Zur Seitenansicht

Titelaufnahme

Links
Zusammenfassung

Mehrzieloptimierung behandelt Probleme, bei denen mehrere skalare Zielfunktionen simultan optimiert werden sollen. Ein Punkt ist in diesem Fall optimal, wenn es keinen anderen Punkt gibt, der mindestens genauso gut ist in allen Zielfunktionen und besser in mindestens einer Zielfunktion. Ein notwendiges Optimalitätskriterium lässt sich über Ableitungsinformationen erster Ordnung der Zielfunktionen herleiten. Die Menge der Punkte, die dieses notwendige Kriterium erfüllen, wird als Pareto-kritische Menge bezeichnet. Diese Arbeit enthält neue Resultate über Pareto-kritische Mengen für glatte und nicht-glatte Mehrzieloptimierungsprobleme, sowohl was deren Berechnung betrifft als auch deren Struktur. Im glatten Fall erfolgt die Berechnung über ein Fortsetzungsverfahren, im nichtglatten Fall über ein Abstiegsverfahren. Anschließend wird die Struktur des Randes der Pareto-kritischen Menge analysiert, welcher aus Pareto-kritischen Mengen kleinerer Subprobleme besteht. Schlussendlich werden inverse Probleme betrachtet, bei denen zu einer gegebenen Datenmenge ein Zielfunktionsvektor gefunden werden soll, für den die Datenpunkte kritisch sind.

Abstract

Multiobjective optimization is concerned with the simultaneous optimization of multiple scalar-valued functions. In this case, a point is optimal if there is no other point that is at least as good in all objectives and better in at least one objective. A necessary condition for optimality can be derived based on first-order information of the objectives. The set of points that satisfy this necessary condition is called the Pareto critical set. This thesis presents new results about Pareto critical sets for smooth and nonsmooth multiobjective optimization problems, both in terms of their efficient computation and structural properties. In the smooth case they are computed via a continuation method and in the nonsmooth case via a descent method. Afterwards, the structure of the boundary of the Pareto critical set is analyzed, which consists of Pareto critical sets of smaller subproblems. Finally, inverse problems are considered, where a data set is given and an objective vector is sought for which the data points are critical.