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A B S T R A C T

In times of big data, large-scale database applications are of increas-
ing importance. A central task in this field is to reduce the amount
of data that has to be processed. One way to approach this task is
to capture the structure of the given data. This thesis deals with two
particular data structuring techniques.

The first part of this thesis is about cluster analysis. More precisely,
we consider the diameter k-clustering problem. The subject of this
problem is to partition a finite subset of Rd into k subsets called clus-
ters such that the largest diameter of the clusters is minimized. One
early clustering algorithm that computes a hierarchy of approximate
solutions to this problem (for all values of k) is the agglomerative
clustering algorithm with the complete linkage strategy. For decades,
this algorithm has been widely used by practitioners. However, it
is not well studied theoretically. We provide the first analysis of the
agglomerative complete linkage clustering algorithm. Assuming that
the dimension d is a constant, we show that for any k the solution
computed by this algorithm is an O(logk)-approximation to the di-
ameter k-clustering problem. Our analysis does not only hold for
the Euclidean distance but for any metric that is based on a norm.
Furthermore, we analyze the closely related k-center and discrete k-
center problem. For the corresponding agglomerative algorithms, we
deduce an approximation factor of O(logk) as well.

The second part of this thesis deals with data modeling by training
statistical models. More precisely, we focus on the parameter esti-
mation problem for general and Gaussian mixture distributions. We
analyze a probabilistic variant of the Expectation-Maximization (EM)
algorithm, known as the Stochastic EM or SEM algorithm. Unlike the
original work, we focus on the analysis of a single run of the algo-
rithm. First, we discuss the SEM algorithm for general mixture dis-
tributions. Second, we consider Gaussian mixture models and show
that with high probability the updates of the EM algorithm and its
probabilistic variant are almost the same, given that the data set is suf-
ficiently large. A series of experiments confirms that this still holds
for a large number of successive update steps. Furthermore, we ex-
plain why the SEM algorithm is considerably faster than the classical
EM algorithm. In particular, we show that the probabilistic variant
establishes a constant factor speedup for Gaussian mixture models.
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Z U S A M M E N FA S S U N G

In Zeiten von Big Data sind große Datenbankanwendungen von wach-
sender Bedeutung. Eine zentrale Aufgabe aus diesem Bereich ist die
Reduzierung der zu verarbeitenden Datenmenge. Diese Aufgabe
lässt sich beispielsweise lösen, indem die Struktur der gegebenen
Daten erfasst wird. In dieser Dissertation beschäftigen wir uns mit
zwei Techniken zur Strukturierung von großen Datenmengen.

Im ersten Teil der Arbeit geht es um Clusteranalyse, speziell um das
Durchmesser-k-Clustering-Problem. Dabei wird eine endliche Teil-
menge des Rd in k Cluster partitioniert, so dass der größte Cluster-
durchmesser minimiert wird. Ein früher Clusteringalgorithmus, der
eine Hierarchie von Näherungslösungen (für alle Werte von k) zu
diesem Problem berechnet, ist der agglomerative Clusteringalgorith-
mus mit der Complete-Linkage-Strategie. Dieser Algorithmus erfährt
in der Praxis seit Jahrzehnten eine breite Anwendung, ist aber theo-
retisch nicht gut untersucht. Wir liefern die erste Analyse des ag-
glomerativen Complete-Linkage Clusteringalgorithmus. Wir zeigen,
dass die vom Algorithmus berechnete Lösung für konstante Dimen-
sion d für jedes k eine O(logk)-Approximation des Durchmesser-k-
Clustering-Problems ist. Unsere Analyse gilt dabei nicht nur für
den Euklidischen Abstand, sondern für jede Metrik, die auf einer
Norm basiert. Außerdem analysieren wir das k-Center-Problem und
das diskrete k-Center-Problem, welche eng mit dem Durchmesser-k-
Clustering-Problem verwandt sind. Für die dazugehörigen agglome-
rativen Algorithmen leiten wir ebenfalls einen Approximationsfaktor
von O(logk) her.

Der zweite Teil der Arbeit beschäftigt sich mit der Modellierung von
Daten durch das Trainieren von statistischen Modellen. Hier betrach-
ten wir die Parameterschätzung von allgemeinen und Gaußschen
Mixturverteilungen. Wir analysieren eine probabilistische Variante
des Expectation-Maximization (EM) Algorithmus, die als Stochastic
EM oder SEM Algorithmus bekannt ist. Im Gegensatz zu den ur-
sprünglichen Arbeiten zum SEM Algorithmus betrachten wir in un-
serer Analyse einen einzelnen Durchlauf des Algorithmus. Dabei
beschreiben wir den Algorithmus zunächst für allgemeine Mixtur-
verteilungen. Danach betrachten wir Gaußsche Mixturmodelle und
zeigen für diese, dass die Updates des EM Algorithmus und seiner
probabilistischen Variante mit hoher Wahrscheinlichkeit fast identisch
sind, wenn die Datenmenge groß genug ist. Eine Reihe von Expe-
rimenten bestätigt, dass dies auch für eine große Anzahl aufeinan-
derfolgender Updateschritte noch gilt. Darüber hinaus erörtern wir,
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warum der SEM Algorithmus schneller arbeitet als der klassische EM
Algorithmus. Insbesondere zeigen wir für Gaußsche Mixturmodelle,
dass die probabilistische Variante eine Beschleunigung um einen kon-
stanten Faktor erreicht.

x



C O N T E N T S

1 introduction 1

1.1 Cluster analysis 2

1.2 Parameter estimation 5

1.3 Outline of the thesis 9

i on cluster analysis 11

2 clustering basics 13

2.1 The notion of similarity 14

2.2 Clustering quality 14

2.3 Problem Definitions 16

3 analysis of agglomerative clustering 17

3.1 Preliminaries 18

3.2 Discrete k-center clustering 20

3.3 k-center clustering 24

3.4 Diameter k-clustering 34

3.5 The one-dimensional case 41

3.6 Lower bounds 45

ii on parameter estimation 55

4 statistical models 57

4.1 The parameter estimation problem 58

4.2 General mixture models 60

4.3 Gaussian mixture models 61

4.4 Handy notions from probability theory 67

5 the classical em algorithm 71

5.1 Convergence of the EM algorithm 73

5.2 The EM algorithm for mixture distributions 77

5.3 The EM algorithm for Gaussian mixtures 78

6 the stochastic em algorithm 81

6.1 The generic SEM algorithm 82

6.2 The SEM algorithm for mixture distributions 83

6.3 The SEM algorithm for Gaussian mixtures 86

7 experimental analysis 99

7.1 Implementation 99

7.2 Data sets 100

7.3 Experiments 102

7.4 Results 105

xi





1
I N T R O D U C T I O N

Recently, as part of the Human Brain Project [Walker, 2012], researchers
from Canada and Germany released BigBrain, a high-resolution 3D
model of the human brain [Amunts et al., 2013]. The aim of this
model is to provide “considerable neuroanatomical insight into the
human brain, thereby allowing the extraction of microscopic data for
modeling and simulation”. The long-term objective of the Human
Brain Project is the simulation of the human brain on supercomputers,
thus realizing a recent dream of mankind. The chances of success for
a venture like this were already discussed in the 1950s by great minds
as Alan Turing1 and John von Neumann2.

Although science is not able to simulate the human brain yet, a lot
of effort is put into the imitation of its capabilities. One of these ca-
pabilities is to handle large amounts of data. The human retina alone
transmits approximately one megabyte of data to the brain every sec-
ond [Koch et al., 2006]. Fortunately, we do not have to consciously
process each bit of information that we see. Instead, our brain’s ab-
straction capacity reduces the amount of information. This enables
us to recognize a white area covered with black speckles as a page
of printed text. Moreover, we are able to classify the speckles as Ro-
man letters and recognize groups of letters as English words. Then,
by processing one word after another while ignoring the remaining
words on the page, we are able to read whole sentences.

For the sake of simplicity let’s wrongly assume that the information
of a sentence is simply the sum of information in the single words.
Furthermore, we assume that the amount of information in a single
word is simply the number of bits needed to identify one word of the
English language. If we estimate the size of the English vocabulary
by 500 000 words, then we need 19 bits per word. An average reader
is able to read about 4 words per second which corresponds to 76 bits
per second. This rough approximation shows that the brain reduces
the information from the perception in the eye to the recognition of
the words by several orders of magnitude.

1 In 1950, Turing wrote his well-known article “Computing Machinery and Intelli-
gence” [Turing, 1950].

2 Shortly before his death in 1957, von Neumann began to write the unfinished and
posthumously published book “The Computer and the Brain” [von Neumann, 1958].
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introduction

Furthermore, the brain is also able to store large amounts of data.
The number of neurons in the human brain is estimated to about
86 billion cells, 16 billion of which are located in the cerebral cortex
[Azevedo et al., 2009]. We may assume that each neuron in the cere-
bral cortex is connected to other neurons by 50 000 synapses on aver-
age [Brewer et al., 2009]. This yields a total number of approximately
800 trillion synapses. It is not known how the brain stores informa-
tion and which role the interaction between neurons and synapses
plays. However, recent work suggests that a synapse switches be-
tween discrete states [Montgomery and Madison, 2004]. If we assume
that each synapse can hold one bit of information, we get a total stor-
age capacity of approximately 100 terabytes in the cerebral cortex.

The combination of the capability to store large amounts of data
and the ability to process it resembles the requirements of large-scale
database applications. With continuously growing databases, it be-
comes increasingly important to reduce the amount of data that has
to be processed. That is, in order to work with very large data sets,
we need to be able to extract the essential information. This is quite
similar to the brain’s ability to extract text from the electrochemical
impulses received from the optic nerve. One step into this direction
is to try and capture the structure of a given data set. The approaches
to this task are as diverse as the underlying applications. This thesis
deals with two particular data structuring techniques introduced in
the following two sections.

1.1 cluster analysis

One way of investigating the structure of a given data set is to divide
it into subsets of similar data elements. This approach is called cluster
analysis or simply clustering. There are many applications for clus-
tering, including data compression [Pereira et al., 1993], structuring
results of search engines [Broder et al., 1997], analysis of gene expres-
sion data [Eisen et al., 1998], anomaly detection [Lee et al., 2008], and
community detection [Meyerhenke and Staudt, 2013]. For every ap-
plication, a proper objective function is used to measure the quality
of a clustering. One particular objective function that is based on a
distance measure between data elements is the largest diameter of
the clusters. If the desired number of clusters k is given, we call the
problem of minimizing this objective function the diameter k-clustering
problem. In this thesis, we focus on the diameter k-clustering problem
and two closely related clustering problems.

One of the earliest and most widely used clustering algorithms
is agglomerative clustering. The history of agglomerative clustering
goes back to the 1950s at least [Florek et al., 1951, McQuitty, 1957].
Later, biological taxonomy became one of the driving forces of clus-
ter analysis. In [Sneath and Sokal, 1973] the authors, who where
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1.1 cluster analysis

the first biologists using computers to classify organisms, discuss sev-
eral agglomerative clustering methods. Agglomerative clustering is a
bottom-up clustering process. At the beginning, every data element
forms its own cluster. In each subsequent step, the two ’closest’ clus-
ters will be merged until only one cluster remains.

In order to define the agglomerative algorithm properly, we have
to specify what it means for two clusters to be ’close’. In case of
the diameter clustering problem mentioned above, two clusters are
defined to be close when the distance between their farthest pair of
data elements is small. Then, the two ’closest’ clusters are the two
clusters that minimize the diameter of their union. Using this def-
inition of closeness is called the complete linkage strategy. Alternate
strategies are to minimize the distance between the closest pair of
data elements or to minimize the average distance between data ele-
ments from the two clusters. These are called single linkage strategy3

and average linkage strategy, respectively.
Agglomerative clustering algorithms create a hierarchy of clusters,

such that for any two different clusters A and B from different levels
of the hierarchy we either have A ∩ B = ∅, A ⊂ B, or B ⊂ A. Such a
hierarchy is useful in many applications, for example, when one is
interested in hereditary properties of the clusters (as in some bioin-
formatics applications) or if the exact number of clusters is a priori
unknown.

1.1.1 related work

In this thesis, we study the agglomerative clustering algorithm us-
ing the complete linkage strategy. Since the complete linkage strat-
egy minimizes the diameter in each step, this algorithm is a natural
choice to find hierarchical diameter k-clusterings. The running time
is obviously polynomial in the description length of the input data.
Therefore, our only goal in this thesis is to give an approximation
guarantee for the diameter k-clustering problem. The approximation
guarantee is given by a factor α such that the largest diameter of
the k-clustering computed by the algorithm is at most α times the
largest diameter of an optimal k-clustering. Although the agglom-
erative complete linkage clustering algorithm is widely used, there
are only few theoretical results considering the quality of the clus-
tering computed by this algorithm. In [Dasgupta and Long, 2005]
the authors provide a certain metric distance function such that this
algorithm computes a k-clustering with an approximation factor of
Ω(logk).

The diameter k-clustering problem is closely related to the k-center
problem. In this problem, we search for k centers and the objective is

3 Using the single linkage strategy is equivalent to computing a minimum spanning
tree of the graph induced by the distance function using Kruskal’s algorithm.
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to minimize the maximum distance of any data element to the nearest
center. When the centers are restricted to come from the input data
set, the problem is called the discrete k-center problem. It can easily be
verified that for metric distance functions the costs of optimal solu-
tions to all three problems are within a factor of 2 from each other.

For the Euclidean case, we know that for fixed k, i. e., when we are
not interested in a hierarchy of clusterings, the diameter k-clustering
problem and the k-center problem are NP-hard. In fact, it is already
NP-hard to approximate both problems with an approximation factor
below 1.96 and 1.82, respectively [Feder and Greene, 1988]. These
non-approximability results are transferable to the discrete k-center
problem for approximation factors below 1.73 [Leder, 2013].

Furthermore, there exist provably good approximation algorithms
in this case. For the k-center problem, a simple 2-approximation al-
gorithm is known for metric spaces [Gonzalez, 1985]. Since this al-
gorithm chooses the cluster centers from the input data set, it is also
a 2-approximation algorithm for the discrete k-center problem. The
analysis of this algorithm is immediately transferrable to the diame-
ter k-clustering problem and yields a 2-approximation algorithm for
this problem, too. For the k-center problem, a variety of results is
known. For example, for the Euclidean metric in [Bādoiu et al., 2002]
a (1 + ϵ)-approximation algorithm with running time 2O(k logk/ϵ2)dn

is shown. This implies a (2 + ϵ)-approximation algorithm with the
same running time for the diameter k-clustering problem. Moreover,
for metric spaces a hierarchical clustering strategy is known with an
approximation guarantee of 8 for the discrete k-center problem [Das-
gupta and Long, 2005]. This implies an algorithm with an approxi-
mation guarantee of 16 for the diameter k-clustering problem.

Part I of this thesis as well as all of the above mentioned work is
about static clustering, i. e., in the problem definition we are given
the whole input data set at once. An alternative model of the input
data is to consider sequences of data elements that are given one after
another. In [Charikar et al., 1997], the authors discuss clustering in
a so-called incremental clustering model. They give an algorithm with
constant approximation factor that maintains a hierarchical clustering
while new elements are added to the input data set. Furthermore,
they show a lower bound of Ω(log k) for the agglomerative complete
linkage algorithm and the diameter k-clustering problem. However,
since their model differs from ours, their results have no bearing on
our results.

1.1.2 our contribution

One of the open problems discussed in [Dasgupta and Long, 2005]
is to derive a non-trivial upper bound for the approximation guar-
antee of the classical agglomerative complete linkage clustering al-
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1.2 parameter estimation

gorithm. In this thesis, we present such an analysis for the agglom-
erative complete linkage and related clustering algorithms. Our re-
sults hold for metrics on Rd that are based on a norm as for exam-
ple the Euclidean metric. We prove that the agglomerative solution
to the diameter k-clustering problem is an O(logk)-approximation.
Here, the O-notation hides a constant that is doubly exponential in
d. This approximation guarantee holds for every level of the hierar-
chy computed by the algorithm. That is, we compare each computed
k-clustering with an optimal solution for that particular value of k.
These optimal k-clusterings do not necessarily form a hierarchy. In
fact, there are simple examples where optimal solutions have no hier-
archical structure.

Our analysis also yields that if we allow 2k instead of k clusters
and compare the cost of the computed 2k-clustering to an optimal
solution with k clusters, the approximation factor is independent of
k and depends only on d. Moreover, the techniques of our analysis
can be applied to prove stronger results for the k-center problem and
the discrete k-center problem. For the k-center problem, we derive
an approximation guarantee that is logarithmic in k and only singly
exponential in d. For the discrete k-center problem, we derive an
approximation guarantee that is logarithmic in k and the dependence
on d is only linear and additive.

Furthermore, we give almost matching upper and lower bounds
for the one-dimensional case. These bounds are independent of k.
For d ⩾ 2 and the metric based on the L∞-norm, we provide a lower
bound that exceeds the upper bound for d = 1. For d ⩾ 3, we give
a lower bound for the Euclidean case which is larger than the lower
bound for d = 1. Finally, we construct data sets which provide lower
bounds for any metric based on an Lp-norm with 1 ⩽ p ⩽ ∞. How-
ever, the construction of these data sets needs the dimension to de-
pend on k.

Our analysis, presented in Chapter 3, was previously published in
[Ackermann et al., 2011, Ackermann et al., 2012].

1.2 parameter estimation

Apart from the clustering approach outlined in Section 1.1, another
way of revealing the structure of large data sets is to train the parame-
ters of statistical models. This approach is discussed in Part II of this
thesis. To describe a given data set by the parameters of a statistical
model is a central task in the field of data mining and machine learn-
ing. Many applications in this field deal with real-world data that is
suitable to be modeled by stochastic processes. That is, the data is as-
sumed to be generated by a stochastic process which is governed by
some model parameters. Then, the goal is to optimize the parameters
such that the stochastic process is a likely source of the data. Presum-
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ably, one of the first studies of this problem was done by Karl Pearson
for a data set consisting of measurements of the frontal breadth of the
carapace of 1 000 female shore crabs [Pearson, 1894]. Pearson showed
that the data was most likely a mixture of two Gaussian distributions.
This suggests that the crabs belonged to two different species. To
compute the parameters of the mixture, Pearson used the method of
moments to derive a ninth-degree polynomial by hand which gave
rise to a set of candidate parameters.

Today, we are able to work with much larger data sets and we do
not have to do any calculations by hand. Instead, we are equipped
with powerful algorithms for the parameter optimization. One way
to optimize the parameters is to maximize the probability of the given
data set over the choice of the parameters. As a function of the model
parameters, this probability is called the likelihood function. The
problem of maximizing the likelihood is called the parameter estima-
tion problem. The Expectation-Maximization (EM) algorithm intro-
duced in [Dempster et al., 1977] is a general scheme for finding maxi-
mum likelihood solutions for this parameter estimation problem. It is
used when the observed data X can be seen as incomplete and when
the parameter estimation problem given the corresponding complete
data (X,Z) is easy to solve. Starting with an initial set of model pa-
rameters, the algorithm repeatedly performs two steps to compute a
new set of parameters. The first step derives an optimal distribution
for the hidden values. The second step computes the new set of pa-
rameters by maximizing the expectation (over the hidden values) of
the complete-data likelihood.

Applications of the EM algorithm to special cases were already
known before the method was formulated in its general form in
[Dempster et al., 1977]. For example, the well known Baum-Welch
algorithm (see [Baum et al., 1970]) for the computation of parameters
for hidden Markov models is an instantiation of a generalized variant
of the EM algorithm. For exponential families, the method was stud-
ied in [Sundberg, 1974]. More examples can be found in [Dempster
et al., 1977].

1.2.1 related work

During the decades since its first presentation, a lot of work has been
done to improve the EM algorithm. Most of these improvements deal
with one or more of three major drawbacks of the algorithm. First,
the convergence of the EM algorithm can be very slow. For a discus-
sion of several speed-up techniques see Chapter 4 in [McLachlan and
Krishnan, 2008]. Second, the EM algorithm is prone to converge only
to a local maximum, or even worse, to a saddle point of the likelihood
function [Wu, 1983, Dias and Wedel, 2004]. One way to deal with this
problem is to compute ’good’ initial estimates [Biernacki et al., 2003]
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1.2 parameter estimation

or to restart the algorithm with several different initializations in the
hope that one iteration leads to a satisfying solution. Finally, in some
cases the EM algorithm is not applicable at all since the maximiza-
tion step is computationally intractable. To overcome this problem,
the maximization step has to be substantially simplified.

There exist a number of stochastic variants of the EM algorithm
that try to deal with these drawbacks, including the Stochastic EM
or SEM algorithm [Celeux and Diebolt, 1985], the Stochastic Approx-
imation EM or SAEM algorithm [Celeux and Diebolt, 1992], and the
Monte Carlo EM or MCEM algorithm [Wei and Tanner, 1990]. The
MCEM algorithm replaces the distribution over the hidden values
from the first step of the EM algorithm by an empirical Monte Carlo
approximation. Thus, for continuous random variables Z, it replaces
analytic by numerical computation. Furthermore, due to the inherent
randomness, the algorithm is capable of escaping from a saddle point
or from a local maximum of the likelihood function.

The SEM algorithm is even simpler than the MCEM algorithm. In-
stead of maximizing the expectation as done in the second step of the
EM algorithm, it uses the distribution from the first step to simply
guess the missing values. That is, the algorithm samples an assign-
ment for the hidden values Z. Afterwards, it maximizes the complete-
data likelihood only for that fixed assignment. This considerably re-
duces the computational complexity and may lead to the applicability
of the EM scheme in the first place. The SEM algorithm can be seen
as a special case of the MCEM algorithm where only one sample is
drawn to approximate the distribution over the hidden values. It is
known that for particular classes of statistical models, the sequence of
models generated by the SEM iterations is an ergodic Markov chain
converging weakly to a stationary distribution over models. Further-
more, it is known that under appropriate assumptions and for the
number of input points going to infinity, the mean of this stationary
distribution converges to the maximum likelihood estimate [Ip, 1994].

A suitable application of the SEM algorithm is the parameter es-
timation problem for mixture distributions. In this model, the data
set consists of independent draws from a mixture distribution and the
hidden values are usually assumed to be the assignments of each data
element to the component distribution it was generated by. That is,
for each data element, the SEM algorithm guesses which component
distribution it was generated by. Obviously, if the number of data ele-
ments is small, then each wrong assignment has a large impact. And
indeed, a limitation of the SEM algorithm is that it does not work
for very small data sets. Therefore, the authors of the original SEM
work introduced the SAEM algorithm later. The SAEM algorithm
is a hybrid algorithm that mixes the computations of the SEM algo-
rithm with the computations of the classical EM algorithm. At the
beginning it works like a pure SEM algorithm and then it gradually
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transforms until it finally does pure EM computations. For a compar-
ison of all three mentioned stochastic EM variants see [Celeux et al.,
1995].

1.2.2 our contribution

As already mentioned in the previous section, the original line of
work on the SEM algorithm focused on stochastic properties of the
sequence of models generated by the SEM algorithm. However, to
approximate the above mentioned mean that converges to the max-
imum likelihood estimate, we would need to average over a large
number of runs of the SEM algorithm. In this thesis, we present
a new analysis of the SEM algorithm for Gaussian mixture models.
Unlike the previous work, our analysis studies only a single run of
the algorithm. Furthermore, in addition to our theoretical results, we
also provide experimental results for various artificial and real world
data sets.

Since practitioners are often satisfied with the solutions computed
by the classical EM algorithm, we analyze the SEM algorithm in re-
lation to the EM algorithm. More precisely, we examine the parame-
ter updates computed in an arbitrary iteration of the SEM algorithm
and compare them to the updates computed by the EM algorithm
for the same previous parameter estimate. We show that with high
probability the updates of the EM and SEM algorithm are almost the
same, given that the input data set is sufficiently large. Our results
are stated as three separate theorems. The first theorem gives a high
probability bound on the difference of the weight updates. This re-
sult does not only hold for Gaussian mixture models, but also for
arbitrary mixture models. The second theorem gives a high probabil-
ity bound on the distance between the means computed by the EM
and SEM iteration. Finally, the third theorem does the same for the
covariance updates.

Since the computed parameters generally differ from each other af-
ter a single round of the two algorithms, our analysis does not work
for a sequence of several EM and SEM iterations. However, our exper-
iments confirm that the similarity of the parameters mostly persists
even after a large number of successive update steps. Moreover, we
explain why the SEM algorithm is considerably faster than the classi-
cal EM algorithm. In particular, we show that the probabilistic variant
establishes a constant factor speedup for Gaussian mixture models.

Our theoretical and experimental analysis, presented in Chapter 6

and Chapter 7, was also published in [Blömer et al., 2013].
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1.3 outline of the thesis

1.3 outline of the thesis

This thesis is organized into two parts. In Part I we turn towards clus-
ter analysis. After giving a short introduction to clustering in Chap-
ter 2, we present the first analysis of a classical clustering algorithm
in Chapter 3. Part II is about statistical models and the parameter es-
timation problem. The basic concepts needed later are introduced
in Chapter 4. In Chapter 5, we discuss the classical Expectation-
Maximization algorithm. In Chapter 6, we analyze a probabilistic
variant of the EM algorithm. Finally, in Chapter 7, we present an
experimental comparison of both algorithms.

On some pages you will find cross-references and additional re-
marks written in the margins that may be useful to understand the
main text. Furthermore, some bibliographic references are only men-
tioned in these marginal notes.
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Part I

O N C L U S T E R A N A LY S I S

The first part of this thesis is about cluster analysis. We
focus on so-called distance-based hard clustering. Using
this approach, the distances between the elements of a
given data set are used to compute a partition of the data
into subsets of elements that are close to each other.

The main result of Part I is the first analysis of the qual-
ity of agglomerative complete linkage clustering for the
diameter k-clustering problem.





2
C L U S T E R I N G B A S I C S

Simply put, clustering or cluster analysis is the process of organizing a
given set of items into groups (called clusters) of similar items. The
term is used for the entire number of techniques to solve this task as
well as for the task itself. Furthermore, the term clustering is also used
for a resulting set of clusters. If a clustering consists of k clusters, it
is called a k-clustering.

Ideally, all elements of a particular cluster are similar while ele-
ments from different clusters are dissimilar. It is evident that the no-
tion of similarity or dissimilarity is a crucial ingredient for the formu-
lation of clustering problems. As a consequence, the different ways
to model a cluster are as numerous as the number of clustering appli-
cations. There is a broad range of (possibly overlapping) approaches,
including graph-based clustering [Schaeffer, 2007, Fortunato, 2010],
density-based clustering [Kriegel et al., 2011a], distribution-based clus-
tering (cf. Chapter 4), and distance-based clustering (see Section 2.1).

Another key differentiator between common clustering applications
is the certainty of membership in a cluster. The two main categories
are hard and soft clustering. In case of soft clustering, an element of the
input data set may be assigned to multiple clusters at the same time
and in addition this assignment can be weighted. For example, using
a distribution-based clustering approach, we may want to model the
input data by a mixture distribution (cf. Chapter 4.2). Then, we can
identify the mixture components with the clusters and assign the ele-
ments of the input data set to each cluster with a weight proportional
to the probability of the element in the corresponding mixture com-
ponent. In case of hard clustering however, each element is assigned
to exactly one cluster. That is, a hard clustering is actually a partition
of the given data set.

An important special case of hard clustering is the so-called hierar-
chical clustering. We call a collection of k-clusterings of the same finite
data set X, but for different values of k, hierarchical, if it fulfills the
following two properties. First, for any k, the collection contains at
most one k-clustering. Second, for any two of its clusterings Ci,Cj

with |Ci| = i < j = |Cj|, every cluster in Ci is the union of one or more
clusters from Cj. A hierarchical collection of clusterings is called a
hierarchical clustering.

13



clustering basics

In the following, we introduce the concepts of clustering that we
need to apply our analysis of agglomerative clustering in Chapter 3.
In particular, we consider distance-based hard clustering only. For a
thorough introduction to clustering see for example [Tan et al., 2005].

2.1 the notion of similarity

The distance-based clustering approach establishes a notion of dis-
similarity based on the distances between the elements of the input
data. Therefore, we start our formal introduction to cluster analysis
with the definition of distance measures. We use the term distance mea-
sure to differentiate from the distance function of a metric since we
neither require symmetry nor the triangle inequality.

Definition 2.1. Let X be an arbitrary domain. A function D : X×X→ R

is called a distance measure, if the following conditions are satisfied for all
x,y ∈ X:

1. D(x,y) ⩾ 0 (non-negativity)

2. D(x,y) = 0 ⇔ x = y (identity of indiscernibles)

Cluster analysis is established for a wide variety of distance mea-
sures. Although it is very common to embed the input data into a
metric space like the d-dimensional Euclidean vector space Rd, some
widely used distance measures do not form a metric. For example,
the squared Euclidean distance and the Mahalanobis distance both are no
metrics since they do not fulfill the triangle inequality. Other distance
measures as for example the Kullback-Leibler divergence or the Itakura-
Saito divergence (both defined for X = Rd

⩾0) are not even symmetric.
For a discussion of clustering algorithms for non-metric distance mea-
sures see [Ackermann, 2009]. For the remainder of this chapter, we
consider metric distance measures only.

Definition 2.2. Let X be an arbitrary domain. A function D : X×X→ R

is called a metric, if D is a distance measure and in addition, the following
conditions are satisfied for all x,y, z ∈ X:

3. D(x,y) = D(y, x) (symmetry)

4. D(x,y) ⩽ D(x, z) +D(z,y) (triangle inequality)

2.2 clustering quality

To distinguish good clusterings from bad clusterings we need to in-
troduce a measure of quality. It is obvious that the choice of the
right measure highly depends on the particular clustering application.
Generally, the desired properties of the clustering are transformed to
a cost function that maps clusterings to real numbers. Then, the goal

14



2.2 clustering quality

b

b b

b

(a) The diameter.

b

b b

b

(b) The radius.

b

b b

b

(c) The discrete radius.

Figure 1: Different measurements for the same cluster.

of the clustering process is to minimize the cost of the resulting clus-
tering.

Before introducing three popular hard clustering cost functions, we
give a formal definition of a k-clustering.

Definition 2.3. Let X be an arbitrary domain, k ∈ N and X ⊂ X a finite
set with |X| ⩾ k. Then, a k-clustering of X is a partition Ck = {C1, . . . ,Ck}

of X into k non-empty subsets. The subsets C1, . . . ,Ck are called clusters.

The first cost function we consider is the diameter cost of a cluster-
ing which is simply the largest diameter among its clusters.

Definition 2.4. Let X be an arbitrary domain with a distance measure D.
Furthermore, let X ⊆ X be a finite input data set and C = {C1, . . . ,Ck} a
k-clustering of X.

Then, the diameter cost of C is defined as

costdiam(C) := max
C∈C

diam(C),

where diam(C) := maxx,y∈CD(x,y) denotes the diameter of C. cf. Figure 1a

The diameter cost only depends on the distances between elements
of the input data set. For the definition of the radius cost, we addi-

15



clustering basics

tionally introduce so-called cluster centers. These centers come from
the same domain that the input data set is embedded into.

Definition 2.5. Let X be an arbitrary domain with a distance measure D.
Furthermore, let X ⊆ X be a finite input data set and C = {C1, . . . ,Ck} a
k-clustering of X.

Then, the radius cost of C is defined as

costrad(C) := max
C∈C

rad(C),

where rad(C) := miny∈X maxx∈CD(x,y) denotes the radius of C.cf. Figure 1b

The discrete radius cost is a special case of the radius cost where
the centers have to be elements of the input data set.

Definition 2.6. Let X be an arbitrary domain with a distance measure D.
Furthermore, let X ⊆ X be a finite input data set and C = {C1, . . . ,Ck} a
k-clustering of X.

Then, the discrete radius cost of C is defined as

costdrad(C) := max
C∈C

drad(C),

where drad(C) := miny∈C maxx∈CD(x,y) denotes the discrete radius ofcf. Figure 1c

C.

That is, if we choose X = X the radius cost coincides with the
discrete radius cost.

2.3 problem definitions

Based on the three cost functions introduced in Section 2.2 we de-
fine the corresponding clustering problems. All three problems are
discussed in Chapter 3.

Problem 2.7 (diameter k-clustering). Given k ∈ N and a finite set X ⊂
Rd with |X| ⩾ k, find a k-clustering Ck of X with minimal diameter cost.

Problem 2.8 (k-center). Given k ∈N and a finite set X ⊂ Rd with |X| ⩾ k,
find a k-clustering Ck of X with minimal radius cost.

Problem 2.9 (discrete k-center). Given k ∈ N and a finite set X ⊂ Rd

with |X| ⩾ k, find a k-clustering Ck of X with minimal discrete radius cost.

16



3
A N A LY S I S O F A G G L O M E R AT I V E C L U S T E R I N G

In this chapter we analyze the agglomerative clustering algorithms
for the (discrete) k-center problem and the diameter k-clustering prob-
lem. As mentioned in the introduction, an agglomerative algorithm
takes a bottom-up approach. It starts with the |X|-clustering that con-
tains one cluster for each element of a given data set and then suc-
cessively merges two of the remaining clusters such that the cost of
the resulting clustering is minimized. That is, in each merge step
the agglomerative algorithms for Problem 2.7, Problem 2.8 and Prob-
lem 2.9 minimize the diameter, the radius and the discrete radius of
the resulting cluster, respectively.

Our main objective is the agglomerative complete linkage cluster-
ing algorithm, which minimizes the diameter in every step. Never-
theless, we start with the analysis of the agglomerative algorithm for
the discrete k-center problem since it is the simplest one of the three.
Then we adapt our analysis to the k-center problem and finally to
the diameter k-clustering problem. In each case we need to introduce
further techniques to deal with the increased complexity of the given
problem.

We show that all three algorithms compute an O(logk)-approxima-
tion for the particular corresponding clustering problem. However,
the dependency on the dimension which is hidden in the O-notation
ranges from only linear and additive in case of the discrete k-center
problem to a factor that is doubly exponential in case of the diameter
k-clustering problem. As mentioned in the introduction, the cost of
optimal solutions to the three problems are within a factor of 2 from
each other. That is, each algorithm computes an O(logk)-approxi-
mation for all three problems. However, we will analyze the proper
agglomerative algorithm for each problem.

Strictly speaking, the clusterings computed by the agglomerative
algorithms stated as Algorithm 3.1, 3.2 and 3.3 are not uniquely de-
termined, since the minimization step may be ambiguous. However,
all our results hold for any particular tie-breaking strategy (even non-
deterministic ones). To keep the discussion simple, we ignore such
subtleties unless they are crucial.
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analysis of agglomerative clustering

3.1 preliminaries

Throughout this chapter, we confine ourselves to metric distance mea-
sures that are defined on Rd for some d ∈ N. That is, we consider
input data sets that are finite subsets of Rd. Our results hold for arbi-
trary metrics that are based on a norm, i. e., we consider only distance
measures of the form

D(x,y) = ∥x− y∥

for an arbitrary norm ∥ · ∥. Readers who are not familiar with arbi-The figures in this
chapter assume the

Euclidean metric.
trary metrics or are only interested in the Euclidean case, may assume
that the Euclidean norm ∥ · ∥2 is used, i. e.,

∥x− y∥ =

√√√√ d∑
i=1

(xi − yi)2.

Furthermore, for r ∈ R and y ∈ Rd, we denote the closed d-dimen-
sional ball of radius r centered at y by

Bd
r (y) := {x | ∥x− y∥ ⩽ r} .

For our analysis of agglomerative clustering, we repeatedly use the
volume argument stated in Lemma 3.2. This argument provides an
upper bound on the minimum distance between two points from a
finite set of points lying inside the union of finitely many balls. For
the application of this argument, the following definition is crucial.

Definition 3.1. Let k ∈ N and r ∈ R. Then, a set X ⊂ Rd is called
(k, r)-coverable, if there exist y1, . . . ,yk ∈ Rd with

X ⊆
k∪

i=1

Bd
r (yi).

Lemma 3.2. Let k ∈ N, r ∈ R and P ⊂ Rd be finite and (k, r)-coverable
with |P| > k. Then, there exist distinct p,q ∈ P such that

∥p− q∥ ⩽ 4r d

√
k

|P|
.

Proof. Let Z ⊂ Rd with |Z| = k and P ⊂
∪

z∈Z Bd
r (z). We define δ to be

the minimum distance between two points of P, i. e.,

δ := min
p,q∈P
p̸=q

∥p− q∥.

That is, we have to show that δ ⩽ 4r d

√
k
|P|

. We assume for contra-

diction that u := 4r d

√
k
|P|

< δ. Since |P| > k there exists z ∈ Z with
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3.1 preliminaries

z

p

r

r+ u/2

u/2

Figure 2: The volume argument.

∣∣∣Bd
r (z)∩ P

∣∣∣ ⩾ 2. It follows that δ ⩽ 2r and hence, u
2
< r. Note that for

any y ∈ Rd, τ ∈ R, and any norm ∥ · ∥,

Vol
(

Bd
τ (y)

)
= τd · Vd,

where Vd is the volume of the d-dimensional unit ball Bd
1 (0) (see

Corollary 6.2.15 in [Webster, 1994]). Therefore,

Vol

(∪
z∈Z

Bd
r+u/2(z)

)
<

∑
z∈Z

Vol
(

Bd
2r(z)

)
= k(2r)d · Vd.

Furthermore, since any p ∈ P is contained in a ball Bd
r (z) for some

z ∈ Z, we conclude that any ball Bd
u/2(p) for p ∈ P is contained in a

ball Bd
r+u/2(z) for some z ∈ Z (cf. Figure 2). Thus,

Vol

∪
p∈P

Bd
u/2(p)

 ⩽ Vol

(∪
z∈Z

Bd
r+u/2(z)

)
< k(2r)d · Vd. (1)

Since u < δ, for any distinct p,q ∈ P, we conclude that

Bd
u/2(p)∩ Bd

u/2(q) = ∅.

Therefore, using the definition of u, the total volume of the |P| balls
Bd

u/2(p) is given by

Vol

∪
p∈P

Bd
u/2(p)

 = |P|
(u
2

)d
Vd = k(2r)d · Vd.

This however contradicts Inequality (1) and we obtain δ ⩽ u, which
proves the lemma.

Furthermore, we need the following covering lemma that is a corol-
lary of Theorem 1.2 in [Naszódi, 2010].

Lemma 3.3. Let λ, τ ∈ R with λ, τ > 0. Then, for arbitrary metrics that are
based on a norm, a ball of radius τ can be covered by

⌈(
3
λ

)d⌉ balls of radius
λτ.
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analysis of agglomerative clustering

Algorithm 3.1: AgglomerativeDiscreteRadius(X)

Input: finite set of input points X ⊂ Rd

C|X| ←− { {x} | x ∈ X}

for i = |X|− 1, . . . , 1 do
find distinct clusters A,B ∈ Ci+1 minimizing drad(A∪B)
Ci ←− (Ci+1 \ {A,B}) ∪ {A∪B}

end
return C|X|, . . . ,C1

3.2 discrete k-center clustering

The agglomerative algorithm for the discrete k-center problem is sta-
ted as Algorithm 3.1. Given a finite set of input points X ⊂ Rd,
the algorithm computes hierarchical k-clusterings for all values of
k between 1 and |X|. We denote them by C|X|, . . . ,C1. Throughout
this section, cost always means discrete radius cost and optk refers to
the cost of an optimal discrete k-center clustering of X ⊂ Rd where
k ∈ N with k ⩽ |X|. That is, optk denotes the cost of an optimal
solution to Problem 2.9. Since any cluster C is contained in a ball of
radius drad(C), we have that X is (k, costdrad(Ck))-coverable for any
k-clustering Ck of X. It follows that X is (k, optk)-coverable. This
fact, as well as the following observation about the greedy strategy of
Algorithm 3.1, will be used frequently in our analysis.

Observation 3.4. The cost of all computed clusterings is equal to the dis-
crete radius of the cluster created last. Furthermore, the discrete radius of
the union of any two clusters is always an upper bound for the cost of the
clustering to be computed next.

The following theorem states our result for the discrete k-center
problem.

Theorem 3.5. Let X ⊂ Rd be a finite set of points. Then, for arbitrary
metrics that are based on a norm and for all k ∈ N with k ⩽ |X|, the
partition Ck of X into k clusters as computed by Algorithm 3.1 satisfies

costdrad(Ck) < (20d+ 2 log2(k) + 2) · optk,

where optk denotes the cost of an optimal solution to Problem 2.9.

We prove Theorem 3.5 in two steps. First, Proposition 3.6 in Sec-
tion 3.2.1 provides an upper bound to the cost of the intermediate
2k-clustering. This upper bound is independent of k and |X|, only lin-
ear in d and may be of independent interest. In its proof, we use the
volume argument from Lemma 3.2 to bound the distance between the
centers of pairs of remaining clusters.

Second, in Section 3.2.2, we analyze the remaining k merge steps of
Algorithm 3.1 down to the computation of the k-clustering. There, we

20



3.2 discrete k-center clustering

no longer need to apply Lemma 3.2 to bound the distance between
two cluster centers. Instead, the volume argument is replaced by a
very simple bound that is already sufficient to obtain our result.

3.2.1 analysis of the 2k-clustering

Proposition 3.6. Let X ⊂ Rd be finite. Then, for all k ∈ N with 2k ⩽ |X|,
the partition C2k of X into 2k clusters as computed by Algorithm 3.1 satisfies

costdrad(C2k) < 20d · optk,

where optk denotes the cost of an optimal solution to Problem 2.9.

To prove Proposition 3.6, we divide the merge steps of Algorithm 3.1
into phases, each reducing the number of remaining clusters by one
fourth. The following lemma bounds the increase of the cost during
a single phase by an additive term.

Lemma 3.7. Let m ∈N with 2k < m ⩽ |X|. Then,

costdrad

(
C⌊ 3m4 ⌋

)
⩽ costdrad(Cm) + 4

d

√
2k

m
· optk .

Proof. Let t :=
⌊
3m
4

⌋
. Then, Cm ∩ Ct+1 is the set of clusters from Cm

that still exist
⌈
m
4

⌉
− 1 < m

4
merge steps after the computation of Cm.

In each iteration of its loop, the algorithm can merge at most two
clusters from Cm. Thus,

|Cm ∩ Ct+1| > m− 2
m

4
=

m

2
.

Let τ := costdrad(Cm). From every cluster C ∈ Cm, we fix a center
pC ∈ C with C ⊂ Bd

τ (pC) and define P := {pC C ∈ Cm ∩ Ct+1}. Then,

|P| = |Cm ∩ Ct+1| >
m

2
> k.

Since X is (k, optk)-coverable, so is P ⊂ X. Then, by Lemma 3.2, there
exist distinct A,B ∈ Cm ∩ Ct+1 such that

∥pA − pB∥ ⩽ 4
d

√
2k

m
· optk .

Therefore, the distance from pA to any q ∈ B is at most 4 d

√
2k
m
·optk+τ.

We conclude that merging A and B would result in a cluster whose
discrete radius can be upper bounded by

cf. Figure 3drad(A∪B) ⩽ costdrad(Cm) + 4
d

√
2k

m
· optk .

The result follows from A,B ∈ Ct+1 and Observation 3.4.

To prove Proposition 3.6, we apply Lemma 3.7 for
⌈

log 4
3

|X|
2k

⌉
con-

secutive phases.
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analysis of agglomerative clustering

pA

pB

costdrad(Cm)
costdrad(Cm)

Figure 3: drad(A∪B) < costdrad(Cm) + ∥pA − pB∥.

Proof of Proposition 3.6. Let u :=
⌈

log 4
3

|X|
2k

⌉
and for i = 0, . . . ,u, define

mi :=
⌈(

3
4

)i
|X|
⌉

.

Then, mu ⩽ 2k and mi > 2k for i = 0, . . . ,u− 1. Since⌊
3mi

4

⌋
=
⌊
3
4

⌈(
3
4

)i
|X|
⌉⌋

⩽
⌊(

3
4

)i+1
|X|+ 3

4

⌋
⩽
⌈(

3
4

)i+1
|X|
⌉
= mi+1

and Algorithm 3.1 uses a greedy strategy,

costdrad
(
Cmi+1

)
⩽ costdrad

(
C⌊ 3mi

4

⌋)
for i = 0, . . . ,u− 1. Combining this inequality with Lemma 3.7 (ap-
plied to m = mi), we obtain

costdrad
(
Cmi+1

)
⩽ costdrad(Cmi

) + 4 d

√
2k

mi

· optk .

By repeatedly applying this inequality for i = 0, . . . ,u− 1 and using
costdrad(C2k) ⩽ costdrad(Cmu

) and costdrad(Cm0
) = 0, we deduce

costdrad(C2k) ⩽
u−1∑
i=0

(
4 d

√
2k

mi

· optk

)

⩽ 4 d

√
2k

|X|
·
u−1∑
i=0

d

√(
4

3

)i

· optk .

Solving the geometric series and using u− 1 < log 4
3

|X|
2k

leads to

costdrad(C2k) ⩽ 4 d

√
2k

|X|
·

d

√(
4
3

)u
− 1

d

√
4
3
− 1

· optk <
4 d

√
4
3

d

√
4
3
− 1
· optk . (2)

By taking only the first two terms of the series expansion of the ex-

ponential function, we get d

√
4
3

= e
ln 4

3
d > 1 +

ln 4
3

d
. Substituting this

bound into Inequality (2) yields

costdrad(C2k) <
4 d

√
4
3

ln 4
3

d · optk < 20d · optk .
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3.2 discrete k-center clustering

3.2.2 analysis of the remaining merge steps

The analysis of the remaining merge steps introduces the O(logk)

term to the approximation factor of our result. It is similar to the
analysis used in the proof of Proposition 3.6. Again, we divide the
merge steps into phases. This time however, one phase consists of
one half of the remaining merge steps. Furthermore, we replace the
volume argument from Lemma 3.2 with a simpler bound. This bound
results from the observation that, as long as there are more than k

clusters left, we are able to find a pair of clusters whose centers lie
in the same cluster of an optimal k-clustering. That is, the distance
between these centers is at most two times the discrete radius of the
common cluster. The following lemma bounds the increase of the
cost during a single phase.

Lemma 3.8. Let m ∈N with k < m ⩽ |X|. Then,

costdrad

(
C⌊m+k

2 ⌋
)
⩽ costdrad(Cm) + 2optk .

Proof. Let t :=
⌊
m+k

2

⌋
. Then, Cm ∩ Ct+1 is the set of clusters from Cm

that still exist
⌈
m−k

2

⌉
− 1 < m−k

2
merge steps after the computation of

Cm. In each iteration of its loop, the algorithm can merge at most two
clusters from Cm. Thus,

|Cm ∩ Ct+1| > m− 2
m− k

2
= k.

Let τ := costdrad(Cm). From every cluster C ∈ Cm, we fix a center
pC ∈ C with C ⊂ Bd

τ (pC) and define P := {pC C ∈ Cm ∩ Ct+1}. Then,

|P| = |Cm ∩ Ct+1| > k.

Since X is (k, optk)-coverable, so is P ⊂ X. It follows that there exist
distinct A,B ∈ Cm ∩ Ct+1 such that pA and pB are contained in the
same ball of radius optk, i. e.,

∥pA − pB∥ ⩽ 2optk .

Then, the distance from pA to any q ∈ B is at most 2optk+τ. We con-
clude that merging A and B would result in a cluster whose discrete
radius can be upper bounded by

cf. Figure 3drad(A∪B) ⩽ costdrad(Cm) + 2optk .

The result follows using A,B ∈ Ct+1 and Observation 3.4.

To prove Theorem 3.5, we apply Lemma 3.8 for about log k consec-
utive phases.

23



analysis of agglomerative clustering

Algorithm 3.2: AgglomerativeRadius(X)

Input: finite set of input points X ⊂ Rd

C|X| ←− { {x} | x ∈ X}

for i = |X|− 1, . . . , 1 do
find distinct clusters A,B ∈ Ci+1 minimizing rad(A∪B)
Ci ←− (Ci+1 \ {A,B}) ∪ {A∪B}

end
return C|X|, . . . ,C1

Proof of Theorem 3.5. Let u :=
⌊
log2(k)

⌋
+ 1. Then,

log2 k < u ⩽ log2(k) + 1.

Furthermore, for i = 0, . . . ,u we define

mi := k+
⌊(

1
2

)i
k
⌋

.

Then, mu = k and mi > k for i = 0, . . . ,u− 1. Since⌊
mi+k

2

⌋
=
⌊
1
2

(
2k+

⌊(
1
2

)i
k
⌋)⌋

= k+
⌊
1
2

⌊(
1
2

)i
k
⌋⌋

⩽ k+
⌊(

1
2

)i+1
k
⌋
= mi+1

and Algorithm 3.1 uses a greedy strategy,

costdrad
(
Cmi+1

)
⩽ costdrad

(
C⌊mi+k

2

⌋)
for i = 0, . . . ,u− 1. Combining this inequality with Lemma 3.8 (ap-
plied to m = mi), we obtain

costdiam
(
Cmi+1

)
⩽ costdrad(Cmi

) + 2optk .

By repeatedly applying this inequality for i = 0, . . . ,u− 1 and using
m0 = 2k and mu = k, we deduce

costdrad(Ck) ⩽ costdrad(C2k) +

u−1∑
i=0

2optk

⩽ costdrad(C2k) + (2 log2(k) + 2) · optk .

Hence, the result follows using Proposition 3.6.

3.3 k-center clustering

The agglomerative algorithm for the k-center problem is stated as Al-
gorithm 3.2. The only difference to Algorithm 3.1 is the minimization
of the radius instead of the discrete radius in the minimization step.
In the following, cost always means radius cost and optk refers to the
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3.3 k-center clustering

cost of an optimal k-center clustering of X ⊂ Rd where k ∈ N with
k ⩽ |X|. That is, optk denotes the cost of an optimal solution to Prob-
lem 2.8. Analogously to the discrete case, any cluster C is contained
in a ball of radius drad(C) and thus, the set X is (k, optk)-coverable.

Observation 3.9. The cost of all computed clusterings is equal to the ra- This is analogous to
Observation 3.4.dius of the cluster created last. Furthermore, the radius of the union of any

two clusters is always an upper bound for the cost of the clustering to be
computed next.

The following theorem states our result for the k-center problem.

Theorem 3.10. Let X ⊂ Rd be a finite set of points. Then, for arbitrary
metrics that are based on a norm and for all k ∈N with k ⩽ |X|, the partition
Ck of X into k clusters as computed by Algorithm 3.2 satisfies

costrad(Ck) = O(log k) · optk,

where optk denotes the cost of an optimal solution to Problem 2.8, and the
constant hidden in the O-notation is singly exponential in the dimension d.

As in the proof of Theorem 3.5, we first bound the cost of the inter-
mediate 2k-clustering. However, we have to apply a different analysis.
As a consequence, the dependency on the dimension increases from
linear and additive to a singly exponential factor.

3.3.1 analysis of the 2k-clustering

Proposition 3.11. Let X ⊂ Rd be finite. Then, for all k ∈N with 2k ⩽ |X|,
the partition C2k of X into 2k clusters as computed by Algorithm 3.2 satisfies

costrad(C2k) < 24d · e24d · optk,

where optk denotes the cost of an optimal solution to Problem 2.8.

Just as in the analysis of Algorithm 3.1, we divide the merge steps
of Algorithm 3.2 into phases, such that in each phase the number of
remaining clusters is reduced by one fourth. Like in the discrete case,
the input points are (k, optk)-coverable. However, centers correspond-
ing to an intermediate solution computed by Algorithm 3.2 need not
be covered by the k balls induced by an optimal solution. As a conse-
quence, we are no longer able to apply Lemma 3.2 on the centers as
in the discrete case.

To bound the increase of the cost during a single phase, we cover
the remaining clusters at the beginning of a phase by a set of over-
lapping balls. Each of the clusters is completely contained in one of
these balls that all have the same radius. Furthermore, the number of
remaining clusters will be at least twice the number of these balls. It
follows that there are many pairs of clusters that are contained in the
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yi

zC

opt
k

optk + costrad(Cm)

costrad(Cm)

Figure 4: Intermediate centers.

same ball. Then, as long as the existence of at least one such pair can
be guaranteed, the radius of the cluster created next can be bounded
by the radius of the covering balls. The following lemma will be used
to bound the increase of the cost during a single phase.

Lemma 3.12. Let m ∈N with 2k < m ⩽ |X|. Then,

costrad

(
C⌊ 3m4 ⌋

)
<

(
1+ 6

d

√
2k

m

)
costrad(Cm) + 6

d

√
2k

m
optk .

Proof. Let P = {P1, . . . ,Pk} be an optimal k-center clustering of X. For
each i ∈ {1, . . . ,k} we fix a point yi ∈ Rd such that

Pi ⊂ Boptk(yi).

Furthermore, for any C ∈ Cm let zC ∈ Rd such that

C ⊂ Bcostrad(Cm)(zC).

With τ := optk+ costrad(Cm) it follows that each zC is contained in at
least one of the balls Bτ(yi) for i ∈ {1, . . . ,k} as illustrated in Figure 4.

Applying Lemma 3.3 with λ = 3
d
√
⌊m

2k⌋
yields that each of the balls

Bτ(yi) for i = 1, . . . ,k can be covered by

ℓ :=
⌊m
2k

⌋
⩽ m

2k

balls of radius ε := 3τ
d
√
⌊m

2k⌋
. Therefore, there exist

kℓ ⩽ m

2

centers v1, . . . , vkℓ ∈ Rd such that each zC for C ∈ Cm is contained in
at least one of the balls Bε(v1), . . . , Bε(vkℓ). For i = 1, . . . ,kℓ, we define

Vi := Bcostrad(Cm)+ε(vi).

Then, any cluster C ∈ Cm is contained in at least one of the balls
V1, . . . ,Vkℓ (cf. Figure 5).
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vi ε

costrad(Cm) + ε

zC1
costrad(Cm)

zC2

τ

Figure 5: Covering centers and clusters.

As in the proof of Lemma 3.7 we define t :=
⌊
3m
4

⌋
and deduce |Cm∩

Ct+1| >
m
2

. Since kℓ ⩽ m
2

, there exist two clusters A,B ∈ Cm ∩ Ct+1

that are contained in the same ball Vi with i ∈ {1, . . . ,kℓ}. Therefore,
merging clusters A and B would result in a cluster whose radius can
be upper bounded by

cf. Figure 5rad(A∪B) ⩽ costrad(Cm) + ε.

Using Observation 3.9 and the fact that A and B are part of the clus-
tering Ct+1, we can upper bound the cost of Ct by

costrad(Ct) ⩽ costrad(Cm) + ε.

It remains to show

ε < 6
d

√
2k

m

(
optk+ costrad(Cm)

)
.

However, since m
2k

> 1, it follows m
2k

< 2
⌊
m
2k

⌋
. Thus,

d

√
m

2k
< d

√
2
⌊m
2k

⌋
⩽ 2 d

√⌊m
2k

⌋
and we conclude

3

d

√⌊
m
2k

⌋ < 6
d

√
2k

m
.

To prove Proposition 3.11, we apply Lemma 3.12 for
⌈

log 4
3

|X|
2k

⌉
con-

secutive phases.

Proof of Proposition 3.11. Analogously to the proof of Proposition 3.6,
we define u :=

⌈
log 4

3

|X|
2k

⌉
and mi :=

⌈(
3
4

)i
|X|
⌉

for i = 0, . . . ,u. Then,

mu ⩽ 2k and for i = 0, . . . ,u− 1, mi > 2k and
⌊
3mi

4

⌋
⩽ mi+1. Using

Lemma 3.12, for i = 0, . . . ,u− 1 we deduce

costrad
(
Cmi+1

)
<

(
1+ 6 d

√
2k

mi

)
costrad(Cmi

) + 6 d

√
2k

mi

optk .
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By repeatedly applying this inequality for i = 0, . . . ,u− 1 and using
costrad(C2k) ⩽ costrad(Cmu

) and costrad(Cm0
) = 0, we get

costrad(C2k) <

u−1∑
i=0

6 d

√
2k

mi

u−1∏
j=i+1

(
1+ 6 d

√
2k

mj

)optk .

Using mi ⩾
(
3
4

)i
|X|, we obtain

costrad(C2k)

⩽ 6optk
d

√
2k

|X|
·
u−1∑
i=0

(4

3

) i
d

u−1∏
j=i+1

(
1+ 6 d

√
2k

|X|

(
4

3

) j
d

) .

Substituting u− 1− i for i yields

costrad(C2k)

= 6optk
d

√
2k

|X|

(
4

3

)u−1
d

·
u−1∑
i=0

(3

4

) i
d

u−1∏
j=u−i

(
1+ 6 d

√
2k

|X|

(
4

3

)u−1
d
(
3

4

)u−1−j
d

) .

Using u− 1 < log 4
3

|X|
2k

, we deduce

costrad(C2k) < 6optk ·
u−1∑
i=0

(3

4

) i
d

i−1∏
j=0

(
1+ 6

(
3

4

) j
d

) . (3)

By taking only the first two terms of the series expansion of the expo-

nential function, we get 1+ 6
(
3
4

) j
d < e6(

3
4)

j
d and therefore,

i−1∏
j=0

(
1+ 6

(
3

4

) j
d

)
<

i−1∏
j=0

(
e6(

3
4)

j
d

)
= e6

∑i−1
j=0( 3

4)
j
d . (4)

The sum in the exponent can be bounded by the infinite geometric
series ∞∑

j=0

(
3

4

) j
d

<
1

1−
(
3
4

) 1
d

⩽ 4d. (5)

Here, the last inequality follows by upper bounding the convex func-
tion f(x) =

(
3
4

)x in the interval [0, 1] by the line through f(0) = 1

and f(1) = 3
4

, i. e.,
(
3
4

)x ⩽ 1− x
4

. Putting Inequalities (3), (4) and (5)
together then gives

costrad(C2k) < 6optk ·
u−1∑
i=0

((
3

4

) i
d

e24d

)
< 24d · e24d · optk,

where the last inequality follows by using Inequality (5) again.
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3.3.2 connected subsets

The analysis of the remaining merge steps from the discrete k-center
case (cf. Section 3.2.2) is not transferable to the k-center case. Again,
as in the proof of Proposition 3.11, we are no longer able to derive
a simple additive bound on the increase of the cost when merging
two clusters. In order to preserve the logarithmic dependency of the
approximation factor on k, we show that it is sufficient to analyze
Algorithm 3.2 on a subset Y ⊆ X satisfying a certain connectivity
property. Using this property, we are able to apply a combinatorial
approach that relies on the number of merge steps left.

We start by defining the connectivity property that will be used to
relate clusters to an optimal k-clustering.

Definition 3.13. Let Z ⊆ Rd and r ∈ R. Two sets A,B ⊆ Rd are called
(Z, r)-connected if there exists a point z ∈ Z with

Bd
r (z)∩A ̸= ∅ and Bd

r (z)∩B ̸= ∅.

Note that for any two (Z, r)-connected clusters A,B, we have

rad(A∪B) ⩽ rad(A) + 2 rad(B) + 2r. (6)

To see this, let yRd with A ⊂ Bd
rad(A)(y), xa ∈ Bd

r (z) ∩ A and xb ∈
Bd
r (z) ∩ B. Then, the distance between y and xa is at most radA, the

distance between xa and xb is at most 2r and the distance between xb

and any point x ∈ B is at most 2 rad(B).
Next, we show that for any data set X we can bound the cost of the

k-clustering computed by Algorithm 3.2 by the cost of the ℓ-clustering
computed on a connected subset Y ⊆ X for a proper ℓ ⩽ k.

Lemma 3.14. Let X ⊂ Rd be finite and k ∈ N with k ⩽ |X|. Then, there
exists a subset Y ⊆ X, a number ℓ ∈ N with ℓ ⩽ k and ℓ ⩽ |Y|, and a set
Z ⊂ Rd with |Z| = ℓ such that:

1. Y is (ℓ, optk)-coverable;

2. costrad(Ck) ⩽ costrad(Pℓ);

3. For all n ∈ N with ℓ < n ⩽ |Y|, every cluster in Pn is (Z, optk)-
connected to another cluster in Pn.

Here, the collection P1, . . . ,P|Y| denotes the hierarchical clustering computed
by Algorithm 3.2 on input Y.

Proof. To define Y,Z, and ℓ we consider the (k + 1)-clustering com-
puted by Algorithm 3.2 on input X. We know that X =

∪
A∈Ck+1

A

is (k, optk)-coverable. Let E ⊆ Ck+1 be a minimal subset such that∪
A∈EA is (|E| − 1, optk)-coverable, i. e., for all sets F ⊆ Ck+1 with

|F| < |E| the union
∪

A∈FA is not (|F|− 1, optk)-coverable. Since a set F
of size 1 cannot be (|F|− 1, optk)-coverable, we deduce |E| ⩾ 2.
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analysis of agglomerative clustering

Let Y :=
∪

A∈EA and ℓ := |E| − 1. Then, ℓ ⩽ k and Y is (ℓ, optk)-
coverable. This establishes the first property of the lemma. It follows
that there exists a set Z ⊂ Rd with |Z| = ℓ and Y ⊂

∪
z∈Z Bd

optk
(z).

Since Y is the union of the clusters from E ⊆ Ck+1, each merge
step between the computation of C|X| and Ck+1 merges either two
clusters A,B ⊂ Y or two clusters A,B ⊂ X \ Y. In the following, we
consider the restriction of the clusterings Ck+1, . . . ,C|X| to the input
data set Y ⊂ X. We need to deal with the resulting clusterings as if
they were computed by Algorithm 3.2 on input Y. This is the part
of our analysis where we have to be more precise on the tie-breaking
strategy as briefly mentioned at the beginning of this chapter. If on
input Y, the minimization step of Algorithm 3.2 is not always unam-
biguous, the computed clusterings may differ from the restriction of
Ck+1, . . . ,C|X| to Y. Thus, for the analysis of any fixed run on input X
we simply assume that on input Y Algorithm 3.2 performs the same
sequence of merge steps that ignoring the merge steps inside X \ Y

lead to Ck+1, . . . ,C|X| in the fixed run on input X.

We let P1, . . . ,P|Y| be the hierarchical clustering computed by Algo-
rithm 3.2 on input Y. Then, we have Pℓ+1 = E = Ck+1 ∩ 2Y . Thus,2Y denotes the

power set of Y. Pℓ+1 ⊆ Ck+1. To compute Pℓ, on input Y, Algorithm 3.2 merges two
clusters from Pℓ+1 that minimize the radius of the resulting cluster.
Analogously, on input X, Algorithm 3.2 merges two clusters from
Ck+1 to compute Ck. Since Pℓ+1 ⊆ Ck+1, Observation 3.9 implies
costrad(Ck) ⩽ costrad(Pℓ), thus proving the second property of the
lemma.

It remains to show that for all n ∈ N with ℓ < n ⩽ |Y| it holds
that every cluster in Pn is (Z, optk)-connected to another cluster in
Pn (the third property of the lemma). By the definition of Z, every
cluster in Pn intersects at least one ball Bd

optk
(z) for z ∈ Z. Therefore,

it is enough to show that each ball Bd
optk

(z) intersects at least two
clusters from Pn. We first show this property for n = ℓ+ 1. For ℓ = 1,
this follows from the fact that Bd

optk
(z) with Z = {z} has to contain both

clusters from P2. For ℓ > 1, we would otherwise be able to remove
one cluster from Pℓ+1 and get ℓ clusters whose union is (ℓ− 1, optk)-
coverable. However, this contradicts the definition of E = Pℓ+1 as a
minimal subset with this property.

To show the third property of the lemma for general n, let A ∈
Pn and z ∈ Z with Bd

optk
(z) ∩A ̸= ∅. There exists a unique cluster

Ã ∈ Pℓ+1 with A ⊆ Ã. Then, we have Bd
optk

(z) ∩ Ã ̸= ∅. However, we
have just shown that Bd

optk
(z) has to intersect at least two clusters from

Pℓ+1. Thus, there exists another cluster B̃ ∈ Pℓ+1 with Bd
optk

(z)∩ B̃ ̸= ∅.
Since every cluster from Pℓ+1 is a union of clusters from Pn, there
exists at least one cluster B ∈ Pn with B ⊆ B̃ and Bd

optk
(z)∩B ̸= ∅.
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Figure 6: Merging (Z, optk)-connected clusters.

3.3.3 analysis of the remaining merge steps

Let Y,Z, ℓ, and P1, . . . ,P|Y| be as given by Lemma 3.14. Then, Proposi-
tion 3.11 can be used to obtain an upper bound for the cost of P2ℓ. In
the following, we analyze the merge steps leading from P2ℓ to Pℓ+1

and show how to obtain an upper bound for the cost of Pℓ+1. As
in Section 3.3.1, we analyze the merge steps in phases. The following
lemma is used to bound the increase of the cost during a single phase.
Note that optk still refers to the cost of an optimal solution on input
X, not Y.

Lemma 3.15. Let m,n ∈N with n ⩽ 2ℓ and ℓ < m ⩽ n ⩽ |Y|. If there are
no two (Z, optk)-connected clusters in Pm ∩Pn,

costrad

(
P⌊m+ℓ

2 ⌋
)
⩽ costrad(Pm) + 2 costrad(Pn) + 2optk .

Proof. Analogously to the proof of Lemma 3.8 we define t :=
⌊
m+ℓ
2

⌋
and deduce that there are strictly less than m−ℓ

2
merge steps between

the computations of Pm and Pt+1. We show that there exist at least
m− ℓ disjoint pairs of clusters from Pm such that the radius of their
union can be upper bounded by costrad(Pm) + 2 costrad(Pn) + 2optk.
Then, at least one of these pairs still has to exist in Pt+1 since in each
iteration of its loop the algorithm can destroy at most two of the pairs.
The lemma follows using Observation 3.9 and from the fact that there
is only one merge step left.

To bound the number of the above mentioned cluster pairs, we start
with a structural observation. Pm ∩ Pn is the set of clusters from Pn

that still exist in Pm. By our definition of Y,Z, and ℓ, we conclude that
any cluster A ∈ Pm ∩Pn is (Z, optk)-connected to another cluster B ∈
Pm. If we assume that there are no two (Z, optk)-connected clusters in
Pm ∩ Pn, this implies B ∈ Pm \ Pn (cf. Figure 6). Thus, using A ∈ Pn,
B ∈ Pm, and Inequality (6), the radius of A∪B can be bounded by

rad(A∪B) ⩽ costrad(Pm) + 2 costrad(Pn) + 2optk . (7)

Moreover, using a similar argument, we derive the same bound for
two clusters A1,A2 ∈ Pm∩Pn that are (Z, optk)-connected to the same
cluster B ∈ Pm \ Pn. That is,

rad(A1 ∪A2) ⩽ costrad(Pm) + 2 costrad(Pn) + 2optk . (8)
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Next, we show that there exist at least
⌈
|Pm∩Pn|

2

⌉
disjoint pairs of

clusters from Pm such that the radius of their union can be bounded
either by Inequality (7) or by Inequality (8). To do so, we first consider
the pairs of clusters from Pm ∩Pn that are (Z, optk)-connected to the
same cluster from Pm \ Pn until no candidates are left. For these
pairs, we can bound the radius of their union by Inequality (8). Then,
each cluster from Pm \ Pn is (Z, optk)-connected to at most one of
the remaining clusters from Pm ∩ Pn. Thus, each remaining cluster
A ∈ Pm ∩ Pn can be paired with a different cluster B ∈ Pm \ Pn such
that A and B are (Z, optk)-connected. For these pairs, we can bound
the radius of their union by Inequality (7). Since for all pairs either
one or both of the clusters come from the set Pm ∩ Pn, we can lower
bound the number of pairs by

⌈
|Pm∩Pn|

2

⌉
.

To complete the proof, we show

m− ℓ ⩽
⌈
|Pm ∩Pn|

2

⌉
.

In each iteration of its loop, the algorithm can merge at most two
clusters from Pn. Therefore, there are at least

⌈
n−|Pm∩Pn|

2

⌉
merge

steps between the computations of Pn and Pm. Hence,

m ⩽ n−

⌈
n− |Pm ∩Pn|

2

⌉
⩽ n

2
+

|Pm ∩Pn|

2
.

Using n ⩽ 2ℓ, we deduce

m− ℓ ⩽ |Pm ∩Pn|

2
.

Lemma 3.16. Let n ∈N with n ⩽ 2ℓ and ℓ < n ⩽ |Y|. Then,

costrad(Pℓ+1) < 2
(
log2(ℓ) + 2

) (
costrad(Pn) + optk

)
.

Proof. For n = ℓ + 1 there is nothing to show. Hence, we assume
n > ℓ+ 1. By the definition of Z, there exist two (Z, optk)-connected
clusters in Pn. Let ñ ∈ N with ñ < n be maximal such that no two
(Z, optk)-connected clusters exist in Pñ ∩ Pn. The number ñ is well-
defined since |P1| = 1 implies ñ ⩾ 1. It follows that the same holds for
all m ∈ N with m ⩽ ñ. We conclude that Lemma 3.15 is applicable
for all m ∈N with ℓ < m ⩽ ñ.

By the definition of ñ there still exist at least two (Z, optk)-connect-
ed clusters in Pñ+1 ∩Pn. Then, Observation 3.9 implies

costrad(Pñ) ⩽ 2 costrad(Pn) + optk . (9)

If ñ ⩽ ℓ+ 1, Inequality (9) proves the lemma. For ñ > ℓ+ 1, define
u =

⌈
log2(ñ− ℓ)

⌉
and

mi =

⌈(
1

2

)i

(ñ− ℓ) + ℓ

⌉
> ℓ
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for i = 0, . . . ,u. Then, m0 = ñ and mu = ℓ+ 1. Furthermore,⌊
mi+ℓ

2

⌋
=
⌊
1
2

⌈(
1
2

)i
(ñ− ℓ) + ℓ

⌉
+ ℓ

2

⌋
⩽
⌊
1
2

((
1
2

)i
(ñ− ℓ) + ℓ+ 1

)
+ ℓ

2

⌋
=
⌊(

1
2

)i+1
(ñ− ℓ) + ℓ+ 1

2

⌋
⩽
⌈(

1
2

)i+1
(ñ− ℓ) + ℓ

⌉
= mi+1.

Since Algorithm 3.2 uses a greedy strategy,

costrad
(
Pmi+1

)
⩽ costrad

(
P⌊mi+ℓ

2

⌋)
for i = 0, . . . ,u− 1. Combining this inequality with Lemma 3.15 (ap-
plied to m = mi), we obtain

costrad
(
Pmi+1

)
⩽ costrad(Pmi

) + 2 costrad(Pn) + 2optk .

By repeatedly applying this inequality for i = 0, . . . ,u− 1 and sum-
ming up the costs, we get

costrad(Pmu
) < costrad(Pñ) + 2u ·

(
costrad(Pn) + optk

)
(9)
< 2(u+ 1) ·

(
costrad(Pn) + optk

)
.

Since ñ < 2ℓ, we get u < log2(ℓ) + 1 and the lemma follows using
mu = ℓ+ 1.

The following lemma finishes the analysis except for the last merge
step.

Lemma 3.17. Let Y ⊂ Rd be finite and ℓ ⩽ |Y| such that Y is (ℓ, optk)-cov-
erable. Furthermore, let Z ⊂ Rd with |Z| = ℓ such that for all n ∈ N with
ℓ+ 1 ⩽ n ⩽ |Y|, every cluster in Pn is (Z, optk)-connected to another cluster
in Pn, where P1, . . . ,P|Y| denotes the hierarchical clustering computed by
Algorithm 3.2 on input Y. Then,

costrad(Pℓ+1) < 2(log2(ℓ) + 2) ·
(
24d · e24d + 1

)
· optk .

Proof. Let n := min(|Y|, 2ℓ). Then, using Proposition 3.11,

costrad(Pn) < 24d · e24d · optk .

The result follows by using this bound together with Lemma 3.16.

3.3.4 proof of theorem 3.10

By Lemma 3.14, there exists a subset Y ⊆ X, a number ℓ ⩽ k, and a
hierarchical clustering P1, . . . ,P|Y| of Y with

costrad(Ck) ⩽ costrad(Pℓ) .

Furthermore, there exists a set Z ⊂ Rd such that every cluster from
Pℓ+1 is (Z, optk)-connected to another cluster in Pℓ+1. Thus, Pℓ+1

contains two clusters A,B that intersect the same ball of radius optk.
Hence,

costrad(Ck) ⩽ rad(A∪B) ⩽ 2 costrad(Pℓ+1) + optk .

The theorem follows using Lemma 3.17 and ℓ ⩽ k.
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Algorithm 3.3: AgglomerativeCompleteLinkage(X)

Input: finite set of input points X ⊂ Rd

C|X| ←− { {x} | x ∈ X}

for i = |X|− 1, . . . , 1 do
find distinct clusters A,B ∈ Ci+1 minimizing diam(A∪B)
Ci ←− (Ci+1 \ {A,B}) ∪ {A∪B}

end
return C|X|, . . . ,C1

3.4 diameter k-clustering

In this section, we analyze the agglomerative complete linkage clus-
tering algorithm for Problem 2.7 stated as Algorithm 3.3. Again, the
only difference to Algorithm 3.1 and Algorithm 3.2 is the minimiza-
tion of the diameter in the minimization step.

Note that in this section cost always means diameter cost and optk
refers to the cost of an optimal diameter k-clustering of X ⊂ Rd where
k ∈ N with k ⩽ |X|. That is, optk denotes the cost of an optimal
solution to Problem 2.7. Analogously to the (discrete) radius case,
any cluster C is contained in a ball of radius diam(C) and thus, the
set X is (k, optk)-coverable.

Observation 3.18. The cost of all computed clusterings is equal to the di-This is analogous to
Observation 3.4 and

Observation 3.9.
ameter of the cluster created last. Furthermore, the diameter of the union of
any two clusters is always an upper bound for the cost of the clustering to
be computed next.

The following theorem states our main result.

Theorem 3.19. Let X ⊂ Rd be a finite set of points. Then, for arbitrary
metrics that are based on a norm and for all k ∈N with k ⩽ |X|, the partition
Ck of X into k clusters as computed by Algorithm 3.3 satisfies

costdiam(Ck) = O(log k) · optk,

where optk denotes the cost of an optimal solution to Problem 2.7, and the
constant hidden in the O-notation is doubly exponential in the dimension d.

As in the proof of Theorem 3.5 and Theorem 3.10, we first bound
the cost of the intermediate 2k-clustering. However, we have to apply
a different analysis again. This time, the new analysis results in a
bound that depends doubly exponential on the dimension.

3.4.1 analysis of the 2k-clustering

Proposition 3.20. Let X ⊂ Rd be finite. Then, for all k ∈N with 2k ⩽ |X|,
the partition C2k of X into 2k clusters as computed by Algorithm 3.3 satisfies

costdiam(C2k) < 23σ (28d+ 6) · optk,
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3.4 diameter k-clustering

where σ = (42d)d and optk denotes the cost of an optimal solution to Prob-
lem 2.7.

In our analysis of the k-center problem, we made use of the fact
that merging two clusters lying inside a ball of some radius r results
in a new cluster of radius at most r. This is no longer true for the
diameter k-clustering problem. We are not able to derive a bound for
the diameter of the new cluster that is significantly less than 2r. The
additional factor of 2 makes our analysis from Section 3.3.1 useless
for the diameter case since it would result in an approximation factor
that is linear in the size of X rather than only depending on k and d.

To prove Proposition 3.20, we split the merge steps of Algorithm 3.3
into two stages. The first stage consists of the merge steps down to
a
(
22

O(d logd)
k
)

-clustering. The analysis of the first stage is based on
the following notion of similarity. Two clusters are called similar if
one cluster can be translated such that every point of the translated
cluster is near a point of the second cluster. Then, by merging sim-
ilar clusters, the diameter essentially increases by the length of the
translation vector. During the first stage, we guarantee that there is a
sufficiently large number of similar clusters left. The cost of the inter-
mediate

(
22

O(d logd)
k
)

-clustering can be upper bounded by O(d) · optk.
The second stage consists of the steps reducing the number of re-

maining clusters from 22
O(d logd)

k to only 2k. Since the number of
remaining merge steps as well as the upper bound of the cost are in-
dependent of ∥X∥, we are able to show an approximation factor that
only depends on k and d. In this stage, we are no longer able to
guarantee that a sufficiently large number of similar clusters exists.
Therefore, we analyze the merge steps of the second stage using a
weaker argument, very similar to the one used in the second step of
the analysis in the discrete k-center case (cf. Section 3.2.2). As long
as there are more than 2k clusters left, we are able to find sufficiently
many pairs of clusters that intersect the same cluster of an optimal
k-clustering. Therefore, we can bound the cost of merging such a
pair by the sum of the diameters of the two clusters plus the diame-
ter of the optimal cluster. We show that the cost of the intermediate
2k-clustering is upper bounded by 22

O(d logd) · optk. Let us remark that
we do not obtain our main result if we already use this argument for
the first stage.

Both stages are again subdivided into phases, such that in each
phase the number of remaining clusters is reduced by one fourth.

stage one

The following lemma will be used to bound the increase of the cost
during a single phase of the first stage.
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analysis of agglomerative clustering

Lemma 3.21. Let λ ∈ R with 0 < λ < 1 and ρ =
⌈(

3
λ

)d⌉. Furthermore, let
m ∈N with 2ρ+1k < m ⩽ |X|. Then,

costdiam

(
C⌊ 3m4 ⌋

)
⩽ (1+ 2λ) costdiam(Cm) + 4

d

√
2ρ+1k

m
optk . (10)

Proof. Let τ := costdiam(Cm). From every cluster C ∈ Cm, we fix an
arbitrary point and denote it by pC. Then, the distance from pC to
any q ∈ C is at most τ and

C− pC := {p− pC p ∈ C} ⊂ Bd
τ (0).

By Lemma 3.3, a ball of radius τ can be covered by ρ balls of radius
λτ. Hence, we are able to fix y1, . . . ,yρ ∈ Rd with

Bd
τ (0) ⊆

ρ∪
i=1

Bd
λτ(yi).

For C ∈ Cm, we define the configuration of C by

Conf(C) :=
{
yi | 1 ⩽ i ⩽ ρ and Bd

λτ(yi)∩ (C− pC) ̸= ∅
}

.

That is, we identify each cluster C ∈ Cm with the subset of the balls
Bd
λτ(y1), . . . , Bd

λτ(yρ) that intersect C− pC. Note that no cluster from
C ∈ Cm has an empty configuration and the number of possible con-
figurations is upper bounded by 2ρ.

As in the proof of Lemma 3.7 we define t :=
⌊
3m
4

⌋
and deduce

|Cm ∩ Ct+1| >
m
2

. It follows that there exist

j >
1

2ρ
· m
2

=
m

2ρ+1

distinct clusters C1, . . . ,Cj ∈ Cm ∩ Ct+1 with the same configuration.
Using m > 2ρ+1k, we deduce j > k.

Let P := {pC1
, . . . ,pCj

}. Since X is (k, optk)-coverable, so is P ⊂ X.
Therefore, by Lemma 3.2, there exist distinct a,b ∈ {1, . . . , j} such that

∥pCa
− pCb

∥ ⩽ 4
d

√
2ρ+1k

m
optk .

Next, we derive a bound for the diameter of the union of the corre-
sponding clusters Ca and Cb. That is, we need to bound the largest
distance ∥u− v∥ between two points u, v ∈ Ca ∪ Cb. If u, v ∈ Ca or
u, v ∈ Cb, then ∥u− v∥ ⩽ costdiam(Cm). Hence, let u ∈ Ca and v ∈ Cb.
Using the triangle inequality, for any w ∈ Rd,

cf. Figure 7 ∥u− v∥ ⩽ ∥pCa
− pCb

∥+ ∥u+ pCb
− pCa

−w∥+ ∥w− v∥.

For ∥pCa
− pCb

∥, we already derived an upper bound. To bound
∥u+ pCb

− pCa
−w∥, let y ∈ Conf(Ca) = Conf(Cb) such that

u− pCa
∈ Bd

λτ(y).
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pCa

u

pCb

w

v

∥pCa
− pCb

∥

∥u+ pCb
− pCa

−w∥

∥w
− v∥

Figure 7: Congruent configurations.

Furthermore, let w ∈ Cb with

w− pCb
∈ Bd

λτ(y).

Then,

∥u+ pCb
− pCa

−w∥ = ∥u− pCa
− (w− pCb

)∥
⩽ 2λ · costdiam(Cm)

= 2λτ.

Since v,w ∈ Cb, their distance is bounded by

∥w− v∥ ⩽ diam(Cb) ⩽ costdiam(Cm) .

We conclude that merging the clusters Ca and Cb results in a cluster
whose diameter can be upper bounded by

diam(Ca ∪Cb) ⩽ (1+ 2λ) costdiam(Cm) + 4
d

√
2ρ+1k

m
optk .

Using Observation 3.18 and the fact that Ca and Cb are part of the
clustering Ct+1, we can upper bound the cost of Ct by

costdiam(Ct) ⩽ diam (Ca ∪Cb) .

Note that the parameter λ from Lemma 3.21 establishes a trade-
off between the two terms on the right-hand side of Inequality (10).
For the analysis of the first stage, we have to choose λ carefully.
In the proof of the following lemma, we use λ = ln 4

3/4d and apply
Lemma 3.21 for

⌈
log 4

3

|X|

2σ+1k

⌉
consecutive phases, where σ = (42d)d.

Then, we are able to upper bound the cost of the clustering computed
after the first stage by a term that is linear in d and optk and indepen-
dent of |X| and k. The number of remaining clusters is independent
of the number of input points |X| and depends only on the dimension
d and the desired number of clusters k.
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analysis of agglomerative clustering

Lemma 3.22. Let 2σ+1k < |X| for σ = (42d)d. Then, on input X, Algo-
rithm 3.3 computes a clustering C2σ+1k with

costdiam(C2σ+1k) < (28d+ 4)optk .

Proof. Let u :=
⌈

log 3
4

2σ+1k
|X|

⌉
and define mi :=

⌈(
3
4

)i
|X|
⌉

for i = 0, . . . ,u.
Furthermore, let λ := ln 4

3/4d. This implies ρ ⩽ σ for the parameter ρ

of Lemma 3.21. Then, mu ⩽ 2σ+1k and mi > 2σ+1k ⩾ 2ρ+1k for
i = 0, . . . ,u− 1. Since⌊

3mi

4

⌋
=
⌊
3
4

⌈(
3
4

)i
|X|
⌉⌋

⩽
⌊(

3
4

)i+1
|X|+ 3

4

⌋
⩽
⌈(

3
4

)i+1
|X|
⌉
= mi+1

and Algorithm 3.3 uses a greedy strategy,

costdiam
(
Cmi+1

)
⩽ costdiam

(
C⌊ 3mi

4

⌋)
for i = 0, . . . ,u− 1. Combining this inequality with Lemma 3.21 (ap-
plied to m = mi), we obtain

costdiam
(
Cmi+1

)
⩽ (1+ 2λ) costdiam(Cmi

) + 4
d

√
2ρ+1k

mi

optk .

By repeatedly applying this inequality for i = 0, . . . ,u− 1 and using
costdiam(C2σ+1k) ⩽ costdiam(Cmu

) and costdiam(Cm0
) = 0, we get

costdiam(C2σ+1k) ⩽
u−1∑
i=0

(1+ 2λ)i · 4 d

√√√√ 2σ+1k(
3
4

)u−1−i
|X|

optk


= 4 d

√√√√ 2σ+1k(
3
4

)u−1
|X|

optk ·
u−1∑
i=0

(1+ 2λ)i · d

√(
3

4

)i

 .

Using u− 1 < log 3
4

2σ+1k
|X|

,

costdiam(C2σ+1k) < 4optk ·
u−1∑
i=0

1+ 2λ

d

√
4
3

i

. (11)

By taking only the first two terms of the series expansion of the expo-

nential function, we get 1+ 2λ = 1+
ln 4

3

2d
< e

ln 4
3

2d = 2d

√
4
3

. Substituting
this bound into Inequality (11) and extending the sum yields

costdiam(C2σ+1k) < 4optk ·
∞∑
i=0

 1

2d

√
4
3

i

< 4optk ·
∞∑
i=0

(
1

1+ 2λ

)i

.

Solving the geometric series leads to

costdiam(C2σ+1k) < 4

(
1

2λ
+ 1

)
· optk < (28d+ 4) · optk .
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r
A B

diam(A)

diam(B)

diam(A∪B)

Figure 8: Merging two clusters intersecting a ball of radius r.

stage two

The second stage covers the remaining merge steps until Algorithm 3.3
computes the clustering C2k. However, compared to stage one, the
analysis of a single phase yields a weaker bound. The following
lemma provides an analysis of a single phase of the second stage.
It is very similar to Lemma 3.7 and Lemma 3.8 in the analysis of the
discrete k-center problem.

Lemma 3.23. Let m ∈N with 2k < m ⩽ |X|. Then,

costdiam

(
C⌊ 3m4 ⌋

)
⩽ 2 ·

(
costdiam(Cm) + optk

)
.

Proof. As in the proof of Lemma 3.7, we define t :=
⌊
3m
4

⌋
and deduce

|Cm ∩Ct+1| >
m
2

> k. Since X is (k, optk)-coverable, there exists a point
y ∈ Rd such that Bd

optk
(y) intersects two clusters A,B ∈ Cm ∩ Ct+1.

We conclude that merging A and B would result in a cluster whose
diameter can be upper bounded by

cf. Figure 8diam(A∪B) ⩽ 2 costdiam(Cm) + 2optk .

The result follows using A,B ∈ Ct+1 and Observation 3.18.

Lemma 3.24. Let n ∈N with n ⩽ 2σ+1k and 2k < n ⩽ |X| for σ = (42d)d.
Then, on input X, Algorithm 3.3 computes a clustering C2k with

costdiam(C2k) < 23σ
(
costdiam(Cn) + 2optk

)
.

Proof. Let u :=
⌈

log 3
4

2k
n

⌉
and define mi :=

⌈(
3
4

)i
n
⌉

for i = 0, . . . ,u.
Then, mu ⩽ 2k and mi > 2k for i = 0, . . . ,u− 1. Analogously to the
proof of Lemma 3.22, we get

⌊
3mi

4

⌋
⩽ mi+1 and using Lemma 3.23,

costdiam
(
Cmi+1

)
⩽ 2

(
costdiam(Cmi

) + optk
)

for i = 0, . . . ,u − 1. By repeatedly applying this inequality for i =

0, . . . ,u− 1 and using costdiam(C2k) ⩽ costdiam(Cmu
), we get

costdiam(C2k) ⩽ 2u costdiam(Cn) +

u∑
i=1

2i optk

< 2u
(
costdiam(Cn) + 2optk

)
.

Hence using u ⩽
⌈

log 4
3
2σ
⌉
< 3σ, the result follows.
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analysis of agglomerative clustering

Proof of Proposition 3.20. The Proposition follows immediately by com-
bining Lemma 3.22 and Lemma 3.24.

3.4.2 analysis of the remaining merge steps

We analyze the remaining merge steps analogously to the k-center
problem. Therefore, in this section we only discuss the differences,
most of which are slightly modified bounds for the cost of merging
two clusters.

The connectivity property from Section 3.3.2 remains the same.
However, for any two (Z, r)-connected clusters A,B, we use

cf. Figure 8 diam(A∪B) ⩽ diam(A) + diam(B) + 2r (12)

as a replacement for Inequality (6). Furthermore, Lemma 3.14 also
holds for the diameter k-clustering problem, i. e., with

costdiam(Ck) ⩽ costdiam(Pℓ) .

Using Inequality (12) in the proof of Lemma 3.15, we get

diam(A∪B) ⩽ costdiam(Pm) + costdiam(Pn) + 2optk

as a replacement for Inequality (7) while Inequality (8) can be re-
placed by

diam(A1 ∪A2) ⩽ costdiam(Pm) + 2(costdiam(Pn) + 2optk).

That is, for the diameter k-clustering problem the two upper bounds
are different. However, the second one is larger than the first one.
Using it in both cases, the inequality stated in Lemma 3.15 changes
slightly to

costdiam

(
P⌊m+ℓ

2 ⌋
)
⩽ costdiam(Pm) + 2

(
costdiam(Pn) + 2optk

)
.

Together with costdiam(Pñ) ⩽ 2 costdiam(Pn) + 2optk as a replacement
for Inequality (9), the bound stated in Lemma 3.16 becomes

costdiam(Pℓ+1) < 2
(
log2(ℓ) + 2

) (
costdiam(Pn) + 2optk

)
.

Thus, using Proposition 3.20, the upper bound for the cost of the
(ℓ+ 1)-clustering of Y stated in Lemma 3.17 becomes

costdiam(Pℓ+1) < 2
(
log2(ℓ) + 2

) (
23σ (28d+ 6) + 2

)
· optk

for σ = (42d)d. Analogously to Section 3.3.4, this proves Theorem 3.19.
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3.5 the one-dimensional case

3.5 the one-dimensional case

For d = 1, we are able to show that Algorithm 3.3 computes an ap-
proximation to the diameter k-clustering problem (Problem 2.7) with
an approximation factor of at most 3. We even know that for any
data set X ⊂ R the approximation factor of the computed solution is
strictly below 3. However, we do not show an approximation factor
of 3− ϵ for some ϵ > 0. The proof of this upper bound makes use of
the total order of the real numbers and is certainly not generalizable
to higher dimensions.

Theorem 3.25. Let d = 1. Then, Algorithm 3.3 gives a solution to the
diameter k-clustering problem (Problem 2.7) with cost less than three times
the cost of an optimal solution.

For any set C ⊂ R it holds that diam(C) = 2 rad(C). That is, in the
one-dimensional case, the diameter and the radius of a cluster differ
by a constant factor. Thus, for any two clusters A and B,

diam(A) < diam(B) ⇔ rad(A) < rad(B).

It follows that Algorithm 3.3 and Algorithm 3.2 choose the same clus- We assume that
there are no ties.ters in the merge step and we immediately get the following corollary.

Corollary 3.26. Let d = 1. Then, Algorithm 3.2 gives a solution to the
k-center problem (Problem 2.8) with cost less than three times the cost of an
optimal solution.

Before proving Theorem 3.25, we discuss some features of one-
dimensional clusterings and introduce a suitable terminology. Af-
terwards, we formulate the central argument used in the proof of
Theorem 3.25 as a separate lemma.

In the following, we consider solely clusterings of the finite input
data set X ⊂ R. Since Algorithm 3.3 uses a greedy strategy to choose
the clusters to be merged, it merges only clusters whose points lie
directly next to each other. That is, the created clusters are cohesive
in the sense that they contain all points of X that lie between their
smallest and their largest point. Without loss of generality, we may
assume that the same holds for the clusters of an optimal solution.
Obviously, any clustering can be transformed to have this property
without changing the largest diameter. It follows that all considered
clusters are uniquely determined by their smallest and their largest
point. Therefore, in the figures of this section, clusters are depicted by
line segments between their smallest and their largest point. We call
the smallest point of a cluster its left boundary and the largest point its
right boundary.

We start with considering the relative position of two clusters A,B ⊂
X from possibly different clusterings of X ⊂ R. We say that A lies in-
side of B, if A ⊂ B. Furthermore, A lies to the left of B if the right bound-
ary of A is strictly less than the left boundary of B, i. e., maxx∈A x <
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minx∈B x. Analogously, A lies to the right of B, if maxx∈B x < minx∈A x.
For two distinct clusters A,B from the same clustering C, it follows
that A lies either to the left or to the right of B. We say that such
clusters A and B are neighboring if no further cluster C ∈ C lies in
between. A set of n > 2 clusters from the same clustering C is called
neighboring if the clusters can be denoted as C1, . . . ,Cn such that for
i = 1, . . . ,n − 1, the clusters Ci and Ci+1 are neighboring. For two
neighboring clusters A,B with A lying to the left of B, we define the
gap between A and B as the open interval between the right bound-
ary of A and the left boundary of B. It follows that a gap contains
no elements from X. Furthermore, for two clusters A,B from different
clusterings we define A to be left aligned to B, if A and B share their left
boundary, i. e., minx∈A x = minx∈B. Analogously, A is right aligned
to B, if maxx∈A x = maxx∈B x. If it is clear from the context or if it is
irrelevant which cluster a cluster A is aligned to, we simply say A is
left (or right) aligned.

For the remainder of this section, we fix an optimal diameter k-
clustering S of X. That is, S is an optimal solution to Problem 2.7
for d = 1. Without loss of generality, we assume S = {S1, . . . ,Sk}
with Si lying to the left of Si+1 for i = 1, . . . , k − 1. Furthermore,
we denote the hierarchical clusterings computed by Algorithm 3.3 on
input X by C|X|, . . . ,C1. For our line of reasoning, we focus on two
particular clusterings Cℓ and Cm with ℓ ⩽ m. Let m ∈ N be theThe smaller the

index, the later the
clustering is

computed.

smallest index, such that all clusters of Cm have a diameter of at most
optk and let ℓ ∈ N be the smallest index, such that all clusters of Cℓ

have a diameter strictly less than 3 · optk. Since Algorithm 3.3 uses
a greedy strategy, it is sufficient to show that ℓ is at most k to prove
Theorem 3.25. To do this, we use the following technical lemma.

Lemma 3.27. Let P ⊂ S be a set of neighboring clusters from the optimal
solution S with the following properties:

1. Gaps between neighboring clusters from P have length at most optk.

2. The rightmost cluster of P is right aligned to a cluster C ∈ Cm and it
is the only one with this property.

Furthermore, let L ⊂ Cℓ be such that:

3. For each cluster C ∈ L, the left boundary of C is contained in one of
the clusters from P.

4. The left boundary of the leftmost cluster of L is contained in the left-
most cluster of P.

Then, it holds that |L| ⩽ |P|.

Proof. We prove the lemma by induction over the size of P with two
base cases. First, let |P| = 1. We denote P = {P} and assume |L| ⩾ 2 for
contradiction. By definition, each cluster from L is the union of one or
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P ⊂ S
P

L ⊂ Cℓ

Cm
A B

(a) Sketch of contradiction for |P| = 1.

P ⊂ S
P1 P2

L ⊂ Cℓ
A B C

(b) Sketch of contradiction for |P| = 2.

Figure 9: The two base cases of the induction.

more clusters from Cm as illustrated in Figure 9a. It follows that there
exist at least two clusters A,B ∈ Cm such that their left boundaries are
contained in the single cluster P. Then, the right boundaries of A and
B also have to be contained in P. Otherwise, there could not exist a
cluster C ∈ Cm that is right aligned to P as required for the second
property. It follows that A and B both lie inside of P which has a
diameter of at most optk. That is, the union of A and B would have
a diameter of at most optk, too. Thus, Algorithm 3.3 would have
created a clustering Cm−1 with cost of at most optk. However, this
contradicts the definition of m.

Second, let |P| = 2, denote P = {P1,P2} with P1 lying to the left of P2
and assume |L| ⩾ 3 for contradiction. Let C ∈ L be the rightmost clus-
ter of L and recall that the gap between the two neighboring clusters
P1 and P2 contains no points from X. It follows that there have to ex-
ist at least two clusters A,B ∈ L to the left of C, which both lie inside
P1 ∪ P2 (cf. Figure 9b). Furthermore, the right boundaries of A and
B have to be strictly less than the right boundary of P2. Otherwise,
the left boundary of C could not be contained in one of the clusters
of P as required in the third property. Using the first property, it fol-
lows that the union of A and B has a diameter of strictly less than
3 · optk. However, analogously to the first base case, this contradicts
the definition of ℓ.

Finally, for the inductive step, let |P| ⩾ 3 and assume that for any
two sets P ′ and L ′ as defined in the lemma but with |P ′| < |P|, it
holds that |L ′| ⩽ |P ′|. Let P1,P2 ∈ P be the two leftmost clusters of
P with P1 lying to the left of P2. Furthermore, let A,B,C ∈ L be For |L| < 3, there is

nothing to show.the three leftmost clusters of L ⊂ Cℓ ordered from left to right as
illustrated in Figure 10. Every cluster in Cℓ is the union of one or
more clusters from Cm. Thus, the second property yields that the
rightmost cluster of P is the only cluster from P that may be right
aligned to a cluster from Cℓ. However, this cluster from Cℓ can not
be the cluster B, since to the right of B there has to be room for the
cluster C. It follows that B is not right aligned to a cluster from P.
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P1 P2 P
P ⊂ S

L ⊂ Cℓ

A B C

Figure 10: The inductive step.

S

P1︷ ︸︸ ︷ P2︷ ︸︸ ︷ . . . Pt︷ ︸︸ ︷
Cm

Figure 11: Partition of the optimal solution.

The definition of ℓ yields diam(A∪B) ⩾ 3 · optk and the first property
provides diam(P1 ∪ P2) ⩽ 3 · optk. Since B can not be right aligned to
P2, the right boundary of B and the left boundary of C both have to
be contained in a cluster P ∈ P that lies to the right of P2.

We define a new set P ′ by removing all clusters from P that lie
to the left of P. It follows that |P ′| ⩽ |P|− 2. Furthermore, we define
L ′ := L\ {A,B}. Then, all four properties of P and L as required by the
lemma are also satisfied by P ′ and L ′. Using the inductive hypothesis
|L ′| ⩽ |P ′|, we conclude

|L| = |L ′|+ 2 ⩽ |P ′|+ 2 ⩽ |P|.

Proof of Theorem 3.25. In the following, we denote Cm = {C1, . . . ,Cm}

with Ci lying to the left of Ci+1 for i = 1, . . . ,m− 1. Since S and Cm

are clusterings of the same set X, it follows that C1 is left aligned to S1

and Cm is right aligned to Sk. Furthermore, it follows that if for any
1 ⩽ i ⩽ m− 1 and 1 ⩽ j ⩽ k− 1 the cluster Ci is right aligned to the
cluster Sj, then Ci+1 has to be left aligned to Sj+1 (cf. Figure 11). That
is, Cm and S have a common gap between the neighboring clusters
Ci,Ci+1 and Sj,Sj+1, respectively. We use these common gaps of Cm

and S to define a partition P1, . . . ,Pt of the optimal solution S. Let
t ∈ N be the number of clusters in S that are left aligned to a cluster
of Cm (which is also the number of right aligned clusters). Then, for
i = 1, . . . , t let Li be the i-th cluster of S (counted from the left) that
is left aligned to a cluster of Cm and let Ri be the i-th right aligned
cluster. Using Li and Ri, we define Pi to be the set of neighboring
clusters of S from Li to Ri.

Based on the partition P1, . . . ,Pt of S we define a partition of Cℓ.
To this, for each i ∈ {1, . . . , t}, we pick all clusters from Cℓ whose left
boundary is contained in a cluster from Pi. This results in a partition
L1, . . . ,Lt of Cℓ with

Li :=

{
C ∈ Cℓ

(
min
x∈C

x

)
∈ P for a cluster P ∈ Pi

}
.
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3.6 lower bounds

Then, for each i = 1, . . . , t, the sets Pi and Li satisfy the first three
properties required in Lemma 3.27 for the sets P and L. In order to
also satisfy the fourth property, we need to modify the sets P1, . . . ,Pt

slightly. To this, for each i = 1, . . . , t, we define P∗
i by removing the

leftmost clusters from Pi that do not contain the left boundary of a
cluster C ∈ Li. Then, we are able to apply Lemma 3.27 with P = P∗

i

and L = Li for i = 1, . . . , t. Using |P∗
i | ⩽ |Pi|, it follows that |Li| ⩽ |Pi|.

Since, P1, . . . ,Pt and L1, . . . ,Lt are partitions of S and Cℓ, respectively,

ℓ =

t∑
i=1

|Li| ⩽
t∑

i=1

|Pi| = k.

As mentioned above, this proves the theorem.

3.6 lower bounds

In this section, we present constructions of several data sets for the
diameter k-clustering problem. The data sets yield lower bounds for
the approximation factor of Algorithm 3.3. Some of the data sets
are also suitable to prove lower bounds for Algorithm 3.2 and Algo-
rithm 3.1 for the k-center problem and the discrete k-center problem,
respectively. To keep the constructions simple, we make use of the
fact that we presented the clustering algorithms without a particular
tie-breaking strategy. That is, whenever one of the algorithms is able
to choose between several possible merge steps, we simply assume
that we can govern its choice.

In Section 3.6.1, we show that for data sets X ⊂ R (i. e., d = 1), Algo-
rithm 3.3 has an approximation factor of at least 2.5. Recall that in in
Section 3.5 we stated that in the one-dimensional case Algorithm 3.3
computes a solution to the diameter k-clustering problem with an
approximation factor strictly below 3. Hence, for d = 1, we obtain
almost matching upper and lower bounds for the cost of the solution
computed by Algorithm 3.3. The same holds for Algorithm 3.2 and
the k-center problem since for d = 1 the two problems as well as the
two algorithms are equivalent.

In Section 3.6.2, we show that the dimension d has an impact on
the approximation factor of Algorithm 3.3. This follows from a two-
dimensional data set yielding a lower bound of 3 for the metric based
on the L∞-norm. Note that this exceeds the upper bound from the
one-dimensional case.

In Section 3.6.4, we show that there exist data sets such that Al-
gorithm 3.3 computes an approximation to the diameter k-clustering
problem (Problem 2.7) with an approximation factor of Ω( p

√
log k) for

metrics based on an Lp-norm (1 ⩽ p < ∞) and Ω(logk) for the met-
ric based on the L∞-norm. In case of the L1- and the L∞-norm, this
matches an already known lower bound that has been shown using
a rather artificial metric [Dasgupta and Long, 2005]. However, the
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analysis of agglomerative clustering

bound in [Dasgupta and Long, 2005] is derived from a two-dimen-
sional data set, while the dimension of our construction depends on
the number of clusters k.

Finally, in Section 3.6.4, we show that the lower bound of Ω( p
√

logk)

for any Lp-norm and Ω(logk) for the L∞-norm can be adapted to the
discrete k-center problem. In case of the L2-norm, we thus obtain al-
most matching upper and lower bounds for the cost of the solution
computed by Algorithm 3.1. Furthermore, we are able to restrict the
dependency of the approximation factor of Algorithm 3.1 on d and k.

3.6.1 arbitrary metrics and d = 1

We first show a lower bound for the approximation factor of Algo-
rithm 3.3. To do this, we use a sequence of data sets from Rd with
d = 1. Since up to normalization there is only one norm for d = 1,
without loss of generality we assume the Euclidean metric.

Proposition 3.28. For all ε > 0 and k ⩾ 4 there exists a data set X ⊂ R

such that Algorithm 3.3 computes a solution to the diameter k-clustering
problem (Problem 2.7) with cost at least 5

2
− ε times the cost of an optimal

solution.

Proof. It is sufficient to consider the case k = 4. The construction can
easily be extended to k > 4 by adding separated dummy points. In
the following we construct a data set for any fixed n ∈ N. That is,
we actually obtain a series of data sets. For any n ∈N we show that
the computed solution has an approximation factor of 5

2
− f(n) for

f(n) > 0 and limn→∞ f(n) = 0.
For x ∈ R, let

V(x) := {x+ i | i ∈N and 0 ⩽ i ⩽ 2n − 1}.

That is, V(x) consists of 2n equidistant points, where the distance be-
tween neighboring points is 1 and diam(V(x)) = 2n − 1. Furthermore,
we define

l(x) := x− 2n−1,

r(x) := x+ 2n − 1+ 2n−1 = x+ 3 · 2n−1 − 1,

W(x) := V(x)∪ {l(x), r(x)}.

It follows that diam(W(x)) = 2n+1 − 1 as shown in Figure 12.
Based on the sets W(x), we define

X :=

4∪
i=1

W(xi)

where xi := i · (7 · 2n−1 − 2) for i = 1, . . . , 4. Then, there is a gap of
3 · 2n−1 − 1 between Wn(xi) and Wn(xi+1), i.e.

diam ({r(xi), l(xi+1)}) = 3 · 2n−1 − 1 for i = 1, . . . , 3. (13)
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l(x) x r(x)

2n − 1
2n−1 2n−1

Figure 12: Sketch of the set W(x).

l(xi) r(xi)

2n − 1
2n−12n − 1

Figure 13: Part of the dendrogram for W(xi).

The optimal 4-clustering of X is

C
opt
4 = {W(x1),W(x2),W(x3),W(x4)}

and costdiam

(
C
opt
4

)
= 2n+1 − 1.

The solution computed by Algorithm 3.3 may have larger cost. At
the beginning, the minimum distance between two points from X is 1.
The possible pairs of points with distance 1 come from the sets V(xi)

for i = 1, . . . , 4. Since the distance between V(xi) and l(xi) or r(xi)

is 2n−1, we can assume that the algorithm merges all points of V(xi)
for i = 1, . . . , 4 as shown in Figure 13. It follows that Algorithm 3.3
computes the 12-clustering

C12 =
{
{l(x1)},V(x1), {r(x1)},

{l(x2)},V(x2), {r(x2)},

{l(x3)},V(x3), {r(x3)},

{l(x4)},V(x4), {r(x4)}
}

.

For i = 1, . . . , 4, the diameters of {l(xi)} ∪ V(xi) and V(xi) ∪ {r(xi)}

are equal to 3 · 2n−1 − 1 and these are the best possible merge steps.
Therefore, by (13), we can assume that Algorithm 3.3 merges r(xi)

and l(xi+1) for i = 1, . . . , 3 first. This results in the 7-clustering

C7 =
{
{l(x1)}∪ V(x1),
{r(x1), l(x2)},V(x2),

{r(x2), l(x3)},V(x3),

{r(x3), l(x4)},V(x4)∪ {r(x4)}
}

where V(x2) and V(x3) have a diameter of 2n − 1 while the remaining
clusters have a diameter of 3 · 2n−1 − 1 (see Figure 14). Between two
neighboring clusters of C7, there is a gap of 2n−1.

In the next step of Algorithm 3.3, the best possible choice is to
merge {r(x1), l(x2)} with V(x2), {r(x2), l(x3)} with V(x2) or V(x3), or
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C1 C2 C3 C4

5·2n−3 3·2n−1−1 3·2n−2 3·2n−1−1

Figure 14: Part of the dendrogram for X.

{r(x3), l(x4)} with V(x3). We let the algorithm merge {r(x1), l(x2)} with
V(x2) and {r(x3), l(x4)} with V(x3). This results in a 5-clustering where
the clusters have alternating lengths of 3 · 2n−1 − 1 and 3 · 2n − 2 with
gaps of 2n−1 between them. Then, in the step resulting in C4, Algo-
rithm 3.3 has to create a cluster of diameter 5 · 2n − 3 as shown in
Figure 14. Therefore, the computed solution has an approximation
factor of

costdiam(C4)

costdiam

(
C
opt
4

) =
5 · 2n − 3

2n+1 − 1
.

For n going to infinity this approximation factor converges from be-
low to 5

2
.

Analogously to Section 3.5, the bound for the one-dimensional di-
ameter k-clustering problem immediately yields the same bound for
the one-dimensional k-center problem.

Corollary 3.29. For all ε > 0 and k ⩾ 4 there exists a data set X ⊂ R such
that Algorithm 3.2 computes a solution to the k-center problem (Problem 2.8)
with cost at least 5

2
− ε times the cost of an optimal solution.

3.6.2 l∞ -metric and d = 2

In this section, we construct a data set that uses only eight points from
R2 and yields a lower bound of 3 for the metric based on the L∞-norm.
Recall that in Section 3.5, we showed that for d = 1 the approximation
factor of a computed solution is always strictly less than 3. Therefore,
the lower bound of 3 for d = 2 implies that the dimension d has an
impact on the approximation factor of Algorithm 3.3.

Proposition 3.30. For the metric based on the L∞-norm, there exists a data
set X ⊂ R2 such that Algorithm 3.3 computes a solution to the diameter
k-clustering problem (Problem 2.7) with three times the cost of an optimal
solution.
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A

B

C

D

E

F

G

H

(a) Lower bound for the metric based
on the L∞-norm.

A B

C D

E F

G H

(b) Lower bound for the metric based
on the L2-norm. The points
C,D,G,H have a z-coordinate of
0, while the points A,B,E, F have
a z-coordinate of 2

√
x.

Proof. We prove the proposition by constructing a data set for k = 4.
Consider eight points A, . . . ,H ∈ R2 with

A = (0, 1), E = (−1, 2),

B = (1, 0), F = (2, 1),

C = (0,−1), G = (1,−2),

D = (−1, 0), H = (−2,−1).

The optimal 4-clustering of these points is

C
opt
4 = {{A,E}, {B, F}, {C,G}, {D,H}}

which has a maximum L∞-diameter of 1 (cf. Figure 15a). However,
it is also possible that Algorithm 3.3 starts by merging A with B and
C with D. Then, in the third step, the algorithm merges E or F with
{A,B}, G or H with {C,D}, or {A,B} with {C,D}. We assume the latter.
Thus, the fourth merge step creates a cluster of L∞-diameter 3.

3.6.3 euclidean metric and d = 3

For the Euclidean case, we are able to construct a 3-dimensional data
set that yields a lower bound of 2.56. This is below the upper bound
of 3 from the one-dimensional case. Therefore, this data set does
not show an impact of the dimension d in the Euclidean case as in
the previous section. However, this lower bound is still better than
the lower bound of 2.5 from the one-dimensional case. This suggests
that in higher dimensions it might be easier to construct good lower
bounds.

Proposition 3.31. For the Euclidean metric there exists a data set X ⊂ R3

such that Algorithm 3.3 computes a solution to the diameter k-clustering
problem (Problem 2.7) with cost 2.56 times the cost of an optimal solution.
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analysis of agglomerative clustering

Proof. We prove the proposition by constructing a data set for k = 4.
For any fixed x ∈ R with 0 < x < 2 consider eight points A, . . . ,H ∈ R2

with

A = (−1, 1, 2
√
x), E = (−(1+ x), 1+

√
4− x2 , 2

√
x),

B = ( 1, 1, 2
√
x), F = ( 1+ x , 1+

√
4− x2 , 2

√
x),

C = (−1, −1, 0), G = (−(1+ x), −(1+
√
4− x2), 0),

D = ( 1, −1, 0), H = ( 1+ x , −(1+
√
4− x2), 0).

The optimal 4-clustering of these points is

C
opt
4 = {{A,E}, {B, F}, {C,G}, {D,H}},

which has a maximum L2-diameter of 2 (cf. Figure 15b). However,
since ∥A− B∥ = ∥C−D∥ = 2 it is possible that Algorithm 3.3 starts
by merging A with B and C with D. Then, the cheapest merge adds
one of the points E, F to the cluster {A,B} or it adds one of the points
G,H to the cluster {C,D} or it merges {A,B} with {C,D}. We assume
the latter. The resulting cluster {A,B,C,D} has a diameter of 2

√
2+ x.

Then, in the fourth merge step, the algorithm will either merge one
of the pairs E, F and G,H or one of the pairs E,G and F,H. The choice
depends on the parameter x. Note that Algorithm 3.3 will not merge
the cluster {A,B,C,D} with one of the remaining four points, since
this is always more expensive. The diameter of the created cluster is
maximized for x ≈ 1.56. If we fix x = 1.56, the algorithm merges E

with F or G with H. This results in a 4-clustering of cost 5.12, while
the optimal solution has cost 2.

3.6.4 lp -metric (1 ⩽ p ⩽ ∞) in variable dimension

In the following, we consider the diameter k-clustering problem with
respect to the metric based on the L1-norm. We provide a data set
with dimension O(k) such that Algorithm 3.3 computes a solution
with an approximation factor of Ω(logk).

Proposition 3.32. For the metric based on the L1-norm, there exists a data
set X ⊂ Rd with d = k+ log2 k such that Algorithm 3.3 computes a solution
to the diameter k-clustering problem (Problem 2.7) with 1

2
log2 k times the

cost of an optimal solution.

Proof. For the sake of simplicity, assume k to be a power of 2. In the
following, we consider the (k+ log2 k)-dimensional set X of |X| = k2

points defined by

X :=

{[
ei

b

]
∀1 ⩽ i ⩽ k and b ∈ {0, 1}log2 k

}
.
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3.6 lower bounds

Here, ei ∈ Rk denotes the i-th canonical unit vector. Consider the
k-clustering

C∗
k :=

{
Cb b ∈ {0, 1}log2 k

}
,

where for each b ∈ {0, 1}log2 k the cluster Cb is given by

Cb :=

{[
ei

b

]
∀1 ⩽ i ⩽ k

}
.

The largest diameter of C∗
k is costdiam

(
C∗
k

)
= 2. Hence, for the diameter

optk of an optimal solution, it follows that

optk ⩽ 2. (14)

To investigate the merge steps of Algorithm 3.3, note that

diam

({[
ei

b1

]
,

[
ej

b2

]})
=

{
h(b1,b2) if i = j

2+ h(b1,b2) if i ̸= j

where h(b1,b2) denotes the Hamming distance between the strings
b1,b2 ∈ {0, 1}log2 k. Hence, we may assume that Algorithm 3.3 starts
by merging the points [ei, 0,b ′]⊤ and [ei, 1,b ′]⊤ for all 1 ⩽ i ⩽ k and
all b ′ ∈ {0, 1}log2(k)−1, thereby forming 1

2
k2 clusters of diameter 1.

Next, we show inductively that Algorithm 3.3 keeps merging pairs
of clusters that agree on the first k coordinates until the algorithm
halts. Assume that there is some number 1 ⩽ t ⩽ log2 k such that the
clustering computed so far consists solely of the clusters

C
(t)
i,b ′ =


eib
b ′

 b ∈ {0, 1}t


for all 1 ⩽ i ⩽ k and all b ′ ∈ {0, 1}log2(k)−t. Note that for t = 1 this is
the case after the first 1

2
k2 merges. Then,

diam
(
C
(t)
i,b1
∪C(t)

j,b2

)
=

{
t+ h(b1,b2) if i = j

2+ t+ h(b1,b2) if i ̸= j
.

Hence, as above, we may assume that in the next 1
2t+1k

2 steps Algo-
rithm 3.3 merges the clusters C

(t)
i,0b ′ and C

(t)
i,1b ′ for all 1 ⩽ i ⩽ k and all

b ′ ∈ {0, 1}log2(k)−(t+1). The resulting clusters have a diameter of t+ 1.
Furthermore,

C
(t+1)
i,b ′ = C

(t)
i,0b ′ ∪C(t)

i,1b ′ .

Algorithm 3.3 keeps merging clusters in this way until after t =

log2 k rounds we end up with the k-clustering Ck = {Ci 1 ⩽ i ⩽ k}

where

Ci =

{[
ei

b

]
b ∈ {0, 1}log2 k

}
.

These clusters Ci are of diameter log2 k. Comparing to (14), we de-
duce that Algorithm 3.3 computes a solution to Problem 2.7 with at
least 1

2
log2 k times the cost of an optimal solution.
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Considering the diameter k-clustering problem with respect to an
arbitrary Lp-metric (with 1 ⩽ p < ∞), note that the behavior of Al-
gorithm 3.3 does not change if we consider the p-th power of the Lp-
distance instead of the Lp-distance. Also note that for all x,y ∈ {0, 1}d

we have ∥x−y∥pp = ∥x−y∥1. Since the data set X from Proposition 3.32

is a subset of {0, 1}d, we immediately obtain the following corollary.

Corollary 3.33. For the metric based on any Lp-norm with 1 ⩽ p < ∞,
there exists a data set X ⊂ Rd with d = k+ log2 k such that Algorithm 3.3
computes a solution to the diameter k-clustering problem (Problem 2.7) with
p

√
1
2

log2 k times the cost of an optimal solution.

Additionally, considering the diameter k-clustering problem with
respect to the L∞-metric, it is known that subset of n points from an
arbitrary metric space can be embedded isometrically into (Rn,L∞)

[Fréchet, 1910]. That is, the distance between the embedded points
is equal to the original distances. The construction of the embedded
set is simple. For 1 ⩽ i, j ⩽ n, let dij be the distance between xi and
xj in the metric space. Then, for each point xi with 1 ⩽ i ⩽ n define
x ′
i := (di1, . . . ,din)

T . It immediately follows ∥x ′
i − x ′

j∥∞ = dij.
Hence, the data set of size n = k2 from Proposition 3.32 yields a

data set in Rk2 satisfying the same approximation bound with respect
to the L∞-distance. We obtain the following corollary.

Corollary 3.34. For the metric based on the L∞-norm, there exists a data
set X ⊂ Rd with d = k2 such that Algorithm 3.3 computes a solution to the
diameter k-clustering problem (Problem 2.7) with 1

2
log2 k times the cost of

an optimal solution.

the discrete k-center problem

The data set X from Proposition 3.32 also yields lower bounds for the
approximation factor of the agglomerative solution to the discrete k-
center problem. Just note that for the data set X in every step of the
algorithm the minimal discrete radius of a cluster equals the diameter
of the cluster. We immediately obtain the following corollaries.

Corollary 3.35. For the metric based on any Lp-norm with 1 ⩽ p < ∞,
there exists a data set X ⊂ Rd with d = k+ log2 k such that Algorithm 3.1
computes a solution to the discrete k-center problem (Problem 2.9) with
p

√
1
2

log2 k times the cost of an optimal solution.

Corollary 3.36. For the metric based on the L∞-norm, there exists a data
set X ⊂ Rd with d = k2 such that Algorithm 3.1 computes a solution to the
discrete k-center problem (Problem 2.9) with 1

2
log2 k times the cost of an

optimal solution.

Moreover, in case of the L2-norm, we obtain the following corollary.
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3.6 lower bounds

Corollary 3.37. For the metric based on the L2-norm, there exists a data set
X ⊂ Rd with d = O(log3

k) such that Algorithm 3.1 computes a solution to
the discrete k-center problem (Problem 2.9) with Ω(

√
logk) times the cost

of an optimal solution.

Note that Corollary 3.37 follows by embedding the data set from
Corollary 3.35 into the O(log3

k)-dimensional Euclidean space with-
out altering the behavior of the agglomerative algorithm or the lower
bound of Ω(

√
log k) (using the Johnson-Lindenstrauss embedding

[Johnson and Joram, 1984]). For this embedded data set, the bound
given in Section 3.2 states an upper bound of 20d + 2 log(k) + 2 =

O(log3
k) times the cost of an optimal solution. Hence, in case of the

discrete k-center problem using the L2-metric, the upper bound from
our analysis almost matches the lower bound.

Furthermore, this implies that the approximation factor of Algo-
rithm 3.1 cannot be simultaneously independent of d and log k. More
precisely, the approximation factor cannot be sublinear in 6

√
d and in√

log k.
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Part II

O N PA R A M E T E R E S T I M AT I O N

The second part of this thesis is about the parameter esti-
mation problem for statistical models. Statistical models
offer an alternate view on the structure of a given data
set that differs substantially from the hard clustering ap-
proach discussed in Part I. Using this approach, the data
set is assumed to be generated by a stochastic process.
Then, the parameters of this process can be interpreted as
a description of the structure of the data. While a partition
of the data as computed by hard clustering algorithms is
only valid for the given data set, the parameters of the
stochastic process may also be used to describe other data
sets generated by the same process.

The main result of Part II is the analysis of a probabilistic
variant of the classical EM algorithm for the parameter es-
timation problem of Gaussian mixture models. We show
that the probabilistic algorithm is considerably faster than
the classical algorithm while, with high probability, its pa-
rameter updates are close to the deterministic EM updates.
Furthermore, we confirm our theoretical results in an ex-
perimental analysis.





4
S TAT I S T I C A L M O D E L S

One way to deal with large data sets is to reduce the amount of in-
formation that has to be processed by investigating the distribution
of the data. That is, if we are merely interested in the correlation of
the data, then a loss of the information residing in the single data
elements is acceptable. In this chapter we deal with the description
of data by statistical models. That is, we assume that a given data set
was generated by a particular statistical process. Then, the parame-
ters of this process give a small description of the data set.

In this chapter we discuss the problem of obtaining suitable pa-
rameters for particular statistical models. We focus our attention on
the well understood Gaussian mixture models. Gaussian mixtures
are frequently used in practice since they are suitable for the expla-
nation of many real world data sets. One often cited example is the
Old Faithful data set. It is named after a famous geyser in the Yel-
lowstone National Park where its data is taken from. The data set
is two-dimensional and contains 272 entries. Each entry corresponds
to one observation of an eruption and consists of the eruption time
in minutes and the waiting time to the next eruption. The data set
is shown in Figure 15. We see that the eruptions seem to follow two
different time patterns. The measurements decompose into two ellip-
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Figure 15: The Old Faithful data set.
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statistical models

soidally shaped point clouds. As we will discuss in Section 4.3, this
makes the data set a suitable candidate for Gaussian mixture models.

For the understanding of this and the following chapters, some
basic knowledge of discrete and continuous probability theory is in-
dispensable. In the following, without introducing the necessary con-
cepts, we denote the probability of an observation A by Pr(A) and we
denote the probability of A given an observation B by Pr(A |B). For
observations from continuous domains, Pr(·) denotes the probability
density function. Although formally incorrect, we use the term prob-
ability in the discrete as well as in the continuous case. However, it is
always clear from the context whether a probability or density func-
tion is meant. Furthermore, we denote random variables by upper
case letters and concrete observations by lower case letters. That is,
Pr(X = x) denotes the probability that the random variable X takes on
the value x (in the continuous case, it denotes the density of X at the
point x). If the focus does not lie on the density of concrete observa-
tions but on the density function, then we simply write Pr(X) which
strictly speaking is a random variable itself. A short introduction to
probability theory can be found in [Bishop, 2006]. For a profound
treatment of the matter see [Grimmett and Stirzaker, 2001].

4.1 the parameter estimation problem

A statistical model for some domain X consists of a probability dis-
tribution on X and a set of associated parameters. The probability
distribution is given by a density function pθ : X → R that is gov-We consider the

parameters to be
given as a vector θ

from a proper
parameter domain.

erned by a parameter vector θ. Then, data from the domain X is
modeled by a random variable X ∈ X with

Pr(X = x |θ) = pθ(x)

for x ∈ X. If we assume that the data consists of n ∈ N elements
that are drawn independently from the same distribution, we denote
X = (X1, . . . ,Xn) ∈ Xn for independent and identically distributed
random variables X1, . . . ,Xn ∈ X. Then, the density pθ is extended
to the domain Xn by computing the product probabilities over the
single observations. More precisely,

Pr(X = (x1, . . . , xn) | θ) = pθ(x1, . . . , xn) =
n∏

i=1

pθ(xi).

Note that we denote data sets by ordered tuples. Besides simpli-
fying the discussion (e. g., regarding repetitions) it is natural to look
at the independent draws from the same distribution as a sequen-
tial process. Since we consider the data to be the result of a random
process, we use the terms data (set) and observation interchangeably.

Using a statistical model to describe a given data set, the central
question is how to optimize the parameter vector θ. A natural ap-
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proach is to try and maximize the probability that θ is responsible for
a given observation X, i. e., to compute

θ̂ := arg max
θ

Pr(θ |X) .

Pr(θ |X) is called the posterior probability since it is obtained after the
observation of X. However, for this probability to be well defined, we
need to assume a probability distribution defined on the domain of
the parameters. Then, using the probability Pr(θ) (called prior proba-
bility), Bayes’ theorem yields

Pr(θ |X) =
Pr(X | θ)Pr(θ)

Pr(X)
,

where Pr(X |θ) is given by the statistical model. Since the denomina-
tor on the right-hand side does not depend on θ, we can state

Pr(θ |X) ∝ Pr(X | θ)Pr(θ) .

The approach to optimize θ based on this relationship is called the A resource for the
Bayesian approach is
[Bishop, 2006].

Bayesian approach.
In this thesis we consider an alternate approach called the frequen-

tist approach. Adopting the frequentist approach, no assumptions are
made on the parameters. The optimization of the parameter vector θ

is done by maximizing the probability of the observation X given θ,
i. e., to compute

θ∗ := arg max
θ

Pr(X |θ) .

It is important to note that this argumentum maximi is not guar-
anteed to be well defined. The probability Pr(X |θ) does not have to
have a global maximum (e. g., for Gaussian mixtures, cf. Section 4.3.2).
However, for a well posed problem there should at least exist a local
maximum that can be searched for.

Another well known pitfall of this approach is its vulnerability to For a detailed
treatment of
overfitting see
[Hawkins, 2004].

the problem of overfitting. This means that a parameter vector θ at
a global or local maximum of Pr(X |θ) may be so well adapted to
the concrete observation X that the resulting statistical model is less
suitable to describe similar data from the same application.

If the probability Pr(X | θ) is viewed as a function of the parameter
vector θ, then it is called the likelihood of θ given the observation X

and is denoted as
L(θ |X) = Pr(X |θ) .

Therefore, θ∗ as defined above, is called the maximum likelihood esti-
mate. The problem of computing or approximating the maximum
likelihood estimate is called the parameter estimation problem.

Instead of maximizing the likelihood it is equivalent and some-
times analytically more convenient to maximize its logarithm (cf. Sec-
tion 4.3). The function lnL(θ |X) is called the log-likelihood of θ given
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X. For observations X = (X1, . . . ,Xn) as described above, the log-
likelihood takes the form

ln
n∏

i=1

pθ(Xi) =

n∑
i=1

lnpθ(Xi) =

n∑
i=1

lnL(θ |Xi) .

That is, each sub-observation Xi contributes an additive term to the
log-likelihood cost function. This contribution is simply the log-like-
lihood of the parameter vector θ given the single observation Xi.

In order to be able to interpret the optimization of θ as the min-
imization of a cost function, it is common to minimize the negative
log-likelihood, i. e., to compute

θ∗ := arg min
θ

− lnL(θ |X) .

4.2 general mixture models

In this section, we study the parameter estimation problem for a par-
ticular class of statistical models, namely the mixture models or mix-
ture distributions. Mixture models are well suited to model data that
can be partitioned into several subsets which can be seen as to be
generated by different distributions over the same domain X. For a
mixture of k distributions, the parameter vector takes the form

θ = (w1, . . . ,wk, θ1, . . . ,θk),

where w1, . . . ,wk ∈ R+ with
∑k

j=1wj = 1 are called the weights and
θj is the parameter vector for the j-th component distribution. We
denote the probability density for the corresponding mixture by

pθ(x) =

k∑
j=1

wjpθj
(x),

where pθj
denotes the probability density of the j-th component dis-

tribution. Since the weights sum up to one, it follows that∫
X

pθ(x) ∂x =

k∑
j=1

wj

∫
X

pθj
(x) ∂x =

k∑
j=1

wj = 1.

Thus, pθ(x) is indeed a probability density. Drawing a single observa-
tion X = x from a mixture distribution can be described as a two step
process. First, choose one of the component distributions with prob-
ability proportional to its weight. Second, draw x from the chosen
component distribution.

For the likelihood of θ given an observation X = (x1, . . . , xn) it fol-
lows that

L(θ |X) =

n∏
i=1

pθ(xi) =

n∏
i=1

k∑
j=1

wjpθj
(xi)
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and for the log-likelihood we get

lnL(θ |X) =

n∑
i=1

lnpθ(xi) =

n∑
i=1

ln
k∑

j=1

wjpθj
(xi).

Note that this expression contains the logarithm of a sum. There-
fore, in the mixture case, the likelihood is difficult to optimize di-
rectly. However, in Chapter 5 we discuss an algorithmic approach to
approximate the maximum likelihood estimate.

4.3 gaussian mixture models

Gaussian distributions (or short, Gaussians) are statistical models for
points from the d-dimensional space Rd. A single Gaussian is an uni-
modal distribution. That is, points drawn from a single Gaussian are
concentrated around a single point, called the mean of the Gaussian.
Furthermore, the points form an ellipsoidal shape and their density
drops exponentially with the distance to the mean. By mixing several
Gaussian distributions, it is possible to model multimodal data sets.

4.3.1 single gaussian distributions

The Gaussian distribution (also known as the normal distribution) is a
continuous unimodal probability distribution for real valued random
variables. In the one-dimensional case, it is called the univariate Gaus-
sian distribution and is given by the probability density Nµ,σ2 : R→ R

with

Nµ,σ2(x) :=
1√
2πσ2

exp
(
−
(x− µ)2

2σ2

)
,

where µ,σ2 ∈ R and σ2 > 0. The expected value of a random variable
X ∼ Nµ,σ2 is given by For a derivation of

these equalities see
Section 2.3 in
[Bishop, 2006].E [X] =

∫∞
−∞ x ·Nµ,σ2(x) ∂x = µ

and the variance of X is given by

E
[
(X− µ)2

]
=

∫∞
−∞(x− µ)2 ·Nµ,σ2(x) ∂x = σ2.

Therefore, the parameter µ is called the mean of the Gaussian distri-
bution and the parameter σ2 is called its variance.

The extension of the Gaussian distribution to the d-dimensional
space Rd is called the multivariate Gaussian distribution (cf. Figure 16)
and is given by the probability density Nµ,Σ : Rd → R with

Nµ,Σ(x) :=
1√

(2π)d|Σ|
exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
, (15)
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Figure 16: Density of a two-dimensional Gaussian distribution.

where µ ∈ Rd and Σ ∈ Rd×d is a symmetric positive-definite matrix.
Analogously to the univariate case, the expected value of a random
variable X ∼ Nµ,Σ is given by

E [X] =

∫
Rd

x ·Nµ,Σ(x) ∂x = µ

and the covariance matrix of X is given by

E
[
(X− µ)(X− µ)T

]
=

∫
Rd

(x− µ)(x− µ)T ·Nµ,σ2(x) ∂x = Σ.

Therefore, the parameter Σ is called the covariance matrix of the Gaus-
sian distribution. In the following, we take a closer look at the geo-
metrical form of the Gaussian density for different types of covariance
matrices.

For Σ being a multiple of the identity matrix, i. e.,

Σ = σ2Id ∈ Rd×d

for σ2 > 0, we deduce

Nµ,σ2Id
(x) =

1√
(2πσ2)d

exp
(
−

1

2σ2
∥x− µ∥2

)
(16)

=
1√

(2πσ2)d
exp

(
−

1

2σ2

d∑
i=1

(xi − µi)
2

)

=

d∏
i=1

1√
2πσ2

exp
(
−

1

2σ2
(xi − µi)

2

)

=

d∏
i=1

Nµi,σ2(xi),

where x = (x1, . . . , xd)T and µ = (µ1, . . . ,µd)
T . That is, each coordi-

nate of a random variable X ∼ Nµ,σ2Id
is distributed independently

according to a univariate Gaussian around the corresponding coordi-
nate of µ and with variance σ2. Furthermore, Equation (16) yields
that points with the same density lie on a sphere centered at µ (cf.
Figure 17a).
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b
σ

σ

(a) Σ = σ2Id

b
σ1

σ2

(b) diagonal Σ

b
√
λ1

√
λ2

(c) sym. pos.-def. Σ

Figure 17: Points with constant density for two-dimensional Gaus-
sians with different types of covariance matrices.

If Σ is a diagonal matrix with diagonal elements σ2
1, . . . ,σ2

d ∈ R+,
then Σ−1 = Diag

(
1
σ2
1

, . . . , 1
σ2
1

)
and

N
µ,Diag(σ2

1,...,σ2
d)
(x) =

1√
(2π)d

∏d
i=1 σ

2
i

exp

(
d∑

i=1

−
(xi − µi)

2

2σ2
i

)

=

d∏
i=1

1√
2πσ2

i

exp
(
−
(xi − µi)

2

2σ2
i

)

=

d∏
i=1

Nµi,σ2
i
(xi).

That is, the i-th coordinate of X ∼ N
µ,Diag(σ2

1,...,σ2
d)

is distributed inde-
pendently according to a univariate Gaussian around µi again. How-
ever, in the diagonal case the variance of the i-th coordinate is σ2

i .
That is, a Gaussian with diagonal covariance matrix can be thought
of to be derived from a Gaussian with covariance Id by shrinking
and stretching along the coordinate axes. More precisely, by mul-
tiplying the i-th coordinate of X = (X1, . . . ,Xd) ∼ Nµ,Id with the
standard deviation σi for i = 1, . . . ,d, we get a random variable
Y = (σ1X1, . . . ,σdXd)

T
∼ N

µ,Diag(σ2
1,...,σ2

d)
(cf. Figure 17b).

For a general symmetric positive-definite Σ, we consider its unique
Cholesky Factorization See Theorem 4.2.7 in

[Golub and
Van Loan, 2012].

Σ = LLT ,

where L is an invertible lower triangular matrix with positive diago-
nal entries. The matrix L can be uniquely decomposed as

L = VD

for an orthonormal matrix V and a diagonal matrix D with positive
entries. While the linear map x 7→ Dx stretches (or shrinks) x along
the coordinate axes, the linear map x 7→ Vx is a rotation around and
reflection at the origin. That is, applying the linear map x 7→ Lx to the
d-dimensional unit ball results in an ellipsoid centered at the origin.
The above decomposition of Σ is unique. Furthermore, for any or-
thonormal matrix V and any diagonal matrix D with positive entries,
the matrix LLT with L = VD is symmetric positive-definite. Therefore,
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it is common to identify a symmetric positive-definite matrix with the
associated ellipsoid.

We use the decomposition of Σ stated above to decompose Σ−1 as

Σ−1 =
(
LT
)−1

L−1 =
(
L−1

)T
L−1

=
(
(VD)−1

)T
(VD)−1

=
(
D−1V−1

)T
D−1V−1.

Then, for the density of the multivariate Gaussian distribution, we
deduce

Nµ,Σ(x) =
1√

(2π)d|Σ|
exp

(
−
∥D−1V−1(x− µ)∥2

2

)
. (17)

That is, a Gaussian with general symmetric positive-definite covari-
ance matrix can be thought of to be derived from a Gaussian with
diagonal covariance by rotating around the mean (cf. Figure 17c).

By ignoring the normalization factor |Σ|−
1
2 , Equation (17) offers an

alternate view on the density function. The evaluation of Nµ,Σ at a
point x can be interpreted as a two step process. In the first step, x is
rotated around µ by the linear map

x 7→ V−1(x− µ) + µ

and afterwards the coordinates of x are scaled relative to µ by the
linear map

x 7→ D−1(x− µ) + µ.

This yields the point

y = D−1V−1(x− µ) + µ. (18)

In the second step, the point y is passed to the density Nµ,Id .
Points with constant density have to be mapped to a sphere around

µ in the first step (cf. Equation (16)). To see which points satisfy this
property, let z be an arbitrary point on the translation of the unit
sphere centered at µ. Then, the linear map

x 7→ VD(x− µ) + µ

maps z onto the translation of the ellipsoid associated to Σ centered
at µ. Substituting x = VD(z− µ) + µ in Equation 18 yields

y = D−1V−1VD(z− µ) + µ = z.

This equality also holds for z lying on an arbitrary sphere centered
at µ. We conclude that points with constant density lie on concentric,
confocal ellipsoids. More precisely, these ellipsoids result from scal-
ing the ellipsoid associated to Σ and translating it to be centered at µ.
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Note that the lengths of the semi-axes of the ellipsoid associated to Σ

are the square roots of the eigenvalues of Σ (cf. Figure 17c).
See Chapter 2.3 in
[Bishop, 2006].

For a single Gaussian distribution, the parameter vector θ takes the
form

θ = (µ,Σ).

Then, for the likelihood of θ given an observation X = (x1, . . . , xn), we
get

L(θ |X) = Pr(X | θ) =

n∏
i=1

Nµ,Σ(xi)

=

n∏
i=1

1√
(2π)d|Σ|

exp
(
−
1

2
(xi − µ)TΣ−1(xi − µ)

)
.

As indicated in the previous section, it is analytically much simpler
to consider the log-likelihood. The result of applying the logarithm
is that the product transforms into a sum and that the exponential
function disappears. For the negative log-likelihood of a parameter
vector θ = (µ,Σ) given an observation X = (x1, . . . , xn), we get

− lnL(µ,Σ |X) =

n∑
i=1

− lnNµ,Σ(xi) (19)

=

n∑
i=1

(
ln
√
(2π)d|Σ|+

1

2
(xi − µ)TΣ−1(xi − µ)

)

=

n∑
i=1

(
d

2
ln 2π+

1

2
ln |Σ|+

1

2
(xi − µ)TΣ−1(xi − µ)

)

=
nd

2
ln 2π+

n

2
ln |Σ|+

n∑
i=1

1

2
(xi − µ)TΣ−1(xi − µ).

The parameter estimation problem for a single Gaussian distribu-
tion, i. e., the maximization of L(µ,Σ |X) with respect to µ and Σ, is
easy to solve. There exist closed form formulas for the values µ∗ and
Σ∗ of the maximum likelihood estimate θ∗, namely For a derivation of

these equalities see
[Bilmes, 1997].

µ∗ =
1

n

n∑
i=1

xi and Σ∗ =
1

n

n∑
i=1

(xi − µ∗)(xi − µ∗)T .

4.3.2 mixture of gaussian distributions

As mentioned above, single Gaussian distributions are well suited to
model ellipsoidally shaped data sets. However, if the data set splits
into several possibly separated ellipsoidally shaped parts, then we
need a more general type of distribution called Gaussian mixture dis-
tribution.

Gaussian mixtures are a special case of mixture distributions (cf.
Section 4.2), where all components are single Gaussian distributions.
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Figure 18: Density of a mixture of three Gaussian distributions.

For a mixture of k Gaussians, the parameter vectors θ1, . . . , θk of the
component Gaussians take the form

θj =
(
µj,Σj

)
,

where µj is the mean of the j-th component and Σj is its covariance
matrix. Then, the parameter vector of the mixture takes the form

θ = (w1, . . . ,wk,µ1, . . . ,µk,Σ1, . . . ,Σk)

and the probability density Mθ of the mixture (cf. Figure 18) is de-
fined as

Mθ(x) :=

k∑
j=1

wjNµj,Σj
(x).

For the likelihood of θ given an observation X = (x1, . . . , xn) it fol-
lows that

L(θ |X) =

n∏
i=1

Mθ(xi) =

n∏
i=1

k∑
j=1

wjNµj,Σj
(xi)

and for the log-likelihood we get

lnL(θ |X) =

n∑
i=1

lnMθ(xi) =

n∑
i=1

ln
k∑

j=1

wjNµj,Σj
(xi). (20)

Note that in contrast to the case of a single Gaussian distribution,
we are not able to move the logarithm operator in front of the Gaus-
sian density function (cf. Equation (19)). The summation over the k

components thus prevents the derivation of a simple formula for the
log-likelihood.

In case of Gaussian mixture models, it is hopeless to try and de-
duce closed formulas for the maximum likelihood estimate anyway.
The problem is that for the mixture of at least two Gaussians the
maximum likelihood estimate is not well defined. On the contrary,
it is always possible to generate parameters with arbitrary large log-
likelihood.
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To see this, we fix an arbitrary point of the observed data X =

(x1, . . . , xn) and customize the parameters for one of the k component
Gaussians. Without loss of generality, we consider the data point x1

and the parameters w1, µ1, and Σ1. While w1 can be set to any con-
stant c ∈ R with 0 < c < 1, we define µ1 = x1. Furthermore, for any
α ∈ R with α > 0 we define Σα ∈ Rd×d to be a symmetric positive
definite matrix with determinant |Σα| = α. Then, for α tending to
zero and x ̸= x1, the density Nµ1,Σα(x) also tends to zero (cf. Equa-
tion (15)). This is because of the exponential drop of the Gaussian
density function. Thus, for Σ1 = Σα and α small enough, the contri-
bution of the points xi with xi ̸= x to the log-likelihood is dominated
by the components 2 to k (cf. Equation (20)). More precisely, for
α→ 0 their contribution converges to some constant that depends on
θ2, . . . ,θk. However, for α small enough, the contribution of x = x1 to
the log-likelihood is dominated by the first component. For α→ 0 the
density Nµ1,Σα(x1) converges to ∞. Thus, the contribution of x = x1

also converges to ∞.
As a consequence, one should always keep in mind that in case

of the mixture of Gaussian distributions the parameter estimation
problem is an ill-posed problem.

4.4 handy notions from probability theory

In this section, we introduce some notions from probability theory
which we need for the discussion of the EM algorithm in Chapter 5

and for the analysis of the SEM algorithm in Chapter 6.

4.4.1 distinction between distribution and density

Probability distributions are usually given by the corresponding den-
sity functions. Therefore, it is common to identify a distribution with
its density. Although formally not correct, this convention generally
does not lead to any ambiguities. We join this common practice for
the remainder of this thesis since it simplifies the discussion.

4.4.2 on information theory

In the following, we give a brief description of two concepts from
information theory, namely the entropy of a random variable and
the Kullback-Leibler divergence between two random variables. We
define both quantities for the discrete as well as for the continuous
case.

For the following definitions of entropy and differential entropy,
we use the convention that

0 ln 0 = 0
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which arises from continuity since x ln x→ 0 as x→ 0.

Definition 4.1. Let X be a random variable over a discrete domain X with
probability mass function p : X→ R. Then, the entropy of X is defined as

H(X) := −
∑
x∈X

p(x) lnp(x).

Since the entropy of X depends only on the probability mass p, it
is also denoted as H(p). The entropy of X is a non-negative quantity
which can be interpreted as the amount of information that is ob-
tained by observing the value of X. We use the entropy only for nota-
tional purposes. For a detailed discussion of the entropy see Chapter
2.1 in [Cover and Thomas, 2012]. The continuous correspondence of
the entropy is called the differential entropy.

Definition 4.2. Let X be a random variable over a continuous domain X

with continuous and differentiable probability density function p : X → R.
Then, the differential entropy of X is defined as

H(X) := −

∫
X

p(x) lnp(x)∂x.

Again, we also denote the differential entropy of X as H(p), since
it depends only on the probability density p. For a discussion of the
relation between entropy and differential entropy, see Chapter 8.3 in
[Cover and Thomas, 2012].

For the following definitions of the Kullback-Leibler divergence, we
use the conventions that

0 ln
0

0
= 0 and p ln

p

0
= ∞

for p > 0.

Definition 4.3. Let X, Y be random variables over a discrete domain X.
Furthermore, let p and q be the probability mass functions of X and Y, re-
spectively. Then, the Kullback-Leibler divergence between X and Y is
defined as

KL(X ∥ Y) :=
∑
x∈X

p(x) ln
p(x)

q(x)
.

Note that the Kullback-Leibler divergence is not symmetric, which
is the reason why it should not be called Kullback-Leibler distance.
For a motivation and discussion of the Kullback-Leibler divergence
see Chapter 2.3 in [Cover and Thomas, 2012]. Just as the entropy, the
Kullback-Leibler divergence can also be defined for the continuous
case.

Definition 4.4. Let X, Y be random variables over a continuous domain
X. Let p and q be the probability density functions of X and Y, respec-
tively. Furthermore, let p and q be continuous and differentiable. Then, the
Kullback-Leibler divergence between X and Y is defined as

KL(X ∥ Y) :=
∫

X

p(x) ln
p(x)

q(x)
∂x.
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A discussion of the Kullback-Leibler divergence for the continuous
case can be found in Chapter 8.5 of [Cover and Thomas, 2012].

In the discrete as well as in the continuous case, we also denote
KL(X ∥ Y) as KL(p ∥q) since it depends only on p and q. Furthermore,
the Kullback-Leibler divergence between X and Y is a non-negative
quantity that is zero if and only if p = q.
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5
T H E C L A S S I C A L E M A L G O R I T H M

Throughout this chapter, we deal with an algorithmic approach to
solving the parameter estimation problem for some fixed statistical
model. More precisely, we discuss a general scheme for the approxi-
mation of the corresponding maximum likelihood estimate (see Chap-
ter 4.1), called the Expectation-Maximization algorithm (or simply
EM algorithm). Since its introduction in [Dempster et al., 1977] a lot
of work has been done to analyze and improve the EM algorithm.
Today it is very well understood [McLachlan and Krishnan, 2008].
In the following, we explain the algorithm, discuss its convergence
properties, and apply it to general mixture distributions as well as
Gaussian mixtures. The discussion of the general EM algorithm and
its convergence properties follows the presentation in Chapter 2.3 of
[Bishop, 2006]. The application to general and Gaussian mixtures is
based on [Bilmes, 1997].

The EM algorithm is used when the observed data can be seen as
incomplete and when the corresponding complete data helps signif-
icantly to solve the parameter estimation problem. The main scope
of the algorithm are statistical models for which direct optimization
is impossible. For example, let us assume that the observed data
was generated by a mixture of Gaussian distributions. Then the com-
putation of the maximum likelihood estimate is computationally in-
tractable (see Chapter 4.3.2). However, if we knew for each observed
point from which component distribution it was generated, then the
solution could be computed separately for each component by closed
form formulas (see Chapter 4.3.1). Therefore, for Gaussian mixture
models we define the origin of each data point as the so-called hidden
values.

In the following, we denote the incomplete observation by the ran-
dom variable X and the hidden values by the random variable Z. Fur-
thermore, we denote the joint distribution of the complete data (X,Z) Recall that we

identify a
distribution with
its density.

by
pθ(x, z) = Pr(X = x,Z = z | θ) ,

where θ denotes a vector of model parameters. Then, for the distribu-
tion of the incomplete data we deduce

pθ(x) =

∫
pθ(x,Z)∂Z = Pr(X = x |θ) . (21)
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Algorithm 5.1: Classical EM algorithm
Input: incomplete observation X, initial model θ

while <condition> do
1 q(Z) ←− Pr(Z |X, θ) // for hidden r.v. Z

2 maximize EZ∼q[ln Pr(X,Z | θ)] w. r. t. θ
end
return θ

Note that for Gaussian mixtures the integral becomes a sum over
the discrete space of possible assignments of each point to one of the
component distributions. The complete data likelihood pθ(X,Z) often
has a much simpler form than the incomplete data likelihood pθ(X).
Using Bayes’ theorem,

pθ(x, z) = Pr(Z = z | θ)Pr(X = x |θ,Z = z) .

In case of mixture distributions for example, this leads to simple up-
date equations of the EM algorithm (see Section 5.2 and Section 5.3).

The parameter estimation problem given the incomplete observa-cf. Chapter 4.1

tion X is to maximize the likelihood function

L(θ |X) = Pr(X | θ) =

∫
pθ(X,Z)∂Z

over the choice of θ. For the discussion of the EM algorithm we
furthermore need the distribution pX,θ of the hidden values given the
incomplete observation. Using Bayes’ theorem,

pX,θ(z) =
pθ(X, z)
pθ(X)

= Pr(Z = z |X, θ) . (22)

The EM algorithm is an iterative method that, given an initial es-In Chapter 7.3 we
describe a simple

method of obtaining
initial parameters.

timate of the model parameters, tries to approximate the maximum
likelihood estimate by maximizing the expected complete data log-
likelihood. That is, it computes

θnew := arg max
θ

E
Z∼p

X,θold
[ln Pr(X,Z | θ)] .

The expectation is taken over the distribution of the hidden values
that is induced by the previous parameter estimate θold. The EM al-
gorithm in its general form is stated as Algorithm 5.1, where the con-
dition of the while loop may be filled in with any reasonable choice,
e. g., a convergence criterion or a fixed number of iterations.

Each iteration of the loop in Algorithm 5.1 consists of two steps.
Step 1 derives the distribution over the hidden values that is induced
by the previous parameter estimate. Fixing this distribution, the ex-
pectation over the hidden values that is to be maximized can be stated
as a function of the parameters θ. Therefore, the first step is called

72
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the expectation step. However, no particular expectation is computed
in this first step. In applications of the EM algorithm for concrete
statistical models, the derived distribution is often discrete as for ex-
ample for Gaussian mixtures. Then, the implementation of the expec-
tation step usually consists of precomputations of the corresponding
density function for possible values of Z. In case of Gaussian mixture
models, it is sufficient to precompute the probability that a certain
point was generated by a certain component for each point and each
component distribution (see Section 5.3). Step 2 is called the maxi-
mization step and computes the new set of parameters by maximizing
the expectation over the choice of θ.

For the EM algorithm to be applicable, we have to assume that the
maximization in Step 2 is computationally tractable. In practice, this
is often the case (e. g., for mixtures of distributions from the expo-
nential family). There also exist computationally simpler variants of
the EM algorithm that may be used if the maximization step is not
(efficiently) computable. The General EM (or GEM) algorithm for
example tries to only increase the expectation in the second step (cf.
[Bishop, 2006]). Furthermore, there exist probabilistic variants like
the SEM algorithm discussed in Chapter 6. The SEM algorithm sim-
plifies the computation by avoiding to deal with the expectation at
all. Instead, it simply guesses the hidden values which considerably
simplifies the maximization step.

To analyze the convergence properties of the EM algorithm in the
following section, we assume that two preconditions are met. First,
as mentioned above, the maximization step has to be computationally
tractable. Second, the log-likelihood function for the considered sta-
tistical model and the expectation from the maximization step both
have to be differentiable. The above mentioned and frequently used
mixtures of distributions from the exponential family satisfy these
preconditions.

5.1 convergence of the em algorithm

The parameter vectors computed by the EM algorithm converge to a
stationary point of the likelihood function. To see this, we here adopt
the line of argument in Chapter 2.3 of [Bishop, 2006].

In this section, we denote the log-likelihood function given an in-
complete observation X by lnpθ(X) as a function of θ. Note that cf. Equation (21)

applying the logarithm does not change the stationary points.

Theorem 5.1. Let θ0 be the initial parameter estimate and for i > 0 let θi

be the parameter estimate θ computed by Algorithm 5.1 in the i-th iteration
of Step 2. Then, for increasing i the log-likelihood of θi converges to a
stationary point of lnpθ(X).

At first sight, the significance of Theorem 5.1 may appear low. It
does not even guarantee the convergence to a local maximum, let
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lnpθ(X)

EZ∼q[lnpθ(X,Z)] + H(q) q = pX,θ

KL(q ∥pX,θ)

Figure 19: Decomposition of lnpθ(X) over the choice of q.

alone the convergence to a global one. However, in general we can
not hope for more since it is known that the EM algorithm can get
stuck on a saddle point of the likelihood function (see Chapter 3.6 of
[McLachlan and Krishnan, 2008]). Moreover, since a global maximum
does not even have to exist (cf. Chapter 4.3.2), this does not have to
be an undesirable property. In practice, the local maxima may be the
original target. And even a saddle point can be of great interest when
the local maxima fall victim to the problem of overfitting mentioned
in Chapter 4.1.

To prove Theorem 5.1, we use the following lemma, which decom-
poses the log-likelihood of the incomplete data as shown in Figure 19.
Note that the complete data log-likelihood is denoted by lnpθ(X,Z)
and recall that pX,θ denotes the distribution over the hidden valuescf. Equation (22)

that is induced by the incomplete observation X and the parameter
estimate θ.

Lemma 5.2. Let q be an arbitrary distribution over the hidden values Z.
Then, the log-likelihood of a parameter vector θ given an observation X can
be written as

cf. Figure 19 lnpθ(X) = E
Z∼q

[lnpθ(X,Z)] + H(q) + KL(q ∥pX,θ) .

Since the Kullback-Leibler divergence is always non-negative and
it is zero if and only if both densities are identical (see Chapter 4.4.2),
Lemma 5.2 immediately yields the following corollary.

Corollary 5.3. Let q be an arbitrary distribution over the hidden values Z.
Then, the log-likelihood of a parameter vector θ given an observation X can
be lower bounded by

lnpθ(X) ⩾ E
Z∼q

[lnpθ(X,Z)] + H(q) .

Furthermore, the bound holds with equality if and only if q = pX,θ.
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5.1 convergence of the em algorithm

Proof of Lemma 5.2. Using the definition of the Kullback-Leibler diver-
gence (see Chapter 4.4.2),

lnpθ(X) − KL(q ∥pX,θ)

= lnpθ(X) +

∫
q(Z) ln

(
pX,θ(Z)

q(Z)

)
∂Z

=

∫
q(Z)

(
lnpθ(X) + ln

(
pX,θ(Z)

q(Z)

))
∂Z

=

∫
q(Z) ln

(
ln (pθ(X)pX,θ(Z))

q(Z)

)
∂Z.

From the definition of pX,θ in Equation (22), we deduce

pθ(X)pX,θ(Z) = pθ(X,Z).

Thus,

lnpθ(X) − KL(q ∥pX,θ)

=

∫
q(Z) ln

(
lnpθ(X,Z)

q(Z)

)
∂Z

=

∫
q(Z) lnpθ(X,Z)∂Z−

∫
q(Z) lnq(Z)∂Z

= E
Z∼q

[lnpθ(X,Z)] + H(q) ,

where the last equality follows using the definitions of the expectation
and of the entropy (see Chapter 4.4.2).

Proof of Theorem 5.1. In the following, we consider a single iteration of This proof also
follows Chapter 2.3
in [Bishop, 2006].

Algorithm 5.1 and show that the parameter updates do not decrease
the likelihood. Furthermore, we argue that the likelihood remains
constant only if it already reached a stationary point. We denote
the parameters before the considered round by θold and the updated
parameters by θnew.

Each round of the EM algorithm starts with the selection of the
distribution q = pX,θold over the hidden values Z, where

pX,θold(Z) = Pr
(
Z

∣∣∣X, θold
)

as specified in Algorithm 5.1. Based on this distribution, we define

fX,θold(θ) := E
Z∼p

X,θold
[lnpθ(X,Z)] + H

(
pX,θold

)
.

Then, Corollary 5.3 yields

lnpθ(X) ⩾ fX,θold(θ), (23)

i. e., fX,θold is a lower bound for lnpθ. Furthermore,

lnpθold(X) = fX,θold(θold) (24)
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lnpθ(X)

fX,θold(θ)
θold θnew

Figure 20: Optimization of lnpθ(X) over the choice of θ.

as sketched in Figure 20.
Since H

(
pX,θold

)
is independent of θ, in order to maximize fX,θold(θ)

over the choice of θ, it is sufficient to maximize EZ∼p
X,θold [lnpθ(X,Z)].

That is, the maximization step of Algorithm 5.1 computes

θnew := arg max
θ

fX,θold(θ)

as shown in Figure 20. In particular,

fX,θold(θnew) ⩾ fX,θold(θold) = lnpθold(X),

where the equality at the end follows from Equation (24). Using In-
equality (23) with θ = θnew,

lnpθnew(X) ⩾ lnpθold(X).

It remains to show that

lnpθnew(X) > lnpθold(X)

if θold is not a stationary point of lnpθ(X) as a function of θ. Since
the gradient of g(θ) := lnpθ(X) is zero if and only if θ is a stationary
point of g,

∂g(θ)

∂θ
(θold) ̸= 0.

However, from Inequality (23) and Equation (24) it follows that g

touches fX,θold at the point θold as shown in Figure 20. Therefore, for
the gradient of fX,θold at the point θold we get

∂fX,θold(θ)

∂θ
(θold) =

∂g(θ)

∂θ
(θold) ̸= 0.

It follows that θold does not maximize fX,θold and thus

fX,θold(θnew) > fX,θold(θold).

Analogously to the derivation of non-decrease of the likelihood, we
deduce

lnpθnew(X) > lnpθold(X).
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5.2 the em algorithm for mixture distributions

In this section, we discuss the application of the EM algorithm to
general mixture distributions as introduced in Chapter 4.2. Let

θ = (w1, . . . ,wk,θ1, . . . , θk)

be the parameter vector of the mixture, i. e., w1, . . . ,wk ∈ R+ are the
weights and θ1, . . . ,θk are the parameter vectors of the component
distributions. Then, the probability of a single observation X = x is

pθ(x) =

k∑
j=1

wjpθj
(x).

In order to apply the EM algorithm, we have to decide on the hid-
den values Z. That is, we have to carefully choose which unobserved
information would help us to solve the parameter estimation problem.
Recall that drawing a single observation from the mixture can be de-
scribed as a two step process. First, draw the j-th component with
probability wj, and second, draw x with probability pθj

(x). Based on
this interpretation, we define Z := (zj) ∈ {0, 1}k with

∑k
j=1 zj = 1 to be

the vector of binary random variables indicating which component
was chosen. Then, for j = 1, . . . , k we get Pr

(
zj = 1

∣∣ θ) = wj.
The probability of an observation X = (x1, . . . , xn) consisting of n ∈

N independent draws from the mixture distribution is

pθ(x1, . . . , xn) =
n∏

i=1

k∑
j=1

wjp(xi|θj).

We define Z := (zij) ∈ {0, 1}n×k with
∑k

j=1 zij = 1 for i = 1, . . . ,n to
be the binary matrix indicating which component is responsible for
each sub-observation. In the mixture case, this indicator matrix Z is
the natural choice for the hidden values.

For i = 1, . . . ,n and j = 1, . . . ,k we get Pr
(
zij = 1

∣∣ θ) = wj. If we
denote the i-th row of the indicator matrix by zi, then the probability
to observe a particular row zi can be written as

Note that all but one
summand of this
sum are zero.

pθ(zi) =

k∑
j=1

zijwj.

Using this indicator matrix Z, the log-likelihood of θ given the com-
plete data (X,Z) is given by

ln Pr(X,Z | θ) =

n∑
i=1

lnpθ(xi, zi) =
n∑

i=1

ln (pzi,θ(xi)pθ(zi))

=

n∑
i=1

lnpzi,θ(xi) +

n∑
i=1

lnpθ(zi).
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Note that this decomposition is very useful since the two sums de-
pend on disjoint parts of the parameter vector θ. The first sum can be
written as

Here, all but one
summand of the

inner sum are zero.

n∑
i=1

lnpzi,θ(xi) =

n∑
i=1

ln
k∑

j=1

zijpθj
(xi),

while the second sum can be written as

n∑
i=1

lnpθ(zi) =

n∑
i=1

ln
k∑

j=1

zijwj.

That is, the first sum only depends on θ1, . . . , θk and the second sum
only depends on w1, . . . ,wk. With the linearity of the expectation,
it follows that the maximization step of the EM algorithm can be
considered as two separate maximizations.

Obviously, without specifying the type of the component distribu-
tions, nothing can be said about the updates of the EM algorithm
for the parameter vectors θ1, . . . , θk. However, there do exist closed
formulas for the updates of the weights w1, . . . ,wk. Given an obser-
vation X and a parameter vector θ, we define the responsibility rj of
the j-th component to be the expected number of observations drawn
from the j-th component distribution, i. e.,

rj :=

n∑
i=1

E
Z∼pX,θ

[
zij
]
=

n∑
i=1

Pr
(
zij = 1

∣∣X,θ
)

.

By applying Bayes’ theorem twice, the responsibilities can be expressed
as

rj =

n∑
i=1

Pr
(
xi, zij = 1

∣∣θ)
Pr(xi | θ)

=

n∑
i=1

Pr
(
zij = 1

∣∣ θ)Pr
(
xi
∣∣ zij = 1, θ

)
Pr(xi | θ)

=

n∑
i=1

wjpθj
(xi)∑k

ℓ=1wℓpθℓ
(xi)

.

That is, the responsibilities are computable by evaluating the compo-
nent distributions and using the current parameters θ only. The EM
updates for the weights are the normalized responsibilities, i. e., for
j = 1, . . . , k,For a derivation of

these updates see
[Bilmes, 1997].

wnew
j :=

rj

n
.

5.3 the em algorithm for gaussian mixtures

We finish our introduction to the EM algorithm with an application
to Gaussian mixture models (cf. Chapter 4.3). Let

θ = (w1, . . . ,wk,µ1, . . . ,µk,Σ1, . . . ,Σk)
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be the parameter vector of the Gaussian mixture, i. e., w1, . . . ,wk ∈
R+ are the weights, µ1, . . . ,µk ∈ Rd are the means of the component
Gaussians and Σ1, . . . ,Σk ∈ Rd×d are the corresponding covariance
matrices. As discussed in Section 5.2, the EM updates of the weights
are given by

wnew
j :=

rj

n
=

1

n

n∑
i=1

Pr
(
zij = 1

∣∣X, θ
)

=
1

n

n∑
i=1

wjNµj,Σj
(xi)∑k

ℓ=1wℓNµℓ,Σℓ
(xi)

for j = 1, . . . , k, where rj is the responsibility of the j-th component as
defined in Section 5.2.

The derivation of the update equations for the means and the co-
variance matrices is rather elaborate and can for example be looked
up in [Bilmes, 1997]. For the j-th mean, the update equation is

µnew
j :=

∑n
i=1 Pr

(
zij = 1

∣∣X, θ
)
xi∑n

i=1 Pr
(
zij = 1

∣∣X, θ
)

=
1

rj

n∑
i=1

wjNµj,Σj
(xi) xi∑k

ℓ=1wℓNµℓ,Σℓ
(xi)

.

That is, the contribution of each point to the j-th component mean
is proportional to its probability in the j-th component in relation
to its overall probability. Finally, for the j-th covariance, the update
equation is

Σnew
j :=

∑n
i=1 Pr

(
zij = 1

∣∣X, θ
)
(xi − µnew

j )(xi − µnew
j )T∑n

i=1 Pr
(
zij = 1

∣∣X,θ
)

=
1

rj

n∑
i=1

wjNµj,Σj
(xi) (xi − µnew

j )(xi − µnew
j )T∑k

ℓ=1wℓNµℓ,Σℓ
(xi)

.
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6
T H E S T O C H A S T I C E M A L G O R I T H M

In this chapter, we study a probabilistic variant of the EM algorithm
that was originally proposed as the Stochastic EM or SEM algorithm
[Celeux and Diebolt, 1985]. The algorithm replaces the maximization
step of the EM algorithm with two simple steps. First, it guesses
the hidden values by sampling a fixed instance. Second, it maxi-
mizes the complete-data likelihood over the choice of the parameter
vector. Depending on the application, this simplification yields a con-
siderable speedup. Furthermore, there exist applications where the
maximization step of the classical EM algorithm is computationally
intractable (e. g., when it involves high dimensional integrations). In
these cases, the simplified maximization step may lead to practicable
update equations. However, the focus of this chapter lies on a com-
parison between the computations of the classical EM algorithm and
its probabilistic variant. We discuss only statistical models for which
both algorithms are applicable.

The models generated by the Stochastic EM algorithm are studied
in [Ip, 1994]. For mixtures of distributions from the exponential fam-
ily, the author shows that the sequence of models generated by the
SEM iterations is an ergodic Markov chain converging weakly to a
stationary distribution over models. Furthermore, the mean of this
stationary distribution is analyzed under appropriate assumptions.
It is shown that for the number of input points going to infinity, this
mean converges to the maximum likelihood estimate. However, the
mean of the stationary distribution usually can not be obtained by
a single run of the algorithm. Instead, a large number of restarts is
necessary to retrieve a reasonable approximation of the mean distri-
bution.

Practitioners are often satisfied with the solutions computed by the
EM algorithm. Therefore, we analyze the SEM algorithm in relation
to the classical EM algorithm. In contrast to the previous analysis of
the SEM algorithm that focused on stochastic properties of the above
mentioned Markov chain, we study a single run of the algorithm.
In our approach, we look at it as a probabilistic algorithm that tries
to imitate the behavior of a deterministic algorithm while using its
randomness to speed up the computations. Our results suggest that
in most cases where the classical EM algorithm is applicable, one
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Algorithm 6.1: Probabilistic EM algorithm
Input: incomplete observation X, initial model θ

while <condition> do
1 q(Z) ←− Pr(Z |X, θ) // for hidden r.v. Z

2a draw z ∝ q(Z = z)

2b maximize Pr(X,Z = z |θ) w. r. t. θ
end
return θ

can use the SEM algorithm to obtain similar results more efficiently.
Moreover, in our experiments discussed in Chapter 7, we observe that
sometimes, compared with the EM algorithm, the SEM algorithm
computes parameters with a larger likelihood. This is most likely
due to its inherent randomness that allows the algorithm to escape
from a saddle point or an undesired local maximum of the likelihood
function (cf. Chapter 5.1). Note that the algorithm is hypothetically
able to even guess the ’true’ hidden values, although this generally
happens only with negligible probability.

In Section 6.1, we present the generic SEM algorithm. Afterwards,
in Section 6.2, we show that general mixture distributions are suitable
candidates for the application of the SEM algorithm. In Section 6.3,
we compare the updates of the EM and SEM algorithm for Gaussian
mixture models. We consider a single update step and show that with
high probability the algorithms perform almost the same computa-
tions for sufficiently large input data sets. Our experimental results
(see Chapter 7.4) confirm that this still holds for a large number of
successive steps. Moreover, we show that for Gaussian mixtures, the
simplified maximization step of the SEM algorithm leads to consid-
erably better running times compared to the classical EM algorithm.
This result is confirmed by our experiments as well.

6.1 the generic sem algorithm

The SEM algorithm is stated as Algorithm 6.1. The algorithm differs
from the classical EM algorithm in the second step. It replaces the
maximization in Step 2 of Algorithm 5.1 with two alternate steps (cf.
Step 2a and Step 2b of Algorithm 6.1). Instead of operating with
the expectation over the choice of Z, it simply guesses the hidden
values. This is done in Step 2a by sampling an instance for Z using the
distribution q from Step 1. Afterwards, the complete-data likelihood
given (X,Z) is maximized over the choice of θ in Step 2b.
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Algorithm 6.2: SEM algorithm for mixtures
Input: incomplete observation X = (x1, . . . , xn),

initial model θ = (w1, . . . ,wk, θ1, . . . ,θk)

while <condition> do
1 q(Z) ←− Pr(Z |X,θ) // for indicator matrix Z

2a draw Z = (zij) ∝ q(Z)

2b for j=1,. . . ,k do
wnew

j ←− 1
n

∑n
i=1 zij

θnew
j ←− arg maxθj

Pr
(
Yj
∣∣θj)

where Yj is a vector of all xi with zij = 1

end
end
return θ

6.2 the sem algorithm for mixture distributions

A crucial question concerning the SEM algorithm is for which class
of models it should be applied. In this section we show that mixture
distributions are suitable candidates. There is only one necessary
precondition, namely that for each component distribution separately,
the maximum likelihood estimate is computationally tractable.

The resulting SEM algorithm for mixture distributions is stated as
Algorithm 6.2. As for the EM algorithm, we denote the incomplete
observation by X = (x1, . . . , xn) and the model parameters by

θ = (w1, . . . ,wk, θ1, . . . ,θk).

Again, we choose the indicator matrix (zij) ∈ {0, 1}n×k as the hidden cf. Chapter 5.2

values Z. Just as in case of the EM algorithm, the maximization step
can be carried out separately for the weights w1, . . . ,wk and for the
component parameters θ1, . . . , θk. To do this, we define n1, . . . ,nk to
be the number of data elements that are assigned to each component
in Step 2a, i. e.,

nj =

n∑
i=1

zij and
k∑

j=1

nj = n.

Then, for the weight updates we simply compute the fraction of the In Section 6.3.2, we
show that these
updates are good
approximations of
the EM updates.

input data that is assigned to each component, i. e.,

wnew
j :=

nj

n
.

Furthermore, by Yj ∈ Xnj we denote the vector of elements xi for
i = 1, . . . ,n with zij = 1. Then, for the updates of θ1, . . . ,θk, we
maximize the probability pθj

(Yj) over the choice of θj for j = 1, . . . ,k.
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6.2.1 correctness

In the following, we show that Algorithm 6.2 is a correct instantia-
tion of Algorithm 6.1 for the mixture case. That is, we show that
computing

wnew
j :=

1

n

n∑
i=1

zij and θnew
j := arg max

θj

Pr
(
Yj
∣∣θj)

does indeed maximize Pr(X,Z = z | θ). To prove the correctness of the
weight updates, we use the following lemma. Note that for k ∈ N,
we denote the standard (k− 1)-simplex by

Sk−1 =

(p1, . . . ,pk) ∈ Rk
+

k∑
j=1

pj = 1

 .

Lemma 6.1. Let k,n,n1, ...,nk ∈N with
∑k

j=1 nj = n. Then, the function
f : Sk−1 → R with

f(p) = f(p1, . . . ,pk) =

k∑
j=1

nj ln(pj)

is maximized by p = (n1

n
, . . . , nk

n
).

Proof. Let q = (q1, . . . ,qk) with qj =
nj

n
for j = 1, . . . , k. Instead of f,

we maximize

f(p)

n
+ H(q) =

k∑
j=1

qj lnpj −

k∑
j=1

qj lnqj

=

k∑
j=1

qj ln
pj

qj

= −KL(q ∥p)

where H(·) denotes the entropy and KL(· ∥ ·) denotes the Kullback-
Leibler divergence (see Chapter 4.4.2). Then, the lemma follows from
the non-negativity of the Kullback-Leibler divergence and the fact
that KL(q ∥p) = 0 if and only if p = q.

Proposition 6.2. Let θ = (w1, . . . ,wk,θ1, . . . , θk) be the parameter vector
of a mixture model. Then, for any incomplete observation X = (x1, . . . , xn)
with the hidden indicator matrix Z = (zij), the complete-data likelihood
L(X,Z |θ) is maximized over the choice of θ by setting

wj =
1

n

n∑
i=1

zij and θj = arg max
θ ′
j

Pr
(
Yj
∣∣ θ ′

j

)
for j = 1, . . . ,k, where Yj is a vector of all xi with zij = 1.
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Proof. We denote the new model computed by Algorithm 6.2 in some
fixed round by θX,Z. Since

Pr(X,Z | θ) = Pr(Z |θ)Pr(X |Z, θ) ,

it is sufficient to show that θX,Z separately maximizes Pr(Z |θ) as well
as Pr(X |Z, θ).

Recall that the i-th row of the indicator matrix (zij) is a binary unit
vector indicating which component is responsible for the point xi.
That is, zij ∈ {0, 1} with

∑k
j=1 zij = 1 and

Pr
(
zij = 1

∣∣ θ) = wj =

k∑
j=1

zijwj.

We conclude

Pr(Z | θ) =

n∏
i=1

k∑
j=1

zijwj =

k∏
j=1

w
nj

j .

Then,

ln Pr(Z | θ) =

k∑
j=1

nj ln(wj)

and applying Lemma 6.1 yields that θX,Z maximizes Pr(Z |θ).
It remains to show that θX,Z maximizes Pr(X |Z, θ). However, due

to the independence of the observations,

ln Pr(X |Z, θ) =
n∑

i=1

ln Pr(xi |Z, θ)

=

n∑
i=1

k∑
j=1

zij ln Pr
(
xi
∣∣θj)

=

k∑
j=1

ln Pr
(
Yj
∣∣ θj) .

6.2.2 limitations

Strictly speaking, for the maximization step to be well defined, we
have to assure that nj ⩾ ζ for j = 1, . . . , k for some model dependent
threshold ζ ∈ N. That is, at least ζ observations have to be assigned
to each component distribution. Otherwise, it might not be possible
to determine the new parameters. This is obvious for nj = 0 at least,
since generally, without any data, there is no basis for parameter esti-
mation. For Gaussian mixture models, we discuss the threshold ζ in
Section 6.3.

If nj < ζ, it might be a good idea to drop the under-determined
component and to replace it. This can be done by drawing new com-
ponent parameters from an a-priori distribution, for example.
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6.3 the sem algorithm for gaussian mixtures

In this section we show that for mixtures of Gaussians, the EM algo-
rithm and the SEM algorithm compute almost the same parameter
updates. More precisely, we consider multivariate Gaussian mixtures
over the d-dimensional vector space Rd.

Recall from Chapter 4.3 that for a mixture of k ∈ N multivariate
Gaussians over Rd the parameters of each component consists of a
mean µ ∈ Rd and a covariance matrix Σ ∈ Rd×d. That is, the parame-
ter vector of the model takes the form

θ = (w1, . . . ,wk,µ1, . . . ,µk,Σ1, . . . ,Σk).

As usual, we denote the incomplete observation by X = (x1, . . . , xn)
with xi ∈ Rd and choose the hidden values Z to be the indicator
matrix (zij) ∈ {0, 1}n×k. Furthermore, based on the distribution q

derived in Step 1 of Algorithm 6.2, we denote the probability that xi
was generated by the j-th component by

The expectation of
a binary random

variable is simply
the probability that

it becomes 1.

pij := Pr
(
zij = 1

∣∣X, θ
)
= E

Z∼q

[
zij
]

. (25)

Then, as discussed in Chapter 5.3, the classical EM algorithm in each
step deterministically computes the following updates for j = 1, . . . , k:

wEM
j :=

1

n

n∑
i=1

pij, µEM
j :=

∑n
i=1 pijxi∑n
i=1 pij

,

ΣEM
j :=

∑n
i=1 pij(xi − µEM

j )(xi − µEM
j )T∑n

i=1 pij

. (26)

After sampling the indicator matrix (zij) ∈ {0, 1}n×k, the Probabilis-
tic EM algorithm computes the following updates for j = 1, . . . ,k:

wSEM
j :=

1

n

n∑
i=1

zij, µSEM
k :=

∑n
i=1 zijxi∑n
i=1 zij

,

ΣSEM
j :=

∑n
i=1 zij(xi − µSEM

j )(xi − µSEM
j )T∑n

i=1 zij
, (27)

where µSEM
j and ΣSEM

j are the maximum likelihood solution for
the parameter estimation problem of a single Gaussian distribution
with respect to the points assigned to the j-th component (cf. Chap-
ter 4.3.1). Note that by writing zij as

zij = Pr
(
zij = 1

∣∣Z) = Pr
(
zij = 1

∣∣X, θ,Z
)

,

the SEM update equations can be interpreted as to arise from the
EM update equations by incorporating the additional knowledge of
which component each point was generated by. In contrast to the EM
algorithm, the parameters computed by the SEM algorithm are in fact
random variables with respect to the random experiment of drawing
the zij. This offers the alternate interpretation that the EM updates
arise from the SEM updates by replacing the indicator matrix with its
expectation (cf. Equation (25)).
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6.3.1 limitations

As already observed in Section 6.2.2, strictly speaking, we have to
assure that |Yj| = nj is large enough for each j = 1, . . . , k. In case
of multivariate Gaussians, we need that |Yj| ⩾ d+ 1 at least. Other-
wise, the covariance matrix ΣSEM

j is not symmetric positive definite.
Assuming that the observations x1, . . . , xn ∈ Rd are given in general
linear position, assigning at least d + 1 points to each Gaussian is
sufficient, though.

6.3.2 proximity of the update equations

In this section, we provide the main results of this chapter. The theo-
rems presented below provide bounds for the differences between the
parameter updates as computed by the EM and SEM algorithm. As
one would expect, it can not be shown that the differences between
the mean updates are small if the corresponding weight updates dif-
fer considerably. The same holds for the differences between the co-
variance updates. Furthermore, it can not be shown that the differ-
ences between the covariance updates are small if the corresponding
mean updates differ considerably. A difference only in one coordi-
nate of the mean updates already leads to useless bounds for the
corresponding entries of the covariance matrix. Therefore, we first
provide the bound for the weight updates. Afterwards, we state the
bound for the mean updates which depends on the differences be-
tween the weight updates. Finally, we close with the bound for the
covariance updates. This bound depends on the differences of the
weight updates as well as on the differences between the mean up-
dates.

Before we state the theorems, we provide some preliminary defi-
nitions. For vectors v ∈ Rd, we denote the ℓ-th coordinate of v by
(v)ℓ. For matrices M ∈ Rd×d, we denote the (ℓ1, ℓ2)-th entry of M by
(M)ℓ1ℓ2 . Furthermore, we define the spread of the ℓ-th coordinate of
the input data set by

∆ℓ := max
i

(xi)ℓ − min
i

(xi)ℓ. (28)

As in Chapter 5.2, we define the overall responsibility of the j-th Gaus-
sian component by

rj :=

n∑
i=1

pij.

In the following, we develop the quantities that will be used to
measure the differences between the mean and covariance updates
computed by the EM and SEM algorithm. For j ∈ {1, . . . ,k}, the differ-
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ence between the computed means for the j-th component Gaussian
is

µSEM
j − µEM

j =

∑n
i=1 zij(xi − µEM

j )∑n
i=1 zij

.

We ignore the normalization factor
∑n

i=1 zij in the denominator. Then,
each summand zij(xi − µEM

j ) of the numerator is a random variable
that corresponds to the contribution of xi to the difference between
µSEM
j and µEM

j . For ℓ ∈ {1, . . . ,d}, the variance in the ℓ-th coordinate
of this contribution is

Var
(
zij(xi − µEM

j )ℓ
)
= pij(1− pij)

(
xi − µEM

j

)2
ℓ

.

Since the zij are independent random variables, the variance in the
ℓ-th coordinate of the overall contribution of all points is

Var

(
n∑

i=1

zij(xi − µEM
j )ℓ

)
=

n∑
i=1

pij(1− pij)
(
xi − µEM

j

)2
ℓ

.

In our analysis of the proximity of the SEM updates, we measure
the difference in the ℓ-th coordinate of the j-th mean in terms of the
corresponding standard deviation

τjℓ :=

√√√√ n∑
i=1

pij(1− pij)
(
xi − µEM

j

)2
ℓ
. (29)

Analogously, for the difference in the (ℓ1, ℓ2)-th entry of the j-th co-
variance, we use

ρjℓ1ℓ2 :=

√√√√ n∑
i=1

pij(1− pij)
(
Υij − ΣEM

j

)2
ℓ1ℓ2

, (30)

where Υij = (xi − µEM
j )(xi − µEM

j )T .
To bound the difference between the updates of the EM algorithm

and the SEM algorithm, we state three separate theorems. The first
one bounds the difference of the weight updates for a single compo-
nent distribution. The theorem holds for Gaussian mixtures as well
as for general mixture models (cf. Section 6.2 and Chapter 5.2).

Theorem 6.3 (Proximity of weights). Let j ∈ {1, . . . ,k}, δ ∈ R with
2e−

rj/3 ⩽ δ ⩽ 1, and λw =
√

3 ln 2/δ

rj
. Then, with probability of at least 1− δ,∣∣wSEM

j −wEM
j

∣∣ ⩽ λwwEM
j .

The next theorem bounds the difference in a single coordinate of
the mean updates for a single component. One can not expect good
estimates for the means if the weights are not approximated well.
Thus, in the second theorem we assume that the corresponding weight
is already approximated with an accuracy of λw. The derived bound
for the computed mean depends on λw by a factor of 1

1−λw
.
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Theorem 6.4 (Proximity of means). Let j ∈ {1, . . . ,k} and let A be the
event that ∣∣wSEM

j −wEM
j

∣∣ ⩽ λwwEM
j , (31)

where 0 < λw < 1.
Then, for ℓ ∈ {1, . . . ,d} and 0 < δ < 1, the conditional probability of∣∣∣(µSEM

j − µEM
j

)
ℓ

∣∣∣ ⩽ λµ

1− λw
·
τjℓ

rj

given the event A is at least 1− δ for

λµ =


√
2e ln 2/δ if τjℓ

∆ℓ
⩾ 1

e

√
2e ln 2/δ

2∆ℓ

τjℓ
ln 2/δ otherwise.

The third theorem is the equivalent of Theorem 6.4 for a single
entry of the covariance matrix. Similar to Theorem 6.4, the derived
bound depends on the weight accuracy λw. Additionally, we assume
that the ℓ-th coordinate of the corresponding mean is already approxi-
mated with an accuracy λℓµ. The bound splits into a sum of two terms.
The first term is the analogon of the bound for the mean from Theo-
rem 6.4. The second term is the error that arises from the accuracy of
the mean estimates.

Theorem 6.5 (Proximity of covariances). Let j ∈ {1, . . . ,k} and let A be
the event that ∣∣wSEM

j −wEM
j

∣∣ ⩽ λwwEM
j (32)

where 0 < λw < 1. Furthermore, let ℓ1, ℓ2 ∈ {1, . . . ,d} and let B be the event
that for ℓ = ℓ1, ℓ2, ∣∣∣(µSEM

j − µEM
j

)
ℓ

∣∣∣ ⩽ λℓµ

1− λw
·
τjℓ

rj
(33)

where λℓµ > 0.
Then, for 0 < δ < 1, the conditional probability of∣∣∣(ΣSEM

j − ΣEM
j

)
ℓ1ℓ2

∣∣∣ ⩽ λΣ

1− λw
·
ρjℓ1ℓ2
rj

+
λ
ℓ1
µ λ

ℓ2
µ

(1− λw)2
·
τjℓ1τjℓ2

r2j

given the events A and B is at least 1− δ for

λΣ =


√
2e ln 2/δ if ρjℓ1ℓ2

∆ℓ1
∆ℓ2

⩾ 1
e

√
2e ln 2/δ

2∆ℓ1
∆ℓ2

ρjℓ1ℓ2

ln 2/δ otherwise.

To derive a result for the complete update, one has to combine
all three theorems using the union bound. Note that all three bounds
depend on the responsibilities rj. As one would expect due to the law
of large numbers, the accuracy of our bounds improves with growing
rj.
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6.3.3 limitations

Note that, generally speaking, it is not possible to approximate a mix-
ture component with too small a weight. Thus, we cannot expect
to derive proximity bounds for the SEM updates that do not use as-
sumptions on the weights, which correspond to the responsibilities
rj = n ·wEM

j . The bounds from Theorem 6.4 and Theorem 6.5 both
depend on 1

1−λw
. That is, these bounds become arbitrarily large for

λw near 1. Therefore, to get reasonable results, we need λw to be con-
siderably small. For instance, to ensure λw ⩽ 1

2
, the requirements for

λw in Theorem 6.3 yield rj ⩾ 12 · ln(2/δ). In other words, given a data
set of size n, all weights have to be at least 12·ln(2/δ)

n
.

6.3.4 on chernoff bounds

In the following, we state and prove several Chernoff type bounds.
Chernoff bounds are a standard tool from probability theory for the
derivation of concentration results. Readers who are familiar with
this technique may skip this section or at least the given proofs.

We start with an elementary Chernoff bound. A proof can be foundSee Corollary 4.6 in
[Mitzenmacher and

Upfal, 2005].
in [Mitzenmacher and Upfal, 2005], for example.

Lemma 6.6. Let X1, . . . ,Xn be independent random variables over {0, 1} and
let Y =

∑n
i=1 Xi. Then, for each 0 ⩽ λ ⩽ 1,

Pr(|Y − E[Y] | ⩾ λ · E[Y]) ⩽ 2e−E[Y] λ
2

3 .

As a corollary, we get the following lemma which bounds the devi-
ation for a given probability of occurrence. This bound will be used
for the difference between the weight updates later.

Lemma 6.7. Let X1, . . . ,Xn be independent random variables in {0, 1} and
let Y =

∑n
i=1 Xi. Then, for 2e−

E[Y]
3 ⩽ δ ⩽ 1 and λ =

√
3 ln 2/δ

E[Y] ,

Pr(|Y − E[Y] | ⩾ λ · E[Y]) ⩽ δ.

To bound the differences between the mean and between the co-
variance updates, we need a more elaborate Chernoff type bound.

Lemma 6.8. Let X1, . . . ,Xn be independent, discrete random variables withThis Lemma and its
proof are based on

[Levchenko, 2013].
E[Xi] = 0 and |Xi| ⩽ C for some constant C > 0 and i = 1, . . . ,n. Further-
more, let Y =

∑N
n=1 Xi. Then, for any λ ⩾ 0,

Pr
(
|Y| ⩾ λ

√
Var(Y)

)
⩽ 2e

−λ2

2ea

where a ⩾ 0 such that λ =
aea
√

Var(Y)

C
.

Analogously to the relation between Lemma 6.6 and Lemma 6.7,
we use Lemma 6.8 to derive a bound for a given probability of occur-
rence.
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Lemma 6.9. Let X1, . . . ,Xn be independent, discrete random variables with
E[Xi] = 0 and |Xi| ⩽ C for some constant C > 0 and i = 1, . . . ,n. Further-
more, let Y =

∑N
n=1 Xi and 0 < δ < 1. Then,

Pr
(
|Y| ⩾ λ

√
Var(Y)

)
⩽ δ

for

λ =


√
2e ln 2/δ if

√
Var(Y)

C
⩾ 1

e

√
2e ln 2/δ

2C√
Var(Y)

ln 2/δ otherwise.

In the remainder of this section, we prove Lemma 6.8 and Lemma 6.9.

Proof of Lemma 6.8. First, note that we will naturally assume Var(Y) = For Var(Y) = 0,
there is no need
for Lemma 6.8.

∑n
i=1 Var(Xi) > 0. Then, for any λ ⩾ 0, there exists an a ⩾ 0 with

λ =
aea
√

Var(Y)

C
. Due to symmetry, we only prove

Pr
(
Y ⩾ λ

√
Var(Y)

)
⩽ e

−λ2

2ea .

By Markov’s inequality, for any t > 0 we obtain

Pr
(
Y ⩾ λ

√
Var(Y)

)
= Pr

(
etY ⩾ etλ

√
Var(Y)

)
⩽

E
[
etY
]

etλ
√

Var(Y)
. (34)

Let xi1, xi2, . . . be the possible outcomes of the discrete random vari-
able Xi. We denote the corresponding probabilities by

πij := Pr
(
Xi = xij

)
.

Then, by the definition of the expectation and the series expansion of
the exponential function,

E
[
etXi

]
=

∑
j

πije
txij

=
∑
j

πij

(
1+ txij +

1

2!
(txij)

2 +
1

3!
(txij)

3 + . . .

)
.

Separating the first two summands of the series expansion yields

E
[
etXi

]
=

∑
j

πij + t
∑
j

πijxij +
∑
j

πij

(
1

2!
(txij)

2 +
1

3!
(txij)

3 + . . .

)

= 1+
∑
j

πij(txij)
2

(
1

2!
+

1

3!
txij +

1

4!
(txij)

2 + . . .

)
,

where the second equality follows from t
∑

j πijxij = tE[Xi] = 0. Since
2

(m+2)! ⩽
1
m! for m ∈N,

E
[
etXi

]
⩽ 1+

∑
j

πij(txij)
2 1

2
etxij .
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In the following, we assume that t is chosen such that

a ⩾ tC. (35)

Then, etxij ⩽ ea and it follows that

E
[
etXi

]
⩽ 1+

ea

2
t2 Var(Xi),

where we used

Var(Xi) = E
[
X2
i

]
− E[Xi]

2 = E
[
X2
i

]
=

∑
j

πij(txij)
2.

Since X1, . . . ,Xn are independent,

E
[
etY
]
=

n∏
i=1

E
[
etXi

]
⩽

n∏
i=1

(
1+

ea

2
t2 Var(Xi)

)
.

Using 1+α ⩽ eα for α ⩾ 0, it follows that

E
[
etY
]
⩽

n∏
i=1

e
ea

2 t2 Var(Xi) = e
ea

2 t2 Var(Y). (36)

Finally, we fix t := λ

ea
√

Var(Y)
. Then, tC = a and Inequality (35) is

satisfied as required. Substituting t in Inequality (36) yields

E
[
etY
]
⩽ e

λ2

2ea .

Furthermore,
etλ
√

Var(Y) = e
λ2

ea .

Thus,
E
[
etY
]

etλ
√

Var(Y)
⩽ e

−λ2

2ea

and Inequality (34) yields the claim.

Proof of Lemma 6.9. As in the proof of Lemma 6.8, we assume Var(Y) >
0. First, let √

Var(Y)
C

⩾ 1

e

√
2e ln 2/δ

and
λ =

√
2e ln 2/δ. (37)

Then, λ ⩽ e
√

Var(Y)

C
. Thus, we are able to choose 0 ⩽ a ⩽ 1, such that

λ =
aea
√

Var(Y)

C
. Applying Lemma 6.8,

Pr
(
|Y| ⩾ λ

√
Var(Y)

)
⩽ 2 exp

(
−λ2

2ea

)
.

By substituting Equation (37),

Pr
(
|Y| ⩾ λ

√
Var(Y)

)
⩽ 2 exp

(
−2e ln 2/δ

2ea

)
= 2

(
δ

2

) e
ea

⩽ δ.
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It remains to consider the case where√
Var(Y)
C

<
1

e

√
2e ln 2/δ (38)

and
λ =

2C√
Var(Y)

ln 2/δ. (39)

Let a ∈ R, such that λ =
aea
√

Var(Y)

C
. Then,

aea =
2C2

Var(Y)
ln 2/δ. (40)

By Inequality (38), C√
Var(Y)

> e√
2e ln 2/δ

and we deduce

aea >
2e2

2e ln 2/δ
ln 2/δ = e.

It follows that a > 1. Applying Lemma 6.8,

Pr
(
|Y| ⩾ λ

√
Var(Y)

)
⩽ 2 exp

(
−λ2

2ea

)
.

By substituting Equation (39),

Pr
(
|Y| ⩾ λ

√
Var(Y)

)
⩽ 2 exp

(
−

4C2

Var(Y)
(ln 2/δ)2

1

2ea

)
.

Using Equation (40),

Pr
(
|Y| ⩾ λ

√
Var(Y)

)
⩽ 2 exp

(
−2aea ln 2/δ

1

2ea

)
= 2 exp (−a ln 2/δ) .

Since a > 1,

Pr
(
|Y| ⩾ λ

√
Var(Y)

)
< 2 exp (− ln 2/δ) = 2

(
δ

2

)
= δ.

6.3.5 proof of the proximity bounds

Using Lemma 6.7, we are able to prove Theorem 6.3.

Proof of Theorem 6.3. Let W =
∑n

i=1 zij = n ·wSEM
j . Then,

E
Z∼q

[W] =

n∑
i=1

pij = rj = n ·wEM
j .

Thus, applying Lemma 6.7 yields

n · |wSEM
j −wEM

j | ⩾ n · λwEM
j

with probability at most δ.
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Using Lemma 6.9, we are able to prove Theorem 6.4 and Theo-
rem 6.5.

Proof of Theorem 6.4. Let j ∈ {1, . . . ,k}, ℓ ∈ {1, . . . ,d} and define the real
random variable

Mijℓ := (zij − pij)
(
xi − µEM

j

)
ℓ

.

Since EZ∼q

[
zij
]
= pij, it follows that EZ∼q

[
Mijℓ

]
= 0 and

Var(Mijℓ) = pij(1− pij)(xi − µEM
j )2ℓ .

Moreover, since each µEM
j is a convex combination of x1, . . . , xn,

|Mijℓ| ⩽ |zij − pij| ·
∣∣∣(xi − µEM

j

)
ℓ

∣∣∣ ⩽ ∆ℓ.

Note that the definition of µEM
j yields

∑n
i=1 pij

(
xi − µEM

j

)
ℓ
= 0. Thus,

for the random variable Mjℓ :=
∑n

i=1Mijℓ, we deduce

Mjℓ =

n∑
i=1

zij
(
xi − µEM

j

)
ℓ

.

Furthermore, EZ∼q

[
Mjℓ

]
= 0 and

Var(Mjℓ) =

n∑
i=1

pij(1− pij)(xi − µEM
j )2ℓ = τ2jℓ.

Note that the standard deviation of Mjℓ is τjℓ, which was introduced
in Section 6.3.2 to measure the difference between the mean updates.
Applying Lemma 6.9 with C = ∆ℓ and λµ as provided in the theorem
yields

Pr

(∣∣∣∣∣
n∑

i=1

zij
(
xi − µEM

j

)
ℓ

∣∣∣∣∣ ⩾ λµτjℓ

)
⩽ δ. (41)

The difference between the coordinates of the mean updates can be
written as

∣∣∣(µSEM
j − µEM

j

)
ℓ

∣∣∣ =
∣∣∣∣∣∣
(∑n

i=1 zijxi −
∑n

i=1 zijµ
EM
j

)
ℓ∑n

i=1 zij

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑n

i=1 zij

(
xi − µEM

j

)
ℓ

n ·wSEM
j

∣∣∣∣∣∣ .
Then, by combining Inequality (41) and Inequality (31), we conclude
that the conditional probability of∣∣∣(µSEM

j − µEM
j

)
ℓ

∣∣∣ ⩽ λµτjℓ

n(1− λw)wEM
j

=
λµτjℓ

(1− λw)rj

given the event A is at least 1− δ.
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Proof of Theorem 6.5. The covariance updates of the EM and SEM algo- cf. Equation (26)
and Equation (27)rithm depend on the corresponding mean updates. Consequently, the

difference between the covariance updates depends on the difference
between the mean updates. To measure the impact of µSEM

j − µEM
j

on ΣSEM
j −ΣEM

j , let Σ̃SEM
j be the covariance that would be computed

by the SEM algorithm, if µSEM
j = µEM

j . That is,

Σ̃SEM
j :=

∑n
i=1 zij(xi − µEM

j )(xi − µEM
j )T∑n

i=1 zij
.

By substituting xi − µEM
j = xi − µSEM

j + µSEM
j − µEM

j , we deduce

Σ̃SEM
j =

∑n
i=1 zij

(
xi − µSEM

j

)(
xi − µSEM

j

)T∑n
i=1 zij

+

∑n
i=1 zij

(
xi − µSEM

j

)(
µSEM
j − µEM

j

)T∑n
i=1 zij

+

∑n
i=1 zij

(
µSEM
j − µEM

j

)(
xi − µSEM

j

)T∑n
i=1 zij

+

∑n
i=1 zij

(
µSEM
j − µEM

j

)(
µSEM
j − µEM

j

)T∑n
i=1 zij

.

Note that the first summand is equal to ΣSEM
j and the last summand

is equal to
(
µSEM
j − µEM

j

)(
µSEM
j − µEM

j

)T
. Furthermore, both sum-

mands in the middle are zero, since∑n
i=1 zij

(
xi − µSEM

j

)
∑n

i=1 zij
=

∑n
i=1 zijxi∑n
i=1 zij

− µSEM
j = 0.

By denoting ν := µSEM
j − µEM

j , we conclude

Σ̃SEM
j = ΣSEM

j + ννT .

Analogously to the proof of Theorem 6.4, we bound the difference

between the entries of Σ̃SEM
j and ΣEM

j . To do this, we define the real
random variable

Sijℓ1ℓ2 := (zij − pij)
(
Υij − ΣEM

j

)
ℓ1ℓ2

where Υij := (xi − µEM
j )(xi − µEM

j )T . Since EZ∼q

[
zij
]
= pij, it follows

that EZ∼q

[
Sijℓ1ℓ2

]
= 0 and

Var(Sijℓ1ℓ2) = pij(1− pij)
(
Υij − ΣEM

j

)2
ℓ1ℓ2

.

Moreover, since each ΣEM
j is a convex combination of Υ1j, . . . ,Υnj,

|Sijℓ1ℓ2 | ⩽ |zij − pij| ·
∣∣∣(Υij − ΣEM

j

)
ℓ1ℓ2

∣∣∣ ⩽ ∆ℓ1∆ℓ2 .
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Note that the definition of ΣEM
j yields

∑n
i=1 pij

(
Υij − ΣEM

j

)
ℓ1ℓ2

= 0.

Thus, for the random variable Sjℓ1ℓ2 :=
∑n

i=1 Sijℓ1ℓ2 , we deduce

Sjℓ1ℓ2 =

n∑
i=1

zij
(
Υij − ΣEM

j

)
ℓ1ℓ2

.

Furthermore, EZ∼q

[
Sjℓ1ℓ2

]
= 0 and

Var(Sjℓ1ℓ2) =
n∑

i=1

pij(1− pij)
(
Υij − ΣEM

j

)2
ℓ1ℓ2

= ρ2jℓ1ℓ2 .

Note that the standard deviation of Sjℓ1ℓ2 is ρjℓ1ℓ2 , which was intro-
duced in Section 6.3.2 to measure the difference between the covari-
ance updates. Applying Lemma 6.9 with C = ∆ℓ1∆ℓ2 and λΣ as pro-
vided in the theorem yields

Pr

(∣∣∣∣∣
n∑

i=1

zij
(
Υij − ΣEM

j

)
ℓ1ℓ2

∣∣∣∣∣ ⩾ λΣρjℓ1ℓ2

)
⩽ δ. (42)

The difference between the entries of the covariance updates can be
written as

∣∣∣(ΣSEM
j − ΣEM

j

)
ℓ1ℓ2

∣∣∣ = ∣∣∣∣∣
(
Σ̃SEM
j − ννT − ΣEM

j

)
ℓ1ℓ2

∣∣∣∣∣
=

∣∣∣∣∣
(∑n

i=1 zijΥij∑n
i=1 zij

− ννT −

∑n
i=1 zijΣ

EM
j∑n

i=1 zij

)
ℓ1ℓ2

∣∣∣∣∣
=

∣∣∣∣∣∣
∑n

i=1 zij

(
Υij − ΣEM

j

)
n ·wSEM

j

− ννT


ℓ1ℓ2

∣∣∣∣∣∣ .
Using the triangle inequality,

∣∣∣(ΣSEM
j − ΣEM

j

)
ℓ1ℓ2

∣∣∣ ⩽
∣∣∣∣∣∣
∑n

i=1 zij

(
Υij − ΣEM

j

)
n ·wSEM

j


ℓ1ℓ2

∣∣∣∣∣∣
+
∣∣∣(µSEM

j − µEM
j

)
ℓ1

∣∣∣ · ∣∣∣(µSEM
j − µEM

j

)
ℓ2

∣∣∣ .
Then, by combining Inequality (42), Inequality (32) and Inequality (33),
we conclude that the conditional probability of

∣∣∣(ΣSEM
j − ΣEM

j

)
ℓ1ℓ2

∣∣∣ ⩽ λΣρjℓ1ℓ2
n(1− λw)wEM

j

+
λ
ℓ1
µ λ

ℓ2
µ

(1− λw)2
·
τjℓ1τjℓ2

r2j

=
λΣ

(1− λw)
·
ρjℓ1ℓ2
rj

+
λ
ℓ1
µ λ

ℓ2
µ

(1− λw)2
·
τjℓ1τjℓ2

r2j
.

given the events A and B is at least 1− δ.
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6.3 the sem algorithm for gaussian mixtures

6.3.6 running time analysis

When the EM and SEM algorithm are both applicable for a particular
statistical model, it is natural to ask why the SEM algorithm should
be favored. Besides its ability to escape from a stationary point of
the likelihood function as mentioned at the beginning of this chapter,
the SEM algorithm is particularly faster in general. In the following,
we explain where the speedup stems from. First, we motivate the
speedup for general mixture models. Afterwards, we show a constant
factor speedup for Gaussian mixture models.

Let X = (x1, . . . , xn) be the input data set and assume that it was
generated by a general mixture of k distributions. The EM algorithm
maximizes the expected complete data log-likelihood. Usually, this
implies that each data point is involved in the update of all compo-
nents (see for example Equation 26). Therefore, the running time of
the EM algorithm depends on the term kn. In contrast, the SEM algo-
rithm assigns each point to exactly one component. Hence, each point
is involved in the update of a single component only (see for example
Equation 27). This observation suggests that the speedup of the SEM
algorithm might be up to a factor of k. However, for the sampling
step (Step 2a), the SEM algorithm has to compute the probability that
a certain point was generated by a certain component for each point
and each component distribution. That is, the running time of the
SEM algorithm depends on the term kn as well. Nevertheless, we
are able to show that regarding the parameter estimation problem of
Gaussian mixture models, there is a constant factor speedup. To do
this, we discuss the number of computations in a single iteration of
both algorithms.

For the sake of simplicity, we abstain from precisely charging all
computations. Instead, we consider only the multiplications in R.
Furthermore, we consider only the leading term of the number of per-
formed multiplications. That is, we focus on the computations that
entail the most multiplications in terms of the parameters n, d and k

for considerably large values of n, d and k. Not surprisingly, these
are the computations involving the covariance matrices. Furthermore,
we assume that n≫ d.

Both algorithms start with computing the probabilities Pr
(
xi
∣∣µj,Σj

)
cf. Equation (25)

for i = 1, . . . ,n and j = 1, . . . ,k. The number of multiplications for
the computation of these probabilities is dominated by matrix-vector
multiplications between the d× d covariance matrices Σj and the d-
dimensional vectors xi. Therefore, the leading term of the number of
multiplications for the common computations is knd2.

The leading term of the number of multiplications for the remain-
ing computations of the EM algorithm is dominated by the update
of the covariances. Each point is involved in the update of each com- cf. Equation (26)

ponent by the outer product of the point with itself. Therefore, the
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leading term of the number of remaining multiplications is knd2 as
well. Thus, the overall number of multiplications of the EM algorithm
is dominated by 2knd2.

In case of the SEM algorithm, again the updates of the covariances
determine the leading term of the number of remaining multiplica-
tions. However, due to the hard assignment of the points, the leadingcf. Equation (27)

term does not depend on k. Instead, the number of multiplications
needed to update the covariance matrix is dominated by nd2. It fol-
lows that for n, k and d large enough, the number of multiplications
during the remaining SEM computations is negligible in comparison
to the number of multiplications during the common computations.
Thus, the overall running time of the SEM algorithm is dominated by
knd2.

This implies a factor 2 speedup. However, depending on details
of the implementation, the actual dependency of the multiplications
during the common computations may better be assumed to be dom-
inated by c1knd

2 for some constant c1. Analogously, for the remain-
ing computations of the EM algorithm we assume a leading term of
the dependency of the multiplications of c2knd

2 for some constant
c2. This results in a speedup of a factor of 1+ c2

c1
. Indeed, our exper-

imental results confirm a constant factor speedup (see Chapter 7.4).
Moreover, the measured speedup tends a factor of 3 which implies
c2 > c1.
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7
E X P E R I M E N TA L A N A LY S I S

To underpin our proximity and running time analysis from Chapter 6,
we performed a series of experiments. In our experimental analysis,
we compare the computations of the classical EM algorithm and the
probabilistic SEM algorithm on a number of different data sets. The
data sets divide into several artificial and real world data sets. As in
the theoretical analysis, we consider the parameter estimation prob-
lem for Gaussian mixture models only.

7.1 implementation

To get comparable results, we implemented the EM algorithm and
the SEM algorithm from scratch in C++. For the linear algebra com-
putations, we use the free C++ template library Eigen (available at
http://eigen.tuxfamily.org/). For the generation of artificial data
sets, to compute initial model parameters, and for the probabilistic
steps of the SEM algorithm, we need an efficient pseudo-random
number generator. Our implementation uses the Mersenne twister
[Matsumoto and Nishimura, 1998] specified as std::mt19937 in the
current C++ standard [ISO, 2012].

As discussed in Chapter 6.3.1, it is possible that the SEM algorithm
assigns too few points to a particular component to be able to com-
pute a new covariance. Although we disregard these cases in our
analysis, we have to consider them in our implementation. If no point
is assigned to a particular component, we solve the problem by sam-
pling a new mean uniformly from the input data set and initializing
the covariance matrix with a scaled identity matrix. More precisely,
set the covariance matrix to σ2Id, where we compute

σ2 :=
1

2d
min
i ̸=j
∥µi − µj∥2

as proposed in [Dasgupta and Schulman, 2007] for the initial param-
eter estimation. If not enough points are assigned to a particular
component, we try to mix the under-determined covariance with the
previous covariance matrix. If this fails to compute a symmetric pos-
itive definite matrix, we simply keep the old covariance matrix. Due
to numerical instability, the EM algorithm has to deal with similar
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problems if the responsibility rj of a component becomes too small.cf. Chapter 5.3

Therefore, we implemented a similar error handling procedure for
the EM algorithm. In our experiments, these problems hardly ever oc-
curred. However, it must be said that the error handling may lead to
substantially different solutions of the EM and SEM algorithm. Our
experimental results presented in Section 7.4 are not affected by the
error handling procedures.

7.2 data sets

For our experiments, we used artificial as well as real world data sets.
For the generation of the artificial data sets, we considered different
combinations of the dimension d ∈N and the number of component
distributions k ∈ N. For each combination, we probabilistically com-
puted several parameter vectors θ = (w1, . . . ,wk,µ1, . . . ,µk,Σ1, . . . ,Σk)

for Gaussian mixtures with k components over Rd.cf. Chapter 4.3.2

For the determination of the weights w1, . . . ,wk we drew k real
numbers uniformly at random from the interval [0, 1]. To compute
balanced as well as unbalanced weights, these numbers were after-
wards exponentiated with the same integer constant chosen between
0 and 3. Finally, the resulting numbers were normalized to retrieve
the weights.

For the determination of the means µ1, . . . ,µk we created a Gaus-
sian meta distribution from which all means were drawn. The mean
of the meta distribution was set to the origin and the covariance ma-
trix of the meta distribution was created probabilistically itself. To
do this, we first created a matrix M by drawing each entry from a
one-dimensional Gaussian distribution with mean 0 and variance k

d
.

Afterwards, to retrieve the covariance matrix of the meta distribution,
we computed the product of the matrix M with its own transpose.
This generally results in a symmetric positive-definite covariance ma-
trix. The variance k

d
of the one-dimensional Gaussian used to deter-

mine the entries of the matrix M was chosen to control the separation
of the created means µ1, . . . ,µk. The separation increases with in-
creasing k (more components need more space) and it decreases with
increasing d (more dimensions allow less separation in each of them).
Proceeding this way, we ensured that the mixtures mainly consist of
interfusing Gaussians. To get reasonable results it is important that
the points generated by different components of a Gaussian mixture
are not pairwise well separated. Otherwise, the task of learning the
parameters is too easy. Furthermore, the difference in the computa-The distance-based

clustering approach
discussed in Part I,

is a suitable method,
for example.

tions of the EM and SEM algorithm would become too small to be
verified in our experiments.

Finally, to determine the covariance matrices Σ1, . . . ,Σk, we pro-
ceeded as for the covariance matrix of the meta distribution used for
the computation of the means. The only difference is that we use a
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7.2 data sets

Figure 21: Projection of one of the artificial data sets with n =

1 000 000. The ellipsoids depict the standard deviation ar-
eas of each component distribution. The larger the weight
of the component, the brighter is the shade of the corre-
sponding ellipsoid.

one-dimensional Gaussian with variance 1 to draw the entries of the
matrix M.

For each θ computed as above, we drew several point sets of differ-
ent size from the corresponding Gaussian mixture. Our experiments
for the different combinations of d and k led to essentially similar re-
sults. Therefore, in the following we discuss artificial data sets with
d = k = 10 only. To confirm our proximity results from Chapter 6, we
created several data sets of size n = 1 000 000 (cf. Figure 21). To in-
vestigate the behavior for small data sets, we also created data sets of
size n = 10 000. In the remainder of this section, we consider two par-
ticular data sets that led to characteristic results, one for n = 1 000 000

which we denote by Art1M and one for n = 10 000 which we denote
by Art10K. For both artificial data sets we computed Gaussian mix-
tures with the proper number of component distributions, i. e., with
k = 10.

As real world data we use three publicly available data sets shown
in Figure 7.2. The first one is the Forest Covertype data set which is part
of the UCI Machine Learning Library [Asuncion and Newman, 2007]
and contains 581 012 data points. The data set contains cartographic
information about four wilderness areas located in the Roosevelt Na-
tional Forest. Each data point consists of cartographic features of
an area of 900 square meters in size. To get data suitable for Gaus-
sian mixture parameter estimation, we used only the quantitative at-
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tributes located at the first 10 coordinates (see Figure 22a). That is,
we ignored the labels describing which tree species dominates the
respective area and 44 qualitative binary attributes. For the Forest
Covertype data set we computed Gaussian mixtures with k = 10 com-
ponent distributions.

The second data set is based on the Amsterdam Library of Object
Images (ALOI) [Geusebroek et al., 2005]. This database consists of
110 250 images of 1 000 small objects, taken under various conditions.
We use a 27-dimensional feature vector set that is based on color
histograms in HSV color space (see Figure 22b). The features were
extracted from the database as described in [Kriegel et al., 2011b] but
using 2 bins for hue, saturation and brightness each. The data set
is provided by the ELKI project [Achtert et al., 2012] and contains
110 250 data points. For the ALOI data set we computed Gaussian
mixtures with k = 3 component distributions.

The third data set is created from data provided by the GeoNames
geographical database (available at http://www.geonames.org/). The
original data set contained several features of 135 082 cities around
the world with a population of at least 1000. We extracted the geo-
graphic coordinates (latitude and longitude) for each city to compute
a projection onto the 3-dimensional unit sphere. The resulting data
set is a 3-dimensional model of the populated regions of the globe
(see Figure 22c). For the GeoNames data set we computed Gaussian
mixtures with k = 20 component distributions.

The first two real world data sets were normalized before use. That
is, for each coordinate of the input data points the values were trans-
lated and scaled to fit into the interval [0, 1]. Thus, the spread in each
dimension is ∆ = 1 (cf. Equation (28)). Without normalization, the dif-
ference between the means and covariances computed by the EM and
SEM algorithm might be dominated by a single or only few dimen-
sions of the input space. By introducing the normalization step, we
ensured that the parameter estimation problem does not effectively
reduce to a lower dimensional problem.

7.3 experiments

For the comparison of the EM and SEM algorithm, we established
four different types of tests. In the first type of tests we compared the
negative log-likelihood of the parameters computed by the EM and
SEM algorithm. To do this, we ran both algorithms for 50 rounds and
computed the negative log-likelihood of the computed parameters
after each round.

The goal of the second type of tests was to compare the parameters
computed by the two algorithms. Again, we ran both algorithms for
50 rounds. After each round, we computed the differences between
the computed parameters. More precisely, for each component distri-
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(a) Forest Covertype data set
with d = 10 and n = 110 250

(b) ALOI features data set
with d = 27 and n = 110 250

(c) GeoNames data set with d = 3 and n = 135 082

Figure 22: Projections of the real world data sets.

bution we computed the absolute distance between the weights, the
Euclidean distance between the means and the Frobenius norm of the
difference between the covariance matrices.

The aim of the third type of tests was to evaluate our theoreti-
cal bounds on the proximity of the EM and SEM computations (cf.
Chapter 6.3.2). For the sake of simplicity, we compared only the
means computed by the two algorithms. To to this, in each round
of the SEM algorithm we also computed the mean updates the EM
algorithm would compute if it was given the same previous model
parameters. Then, we determined the actual Euclidean distance be-
tween each pair of means. Furthermore, we computed our theoretical
bounds for each component distribution and each coordinate of the
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corresponding mean. To get a bound that holds with high probability,
we chose

δ :=
1

100 · k(d+ 1)
.

Applying Theorem 6.3 for all k weight updates and Theorem 6.4 for
all d coordinates in all k mean updates yields k(d+ 1) bounds that
hold with probability 1 − δ. Using the union bound, the resulting
bound for the Euclidean distance between the means holds with prob-
ability of at least 1− 1

100
.

Finally, in the fourth type of tests, we compared the running times
of the EM and SEM algorithm. Our analysis in Chapter 6.3.6 pre-
dicts a constant factor speedup in case of Gaussian mixture models.
Furthermore, we motivated the overall speedup based on a factor k

speedup for a part of the computations of the parameter updates. To
investigate the dependency of the speedup on the number of com-
ponent distributions, we started both algorithm with the GeoNames
data set for several values of k between 1 and 100. To reduce the
effects of single delayed runs and in case of the SEM algorithm to
consider the probabilistic behavior, we averaged the running times of
both algorithms over ten runs.

More precisely, we started both algorithms for each value of k with
three different initial solutions. For each initial solution, we executed
both algorithms three times.

The EM algorithm, as well as the SEM algorithm, compute their
solution based on an initial parameter estimate. How to compute a
good initial set of model parameters is not a subject of this thesis.
Since we study the solutions of the SEM algorithm in relation to the
solutions of the classical EM algorithm, we only have to assure that
both algorithms are started with the same initial solutions. For our
comparison of the EM and SEM algorithm, the quality of the initial
solution is not critical. Therefore, we implemented a very simple ini-
tialization method that we used for all our experiments. To compute
initial parameters θ = (w1, . . . ,wk,µ1, . . . ,µk,Σ1, . . . ,Σk), we executed
the following steps:

1. Draw k points c1, . . . , ck from the input data set X ⊂ Rd uni-
formly at random.

2. Compute a partition C1, . . . ,Ck of X into k subsets by assign-
ing each x ∈ X to the nearest ci in terms of Euclidean distance
(breaking ties arbitrarily).

3. For i = 1, . . . , k:

a) Set the i-th weight to wi :=
|Ci|

|X|
.

b) Set µi,Σi to the maximum likelihood estimate of a single
Gaussian for the data set Ci (see Chapter 4.3.1).
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For each data set, we created 10 sets of initial model parameters.
Since the SEM algorithm is probabilistic, for each initial model we
performed 100 different runs. To ensure that the results of our sec-
ond and third type of test are not biased by an unlikely computation,
we averaged the results of the different runs for each initial solution.
Recall that the EM algorithm is deterministic. Therefore, we need to
execute the EM algorithm only once.

7.4 results

In this section, we discuss the results of our four types of tests. The
focus of the following presentation lies on the second and third type
of test since these tests correspond to our analysis in Chapter 6. As
mentioned above, we discuss the results for five particular data sets,
two artificial data sets and three real world data sets. During our
experiments we observed that the results for different initial solutions
did not differ substantially. Therefore, we depict only results for some
selected initial solutions that led to typical behavior of the algorithms.

Some characteristic results of our first type of tests are shown in
Figure 23. The negative log-likelihood of the solutions computed by
the EM algorithm is plotted as a dashed black line. Note that for
each round of the EM algorithm we only have a single value to plot.
For the SEM algorithm, we have to plot the results of 100 different
runs of the algorithm. Therefore, we depict the results of the SEM
algorithm similar to box plots. The dark gray line marks the median,
the gray ribbon ranges from the lower to the upper quartile, and the
light gray ribbon ranges from the minimum to the maximum of the
negative log-likelihood of the computed solutions. For the majority
of our experiments for the artificial as well as the real world data
sets, the log-likelihood of the solutions of the EM and SEM algorithm
almost coincide. To make the differences visible at all in Figure 23, we
had to omit the first three rounds of the algorithms. For the Art1M
data set, most of the initial solutions still lead to results as depicted
in Figure 23a. However, for some initial solutions we observe small
differences as depicted in Figure 23c. Furthermore, individual initial
solutions lead to considerable differences as depicted in Figure 23e.

Generally speaking, for small values of n one can not expect that
the SEM algorithm yields parameter estimates close to the EM com-
putations. This is due to the law of large numbers, i. e., the influence
of a single sampling step of the SEM algorithm is larger for smaller
n. Indeed, for Art10K data set we observe differences between the
log-likelihood of the computed solutions more often. Some examples
are depicted in Figure 23b to Figure 23f. Note that the SEM results
may lie above the EM results as well as below them and also both in
the same run.
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Some typical results of our second type of tests are shown in Fig-
ure 24 to Figure 28. For the interpretation of the results, we will re-
late the measured differences between the parameters computed by
the EM and SEM algorithm to a simple upper bound derived from
the dimension d and the largest spread ∆ of the corresponding data
set. That is, for a given data set, we assume that the spread in eachSee Chapter 6.3.2,

Equation (28). dimension is at most ∆. Then, the Euclidean distance between the
computed means is at most

Γµ := ∆
√
d.

The Frobenius norm of the difference between the computed covari-
ance matrices is at most

ΓΣ := d∆2.

Furthermore, recall that the weights lie in the interval [0, 1]. That is,
the difference between the computed weights is at most 1. In the
following, we compute the fraction of Γµ and ΓΣ which the computed
means and covariance matrices differ by, respectively. The differences
of the weights are always compared to 1.

For the artificial data sets, we have d = 10 and ∆ ≈ 40. It follows
that Γµ ≈ 130 and ΓΣ ≈ 16 000. Regarding the Art1M data set (see
Figure 24), we observe that the parameter vectors computed by the
EM and SEM algorithm are very similar. More precisely, the weights
differ by less than 0.002 and the means differ by less than 0.002 · Γµ.
The covariances even differ by less than 0.0002 · ΓΣ. Moreover, we ob-
serve that after the first few rounds, the differences in the parameters
of many components are even substantially smaller than those of the
remaining components.

As mentioned in the discussion of our first type of tests, for small
values of n one can not expect good parameter estimates. Indeed, for
the Art10K data set (see Figure 25), the differences between the means
and covariances are larger by a factor of 20. However, our first type
of tests show that this does not necessarily result in lower likelihood
of the computed parameters.

Recall that the two real world data sets corresponding to Figure 26

and Figure 27 are normalized. That is, ∆ = 1.
For the Forest Covertype data set (see Figure 26), we have d = 10.

It follows that Γµ ≈ 3.2 and ΓΣ = 10. Then, the weights differ by less
than 0.004, the means differ by less than 0.004 · Γµ, and the covariances
differ by less than 0.0002 · ΓΣ. That is, the results are similar to the
results for the Art1M data set. One explanation for these good results
is that the Forest Covertype data set is the largest of the real world
data sets with a size of n = 581 012.

For the ALOI data set (see Figure 27), we have d = 27. It follows
that Γµ ≈ 5.2 and ΓΣ = 27. For the weight updates, at least in the first
couple of rounds, we get a difference of up to 0.2. The means differ by
up to 0.009 · Γµ and the covariances differ by up to 0.0006 · ΓΣ. These
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results are slightly worse than the results for the Forest Covertype
data set. However, this can be explained by the smaller size of the
ALOI data set with n = 110 250 only. Furthermore, except for the
difference of some weight updates during the first few rounds, the
differences are still very small.

For the GeoNames data set (see Figure 28), we have d = 3 and
∆ = 2. It follows that Γµ ≈ 3.5 and ΓΣ = 12. For the weights, we get a
difference of less than 0.003. The means and the covariances differ by
a fraction of less than 0.01 · Γµ and 0.0015 · ΓΣ, respectively. However,
for all but one component, the differences between the means and
between the covariances are lower by a factor of 3 at least.

All three real world data sets have in common that after approxi-
mately 40 rounds, the differences in all parameters remain on a very
small level. Furthermore, we point out that all results confirm that
both algorithms compute almost the same parameter updates.

For our third type of tests, we depict a selection of results in Fig-
ure 29 to Figure 33. First, we observe that the actual difference mea-
sured in our experiments is significantly smaller than our high prob-
ability bound. Furthermore, the similar development of our bound
and the actual difference indicates the accuracy of our analysis. Note
that mostly, the largest differences exist during the first couple of
rounds. This matches our observations from the second type of tests.

Just as for our second type of test, we relate the bound for the differ-
ence of the weight updates to the largest possible distance determined
by the dimension and the spread of the data set. As mentioned in the
description of our tests in Section 7.3, the presented bounds hold with
probability 1− 1

100
. For the Art1M data set (cf. Figure 29), the results

show that the bound is less than 0.013 · Γµ. Again, due to the smaller
size of the data set, the results for the Art10K data set are worse (cf.
Figure 30). Here, we get bounds up to 0.12 · Γµ. In Chapter 6.3.3, we
already discussed the limited applicability of our bounds for small
responsibilities rj. Since smaller values of n result in smaller values
of rj = n ·wEM

j , the larger bounds observed in Figure 30 are not sur-
prising.

For the real world data sets, we observed a larger variety of devel-
opments of our high probability bound. This may arise from the fact
that the real world data sets are less suitable for being modeled by
Gaussian mixtures. To avoid tedious repetitions, we prefer to present
a diverse choice of results rather than a characteristic selection. Nev-
ertheless, all presented bounds for all real world data sets are at most
0.1 · Γµ.

Finally, the results of our fourth type of tests are depicted in Fig-
ure 34 and Figure 35. Figure 34 shows that the running times of both
algorithms linearly depend on the number of components k. The
slope of the curve for the SEM algorithm is considerably smaller as
predicted by our analysis in Chapter 6.3.6. Furthermore, the results
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show that for k = 1 the EM algorithm is faster than the SEM algo-
rithm. This is not surprising since for k = 1 both algorithms compute
the same updates, while the SEM processes the additional sampling
step. To approximate the factor of the speedup, we did further tests
for larger values of k. The results are depicted in Figure 35 and sug-
gest a factor of up to 3 at least.

Note that although the theoretical and experimental running time
analyses seem to match, we have to treat the results with care. On
the one hand, our theoretical analysis simplifies the situation by only
counting the multiplications. On the other hand, our implementa-
tion may be subject to several optimizations emerging from the linear
algebra library, the compiler and the floating point hardware. Fur-
thermore, these optimizations of the implementation possibly differ
in their effectiveness for the two algorithms. Nevertheless, the mea-
sured speedup is real and thus, the SEM algorithm should be taken
into account when it comes to the parameter estimation problem for
Gaussian mixture models.

108



7.4 results

(a) Art1M data set (b) Art10K data set

(c) Art1M data set (d) Art10K data set

(e) Art1M data set (f) Art10K data set

Figure 23: Negative log-likelihood of parameters computed by the
EM and SEM algorithm for the selected artificial data sets
and different initial solutions. Figure 23a, 23c, and 23e all
depict results for the Art1M data set, but for different ini-
tial solutions. The same holds for Figure 23b, 23d, and 23f
with the Art10K data set.
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experimental analysis

(a) Difference wEM
k −wSEM

k between the weights.

(b) Difference µEM
k − µSEM

k between the means.

(c) Difference ΣEM
k − ΣSEM

k between the covariances.

Figure 24: Comparison of intermediate solutions of the EM and SEM
algorithm given the Art1M data set with Γµ ≈ 130 and ΓΣ ≈
16 000 for k = 10. All three figures depict the results for the
same initial solution. Each figure consists of ten graphs,
each depicting the difference for one component Gaussian
averaged over 100 SEM runs.
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7.4 results

(a) Difference wEM
k −wSEM

k between the weights.

(b) Difference µEM
k − µSEM

k between the means.

(c) Difference ΣEM
k −ΣSEM

k between the covariances.

Figure 25: Comparison of intermediate solutions of the EM and SEM
algorithm given the Art10K data set with Γµ ≈ 130 and
ΓΣ ≈ 16 000 for k = 10. All three figures depict the results
for the same initial solution. Each figure consists of ten
graphs, each depicting the difference for one component
Gaussian averaged over 100 SEM runs.

111



experimental analysis

(a) Difference wEM
k −wSEM

k between the weights.

(b) Difference µEM
k − µSEM

k between the means.

(c) Difference ΣEM
k − ΣSEM

k between the covariances.

Figure 26: Comparison of intermediate solutions of the EM and SEM
algorithm given the normalized Forest Covertype data set
with Γµ ≈ 3.2 and ΓΣ = 10 for k = 10. All three figures
depict the results for the same initial solution. Each figure
consists of ten graphs, each depicting the difference for one
component Gaussian averaged over 100 SEM runs.
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7.4 results

(a) Difference wEM
k −wSEM

k between the weights.

(b) Difference µEM
k − µSEM

k between the means.

(c) Difference ΣEM
k −ΣSEM

k between the covariances.

Figure 27: Comparison of intermediate solutions of the EM and SEM
algorithm given the normalized ALOI data set with Γµ ≈
5.2 and ΓΣ = 27 for k = 3. All three figures depict the results
for the same initial solution. Each figure consists of three
graphs, each depicting the difference for one component
Gaussian averaged over 100 SEM runs.
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experimental analysis

(a) Difference wEM
k −wSEM

k between the weights.

(b) Difference µEM
k − µSEM

k between the means.

(c) Difference ΣEM
k − ΣSEM

k between the covariances.

Figure 28: Comparison of intermediate solutions of the EM and SEM
algorithm given the GeoNames data set with Γµ ≈ 3.5 and
ΓΣ = 12 for k = 20. All three figures depict the results for
the same initial solution. Each figure consists of twenty
graphs, each depicting the difference for one component
Gaussian averaged over 100 SEM runs.

114



7.4 results

(a) This is one of the most frequent developments of the bound.

(b) Sometimes, the bound increases, albeit on a very low level.

(c) Several ups and downs occur only rarely.

Figure 29: Experimental difference and the theoretical bound on the
difference between means computed by the EM and SEM
algorithm given the Art1M data set with Γµ ≈ 130 for k =

10. All three figures depict the results averaged over 100

SEM runs for the same initial solution but for the means of
different component Gaussians.
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(a) Similar to Figure 29a, but on a higher level.

(b) Although the bound is worsening, the actual differences remain small.

(c) Development of the bound contrary to the actual difference.

Figure 30: Experimental difference and the theoretical bound on the
difference between means computed by the EM and SEM
algorithm given the Art10K data set with Γµ ≈ 130 for k =

10. All three figures depict the results averaged over 100

SEM runs for the same initial solution but for the means of
different component Gaussians.
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7.4 results

Figure 31: Experimental difference and the theoretical bound on the
difference between means computed by the EM and SEM
algorithm given the normalized Forest Covertype data set
with Γµ ≈ 3.2 for k = 10. All three figures depict the results
averaged over 100 SEM runs for the same initial solution
but for the means of different component Gaussians.
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experimental analysis

Figure 32: Experimental difference and the theoretical bound on the
difference between means computed by the EM and SEM
algorithm given the normalized ALOI data set with Γµ ≈
5.2 for k = 3. All three figures depict the results averaged
over 100 SEM runs for the same initial solution but for the
means of different component Gaussians.
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7.4 results

Figure 33: Experimental difference and the theoretical bound on the
difference between means computed by the EM and SEM
algorithm given the GeoNames data set with Γµ ≈ 3.5 for k =

20. All three figures depict the results averaged over 100

SEM runs for the same initial solution but for the means of
different component Gaussians.
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Figure 34: Average running times of the EM and SEM algorithm
started on the GeoNames data set for different numbers
of component Gaussians.
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