⟨â

†
l âk′⟩

−⟨â†kâk′−q⟩⟨â
†
l âl+q⟩+ ⟨â†kâl+q⟩⟨â

†
l âk′−q⟩

)
+

∑
q

[vP(q, t)− Uqni(q)]
(
⟨â†kâk′+q⟩ − ⟨â†k−qâk′⟩

)
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In der zweiten und dritten Zeile kann man die Ladungsdichte ne(q) einsetzen:

i~
∂

∂t
⟨â†kâk′⟩ ≈ (εk′ − εk)⟨â†kâk′⟩

−
∑
q,l

Uq

(
⟨â†kâl+q⟩⟨â

†
l âk′−q⟩ − ⟨â†k+qâl+q⟩⟨â

†
l âk′⟩

)
+ L

∑
q

Uqne(q)
(
⟨â†kâk′−q⟩ − ⟨â†k+qâk′⟩

)
+

∑
q

[vP(q, t)− Uqni(q)]
(
⟨â†kâk′+q⟩ − ⟨â†k−qâk′⟩

)
Der Fock-/Austauschterm steht in der zweiten Zeile:

Σk,k′ =
∑
q,l

Uq

(
⟨â†kâl+q⟩⟨â

†
l âk′−q⟩ − ⟨â†k+qâl+q⟩⟨â

†
l âk′⟩

)
=

∑
q,l

Uq

(
⟨â†kâl⟩⟨â

†
l−qâk′−q⟩ − ⟨â†k+qâl+q⟩⟨â

†
l âk′⟩

)
(A.32)

Durch Änderung der Indizes von l+ q und l in l und l− q wurde am gesamten Ausdruck
nichts geändert, da der Indexabstand erhalten bleibt. Der Rechenschritt dient nur dazu,
um auf den gleichen Term wie in Gl. 5.22 zu kommen, der in [56] hergeleitet wurde.
Die Zeilen mit den Teilchendichten ne(q), ni(q) und dem Störpotential können noch
zusammengefasst werden. Dann erhält man die gesuchte Bewegungsgleichung 5.53:

i~
∂

∂t
⟨â†kâk′⟩ ≈ (εk′ − εk)⟨â†kâk′⟩

− Σk,k′

+
∑
q

{UqL[ne(q)− ni(q)] + vP(q, t)}
(
⟨â†kâk′−q⟩ − ⟨â†k+qâk′⟩

)
(A.33)

A.5.2. Transformation in das Wignerbild (Herleitung)

Ausgangspunkt ist die Bewegungsgleichung der Kohärenzenmatrix (5.53) in Hartree-Fock
Näherung und die De�nition der Wignerverteilung (5.66a). Die Beiträge zur Dynamik
sind folgende:

∂

∂t
f(x, k) =

∂

∂t
f(x, k)

∣∣∣∣
kin

+
∂

∂t
f(x, k)

∣∣∣∣
C

+
∂

∂t
f(x, k)

∣∣∣∣
P

(A.34)

Der Coulomb-Beitrag kann in einen Hartree- und einen Fock-Beitrag zerlegt werden:

∂

∂t
f(x, k)

∣∣∣∣
C

=
∂

∂t
f(x, k)

∣∣∣∣
H

+
∂

∂t
f(x, k)

∣∣∣∣
F

(A.35)

Der Hartree-Beitrag enthält hier auch die Elektron-Ion-Wechselwirkung.
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Kinetik-Beitrag:

∂

∂t
f(x, k)

∣∣∣∣
kin

=
∂

∂t

∣∣∣∣
kin

∑
q

eiqx⟨â†k−q/2âk+q/2⟩

=
∑
q

eiqx
1

i~
⟨
[
Ĥkin, â

†
k−q/2âk+q/2

]
⟩

=
∑
q

eiqx
1

i~
(εk+q/2 − εk−q/2)⟨â

†
k−q/2âk+q/2⟩

=
∑
q

eiqx
1

i~

(
~2

[k + q/2]2

2me
− ~2[k − q/2]2

2me

)
⟨â†k−q/2âk+q/2⟩

=
~

2ime

∑
q

eiqx 2kq ⟨â†k−q/2âk+q/2⟩ =
~k
ime

∑
q

eiqx q ⟨â†k−q/2âk+q/2⟩

=
~k
i2me

∂

∂x

∑
q

eiqx⟨â†k−q/2âk+q/2⟩

= − ~k
me

∂

∂x
f(x, k) (exakt) (A.36)

Hartree-Beitrag (e− e, e− i und i− i):

∂

∂t
f(x, k)

∣∣∣∣
H

=
∂

∂t

∣∣∣∣
H

∑
q

eiqx⟨â†k−q/2âk+q/2⟩

=
∑
q

eiqx
1

i~

⟨[
Ĥee

C , â
†
k−q/2âk+q/2

]⟩
Hartree

=
∑
q

eiqx
∑
p

1

i~
UpL[n(p)− ni(p)]

(
⟨â†k−q/2âk+q/2−p⟩ − ⟨â†k−q/2+pâk+q/2⟩

)
An dieser Stelle wird die Rücktransformation nach f benutzt:

⟨â†k−q/2âk+q/2−p⟩ =
1

L

∫
e−i(q−p)x

′
f(x′, k − p/2)dx′

⟨â†k−q/2+pâk+q/2⟩ =
1

L

∫
e−i(q−p)x

′
f(x′, k + p/2)dx′

Damit folgt:

∂

∂t
f(x, k)

∣∣∣∣
H

=
∂

∂t

∣∣∣∣
H

∑
q

eiqx⟨â†k−q/2âk+q/2⟩

=
∑
q,p

eiqx
1

i~
Up[ne(p)− ni(p)]

·
∫
e−i(q−p)x

′ [
f(x′, k − p/2)− f(x′, k + p/2)

]
dx′ (A.37)

An dieser Stelle wird eine Gradientenentwicklung für f bezüglich k eingesetzt:

f(x, k + p/2)− f(x, k − p/2) ≈ p
∂

∂k
f(x, k) (A.38)
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Damit geht nun eine Näherung in die Bewegungsgleichung ein:

∂

∂t
f(x, k)

∣∣∣∣
H

≈ −
∑
q,p

Up
i~

[ne(p)− ni(p)]e
iqx

L/2∫
−L/2

e−i(q−p)x
′
p
∂

∂k
f(x′, k) dx′

=
∑
p

i

~
Up[ne(p)− ni(p)]

∑
q

L/2∫
−L/2

eiq(x−x
′)eipx

′
p
∂

∂k
f(x′, k) dx′

An dieser Stelle kann nun folgende Rechenregel angewendet werden, die für eine beliebige
Funktion f(x) gilt:

∑
q

L/2∫
−L/2

eiq(x−x
′)f(x′)dx′ =

∑
q

 L/2∫
−L/2

e−iqx
′
f(x′) dx′

 eiqx
=

∑
q

Lcqe
iqx (cq : Fourierkoe�zient)

= Lf(x)

D.h. über das Integral werden einfach nur die Fourierkoe�zienten der Fourier-Reihe von
f(x, k) bzgl. x berechnet. Die Summe darüber ergibt dann f(x, k). Daher folgt:

∂

∂t
f(x, k)

∣∣∣∣
H

≈
∑
p

i

~
UpL[ne(p)− ni(p)]e

ipxp
∂

∂k
f(x, k) (A.39)

Ziel ist es nun das elektrische Feld −∂xΦ(x) einzubauen. Dazu wird zunächst p eipx =
−i∂xeipx verwendet:

1

~
∂

∂x

(
L
∑
p

Up[ne(p)− ni(p)]e
ipx

)
∂

∂k
f(x, k)

=
1

~
∂

∂x

 L/2∫
−L/2

V (|x− x′|)[ne(x′)− ni(x
′)] dx′

 ∂

∂k
f(x, k)

=
qe
~
∂

∂x
Φ(x) · ∂

∂k
f(x, k) (A.40)

In der ersten Zeile erkennt man die Fouriertransformierte der Faltung aus der zweiten
Zeile, welche die Lösung der Poissongleichung für das Potential Φ(x) darstellt.
Der Störterm, der durch das Potential vp(x) (bzw. vp(p) im Fourierraum) bedingt ist,

kann analog zu dieser Rechnung, beginnend bei Gl. A.37 mit der Ersetzung Up[ne(p) −
ni(p)] → vp(p) erfolgen. Um das Ergebnis für den Störterm zu erhalten, muss in Gl. A.40
deshalb nur die Ersetzung qeΦ(x) → vp(x) gemacht werden:

∂

∂t
f(x, k)

∣∣∣∣
P

≈ 1

~
∂

∂x
vp ·

∂

∂k
f(x, k) (A.41)
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Fock-Beitrag:

∂

∂t
f(x, k)

∣∣∣∣
F

=
∂

∂t

∣∣∣∣
F

∑
q

eiqx⟨â†k−q/2âk+q/2⟩

=
∑
q

eiqx
1

i~

⟨[
Ĥee

C , â
†
k−q/2âk+q/2

]⟩
Fock

= −
∑
q

eiqx
1

i~
Σk−q/2,k+q/2 (Σk,k′ : s. Gl. A.32)

=
1

i~
∑
q

eiqx
∑
p,l

Up

(
⟨â†k−q/2+pâl+p⟩⟨â

†
l âk+q/2⟩

−⟨â†k−q/2âl⟩⟨â
†
l−pâk+q/2−p⟩

)
=

1

i~
∑
q

eiqx
∑
p,l

Up

(
⟨â†k−q/2+pâl+p⟩⟨â

†
l âk+q/2⟩

−⟨â†k−q/2âl+p⟩⟨â
†
l âk+q/2−p⟩

)
Hier muss die Rücktransformation eingesetzt werden:

⟨â†kâk′⟩ =
1

L

∫
e−i(k

′−k)xf(x, [k + k′]/2)dx (A.42)

Die Energierenormierung wird analog zur dreidimensionalen Form (Gl. 5.32) de�niert:

∆εk(x) =
1

|qe|
∑
k′

Uk−k′f(x, k
′) (A.43)

Nach einer Gradientenentwicklung von f und ∆ε erhält man:

∂

∂t
f(x, k)

∣∣∣∣
F

≈ |qe|
~
(
[∂k∆εk(x)] · [∂xf(x, k)]− [∂x∆εk(x)] · [∂kf(x, k)]

)
(A.44)

Dieses Ergebnis konnte bis jetzt noch nicht detailliert nachgerechnet werden und erfordert
eine Veri�kation.
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A.6. Hartree-Energiefunktional

In (zeitabhängigen) DFT-Simulationen ist eine genaue Aufschlüsselung der Beiträge zur
Gesamtenergie wünschenswert. Die Beiträge sollten durch möglichst wenig redundante
Rechenschritte erhalten werden können. Die Berechnung der Hartree-Energie ist ein gu-
tes Beispiel dafür. Die folgende Rechnung zeigt in diesem Zusammenhang, wie sich die
elektrostatische Energie Wel zusammensetzt2:

Wel =
1

2

∫
d3r

∫
d3r′

ϱ(r′)ϱ(r)

|r− r′|

=
1

2

∫
d3rϱ(r)ϕel(r) (A.45a)

=
qe
2

∫
d3r[n−(r)− n+(r)]ϕel(r)

=
qe
2

∫
d3r[n−(r)− n+(r)]

[∫
d3r′

qen
−(r′)

|r− r′|
−
∫
d3r′

qen
+(r′)

|r− r′|

]
=

q2e
2

[∫
d3r

∫
d3r′

n−(r)n−(r′)

|r− r′|
− 2

∫
d3r

∫
d3r′

n−(r)n+(r′)

|r− r′|

+

∫
d3r

∫
d3r′

n+(r)n+(r′)

|r− r′|

]
= EH[n

−(r)] +
q2e
2

[
−2

∫
d3r

∫
d3r′

n−(r)n+(r′)

|r− r′|
+

∫
d3r

∫
d3r′

n+(r)n+(r′)

|r− r′|

]
= EH[n

−(r)] + Eext[n
−(r)] +Wel,i−i (A.45b)

In der Simulation stehen die Felder ϱ und ϕel unmittelbar zur Verfügung, so dassWel über
die Integration in Gl. A.45a direkt berechnet werden kann. Der Beitrag Eext[n

−(r)] ist
auf gleiche elementare Weise berechenbar. Der BeitragWel,i−i kann einmalig vorberechnet
werden. Es müssen also nur zwei einfache Raumintegrale (einmal für Wel und einmal für
Eext[n

−]) durchgeführt werden um an alle relevanten Gröÿen zu gelangen. Die Hartree-
Energie ergibt sich entsprechend Gl. A.45b als Di�erenz:

EH[n
−(r)] =Wel −Wel,i−i − Eext[n

−(r)] (A.46)

Für die Berechnung der Hartree-Energie muss daher kein Doppelintegral durchgeführt
werden.

2Die Rechnung ist in atomaren Einheiten angegeben: 1/(4πε0) = 1, qe = −1
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