Gel-based sensors involving supramolecular interactions with pillar[5]arene for the detection of environmental pollutants and biomarkers / eingereicht von Maksim Rodin ; [Gutachter: Prof. Dr. Dirk Kuckling, Prof. Dr. Jan Paradies]. Paderborn, 2025
Inhalt
- Abstract
- Kurzzusammenfassung
- Eidesstattliche Erklärung
- Anerkennung der Promotionsordnung
- Scientific contributions
- Acknowledgements / Danksagung
- List of abbreviations
- 1 Introduction
- 2 Theoretical background
- 2.1 Supramolecular chemistry
- 2.1.1 Supramolecular interactions
- 2.1.2 Ionic interactions
- 2.1.3 Hydrogen bonds
- 2.1.4 Hydrophobic interactions
- 2.1.5 Host-guest complexes
- 2.2 Pillar[n]arenes
- 2.2.1 Synthesis of pillar[n]arenes
- 2.2.2 Functionalization
- 2.2.2.1 Mono-functionalized pillar[n]arenes
- 2.2.2.2 Di- and multisubstitution
- 2.2.2.3 Per-functionalized and water-soluble pillar[n]arenes
- 2.2.3 Host–guest properties
- 2.3 Smart gels
- 2.3.1 Polymers and polymerization
- 2.3.2 Chemical and physical crosslinking
- 2.3.3 Dually crosslinked gels
- 2.3.3.1 Covalent-covalent dually crosslinked gels
- 2.3.3.2 Dually crosslinked gels with non-covalent linkages
- 2.3.4 Gels as sensors
- 2.3.5 Polymer networks with pillar[n]arenes
- 2.4 Quantification of supramolecular interactions
- 2.4.1 Supramolecular equilibrium[227–230]
- 2.4.2 Experimental design and limitations
- 2.4.3 Determination of complex stoichiometry
- 2.4.4 Analytical techniques for the determination of binding affinity
- 2.4.4.1 NMR spectroscopy
- 2.4.4.1.1 Method overview
- 2.4.4.1.2 Slow exchange
- 2.4.4.1.3 Fast exchange
- 2.4.4.1.4 Intermediate exchange
- 2.4.4.1.5 Sample preparation
- 2.4.4.1.6 NOESY NMR
- 2.4.4.1.7 DOSY NMR
- 2.4.4.2 UV/Vis spectroscopy
- 2.4.4.3 ITC
- 2.4.4.3.1 Method overview
- 2.4.4.3.2 ITC instrumentation
- 2.4.4.3.3 Experimental design
- 2.4.4.3.4 Data treatment
- 2.4.4.4 Summary of the techniques
- 2.5 Surface plasmon resonance spectroscopy
- 3 Pillar[5]arene-based dually crosslinked supramolecular gel as a sensor for the detection of adiponitrile0F
- 3.1 Introduction
- 3.2 Synthesis and general considerations
- 3.2.1 Synthetic strategy
- 3.2.2 Choice of a solvent
- 3.2.3 DMP5A–AN complexation
- 3.2.4 Candidates for a guest moiety
- 3.3 NMR investigations of host-guest interactions1F
- 3.3.1 Fast exchange complexes
- 3.3.2 Slow exchange complexes
- 3.3.3 DOSY NMR
- 3.3.4 Guest moiety selection
- 3.4 Polymer synthesis and modification
- 3.5 Supramolecular gelation experiments
- 3.6 SPR studies: adiponitrile responsiveness
- 3.6.1 Experimental setup and sample preparation
- 3.6.2 Responsiveness of the sensor chip towards AN
- 3.6.3 Negative control: swelling experiments with P20PC
- 3.7 Summary and outlook
- 4 Spermine detection using water-soluble pillar[5]arene
- 4.1 Introduction
- 4.1.1 Polyamines and their functions
- 4.1.2 Spermine detection using macrocycles
- 4.1.3 Novel hydrogel-based design for the sensor
- 4.2 WSP5A host molecule
- 4.3 Investigation of WSP5A–SP interaction
- 4.4 Synthesis of the guest moieties and complexation with WSP5A
- 4.4.1 Initial considerations
- 4.4.2 Synthesis of the guest moieties THA and TAHA
- 4.4.3 TAHA-Boc@WSP5A
- 4.5 DOSY NMR
- 4.6 Polymer synthesis
- 4.6.1 Synthesis of VDMA
- 4.6.2 Kinetics of DMAAm and VDMA co-polymerization
- 4.6.2.1 Co-monomer reactivities and co-polymer composition considerations
- 4.6.2.2 Polydispersity considerations
- 4.6.3 Poly(DMAAm-co-VDMA) molecular weight and its distribution after the completion of polymerization
- 4.7 Polymer modification
- 4.8 Investigations of the interactions in the system guest polymer–WSP5A–SP
- 4.9 Responsiveness of sensor chips
- 4.9.1 Sample preparation. Spin-coating parameters
- 4.9.1.1 Parameters influencing the coated layers
- 4.9.1.2 Influence of the polymer solution concentration
- 4.9.2 SPR investigation of P10THAP sensor chip
- 4.9.2.1 Experimental procedure
- 4.9.2.2 Kinetic study of the P10THAP chip’s responsiveness
- 4.9.2.3 SP concentration dependencies of layer thickness and refractive index of P10THAP films
- 4.9.3 SPR investigation of P10TAHAP sensor chip
- 4.9.3.1 Suppression of Marangoni instabilities
- 4.9.3.2 Experimental procedure
- 4.9.3.3 Kinetic studies of the P10TAHAP chip’s responsiveness
- 4.9.3.4 SP concentration dependencies of layer thickness and refractive index of P10TAHAP films
- 4.9.3.5 Sensor responsiveness investigations with 100 μM SP solution
- 4.9.3.6 Responsiveness of a chip without WSP5A
- 4.10 Summary and outlook
- 5 Experimental section2F
- 5.1 Materials and methods
- 5.1.1 Materials
- 5.1.2 Methods
- 5.2 Synthetic procedures
- 5.2.1 Precursor synthesis
- 5.2.1.1 Synthesis of tert-butyl (3-bromopropyl)carbamate (BBPA)
- 5.2.1.2 Synthesis of tert-butyl (3-azidopropyl)carbamate (BAPA)
- 5.2.1.3 Synthesis of 6-bromohexan-1-amine hydrobromide (BHA)
- 5.2.1.4 Synthesis of tert-butyl (6-bromohexyl)carbamate (BBHA)
- 5.2.2 Synthesis of the host moiety HT
- 5.2.2.1 Synthesis of decamethoxy-pillar[5]arene (DMP5A)
- 5.2.2.2 Synthesis of monohydroxy-P5A (P5AOH)[107,108,117]
- 5.2.2.3 Synthesis of monopropargyloxy-P5A (P5APR)
- 5.2.2.4 Synthesis of (1-(N-Boc-3-aminopropyl)-1H-1,2,3-triazol-4-yl) methyleneoxy-P5A (HT-Boc)
- 5.2.2.5 Synthesis of (1-( 3-aminopropyl)-1H-1,2,3-triazol-4-yl) methyleneoxy-P5A hydrochloride (HT)
- 5.2.3 Synthesis of the water-soluble pillar[5]arene[338]
- 5.2.3.1 Case 1: involving isolation of the DHP5A
- 5.2.3.1.1 Synthesis of decahydroxy-P5A (DHP5A)
- 5.2.3.1.2 Synthesis of deca(ethoxycarbonylmethoxy)-P5A (DECMP5A)
- 5.2.3.2 Case 2: Synthesis of DECMP5A; DHP5A is not isolated
- 5.2.3.3 Synthesis of deca(carboxylmethoxy)-P5A (DCMP5A)
- 5.2.3.4 Synthesis of decaammonium deca(carboxylatomethoxy)-P5A (WSP5A)
- 5.2.4 Synthesis of the guest moieties
- 5.2.4.1 Synthesis of 3-(6-((tert-butyloxycarbonyl)amino)hexyl)-1-methyl-1H-imidazol-3-ium bromide (MIHA-Boc)
- 5.2.4.2 Synthesis of 1-(6-ammoniohexyl)-3-methyl-1H-imidazol-3-ium (chloride/bromide) (MIHA)
- 5.2.4.3 Synthesis of tert-butyl (6-(1H-1,2,4-triazol-1-yl)hexyl)carbamate (THA-Boc)
- 5.2.4.4 Synthesis of 6-(1H-1,2,4-triazol-1-yl)hexan-1-amine hydrochloride (THA)
- 5.2.4.5 Synthesis of 6-((tert-butoxycarbonyl)amino)-N,N,N-trimethylhexan-1-aminium bromide (TAHA-Boc)
- 5.2.4.6 Synthesis of N1,N1,N1-trimethylhexane-1,6-diaminium (chloride/bromide) (TAHA)
- 5.2.4.7 Synthesis of 1-(6-((tert-butyloxycarbonyl)amino)hexyl)-pyridin-1-ium bromide (PHA-Boc)
- 5.2.4.8 Synthesis of 1-(6-((tert-butyloxycarbonyl)amino)hexyl)-1H-imidazole (IHA-Boc)
- 5.2.5 Synthesis of VDMA[306,307]
- 5.2.5.1 Synthesis of 2-acrylamido-2-methylpropanoic acid
- 5.2.5.2 Synthesis of 2-vinyl-4,4-dimethyl azlactone (VDMA)
- 5.2.6 Synthesis of the photo-crosslinker DMIEA[213,301]
- 5.2.6.1 Synthesis of tert-butyl (2-aminoethyl)carbamate (EDA-Boc)
- 5.2.6.2 Synthesis of tert-butyl (2-(3,4-dimethyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)carbamate (DMIEA-Boc)
- 5.2.6.3 Synthesis of 1-(2-aminoethyl)-3,4-dimethyl-1H-pyrrole-2,5-dione (DMIEA)
- 5.2.7 Synthesis of adhesion promoter[213]
- 5.2.7.1 Synthesis of 1-allyl-3,4-dimethyl-1H-pyrrole-2,5-dione (ADMI)
- 5.2.7.2 Synthesis of S-(3-(3,4-dimethyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)propyl) ethanethioate (DMIPTA)
- 5.2.8 Synthesis and modification of the co-polymer P10
- 5.2.8.1 Synthesis of poly(DMAAm0.9-co-VDMA0.1) (P10)
- 5.2.8.2 Synthesis of THA- and DMIEA-modified P10 (P10THAP)
- 5.2.8.3 Synthesis of THA-modified P10 (P10THA)
- 5.2.8.4 Synthesis of TAHA- and DMIEA-modified P10 (P10TAHAP)
- 5.2.8.5 Synthesis of TAHA-modified P10 (P10TAHA)
- 5.2.9 Synthesis and modification of the co-polymer P20
- 6 References
