Zur Seitenansicht

Titelaufnahme

Links
Zusammenfassung

In dieser Arbeit wird die elektromagnetische Wellenausbreitung in integrierten optischen Wellenleitern mit Hilfe von halb analytischen und numerischen Simulationsmethoden untersucht. Im ersten Teil werden 2-D Si/SiO2-Wellenleiterkonfigurationen mit hohem Brechungsindexkontrast betrachtet. Die Strukturen werden mit halb geführten Wellen unter schrägen Ausbreitungswinkeln angeregt. Dadurch kann die Leistungsübertragung zu bestimmten ausgehenden Moden unterdrückt werden, wodurch vollständig verlustfreie Systeme entstehen. Zusätzlich dient die Anregung mit einem seitlich begrenzten, einfallenden Wellenbündel aus halb geführten Wellen dazu, praktisch relevantere 3-D Konfigurationen zu realisieren. Darüber hinaus wird eine schrittweise Winkelspektrum-Methode vorgestellt, die es ermöglicht, in Kombination mit voll vektoriellen 2-D Finite-Elemente-Lösungen für Teilprobleme mit geringerer Komplexität, die Wellenausbreitung in planaren, linsenförmigen Wellenleitern numerisch in drei Raumrichtungen zu berechnen. Im zweiten Teil dieser Arbeit wird die Ausbreitung in Wellenleiterstrukturen aus Lithiumniobat untersucht, welche für quantenoptische Effekte genutzt werden. Zur Detektion einzelner Photonen werden supraleitende Nanodrähte auf eindiffundierten Lithiumniobat Wellenleitern mit zusätzlicher Taperschicht aus Silizium betrachtet. Um die Wellenausbreitung in diesen 3-D Wellenleitern zu beschreiben, wird eine einseitig gerichtete Finite-Elemente „Modal Matching“ Methode eingeführt. Abschließend werden Rippenwellenleiter aus Lithiumniobat analysiert, die auf Siliziumdioxid Plattformen aufgebracht sind. Der Schwerpunkt liegt hier auf dem nichtlinearen „Parametric Down-Conversion“ Prozess, der für die Erzeugung verschränkter Photonen verwendet wird.

Abstract

In this work, the electromagnetic wave propagation in integrated optical waveguides is studied by using semi-analytical and numerical simulation methods. In the first part, 2-D high-index contrast Si/SiO2 dielectric slab waveguide configurations are investigated. The structures are excited with semi-guided waves at oblique angles of propagation. Due to this, power transfer to specific outgoing modes can be suppressed, resulting in completely lossless configurations. The excitation is further examined for incoming, laterally confined wave bundles of semi-guided waves to realize practically more relevant 3-D configurations. Additionally, a stepwise angular spectrum method in combination with full vectorial 2-D finite element solutions for subproblems of lower complexity to numerically simulate the wave propagation in full 3-D planar lens-like waveguides is presented. In the second part, the wave propagation in lithium niobate waveguide structures is examined, which are used for quantum optical effects. On the one hand, superconducting nanowires on titanium in-diffused lithium niobate waveguides with an additional tapered silicon layer are used for single photon detection. The wave propagation in these 3-D multiscale tapers is studied by introducing a unidirectional finite element modal matching method. On the other hand, lithium niobate rib waveguides on silicon dioxide platforms are analyzed, focusing on the nonlinear parametric down-conversion process used for the generation of entangled photons.